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Preface

This volume contains the proceedings of EXPRESS/SOS 2019, the Combined 26th International Work-
shop on Expressiveness in Concurrency and the 16th Workshop on Structural Operational Semantics.
Following a long tradition, EXPRESS/SOS 2019 was held as one of the affiliated workshops of the 30th
International Conference on Concurrency Theory (CONCUR 2019), in Amsterdam (The Netherlands).

The EXPRESS/SOS workshop series aims at bringing together researchers interested in the formal
semantics of systems and programming concepts, and in the expressiveness of computational models. In
particular, topics of interest for the workshop include (but are not limited to):

e expressiveness and rigorous comparisons between models of computation (process algebras, event

structures, Petri nets, rewrite systems);

e expressiveness and rigorous comparisons between programming languages and models (distributed,
component-based, object-oriented, service-oriented);

e logics for concurrency (modal logics, probabilistic and stochastic logics, temporal logics and re-
source logics);

e analysis techniques for concurrent systems;

e theory of structural operational semantics (metatheory, category-theoretic approaches, congruence
results);

e comparisons between structural operational semantics and other formal semantic approaches;

e applications and case studies of structural operational semantics;

e software tools that automate, or are based on, structural operational semantics.
This year, the Program Committee selected 6 submissions for inclusion in the scientific program—four
full papers and the following two short papers:

o Coherent Resolutions of Nondeterminism, by Marco Bernardo.

o A GSOS for Attribute-based Communication, by Marino Miculan and Matteo Paier.

This volume contains revised versions of the four full papers as well as contributed papers associated to
the following three invited presentations, which nicely complemented the scientific program:

o Cellular monads from Positive GSOS specifications, by Tom Hirschowitz (CNRS / Savoie Mont
Blanc University, France)

e Comparing Process Calculi Using Encodings, by Kirstin Peters (TU Berlin/TU Darmstadt, Ger-
many)

e Semantic Structures for Spatially-Distributed Multi-Agent Systems, by Frank Valencia (CNRS-
LIX, Ecole Polytechnique de Paris, France and Univ. Javeriana Cali, Colombia)

We would like to thank the authors of the submitted papers, the invited speakers, the members of the
program committee, and their subreviewers for their contribution to both the meeting and this volume.
We also thank the CONCUR 2019 organizing committee for hosting the workshop. Finally, we would
like to thank our EPTCS editor Rob van Glabbeek for publishing these proceedings and his help during
the preparation.

Jorge A. Pérez and Jurriaan Rot,
August 2019
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Cellular Monads from Positive GSOS Specifications

Tom Hirschowitz*

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA
73000 Chambéry, France

tom.hirschowitz@univ-smb.fr

We give a leisurely introduction to our abstract framework for operational semantics based on cellular
monads on transition categories. Furthermore, we relate it for the first time to an existing format, by
showing that all Positive GSOS specifications generate cellular monads whose free algebras are all
compositional. As a consequence, we recover the known result that bisimilarity is a congruence in
the generated labelled transition system.

1 Introduction

1.1 Motivation

In the vast majority of foundational research on programming languages, although ideas are thought of
as widely applicable, they are presented on one, simple example. Typically, there is a tension between
simplicity of exposition, leading to the minimal language making the idea relevant, and significance,
leading to the most expressive one. Strikingly, the scope of the idea is often mostly clear to the experts,
but no attempt is made at stating it precisely. The reason for this is that the mathematical concepts
needed for even only making such statements are lacking. Indeed, one needs to be able to say something
like: “for all programming languages of such shape, the following holds”. But there simply is no widely
accepted mathematical notion of programming language.
Such a general notion should account for both

(i) the interaction between syntax and dynamics, as involved in, e.g., structural operational seman-
tics [21], or in the statement of results like type soundness, congruence of program equivalence, or
compiler correctness, and

(ii) denotational semantics, in the sense of including not only operational, syntactic models but also
others, typically ones in which program equivalence is coarser.

Typically, standard formats [19] elude denotational semantics, and are exclusively syntactic. To our
knowledge, the only such proposals meeting all these criteria are functorial operational semantics, a.k.a.
bialgebraic semantics [25], and a few variants [4, 24]. This approach has been deeply developed, and
shown to extend smoothly to various settings, e.g., non-deterministic and probabilistic languages. How-
ever, two important extensions have proved more difficult.

e The treatment of languages with variable binding is significantly more technical than the basic
setting [9, 8, 24].

e More importantly, the bialgebraic study of higher-order languages like the A-calculus or the higher-
order m-calculus is only in its infancy [20].

This leaves some room for exploring potential alternatives.

*Thanks to Jorge Pérez and Jurriaan Rot for the invitation, and to the referees for helpful comments.

J.A. Pérez and J. Rot (Eds.): Combined Workshop on Expressiveness in © T. Hirschowitz
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2019). This work is licensed under the
EPTCS 300, 2019, pp. 1-18, doi:10.4204/EPTCS.300.1 Creative Commons Attribution License.



2 Cellular Monads from Positive GSOS Specifications

1.2 Context

In recent work [12], a new approach to abstract operational semantics was proposed, and its expressive
power was demonstrated by proving for the first time an abstract soundness result for bisimulation up
to context in the presence of variable binding. Bisimulation up to context is an efficient technique [23,
Chapter 6] for proving program equivalences, which had previously been proved correct in the bialge-
braic setting [2], but only without binding.

Its novelty mainly resides in the following two technical features.

Transition categories First, while standard operational semantics is based on labelled transition sys-
tems, this is both generalised and abstracted over in the framework.

Generalisation Indeed, in the examples, instead of standard labelled transition systems, we use a
slight generalisation similar in spirit to [6], essentially from relations to graphs, i.e., possibly
with several transitions between two states. This simple, harmless generalisation brings in
a lot of useful structure, typically that of a topos [17], which is unavailable at this level in
bialgebraic operational semantics.

Abstraction In full generality, the framework takes as a parameter a transition category, a typical
example of which is given by such generalised transition systems. For any object of a given
transition category, bisimulation may be defined by lifting, following an idea from [14].

Combinatorial category theory A second technical innovation is the use of advanced combinatorial
category theory. To start with, familial monads [3], or rather their recent cellular variant [10],
provide a notion of evaluation context for both programs and transitions, at the abstract level.
Standard reasoning by induction on context thus becomes simple algebraic calculation. A second,
crucial notion is cofibrantly generated factorisation systems, a notion from homotopy theory [13,
22] which, together with cellularity, allows for a conceptually simple, yet relevant characterisation
of well-behaved transition contexts.

Each instance of the framework is then constructed as follows.

Type of transition system The first step is the choice of a type of transition system, which may involve
different kinds of states (e.g., initial or final ones), the set of labels to be put on transitions, etc.
Technically, this amounts to fixing a transition category %’. This also fixes the relevant notion of
bisimulation, hence bisimilarity.

Transition rules The second step consists in defining the dynamics of the considered language, which
is usually specified through a set of inference rules. This comes in as a monad 7" on %, whose
algebras are essentially the transition systems satisfying the given inference rules. The standard,
syntactic transition system is typically the free algebra 7'(0). This fixes the relevant notion of
context closure. In this setting, congruence of bisimilarity ~y on a T-algebra X is the fact that
T(~x) — X? factors through ~x — X2 (see (1) on page 7).

One of the main results [12, Corollary 4.30] is that if the considered algebra is compositional, in the sense
that its structure map 7 (X) — X is a functional bisimulation, and if the monad T satisfies an additional
condition, then bisimilarity is indeed a congruence. The latter condition is called T,-familiality in [12],
but we will here call it cellularity, because it is a specialisation of cellularity in the sense of [10] to
familial functors. As mentioned above, a second main result [12, Corollary 5.15] is that under a different
condition called T -familiality, bisimulation up to context is sound.
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1.3 Contribution

One of the main issues with cellular monads 7 on transition categories % is the lack of an efficient
generation mechanism, i.e., a mathematical construction that produces pairs (%', T ) from more basic data.
In this paper, we initiate the search for such generating constructions by showing that an existing simple
format, Positive GSOS [1], always produces cellular monads whose free algebras are compositional. As
a consequence, we recover (Theorem 10.4) the known result that bisimilarity is a congruence in all free
algebras.

As this is an invited contribution, we briefly introduce the approach at an expository, rather concrete
level. In particular, the only considered transition category is the one of generalised labelled transition
systems in the sense alluded to above. Finally, our proofs are meant to be instructive rather than fully
detailed.

1.4 Plan

In §2, we explain our generalisation of labelled transition systems, and bisimulation by lifting. In §3,
we recall Positive GSOS specifications X and show how they generate monads 7x. In §4, we argue
that algebras for the obtained monad Ty are a good notion of model for the considered Positive GSOS
specification. We then state congruence of bisimilarity in categorical terms, and quickly reduce it to
two key properties: (i) compositionality of the considered algebra and (ii) preservation of functional
bisimulations by Tx.

We deal with (i) in §5, where we show that when Ty is obtained from a Positive GSOS specification,
all free algebras are compositional. In §6, we then attack (ii), by further reducing it to familiality and
cellularity. The remaining sections develop these ideas.

In §7, we define familiality for functors (as opposed to monads), and show that Ty is a familial
functor. In §8, we establish some factorisation properties of familial functors which were announced
and used in §4 to reduce congruence of bisimilarity to compositionality and preservation of bisimulation.
We then introduce cellularity in §9, and show that 7Ty is indeed cellular. Finally, we wrap up in §10 by
defining familiality for monads (which is slightly more demanding than for mere functors), and showing
that Ty does form a familial monad. This fills a hole left open in §5, thus allowing us to state the main
theorem.

Finally, we conclude and give some perspective in §11.

1.5 Prerequisites

We assume familiarity with basic category theory [16, 15], including categories, functors, natural trans-
formations, monads and their algebras, and the Yoneda lemma.

2 Labelled transition systems as presheaves

2.1 Generalised transition systems

A standard SOS specification is given by a signature, plus a family of transition rules over a fixed set A
of labels. The set A fixes the relevant kind of transition system, and we interpret this by constructing
a corresponding category of (generalised) transition systems. Given any set A, let ['y denote the graph
with

e vertex set A+ 1, i.e., vertices are elements of A, denoted by [a] for a € A, plus a special vertex *,
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e two edges 54,1 : x — [a], forall a € A.

Pictorially, I'y looks like this:
[a] o (ach)

There are no composable edges in I'4, so, adding formal identity arrows, it readily forms a category,
which we also denote by ['4.

Definition 2.1. The category of transition systems induced by A is ﬂ, the category of presheaves over
.

To see what presheaves over I'y have to do with transition systems, let us observe that a presheaf
X € T’y consists of a set X (%) of states, together with, for each a € A, a set of transitions e € X|[a]
with source and target maps X (s%),X (%) : X[a] — X (*). Our notion is thus only slightly more general
than standard labelled transition systems over A, in that it allows several transitions with the same label
between two given states.

Remark 2.2. The category I:X may be viewed as a category of labelled graphs. Indeed, letting Qp
denote the one-vertex graph with A loops on it, we have by well-known abstract nonsense an equivalence
Gph/Q4 ~ ﬂ of categories. (This is due to the fact that I'y is isomorphic to the category of elements
of Q,, see Definition 7.1 below.)

Notation 2.3. For any X € a, we denote the action of morphisms in I'y with a dot. E.g., if e € X[a],
then e-s* € X () is its source. We also sometimes abbreviate s* and ¢ to just s and ¢.

Example 2.4. For languages like CCS [18], we let A = 4"+ 4"+ 1 denote the disjoint union of a fixed
set 4 of channel names with itself and the singleton 1. Elements of the first term are denoted by @, for
a € &, and are used for output transitions, while elements of the second term, simply denoted by a, are
used for input transitions. Finally, the unique element of the third term is denoted by 7 and used for silent
transitions. E.g., the labelled transition system

- b
x4 —y ?, 2
is modelled by the presheaf X with

X(*) :{x,y,z} X(a) :{e} xX=e-t
X(b):{fvf/} y:€'S:f'S:f/-S
X(a) ={s} i=ft=ft=g-s=g-t

2.2 Bisimulation

Returning to generalised transition systems, we may define bisimulation categorically in the following
way. Morphisms f : X — Y, i.e., natural transformations, are the analogue in our setting of standard
functional simulations. Indeed, given any transition ¢ : x - x’ in X, then f(x) sure has an a transition
to some state related to x’: this is simply f(e)! The next step is to define an analogue of functional
bisimulation. For this, let us observe that the base category I’y embeds into the presheaf category 'y —
this is just the Yoneda embedding y : I'y — I:X, directly specialised to our setting for readability:

o the state object x embeds as the one-vertex graph y, with no transition;

e any transition object [a] embeds as the graph y|, with one a-transition between two distinct ver-
tices;
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e the morphisms s%,7* : x — [a] embed as the morphisms y, — Y|4 Picking up the source and target,
respectively, of the given transition.

Notation 2.5. We often omit y, treating it as an implicit coercion.

Definition 2.6. Let f : X — Y be a functional bisimulation whenever all commuting squares as the solid
part below, admit a (potentially non-unique) lifting k as shown, i.e., a morphism making both triangles
commute.

* —* X

1
| 27

la] ——Y

Let us explain why this matches the standard definition. In any such square, x is essentially the same

as just a state in X, while e is just an a-transition in Y. Furthermore, the composite * ~ [a] < ¥ picks
the source of e, so commutation of the square says that the source e-s* of e is in fact f(x) (a.k.a. fox).
So we are in the situation described by the solid part below.

x%f(x)

Finding a lifting k then amounts to finding an antecedent to e whose source is x, as desired.
We finally recover the analogue of standard bisimulation relations.

Definition 2.7. A bisimulation relation on X is a subobject R < X2 (= isomorphism class of monomor-
phisms into X?) whose projections R — X are both functional bisimulations.

In this case, the above diagram specialises to

.
(x1,%2) ——— x;
|
(e1 ,62): €

(¥),%5) =g ¥

where (x1,x2), (x],x5) € R(%), and (e}, e2) € R[a].

Now, I:X, as a presheaf category, is very well-behaved, namely it is a Grothendieck topos [17]. In
particular, subobjects of X2 form a (small) complete lattice, in which the union of a family R; < X?
is computed by first taking the copairing ¥;R; — X2, which is generally not monic, and then taking its
image. Furthermore, bisimulation relations are closed under unions and so admit a maximum element,
bisimilarity [12, PropositionA3.14].

The presheaf category I'y is thus only a slight generalisation of standard labelled transition systems
over A, in which we have an analogue of bisimulation, conveniently defined by lifting, and bisimilarity.
Let us now consider the case where states are terms in a certain language, and transitions are defined
inductively by a set of transition rules, i.e., operational semantics.

3 Positive GSOS specifications as monads

Let us briefly recall the Positive GSOS format. We fix a set A of labels, and start from a signature
Yo = (09,Ep) on Set, i.e., a set Oy equipped with a map Ey : Oy — N.

Definition 3.1. A Positive GSOS rule over X consists of
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e an operation f € Oy, say of arity n = Ey(f),
e alabelac A,

e 7 natural numbers my,...,m,,

e foralli € n, m;labels a;1,...,a;,,, and

e atermt withn+ Y | m; free variables.

In more standard form, such a rule is just

di,j

Xi — Vi j (iGI’l,ij,‘)
f(xl,...,xn)in

where the x;’s and y; ;’s are all distinct and denote the potential free variables of .

Definition 3.2. A Positive GSOS specification is a signature X, together with a set X; of Positive GSOS
rules.

Let us now describe how any Positive GSOS specification ¥ induces a monad 7y on l:g, starting with
the action of Ty, on objects. Given any X € I'y, the set T3 (X )(%) of states consists of all Xy-terms with
variables in X (%), as defined by the grammar

M,N == (u) | f(My,....M,),

where u ranges over X (*). Similarly, each 75 (X)[a] consists of all transition proofs following the rules
in Xy, with axioms in all X [a']’s. Formally, such proofs are constructed inductively from the following
rules,

( c R,‘7jixMiﬂ>Mi7j (ien,jEmi)
e
(e 2x (e~ s) = e-1) P (Rij)ien jem; x F(My,..,My) = t[(xi = My, (i j = Mi ) jem;)ien)

where in the second rule f € Oy , Eo(f) =n, p = (f,a,(m;, (aij) jem,)ien,t) € £1. When m; = 0, we want
to keep track of M; in the transition proof, so by convention the family (R; ;) jem, denotes just M;. In the
sequel we simply call transitions such transition proofs.

Xla])

Example 3.3. Let us consider the following simple CCS transition of depth > 1, in any Tecs(X)[7].

) :x (a) = by
Ipar((e1)), (x2) :x (ei)|(e2) = (1] (e2) (e2) =x (be3) = (v2)
sync(Ipar((e1), (x2)), (e2)) :x (e )| Qe2d) 1 Crs) = (iDIEed)|(y2)

where Ipar and sync denote the left parallel and synchronisation rules, (e; : x| = y;) € X[a], xo € X (%),
and (e : x3 = y,) € X[a).

The source and target of a transition R :x M < N are M and N, respectively, which ends the definition
of Ty on objects. On morphisms f : X — Y, Tx(f) merely amounts to renaming variables (x) and (e| to
(f(x)) and (f(e)), respectively. It thus remains to show that 7y has monad structure. The unit ny : X —
Ty (X) is obviously given by (—), while multiplication uy : T3 (7 (X)) — Tx(X) is given inductively by
removing the outer layer of (—|)’s

(=

\LQI ~

on states ux(M) = M

‘th(f(Ml,...,Mn)) = f(.uX(Ml)v“‘th(Mn))
and on transitions ux(R) = R

ux (P (Rij)ieniem) = P (Mx(Ri;j))ien,icm -
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Lemma 3.4. The natural transformations M and U equip Ty, with monad structure.

Proof. A straightforward induction. U

4 Models as algebras and congruence of bisimilarity

Algebras for Ty readily give the right notion of model for the transition rules:

Definition 4.1. An algebra for a monad T, or a T-algebra, consists of an object X, equipped with a
morphism ¢ : 7(X) — X such that the following diagrams commute.

T(T(X)) —1%, 7(x) X \”X T(X)
bx 07 o
3 NG

Thus, intuitively, a Ty-algebra is a transition system which is stable under the given operations and
transition rules.

We now would like to show that, under suitable hypotheses, bisimilarity for any given Tx-algebra
o : Tx(X) — X is a congruence. We may state this categorically by saying that the canonical morphism
Ty (~x) — X? factors through m : (~x) < X2, as in

TZ(NX) *************************** > X
T):(mx)l Jm (1)

2 2 2

EXY) mmmmy (EX) e X

Indeed, an element of Tx(~x) is a term M whose free variables are pairs of bisimilar elements of X,
which we write as M ((x1,y1),---,(Xn,¥n)), With x; ~x y; for all i € n. The morphism (Tx(7;), Tx(m,))
maps this to the pair

(M(x1,...y%0),M(¥1,---,Yn))s

which «? then evaluates componentwise. The given factorisation thus boils down to

Ot(M(xl,. .- 7xn)) ~X a(M(yl g 7yn))

for all M and x| ~x y1,..., X, ~x Yn, 1.€., bisimilarity is a congruence.
In order to prove such a property, it is sufficient to prove that 7x preserves all bisimulation relations,
in the sense that if m : R < X2 is a bisimulation relation, then so is

Tz (m) ) (Tx(m),Tx(m)) (

2
Ts(R) Ty (X2 x(X))? % X2
(in the slightly generalised sense that its image is). Equivalently, an easy diagram chasing shows that it

all boils down to
Ty (m;) o
—

T (R) 2 p(x2) B2 1y (x) & x

being a functional bisimulation for i € {1,2}.
Finally, m; om is a functional bisimulation by definition, and functional bisimulations are stable under
composition, so it is sufficient to prove that
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(i) the considered algebra is compositional, in the sense that its structure map o : Tx(X) — X is a
functional bisimulation, and

(ii) Tx preserves all functional bisimulations.

Compositionality essentially means that transitions of any o/(M(xy,...,x,)) are all obtained by assem-
bling transitions of the x;’s. This is not always the case, even for free algebras:

Example 4.2. Consider a specification X consisting of the unique rule
a
X—=Yy
f(g(x) = f(g(»)

say p, where f and g are two unary operations. Then the free algebra y; : Tx(7x(1)) — Tx(1) is not

compositional. Indeed, 1 contains a unique vertex, say «, and a transition b : x i> * for all labels b. Thus,
Tx(1) contains a transition p(a) : f(g(x)) < f(g()). But the term f(g(*)) is the image under g, of
f(g(*)), which has no transition.

Summing up, we have proved:

Lemma 4.3. [f Ty preserves functional bisimulations, then bisimilarity in any compositional Tx-algebra
is a congruence.

S Compositionality

Let us first consider compositionality. For a general algebra, we cannot do more than taking composi-
tionality as a hypothesis. However, we can say something when the considered algebra is free:

Lemma 5.1. The multiplication Ly : Tx(Tx(X)) — Tx(X) is a functional bisimulation.

Proof. We will see below (Lemma 10.3) that all naturality squares of u are pullbacks. In particular, we

have a pullback
Ty (Tx(
T3(T3 J) BB, 73 (13(1))
/-LXJ( J{ﬂl

But functional bisimulations are easily seen to be stable under pullback, so it is enough to show that u;
is a functional bisimulation. We thus consider any term M whose free variables are in Ty (1)(*), i.e., are
themselves terms over a single free variable, say %, together with a transition R : p; (M) % N. And we
need to show that there exists a transition R : M <% N whose free variables and axioms are in Tx(1), such
that y, (R) = R. We proceed by induction on M:

e If M = (M), then taking R = (R)) does the job.
o Otherwise, M= f(M] g ,Mn), soM = 251 (M) = f(M] g ,Mn), with Ml' = W (Ml) forall i € n.

But then, R must have the form p(R; ;)icn,jem;» for a certain rule p = (f,a, (m;, (i ;) jem; )ient) of
Y. By induction hypothesis, we find for all i € n and j € m; a transition

ajj

R;;:M; —N;;,

such that u; (R; ;) = R;j. Thus, R = p(R; j)icn,jem, does have M as its source, and furthermore
satisfies (; (R) = R, as desired. O
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6 Preserving bisimulations through familiality and cellularity

Let us now consider (ii), i.e., the fact that Ty preserves functional bisimulations. So we need to find a
lifting to any commuting square of the form

* —> Tz(X

“| |0

4] —%— Tx(Y),

for any functional bisimulation f.

We will proceed in two steps: we will require 7y to be first familial, and then cellular. Familiality
will allow us to factor the given square as the solid part below left, while cellularity will ensure existence
of a lifting k as on the right.

M
* m&@@ A Lﬁ X
q) ny| PO |me oA 2)
R

The composite Ty (k) o R’ will thus give the desired lifting for the original square.

At this stage, both steps may seem mysterious to the reader. In fact, as we will see, factorisation as
above left follows directly from the fact that 7y may be expressed as a sum of representable functors.
Let us first explain intuitively why this latter fact holds. We will then prove it more rigorously in §7, to
eventually return to factorisation in §8.

To start with, let us observe that the set Tx(1)(x) consists of terms over a single free variable, say
*. For any such term M, we may count the number of occurrences of x, say ny. Thus, any term in
any Ty (X)(x) is entirely determined by an M € Tx(1)(*), together with a map ny — X (%) assigning an
element of X (%) to each occurrence of * in M. But maps ny; — X (x) in Set are in 1-1 correspondence
with maps nys -y, — X in I:TA, where ny; -y, denotes the ny,-fold coproduct y, + - - - +y, of y, with itself.
In other words, letting E*(M) = ny; - y,, we have

LX) %)= Y Ta(E (M)X). 3)
METx(1)(x)
Clearly, for any f : X — Y, the action of Tx(f) at x is given by postcomposing with f, i.e., we have
Ts(X)(%) —=— Yuen(ys La(E*(M),X)
T (f){ LSMUZ(])(*) T (E*(M).f)
T (Y) (%) —=— Yuenyw Da(E*(M),Y).

The family (3) of isomorphisms is thus natural in X. We will see shortly that this extends to objects other
than *. Indeed, any transition in 7x(X)[a] may be decomposed into a transition R in Tx(1)[a], together
with a morphism E4(R) — X, where E4(R) is obtained from occurrences of term and transition variables
in R.

We have seen that our isomorphisms are natural in X, so it seems natural to try to express some
naturality constraint in the second argument of 7y. But this requires making the right-hand side of (3)
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functorial in this variable in the first place! In fact, for any transition R : M % N, we will construct

morphisms
E*(M) E5IR, pagy EYIRL gy

(see Notation 7.2 below). Thus, e.g., precomposing by the left-hand map yields the desired functorial
action

Y TaE‘RLX)— Y Ta(E(M).X)
ReTy(1)[a] MeTs (1)(x)
of s* : x — [a], sending any @ : E4(R) — X to the composite

E(s“IR)

E*(M) E‘(R) & x. 4)

7 Familiality for functors

Let us now state more rigorously the definition of familiality and the fact that Ty is familial. In the next
section, we will explain how this entails the desired factorisation (2).
Definition 7.1. The category of elements el(X) of any presheaf X € % on any category ¢ has

e as objects all pairs (c¢,x) with ¢ € ob(%) and x € X (c),

e and as morphisms (c¢,x) — (¢/,x’) all morphisms f : ¢ — ¢’ such that x’ - f = x.
Notation 7.2. The morphism f, viewed as a morphism (c,x) — (¢/,x’), is entirely determined by f and
x'. We denote it by f [ x'.
Definition 7.3. An endofunctor F : C — C on a presheaf category is familial iff there is a functor E :
el(F(1)) — C such that R

F(X)(c)= ), C(E(c,0),X), (5)
0eF(1)(c)

naturally in X € CandceC.

And indeed, we have:
Lemma 7.4. The endofunctor Ty is familial.

Proof. We need to do two things: (1) extend the isomorphisms (3) to objects of the form [a], and (2)
define the morphisms E(s* [ R) and E(t* [ R) rendering our isomorphisms natural also in the second
argument of Ty. In fact, we will do almost everything simultaneously by induction: we define E4(R)
and E(s* [ R) : E*(R-s*) — E“(R) by induction on R. By convention, as we did for the unique element
* € 1(*), we denote the unique element of 1[a] by a itself.

e If R = (da)), then its source is M = (%) and we put E“(R) = y[ and E(s* [ R) = 5% : yx — y[4-

o IfR= p(RiJ)iEn?jemi M 5 N, then for all i and J € m;, by induction hypothesis, we get mor-
phisms
E(s% [ Ryj): E*(M;) — E“4(R, ).

where R; ; ;1 M; RN N; jforalli € nand j € m. Letus temporarily fix any i € n. For all j, j € m;,
we have R; ;-5 = R; j - s = M;, so we take the wide pushout E; = @g+(y;,) E“(R; ), i.e., the
colimit of the following diagram.

E*(M;)

Iy R (©6)

- E%i(R; ;) . E%/ (Rij)...
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If m; = 0, this reduces to just E*(M;), which is exactly what we want. Finally, we let E(R) be the
coproduct ¥, E; of all the E;’s, and observe that E*(f(M,...,M,)) = Y, E*(M;) by definition, so
that we may define E (s | R) to be the coproduct }; S; of all canonical injections S; : E*(M;) — E;.

This ends the inductive definition of E(R) and E(s* [ R). We now need to construct the morphisms
E(t* | R). We again proceed inductively. When R = (a), the desired morphism is clearly ¢ itself. When
R = p(Rij)ien,jem;> the target is N = t[x; — M;, (yij — Nij)jem;). Now, by construction, occurrences
occ,(N) of the unique variable x in N are in 1-1 correspondence with

Vy = Z ((Occ*(Mi))”“c*‘i (t) + Z (OCC*(NW_))OCC),LJ. (t)) ’

i JjEmM;

and our map E(z* | R) should reflect the intended correspondences. Since E*(N) = Vy -y4, E(t* [ R) is
entirely determined by choosing a map E, : y, — E“(R) for all u € Vy:

e If u denotes an occurrence of x in M;, for some occurrence of x; in ¢, we let E,, denote the composite
Y. — E*(M;) — E*(R),

where the latter map denotes injection into the colimit of (6).

e If u denotes an occurrence of x in N; ;, for some occurrence of y; ; in ¢, we let E, denote the

composite
E(t“"J Ry )

i — E*(Nij) E“i(R; ;) — E*(R),

where the latter map again denotes injection into the colimit of (6). O

Rather than a full formal proof, let us illustrate that our construction satisfies the isomorphisms (3)
on a few examples.

Example 7.5. In the case of the transition of Example 3.3, familiality means that this transition is deter-
mined by picking the following transition in Tees(1)[7],

tpar((@). (%)) ;1 (=)D = ()
(a)

(%) (a) =1 () = (%)
sync(Ipar((a), (%)), ’

G0 Bx) = (G G) ()

together with a morphism E*(sync(Ipar((a), (%)), (a))) — X. Let us start with E*(Ipar((@)), (x))): it is
given by the colimit of

y* y*

(one y, for each argument x; of Ipar, and for each x; one yj, | for each premise x; 4, vi ;). Equivalently,
[ai ] 2]

this is just the coproduct y(z + ¥, and E(s° [ Ipar((a)), (x))) and E(t° [ Ipar((a), ()))) are given by

5Ty 174y,
Vit Yo —5 Vg + ¥e 6 Y+ Vi
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It is then clear that E(s” [ sync(Ipar((a)), (%)), (a))) is given by

e e My@—%yﬂry[a].

Now how about E(¢* [ sync(Ipar((@), (), (a)))? As the term ¢ occurring in the rule is here linear in the
yi,;’s, an easy computation leads to

174yt
Y@ +Y+ Ya S ¥« +Yx+ Y-

On this example, the isomorphism (5) thus boils down to the transition sync(Ipar((e1), (x2)), (e2))) above
being entirely determined by picking R = sync(Ilpar((@)), (%)), (a)) € Tecs(1)[7], and giving a morphism

@ : E*(sync(lpar((a), (x)), () = Y@ + ¥+ + ¥ — X,

which holds by universal property of coproduct and the Yoneda lemma. Naturality of (5) in ¢ says that
the source of (R, @) is given up to this correspondence by ((x)|(*)))|(*) and the composite

E*(((#)G0)1 ) = ¥u+ ¥ +¥e 205 i +¥u+ ¥ — X,

and likewise for the target.

Example 7.6. Let us now illustrate the treatment of branching, in the sense of a rule having several
premises involving the same x;. An example from CCS is the ‘replicated synchronisation’ rule

a a
X1 = Y11 X1 = Y12

)

ey = ey | (v1,1ly1.2)
say rsync. First, E*(rsync(([a]), ([a]))) is simply the pushout

54

¥ Yia

a| |
v ——— E¥ Gyl ),

which rightly models the fact that a transition rsync((e1), (e2)) € Tees(X)[7] is entirely determined by
picking rsync(([a]), ([a])) € Tces(1)[7], together with elements e; and e, of X [a] and X [a] with a common
source. The morphism E(s® | rsync(([a]), ([a]))) is then straightforwardly given by the diagonal. The
target morphism E(¢* | rsync(([a]), ([a]))) is a bit more complex to compute. Indeed, the target r =
x1|(y1,1|y1,2) has three free variables. The first, x;, should yield a morphism y, — E*(rsync(([a]), ([a])))
that is determined by the source morphism E*(M;) — E“(R; ;). Here, we get

¥ 5 E9(([@l)) =y — E*(rsyne(([a)), ([al))).

On the other hand, y; ; and y; » should be determined by the target morphisms E*(M, ;) — E*(R; 1) and
E*(M;,) — E“(R; ), in our case

v. 5 EX(([@l)) = v — E*(rsync(([@)). (lal))) and y. 5 E*(()) = ya — E*(rsync(([al), ([al)))-
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8 Familiality and factorisation

Let us now return to our proof sketch (2), and explain the properties of familiality that allow us to factor
the original square as indicated. The crucial observation is that elements of the form

(Ridger) € Y. Ta(E(R),E‘(R)) = Te(E*(R))(c)
ReTx(1)(c)

have the special property that any other element of the form (R, ¢) € Tx(X)(c) may be obtained uniquely
as the image of (R, id) by the action of

Tx(@)e : Te(ES(R))(c) = Te(X)(c).

Having the same first component R is equivalent to having the same image in 7x(1)(c). So by Yoneda,
having two elements of 73 (X)(c) and Tx(Y)(c) with common first component is the same as having a
commuting square of the form below left.

Ye — TZ(X) Ye ﬁ TZ(X)
| | el M7 ko
Tp(Y) ——— Tx(1) L(E°R) — Ta(1)

The special property of (R,id) is thus equivalently that any commuting square as above right (solid part)
admits a unique (dashed) lifting k£ as shown, making the non-trivial triangle commute. In fact, this holds
more generally by replacing y. and 1 by arbitrary objects:

Definition 8.1. Given a functor F : € — 2, a morphism & : D — F(C) is F-generic, or generic for short,
when any commuting square as the solid part of

el 0T |rw

F(C) — F(4)

admits a unique strong lifting [ as shown, in the sense that F(I)o& = y and hol =k.
Lemma 8.2 ([26, Remark 2.12]). A functor F : C—Cis familial iff any morphismY — F(X) factors as

Y & Fra) 29 px),

where & is F-generic. This is called a generic-free factorisation.

Proof sketch. (=) Passing from y,. to any ¥ goes by observing that generic morphisms are stable under
colimits in the comma category C | F, remembering that any presheaf Z is a colimit of the composite

el(z) 2 Cc L C,

where pz denotes the obvious projection functor.
(<) Conversely, E(c,0) is given by A, for any choice of generic-free factorisation

Ye - F(1). O
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Lemma 8.2 thus accounts for the factorisation of the original square as on the left in (2): M and R
respectively factor as

M 1 a) B9 1) and « X1 (8) EYL (v,

with M’ and R’ generic. But genericness of M’ yields the strong lifting ¥ in

* a] e — Tx(B)
w| e
Te(A) == Tx(X) ——— Tx(Y).

Tx(f)

9 Cellularity

We have now factored the original square as promised, but for the moment we have no guarantee that the
‘inner’ square

A—2 X

1D "

BTY

will admit a lifting. The point of cellularity is precisely this. For once, let us start from the abstract
viewpoint and explain how directly relevant it is in this case.

The starting point is the observation that our definition of bisimulation by lifting is based on a Galois
connection. Indeed, for any class . of morphisms, let #“ denote the class of maps f : X — Y such that
for any / : A — B in ., any commuting square as below left admits a (not necessarily unique) lifting.

A—"L— X X 4 A
< 9ll lfe.i” v ) fi lre%
B——Y Y ——B

Conversely, given a class % of morphisms, let 2% denote the class of morphisms f : X — Y such that
for any r : A — B in 4, any commuting square as above right admits a lifting. Clearly, letting . de-
note the set of all maps of the form s : x — [a], .#’“ catches exactly all functional bisimulations. But
what is Y (.?)? In other words, which maps will admit a lifting against all functional bisimulations?
This is very relevant to us, because finding a lifting for our inner square (7) is obviously equivalent to
showing that y € @(%)! Fortunately, the theory of weak factorisation systems gives a precise charac-
terisation [13, Corollary 2.1.15], of which we only need the following very special cases:

Lemma 9.1. Maps in 2(7%) are closed under composition and pushout, in the sense that
e for any composable f,g € (S9), go f € P (SY), and
o forany f:X =Y in (%) and u: X — X', the pushout ' of f along u, as below, is again in

2(.79).
X fe(r9) Y
X/ : /
feB (8

This is useful to us because the map y that we want to show is in ¥ (.#”?) may be obtained as a finite
composite of pushouts of maps in .#, which allows us to conclude. Indeed, ¥ occurs in
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* : [d]

w| |r

To(E* (M)~ To(E“(R).

with M’ and R’ generic. So (M’,7) is the generic-free factorisation of R’ os® as in Lemma 8.2, hence,
because generic-free factorisations are unique up to canonical isomorphism, we can actually compute 7.
Indeed, letting M’ = (M"id) and R’ = (R",id), for suitable M" € Tx(1)(*) and R” € Tx(1)|a], by (4)
R 0% is the pair (R” -s%,E(s* | R")), where

E(s“IR"):E*(R"-s*) — E*“(R")
is obtained by familiality of 7. We thus get
(M”,'}/) — (R” 'Sa,E(Sa rR//))’

hence in particular
y=E(s" | R").

It is thus sufficient to show that each E(s* [ R) is in Y (.’¥). This goes by induction on R, following an
incremental construction of E (s [ R). The base case is clear. When R = p(R; j)icn, jem;» remember from
the proof of Lemma 7.4 that E“(R) is the coproduct }; E; for i € n, each E; being constructed as the wide
pushout of all

E(Sai'j fR,'J') : E*(Mi) — E% (le/j).

Coproducts may be constructed by pushout along 0, so it suffices to show that each diagonal E*(M;) —
E; is in P(79) if each E(s%/ | R;;) is. This in turn boils down to incrementally constructing the
diagonal E*(M;) — E; by successively pushing out each E (s*/ [ R; ;): assuming that we have constructed
the diagonal E*(M;) — El] up until j < m;, we can incorporate R; ;1 by composing with the bottom
morphism of

E(Sai‘j+l TRi‘j+1)
_

E*(M;)

| .

i i ’

E“i (R j11)

which is indeed in 2(.?) by Lemma 9.1. Clearly, the obtained E;" is canonically isomorphic to E;, so
we have shown:

Lemma 9.2. The monad Ty is cellular, in the sense that in any commuting square of the form

s

[a]
i |
Tx(A) T Tx(B),

with & and ¥ generic, we have y € P (.79).

10 Familiality for monads

We have now almost proved:
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Lemma 10.1. Ty preserves functional bisimulations.

The only remaining bit is the hole we left in the proof of Lemma 5.1, when we claimed that all
naturality squares of u were pullbacks. Let us prove this now, as part of the following upgrade of
Definition 7.3 and Lemma 7.4.

Definition 10.2. A monad is familial when its underlying functor is, and its unit and multiplication are
cartesian natural transformations, i.e., their naturality squares are pullbacks.

In a case like ours, where the underlying category has a terminal object, by the pullback lemma, it is
sufficient to verify that squares of the following form are pullbacks.

TZ(X) T):z(!) Tz(l) X TZZ(!) 1
z X
FLXJ(J J{ﬂl Nx J lm

The following will conclude our proof of congruence of bisimilarity:
Lemma 10.3. Ty is a familial monad.
Proof. Pullbacks in presheaf categories being pointwise, we just need to check that a few types of squares

are pullbacks in Set: for 1 and 7, and for each type of label. Let us treat the most interesting one, namely
the left one below, assuming that the right one has already been covered.

72(%)a) 7% 72(1)[a 72(X)(%) T, 72(1)(3)
lix,[a]l llh,[a] ﬂxﬁ*l llh,*
10Xl 7 Tl TX)(x) 5 T()(3)

Let R[!] denote T'(!)(R) and R[[!] denote T2(!)(R), for all R € T (X)[a] and R € T?(X)[a]. We must show
that for any a € A, given any R € T?(1)[a] and R € T(X)][a] such that R[!] = u; (R), there exists a unique
R? € T%(X)|a] satisfying

ux(R%) =R and R['] =R.

We proceed by induction on R. The base case is easy. For the induction step, if R = p(R; j)icn, jem:
then because i (R) = R[!], we have R = p(R; ;)icn,jem; With R; ;[!] = 1 (R; ;) for all i, j'. By induction
hypothesis, we find a family R); € T(X)[a; ] such that

ux(RY;) = R; and R).['] =Ri; for all i, ;.
Letting now R? = p(Rg 7)ien,jem;» We get as desired
tx (R%) = p(ux (RY;))ij = p(Ri ;)i j = Rand RO[!] = p(RY,;['])i; = p(Ri )i = R. O

This ends the proof of:

Theorem 10.4. Forall X € ﬁ and Positive GSOS specifications X, bisimilarity in the free algebra Tx(X)
is a congruence.

IFor all i such that m; = 0, we in fact deal with some term M;, using the corresponding square. Let us ignore this detail for
readability.
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11 Conclusion and perspectives

In this paper, we have introduced the familial approach to programming language theory [12] at the rather
concrete level of generalised labelled transition systems (lﬁg). Notably, we have recalled the notions of
cellular monad and compositional algebra, and recalled that bisimilarity is always a congruence in a
compositional algebra for a cellular monad (Lemma 4.3).

We have also shown that all monads 73 generated from a Positive GSOS specification X are cellular
(Lemma 9.2) and that free Tx-algebras are always compositional (Lemma 5.1). Putting all three results
together, we readily recover (Theorem 10.4) the known result that bisimilarity is a congruence for all
free Tx-algebras. In particular, this is the case for the standard, syntactic transition system, which is the
initial algebra Tx(0).

This result constitutes a first generic tool for constructing instances of the framework of [12]. How-
ever, its scope is rather limited, and we plan to refine the construction to cover other formats like
tyft/tyxt [11]. A striking and promising observation here is that the well-foundedness condition demanded
of a tyft/tyxt specification for bisimilarity to be a congruence is clearly covered by our approach based on
weak factorisation systems (see §9). Cellularity thus provides a semantic criterion for well-foundedness,
whose precise relationship with the original, syntactic one seems worth investigating.

Beyond the task of showing by hand that existing formats yield cellular monads whose free algebras
are compositional, we also plan to investigate a more categorical understanding of the generating process.
The main motivation here is to design a construction that would cover variable binding. The theory
developed by Fiore and his colleagues [7, 5] seems like a good starting point.
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Comparing Process Calculi Using Encodings

Kirstin Peters
TU Berlin/TU Darmstadt

Encodings or the proof of their absence are the main way to compare process calculi. To analyse
the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with
encodability criteria. There exists a bunch of different criteria and different variants of criteria in
order to reason in different settings. This leads to incomparable results. Moreover, it is not always
clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting.
This paper provides a short survey on often used encodability criteria, general frameworks that try
to provide a unified notion of the quality of an encoding, and methods to analyse and compare
encodability criteria.

1 Introduction

Process calculi (or process algebra) is one area of formalisations of concurrent systems. Other areas are
for example Petri nets [54] or the Actor model [25]. A brief history of process algebra can be found in
[2]. Over the time different process calculi emerge. Examples are CCS [32], the m-calculus [36, 35],
CSP [26], or ACP [4], just to name some of the most prominent ones. Note that each of these calculi
denotes rather a family of process calculi. The number of different process calculi is in fact enormous.
As discussed in [41] there are many good reasons for this great number of different calculi. The most
plausible is maybe that many of these different calculi stem from different practical needs. They are
designed as domain-specific calculi capturing exactly the set of primitives necessary to model the desired
system at a proper level of abstraction without overloading the theory with (for this domain) unnecessary
operations. The large number of calculi calls for methods to compare different calculi or different variants
within a family of process calculi with respect to their expressive power. The most prominent such
method is language embedding using encodings [5]. Encodings—or the proof of their absence—do not
only allow to compare the expressive power of languages but also formalise similarities and differences
between the considered languages. So they provide a base for implementations of languages into real
systems.

There are basically two ways to measure the expressive power of a language [45].

An absolute result is a result about the expressive power of a single process calculus, usually obtained
by proving the ability (positive absolute result) or inability (negative absolute result) to solve some kind
of problem (see [45, 22] and even [31]), whereas a relative result compares two process calculi.

To compare the absolute expressive power of two languages, we may simply choose a problem that
can be solved in one language, but not in the other language. Note that combining two absolute results
that are both positive or both negative usually does not reveal much information, because it proves only
that the considered languages do not differ with respect to the respective particular problem. Actually as
soon as we compare two languages, it makes sense to use the term relative expressive power, as we can
now relate the two languages. The terminology of the relative expressive power has also been attributed
(see [45, 22]) to the comparison of the expressive power of two languages by means of the existence or
non-existence of encodings from one language into the other language, subject to various conditions on
the encoding. Indeed, encodings are the main way to relate the expressive power of two process calculi.

J.A. Pérez and J. Rot (Eds.): Combined Workshop on Expressiveness in © K. Peters
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2019). This work is licensed under the
EPTCS 300, 2019, pp. 19-38, doi:10.4204/EPTCS.300.2 Creative Commons Attribution License.
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A positive relative result, i.e., the proof of the existence of an encoding, is denoted as encodability result,
whereas a negative result is denoted as separation result.

Language comparison by means of encodings is a wide area of research within the context of process
calculi. Reasonable and meaningful encodings from one language into another show that the latter is at
least as expressive as the former, whereas the absence of such an encoding shows that the former can
express some behaviour that is not expressible in the latter, i.e., reveals a difference in the expressive
power of the former compared to the latter language. To analyse the quality of encodings and to rule
out trivial or meaningless encodings, they are augmented with encodability criteria. However, as stated
several times in literature (e.g. in [43, 41, 45, 22]), there is no agreement on what set of criteria makes
an encoding reasonable and meaningful. Sometimes it is even stated that such an agreement may not
exist or may not be desirable (see e.g. [43]), because many criteria result from different practical needs.
They are often derived from the main purpose of the current analysis. From a practical point of view
this is meaningful. But, obviously, using different quality criteria for different results, because they were
motivated by different practical problems, naturally leads to incomparable results.

After some technical preliminaries in Section 2, Section 3 provides a short survey of often used
encodability criteria. This section is the heart of this paper. Then, Section 4 shortly outlines three
approaches that try to overcome the problem of incomparable results and provide a unified notion of
the quality of an encoding. Similarly, Section 5 shortly outlines the only way to formally analyse and
compare encodability criteria we are aware of. Finally, Section 6 raises some open questions. Note that
this paper provides a rather abstract view on encodings and focuses on encodability criteria. A more
practical study of encodings, including a discussion of how to obtain an encoding and prove it correct as
well as some actual examples of encodings can be found in [49].

2 Process Calculi and Encodings

A process calculus is a language Z¢ = (P¢,—¢) consisting of a set of terms FP¢c—its syntax—and
a relation on terms ——¢c C P X Pc—its semantics. The elements of P are called process terms or
shortly processes or terms. We use upper case letters P,Q, 5,7, ... to range over process terms.

The syntax is usually defined by a context-free grammar defining operators. An operator is a function
from sorts and process terms into a process term. Sorts can be used to introduce data values or structural
information such as location names or identities. For simplicity, we restrict our attention to a single such
sort. Assume a countably-infinite set .#", whose elements are called names. Names are the universe
of elements of which the processes are constructed within many process calculi such as e.g. in the 7-
calculus. Then an operator is a function op : A" x 2 — ¢ from names and process terms into a
process term. In this case, we say op has the arity m. Sometimes, process calculi also specify operators
that, instead of a fixed number of arguments, accept any finite set of names and/or process terms usually
indexed by a finite index set /. In this case, the arity of the operator is not a fixed value but, for a given
set of arguments, is determined by the number of process terms among the arguments. An example of
such an operator is given by the choice operator in the w-calculus. Operators of arity 0 are denoted as
constants.

The semantics of a process calculus can be given as a reduction semantics—that describes the in-
teraction within a system of processes—or a labelled semantics—that also describes the interactions of
such a system with its environment. Here we assume that the semantics of the language is provided
as a reduction semantics, because in the context of encodings the treatment of reductions is simpler. A
step P —¢ P’ is an element (P,P') € —¢. Let P —¢ denote the existence of a step from P, i.e.,
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AP € Pc. P—c P, let P /¢ denote the absence of a step from P, i.e., = (P+—¢), and let =>¢
denote the reflexive and transitive closure of —¢. We write P —¢® if P can do an infinite sequence
of steps. A term P such that P ——¢® is called divergent.

Intuitively, a context € ([-]1,...,[|n) : P& — P is aprocess term with n holes. Formally, it is a func-
tion from n process terms into a process term, i.e., given n terms Py, ..., P, € P, the term € (Py,...,P,)
is the result of inserting the n terms Py,...,P, in that order into the n holes of 4. We also consider
contexts € ([-]1,., [Jns [Jnt1s- s [nam) 1 A X PP — Pc that have holes for names and terms.

A typical operator is the restriction of scopes of names. A scope defines an area in which a particular
name is known and can be used. For several reasons, it can be useful to restrict the scope of a name.
For instance to forbid interactions between two processes or with an unknown and, hence, potentially
untrusted environment. Names whose scope is restricted such that they cannot be used from outside
the scope are denoted as bound names. The remaining names are called free names. Accordingly, we
assume three sets—the sets of names n(P) and its subsets of free names fn(P) and bound names bn(P)—
for each term P. In the case of bound names, their syntactical representation as lower case letter serves
as a place holder for any fresh name, i.e., any name that does not occur elsewhere in the term. To
avoid name capture or clashes, i.e., to avoid confusion between free and bound names or different bound
names, bound names can be mapped to fresh names by o-conversion. We write P =, Q if P and Q
differ only by a-conversion. A substitution o is a finite mapping from names to names defined by a set

{»/x,...,9/x, } of renamings, where the x1,...,x, are pairwise distinct. The application of a substitution
to a term P{>i/x,...,¥/x, } is defined as the result of simultaneously replacing all free occurrences of x;
by y; fori € {1,...,n}, possibly applying a-conversion to avoid capture or name clashes. For all names

A \{x1,...,x, } the substitution behaves as the identity mapping.

To compare process terms, process calculi usually come with different well-studied preorders and
equivalences (see [16, 14] for an overview and a classification of the most frequent equivalences). A
special kind of equivalence with great importance to reason about processes are congruences. A con-
gruence is the closure of an equivalence with respect to contexts, i.e., an equivalence % C P¢c X ¢
is a congruence if (P,Q) € % implies (¢ (P),%€(Q)) € Z for all terms P,Q € ¢ and all contexts
€ ([[]) : Pc— Pc. Moreover, let C be a set of P — Pc-contexts, then Z C P x Pc is a con-
gruence with respect to C if (P,Q) € # implies (¢ (P),%€(Q)) € Z for all terms P,Q € Z¢ and all
contexts ¥ € C. Moreover, process calculi usually come with a special congruence =¢ C P¢ X P
called structural congruence. Its main purpose is to equate syntactically different process terms that
model quasi-identical behaviour.

Of special interest are simulation relations; in particular bisimulations [57]. Z is a bisimulation if
any two related processes mutually simulate their respective sequences of steps, such that the derivatives
are again related.

Definition 2.1 (Bisimulation) % is a (weak reduction) bisimulation if for each (P,Q) € %:
o P=>c P implies3Q0'. Q=c Q' N(P,Q) e X
o Q= Q implies AP'.P=c P N(P,Q')eZ

Two terms are bisimilar if there exists a bisimulation that relates them.

The definition of a strong (reduction) bisimulation is obtained by replacing all =>¢ by —¢ in the
above definition, i.e., a strong bisimulation requires that a step has to be simulated by a single step.
Coupled similarity (defined below) is strictly weaker than bisimilarity. As pointed out in [47], in contrast
to bisimilarity it allows for intermediate states in simulations: states that cannot be identified with states
of the simulated term. Each symmetric coupled simulation is a bisimulation.
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Definition 2.2 (Coupled Simulation) A relation % is a (weak reduction) coupled simulation if, for each
(P,Q) € ZwithP=>c P, (3Q. Qe=c O N(P,Q) e X)and (3Q". Q= O N(Q',P') € R).
Two terms are coupled similar if they are related by a coupled simulation in both directions.

An encoding from %5 = (Ps,—s) into L1 = (Pr,—1) relates two process calculi. We call
Zs the source and 2t the target language. Accordingly, terms of &g are source terms and of Py
target terms. In the simplest case an encoding from %5 into .£7 is an encoding function [-] : Ps — Py
from source terms into target terms. Sometimes an encoding is defined by several functions, such as the
encoding function and the renaming policy (see below). Else we identify an encoding with its encoding
function.

Sometimes it is necessary to translate a source term name into a sequence of names or reserve some
names for the encoding function. To ensure that there are no conflicts between these reserved names
and the source term names, [22] equips an encoding with a renaming policy @, i.e., a substitution from
names into sequences of pairwise disjoint names. To keep distinct names distinct, [22] assumes that
the sequences of names that result from applying a renaming policy to distinct names have no common
name. Moreover, if the renaming policy translates a single name into a sequence of names then the length
of such a sequence has to be the same for all names, such that the encoding can not distinguish between
different source term names by the length of the sequences to which they are encoded. Obviously, no
name should be translated into an infinite sequence of names.

Definition 2.3 (Renaming Policy) A substitution ¢ : N — A" from names into sequences of pairwise
disjoint names is a renaming policy, if Vx,y € N . x £y implies ¢ (x)N¢(y) =0, where ¢(z) is considered
as a set.

Note that the renaming policy allows us to use the names reserved by the encoding like implicit pa-
rameters. It is for instance possible that some part of the encoding introduces a free occurrence of a
reserved name within the encoding of a subterm which is bound by the surrounding part of the encoding.
Examples can be found in [22, 49]. Accordingly, in [22] an encoding is a pair ([-],¢(:)).

An encodability criterion is a predicate on encoding functions, used to reason about the quality of
encodings. To simplify the presentation we assume henceforth that & N &t = 0 and thus P& P =
PsU Pr. We say that a condition P : (HPs P1) — B is preserved by an encoding if for all source
terms S that satisfy P, the condition P also holds for [S]. A condition is reflected by an encoding if
whenever [S] satisfies it, then so does S. Finally an encoding respects a condition if it both preserves and
reflects it.

3 Encodability Criteria

Encodings are used to compare process calculi and to reason about their expressive power. Encodability
criteria are conditions that limit the existence of encodings. Their main purpose is to rule out trivial
or meaningless encodings, but they can also be used to limit attention to encodings that are of special
interest in a particular domain or for a particular purpose. These quality criteria are the main tool in
separation results, saying that one calculus is not expressible in another one; here one has to show that
no encoding meeting these criteria exists. To obtain stronger separation results, care has to be taken in
selecting quality criteria that are not too restrictive. For encodability results, saying that one calculus is
expressible in another one, all one needs is an encoding, together with criteria testifying for the quality
of the encoding. Here it is important that the criteria are not too weak.
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In the literature various different criteria and different variants of the same criteria are employed
to achieve separation and encodability results [15, 40, 42, 43, 44, 41, 59, 9, 45, 8, 22, 52, 17]. Some
criteria, like full abstraction or operational correspondence, are used frequently. Other criteria are used
to enforce a property of encodings that might only be necessary within a certain domain. For instance,
the homomorphic translation of the parallel operator—in general a rather strict criterion—was used in
[43] to show the absence of an encoding from the synchronous into the asynchronous 7-calculus, because
this requirement forbids for the introduction of global coordinators. Thus this criterion is useful when
reasoning about the concurrent behaviour of processes, although it is in general too strict to reason about
their interleaving behaviour. Unfortunately, it is not always obvious or clear whether the criteria used
to obtain a result in a particular setting do indeed fit to this setting. Indeed, as discussed in [52], the
homomorphic translation of the parallel operator forbids more than global coordinators, i.e., is too strict
even in a concurrent setting (compare to Section 3.6).

In the following we shortly revise some of the most commonly used encodability criteria. In [39] also
a class of rather quantitative criteria for the effectiveness or efficiency of an encoding is discussed. The
efficiency of an encoding can be measured for example by a criterion to count the number of messages or
steps of an emulation [7, 1, 29]. However, here we are more focused on semantic and structural criteria.

3.1 Direct Comparison via a Relation

The least debatable criterion is the direct comparison of the source and the target language by a be-
havioural equivalence (or preorder). This criterion requires that VS € Zg. [S] #S holds, for some be-
havioural equivalence (or preorder) Z C (ZsW Pr) x (PsW L) that is either defined in exactly the
same way on the source and the target language (as e.g. in [45]) or explicitly distinguishes between
source and target terms (as e.g. in [50]). Intuitively, it is required that the encoding respects the seman-
tics of the source modulo the chosen relation. Obviously, the quality of the encoding directly depends
on the choice of Z. A stricter such relation leads to stricter requirements on the encoding function. It
is also very clear in this case under which circumstances two different results can be compared. If both
results are proven with respect to the same relation then the results can be compared directly. If one of
the considered relations is strictly weaker then the results can be compared with respect to the weaker
relation. Else, if the relations are incomparable, also the results are incomparable. Hence, a language
-2 can be considered as strictly weaker than the language %5 with respect to %, if there is an encoding
from .7 into % that satisfies the above requirement but there is no such encoding from .% into .Z.
Of course, there may be still some debate on how to choose the relation %. For instance neither the
identity nor Z = (s P1) x (PsW Pr) are intuitively meaningful choices. Moreover, as shown in
[16, 14] there are usually very many potential candidates. Variants of bisimulation are usually a rather
strong candidate suitable for encodability results, whereas weaker candidates such as trace equivalence
are better suited for separation results. For a congruence it is sometimes necessary to restrict the set of
considered contexts to contexts that respect the protocol behind the encoding (see e.g. [58, 18]). However,
since the choice of the equivalence directly monitors the requirements on the encoding function, this
problem is not that serious. There are, however, two serious drawbacks of this criterion. The first is the
requirement that % is either defined in exactly the same way on the source and the target language or
explicitly distinguishes between source and target terms. Usually behavioural relations are designed for
one specific language, so it is not clear how to define a suitable relation if the two languages have no
standard behavioural equivalence (or preorder) in common. A standard candidate for such an equivalence
is weak reduction bisimulation, that is defined similarly on all calculi. Unfortunately, the variant of weak
bisimulation given in Definition 2.1 is trivial. We need to add a condition that compares the observables
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of bisimilar states in order to obtain a meaningful relation. But, since the source and target language
might specify different standard observables, this equivalence (if it can be constructed at all) will usually
be very complex and unreadable. Note that [22] solves this problem by using a special observable called
success instead of the standard observables of the languages, whereas [12, 18] use relations to compare
observables of different languages. As a consequence, if & is not a standard equivalence, the direct
comparison of source and target terms modulo &% reveals less intuition on the encoding function. The
second problem is that a complex & leads to a hard proof of this criterion. If & is not a standard
equivalence, most of the standard techniques that would ease such a proof may not be applicable.

3.2 Full Abstraction

Whenever source and target can not be compared directly with respect to a standard equivalence, full
abstraction might be a way to nonetheless use standard equivalences. Full abstraction—denoted as ob-
servational correspondence in [13]—is probably the most common quality criterion for language com-
parison. It is used for instance in [55, 38, 56, 60, 42, 3, 48], just to name some. Full abstraction as proof
method for language comparison was adapted from the use of full abstraction to show correspondence
between a denotational semantics of a program and its operational semantics. An encoding [-] is fully
abstract if

VS],SQ S f@s.S]%sSQ iff [[S]ﬂ%"r [[Sz]

for two behavioural equivalences Zs C Y5 x Ps and Zr C P x P, i.e., full abstraction requires
that equivalent source terms have to be mapped into equivalent target terms and vice versa. Note that the
direction from the left to the right is often called soundness condition and the only if part completeness
condition of full abstraction. The soundness condition is usually the most demanding part. Note that
some well-known and widely accepted encodings, as e.g. [6, 27, 33, 34], do not satisfy this property with
respect to a reasonable combination of standard equivalences. The main advantage of full abstraction is
its wide applicability also with respect to (more or less) standard equivalences. It does e.g. not require
that source and target share any notion of observable, which is a premise for the use of most of the
standard equivalences in the criterion above. However, again there may be a very large number of equiv-
alences on the source as well as equivalences on the target and the strictness of the property expressed
by full abstraction strongly relies on the combination of the chosen equivalences. To reduce the strong
dependence of full abstraction results on the chosen equivalences, full abstraction is often combined with
operational correspondence. In [13] it is even stated that full abstraction is not of much use without oper-
ational correspondence. The two papers [23, 46] come to a similar conclusion after discussing potential
pitfalls and misunderstandings w.r.t. full abstraction. These papers also hint to earlier such discussions.
The possibility to chose a combination of standard equivalence that turn full abstraction trivial is a major
drawback of this criterion. Another major drawback is that, because of the various possibilities to choose
these two equivalences, it is often not possible to compare different full abstraction results.

3.3 Operational Correspondence

Intuitively, operational correspondence requires executions to be respected. Again, it consists of a com-
pleteness and a soundness part. The completeness condition, also called adequacy, requires that for all
source term steps S —g S’ or source term executions S—=>gS’ there is one emulation in the target lan-
guage such that [S]=1 =7 [§'], where <1 C P x 1 is some equivalence on the target language.
Note that there is no difference in the consideration of single source term steps or source term executions.
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Intuitively, the completeness condition requires that any source term execution is emulated by the target
term modulo some equivalence =t. Again, completeness is usually the easier part.

For the soundness condition we basically find two formulations. The stricter formulation requires that
for all executions of the target [S]—=1T there exists some execution of the source S—=>sS’ such that
[S'] =<t T. Intuitively, soundness requires that whatever [S] can do is a translation of some behaviour of
S modulo <t. The weaker formulation requires that for all executions of the target [S]==1T there exists
some execution of the source S=>sS’ and some execution of the target T==1T’ such that [S'] <1 T’
Intuitively, it states that any execution of the target is some part of the emulation of an execution in the
source modulo =7 [47, 22]. The main difference is that the latter formulation allows for intermediate or
partial commitment states [47, 49, 24], i.e., for states that do not need to be related directly to the states
of the respective source term but that have to belong to some emulation of a source term step. In this
sense, an intermediate state results from the partial emulation of a source term step. In particular the last
variant, proposed in [22], was used for numerous encodability and separation results.

Definition 3.1 (Operational Correspondence) An encoding [-] : Ps — P is strongly operationally
corresponding w.r.t. <1C 9% if it is:
Strongly Complete: VS,S'. S +——s S implies (3T. [S]—1r T A([S'],T) €x1)
Strongly Sound: VS,T. [S] —1 T implies (35'. S+——s S'A([S'],T) €x1)
[]: &s — Pr is operationally corresponding w.r.t. <rC % if it is:
Complete: VS,S'. Se=sS' implies (3T. [S]|=1T N ([S'],T) €x1)
Sound: VS,T. [S]==1T implies (3S'". S=sS' A ([S'],T) €=1)
[']: Ps — Pr is weakly operationally corresponding w.r.t. <1C P2 if it is:
Complete: VS,S'. S==gS' implies (3T. [S|=1T N ([S'],T) €x1)
Weakly Sound: VS, T. [S|=1T implies (3S',T'. S=sS' A\T—=1T' A([S'] , T') €x1)

Again different variants of operational correspondence may arise from different requirements on the as-
sumed equivalence =<t on the target language and a wrong choice might turn operational correspondence
trivial. In particular, each encoding is operational corresponding w.r.t. the universal relation on target
terms.

In [13] a version of operational correspondence is presented, that considers labelled steps instead of
a reduction semantics under the assumption that there exists a mapping - from the labels of the source

. . . A
term into the labels of the target term. Hence, the resulting requirement—[S] === [$'] whenever

S =2 8 and [S] AT implies S és S’ for some A', S’ such that [S'] <7 T and A’ = A—can be
considered as stricter than the above variant of operational correspondence, because also observables
have to be respected modulo ~. In fact, without this strengthening to labelled semantics, operational
correspondence alone can hardly be considered as suitable criterion. Hence, the above version based on
reduction semantics is usually combined with other criteria as full abstraction or some requirements on
the preservation or reflection of some kind of observable.

3.4 Observables, Testing, and Termination

If source and target terms can not be compared directly by a standard equivalence, e.g. because not all
standard observables of the source are standard observables of the target, a natural weaker requirement is
to consider preservation or reflection of the remaining observables that are shared by source and target.
Typical observables are links used for communication, barbs (communication capabilities), or traces [59,
45]. Moreover, the use of termination properties as the possibility of deadlock, livelock, or divergence
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are popular [40, 45, 22, 13]. Also all kind of fests that the process may (or must) pass, for some formal
notion of test can be used to compare source and target behaviour [45, 22].

Another kind of termination property is the promptness condition. Intuitively, promptness ensures
that an encoding does not introduce preprocessing steps. An encoding [-] is prompt, if S =g implies
[S] /> for all source terms S € Hs.

In [22] the criterion success sensitiveness was proposed. An encoding is success sensitive if it re-
spects reachability of a particular process v that represents successful termination, or some other form
of success, and is added to the syntax of the source as well as the target language. Since v' cannot be
further reduced and n(v") = fn(v') = bn(v') = 0, the semantics and structural congruence of a process
calculus are not affected by this additional constant operator. We write P |, to denote the fact that
P is successful—however this predicate might be defined in the particular source or target language.
Reachability of success is then defined as P}, £ 3IP'. P = P' AP'|,. We use may-testing here, but
alternatively e.g. must-testing or fair-testing can also be implemented. An encoding is success sensitive
if each source term and its translation answer the test for reachability of success in the same way.

Definition 3.2 (Success Sensitiveness) Let %5 and £t each define a predicate - | ,: &2 — B. An encod-
ing [-] : Ps — Pr is success sensitive if, for all S € Ps, S|, iff [S] -

Note that v' can be considered as some kind of termination property—describing successful termi-
nation in contrast to not successful termination by a term that cannot reduce but is not v—or as the
successful pass of some kind of test.

If the source and target language share standard observables, we can easily extend success sensitive-
ness to barb sensitiveness. Assume that, instead of - |: & — B, the languages %5 and %7 each define a
predicate - |- : & x # — B. An encoding [-] : Ps — Pr strongly respects barbs if, for all S € P and
all @ € A, S| a iff [S] | a. A weak variant is obtained by replacing the predicate - | - for the existence
of a barb by a predicate -} - that is true if a barb is reachable.

3.5 Structural Requirements

The above discussed criteria describe semantic requirements, i.e., requirements on the behaviour of target
terms. To prove the quality of an encoding semantic criteria are often combined with structural criteria.
Intuitively, the semantic criteria describe how the encoded terms should behave with respect to the be-
haviour of the corresponding source term, whereas structural criteria rather describe how the encoded
terms have to look like. Moreover, as stated in [45], structural criteria are needed in order to measure
expressiveness of operators in contrast to expressiveness of terms.

The most common structural criterion is compositionality with homomorphy as a special case. In-
tuitively, compositionality states that the translation of a compound term must be defined in terms
of the translation of the subterms. To mediate between translations of subterms, a context is intro-
duced. Different manifestations result from different requirements on allowed contexts. In the strictest
form, often denoted as homomorphy, the context has to be the original source term operator again,

i.e., an encoding translates the source term operator op (x1,...,X,,S,...,S,) homomorphically if it en-
sures that [op (x1,...,%,,S81,...,Sm)] = op(x1,...,Xu, [S1],---,[Sm]) holds for all xi,...,x, € A4 and
all Sy,...,8, € Hs. Of course, homomorphy requires that the respective operator is part of the source

and the target language. Because of this, homomorphy is often required only for specific common
operators such as the parallel operator, because it occurs more or less with the same meaning and
comparable syntax in most of the process calculi. If we assume that the parallel operator is a binary
operator in the source and the target language, the homomorphic translation of the parallel operator
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means S | S2] = [Si] | [S2] for all S;,$, € P, where | is the syntactical representation of the par-
allel operator. If single names are translated into single names, it makes sense to extend the notion of
homomorphic translation to the use of a renaming policy. Thus, if the encoding translates an operator
op (x1,...,%n,S1,...,S,) always into op (¢ (x1),...,0(xn),[S1],---,[Sm]), we call the translation of this
operator again homomorphic.

Homomorphic translations of operators are e.g. used to analyse the expressive power of a single op-
erator. To show for instance that a set of operators is not minimal the existence of an encoding is analysed
that translates all operators homomorphically except for the operator that should be removed. Moreover,
homomorphy is a very nice property, because it significantly eases the proof of the correctness of the
encoding function. Basically, the homomorphic translation of an operator ensures that for this operator
nothing is to show, because in this point the encoding obviously preserves and reflects all properties of
that operator. However, even in case the respective operator is part of the source as well as the target
language, homomorphy is a very strict requirement. Intuitively, it states that the encoding function is not
allowed to touch the respective operator and, hence, is not allowed to simulate its behaviour by some
protocol. Such translations are possible only if the compared languages are very close (at least with
respect to this operator).

[43, 22, 49] show that not even between calculi that are so close as the full 7-calculus (with mixed
choice) and its subcalculus with only separate choice an encoding that translates the parallel operator
homomorphically exists. Instead, often compositionality is required. Intuitively, an encoding is compo-
sitional if the translation of an operator is the same for all occurrences of that operator in a term. Hence,
the translation of that operator can be captured by a context that is allowed in [22] to be parametrised on
the free names of the respective source term.

Definition 3.3 (Compositionality) The encoding [-] is compositional if, for every operator op : A" X
P — Ps and for every subset of names N, there exists a context %%(Hl, oo Llngm) t A X DL — Py
such that, for all xy,...,x, € N and all Sy,...,Sy € Ps with fn(S1)U...Un(S,,) = N, it holds that
[op (X1, 3%, 815+ S)] = Gop (X1, X, [S1] - [Sn])-

It does not impose additional restrictions on the introduced context. For many encodings the parameter N
is not relevant or can be omitted by using instead a renaming policy on the source term names in the gen-
erated context. In contrast to homomorphy, compositionality is a very natural requirement. Intuitively,
it states that every occurrence of an operator in the source term is treated by the encoding function in
exactly the same way, i.e., is translated into the same term modulo the translation of the respective sub-
terms. Also note that a compositional encoding, i.e., an encoding that translates all source term operators
compositionally, implies that also any source term context can be represented as a context in the target
language [45]. Moreover, compositionality guides the design of encodings, because it describes how an
encoding has to look like.

Another structural criterion is the preservation of substitutions, denoted as name invariance in [22]
and as stability in [13]. Tt usually requires that, for all source terms S € &g and all substitutions ¢ on
source terms, there exists some substitution ¢’ on target terms such that [o(S)] =<7 o’([S]) for some
equivalence <7 C &1 x St on target terms. Often additional requirements on the relationship between
o and ¢’ or on the equivalence <7 are stated. The strictest case is of course that 6 = ¢’ and <7 =
=. This criterion is based on the idea that names are property-less [13]. Hence, the preservation of
substitutions should ensure that encodings of source terms that differ only in their free names can also
only differ in free names (modulo the provided equivalence).

In [22] name invariance is defined modulo the introduced renaming policy. Accordingly, an encoding
is considered independent of specific names if it preserves all substitutions ¢ on source terms by a
substitution ¢’ on target terms such that ¢’ respects the changes made by the renaming policy.
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Definition 3.4 (Name Invariance) The encoding [-] is name invariant if, for every S € s and o, it
holds that

=q o' ([S]) if O is injective
[o(5)] {XT o' ([S]) otherwise

where &' is such that ¢(c (n)) = o’ (¢(n)) for everyn e N

Moreover, [59] present link independence, a condition that prevents encodings from introducing free
names. More precisely, link independence means that, for all source terms S1,S, € s, fn(S1)Nfn(S,) =
0 implies fn([S1]) Nfn([S2]) = 0.

We denote the criteria presented in this subsection as structural criteria because they focus mainly on
structural properties of the encoding function. We should, however, be aware that every criterion limits
the existence of encoding functions and that such limitations usually also have a semantic effect. The
main purpose of compositionality is to ensure that the encoding function is compositional. But compo-
sitionality also forbids for global coordination (see Section 3.6). Because of that, there is a number of
well-accepted encodings—as e.g. the encoding of the m-calculus into the join-calculus in [11]—that are
not compositional. Instead the encoding in [11] consists of two levels: an outer level that is parametrised
on the free names of the source term and an inner compositional encoding.

3.6 Domain-Specific Criteria

Above we presented different kinds of criteria that were used to specify the notion of a “good” encoding
in the literature. Thereby the purpose of all criteria introduced so far, is to define a general notion
of correctness for encodings. We know that there is no agreement about the choice, combination, or
concrete variant of the above criteria for a general notion of correctness or quality of an encoding. But
even if we would agree on such a general notion of quality, there would still be the need for domain-
specific criteria. A general notion is in particular necessary, if we want to compare different results or
build a hierarchy. Accordingly, such a general notion of quality is a good starting point for language
comparison. Nonetheless, we will sometimes need to extend it by domain-specific criteria. Domain-
specific criteria, as the name suggests, are used to analyse properties of a specific domain that may in
general not be interesting. Hence, it is not a good idea to overload a general framework by permanently
adding domain-specific criteria. Instead, we add a domain-specific criterion only if it is necessary to
answer a particular kind of question. Possible domains in the context of process calculi are e.g. causality,
the branching time behaviour of processes, or considerations related to some special features as failures
or time constrains.

Note that an additional criterion may strengthen an encodability result, but it weakens separation
results. Moreover, already a single additional criterion significantly complicates the comparison of a
result with other already established results that do not rely on this additional criterion. Quite often, they
even lead to incomparable results; in particular if two results use different additional criteria. Hence,
domain-specific criteria should only be used if they are unavoidable to answer a specific kind of question.

As an example for a domain-specific criterion, we discuss how to obtain a criterion that ensures
that an encoding preserves the degree of distribution. Given an extension of a process calculus with
an explicit notion of distribution or location we can define the degree of distribution of a system as
the number of its locations. If locations are not defined explicitly, a process P is distributable into
Py,..., P, if we find some distribution that extracts Py,...,P, from within P onto different locations.
Preservation of distribution then means that the target term is as least as distributable as the source
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term. Note that the operator of process calculi that is usually associated with distribution is the parallel
operator. Accordingly, we consider components of a term that are composed in parallel as distributable.
More precisely, we understand distribution as the separation of a process into its (sequential) components.

Hence, by studying distribution preserving encodings, we analyse the possibilities to implement
the operators of a calculus or especially its parallel operator. If it is always possible to preserve the
degree of distribution in an encoding of a source language into a target language which is close to an
implementation e.g. in a real world scenario, then the corresponding parallel operator can be implemented
in this scenario simply as the operator of distribution, i.e., parallel source terms can be implemented in
distributed real world processes. If it is not possible to obtain a distribution preserving encoding, then
the source language implicitly defines side conditions on the use of the parallel operator usually induced
by the defined synchronisation mechanism that forbids for such simple implementations. Thus, the
implementation of parallel source terms as distributed processes may be possible only under some side
conditions, which are hopefully already paraphrased by the respective separation result. In particular,
an encoding that preserves the degree of distribution should not introduce a coordinator for concurrent
actions, because if concurrent actions are coordinated by the same instance they are sequentialised, i.e.,
the implementation is less efficient.

Note that compositionality in Definition 3.3 already prevents from the use of global coordinators.
Compositionality requires that all occurrences of a parallel operator have to be translated basically in
the same way. Hence, if such an encoding introduces a coordinator then for every parallel operator a
coordinator is introduced and there is no possibility to examine which of them is the outermost or to
order them, i.e., it is not possible to coordinate the coordinators such that they proceed as a centralised
entity. In that view, compositionality can be seen as a minimal criterion to ensure the preservation of
distribution. However, compositionality alone is too weak, because it still allows for local coordinators,
i.e., a compositional encoding may still sequentialise some parts of a source term (see e.g. the encodings
in [52, 24]).

Instead the homomorphic translation of the parallel operator, i.e., [P | Q] = [P] | [Q], was often
used as a criterion to measure whether an encoding respects the degree of distribution (see e.g. [43, 10,
30]). The homomorphic translation of the parallel operator forbids the introduction of (global and local)
coordinators for the translation of the parallel operator. As discussed in [49, 52, 53] the homomorphic
translation of the parallel operator usually implies that the respective encoding indeed preserves the
degree of distribution but that the converse is not true, i.e., there are encodings that do not translate the
parallel operator homomorphically but preserve nonetheless the degree of distribution of all source terms.
In this sense, the homomorphic translation of the parallel operator is too strict—at least for separation
results. It rightly forbids the introduction of coordinators that reduce the degree of distribution. But it
also forbids protocols that handle communications of parallel components without sequentialising them
or reducing the degree of distribution in another sense. Moreover, the homomorphic translation of the
parallel operator is not always suited to reason about distribution in process calculi. For example in the
join-calculus it is not always possible to separate distributed components by means of a parallel operator.

[49, 52, 53] introduce an alternative criterion for the preservation of the degree of distribution. Com-
positionality and the homomorphic translation of the parallel operator are both structural criteria. Hence,
one may assume that also the preservation of distribution is a structural criterion, but in fact this is not
true. A natural first condition is to require that encoded source terms are at least as distributable as the
source term itself, i.e., that the degree of distribution has to be preserved by the encoding. However, it
does not suffice to reason about the degree of distribution, i.e., about the number of distributable compo-
nents, without additional requirements on the components. An encoding can always trivially ensure that
the encoding has at least as much distributable components by introducing new components without any
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behaviour. Thus, we require that the encodings of distributable source term parts and their correspond-
ing parts in the encoding are related by =<t. By doing so we relate the definition of the preservation of
distributability to operational completeness, i.e., a semantic criterion that ensures the preservation of the
behaviour of the source term (part). Hence, we require that each target term part can emulate at least all
behaviour of the respective source part. As a side effect, we require, that whenever a part of a source
term can solve a task independently of the other parts, i.e., it can reduce on its own, then the respective
part of its encoding must also be able to emulate this reduction independently of the rest of the encoded
term. This reflects our intuition that distribution adds some additional requirements on the independence
of parallel terms. Accordingly, we require that not only the source term and its encoding are distributable
to the same degree, but also their derivatives, i.e., we do not only consider the initial degree of distribu-
tion. Because of that, the criterion that is presented in [53] has both a structural as well as a semantic
component. Remember that a term P is distributable into Py,...,P,, if we find some distribution that
extracts Py, ..., P, from within P onto different locations.

Definition 3.5 (Preservation of Distribution) An encoding [-] : s — P preserves distribution if for
every S € P and for all terms Sy, . ..,S, € Ps that are distributable within S there are some T, ..., T, €
Pr that are distributable within [S] such that T; <t [Si] forall 1 <i<n.

In essence, this requirement is a distributability-enhanced adaptation of operational completeness.
Whenever a source term is distributable into n terms then its encoding must again be distributable into
n terms, i.e., the encoded source term is at least as distributable as the source term itself. Moreover, if
some of these n terms, say S;, can perform some execution independently of the rest then, by operational
completeness, this execution has to be emulated by its translation modulo =r, i.e., S;—=>gS} implies
Ti=>1 =t [S/]. This formalisation of the preservation of distributability respects both the intuition on
distribution as separation on different locations—captured by the structural requirement that the encoded
source term is at least as distributable as the source term itself—as well as the intuition on distribution as
independence of processes and their executions—a semantic requirement implemented by the condition
T; =<t [Si].

The main disadvantage of this criterion is its complexity. It is more model-independent, since it does
not rely on the notion of the parallel operator, i.e., is applicable also for calculi without a parallel operator
or completely different kinds of parallel operators such as in CSP and it can be applied to calculi like the
join-calculus, where distributed components are not always separated by a parallel operator. But, in order
to apply this criterion, we have to specify in the source and the target language what it means for a process
to be distributable into a set of components. In calculi with explicit locations this is usually easy. But it
is difficult to find a general, i.e., model-independent, formalisation of distributability (see [49, 52, 53]).
Moreover, this criterion was designed in order to be combined with operational correspondence and
is strongly connected to this criterion. The advantage of the homomorphic translation of the parallel
operator is that it is simple, easy to understand, and described independently of other criteria. But it is
too strong for separation results, whereas compositionality is too weak for encodability results.

3.7 Summary

We introduced a number of encodability criteria. We observe that these criteria appear in different vari-
ants and that there is no agreement on a set of criteria that should be used; not even if we ignore domain-
specific criteria. Moreover, we observe that some criteria are often used but as the discussion on full
abstraction (see Section 3.2 and [13, 23, 46]) shows not always well-understood. For domain-specific
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criteria the situation is usually worse, i.e., it is even more difficult to analyse whether they are suitable.
A mechanism to reason about the quality of encodability criteria is discussed in Section 5.

Encodability criteria define properties of the encoding function and should ensure that an encoding
can be considered as meaningful. Unfortunately, encodability and separation results that are derived
w.r.t. different sets of encodability criteria or different variants of these criteria are hard to compare.
Section 4 analyses general frameworks of encodability criteria. Note that the formalisation of a criterion
should be as general as possible, because a formalisation that is to close to a specific process calculus
may hinder the derivation of similar results for other calculi and, thus, the comparison with other results.
Furthermore, it is sometimes easier to define a new criterion with respect to an existing one, but again
this may shrink the possibilities to compare to other results that do not satisfy the old criterion.

Finally, note that the criteria pose different kinds of proof obligations on the correctness proofs of
encodings. Structural criteria (and also the criteria for the efficiency of an encoding function) are usually
easier to verify than the remaining semantic criteria. But the semantic criteria are often considered as
more essential. Unfortunately, we are not only lacking mechanisms to analyse the quality of encodability
criteria and an agreement of a general notion of a “good” encoding but also general proof techniques for
encodability criteria. From the criteria introduced above full abstraction and operational correspondence
are usually the most elaborate criteria to prove. In the case of full abstraction the proofs heavily depend on
the chosen pair of equivalences. Operational correspondence is usually shown by induction on the nature
of source or target term steps. But some more sophisticated study of proof techniques might provide
e.g. some hints on how to deal with the intermediate states that weakly operationally corresponding
encodings might introduce (compare e.g. to the discussion of pre- and post-processing steps in [49]).

4 A General Notion of Quality

A general notion of quality is important to reason about the general expressive power of languages and
to compare different results. In particular, they are essential to build a hierarchy that can only be based
on encodability and separation results w.r.t. the same set of criteria. Moreover, if we want to relate the
expressive power of two given languages there is no guidance on how to start or whether an obtained
result is sufficiently substantiated by the chosen criteria to call it reasonable. There are basically two
problems that we have to face in providing such a general notion: (1) We have to choose the nature of
criteria. For a general setting the criteria should be model-independent. This also includes to some extent
the relations that are used e.g. in full abstraction and operational correspondence, i.e., a general setting
has to specify how to choose them. Moreover, the criteria should be designed to capture properties of the
encoding that are generally agreed as being useful. (2) We have to decide on the variants of the respective
criteria. Weaker criteria allow for more encodability and less separation results, whereas more restrictive
criteria allow for less encodability and more separation results. The difficulty is to identify the sweet
spot between too restrictive and too weak criteria such that the variants are meaningful for separation
as well as encodability results. As discussed in Section 3.6, there is a need for domain-specific criteria.
Accordingly, it should be possible to extend a general framework by domain-specific criteria.

4.1 Towards A Unified Approach to Encodability and Separation Results

In order to provide a general framework, [19, 22] suggests five criteria well suited for language compar-
ison, i.e., for positive as well as negative translational results. As claimed in [22], most of the encodings
appearing in the literature satisfy this framework and several known separation results can also be de-
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rived within this framework but there are also encodings that do not satisfies this framework, i.e., the
framework is not trivial. The set of criteria is small and handy but at the same time guides the design
of encoding functions and supports the proof of translational results by separating the requirements on
different intuitive criteria. This framework specifies an encoding to be “good” if it satisfies the five pre-
sented criteria. In [19, 20, 21, 22] a number of encodability and separation results—including some new
results—that are derived in this setting can be found.

The five conditions are divided into two structural and three semantic criteria. The structural criteria
include (1) compositionality and (2) name invariance. The semantic criteria include (3) operational
correspondence, (4) divergence reflection, and (5) success sensitiveness. Note that for the definition of
name invariance and operational correspondence a behavioural equivalence =<t for the target language is
assumed. Its purpose is to describe the abstract behaviour of a target process, where abstract refers to the
behaviour of the source term.

The two structural criteria were introduced and discussed in Section 3.5. Compositionality is given
in Definition 3.3 and name invariance in Definition 3.4. They state that the encoding function should
be compositional and independent of specific names. To ensure that there are no conflicts between
names that are introduced by the encoding function for technical reasons, i.e., to implement some kind
of protocol, and the source term names, the encoding is equipped with a renaming policy (Definition 2.3).

The first semantic criterion and usually the most elaborate one to prove is weak operational corre-
spondence as given in Definition 3.1. The definition of operational correspondence relies on the equiva-
lence =<t to get rid of junks possibly left over within computations of target terms. To deal with infinite
computations in encodings, the second semantic criterion requires that the encoding reflects divergence.
It ensures that the encoding function cannot introduce new divergent behaviour, i.e., all divergent target
terms are due to the encoding of a divergent source term. The last criterion links the behaviour of source
terms to the behaviour of their encodings. [22] assumes a success operator v~ as part of the syntax of
both the source and the target language. An encoding preserves the abstract behaviour of the source term
if it and its encoding answer the tests for success in exactly the same way (Definition 3.2). This criterion
only links the behaviours of source terms and their literal translations, but not of their derivatives. To do
so, [22] relates success sensitiveness and operational correspondence by requiring that the equivalence
on the target language never relates two processes with different success behaviours.

Definition 4.1 (Success Respecting) An equivalence % is success respecting if, for every P.Q € P¢
with P}, and QV,, it holds that (P,Q) ¢ %. We require that <t is a success respecting equivalence.

The combination of success sensitiveness and operational correspondence allows to compare the be-
haviour of source and target terms even if they do not share common observables. By [22] a “good”
equivalence =t is often defined in the form of a barbed equivalence (as described e.g. in [37]) or can
be derived directly from the reduction semantics (as described e.g. in [28]) and is often a congruence, at
least with respect to parallel composition.

4.2 Theory of Interaction

In contrast to [22], the general framework in [13] is based on labelled semantics. Intuitively, they com-
bine full abstraction and operational correspondence into a bisimulation-like relation called subbisim-
ulation. Subbisimulation in [13] connects labelled executions of the source and the target language.
Moreover, preservation and reflection of divergence is required. The approach is then used to compare
different variants of CCS and different variants of the m-calculus. For example subbisimilarity is applied
to show the independence of the operators of the z-calculus.
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The paper [12] extends this approach into a general theory of interaction. The prime motivation for
the theory of interaction is to bridge the gap between the computation theory, i.e., what kind of functions
can be computed, and the interaction theory. Therefore four fundamental and model-independent prin-
ciples are presented and from them a general theory of equality and expressiveness are derived. Again
subbisimilarity but without labels is used as criterion for encodings.

Definition 4.2 (Subbisimilarity) A relation &% is a subbisimilarity if it is total, sound, equipollent, ex-
tensional, codivergent, and bisimilar.

Intuitively, (1) total means that for every source term there is a target term, (2) soundness is similar to
operational soundness, (3) equipollence implies that related terms either both cannot reach any state with
an observable or both can reach a state with (potentially different) observables, (4) extensional means
congruent w.r.t. the parallel operator and restriction, (5) codivergent means that the relation is divergence
respecting, and (6) bisimilarity is defined similar to Definition 2.1.

In comparison to the framework of Gorla the requirements induced by the formulation of subbisimi-
larity seem to be stricter, although a direct comparison is difficult, because of the different formulations.
However, [13] and [12] make use of a stricter variant of operational correspondence that does not al-
low for intermediate or partially committed states. Moreover, [13, 12] fix a number of assumptions on
process calculi, e.g. that all process calculi contain at least the parallel operator and restriction.

4.3 Musings on Encodings and Expressiveness

Also [17, 18] aims at providing a general notion of expressiveness for language comparison. Here an
encoding should be valid and correct. In [18] these concepts are defined up to a semantic equivalence or
preorder ~, that is not fixed by the framework.

Intuitively, an encoding is valid if it preserves the meaning of expressions, i.e., such that the meaning
of a translated expression is semantically equivalent to the meaning of the original. Therefore, [18]
assumes a function for each language that associates the meaning to processes by mapping them on values
(for simplicity and in contrast to [18] I ignore in the following that processes may contain variables).
Different languages may have different domains of values. The semantic relation ~ is used to mediate
between these different domains, i.e., it is assumed that it is a relation on values over a universe that
contains the domains of the source as well as the target language. Moreover, [18] requires a semantic
translation R that is a relation that relates each value of the source with its counterpart (or counterparts) in
the target. Then, an encoding is correct iff the meaning of the translation of an expression is a counterpart
of the meaning of this expression.

Definition 4.3 (Correctness) An encoding [-] is correct w.r.t. a semantic translation R if R relates the
meaning of S and [[S] for all S € Ps.

An encoding [] is correct up to ~ iff ~ is an equivalence, the restriction R of ~ to the cross product
of the domain of the source and the target is a semantic translation, and [-] is correct w.r.t. R.

Definition 4.4 (Validity) An encoding [-] is valid up to ~ iff it is correct w.r.t. some semantic translation
R C ~. Language 1 is at least as expressive as £s up to ~ if an encoding valid up to ~ from Zs into
Lr exists.

As discussed in [18], in comparison to [22] the above approach implies a slightly stricter variant of
compositionality (without the parameter on a set of names V) but no name invariance criterion. Moreover,
the combination of three semantic criteria of [22] are close to an instantiation of the criteria in this
approach with a particular preorder ~, namely a success respecting and divergence respecting variant of
bisimulation (see Section 5).
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5 Formalising and Analysing Encodability Criteria

There exists a bunch of different criteria and different variants of criteria in order to reason in different
settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to
obtain a result in a particular setting do indeed fit to this setting. A way to formally reason about and
compare encodability criteria is presented in [50]. The main idea of this approach is to map encodability
criteria on requirements on a relation between source and target terms that is induced by the encoding
function. This way the problem of analysing or comparing encodability criteria is reduced to the better
understood problem of comparing relations on processes. An Isabelle/HOL formalisation can be found
in [51].

The different purposes of encodability criteria lead to very different kinds of conditions that are
usually hard to analyse and compare directly. In fact even widely used criteria—as full abstraction—
seem not to be fully understood by the community, as the need for articles as [23, 46] shows. In contrast
to that, relations on processes—such as simulations and bisimulations—are a very well studied and
understood topic (see for example [16]). Moreover, it is natural to describe the behaviour of terms,
or compare them, modulo some equivalence relation. Also many encodability criteria, like operational
correspondence, are obviously designed with a particular kind of relation between processes in mind.
Therefore, in order to be able to formally reason about encodability criteria, to completely capture and
describe their semantic effect, and to analyse side conditions of combinations of criteria, mapping them
on conditions on relations between source and target terms seems to be natural.

According to [50] every encoding [-] : #s — 1 induces a relation Zp] C (PsH 21)* on the
disjoint union of its source and target terms by relating source terms and their literal translations, i.e.,
(S,[S]) € Z for all S € Ps. Encodability criteria induce further properties on such relations. By
analysing the different kinds of such properties the semantic effect of an encodability criterion can be
studied and different criteria can be compared in a model-independent and formal way. In order to
completely capture the effect of a criterion, [50] aims at iff-results of the form

[-] satisfies C iff there exists a relation Z.j such that VS. (S,[S]) € %[ and P(Zy).

where P is the condition that captures the effect of C. For example, an encoding reflects divergence
iff there exists a relation [ such that VS. (S,[S]) € Z|] and %[ reflects divergence. Similarly, an
encoding (weakly/strongly) respects barbs iff there exists a relation % such that VS. (S, [S]) € %[ and
2| (weakly/strongly) respects barbs.

Using this technique, [50] shows that without further requirements on the source and target relations
s and Zr, that are used in the formulation of full abstraction, the semantic effect of full abstraction
is very small. Full abstraction is mapped on a relation that relates at least each source term to its literal
translation and includes the relations %Zs and Zr. Let us additionally add pairs of the form ([S],S) for
all S € 5. Then, an encoding is fully abstract w.r.t. the preorders Zs and Zr iff there exists a transitive
relation %H that relates at least each source term to its literal translation in both directions, such that the
restriction of %[ to source terms Z[| |z is #s and Z[ || 7, = K.

Lemma 5.1 (Full Abstraction, [50]) [-] : s — Py is fully abstract w.r.t. the preorders %s C ,9?’32 and
Pt C @% lﬁ[ﬂ%ﬂﬂ (VS. (S, ISD), ([S],S) € %H) NFs = ’%H [ g N KT = %M [ 20 /\%H is transitive.

Thus an encoding is fully abstract w.r.t. Zs and Zr if the encoding function combines the relations s
and Zr in a transitive way. This underpins the discussions in [13, 23, 46] showing that full abstraction
without a clarification of the respective equivalences is not meaningful. It also shows the need for a
formal analysis of encodability criteria.
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The formulation of operational correspondence (in all its variants) strongly reminds us of simulation
relations on processes, such as bisimilarity. Obviously this criterion is designed in order to establish
a simulation-like relation between source and target terms. By mapping this criterion on properties of
a relation, we can determine the exact nature of this relation. The first two variants of Definition 3.1
exactly describe strong and weak bisimilarity up to =<r.

Lemma 5.2 (Operational Correspondence, [50]) An encoding [-] : Ps — Pt is operational corre-
sponding w.rt. a preorder <t C 2% that is a bisimulation iff 3Zpy. (VS. (S,[S]) € %)
N=T = R[] o0 N (VS, T. (S,T) € %y implies ([S],T) € xT) AN is a preorder and a bisimulation.

Here, the conditions %1 = #[ | », and (VS,T. (S,T) € Zpy — ([S],T) € #r) are technical side con-
ditions for the proof of the only-if-part that ensure that <t is a bisimulation. We obtain the same result if
we replace operational correspondence by strong operational correspondence and bisimulation by strong
bisimulation. Accordingly, operational correspondence ensures that source terms and their translations
are reduction bisimilar.

To obtain a similar result for weak operational correspondence, [50] had to introduce a new kind of
simulation relation denoted as correspondence simulation.

Lemma 5.3 (Weak Operational Correspondence, [50]) [-] is weakly operational corresponding w.rt.
a preorder <1 C 22 that is a correspondence simulation iff 3% (VS. (S,[S]) € ‘%H) N=1 =Rl 21
A (VS,T. (S,T) € Zy) implies ([S],T) € <) A%y is a preorder and a correspondence simulation.

We omit the definition of correspondence simulation but point out that it is a simulation relation that is in
between coupled similarity (Definition 2.2) and bisimulation. Accordingly, weak operational correspon-
dence ensures that source terms and their literal translations are coupled similar.

As stated in [50], the combination of the above results implies that the three semantic criteria of [22]
ensure that any “good” encoding in this framework relates source and target terms by a coupled simula-
tion that reflects divergence and respects success. The approach presented in [13, 12] was not addressed
in [50] but it requires itself a simulation relation between source and target terms. Subbisimilarity is a
variant of bisimulation. Accordingly, the requirements of [13, 12] are more restrictive than [22]. The
analysis of structural criteria is left for further research, because structural criteria need more assump-
tions on the considered languages. As discussed in [50], the formal analysis of encodability criteria can
also help to derive proof methods for the respective criteria.

6 Conclusions

As stated in the end of Section 3, there are basically three lines of further research: (1) We need
techniques to reason about the quality of encodability criteria to ensure that our encodings are indeed
meaningful. Section 5 revises one way to do that, but raises itself some open questions as e.g. how to
deal with structural criteria. (2) In order to compare results and build hierarchies we need a general
notion of the quality of an encoding. Section 4 outlines three different frameworks for this purpose. All
three approaches have certain basic ideas in common, e.g. all three variants imply structural and semantic
criteria. But the existence of three frameworks shows that there is still no general agreement and indeed
these three frameworks differ not only w.r.t. the semantic equivalence they induce (see Section 5) they
also use quite different terminologies and basic definitions. With that they impose different proof tech-
niques. (3) Besides the analysis of encodability criteria, we are also lacking a study of proof techniques
for particular criteria.
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Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic
information in concurrent systems. They have been used to reason about beliefs, lies, and group
epistemic behaviour inspired by social networks. They have also been used for proving new results
about modal logics and giving semantics to process calculi. In this paper we will discuss the theory
and main results about scs.

1 Introduction

Epistemic, mobile and spatial behavior are common place in today’s distributed systems. The intrinsic
epistemic nature of these systems arises from social behavior. Most people are familiar with digital sys-
tems where agents (users) share their beliefs, opinions and even intentional lies (hoaxes). Also, systems
modeling decision behavior must account for those decisions’ dependance on the results of interactions
with others within some social context. The courses of action stemming from some agent decision result
not only from the rational analysis of a particular situation but also from the agent beliefs or information
that sprang from the interactions with other participants involved in that situation. Appropriate perfor-
mance within these social contexts requires the agent to form beliefs about the beliefs of others. Spatial
and mobile behavior is exhibited by apps and data moving across (possibly nested) spaces defined by, for
example, friend circles and shared folders. We therefore believe that a solid understanding of the notion
of space and spatial mobility as well as the flow of epistemic information is relevant in any model of
today’s distributed systems.

The notion of group is also fundamental in distributed systems. Since the early days of multi-user
operating systems, information was categorized into that available to one user, some group of users, or
everyone. Information was thus separated into “spaces” with boundaries defined by accessibility. In
these systems we could say that, from the restrictive point of view of information “permissions”, the
notion of group was reified as another agent of the system.

In current distributed systems such as social networks, actors behave more as members of a certain
group than as isolated individuals. Information, opinions, and beliefs of a particular actor are frequently
the result of an evolving process of interchanges with other actors in a group. This suggests a reified
notion of group as a single actor operating within the context of the collective information of its members.
It also conveys two notions of information, one spatial and the other epistemic. In the former, information
is localized in compartments associated with a user or group. In the latter, it refers to something known
or believed by a single agent or collectively by a group.

Furthermore, in many real life multi-agent systems, the agents are unknown in advance. New agents
can subscribe to the system in unpredictable ways. Thus, there is usually no a-priori bound on the number
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of agents in the system. It is then often convenient to model the group of agents as an infinite set. In
fact, in models from economics and epistemic logic [17, 16], groups of agents have been represented as
infinite, even uncountable, sets. This raises interesting issues about the distributed information of such
groups. In particular, that of group compactness: information that when obtained by an infinite group
can also be obtained by one of its finite subgroups.

Spatial constraint systems (scs)! are semantic structures for the epistemic behaviour of multi-agent
systems. These structures single out the notions we previously discussed: Namely, space, beliefs, and
distributed information of potentially infinite groups. In this paper we will describe the theory of scs and
highlight its main results from [8, 10, 11, 12, 9].

2 Overview

In this section we will give a brief description and motivate scs in the context of space, extrusion, and
distributed information.

Declarative formalisms of concurrency theory such as process calculi for concurrent constraint pro-
gramming (ccp) [24] were designed to give explicit access to the concept of partial information and, as
such, have close ties with logic. This makes them ideal for the incorporation of epistemic and spatial
concepts by expanding the logical connections to include multi-agent modal logic [19]. In fact, the sccp
calculus [18] extends ccp with the ability to define local computational spaces where agents can store
epistemic information and run processes.

Constraint systems (cs) are algebraic structures for the semantics of ccp [24, 2, 18, 5, 22, 20]. They
specify the domain and elementary operations and partial information upon which programs (processes)
of these calculi may act.

A cs can be formalized as a complete lattice (Con,C). The elements of Con represent partial infor-
mation and we shall think of them as being assertions. They are traditionally referred to as constraints
since they naturally express partial information (e.g., x > 42). The order C corresponds to entailment
between constraints, ¢ C d, often written d J ¢, means ¢ can be derived from d, or that d represents
as much information as c¢. The join U, the bottom #rue, and the top false of the lattice correspond to
conjunction, the empty information, and the join of all (possibly inconsistent) information, respectively.

Constraint systems provide the domains and operations upon which the semantic foundations of ccp
calculi are built. As such, ccp operations and their logical counterparts typically have a corresponding
elementary construct or operation on the elements of the constraint system. In particular, parallel compo-
sition and conjunction correspond to the join operation, and existential quantification and local variables
correspond to a cylindrification operation on the set of constraints [24].

Space. Similarly, the notion of computational space and the epistemic notion of belief in sccp [18]
correspond to a family of join-preserving maps s; : Con — Con called space functions. A cs equipped
with space functions is called a spatial constraint system (scs). From a computational point of view s;(c)
can be interpreted as an assertion specifying that ¢ resides within the space of agent i. From an epistemic
point of view, s;(c) specifies that i considers ¢ to be true. An alternative epistemic view is that i interprets
c as s;(c). All these interpretations convey the idea of ¢ being local or subjective to agent i.

In the spatial ccp process calculus sccp [18], scs are used to specify the spatial distribution of infor-
mation in configurations (P,c) where P is a process and c is a constraint, called the store, representing
the current partial information. E.g., a reduction ( P,s;(a)Usy(b) ) — ( Q,81(a) Usy(bLic) ) means

IFor simplicity we use scs for both spatial constraint system and its plural form.
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that P, with a in the space of agent 1 and b in the space of agent 2, can evolve to Q while adding c to the
space of agent 2.

Extrusion. An extrusion function for the space s; is a map ¢; : Con — Con that satisfies s;(e;(c)) = c.
This means that we think of extrusion as the right inverse of space. Intuitively, within a space context
s;(+), the assertion ¢;(c) specifies that ¢ must be posted outside of agent i’s space. The computational
interpretation of ¢; is that of a process being able to extrude any c¢ from the space s;. The extruded
information ¢ may not necessarily be part of the information residing in the space of agent i. For example,
using properties of space and extrusion functions we shall see that s;( d L ¢;(c)) = s;(d) Ll c specifying that
c is extruded (while d is still in the space of 7). The extruded c could be inconsistent with d (i.e., cUd =
false), it could be related to d (e.g., ¢ C d), or simply unrelated to d. From an epistemic perspective, we
can use ¢; to express utterances by agent i and such utterances could be intentional lies (i.e., inconsistent
with their beliefs), informed opinions (i.e., derived from the beliefs), or simply arbitrary statements (i.e.,
unrelated to their beliefs).

Distributed Information. Let us consider again the sccp reduction ( P,sy(a)Us2(b) ) — ( Q,51(a)
s(bUc) ). Assume that d is some piece of information resulting from the combination (join) of the
three constraints above, i.e., d = allbllc, but strictly above the join of any two of them. We are then
in the situation where neither agent has d in their spaces, but as a group they could potentially have d
by combining their information. Intuitively, d is distributed in the spaces of the group / = {1,2}. Being
able to predict the information that agents 1 and 2 may derive as group is a relevant issue in multi-agent
concurrent systems, particularly if d represents unwanted or conflicting information (e.g., d = false).

In [9] we introduced the theory of group space functions A; : Con — Con to reason about information
distributed among the members of a potentially infinite group /. We refer to A; as the distributed space
of group /. In our theory ¢ J A;(e) holds exactly when we can derive from c that e is distributed among
the agents in I. E.g., for d above, we should have si(a) Usy(bLc) J Ay 2)(d) meaning that from the
information s (a) Usy (b LI c) we can derive that d is distributed among the group / = {1,2}. Furthermore,
A;(e) J Ay(e) holds whenever I C J since if e is distributed among a group /, it should also be distributed
in a group that includes the agents of I.

Distributed information of infinite groups can be used to reason about multi-agent computations with
unboundedly many agents. For example, a computation in sccp is a possibly infinite reduction sequence y
of the form ( Py,co ) — ( Py,c1 ) — -+ withco T ¢y E ---. The result of yis | |,>¢ ¢y the join of all the
stores in the computation. In sccp all fair computations from a configuration have the same result [18].
Thus, the observable behaviour of P with initial store ¢, written & (P,¢), is defined as the result of any
fair computation starting from (P,c). Now consider a setting where in addition to their sccp capabilities
in [18], processes can also create new agents. Hence, unboundedly many agents, say agents 1,2,..., may
be created during an infinite computation. In this case, 0'(P,c) J An(false), where N is the set of natural
numbers, would imply that some (finite or infinite) set of agents in any fair computation from (P,c) may
reach contradictory local information among them. Notice that from the above-mentioned properties of
distributed spaces, the existence of a finite set of agents H C N such that &(P,c) 3 Ay(false) implies
O(P,c) J Ax(false). The converse of this implication will be called group compactness and we will
discuss meaningful sufficient conditions for it to hold.

In the next sections we will describe the above spatial and epistemic notions in more detail.
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3 Background

We presuppose basic knowledge of domain and order theory [3, 1, 7] and use the following notions. Let
C be a poset (Con,C), and let S C Con. We use | |S to denote the least upper bound (or supremum or
join) of the elements in S, and [ ]S is the greatest lower bound (glb) (infimum or meet) of the elements in
S. An element e € S is the greatest element of S iff for every element € € S, ¢’ C e. If such e exists, we
denote it by max S. As usual, if S = {c,d}, clUd and cMd represent | |S and [ |S, respectively. If S =0,
we denote | |S = true and [ ]S = false. We say that C is a complete lattice iff each subset of Con has a
supremum in Con. The poset C is distributive iff for every a,b,c € Con, all (bMc¢) = (aUb)M(allc).
A non-empty set S C Con is directed iff for every pair of elements x,y € S, there exists z € S such that
x E zand y C z, or iff every finite subset of S has an upper bound in S. Also ¢ € Con is compact iff for
any directed subset D of Con, ¢ C | |D implies ¢ C d for some d € D. A self-map on Con is a function
f from Con to Con. Let (Con,C) be a complete lattice. The self-map f on Con preserves the join of
aset S C Con iff f([|S) =[{f(c)|c e S} A self-map that preserves the join of finite sets is called
Jjoin-homomorphism. A self-map f on Con is monotonic if a C b implies f(a) C f(b). We say that f
distributes over joins (or that f preserves joins) iff it preserves the join of arbitrary sets. A self-map f on
Con is continuous iff it preserves the join of any directed set.

Constraint systems [24] are semantic structures to specify partial information. They can be formal-
ized as complete lattices [2].

Definition 3.1 (Constraint Systems [2]). A constraint system (cs) C is a complete lattice (Con,C). The
elements of Con are called constraints. The symbols U, true and false will be used to denote the least
upper bound (lub) operation, the bottom, and the top element of C.

The elements of the lattice, the constraints, represent (partial) information. A constraint ¢ can be
viewed as an assertion. The lattice order C is meant to capture entailment of information: ¢ C d, al-
ternatively written d JJ ¢, means that the assertion d represents at least as much information as c. We
think of d I c as saying that d entails c or that ¢ can be derived from d. The operator LI represents join
of information; cL/d can be seen as an assertion stating that both ¢ and d hold. We can think of Ll as
representing conjunction of assertions. The top element represents the join of all, possibly inconsistent,
information, hence it is referred to as false. The bottom element true represents empty information. We
say that c is consistent if ¢ # false, otherwise we say that c is inconsistent. Similarly, we say that c is
consistent/inconsistent with d if ¢l d is consistent/inconsistent.

Constraint Frames. One can define a general form of implication by adapting the corresponding
notion from Heyting Algebras to cs. A Heyting implication ¢ — d in our setting corresponds to the
weakest constraint one needs to join ¢ with to derive d.

Definition 3.2 (Constraint Frames [8]). A constraint system (Con,C) is said to be a constraint frame iff
its joins distribute over arbitrary meets. More precisely, cU[|S =[|{cUe | e € S} for every ¢ € Con
and S C Con. Define c —d as [ |{e € Con|cUe Jd}.

The following properties of Heyting implication correspond to standard logical properties (with —,
U, and J interpreted as implication, conjunction, and entailment).

Proposition 3.3 ([8]). Let (Con,C) be a constraint frame. For every c,d,e € Con the following holds:
(I)cU(c—d)=cUd, (2) (c—>d)Cd, (3)c—d=trueiff c Jd.
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4 Space and Beliefs

The authors of [18] extended the notion of cs to account for distributed and multi-agent scenarios with a
finite number of agents, each having their own space for local information and their computations. The
extended structures are called spatial cs (scs). Here we adapt scs to reason about possibly infinite groups
of agents.

A group G is a set of agents. Each i € G has a space function s; : Con — Con satisfying some
structural conditions. Recall that constraints can be viewed as assertions. Thus given ¢ € Con, we can
then think of the constraint s;(c) as an assertion stating that c is a piece of information residing within a
space of agent i. Some alternative epistemic interpretations of s;(c) is that it is an assertion stating that
agent i believes c, that ¢ holds within the space of agent i, or that agent i interprets c as s;(c). All these
interpretations convey the idea that c is local or subjective to agent i.

In [18] scs are used to specify the spatial distribution of information in configurations (P,c) where P
is a process and c is a constraint. E.g., a reduction ( P,s;(c)Us;(d) ) — ( Q,si(c)Us;(dLle) ) means
that P with ¢ in the space of agent i and d in the space of agent j can evolve to Q while adding e to the
space of agent j.

We now introduce the notion of space function.

Definition 4.1 (Space Functions). A space function over a c¢s (Con,C) is a continuous self-map f :
Con — Con s.t. for every c,d € Con (S.1) f(true) = true, (S.2) f(cUd) = f(c)U f(d). We shall use
Z(C) to denote the set of all space functions over C = (Con,C).

The assertion f(c) can be viewed as saying that c is in the space represented by f. Property S.1 states
that having an empty local space amounts to nothing. Property S.2 allows us to join and distribute the
information in the space represented by f.

In [18] space functions were not required to be continuous. Nevertheless, continuity comes naturally
in the intended phenomena we wish to capture: modelling information of possibly infinite groups. In
fact, in [18] scs could only have finitely many agents.

In [9] we extended scs to allow arbitrary, possibly infinite, sets of agents. A spatial cs is a cs with a
possibly infinite group of agents each having a space function.

Definition 4.2 (Spatial Constraint Systems). A spatial cs (scs) is a ¢s C = (Con,C) equipped with a
possibly infinite tuple s = (5;);cc of space functions from . (C).

We shall use (Con,C, (s;)icc) to denote an scs with a tuple (s;)icg. We refer to G and s as the group
of agents and space tuple of C and to each s; as the space function in C of agent i. Subsets of G are also
referred to as groups of agents (or sub-groups of G).

Let us illustrate a simple scs that will be used throughout the paper.

Example 4.3. The scs (Con,C, (si)icq1,2)) in Fig.1 is given by the complete lattice M, and two agents.
We have Con = {pV —p,p,—p,p A\ —p} and c C d iff c is a logical consequence of d. The top element
false is p A —p, the bottom element true is p V —p, and the constraints p and —p are incomparable
with each other. The set of agents is {1,2} with space functions s; and s,: For agent 1, s;(p) = —p,
s1(—p) = p, s1(false) = false, s\ (true) = true, and for agent 2, s,(p) = false = s(false), s,(—p) = —p,
s (true) = true. The intuition is that the agent 2 sees no difference between p and false while agent 1
interprets —p as p and vice versa.

More involved examples of scs include meaningful families of structures from logic and economics
such as Kripke structures and Aumann structures (see [18]). We illustrate scs with infinite groups in the
next section.
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Figure 1: Cs given by lattice M, ordered by implication and space functions s; and s;.

5 Extrusion and Utterances

We can also equip each agent i with an extrusion function ¢; : Con — Con. Intuitively, within a space
context s;(-), the assertion ¢;(c) specifies that ¢ must be posted outside of agent i’s space. This is captured
by requiring the extrusion axiom (E.1) s;(¢;(c)) = c. In other words, we view extrusion/utterance as the
right inverse of space/belief (and thus space/belief as the left inverse of extrusion/utterance).

Definition 5.1 (Extrusion). Given an scs (Con,C, (s;)icc), we say that ¢; is an extrusion function for the
space s; iff ¢; is a right inverse of s;, i.e., iff s;(¢;(c)) =c. O

From the above definitions it follows that s;(c U ¢;(d)) = s;(c) LUd. From a spatial point of view, agent
i extrudes d from its local space. From an epistemic view this can be seen as an agent i that believes ¢
and utters d to the outside world. If d is inconsistent with c, i.e., cLld = false, we can see the utterance
as an intentional lie by agent i: The agent i utters an assertion inconsistent with their own beliefs.

Example 5.2. Let e = s5;(cU¢;(s;(a))) Us;(d). The constraint e specifies that agent i has ¢ and wishes
to transmit, via extrusion, a addressed to agent j. Agent j has d in their space. Indeed, with the help of
E.1 and S.2, we can derive e J s;(d Lia) thus stating that e entails that a will be in the space of ;.

The Extrusion Problem. A legitimate question is: Given space s; can we derive an extrusion function
¢; for it ? From set theory we know that there is an extrusion function (i.e., a right inverse) ¢; for s; iff s;
is surjective. Recall that the pre-image of y € Y under f: X — Y isthe set f~1(y) = {x € X | y= f(x)}.
Thus the extrusion ¢; can be defined as a function, called choice function, that maps each element c to
some element from the pre-image of ¢ under s;.

The existence of the above-mentioned choice function assumes the Axiom of Choice. The next propo-
sition from [8] gives some constructive extrusion functions. It also identifies a distinctive property of
space functions for which a right inverse exists.

Proposition 5.3 ([8]). Let f be a space function over (Con,C). Then
1. If f(false) # false then f does not have any right inverse.
2. If f is surjective then g : ¢ — | | f(c) ™" is a right inverse of f that preserves arbitrary infima.

3. If f is surjective and preserves arbitrary infima then h: c— [ | f (c)~Vis a right inverse of f that
preserves arbitrary suprema.
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Figure 2: Cs given by lattice M, ordered by implication and the space function s; with extrusion e;.

The following example illustrates an application of Prop.5.3 to obtain an extrusion function for the
space function s; from Ex.4.3. Notice that the space function s, from Ex.4.3 is not surjective thus it does
not have an extrusion function.

Example 5.4. Fig.2 shows an extrusion function for the space function s; in Ex.4.3. This extrusion
function can be obtained by applying Prop.5.3.2.

6 Groups and Distributed Knowledge

In [9] we introduced the notion of collective information of a group of agents. Roughly speaking, the
distributed (or collective) information of a group [ is the join of each piece of information that resides
in the space of some i € I. The distributed information of I w.r.t. ¢ is the distributive information of /
that can be derived from c. We wish to formalize whether a given e can be derived from the collective
information of the group I w.r.t. c.

The following examples, which we will use throughout this section, illustrate the above intuition.

Example 6.1. Consider an scs (Con,C, (s;);cc) where G = N and (Con,C) is a constraint frame. Let

¢ et s1(a)Usy(a — b)Us3(b — e). The constraint ¢ specifies the situation where a,a — b and b — e
are in the spaces of agent 1, 2 and 3, respectively. Neither agent necessarily holds e in their space in c.
Nevertheless, the information e can be derived from the collective information of the three agents w.r.t.
¢, since from Prop.3.3 we have all(a — b) U (b — e) J e. Let us now consider an example with infinitely
many agents. Let ¢/ def Llien 5i(a;) for some increasing chain ap C a; C ... Take € s.t. € C | ey ai-
Notice that unless ¢’ is compact (see Section 3), it may be the case that no agent i € N holds ¢’ in their
space; e.g., if ¢’ T a; for any i € N. Yet, from our assumption, ¢’ can be derived from the collective
information w.r.t. ¢’ of all the agents in N, i.e., | |;cy ai-

The above example may suggest that the distributed information can be obtained by joining individual
local information derived from c. Individual information of an agent i can be characterized as the i-
projection of ¢ defined thus:

Definition 6.2 (Agent and Join Projections [9]). Let C = (Con,C, (s;)icc) be an scs. Given i € G, the
i-agent projection of ¢ € Con is defined as m;(c) def L{e | c dsi(e)}. We say that e is i-agent derivable
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from c iff mi(c) Je. Given I C G the I-join projection of a group I of c is defined as m;(c) det L{mi(c)|ie
I}. We say that e is I-join derivable from c iff m;(c) Je.

The i-projection of an agent i of ¢ naturally represents the join of all the information of agent i in c.
It turns out that projections are extrusion functions: If s; admits extrusion then 7; is an extrusion function
for the space s; (see Def.5.1). More precisely,

Proposition 6.3 (Projection as extrusion). If's; is surjective then s;(m;(c)) = c for every ¢ € Con.

The I-join projection of group / joins individual i-projections of ¢ for i € I. This projection can be
used as a sound mechanism for reasoning about distributed-information: If e is /-join derivable from ¢
then it follows from the distributed-information of 7 w.r.t. c.

Example 6.4. Let ¢ be as in Ex.6.1. We have 7;(c) Ja, m(c) 3 (a — b), m3(c) I (b — e). Indeed e
is I-join derivable from c since 7 533 (c) = 71 (c) Um(c) Ums(c) I e. Similarly we conclude that ¢’ is
I-join derivable from ¢’ in Ex.6.1 since 7y (¢") = | Jieny Ti(c) I [jenai 2 €.

Nevertheless, I-join projections do not provide a complete mechanism for reasoning about distributed
information as illustrated below.

Example 6.5. Let d def 51(b)Msa(b). Recall that we think of LI and M as conjunction and disjunction of
assertions: d specifies that b is present in the space of agent 1 or in the space of agent 2 though not exactly
in which one. Thus from d we should be able to conclude that b belongs to the space of some agent in
{1,2}. Nevertheless, in general b is not /-join derivable from d since from 7(; 5, (d) = 71 (d) U m2(d)
we cannot, in general, derive b. To see this consider the scs in Fig.3a and take b = —p. We have
T2y (d) = m(d) Umy(d) = true Utrue = true 2 b. One can generalize the example to infinitely many

agents: Consider the scs in Ex.6.1. Let d’ def [Tien 5:(6'). We should be able to conclude from d’ that 5
is in the space of some agent in N but, in general, b’ is not N-join derivable from d’.

6.1 Distributed Spaces

In the previous section we illustrated that the /-join projection of ¢, m;(c), the join of individual projec-
tions, may not project all distributed information of a group /. To solve this problem we shall develop
the notion of I-group projection of ¢, written as IT;(c¢). To do this we shall first define a space function
Ay called the distributed space of group I. The function A; can be thought of as a virtual space including
all the information that can be in the space of a member of /. We shall then define an /-projection I1; in
terms of A; much like 7; is defined in terms of s;.

Recall that .7 (C) denotes the set of all space functions over a cs C. For notational convenience, we
shall use (f7);cc to denote the tuple (f7);c () of elements of &7(C).

Set of Space Functions. We begin by introducing a new partial order induced by C. The set of space
functions ordered point-wise.

Definition 6.6 (Space Functions Order). Let C = (Con,C, (s;)icc) be an scs. Given f,g € ./ (C), define
fEsgiff f(c) E gl(c) for every ¢ € Con. We shall use Cs to denote the partial order (¥ (C),Cs); the
set of all space functions ordered by Cs.

A very important fact for the design of our structure is that the set of space functions .#(C) can be
made into a complete lattice.

Lemma 6.7 ([9]). Let C = (Con,C,(s;)icc) be an scs. Then Cs is a complete lattice.
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6.2 Distributed Spaces as Maximum Spaces

Let us consider the lattice of space functions Cg = (.(C),Cg). Suppose that f and g are space functions
in Cg with f Cg g. Intuitively, every piece of information c in the space represented by g is also in the
space represented by f since f(c) C g(c) for every ¢ € Con. This can be interpreted as saying that the
space represented by g is included in the space represented by f; in other words the bigger the space, the
smaller the function that represents it in the lattice Cg.

Following the above intuition, the order relation Cg of Cg represents (reverse) space inclusion and
the join and meet operations in Cg represent intersection and union of spaces. The biggest and the
smallest spaces are represented by the bottom and the top elements of the lattice Cg, here called A, and
At and defined as follows.

Definition 6.8 (Top and Bottom Spaces). For every ¢ € Con, define A, () det true, A7 (c) A (e ifc=
true and A+ (c) det false if ¢ # true.

The distributed space A; of a group I can be viewed as the function that represents the smallest space
that includes all the local information of the agents in /. From the above intuition, A; should be the
greatest space function below the space functions of the agents in /. The existence of such a function
follows from completeness of (.(C),Cg) (Lemma 6.7).

Definition 6.9 (Distributed Spaces [9]). Let C be an scs (Con,C, (s;)ic). The distributed spaces of C

is given by A = (Ar)icG where Ay def max{f € #(C) | f Cs s;foreveryi € I}. We shall say that e is

distributed among I C G w.r.t. ¢ iff ¢ 3 Aj(e). We shall refer to each A; as the (distributed) space of the
group 1.

It follows from Lemma 6.7 that A; = [|{s; | i € I} (where [ ] is the meet in the complete lattice
(7(C),Cs)). Fig.3b illustrates an scs and its distributed space Ay »y.

Compositionality. Distributed spaces have pleasant compositional properties. They capture the intu-
ition that the distributed information of a group I can be obtained from the the distributive information
of its subgroups.

Theorem 6.10 ([9]). Let (A;)icg be the distributed spaces of an scs (Con,C,(s;)icg). Suppose that
KJCICG (DA =X if =0 (2) A =s; if I =1{i}, (3) Ay(a) UAg(p) D Ar(aLib), and (4)
Aj(a)UAg(a — ¢) 3 A(c) if (Con,C) is a constraint frame.

Recall that A+ corresponds to the empty space (see Def.6.8). The first property realizes the intuition
that the empty subgroup @ does not have any information whatsoever distributed w.r.t. a consistent c:
for if ¢ J Ag(e) and ¢ # false then e = true. Intuitively, the second property says that the function A;
for the group of one agent must be the agent’s space function. The third property states that a group can
join the information of its subgroups. The last property uses constraint implication, hence the constraint
frame condition, to express that by joining the information a and a — ¢ of their subgroups, the group /
can obtain c.

Let us illustrate how to derive information of a group from smaller ones using Thm.6.10.

Example 6.11. Let c =s(a) Usy(a — b) Us3(b — e) as in Ex.6.1. We want to prove that e is distributed
among I = {1,2,3} w.rt. ¢, ie., cJ A{12,3y(e). Using Properties 2 and 4 in Thm.6.10 we obtain ¢ J
si(a)Usy(a—b) = A{l}(a) UA{Q}(a —b)d A1y (b), and then ¢ J A1y (b)Us3(b—e) = A{Lg}(b) u
Ay (b — e) I Ay 23y (e) as wanted.
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(a) Projections 7 and 7, given s1 and s,. (b) Ay with I = {1,2} given s; and s,.

Figure 3: Projections (a) and Distributed Space function (b) over lattice M5.

Remark 6.1 (Continuity). The example with infinitely many agents in Ex.6.1 illustrates well why we
require our spaces to be continuous in the presence of possibly infinite groups. Clearly ¢’ = |;cp 5i(a;) 3
Llicny An(a;). By continuity, | |y An(ai) = An( ;e a@i) which indeed captures the idea that each a; is in
the distributed space Ay.

We conclude this subsection with an important family of scs from mathematical economics: Aumann
structures. We illustrate that the notion of distributed knowledge in these structures is an instance of a
distributed space.

Example 6.12. Aumann Constraint Systems. Aumann structures [16] are an event-based approach to
modelling knowledge. An Aumann structure is a tuple & = (S, Z,...,Z,) where S is a set of states
and each &; is a partition on S for agent i. The partitions are called information sets. If two states ¢ and
u are in the same information set for agent 7, it means that in state ¢ agent i considers state u possible,
and vice versa. An event in an Aumann structure is any subset of S. Event e holds at state ¢ if € e. The
set Z;(s) denotes the information set of &7; containing s. The event of agent i knowing e is defined as
Ki(e) ={s €S| H(s) C e}, and the distributed knowledge of an event e among the agents in a group |
is defined as D;(e) = {s € S| Nic; Zi(s) Ce}.

An Aumann structure can be seen as a spatial constraint system C(&7) with events as constraints,
i.e., Con = {e | eis an event in <7 }, and for every ej,e; € Con, e; C e; iff e; C ;. The operators join
(L)) and meet (I1) are intersection (N) and union (U) of events, respectively; true = S and false = 0. The
space functions are the knowledge operators, i.e., s;(c) = K;(c). From these definitions and since meets
are unions one can easily verify that A;(c) = D;(c) which shows the correspondence between distributed
information and distributed knowledge.

6.3 Group Projections

As promised in Section 6.1 we now give a definition of Group Projection. The function I;(c) extracts
exactly all information that the group / may have distributed w.r.t. c.

Definition 6.13 (Group Projection [9]). Let (A;)icg be the distributed spaces of an scs C = (Con,C

,(si)iec)- Given the set I C G, the I-group projection of ¢ € Con is defined as IT;(c) def Li{e|c 2 A(e)}
We say that e is I-group derivable from c iff II;(c) Je.
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Much like space functions and agent projections, group projections and distributed spaces also form
a pleasant correspondence: a Galois connection [3].

Proposition 6.14 ([9]). Let (A;)icg be the distributed spaces of C = (Con,C, (s;)icc). For every c,e €
Con, (1) c JAs(e) iff TI;(c) Je, (2) ;(c) DI,(c) if J C 1, and (3) I;(c) 3 m(c).

The first property in Prop.6.14, a Galois connection, states that we can conclude from c that e is in
the distributed space of / exactly when e is I-group derivable from c¢. The second says that the bigger
the group, the bigger the projection. The last property says that whatever is /-join derivable is /-group
derivable, although the opposite is not true as shown in Ex.6.5.

6.4 Group Compactness

Suppose that an infinite group of agents I can derive e from ¢ (i.e., ¢ J Aj(e)). A legitimate question is
whether there exists a finite sub-group J of agents from / that can also derive e from c. The following
theorem provides a positive answer to this question provided that e is a compact element and /-join
derivable from c.

Theorem 6.15 (Group Compactness [9]). Let (A;);cc be the distributed spaces of an scs C = (Con,C
,(81)iec). Suppose that ¢ 3 A;(e). If e is compact and I-join derivable from c then there exists a finite set
J C 1 such that ¢ 3 Aj(e).

We conclude this section with the following example of group compactness.

Example 6.16. Consider the example with infinitely many agents in Ex.6.1. We have ¢’ = | |;cn5i(a;)
for some increasing chain ag Ca; C ... and € s.t. € C | |;cya;. Notice that ¢ J Ay(€’) and my(c’) D €.
Hence ¢’ is N-join derivable from ¢’. If ¢’ is compact, by Thm.6.15 there must be a finite subset J C N
such that ¢/ J Ay(€).

7 Computing Distributed Information

Let us consider a finite scs C = (Con,C, (s;);cc) with distributed spaces (A;);cg. By finite scs we mean
that Con and G are finite sets. Let us consider the problem of computing A;: Given a set {s; },c; of space
functions, we wish to find the greatest space function f such that f C s; for all i € I (see Def.6.9).

Because of the finiteness assumption, the above problem can be rephrased in simpler terms: Given
a finite lattice L and a finite set S of join-homomorphisms on L, find the greatest join-homomorphism
below all the elements of S. Even in small lattices with four elements and two space functions, finding
such greatest function may not be immediate, e.g., for S = {s;,5,} and the lattice in Fig.1 the answer is
given Fig.3b.

A brute force approach would be to compute A;(c) by generating the set {f(c) | f € .7 (C) and f C
s; for all i € I'} and taking its join. This approach works since (||S)(c) = L {f(c)|f € S}. However, the
number of such functions in .#(C) can be at least factorial in the size of Con. For distributive lattices,
the size of .#’(C) can be non-polynomial in the size of Con.

Proposition 7.1 ([9]). For every n > 2, there exists a lattice C = (Con,C) such that |.(C)| > (n—2)!
and n = |Con|. For every n > 1, there exists a distributed lattice C = (Con,C) such that |.# (C)| > nl°%"
and n=|Con|.

Nevertheless, we can exploit order theoretical results and compositional properties of distributive
spaces to compute A; in polynomial time in the size of Con.
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Theorem 7.2 ([9]). Suppose that (Con,C) is a distributed lattice. Let J and K be two sets such that
I =JUK. Then the following equalities hold:

L.A(c) = [ {As(@)UAk(b) |a,b € Con and alib I c}. (1)
2.0(c) = [ fAs(@UAg(a—c)|ac Con}. 2)
3. Ai(c) = |—|{A1(a) UAg(a—c¢)|a€ Con and aC c}. 3)

The above theorem characterizes the information of a group from that of its subgroups. It bears wit-
ness to the inherent compositional nature of our notion of distributed space, and realizes the intuition that
by joining the information a and a — ¢ of their subgroups, the group / can obtain c¢. This compositional
nature is exploited by the algorithms below.

Given a finite scs C = (Con,C, (s;)icc ), the recursive function DELTAPART3(Z,¢) in Algorithm 1
computes A;(c) for any given ¢ in Con. Its correctness, assuming that (Con,C) is a distributed lattice,
follows from Thm.7.2(3). Termination follows from the finiteness of C and the fact the sets J and K in
the recursive calls form a partition of /. Notice that we select a partition (in halves) rather than any two
sets K,J satisfying the condition / = JUK to avoid significant recalculation.

Algorithm 1 Function DELTAPART3(/,c) computes A;(c)

function DELTAPART3(/, ) > Computes A;(c)
if I = {i} then
return s;(c)

{J,K} + PARTITION(I) > returns a partition {J,K} of I s.t., |[J| = ||I|/2]

1:
2
3
4: else
5
6 return [ |{DELTAPART3 (J,a) LUDELTAPART3 (K,a —¢) |a € Con and a C c}.

Algorithms. Notice DELTAPART3(/,c) computes A;(c) using Thm.7.2(3). By modifying Line 6
with the corresponding meet operations, we obtain two variants of DELTAPART3 that use, instead of
Thm.7.2(3), the Properties Thm.7.2(1) and Thm.7.2(2). We call them DELTAPART1 and DELTAPART2.

Worst-case time complexity. We assume that binary distributive lattice operations 1, LI, and — are
computed in O(1) time. We also assume a fixed group / of size m = |I| and express the time complexity
for computing A; in terms of n = |Con |, the size of the set of constraints. The above-mentioned algo-
rithms compute the value A;(c). The worst-case time complexity for computing the function A; is in
O(mn!t21°%2m) using DELTAPART1, and O(mn'*1°22™) using DELTAPART2 and DELTAPART3 [9].

8 Conclusions and Related Work

We have highlighted some results about scs as semantic structures for spatially-distributed systems ex-
hibiting epistemic behaviour. Our work in scs have been inspired by the seminal work on epistemic logic
for knowledge and group knowledge in [15, 6, 16]. Meaningful families of structures from logic and eco-
nomics such as Kripke structures and Aumann structures have been shown to be instances of scs [18].
Furthermore scs have been used to give semantics to modal logics and process calculi [18, 8, 12].

In [18] we introduced a spatial and epistemic process calculus, called sccp, for reasoning about spatial
information and knowledge distributed among the agents of a system. In this work scs were introduced
as the domain-theoretical structures to represent spatial and epistemic information. These structures are
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also used in the denotational and operational semantics of sccp processes. In [18] we also provided
operational and denotational techniques for reasoning about the potentially infinite behaviour of spatial
and epistemic processes.

In [8, 12] we developed the theory of spatial constraint systems (scs) with extrusion to specify in-
formation and processes moving from a space to another. In [11, 10] scs with extrusion are used to
give a novel algebraic characterization of the notion of normality in modal logic and to derive right in-
verse/reverse operators for modal languages. These results were applied to derive new expressiveness
results for bisimilarity and well-established modal languages such as Hennessy-Milner logic, and linear-
time temporal logic.

In [8, 10, 11, 12] scs are used to reason about beliefs, lies and other epistemic utterances but also
restricted to a finite number of agents and individual, rather than group, behaviour of agents.

In [9] we developed semantic foundations and provided algorithms for reasoning about the distributed
information of possibly infinite groups in multi-agents systems. We plan to develop similar techniques
for reasoning about other group phenomena in multi-agent systems from social sciences and computer
music such as group polarization [4] and group improvisation [23].

We have recently learnt that the fundamental operations of dilation and erosion from digital images
and mathematical morphology [25] are space and projection functions, respectively. Dilations are applied
to figures. Intuitively, figures that are very lightly drawn get thick when dilated. We are currently
studying potential applications of distributed spaces in mathematical morphology: E.g., for computing
the greatest dilation under a given set of dilations. Similarly, we are also studying scs interpretations of
other fundamental operations from mathematical morphology such as opening and closing.

We conclude with some applications of scs in the development of ccp tools and languages. In [14, 13]
we described D-SPACES, an implementation of scs that provides property-checking methods as well as
an implementation of a specific type of constraint systems (boolean algebras). In [21] we used rewriting
logic for specifying and analyzing ccp processes combining spatial and real-time behavior. These pro-
cesses can run processes in different computational spaces while subject to real-time requirements. The
real-time rewriting logic semantics is fully executable in Maude with the help of rewriting modulo SMT:
partial information (i.e., constraints) in the specification is represented by quantifier-free formulas on the
shared variables of the system that are under the control of SMT decision procedures. The approach is
used to symbolically analyze existential real-time reachability properties of process calculi in the pres-
ence of spatial hierarchies for sharing information and knowledge. We also developed dspacenet, a
multi-agent spatial and reactive ccp language for programming academic forums?. The fundamental
structure of dspacenet is that of space: A space may contain spatial and reactive ccp programs or
other spaces. The fundamental operation of dspacenet is that of program posting: In each time unit,
agents (users) can post spatial reactive ccp programs in the spaces they are allowed to do so. Currently
dspacenet is used at Univ. Javeriana Cali for teaching spatial reactive declarative programming.
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The process of decomposing a complex system into simpler subsystems has been of interest to com-
puter scientists over many decades, for instance, for the field of distributed computing. In this
paper, motivated by the desire to distribute the process of active automata learning onto multiple
subsystems, we study the equivalence between a system and the total behaviour of its decomposi-
tion which comprises subsystems with communication between them. We show synchronously- and
asynchronously-communicating decompositions that maintain branching bisimilarity, and we prove
that there is no decomposition operator that maintains divergence-preserving branching bisimilarity
over all LTSs.

1 Introduction

The process of decomposing a complex system into simpler subsystems is the cornerstone of behavioural
analysis regardless of where it is applied, to the atom or to the human psyche. Studying the relationship
between a complex system and the total behaviour of its decomposition is the subject matter of this paper.
However, instead of atoms or human brains, in the field of formal methods, we simply dissect automata.
This paper studies how the behaviour of a Labelled Transition System (LTS) can be distributed into a
parallel (de)composition of communicating subsystems while maintaining behavioural equivalence.

Motivation This work was motivated by a case study in the industry [4] based on which we pursued
the possibility of deducing the internal components of a system based on the model inferred by the active
model learning technique [1]. If it were possible at all, then the learned system must be equivalent to the
parallel decomposition deduced.

Our goal is to examine the possibility of such deduction and we do that by devising a decomposi-
tioning scheme with certain assumptions, then examine its equivalence with the original system.

Related Work Previous work done on the topic of decomposition focuses on uniqueness properties
and on producing simpler components. For example the primary decomposition theorem by Krohn
and Rhodes states that any automaton can be decomposed into a cascaded product of simpler automata
such that the automaton is homomorphic to its decomposition [10]. And in 1998, Milner and Moller
introduced a semantics of parallel decompositions comprising non-communicating subsystems [12], and
they proved that any finite system of behaviour can be decomposed into a unique set of prime parallel
non-communicating subsystems. While Milner and Moller’s theorem was in strong bisimulation set in
the Calculus of Communicating Systems (CCS), Luttik [11] later introduced a more general framework

J.A. Pérez and J. Rot (Eds.): Combined Workshop on Expressiveness in
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2019).
EPTCS 300, 2019, pp. 54-68, doi:10.4204/EPTCS.300.4
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of commutative monoids that can be used to establish unique decomposition in weak and branching
bisimulation semantics.

In contrast to those works, we consider decomposing a system based on partitioning its alphabet into
disjoint sets and we require that the subsystems communicate. In that sense, this work is more similar to
Brinksma et al. [3] and Hultstrom [9] who made a decomposition based on a given partition of actions.
Another similarity is the need for synchronisation between subsystems as defined in Section 4.1.

Contribution We define two decompositions of parallel communicating subsystems, one synchronous
and the other asynchronous, and we prove that both decompositions maintain branching bisimilarity [6]
with the source automaton. We also prove that there is no way of decomposing an automaton (under
certain conditions) such that it is divergent-preserving branching-bisimilar [5] to the resulting decom-
position. We consider branching bisimilarity, but the results of this paper easily carry over to other
equivalences such as weak bisimilarity.

Outline The outline of this paper is as follows. Section 2 introduces the preliminaries. Section 3
defines and discussed the general decomposition operator on which we base our arguments. Section 4
defines two decompositions of communicating subsystems, one for synchronous communication and
the other for asynchronous communication, and proves that each maintains a branching bisimulation
relation with the source automaton. Section 5 contains the proof that there is no way of decomposing
an automaton, through our general decomposition operator, such that it maintains divergence preserving
branching bisimulation with its decomposition. Finally, Section 6 discusses the results and interprets
them in light of our initial motivation.

Acknowledgement We wish to thank Rick Erkens, Bas Luttik, Thomas Neele, Joshua Moerman, Pieter
Cuijpers, Bharat Garhewal, Hans van Wezep, Arjan Mooij and the referees of the EXPRESS/SOS 2019
workshop for their thorough feedback, for sharing their knowledge, and for their motivation and support.

2 Preliminaries
In this section, we present the preliminaries of labelled transition systems, the synchronous product and
bisimulation relations, aided by [7]. We start with the definition of a labelled transition system (LTS).
Definition 2.1 (LTS). We define our LTS as a four-tuple (S,X, —,s9) where:

e §is a non-empty finite set of states.

e Y is the alphabet, also referred to as the action set.

e — C §x X x Sis a transition relation.

e s is the initial state.

We use the notation x — y to express a transition with action a from state x to state y. This and
variations of it are formally defined as follows.

Definition 2.2 (Transition Relation). Let (S,X, —,s0) be an LTS with s,s" € S and a € XU {7}, where ©
is the internal/unobservable action. We use the following notations:
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s’ iff (s,a,8) € —.
= iff there is an s’ such that s % s
s iff there is no s such that s = .

s % s, iff there are s1,s7,...,5, € Ssuchthats 551 S5y 5 --- S5,
s i>w iff there are s1,5,,... € S such that s 4 s;and foralli e N, s; 5 Sit1-

Next, we define complementary actions, i.e., actions on which communicating systems synchronise.
Then we define the synchronous product of two automata, and show what role complementary actions
play in computing it.

Definition 2.3 (Co-actions). For an arbitrary action a that is not 7, the action @ (read as a bar) is called
its co-action. Also, @ = a. We say that actions a and @ are complementary to each other and we call
them a pair of complementary actions.

We lift this operator to sets of actions such that X = {a | a € Z}.

Definition 2.4 (Synchronous Product). The synchronous product of two LTSs
(S1,Z1,—1,90) X (S2,X2,—2,70) is the tuple (S} x 82, Xy, —, (0,70))

where Xy = (£ UXy) \{a,a |a € ) NG € X1}

The transition relation —, C (87 X S3) X Xy X (S} x §) is defined as follows:

(5,6) 5 (s,1) iffacTinagIons S5,
(s,6) 5 (s,¢)) iffacTynagXint 5,1, and
(5,6) 5 (s,1) iffacTiAGeTyNs S8 At Syt
where 7 is the unobservable action.
Next, we define two notions of behavioural equivalence.
Definition 2.5 (Branching bisimulation). Given an LTS (S,X,—,s0) and a relation Z C S x S. We call
2 a branching bisimulation relation iff for all states s,7 € S such that (s,7) € Z, it holds that:
1. if s % §', then:
e a=rtand (s',t) € #; or
o t 51 St (s,f) € Zand (s,1") € A.
2. Symmetrically, if # < ¢/, then:
e a=rtand (s,t') € Z; or
PR (s',t) € Z and (s",1') € X.
Two states s and ¢ are branching bisimilar, denoted s <, ¢ iff there is a branching bisimulation relation
2 such that (s,1) € %. Two LTSs P and Q are branching bisimilar, denoted P <, Q, iff their initial states
are.
A state s with s 5 is called divergent. Hence, a state with a 7 loop is also called divergent. Branch-
ing bisimulation does not preserve divergence, i.e., a divergent state can be branching bisimilar to a
non-divergent one. Therefore, a stronger equivalence relation, namely divergence-preserving branching
bisimulation, is defined below.
Definition 2.6 (Divergence-preserving branching bisimulation). Given an LTS (S,X,—,s¢) and a rela-
tion Z C S x S. We call Z a divergence-preserving branching bisimulation relation iff it is a branching
bisimulation relation and for all states s,z € S with (s,7) € %, there is an infinite sequence s N S N k) N
with (s;,) € Z for all i > 0 iff there is an infinite sequence ¢ — t; — 1, — and (s,;) € Z for all i > 0.
Two states s and ¢ are divergence-preserving branching bisimilar, denoted s <, ¢ iff there is a
divergence-preserving branching bisimulation relation # such that (s,) € #Z. Two LTSs P and Q are
divergence-preserving branching bisimilar, denoted P <4, Q, iff their initial states are.
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3 The Decomposition Operation

In this section, we establish a decompositioning scheme that is based on action partitioning in order to
refer to it as the general decomposition operation on which our theorems apply. Our general decomposi-
tion operation is a function transforming a single LTS, given two disjoint actions sets, into two LTSs. It
is formally defined as follows.

Definition 3.1 (General Decomposition Operation). Given an LTS M with alphabet ¥ and given two
alphabets X1,Y; such that Y =¥, UX, and ¥ N X, =0, we call G a general decomposition operator iff
G(M,X,X,) = (M,M,) such that M; has alphabet Xy, with X; C Xy, and Xy, NE, = 0, and likewise,
M, has alphabet Xy, with X5 C Xy, and Xy, N2 = 0.

We refer to a method of decomposing automata as a decomposition operation whereas the result of
such transformation is called a decomposition. A decomposition comprises two or more automata. This
transformation is depicted in Figure 2. Throughout the paper, we compare LTSs to the synchronous
product of the decomposition, and if a a certain bisimulation relation holds between these two, then we
say that the operation maintains that relation.

The idea behind this transformation is, given a partition of actions of a system, to generate two
subsystems, each using exclusively one of the two parts.

Recursive decomposition. Note that Definition 3.1 can easily be applied recursively allowing to de-
compose behaviour into multiple components. As the alphabets over which an automaton can be decom-
posed can be empty, the number of components over which behaviour can be split can even be arbitrarily
large.

4 Branching Bisimilar Decompositions

In this section, we define two decomposition operations that are designed to maintain branching bisim-
ilarity, and we actually prove that they do. The first one (decomp;) decomposes into synchronously
communicating subsystems while the second (decomp,) decomposes into asynchronously communicat-
ing ones. In both of these operations, we build two automata that pass control between one another using
¢ messages. Only if an automaton seizes control can it perform one of its actions, otherwise it has to wait
for the other to hand control over. Formal definitions and more detail follow.

4.1 Decomposing into Synchronous Subsystems

We define the decomposition of synchronous subsystems, summarised in Figure 1 in two patterns; the top
dictates the decomposition of every state in the source LTS while the bottom dictates the decomposition
of every transition. An omitted third pattern is symmetric to the second such that the transition’s label
simply belongs to the second subsystem rather than the first.

Definition 4.1 (Synchronous Decomposition Operation). Given an LTS M = (S,X,—,¢) and two alpha-
bets X£1,%, such that ¥ =¥ UX; and £; N X, = @, then we can decompose M over X; and ¥, by applying
the following operation:

decompy(M,X1,X,) = (My,M,) where:

1. My = (ScLJSTl,Zl UZSH—N,(Q, 1))
M, = (SCUSTNEZUZSN_)Z? (% 1))
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Figure 1: The two patterns that delineate the operator decomp, (Definition 4.1).

2. For every state s in S, we introduce two states (s, 1), (s,2) € Sc:
Sc, :{(S,1> ‘SES} SCZZ{(S,Z) ’SES} Sc =8¢, USc, (1)
Notation. Tuple-states of the form (s,7) such as (s,1) and (s,2) are shortened to s;. Therefore,

it is to be held throughout the paper that s; is derived from s rather than it being a completely
unrelated symbol to s.

3. The set of c-actions is defined as follows:
Yc= {Csl,szacsz,sl ‘ s1 € SC] 82 € SCZ} (2)

4. The sets of ¢ actions and ¢ states are defined as follows:

z“Tl = {tsl | s1 € SC} ZTQ = {tsz ‘ §2 € SC}

3)
STl = {t&sl | ae Zl,sl € Scl} ST2 = {l‘fm2 | ae Zz,sz S SCZ}
5. The complete sets of actions of M and M, are respectively defined as:
251 :ZTIUZCUsz ZSZZZTZUfCUTﬂ 4

6. The transition relations —; C (ScUS7) x (£;UXs,) X (ScUS7;) are defined as follows. For i, j €
{1,2} and i # j, —; is the minimal relation satisfying the following:

(a) Forall s € Sand forall ¢y, 5, € Ec:

Csps; s

Si —]>,' Sj Si —j>j Sj (5)

(b) Forall s,s’ € S, and all @ € &, if s = s/, then:

t
LN N
Si itags] iS;

" ©
S; —>j S
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Two classes of actions are introduced, c-actions and ¢-actions. The c-actions come in pairs, and they
resemble passing a control token between M| and M;. For instance, looking at Figure 2, when, at some
state r € S for which a pair of states rj,r, € S¢ exists in both M; and M, and control is to be passed
from M, to M, then a pair of complementary c actions synchronises, namely, actions c,, ,, and ¢, ,,
to produce a synchronous transition in both machines from ry to r,. Likewise, actions ¢, ,, and ¢, ,;
synchronise to pass control in the opposite direction from M, to M.

The t-actions are introduced to synchronise transitions occurring in one machine with the other. In
addition, they require the introduction of ¢-states. Observe Figure 2 where an a; transition occurs in Mj.
The aim is the transition r; — s1, but in order to synchronise this with M;, we introduce a middle state

ts . . . iy
ta,.5, € S, from which the only possible transition is #,, ;, — s1 which synchronises with the transition

ts .
ry —]—) S11n Mz.

The operation (decomp;) can be summarised by two patterns shown in Figure 1; the top pattern
applies to each state and the bottom one applies to each transition.

Is the Decomposition a Simplification? The decomposition is obviously larger than the original sys-
tem. That is due to the nature of an alphabet-partitioning-based decomposition where subsystems must
hand control over between one another. Thus, every subsystem must have, for each state in the original,
multiple ones expressing where control lies. In special cases, a smaller component may suffice; for ex-
ample, in Figure 2, because state r enables no b actions, a state r is not needed and all transitions going
to r, can instead go to r;. However, we believe that our definition the way it is is more understandable
because of its generality and symmetry. The element of simplification lies not in reducing the size of a
system but rather in partitioning its alphabet.

Computing the Synchronous Product. For a decomposition (M;,M;) by Definition 4.1, the syn-
chronous product M, = M| x M, is the LTS (Sy, X1 UX2, =y, (91,41)), where:
S, =81 x5 = (SCuSTl) X (ScUSTZ)
= (SC X Sc) U (STl X STZ) (7)
U (ST1 X Sc) @) (Sc X STZ)
with Xg,,Xs,,S7,, 57, being sets introduced by decompy. The transition relation —, is defined as follows
fori,j € {1,2} and i # j:
1. if s & s’ and a € X; then by (6) there is a state las; € S1, and a pair of complementary actions
1y, Iy € Ls; such that:

(5i,81) 5 Sa —x (sh,5), ®)

(X

t, «,8; ifi=1
WheresaZ{Ea’s"’sJ ll ’

Csjs Csps
2. For all s € S, there exist Csi5j1Cssi € Y¢ such that, by (5), s; —4; sjand s; —]>J- s, and thus:

(5i,8:) = (5),5)

€))
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Figure 2: Example of synchronous decomposition operation of Definition 4.1.

4.2 Proof that the synchronous decomposition operation maintains branching bisimula-
tion

In this subsection, we show an application of decomp; (Definition 4.1) to a sample LTS, we demon-
strate that decompg maintains branching bisimilarity, and then we prove that branching bisimilarity is
maintained through any and all applications of decomps;.

Figure 2 shows the LTS at the left side and its decomposition at the right side. The two patterns
shown in Figure 1 can be applied directly to this LTS. The top pattern applies twice, once per state, and
the bottom pattern applies three times, once per transition.

Next, we compute the synchronous product and form one LTS shown at the right of Figure 3. The
nodes are divided into two equivalence classes, top and bottom. The states in the top class are branching
bisimilar to state » whereas the states in the bottom one are branching bisimilar to state s.

The following proves the branching bisimilarity and thus proves that there is a way of decomposing
an LTS such that branching bisimilarity is maintained.

Theorem 4.2. Given an LTS M = (S,X,—,s9) and two alphabets X;,X, such that £ = £; UX, and
X;NX; =0, and given an LTS M, = M; x M, where (M;,M,) = decomps(M) by Definition 4.1, then
M ey M,.

Proof. Let M| = (SCUSTI M UZSI,—)l,ql) and M, = (SCUSTZ,EZUZSp*)ZyCIZ)-

Define arelation 7 C S x ((ScUSr,) X (ScUSt,)) with Z = {(s, (sn,50))> (r's (tape s 1))s (s (rnstae))
|s,r,r’ €S,ne{1,2},ac X, r% r'}. We prove that Z is a branching bisimulation relation through the
following cases:

1. Consider a pair (s,sx) = (s, (s4,5,)) Where n € {1,2}.
(a) Assume s — s'. Then we have two cases:
i. a € X;. Then, by (8), sy — (ta,s5n). We see that (s', (a5 ,54)) € Z.
ii. a € Ly. Then, by (8), sy (sn,ta, ). We see that (s', (sn, ) € Z.
(b) Assume sy —, s.. Then we have the following three cases:
i. a € L1 Aa ¢ X, then this transition is only possible, by definition, through the transition

8
s % s for some s’ such that s/, ® (tay,s1). We see that (s',5)) € Z.
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ap [ay by ﬁb

Figure 3: Showing branching bisimulation on the example of Figure 2.

(

ii. a € XyAa¢ Xy This is a symmetric case where s = s" and s, = (52,14,). We see that
(s',s) € A.

ili. a € ) Aa € ¥, then the only transition possible is the T transition of (9). Then s, =
(Sm,Sm) where m € {1,2} and m # n. We see that (s, s,) € Z%.

2. Consider a pair (r,ry) = (s', (s ,51)) Where n € {1,2},a € Zand s 5 .

=

(a) Assume r % r/. Then we show that r, <, 7, and . %, /" and (r,r.) € Z and (/',/") € Z.
We do this for a € ¥;. The case for a € X, is symmetric.

. 8

i r ® (sh,s5). We see that (r,r},) € Z.

ii. Since r =’ and r < #/, then by (8), there exists a state / such that . %, 7, and
1= (104,55, where 5" = . We see that {7, %) € .

/

(b) Assume r, 5, r.. By the definition of —,, it is only possible that a is a 7 action and that

8
n=1. Thus, 7, © (sh,s5). We see that (', 1) € Z.
3. Consider a pair (r,7) = (s', (sn,a, ) where n € {1,2}, a € L and s < s'. This case is symmetric
to Case 2.

d

Corollary 4.3. It follows from Theorem 4.2 that there is a universal way of decomposing an LTS M
using a general synchronous decomposition operator (Definition 3.1) such that M is branching-bisimilar
to the synchronous product of its decomposition.

4.3 Decomposing into Asynchronous Subsystems

We consider asynchronous communication between subsystems simply because many practical systems
use asynchronous communication and the aim is to extend our proof towards that. So, we define a new
decomposition operation (decomp,) such that the communication between subsystems is asynchronous.
We assign each subsystem a queue that stores received messages until they are consumed. An action of
sending such a message does synchronise, however, with the queue of the opposite side receiving it. The
operation decomp,, is summarised in Figure 4.
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Figure 4: The two patterns that delineate the decomp,, operator (Definition 4.5).

Definition 4.4 (LTS with Queue). A queue is an ordered-list of actions. An LTS with a queue is a
transition system of the shape (S x Q,X,—,s9). A state in S x Q holds the contents of the queue Q and
is written as (s, Q§.

Elements in a queue are concatenated using the - operator. Appending an element m to the back of a
queue Q produces the queue m - Q, while Q - m represents the queue with m in the front. The symbol €
represents the empty queue.

Definition 4.5 (Decomposing into asynchronous subsystems). Given an LTS M = (S,X,—,rp) and two
alphabets X1,%, such that ¥ =¥ UX,; and X NX, = @, then we can decompose M over X; and X, by
applying the following operation:

decomp,(M,X,X,) = (M,M>) where, for i,j € {1,2} and i # j, M; is an LTS with a queue (Defi-
nition 4.4) defined as follows:

1. M; = ((ScUSt,,0:), Li UZs,, —i,11)

2. For every state in S, we introduce a pair of states 51,52 € Sc, a pair of c-actions, and a pair of
t-actions:

SCiZ{Si‘SGS} Sc =S¢, USc,

Yo, =1{cs, |s€St Zp={t,|scS} (10)
3. Sets of ¢-states are defined as follows:

St ={tas, | a € Xi,si € S¢, } (11)
4. Sets of synchronous actions are defined as follows:

X5, = L1, UXy, UL, UZc,, (12)

5. The transition relation —; C (Sc UST;) X Q; X (X;UZs,) X (Sc USt,) % Q; is the minimal relation
satisfying the following:

(a) Foralls € S:

(si, 0§ C—jh (sj,0i§ (5,05 q—/>1 (sists; - Qi (13)
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(b) Foralls,s’ € S, and all @ € &, if s = &', then:

Iy
Usis Qi§ i a5 Qi§ =i 55, Qi

5 (14)
Usi, Qi§ —j Usisty - Qi
(c) Consuming an element from the front of a queue is an internal transition of the form:
T !
A
(5,Q-1y§ = 15, 0S (15)

We see in (13) that the two automata synchronise on action Cs; j The effect is a message sent from
M; and received in the queue of M;. The same occurs in (14). Moreover, this makes sending messages
only possible when both machines are in sync, i.e., on the same state s;. This model is inspired by
asynchronous communication in practice and we found it necessary that a sent message is received
before any other actions are performed by either side.

The question may arise “why do we still see synchronisation? Is this still considered asynchronous
communication?”’; and the answer is that it is asynchronous in the sense that the sending party does not
know whether and when the receiving party is willing to receive the communication. This is different
from synchronous communication where the sender knows that the receiver is willing to participate.

For this construction, a queue of size 1 is enough as it never contains more than one message. If
the size of the queue was more than 1, then the transition in (14) can apply recursively until the queue
is full. However, any transition beyond the first one does not translate into a transition in the product
because action ¢y, ; needs to synchronise with its co-action. In other words, in the product automaton, the
queue cannot contain more than one message. Therefore, the upperbound of size 1 of the queue is not a
requirement, but rather follows from the construction.

4.4 Proof that the Asynchronous Decomposition Operation Maintains Branching Bisim-
ulation

In this subsection, similar to Section 4.2, we prove that the asynchronous decomposition operation
(decomp,) also maintains branching bisimilarity. Figure 5 shows the result of applying decomp, to
the same example behaviour as in Figure 2. In Figure 6, we compute the synchronous product of the
decomposition of Figure 5 and then divide the nodes of the product into two equivalence classes, top and
bottom. The states in the top class are branching bisimilar to state » whereas the states in the bottom on
are branching bisimilar to state s.

Next, we prove that any LTS decomposed using Definition 4.5 maintains branching bisimulation with
its decomposition, thus by proving that there is at least one universal method of decomposing LTSs into
asynchronous ones while maintaining branching bisimulation.

Theorem 4.6. Given an LTS M = (S,X,—,s0) and two alphabets X;,X; such that £ = £; UX, and
Y NX, =0, and given an LTS M, = M; x M, where (M|,M,) = decomp,(M) by Definition 4.5, then
M=y M,.

Proof. Let M| = ((SCUSTI,Ql),Zl UESI,—M,H) and M, = ((SCUSTZ,QQ),EZ UZSZ,—>2,I‘1).
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Figure 5: Example of asynchronous decomposition operation (Definition 4.5).

Define a relation & C S x ((ScUSTl,Ql) X (ScUSTz,Qz)) with Z =

{<S, (zsi7£S7zsi785)>a
<S, (zsivtsjsszJ"gS»? <Sa (zsj>85’zsiatsj3)>a
<S, (ta,snzrivgs»v (Sv (Zri,gsvta,si»’
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<M7 (tb,s,’-7 zrivtSfS»? <u7 (Zri’t5537tb,s§)> ‘

rs,u€Sandi,je€ {1,2} wherei# janda,b € X; andrimi)u}.

We prove that % is a branching bisimulation relation through the following cases:
1. Consider a pair (s,sy) = (s, ({si,€,{si,€5)) where i € {1,2}.

14
(a) Assume s > s'. Then if a € ¥y, then s, % s’ where s, gl (o Usi,€5) with i = 1. Else if

14
a € X, then s, %, s where s 1 (

(s,sY) are in Z.
(b) Assume sy —, s.. Then we have the following three cases:
i. a € X1 A\a & X,, then this transition is only possible, by definition, through the transition

(si,€5,1,,¢) with i = 2. We see that both pairs (s, s,) and

s % s/ for some s’ such that s, = (tas,51). We see that the pair (s,s;) € Z and is
covered in case 4.

ii. @ € Xy Aa¢X. This is a symmetric case where s = s’ and s, (0 (s2,t4¢). We see that
the pair (s',s.) € # and is covered in case 5.

iii. a € X1 Ad € ¥, then the only transition possible is the 7 transition of (13). Then either
st = ({sj,€5,sit5;5) or st = ({si, 15,5, {sj,€5) where j € {1,2} and j # i. We see that in
both possible values of s, the pair (s,s)) € #Z and is covered in cases 2 and 3.

2. Consider a pair (s,sx) = (s, ({si,1s, 5, (s}, €5)).

(a) Assume s s'. Then s, —, ({s;,€5,(s;,€5), and we covered the pair (s, ({s;,€5,(s;,€5)) in
case 1.

(b) Assume sy -, s'.. The only possible transition in —, is if a is a T action consuming the queue
message f;; then s\ = ({s;,€,(s;,€5) and we covered the pair (s, ({s;,€§,{s;,€5)) in case 1.
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3. Consider a pair (s,sx) = (s, ({s},€5,{si,1;,5)). Symmetric to case 2.
4. Consider a pair (s,s,) = (s, (ta;, (7i,€5)) such that r % s.
(a) Assume s 2 s'. Then s, 5, (Usi, €5, rists,5).

b
(b) Assume sy —>y ).

The only possible transition in —, is if b is a 7T action resulting from
ty. Is; .
the synchronisation of the two transitions #,, —; {si,€5 and {r;,€§ —; {r;,t;,;§. Then, in
the product, s, — ({s;,€5,{ri,1,5); and the pair (s, ({s;,€5,{ri,1;,5)) € Z and is covered in
case 6.
5. Consider a pair (s,sx) = (s, ({ri,€5,t4,;)). Symmetric to case Case 4.
6. Consider a pair (s,s,) = (s, ({si, €5, {ri,15,5)) such that r % s.

(a) Assume s % s'. Then because of the queue-consuming transition {77,z § —; {s;, €5, then
Sy l>x (Zsh 837 zsia 85)

The pair (s, ({si, €5, {si,€5)) is covered in case 1.
(b) Assume s, £>x s'., then there are two possible values for b:

i. Action b is a queue-consuming T, then s, — ({si, €5, {si,€5); and the pair
(s, ({si,€5,si,€5)) is covered in case 1.

ii. b €YX;, then s, i>X (tlm;, {ri,t5,§) such that s LN s'; and the pair (s, (tlm;, (rists,)) € Z.
7. Consider a pair (s,syx) = (s, {ri,t5; ), (i, €5)). Symmetric to case 6.
8. Consider a pair (s,s¢) = (s, (ta,5;, ({ Pi, €51, §)) such that p 2y 1% 5. Then sy (tas:, (ri,€S5); and
the pair (s, (t4,5;, (i, €5)) is covered in case 4.
9. Consider a pair (s,sy) = (s, ({ pistr, §:tas,)) such that p Ly 14 5. This is symmetric to case 8.

d

Corollary 4.7. It follows from Theorem 4.6 that there is a universal way of decomposing an LTS M using
a general asynchronous decomposition operator (Definition 3.1) such that M is branching-bisimilar to the
synchronous product of its decomposition.

5 Proof that no decomposition operation maintains <,

In this section, we prove that there is no way of decomposing an LTS such that it is divergence-preserving
branching-bisimilar to the synchronous product of its decomposition.

We define confluence based on [8].
Definition 5.1 (Confluence). An LTS (S,X; UX,,—,s0) is called confluent over ¥, and X, iff for all
states s,5,,5, € Sand foralla € £y and b € X, if s % 5o and s i> sp, then there is a state s. such that
Sp N se and s, i> Se.

Lemma 5.2. Any LTS M that is the synchronous product (Definition 2.4) of two LTSs M; and M, whose
action sets are X| and X, respectively, is confluent over two sets X \fg and X, \ZT
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Figure 6: Showing branching bisimulation following Figure 5.

Proof. Consider the synchronous product (S} X Sz, Xy, —+, (g0, 70)) from Definition 2.4 and some actions

ac€Xi\X;and b € £\ Xy. Then a # b. Consider some states s,s' € Sy, t,t' € S5, and 5, € S; X .

We know that if (s,7) = s, then that is due to a transition s = s’ and that makes s, = (s’,¢), and that
. .. b .. b : : - . b

given a transition # — ¢/, then a transition (s’,z) — (s’,¢’) is possible. Similarly, if (s,¢) — (s,¢') then

(s,t') 5 (s,¢"). Therefore, the defined synchronous product is confluent. O

Figure 7 (centre) shows a simple LTS P. Concretely, it is defined as ({p,r,s},X; ULy, —,p) with

alphabets £; = {a} and £, = {b} and transitions p % r and p % 5. In the following lemma and theorem,
we prove that no way of decomposing P maintains divergence-preserving branching bisimulation.

Lemma 5.3. Given the LTS P (Figure 7, centre) with action set £; UX,, let P| and P, be two LTSs with
action sets Xp, and Xp, respectively, and withX; C¥p and X, CX¥p and X Ny =0 =21 NXp, =Xp NX,.
Let P, be the synchronous product P; x P, by Definition 2.4. Then P <4, P,.

Proof. We prove this lemma by contradiction. Assume that P <, P,, and let p, be the initial state of P,
then p 24, py. As p is not divergent and cannot do a 7T-transition, it holds that only finite sequences of
T’s are possible from p,. This can be seen as follows. If p, 5 D1 5 P2 L ..., then p <y piforalli > 0.
Hence, p, is divergent. But this is not possible because p is not divergent. So, p, takes a finite number
of T steps to reach some state p. where p/, /5.

. . . b
Since it must be that p <4, p/., and since p 2 rand p — s where a € X1 and b € X, then there are

b
two states 7, and s, such that p’. % r, and p’. = s,, and r 45, 1 and s €y, 5.
Now because a € X\ X, and b € X, \ ¥, then P, is confluent over these two sets, then there must exist

b -
a state p/ such that r, — p’/. However, r 7IZ> Therefore, r ¢4, ry. Contradiction. Therefore P %4, P,. [

The proof is illustrated in Figure 7 showing that divergence-preserving branching bisimulation (=4p)
does not hold when decomposing the LTS P due to the confluence property of decompositions. On the
other hand (literally the other hand of the same figure), branching bisimulation holds when decomposing
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Figure 7: Illustration for Lemma 5.3.

LTS P. The reason it holds under £, but not under £, is that the former admits infinite 7 cycles,
i.e. divergence, which, as demonstrated here in right side of the figure, avoids the premise of confluence
altogether. [2] provides a similar insight into how divergence maintains branching bisimilarity but breaks
divergence-preserving branching bisimilarity.

Theorem 5.4. There is no decomposition operation that maintains divergence-preserving branching
bisimulation (£;,) for all LTSs.

Proof. We prove this theorem by contradiction. Assume that there is a decomposition operation that
maintains <, for all LTSs. Then it must do so for any arbitrary LTS P. But since Lemma 5.3 proves
that no LTS maintains <, for one such LTS P, i.e the one in Figure 7, then there is no decomposition
operation that maintains <, for all LTSs. ]

6 Interpretation

One way to understand this fundamental result is that if the subsystems of the decomposition must
communicate, then there is no escape from introducing divergence in order to maintain equivalence over
any and all decompositions of LTSs.

With respect to automata learning, this result implies that, unless one values divergency, it is not
possible to make any assumption about the distribution of components based on the information that is
learned. If one can observe divergencies while learning behaviour, it might be possible to say something
about the internal structure of a system though this will be highly non trivial to accomplish.

And with respect to software, our result says that it is always possible to distribute a piece of soft-
ware over different components if one allows divergent behaviour. Otherwise, such a distribution is not
possible and based on our proof. One can see that this already applies to very simple behaviours.

Furthermore, divergence, in an industrial context, is undesired due to the requirement of fairness,
i.e., one subsystem seizing unfair control over the total behaviour of the system through infinite looping.
This means that if some decomposition is found to maintain fairness, then that is guaranteed not to be
the case universally over all contexts and all LTSs.
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Transition System Specifications provide programming and specification languages with a semantics.
They provide the meaning of a closed term as a process graph: a state in a labelled transition system.
At the same time they provide the meaning of an n-ary operator, or more generally an open term with
n free variables, as an n-ary operation on process graphs. The classical way of doing this, the closed-
term semantics, reduces the meaning of an open term to the meaning of its closed instantiations. It
makes the meaning of an operator dependent on the context in which it is employed. Here I propose
an alternative process graph semantics of TSSs that does not suffer from this drawback.

Semantic equivalences on process graphs can be lifted to open terms conform either the closed-
term or the process graph semantics. For pure TSSs the latter is more discriminating.

I consider five sanity requirements on the semantics of programming and specification languages
equipped with a recursion construct: compositionality, applied to n-ary operators, recursion and vari-
ables, invariance under o-conversion, and the recursive definition principle, saying that the meaning
of a recursive call should be a solution of the corresponding recursion equations. I establish that
the satisfaction of four of these requirements under the closed-term semantics of a TSS implies their
satisfaction under the process graph semantics.

1 Introduction

Transition System Specifications (TSSs) [16] are a formalisation of Structural Operational Semantics
[22] providing programming and specification languages with an interpretation. They provide the mean-
ing of a closed term as a process graph: a state in a labelled transition system. At the same time they
provide the meaning of an n-ary operator of the language, or more generally an open term with n free
variables, as an n-ary operation on process graphs. The classical way of doing this proceeds by reduc-
ing the meaning of an open term to the meaning of its closed instantiations. I call this the closed-term
semantics of TSSs. A serious shortcoming of this approach is that it makes the meaning of an operator
dependent on the context in which it is employed.

Example 1 Consider a TSS featuring unary operators f, id and a._ for each action a drawn from an
alphabet A, and a constant 0. The set of admitted transition labels is Act := AW {t}. The transition rules
are
4 x -4 X x %X
a.x — x (forallae€A) —— (foralla € A)

———  (forall @ € Act)
fx) == f(¥) id(x) = id (x')

When considered in their own right, the operators f and id are rather different: the latter can mimic
T-transitions of its argument, and the former can not. Yet, in the context of the given TSS, one has
f(p) € id(p), no matter which term p is substituted for the argument of these operators. Here <
denotes strong bisimulation equivalence, as defined in [21, 12]. This is because no process in the given
TSS ever generates a transition with the label 7. The identification of f and id up to <> can be considered

J.A. Pérez and J. Rot (Eds.): Combined Workshop on Expressiveness in © R.J. van Glabbeek
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2019). This work is licensed under the
EPTCS 300, 2019, pp. 69-85, doi:10.4204/EPTCS.300.5 Creative Commons Attribution License.
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unfortunate, one reason being that is ceases to hold as soon as the language is enriched with a fresh
operator T._ with the transition rule 7.x — x. As I will show later, this invalidates an intuitively plausible
theorem on the relative expressiveness of specification languages.

Here I propose an alternative process graph semantics of TSSs that does not suffer from this drawback.

In [10] I proposed five requirements on the semantics of programming and specification languages
equipped with a recursion construct: compositionality, applied to n-ary operators, recursion and vari-
ables, invariance under o.-conversion, and the recursive definition principle, saying that the meaning of
a recursive call should be a solution of the corresponding recursion equations.

In many prior works on structural operational semantics, (some of) these requirements have been
shown to hold for various TSSs when employing the closed-term semantics. It would be time consuming
to redo all that work for the process graph semantics proposed here. To prevent this I show that the satis-
faction of four of these requirements under the closed-term semantics of a T'SS implies their satisfaction
under the process graph semantics. The remaining requirement holds almost always.

Overview of the paper Section 2 presents the syntax of the programming and specification languages
I consider here. For simplicity I restrict myself to languages with single-sorted signature, optionally
featuring a recursion construct. This is a rich enough setting to include process algebras like CCS [21],
CSP [5], ACP [3], MELIE [1, 24] and SCCS [20].

The traditional “closed-term” interpretation of the process calculi CCS, MEIJE and SCCS effectively
collapses syntax and semantics by interpreting the entire language as one big labelled transition system
(LTS) in which the closed terms of the language constitute the set of states. This LTS is generated by
a TSS, as formally defined in Section 5. Semantic equivalences on LTSs thereby directly relate closed
terms. Two open terms are judged equivalent iff each of their closed substitutions are.

In Section 3 I present an interpretation of programming and specification languages that is more
common in universal algebra and mathematical logic [19], and is also used in the traditional semantics
of ACP and CSP. It separates syntax and semantics through a semantic mapping that associates with
each closed term a value, and with each open term an operation on values. This matches with what
often is called denotational semantics, except that I do not require the meaning of recursion constructs
to be provided by means of fixed point techniques. In Section 7 I specialise this general approach to an
operational one by taking the values to be process graphs: states in labelled transition systems. Likewise,
Section 6 casts the closed-term interpretation as a special case of the approach from Section 3, by taking
the values to be the closed terms.

Section 3 also formulates the five sanity requirements mentioned above, most in a couple of equiv-
alent forms. Section 6 shows how these requirements simplify to better recognisable forms under
the closed-term interpretation of programming and specification languages. These requirements are
parametrised by the choice of a semantic equivalence ~ on values, relating values that one does not
need to distinguish. The traditional treatments of universal algebra and mathematical logic, and the pro-
cess algebra CSP, do not involve such a semantic equivalence; this corresponds to letting ~ be the identity
relation. In Section 4 I observe that any choice of ~ can be reduced to the identity relation, namely by
taking as values ~-equivalence classes of values. This reduction preserves the five sanity requirements.

After these preparations, Section 8 defines the promised process graph interpretation of TSSs. Some
TSSs do not have a process graph interpretation, but I show that the large class of pure TSSs do.

Semantic equivalences on process graphs can be lifted to open terms conform either the closed-term
or the process graph interpretation. Section 9 shows, under some mild conditions, that for pure TSSs the
latter is more discriminating. Section 10 illustrates on a practical process algebra that whether a semantic
equivalence is a congruence may depend on which of the two interpretations is chosen.
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Section 11 proves the promised result that when four of the five sanity requirements have been es-
tablished for the closed-term interpretation of a TSS, they also hold for its process graph interpretation.
It also shows that the remaining requirement almost always holds

Section 12 argues that something is gained by moving from the closed-term interpretation of TSSs
to the process-graph interpretation. Based on Example 1 it formulates an intuitively plausible theorem
relating relative expressiveness of specification languages and conservative extensions, and shows how
this theorem fails under the closed-term interpretation, but holds under the process graph interpretation.

Section 13 addresses related work, and Section 14 evaluates the five sanity requirements for lan-
guages specified by TSSs of a specific form.

2 Syntax

In this paper Var is an infinite set of variables, ranged over by X, Y, x,y, x; etc.

Definition 1 (Terms). A function declaration is a pair (f,n) of a function symbol f ¢ Var and an arity
n€ N.! A function declaration (c,0) is also called a constant declaration. A signature is a set of function
declarations. The set T"(X) of terms with recursion over a signature X is defined inductively by:

o Var C'T” (Z),

o if (f,n) eXandt,...,t, € T"(X) then f(11,....1,) € T"(X),

o If Vg C Var, S: Vs — T"(X) and X € Vg, then (X|S) € T'(X).
A term ¢() is abbreviated as c. A function S as appears in the last clause is called a recursive specification.
It is often displayed as {X = Sy | X € Vs}. Each term Sy for Y € Vs counts as a subterm of (X|S). An
occurrence of a variable y in a term 7 is free if it does not occur in a subterm of the form (X |S) with y € V.
Forr € T"(X) a term, var(t) denotes the set of variables occurring free inz. A term is closed if it contains
no free occurrences of variables. For W C Var, let T"(X,W) denote the set of terms 7 with var(t) C W,
and let T"(X) = T"(X,0) be the set of closed terms over X. The sets T'(X), T(X,W) and T(X) of open
and closed terms over ¥ without recursion are defined likewise, but without the last clause.

Definition 2 (Substitution). A X-substitution & is a partial function from Var to T"(X). It is closed if it is
a total function from Var to T”(X). If o is a substitution and ¢ a term, then 7[c| denotes the term obtained
from ¢ by replacing, for x in the domain of o, every free occurrence of x in 7 by ¢(x), while renaming
bound variables if necessary to prevent name-clashes. In that case ¢[o] is called a substitution instance
of 7. A substitution instance ¢t[c| where o is given by o (x;) = u; for i € I is denoted as #[u; /x;];;, and for
S arecursive specification (¢|S) abbreviates #[(Y [S)/Y Jyevs.

Sometimes the syntax of a language is given as a signature together with an annotation that places some
restrictions on the use of recursion [10]. This annotation may for instance require the sets Vs to be finite,
the functions S computable, or the sets of equations S to be guarded: a syntactic criterion that ensures
that they have unique solutions under a given interpretation. It may also rule out recursion altogether.

3 Semantics

A language can be given by an annotated signature, specifying its syntax, and an interpretation, assigning
to every term 7 its meaning [[#]. The meaning of a closed term is a value chosen from a class of values D,

IThis work generalises seamlessly to operators with infinitely many arguments. Such operators occur, for instance, in [4,
Appendix A.2]. Hence one may take 7 to be any ordinal. It also generalises to operators, like the summation or choice of CCS
[21], that take any set of arguments.
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which is called a domain. The meaning of an open term is a Var-ary operation on D: a function of type
D' — D, where D" is the class of functions from Var to ID. It associates a value [t](p) €D to ¢ that
depends on the choice of a valuation p : Var — ID. The valuation assigns a value from ID to each variable.
A partial valuation is a function & : W — ID for W C Var that assigns a value only to certain variables.
A W-ary operation, for W C Var, is a function F : DV — ID. It associates a value to every W-tuple of
values, i.e. to every partial valuation of the variables with domain W. If F : DY — ID and { € D" \W
then F({) : DY — D is given by F({) (&) = F(EUE) for any £ € DY, For p a valuation and W a set of
variables, p\W is the partial valuation with domain Var\W such that (p\W)(x) = p(x) for x € Var\W.

3.1 Sanity requirements on interpretations

Usually interpretations are required to satisfy some sanity requirements. The work [10] proposed five
such requirements: compositionality, applied to variables, n-ary operators and recursion, invariance
under o.-conversion, and the recursive definition principle (RDP).

In this paper I work with domains of interpretation ID that are equipped with a semantic equivalence
relation ~ C ID x D. Itindicates that values v, w € ID with v ~ w need not be distinguished on our chosen
level of abstraction. The equivalence ~ extends to functions F,G: D" — D by F ~ G iff F(&) ~G(&) for
all &€ eDY. It extends to partial valuations p,v : W — ID or functions p, v of type (]DW—> D) by p ~v
iff p(X) ~ v(X) for all X € W. Such an equivalence relation relaxes the requirements invariance under
a-conversion and RDP, and modifies compositionality; I speak of compositionality up to ~. The default
case in which no semantic equivalence is in force corresponds to taking ~ to be the identity relation.

Compositionality up to ~ demands that the meaning of a variable is given by the chosen valuation,

Ix](0) ~ p(x) M

for each x € Var and valuation p : Var — D, and that the meaning of a term is completely determined by
the meaning of its direct subterms. This means that for operators (f,n) € X and valuations p, v : Var — D

[t:](p) ~ [w;](v) (foralli=1,....n) = [f(t1,....tn)](P) ~ [ f(ur,..coutn) (V) 2)

and for recursive specifications S and S’ with X € Vg = Vg and valuations p,V : Var — D

[Sy D(p\Vs) ~ [Sy J(V\Vs) (forallY € Vs) = [(X|S)](p) ~ [(X|S)](V). 3)

Note that the precondition of (3) evaluates the variables in Sy and S} that are free in (X|S) and (X|5’)
according to p and v, respectively, and the variables from Vg = Vg under any common valuation &.

Invariance under a-conversion demands that the meaning of a term is independent of the names of
its bound variables, i.e. for any injective substitution 7y : Vg — Var such that the range of y contains no
variables occurring free in (Sy|S) for some Y € Vg

[(rXOISIT ~ [XIS)]- )
Finally, the meaning of a term (X |S) should be the X -component of a solution of S. To be precise,
[XIS)T ~ [iSxIS)]- (5)

This property is called the recursive definition principle [6].

A straightforward structural induction on 7 using (1), (2) and (3) shows that [](p) depends only on
the restriction of p to those variables that occur free in 7. If there are no such variables, [](p) does not
depends on p at all, and consequently can be abbreviated to [7].
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3.2 Alternative forms of the sanity requirements
Note that (2) holds iff for every (f,n) € ¥ there is a function fP : D" — D such that
vp € DY [f(tr,-..ta)[(P) ~ fP([11](P). - [1a] (P))-

Requirement (3) can be characterised in the same vein:
Proposition 1 Property (3) holds iff for every set W C Var there is a function uf : (DY — D)V — DY
such that for every recursive specification S : W — T"(X) with X € W, and every p : Var — D,

[X1S)1(p) ~ iy ([ST(p\W))(X).
Proof: Since the meaning of term Sy € T"(X) is of type D" — DD, the meaning of a recursive spec-
ification S : W — T"(X) is of type [S]: W — (D" — D). Applying to that a partial valuation
Pp\W : Var\W — D yields a function [S](p\W) of type (D" — D)". Now for each y € (D" — D)W
choose, if possible, a pair S* : W — T"(X) and pZ : Var — D such that [S* [(p*\W) ~ x, and define
P (x)(X), for X € W, to be [(X|S*)](p¥). For a x for which no such pair can be found the definition
of u(x)(X) is arbitrary. Now pick S: W — T"(X) and p : Var — D. Let yx := [S](p\W). Then
[ST(P\W) = x ~ [S*](p*\W), 50 by (3) one has
[X]8))(p) ~ [(XIS%)](p¥) = ww (2)(X) = i ([ST(P\W)) (X).

The other direction, that the existence of such a ua? implies (3), is trivial. O

Write ¢ £ u if the terms 7,u € T’ (X) differ only in the names of their bound variables. Then (4) can be
rewritten as o
t=u = [t]~[u]. (6)

Proposition 2 In the presence of (2) and (3), (4) is equivalent to (6).

Proof: Clearly, (4) is a special case of (6). The other direction proceeds by structural induction on ¢.

In case t = X € Var then u = X and thus ] ~ [u].

Lett = f(t1,...,ty). Then u = f(uy,...,u,) and t; = u; for each i = 1,...,n. By induction [#;] ~ [u;]
for each i. This means that [#;](p) ~ [u;](p) for each p : Var — D. Hence, by (2), [¢] ~ [u].

Let t = (X|S). Then u = (y(X)|S'[y]) for a recursive specification S’ : Vs — T7(X) with Sy = S},
for all Y € Vs, and an injective substitution ¥ : Vs — Var such that the range of y contains no variables
occurring free in (S}|S) for some Y € V5. By induction [Sy] ~ [Sy] for each Y. This means that
[Syl(p)~[Sy](p) for each p : Var — D, so in particular [Sy [[(p\Vs) ~ [Sy ](p\Vs) for each such p.
Hence, by (3), [(X]S)] ~ [(X|S")]. Thus, by (4), [¢t] ~ [(X]S")] ~ [(y(X)IS'[¥])] = [u]. O

3.3 Applying semantic interpretations to substitutions

The semantic mapping [ ] : T"(X) — ((Var — D) — D) extends to substitutions o : Var — T"(X) by
[o](p)(X):=[o(X)](p) for all X € Var and p : Var — D—here o is extended to a total function by
o(Y):=Y forallY & dom(c). Thus [o] is of type (Var — D) — (Var — D), i.e. a map from valuations
to valuations. The following results applies to languages satisfying sanity requirements (1)—(4).

Proposition 3 Let 7 € T"(X) be a term, o : Var — T"(X) a substitution, and p : Var — DD a valuation.
Then [1[01)(p) ~ [11([](p))- 7)

Proof: By the definition of substitution, there is an u € T"(Z) with 7 = u, such that 6] = u[c], and when

performing the substitution ¢ on u there is no need to rename any bound variables occurring in u. It nO\éV
. Q)
suffices to obtain [u[c]](p) ~ [u]([o](p)), because then [¢[o]](p) = [ulo]](p) ~ [u]([o](p)) ~

[t]([o](p)). For this reason it suffices to establish (7) for terms ¢ and substitutions ¢ with the property
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(*) that whenever a variable Z occurs free within a subterm (X |S) of 7 with Y € Vg then Y does not occur
free in 0(Z). I proceed with structural induction on ¢, while quantifying over all p.

Lett =X € Var. Then [X[([0](0)) * (16](0))(X) 2 [o(x)1(p) = [X[0]](p).
Lett = f(t1,...,t;). By induction I may assume that [#;[c]](p) ~ [#]([o](p)) fori=1,...,n. Hence

£t t)[0)1(0) = [f(1r[0], .. talo])1(0) D [ £(11,...t) I([S ()

Lett = (X|S). Then t[c] = (X|S[o\Vs]). Given that the pair 7, o satisfies property (*), so do the pairs
Sy,0\Vs for all Y € Vs. Moreover, no Y € Vg occurs free in 6(Z) for Z ¢ Vg occurring free in S. (#)
By induction I assume [Sy[o\Vs]](p) ~ [Sy]([o\Vs](p)) for all ¥ € Vs and all p : Var — D. Any
such p can be written as (p\Vs) U & for some & : Vg — ID. Now (#) yields that for all Z € Var occurring

free in S
([o\Vs]((p\Vs)UE))(Z) = ((([a](p))\Vs)UE)(2).

U
Hence [Sy[o\Vs][(p\Vs)(&) ~ [Sy[([o\Vs]((p\Vs)UE)) = [Sy](([a](p))\Vs) (&) for all ¥ € Vs,
p:Var—Dand &: Vs —D. So [Sy[c\Vs]](p\Vs) ~ [[Sy]](([[a]](p))\ Vs) for allYEVS and p: Var — D.

One obtains [x18)[0]1(p) = [(XIS[a\Vs))I(p) 2 [XIS))([ o] (p))- O

4 Quotient Domains

An equivalence relation ~ on I is a congruence® for . if

p~v = [t](p)~[z](v) (8)
for any term ¢ and any valuations p, Vv : Var — D.
Proposition 4 If a language % is compositional up to an equivalence ~ then ~ is a congruence for .Z.
Proof: A straightforward structural induction on ¢. O

Given a domain D for interpreting languages and an equivalence relation ~, the quotient domain
D/, consists of the ~-equivalence classes of elements of D. For v € D let [v]. € D/. denote
the equivalence class containing v € ID. Likewise, for a valuation p : Var — D in D, the valuation
[p]~:Var — D/, in D/ is given by [p].(x) := [p(x)]~; it also represents the ~-equivalence class of
valuations in ID of which p is a member. Each valuation in D/, is of the form [p]..

An interpretation [_] : T"(X) — (D" — D) that satisfies (8) is turned into the quotient interpreta-
tion [_].:T"(X) — ((D/.)" — D/.) by defining [¢] _([p]~) := [[t](P)]~. By (8), this is indepen-
dent of the choice of a representative valuation p within the equivalence class [p]...

Let [-] be an interpretation and ~ an equivalence such that (8) holds. Then [_] satisfies the sanity
requirements (1)—(5) of Section 3 up to ~ iff [[_] _ satisfies these requirements up to =.

2This property is called lean congruence in [13]. There ~ is called a full congruence for .Z iff .% is compositional up to ~.
In the absence of recursion this is equivalent to (8), but in general it is a stronger requirement—i.e., the reverse of Proposition 4
does not hold [13].
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S Transition System Specifications

Definition 3 (Transition system specification;, GROOTE & VAANDRAGER [16]). Let X be an annotated
signature and A a set (of actions). A (positive) (X,A)-literal is an expression t < ¢’ with ¢, € T"(X)
and a € A. A transition rule over (X,A) is an expression of the form ¥ with H a set of (£,A)-literals
(the premises of the rule) and A a (X,A)-literal (the conclusion). A rule % with H =0 is also written A.
A transition system specification (TSS) is a triple (X,A, R) with R a set of transition rules over (X,A).

The following definition (from [9]) tells when a literal is provable from a TSS. It generalises the standard
definition (see e.g. [16]) by (also) allowing the derivation of transition rules. The derivation of a literal
t -5 1’ corresponds to the derivation of the rule with H = 0. The case H # () corresponds to the
derivation of t -+ ¢’ under the assumptions H.

a
t—t’

Definition 4 (Proof). Let P=(X,A,R) be a TSS. A proof of a transition rule % from P is a well-founded,
upwardly branching tree of which the nodes are labelled by (X,A)-literals, such that:
e the root is labelled by A, and
e if K is the label of a node g and K is the set of labels of the nodes directly above ¢, then
— either K=0and x € H,
- or % is a substitution instance of a rule from R.
If a proof of % from P exists, then % is provable from P, denoted P - %

A labelled transition system (LTS) is a triple (S,A,—) with S a set of states or processes, A a set of
actions, and — C S x A x S the transition relation, or set of transitions. A TSS P = (X,A,R) specifies the
LTS (T"(X),A,—) whose states are the closed terms over ¥ and whose transitions are the closed literals
provable from P.

For the sake of simplicity, the above treatment of TSSs deals with positive premises only. However,
all results of this paper apply equally well, and with unaltered proofs, to TSS with negative premises
t 24, following the treatment below. The rest of the section may be skipped in first reading.

5.1 TSSs with negative premises

A negative (X,A)-literal is an expression ¢t —%4. A transition rule may have positive and negative literals
as premises, but must have a positive conclusion. Literals # <~ u and ¢ <4 are said to deny each other.

Definition 5 [11] Let P = (X,A,R) be a TSS. A well-supported proof from P of a closed literal A is a
well-founded tree with the nodes labelled by closed literals, such that the root is labelled by A, and if k¥
is the label of a node and K is the set of labels of the children of this node, then:

1. either k is positive and % is a closed substitution instance of a rule in R;

2. or Kk is negative and for each set N of closed negative literals with IVV provable from P and v a

closed positive literal denying k., a literal in K denies one in N.

P 5 A denotes that a well-supported proof from P of A exists. A standard TSS P is complete if for each
p and q, either P I, p -%4 or there exists a closed term ¢ such that P -, p -% g.

In [11] it is shown that no TSS admit well-supported proofs of literals that deny each other. Only a
complete TSSs specifies an LTS; its transitions are the closed positive literals with a well-supported
proof.
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6 The Closed-term Semantics of Transition System Specifications

The default semantics of a language given as a TSS (X,A,R) is to take the domain D in which the ex-
pressions are interpreted to be T'(X), the set of closed terms over X. The meaning of a closed expression
p € T"(X) is simply itself: [ p] := p. The meaning [¢] € D" — D of an open expression ¢ € T'(X) is
given by [#](p) :=t[p]. Here one uses the fact that a valuation p : Var — D is also a closed substitution
p : Var — T7(X). Given a semantic equivalence relation ~ C T"(X) x T"(X), the closed-term semantics
of a TSS always satisfies Requirement (1), whereas (2)—(5) simplify to

pi~g;(foralli=1,...n) = f(p1,...,pn) ~ flq1,---,qn) and 2"
Sy[o] ~S)[c] (forallY e W and 6: W — T'(Z)) = (X|S)~ (X]|S") 3
(YX)IS[¥]) ~ (X1S) 4"

(X[S) ~ (SxS) €D)

for all functions (f,n) € X, closed terms p;,q; € T"(X), recursive specifications S,S : W — T"(X,W)
with X € W C Var, and y: W — Var injective.

7 Process Graphs

When the expressions in a language are meant to represent processes, they are called process expressions,
and the language a process description language. Suitable domains for interpreting process description
languages are the class of process graphs [3] and its quotients. In such graph domains a process is
represented by either a process graph, or an equivalence class of process graphs. Process graphs are also
known as state-transition diagrams or automata. They are LTSs equipped with an initial state. A process
graph can also be seen as a state in an LTS.

Definition 6 A process graph, labelled over a set A of actions, is a triple G = (S,A,—,I) with
— S aset of nodes or states,
- — C S XA xS asetof edges or transitions,
— and I € S the root or initial state.

Let G(A) be the domain of process graphs labelled over A.

One writes r - s for (r,a,s) € —. Virtually all so-called interleaving models for the representation of
processes are isomorphic to graph models. For instance, the failure sets that represent expressions in
the process description language CSP [5] can easily be encoded as equivalence classes of graphs, under
a suitable equivalence. In [3] the language ACP is equipped with a process graph semantics, and the
semantics of CCS, SCCS and MEIE given in [21, 20, 1, 24] are operational ones, which, as I will show
below, induce process graph semantics. In the languages . studied in this paper, the domain ID in which
Z-expressions are interpreted will be G(A) for some set of actions A, or a subclass of G(A).

Usually the parts of a graph that cannot be reached from the initial state by following a finite path
of transitions are considered meaningless for the description of processes. This means that one is only
interested in process graphs as a model of system behaviour up to some equivalence, and this equivalence
identifies at least graphs with the same reachable parts.

Definition 7 The reachable part of a process graph (S,A,—,1) is the process graph (S',A,—',I) where
e S C Sis the smallest set such that (1) / € § and (2) if r € S’ and r % s then s € ',
e and —' is the restriction of — to S’ X A x .
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8 A Process Graph Semantics of Transition System Specifications

This section proposes a process graph semantics of TSSs. For each TSS P = (X,A,R) it defines an
interpretation [ -], : T"(X) — (G(A)" — G(A)), thus taking D to be G(A).

Definition 8 (Interpreting the closed expressions in a TSS as process graphs). Let P = (X,A,R) be a
TSS and p € T"(X). Then [ p]]?) € G(A) is the reachable part of the process graph (T"(X),A,—, p) with
— the set of transitions provable from P.

To define an interpretation [_],: T"(X) — (G(A)" — G(A)) of the open Z-terms in G(A) I would like
to simply add to the signature ¥ a constant G for each process graph G € G(A). However, G(A) is a
proper class, whereas a signature needs to be a set. For this reason I work with appropriate subsets G*
of G(A) instead of with G(A) itself. I will discuss the selection of G* later, but one requirement will be

if (S,A,—,r) € G* and r —% s then also (S,A,—,s) € G* (transition closure).

Define the transition relation —g- C G* x A x G* by G =g+ G iff (i) G = (S,A,—,r), (ii) there is a
transition (r,a,s) € —, and (iii) G’ = (S,A,—,s) is the same graph but with s as initial state.

Now consider a term ¢ € T"(X) and a valuation p : Var — G(A). In order to define [¢],(p), make
sure that G* supports (t,p), meaning that it contains p(x) for any variable x € Var occurring free in 7.
Let P+ G* be the TSS P to which all graphs G € G have been added as constants, and all transitions in
— @ as transition rules without premises. As the valuation p now also is a substitution, ¢[p] is a closed
term in the TSS P+ G*. Define [[t]]g* (p) to be [[t[p]]]?, 1@ € G(A): the interpretation according to
Definition 8 of the closed term ¢[p] from the TSS P+ G*.

Definition 9 (The simple process graph semantics of TSSs). A TSS P manifestly induces a process graph
semantics iff, for any term ¢ and valuation p, the interpretation [[t]]g’ (p) is independent of the choice of
G7, as long as G™ is transition-closed and supports (z,p). In that case [#],(p) is defined to be [[t]];()} (p).

It is possible to enlarge the class of TSSs that induce a process graph semantics a little bit:

Definition 10 (The process graph semantics of TSSs). Call a choice of G* adequate for (the inter-
pretation of) [7],(p) if G* is transition-closed and supports (7,p), and [[t]]f/ (p)= [[t]]f* (p) for any
transition-closed superset G’ of G*. Now P induces a process graph semantics iff, for any term ¢ and
valuation p, an adequate choice G* for [[7],(p) exists. In that case [7],(p) is defined to be [[t]]f* (p)
for any adequate choice of G*.

Example 1 (continued) Reconsider the operators f and id from Example 1. To judge whether they are
essentially different one compares the open terms f(x) and id(x). Their meanings are values that depend
on the choice of a valuation p, mapping variables to values. In fact they depend on the value p (x) only.

Under the closed term interpretation of the TSS P of Example 1, p(x) is a closed term in the language;
it cannot have an outgoing t-transition. Thus [ f(x)],(p) < [x]p(p) < [id(x)]p(p) for any such p, so
[fx)]p < [x]p < [id(x)]p, ie., f and id are strongly bisimilar.

However, under the process graph interpretation, p(x) is a process graph, and one may take p (x) to be
—>Q—T>o—c>o , where the short arrow indicates the initial state. With this valuation, the process graph
[id(x)]p(p) is isomorphic to p(x), whereas [ f(x)], has no outgoing transitions. So [f(x)]p(p)
[x]p(p) < [id(x)] p(p) and consequently [ f(x)]p $Z[x]p < [id(x)]p, i.e., f and id are not bisimilar.

The smallest set of process graphs G* that is adequate for the interpretation of [ f(x)],(p) and

uid(x)ﬂp(p)is{gr ¢ o Th €T ci}
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Example 2 A TSS with a rule ¢ —%+ x (without premises) does not induce a process graph semantics.
Namely, no matter which set G* one takes, there is always a larger set G’ and a process graph G G'\ G*,
Thus, the process graph [[c]]f’l has the transition ¢ <~ G but [[c]]g’* does not. Hence G™ is not adequate.
Consequently, the TSS does not induce a process graph semantics.

Example 3 Let P be the TSS with constants ¢ and 0 and as only rule

x-Sy 7Ly
c5H0 ’

Then [[c]];[,}* (p) is independent of p, since ¢ is a closed term. In any adequate choice of G* there is a
graph in which an a-transition and a b-transition end in a common state, and using such a choice one
finds that [[c]];[,}* has the transition ¢ =~ 0. However, when taking G* to be a set of trees, [[c]]f* has no
transitions.

P induces a process graph semantics according to Definition 10, but not according to Definition 9.

If we stick with Definition 9, [¢] , = [¢]% for closed terms .

H

a
t—t'

Definition 11 The rule-bound variables of a transition rule form the smallest set B such that
e var(t) C B, and
e if u 25 4/ is a premise in H and var(u) C B then var(u') C B.

A TSS is called pure if all variables occurring free in one of its rules are rule-bound in that rule.

This concept of a pure TSS generalises the one from [16], and coincides with it for TSSs in the tyft/tyxt
format studied in [16]. The TSSs of all common process algebras are pure. So is the TSS of Example 1,
but the ones of Examples 2 and 3 are not.

Proposition 5 Any pure TSS manifestly induces a process graph semantics.

Proof: For a given term ¢ € T"(X) and valuation p : Var — G(A), let G, be the smallest set of process
graphs that is transition-closed and supports (7, p). Then for any G* O G, and any transition t[p] — u
provable from P+ G*, any term v occurring in a proof of this transition, including the target u, has the
form ¢'[p] with /' € T" (), such that p (x) € G, for any x € var(t). This follows by a fairly straightforward
induction on the size of proofs, with a nested induction on the derivation of rule-boundedness. As a
consequence, the process graph [z[p] ]]?, @ does not depend in any way on G™ \ Gy, O

Remark One may wonder whether the above treatment can be simplified by skipping, in Definition 8,
“the reachable part of”. The answer is negative, for in that case [[t]]g’ (p) would never be independent of
the choice of G, because all G € G* would occur as (unreachable) states in the process graph []5 (p).

Summary In this section, terms in a TSS are interpreted in the domain of process graphs as follows.
Let P = (X,A,R) be a TSS and t € T"(X) a term. The meaning [[¢], : G(A)" — G(A) of ¢ is given by
[t1p(p) == [t[p] ﬂ?ur@, with G* adequate for [1],(p). Here G is transition-closed and supports (z,p);
it is adequate if further increasing this set does not alter the definition of [7],(p). If no adequate G*
exists, [#]p(p) remains undefined, and P does not induce a process graph semantics. If P is pure, any
transition-closed set G* C G(A) supporting (¢, p) is adequate.
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9 Lifting Semantic Equivalences to Open Terms

The following definition shows how any equivalence relation ~ defined on a domain ID in which a
language & is interpreted, lifts to the open terms of .Z.

Definition 12 (Lifting equivalences to open terms). For a language ., given as an annotated signature
¥ and an interpretation [_] : T/(X) — (D" — D), and an equivalence relation ~ on ID, write # ~ ¢ u
fort,u € T"(X) iff [¢](p) ~ [u](p) for all valuations p : Var — D.

This definition can be applied to any language .’ given by a TSS P = (X,A,R). In this case ~ must be
defined on G(A). Write ~b® for ~ as defined above when taking as interpretation the process graph
semantics [_] : T"(Z) — (G(A)" — G(A)) of Z.

An equivalence ~ on G(A) also lifts to the closed terms T"(X) of .#. Namely, let (T"(X),A,—) be
the LTS specified by P as defined in Section 5. Then (T"(X),A,—,p) € G(A) is a process graph for any
p € T'(X). Now write p ~ g, for p,q € T"(X), whenever (T"(X),A,—,p) ~ (T"(X),A,—, p).

Using this, Definition 12 can also be instantiated by taking as interpretation the closed-term semantics
[-]: T"(Z) — (T"(Z)% — T'(X)) of &, as defined in Section 6. Write ~S' for ~ ¢ defined thusly. So

t ~% u iff t[o] ~ u[o] for any closed substitution o,

i.e., two open terms are related by ~$ if all of their closed instantiations are related by ~.

Having lifted semantic equivalences ~ from process graphs to open terms in two ways, one wonders
how the resulting equivalences compare. Instantiating ~ with strong bisimilarity, <>, Example 1 shows
that f(x) €% id(x) yet f(x) 4 %8 id(x). For the other direction consider the TSS with constants 0, ¢ and
d, alphabet {a,b}, and the rules N
d-50 Y

c%0°
Under the closed-term interpretation, no b-transition from any term can be derived, so 0 £ ¢ £ d.
Yet under the process graph interpretation, since there exists some graph that can do a b-transition, one
has ¢ < 0, and obtains 0 <£P& ¢ <2P& d. So in general <2 and <2P8 are incomparable.
The above TSS is not pure; the variable x is not rule-bound. For pure TSSs no such example exists.

Theorem 1 Let P = (X,A,R) be a pure TSS and ~ an equivalence on GG(A) that relates each process
graph with its reachable part. Moreover, let ~ C ~ be a possibly finer, or more discriminating, equiva-
lence that satisfies requirements (1)—(4) of Section 3.1. Then ¢ %}’,g u implies ¢ zg u.

Proof: Suppose 7 ~b® u, and let 6 : Var — T'(Z) be a closed substitution. It suffices to establish that
t[o] = u[o]. Let [o]p: Var — G(A) be the valuation defined by [0 [,(X) := [o(X)]p. This is the
definition of [o ], from Section 3.3, specialised to closed substitutions. Here [¢]p, for ¢ € T"(X), is
the process graph semantics of ¢ as defined in Section 8, so [¢], = [[q]]?, . for an adequate choice
of G*. Since P is pure and ¢ closed, the empty set of process graphs is adequate by Proposition 5. By
Definition 8, [[qﬂ?, is the reachable part of the process graph (T"(X),A,—, p), so [[q]]?, ~ (T'(X),A,—,p).
Since ¢ ~p® u, one has 1] ,([o]p) ~ [u] ,([c]p) by Definition 12. Moreover, [¢] ,([c]p) ~ [t[c]]p
by Proposition 3. Hence

[[0]]p = [1[o]]p ~ [1],([o]p) ~ [u] ([6],) ~ [ulo] ], = [u[o] ]
and thus (T"(%),A, —,t[0]) = [1[0]]%, g = [u[0]]% ~ (T"(2),A, —,u[c)), i.e., t[0] = u[c]. O

So, under the conditions of Theorem 1, ~%¢ is a finer, or more discriminating, equivalence than ~%.
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10 Congruence Properties

Whether a semantic equivalence ~ is a congruence (cf. (8) in Section 4) may depend on whether the
closed-term or the process graph semantics is chosen. The following example illustrates this for a prac-
tical process algebra.

Example 4 Consider the TSS with constants 1 and a for @ € Act = AW {7} and binary operators + and
;, denoting choice and sequencing in a process algebra, with the following transition rules:

o %1 x %X y Ly x5y x %4 forall a € Act y Ly

x+yi>x’ x+yi>y’ x;yinc’;y x;yi>y’

The process 1, like 0 in CCS, has no outgoing transitions, meaning that it performs no actions. The
sequencing operator performs all actions its first argument can do, until its first argument can perform no
further actions; then it continues with its second argument. I employ no recursion here.

As equivalence relation ~ I take weak bisimulation equivalence, <2,,, as defined in [21, 12]. For the
term ¢ from (8) take x;b. Let p and v be valuations with

px) = ’O—’Qa and v(x) = —»Q—a>@ T

Then p(x) <, v(x), so that I may assume p <*,, v. Now the term ¢ performs the sequential composition
of the process filled in for x with the process doing a single b action. One has [x;b](p) ¢, [x;b](V)
because only the first of these processes can ever perform the b. Thus, when using the process graph
semantics of this TSS, <, fails to be a congruence for the language specified.

However, when taking the closed-term semantics, all processes that my be filled in for x are terms in
the given language and thus must terminate after performing finitely many transitions. In this setting <=,,
is actually a congruence. However, it stops being a congruence when recursion is added to the language.

11 Relating Sanity Requirements for the Two Semantics of TSSs

Given an equivalence relation ~ on G(A), let ~% be the equivalence relation on the set T"(Z) of closed
terms of a TSS P = (X,A, R) defined by p ~9 qiff [ p]]?, ~ [[q]]?, (cf. Definition 8). In case ~ relates each
process graph with its reachable part, the equivalence Nf,' coincides with Ng, as defined in Section 9.

Observation 1 If P is pure and p,q € T"(o), then p ~9 ¢ iff p ~PE 4.

Theorem 2 Let P be a TSS that induces a process graph semantics [[_[, and let ~ be an equivalence
relation on G(A). Then [_], satisfies the sanity requirements (2)—(5) of Section 3 up to ~ if the closed-

term semantics of P+ G* satisfies these requirements up to Nf,' . ¢ for any choice of G*.

Proof: Letp,v:Var — G(A), (f,n) € Land t;,u; € T"(X), such that [#; ] p(p) ~ [u;i]p(v) fori=1,...,n.

Let the set G* C G(A) be adequate for the definition of [#; ],(p) and [u; ]p(v) fori=1,...,n as well as

for [ £(t1,ta) | p(p) and [ £ (w1, ..., 1) ] p(v). Then [1:[p] 15, g ~ [[ui[v]]?3+q}*, ie.. 1i[p] ~9, o wilV].

fori=1,...,n. So f(t1[p],..-,tu[P]) N2+G* f(ur[v],...,u,[v]) by Requirement (2) for the closed-term se-
. . ; 0 0

mantics of P+ G™; that is, [ f(t1[p],....ta[P]) [prq ~ [f (V] .cosun[V]) [poges o8 [f(t1,stn) [ p(P) ~

[f(urseesn) [ (V).
Letp,v: Var— G(A) and S,5": W — T"(X) with X € W C Var, such that [ Sy [ ,(0\W) ~ [ Sy [ p(V\W)

for Y € W. The latter means that [Sy [ p(p\W)(E) ~ [Sy [p(V\W)(§) forallY € W and & : W — G(A).
Let G* C G(A) be adequate for [ Sy [ ,(§Up\W) and [ Sy [p(EUV\W) forallY e W and § : W — G(A),
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as well as for [(X|$)](p) and [(X|S')]p(V). Then Sy[p\W][E] ~&' .- S} [V\W][E] for all Y € W and
E:W—G(A). So (X|S[p\W]) ~&., & (X|S'[V\W]) by Requirement (3') for the closed-term semantics of
P+G*, and [(X|5)]p(p) = [(XIS)P) 5 = [XISO\W] I @ ~ [XIS VW], e = [(XIS)]p(v)-

Let S: Vs — T"(X) with X € Vs C Var, and let y : Vs — Var be an injective substitution such that the
range of ¥ contains no variables occurring free in (Sy|S) for some Y € Vs. Take p : Var — G(A). Let G*
be adequate for [(X|S)],(p) and [{¥(X)|S[y])]p(p). By Requirement (4') for the closed-term semantics
of P+ G one has (Y(X)|S[1])[p] ~§, - (X|S)[p], using that (X|S)[p] = (X|S[p\Vs]) and (y(X)|S[¥])[p] =
YIS \v(Vs))) = (rX)IS[p\Vs][¥])- So [v(X)ISIV)1p(p) ~ [XIS)[p(p).

Let S: Vs — T"(X) with X € Vs C Var. Take p : Var — G(A). Let G* be adequate for [(X|S)]»(p)
and [Sx|S]p(p). Then (X|S[p\Vs]) ~& .. (Sx[p\Vs]|S[p\Vs]) by Requirement (5') for the closed-term

semantics of P+ G* Hence [(X|S)] »(p) =[(X|S)[p] 7. - = [(X|S[0\Vs])I0, o ~ [(Sx [0\Vs]IS[P\Vs]) I, -
= [(SxIS)[p] D7 - = [SxISTp(0)- 0

Theorem 2 does not extend to sanity requirement (1). In fact, this requirement always holds for the
closed-term interpretation of a TSS, yet it does not always hold for the process graph interpretation:

T T
Example 5 Let P be a TSS with the single rule *—% 2= Then the process graph semantics of P

X—>z T T
fails to satisfy sanity requirement (1) up to <. Namely, if p(x) is a graph —»O—=0—>0, then
[x]p(p) is the graph W , and the two graphs are not (strongly) bisimulation equivalent.

Nevertheless, requirement (1) holds for almost all process algebras found in the literature:

Proposition 6 Let P be a TSS that has no rule with a variable as the left-hand side of the conclusion.
The process-graph interpretation of P always satisfies requirement (1) of Section 3 up to <.

Proof: Forx € Var and p : Var — G(A) let G* C G(A) be adequate for [x],(p) and let p(x) € G* be
the graph g = (S, —,I). For each state s € S there is a graph g, := (S,—,s) in G*. Now [x]x(p) is the
reachable part of the graph (G,—¢,g), where G = {g; | s € S} and —¢ = {(gy,a,8) | (s,a,t) € —}.
The relation % given by g, Z s for all states s € S reachable from [ clearly is a bisimulation. Therefore

[x]p(p) € p(x). 0

12 Preservation of Relative Expressiveness under Conservative Extensions

Definition 13 If P = (Xp,A,Rp) and Q = (£9,A,Rp) are TSSs with Xp and Xy disjoint then P+ Q
denotes the TSS (XpUZXp,A,RpURy).

Let Py be the TSS of Example 1, but without the operator f. Let Py be the part of the TSS of Example 1
that only contains the operator f, so that the entire TSS of Example 1 is Py + P¢. This TSS does not
feature recursion.

A translation between two languages with signatures ¥ and ¥’ is a mapping .7 : T"(X) — T"(X').
Consider the translation .7; from the language specified by P to the language specified by Py + Py,
given by Jj,(t) =t for all t € Lp,. Also consider the translation .7, in the opposite direction, given by
Toplat) :=a.Tpp(t), Top(id(t)) :=id(Tpp(t)) and T, (f (1)) := id(Top(t)) for all t € T(Zp, 1 p,).

In e.g. [14] a concept of expressiveness of specification languages is studied such that language .¢” is
at least as expressive as language . up to a semantic equivalence relation ~ iff there exist a translation
from % into ¢ that is valid up to ~. It is not important here to state the precise definition of validity; it
suffices to point out that .7, is valid up to < iff one has f(x) < id(x). Thus, applying Definition 12, it is
valid when employing the closed-term semantics, but not when employing the process graph semantics.
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The transition .7, on the other hand is valid up to & regardless which of the two interpretations one
picks. So under the closed-term interpretation the two languages are equally expressive, whereas under
the process graph semantics the language given by P + Py is more expressive than the one given by F.

For TSSs P and Q, write P < Q if the language specified by Q is at least as expressive as the one
specified by P. An intuitively plausible theorem is that

P XP, implies P +Q0=P+0, 9

at least under some mild conditions on the TSSs P;, P, and Q, for instance that they are pure and fit
the tyft format defined in [16].> This theorem fails when employing the closed-term semantics of TSSs:
take Py to be Py + Py, P> to be Py, with Top being the witness for P; < P, and Q to be the TSS with as
single operator 7._and as only transition rule 7.x — x. For the operator f in the TSS Py + P+ Q drops
T-transitions, and has no counterpart in the TSS Py + Q.

This problem is fixed when employing the process graph semantics. Once the omitted definition of
validity is supplied [14], the proof of (9) is entirely straightforward.

13 Related Work

Dissatisfaction with the traditional closed-term interpretation of TSSs occurred earlier in [17, 18, 8, 23]
and [2]. However, rather than adapting the interpretation of TSSs, as in the present paper, these papers
abandon the notion of a TSS in favour of different frameworks of system specification that are arguably
more suitable for giving meaning to open terms. Larsen and Liu [17] use context systems. The CCS

transition rule x-Sy y a y

xly = ]y

for instance takes in a context system the shape x|y —> x|y, or rather, suppressing the redundant vari-
able names, | —> |. Tt says that the operator | can perform a T-transition, provided its first argument
does an a- transmon and its second argument an a. The context systems of [17] form the counterpart of
TSSs in the De Simone format [24]. The model is generalised by Lynch & Vaandrager [18] to action
transducers, by Gadducci & U. Montanari [8] to the tile model, and by Rensink [23] to conditional tran-
sition systems. The latter two proposals are further generalised to symbolic transition systems by Baldan,
Bracciali & Bruni [2].

One method to relate these models with T'SSs under the closed-term and process graph interpretations
is through notions of strong bisimilarity on open terms. This is a central theme in [23]. The most natural
notion of bisimulation on the above models is bisimulation under formal hypothesis, <™. That name
stems from De Simone [24], who defined the same concept in terms of TSSs. On the context systems
sketched above it requires the usual transfer property for bisimulations for doubly labelled transitions
such as —> . On TSSs, a bisimulation under formal hypothesis essentially is a symmetric relation %
on open terms such that
{xi 5y |iel} then P - {xi %y liel}

t -t u-—"-u
Rensink [23] shows that ™ is strictly finer than <€,

ift Zuand Pt

foranu’' € T"(Xp) with ' Z .

Example 6 Let P be the TSS with inaction 0, action prefix, choice and intersection, specified by the

following rules: . PN y 4y x-Sy oy y
ax —x

x+y-5x x+y-5y xNy L x'Ny

3These mild conditions should ensure that P;+ Q is a conservative extension of P;, for i = 1,2, as defined in [16].
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where a ranges over a set of actions A. Then 5.0+ b.a.0 +b.(xNa.0) £ b.0+b.a.0, for no matter what
one fills in for x, the process xMa.0 either cannot perform any transitions, or it can only do a single a. So
the term b.(xMa.0) behaves either like 5.0 or like b.a.0. On the other hand, .0+ b.a.0+ b.(xNa.0) ™
b.0+ b.a.0. Namely any bisimulation under formal hypothesis Z relating b.0+ b.a.0 + b.(x N a.0) with
b.0 + b.a.0 would also have to relate x N a.0 with either O or a.0. However, once this choice is made,
substituting the wrong value for x shows that % relates two terms that are not equivalent.

Rensink also defines a hypotheses-preserving bisimulation equivalence <" on open terms, which is
situated strictly between ©™M and <. One has 5.0+ b.a.0+ b.(xNa.0) ™ b.0+b.a.0. His analysis
can be reused to show that <P is finer than <>P8. Note that 5.0 4 b.a.0 + b.(xNa.0) <P& b.0+ b.a.0,
for the same reasons as in Example 6. Thus, under the conditions of Theorem 1, we arrive at a hierarchy

14 Concluding Remarks

This paper proposed a process graph semantics of TSSs as an alternative to the traditional closed-term
semantics. It interprets an operator from the language as an operation on process graphs. Unlike the
closed-term semantics, this interpretation is independent of the selection of processes that are expressible
in the TSS as a whole. The intuitively plausible statement that an expressiveness inclusion between
languages is preserved under a conservative extension of source and target language alike, fails for the
closed-term semantics but holds for the proposed process graph semantics.

I reviewed five sanity requirements on languages equipped with a semantic equivalence relation ~,
and showed that four of them hold under the process semantics of a language if they hold under the
closed-term semantics. Here I end with a few observations on when these requirements hold at all.

In [13], the ntyft/ntyxt format with recursion is introduced. It defines a wide class of TSSs, containing
many known process algebras, including CCS, CSP, ACP, MEIJE and SCCS. It generalises the ntyft/ntyxt
format of [15] by the addition of recursion as a separate language construct. The tyft/tyxt format with
recursion is the same, but not allowing negative premises. [13] shows that all languages specified by a
TSS in the ntyft/ntyxt format with recursion satisfy property (8) up to <=, saying that strong bisimilarity
is a congruence. This is a stronger property than (2) up to <2, which thus also holds for the ntyft/ntyxt
format. This was shown for the closed-term interpretation of TSSs. By Theorem 2 we now also have (2)
up to <2 for the process graph semantics of pure TSSs in the ntyft/ntyxt format with recursion.

The same paper establishes that (3) holds up to < for the closed-term semantics of all TSSs in the
tyft/tyxt format with recursion, thereby generalising a result from [23]. It thus also holds for the process
graph semantics of all pure TSSs in the tyft/tyxt format with recursion.

It is not hard to show that also requirements (4) and (5) hold up to <= for the closed-term interpretation
of TSSs in the ntyft/ntyxt format with recursion, and thus for the process graph semantics of pure TSSs
in the ntyft/ntyxt format with recursion.

Thanks to the equational nature of requirements (1), (4) and (5), once they hold up to 2, they surely
hold up to any coarser equivalence. This covers most semantic equivalences found in the literature. The
same cannot be said for requirements (2) and (3). These need to be reestablished for each semantic equiv-
alence. There is a lot of work on congruence formats, ensuring (2) for a variety of semantic equivalence.
See for instance [7], and references therein. Yet, besides [23] and [13] I know of no congruence formats
targeting requirement (3).
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Event structures are one of the best known models for concurrency. Many variants of the basic
model and many possible notions of equivalence for them have been devised in the literature. In
this paper, we study how the spectrum of equivalences for Labelled Prime Event Structures built
by Van Glabbeek and Goltz changes if we consider two simplified notions of event structures: the
first is obtained by removing the causality relation (Coherence Spaces) and the second by removing
the conflict relation (Elementary Event Structures). As expected, in both cases the spectrum turns
out to be simplified, since some notions of equivalence coincide in the simplified settings; actually,
we prove that removing causality simplifies the spectrum considerably more than removing conflict.
Furthermore, while the labeling of events and their cardinality play no role when removing causality,
both the labeling function and the cardinality of the event set dramatically influence the spectrum of
equivalences in the conflict-free setting.

1 Introduction

Event structures [23, 33] are one of the best known models for concurrency. Basically, they are col-
lections of possible events, some of which are conflicting (i.e., the execution of an event forbids the
execution of other events), while others are causally dependent (i.e., an event cannot be executed if it has
not been preceded by other ones). Prime Event Structures (written PESs) are the earliest and simplest
form of event structure, where causality is a partial order and conflict between events is inherited by their
causal successors. Events are often labelled with actions, to represent different occurrences of the same
action. In this paper, we shall focus on labelled PESs, referring to them simply as PESs, for the sake of
simplicity.

Conflict and causality are fundamental concepts for concurrency; indeed, they can also be found in
other well-established models for concurrent computation, like Petri nets [25, 26, 27] and process alge-
bras [3, 19, 22] (where they are called choice and sequential composition, respectively). Not incidentally,
both conflict and causality influence the evolution of an event structure, whose semantics is given by
means of configurations: these are finite conflict-free subsets of events that are closed by causal prede-
cessors. Configurations take note of the events occurred so far during a computation. Indeed, starting
from the empty configuration, the evolution of an event structure is obtained by selecting one or more
events that are causally enabled by the events executed so far, and non-conflicting with any of them. How-
ever, not all sets of events can be simultaneously executed: this yields the derived notion of concurrent
events, that are those that are neither in conflict nor causally dependent from one another.

A fruitful research line is the study of different possible notions of equivalence for event structures,
inspired by the richness of equivalences for process algebras [14, 15]. Indeed, apart from the classical
distinction between trace and bisimulation-based equivalences, in the framework of PESs many features
can be observed to distinguish two event structures. In this paper, we follow [16] and consider the
following equivalences:

J.A. Pérez and J. Rot (Eds.): Combined Workshop on Expressiveness in © D. Gorla, I. Salvo and A. Piperno
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2019). This work is licensed under the
EPTCS 300, 2019, pp. 86-101, doi:10.4204/EPTCS.300.6 Creative Commons Attribution License.
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1. interleaving trace and bisimulation equivalences (written ~;; and ~j,): these are the direct coun-
terparts of trace and bisimulation equivalence for process algebras [19, 22]; in the framework of
PESs, only (the label of) one single event at a time is observed, either in a sequence forming a
trace or in the bisimulation game based on coinduction.

2. step trace and bisimulation equivalences (written == and ~,) [28], where the units of observation
are sets of concurrent (and causally enabled) events To be more precise, we do not observe sets of
events but the multisets of the labels associated to the selected events (recall that the same label
can be given to different events).

3. pomset trace and bisimulation equivalences (written ~, and =) [4], where the units of observa-
tion are sets of events together with their causality and concurrency relations; again, since different
events can have the same label, a set of events generates a partially ordered multiset (hence, the
name pomset), based on the causality relation.

4. different variants of history preserving bisimulation, where the configurations of the two PESs
related by a bisimulation must have the same causal dependencies. According to how this require-
ment is formalized, we have:

(a) weak history preserving bisimulation (written ~yp) [9], where every pair of configurations
is formed by isomorphic (w.r.t. their causal dependencies) pomsets;

(b) history preserving bisimulation (written =) [10, 31], where every pair of configurations is
formed by isomorphic (w.r.t. their causal dependencies) pomsets and the isomorphism grows
during the computation (whereas, for ~yn, two consecutive pairs of configurations could be
related by totally different isomorphisms);

(c) hereditary history preserving bisimulation (written ~~pyp) [2], which is =y, with the addi-
tional requirement that the isomorphism is maintained also when going back in the computa-
tion.

These 9 equivalences, together with PES isomorphism =, form a well known spectrum [11, 16] that we
depict in Figure 1 (where the term autoconcurrency means existence of a configuration containing two
different concurrent events with the same label).

Orthogonally, since their birth, many variants of the basic framework have appeared in the literature.
The basic model has been both extended with more sophisticated features and simplified by remov-
ing features. Richer notions of event structures include, among the others, flow event structures [5],
stable/non-stable event structures [32] and configuration structures [18]. By contrast, simplified models
are obtained either by removing the causality relation, yielding coherence spaces [12] (written CSs in
this paper), or by removing the conflict relation, yielding elementary event structures [23] (written EESs).
Both these models have interesting applications in the literature: the former one is used for giving the
semantics of linear logic [12] and typed lambda-calculus [6, 7]; the latter one is a common variant of
PESs ([23, 24, 16], just to cite a few).

The aim of this paper is to investigate how the spectrum of Figure 1 changes when passing from PESs
to CSs and EESs. As expected, in both cases the spectrum turns out to be simplified, since some notions
of equivalence coincide in the simplified settings. So, for every possible inclusion, we have to either
(1) prove that the inclusion becomes an equality, or (2) provide an example in the simplified setting to
distinguish the two equivalences (and confirm properness of the inclusion also in the simplified setting).

The spectrum is radically simplified in the framework of CSs, as depicted in Figure 2. As evident, re-
moving the causality relation reduces a complex lattice to a simple chain: trace equivalences all coincide
and represent the coarsest notion; they properly include bisimilarities (that all coincide, except for ~nhp)
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Figure 1: The spectrum of equivalences for b ~p
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Figure 2: The spectrum for CSs and becomes ‘=’ otherwise; for question 1, the arrow disap-

pears il the answer is positive and becomes solid otherwise).

that in turn properly include the back-and-forth variant [8] of ~zp,. Furthermore, the labeling function
plays no role in such results; so, even the “flattening” labeling (that associates the same action to every
event) does not change the spectrum.

The situation is more articulated when conflict is removed, hence in the framework of EESs. A pos-
teriori, this is not surprising because a partial order (viz., the causality relation) is a richer mathematical
object than an irreflexive and symmetric relation (viz., the conflict relation). What is really surprising
is the fact that having finitely or infinitely many events makes a significant difference in terms of the
distinguishing power of the studied equivalences; Figures 3 and 4 give a visual account of the difference.
The first easy, but still interesting, result for finite EESs is that ~, ~pb, ~whb> ~hb, ~hnp and = all co-
incide. This can be justified by observing that, being finite and without conflict, the set of all the events
of every such EES is a configuration of the EES itself; so, all notions of equivalence that rely on some
kind of pomset isomorphism collapse to EES isomorphism. By contrast, for infinite EESs this does not
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hold anymore and some more inclusions that were proper in Figure 1 remain proper also in Figure 4.
Four questions remain open about strictness of some inclusions for infinite EESs. However, even if the
spectrum is not fully worked out, we have some examples that let us claim that cardinality of the event
set matters when only causality is considered. By contrast, cardinality has no impact on the spectrum for
CSs. Furthermore, we prove that restricting to “flattening” labeling functions makes ~;; and =, collapse
for EESs (again, in contrast with CSs).

For all these reasons, our results seem to suggest that causality is a more foundational building block
than conflict in event structures, since it has a deeper impact on the discriminating power of equivalences
for such models and because it is more sensitive than conflict to issues like the cardinality of the set of
events and their labeling.

The rest of the paper is organized as follows. In Section 2, we recall the basic definitions and the
spectrum for PESs, as reported in [11]. Then, we move to consider CSs (Section 3) and EESs (Section
4); for the latter model, we also distinguish what happens for finite (Section 4.1) and infinite structures
(Section 4.2). Section 5 concludes the paper.

2 Background: Prime Event Structures

We start by summing up some well known notions from the theory of Event Structures [23], by following
the presentation in [16].

Definition 1 (Prime Event Structures [23, 33]). A (labeled) Prime Event Structure (PES, for short) over
an alphabet <f is a 4-tuple & = (E,<,#,1) such that:

o FE is a set of events;

e < C E x E is the causality relation, i.e. a partial order such that, for all e € E, the set {¢' : ¢’ < e}
is finite;

o §# C E X E is the conflict relation, i.e. an irreflexive and symmetric relation such that, for all
e, e €E,ife<é andefie’, then 'fe”;

e [: E — of is the labeling function.

Intuitively, ¢’ < e means that e cannot happen before ¢’ (so, the execution of e causally depends on
the execution of ¢’), whereas efle’ means that e and ¢’ are mutually exclusive (so, the execution of one
prevents the execution of the other). The condition |{¢’ : ¢ < e}| < oo ensures that every event can be
executed in a finite amount of time (i.e, after the execution of finitely many events). Conflict inheritance
(the condition in the third item of the previous definition) is a sort of ‘sanity’ condition, ensuring that
every event inherits the conflicts of all its causal predecessors. Finally, labels represent actions entailed
by events, and so different events can have the same label; this corresponds to the fact that the same
action can occur different times during the execution of a system.

A derived notion is the concurrency relation, defined as follows: e co € iff (e,e’) & < U > U t.
When convenient, we shall write a PES by using the usual process algebra notation, where ‘||” means ‘co’,
> means ‘<’ and ‘+’ means ‘t’; moreover, we just write the labels, assuming that the underlying events
are all different.!

' We remark that we shall use this syntax only when it comes handy to describe some particular PES in a succinct way;
in particular, in this paper we consider PESs as a per se semantic model, and not, e.g., as the interpretation domain for some
process algebra. Furthermore, notice that PESs do not coincide with all the ESs that ‘||, ‘;> and ‘4’ can define: there are terms
of this algebra that denote ESs that are not prime (e.g., (a + b);c) and there are PESs that are not definable using the given

algebra (e.g., the event structure & in the proof of Prop. 8) [13, 29, 30].
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Example 1. The expression (a || b) + (a;b) denotes the PES & = (E,<.,f,l) such that
E = {e1,er,e3,es}, e < e (for i € {1,2,3,4}), e3 < es, § = {(e1,e3),(e2,€3),(e3,€1),(e3,€2),
(e1,e4),(ea,e4),(eq,e1),(ea,e2)}, I(e1) =1(e3) = a, and [(ep) = 1(es) = b.

To be precise, (a || b) + (a;b) denotes the =-class of the PES & given in Example 1, where PES
isomorphism is defined as follows.

Definition 2 (PES isomorphism). Let & = (E,<g,tg,lg) and F = (F,<p,tr,lr) be two PESs. We say
that & and % are isomorphic, and write & = .7, if there exists a biiection f : E — F such that. for every
e,e € E, it holds that :

o e<péifandonlyif f(e) <p f(€);

o cfige ifand only if f(e)tr f(€'); and

o Ig(e) =Ir(f(e))-

Essentially, PES isomorphism only abstracts away from the set of events. So, for example, any .7
isomorphic to the PES & of Example 1 must be such that F = {¢/,¢}, ¢}, ¢, } and < /t/1 are defined as
in Example 1, but with ¢/ in place of e;.

The semantics of a PES & is defined in terms of the possible states that the system modeled by the
PES can pass through during its evolution, where such states are defined as follows.

Definition 3 (Configurations). A configuration of a PES & = (E,<,4,1) is any X Cgy, E such that
o cfé, foreverye,e € X; and
o {¢:¢<e} CX, foreveryeeX.

We denote with Conf (&) the set of all configurations of &.

Configurations collect the events executed from the outset of the system; so, they must be finite
(they have to represent states reachable in a finite time), conflict-free (two conflicting events cannot be
executed in the same system evolution)) and closed w.r.t. causal predecessors (an event can happen only
if all its predecessors happened before). For examples, the configurations of & from Example 1 are
0,{e1},{e2},{e3},{e1,e2},{e3,e4}; notice that {e4} is not a configuration because e4 cannot stay in any
configuration that misses its causal predecessor e, and that {e;,e3} is not a configuration because e; fe3.

The way in which (the system modeled by) a PES evolves is usually given through some labeled
transition systems (LTSs), on top of which we can build different notions of equivalence between PESs.
We now recall both the main transition relations and the main equivalences built on top of them.

The first transition relation between configurations states that X — X’ whenever X C X’ and X'\ X =
{e}, with [(e) = a; notation X — (resp., X /—) means that there exist a and X’ (resp., no a and X’) such
that X —— X’. Coming back to Example 1, we have that the possible transitions for & are:

{es,ea} <g—{es} <—0 {e1.e2}

The two most basic equivalences we shall consider are derived from process algebras and are bisimu-
lation and trace equivalence. To define the latter, we use the notion of (sequential) trace of a PES &, that
is a sequence aj ...a; € o/ such that there exist Xp, ..., Xy € Conf (&) such that Xo = 0 and X; i Xit1,
for every i =0,...,k— 1. We denote with SeqTr(&) the set of the sequential traces of &.
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Definition 4 (Interleaving Trace Equivalence [19]). & =i % if SeqTr(&) = SeqTr(F).
Definition 5 (Interleaving Bisimulation [22]). A relation R C Conf (&) x Conf (%) is an interleaving
bisimulation beween & and F if
o (0;0) €R;
e if (X,Y)€Rand X -5 X', then Y -5 Y/, for some Y' such that (X',Y') € R; and
o if(X,Y)ERandY -5 Y, then X - X', for some X' such that (X',Y') € R.
& =i, F if there is an interleaving bisimulation between & and .

Transitions involving a single action can be generalized to steps, i.e. sets of events that can be exe-
cuted simultaneously. Again, for the sake of abstraction, a step transition will be labeled with the multiset

of labels associated to the chosen concurrent events. Formally, we write X i> Xiftxcx, x \X =G,
Ve,e' € G.e co €, and A is the multiset over </ formed by the labels of the events in G. For example,

. b .. . ..
for & in Example 1, we now also have that @ {L; {e1,e2}. This yields the obvious generalization of
interleaving bisimulation and trace equivalence, where step traces of &, written StepTr(&), are defined
as expected (i.e., like sequential traces, but with steps in place of single events).

Definition 6 (Step Trace Equivalence [28]). & ~ .7 if StepTr(&) = StepTr(F).

Definition 7 (Step Bisimulation [28]). A relation R C Conf (&) x Conf (.F) is a step bisimulation beween
& and F if

o (0;0) €R;
o if(X,Y)€Rand X A X!, then Y 25 Y, for some Y such that (X".Y") € R; and
o if(X,Y)€RandY A Y then X 25 X', for some X' such that (X".,Y') €R.

& =g, F if there exists a step bisimulation between & and F.

Because of their definition, configurations are actually partially ordered sets (posets, for short), where
the ordering is given by <. Indeed, we write poser(X) to denote the labeled poset (X, < |x,!|x), where
< |x and I|x are the restrictions of < and / to X. A more abstract view of a run is obtained by replacing
events with their labels. This turns a poset into a partially ordered multiset (pomset, for short). Formally,
the pomset associated to a configuration X, written pomset(X), is the isomorphism class of poset(X).
We can then observe not just multisets, but multisets together with their ordering, i.e. pomsets; this
generalizes the step semantics because, by observing pomsets, we are allowed to observe in one single
transition also events that are not concurrent. To this aim, we denote with Pom (&) the set of all pomsets

of & and we label a transition with a pomset p, where X -2 X’ if X C X/, X'\ X = H and p = pomset(H).

Always referring to & in Example 1, we also have that KN {e3,e4}.
Definition 8 (Pomset Trace Equivalence [4]). & ~p F if Pom(&') = Pom(.%F).

Definition 9 (Pomset Bisimulation [4]). A relation R C Conf (&) x Conf (%) is a pomset bisimulation
beween & and % if

o (0:0) €R;
e if(X,Y)eRand X 25 X', thenY L5 Y', for some Y' such that (X',Y') € R; and
o if(X,Y)eRandY L5 Y, then X £ X', for some X' such that (X',Y') € R.

& =pp F if there exists a pomset bisimulation between & and 7.
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An orthogonal way to generalise the interleaving bisimulation is to keep track of the causal depen-
dencies and only relate configurations with the same causal history. This is done by requiring that the
two configurations have isomorphic associated posets, where we also denote poset isomorphism with 2=,

Definition 10 (Weak History Preserving Bisimulation [9]). A relation R C Conf (&) x Conf (.7 ) is a
weak history preserving bisimulation beween & and ¥ if
e (0;0) €R, and
e if (X,Y) €R then
- poset(X) = poset(Y);
- ifX -5 X' thenY -5 Y, for some Y' such that (X" Y")€R;
- ifY 5 Y/, then X = X', for some X' such that (X", Y") eR.
~Rwhb F if there exists a weak history preserving bisimulation between & and 7.

A stronger requirement is that the isomorphism relating poser(X’) and poset(Y’) cannot be arbitrary,
but must extend the isomorphism relating poset(X) and poset(Y ). This leads to the following definition.

Definition 11 (History Preserving Bisimulation [10, 31]). A relation R C Conf(&) x Conf(.F) x
2Conf (£)xConf(F) s g history preserving bisimulation beween & and .F if
e (0;0,0) € R, and
e if (X,Y,f) €R then
— fis an isomorphism between poset(X ) and poset(Y );
- ifX 5 X', thenY 5 Y/, for some Y' such that (X',Y', f') € R, where f'|x = f; and
- ifY 55 Y, then X - X', for some X' such that (X',Y', f') € R, where f'|x = f.

& ~pp F if there exists a history preserving bisimulation between & and % .

The notion of history preserving bisimulation can be finally generalised by also asking for a ‘back-
wards’ bisimulation game, along the way of back-and-forth bisimulation [8].

Definition 12 (Hereditary History Preserving Bisimulation [2]). A history preserving bisimulation R
beween & and .F is hereditary if, for every (X,Y, f) € R, it holds that X' = X implies (X', f(X'), f|x') €
RandY' =Y implies (f~'(Y'),Y', f|;-1(y1) €R.

& =y F If there exists a hereditary history preserving bisimulation between & and ..

All the equivalences presented so far form a well-known spectrum [11, 16], depicted in Figure 1 (the
only inclusions that are not present in [16] are ~yp, C ~p and ~ynp C Ry, that are proved in [11]).
There, the term autoconcurrency means existence of a configuration containing two different concurrent
events with the same label.

3 Conflict without Causality: Coherence Spaces

We now consider the first restriction of PESs, obtained by considering an empty causality relation. This
leads to Coherence Spaces [12], a model largely studied, e.g., in the field of linear logic and in the
semantics of typed lambda-calculus [6, 7, 12].

Definition 13. A coherence space (written CS) over an alphabet </ is a PES & where the causality
relation is empty.
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Thus, we shall usually omit < from the definition of a CS. In the setting of CSs, several definitions
are radically simplified. For example, a configuration is simply a finite and conflict-free subset of E;
similarly, two events are concurrent if they are not in conflict. Moreover, a step and a pomset are simply
multisets and, hence, the two notions do coincide.

Consequently, the spectrum of Figure 1 can be simplified, but it is still not trivial. Indeed, removing
the causality relation reduces a complex lattice to a simple chain: trace equivalences all coincide and
represent the coarsest notion; they properly include bisimulations (that all coincide, except for ~ppp)
that in turn properly include the back-and-forth variant [8] of ~zp, and the latter is still strictly coarser
than isomorphism. The spectrum is depicted in Figure 2 and it is the first main result of this paper; the
following propositions are needed to establish it.

Proposition 1. For CSs, if & ~j, F then & ~pp F.
Proof. Let R be an interleaving bisimulation between & and .%, and consider the following relation:

R'£ J {(X.Y,f) : fisanisomorphism between X and Y}
(X.Y)ER

Trivially, (0,0,0) € R’, because (0,0) € R and every set is isomorphic to itself. Let (X,Y,f) € R’; by
construction, f: X — Y is a bijection such that /(x) = [(f(x)), for every x € X.? Now, let X —%+ X’; this
means that X’ = X & {e} and [(e) = a. Since (X,Y) € R, there exists ¥’ such that ¥ -+ ¥’ =Y & {¢'},
where [(¢/) = a, and (X',Y’) € R. It is easy to see that /' = fU{(e,€')} is an isomorphism between X’
and Y’ and so (X",Y',f’) €R. O

Proposition 2. For CSs, if & ~i F then & ~p F.

Proof. Since a pomset is just a multiset (i.e., a step), it suffices to prove that & =~ % implies & ~ F.
LetA; ... A € StepTr(&); we have to show that Ay ... Ay € StepTr(F).

By definition, there exist Xo,...,X; € Conf(&) such that Xo = 0 and X;_; Ay X;, for every i =
1,...,k. This means that X; | C X;, X;\ X;_| = {eli>"'>e;';}’ Vh # q. €, co € and A; is the multiset

. . é l(‘fi‘-)
formed by I(e}), .., (¢). Thus, X; 1 "4 .. “75 X; and so (el)... (e} )....1(ek) ... I(ek ) € SeqTr(&).

By hypothesis, I(e}). ..l(e}l)...l(e’f) . ..l(e’]‘.k) € SeqTr(F); i.e., there exist Yy, ..., Y} 4. 1, € Conf(.F)

I(e! 1(5) . . . . .
such that Yy = 0 and Y L; Y)... -5y ii+4..+ji- Since Yj 4 4, is a configuration and configurations in

CSs are conflict-free sets, we have that all the events occurring in it are concurrent. Thus, we can group
single transitions into steps and obtain A ... Ay € StepTr(.7). O
Proposition 3. There exist CSs & and ¥ such that & =y F but & %, F.

Proof. Consider & =a+ (a || a) and .# = a || a: they have the same traces (viz., {€,a,aa}) but &, after
the leftmost a, is stuck, whereas .%, after every q, is not. Ol

Proposition 4. There exist CSs & and F such that & =~y F but & %pnp F.

2 Indeed, notice that, for CSs, the poset associated to a configuration is just a collection of (labeled) events (i.e., the ordering
relation is empty) and, hence, poset isomorphism has only to respect the labeling.
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Proof. Consider
&=all(at(alla)) and  F=(a|(at(a]a)+(a]a)

and their LTSs (the events have been numbered in increasing order, from left to right, both in & and in
F):

{ei,e3,e4}

T TSN
{e1,e3} {e1,e4} {e3,e4}
P> >
{er} {ef} {ea}

{e1,e2} 0= - — ={es}

0

) (e}~ fesien)

Here, states are configurations, arrows are a-labeled transitions and the LTS for & is the solid part,
whereas the LTS for .# also includes the dashed part.

The only possible history preserving bisimulation between & and . is the one that acts as the identity
on the common configurations and that associates {es,eq} with {ej,e2} and both {es} and {es} with
{e,}. However, it is not hereditary because from {e;, e, } we can backtrack to {e; } and from here we can
perform two a’s in sequence; by contrast, every backtrack from {es,eq} leads to a configuration that can
only perform one single a. O

/N

Proposition 5. There exist CSs & and F such that & =~y -F but & # F.

Proof. The example given in [2] for proving a similar claim (viz., & = a and .% = a+a) is in fact made
up from two CSs. 0

Quite surprisingly, the proofs of Propositions 1 and 2 do not rely on the fact that labels are different
or not, and the examples provided in Propositions 3, 4 and 5 are built on CSs where all events have the
same label. Hence, in the setting of CSs, the labeling function has no impact on the spectrum of Figure 2.

4 Causality without Conflict: Elementary ESs

A second restriction of PESs is obtained by considering an empty conflict relation; this yields Elementary
Event Structures [23].

Definition 14. An elementary event structure (written EES) over an alphabet </ is a PES & where the
conflict relation is empty.

Consequently, we shall omit f from the definition of an EES. EESs are a particular kind of directed
acyclic graphs, where every path from u to v entails the existence of a directed edge (u,v); this comes
from the fact that causality is transitive. For the sake of simplicity, we shall sometimes represent EESs
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with the transitive reduction® of their causality relation. For example,

N
7

Q— —0

b

i
represents the (isomorphism class of the) EES & = (E,<,l), where E = {ej,e,e3,e4,e5}, l(e]) =
l(e2) = a, l(e3) = l(es) = b, l(es) =c, e; <ej, e1 < e3, e1 <eq, €1 <es, €2 < ey, e < es, €3 < €5
and eq < es.

We now present the results needed to adapt the spectrum of Figure 1 to EESs; this is the second main
contribution of our work. Surprisingly, the spectrum changes according to whether the set of events is
finite or not. However, there are a few common results, that we now present.

For interleaving and step equivalences, the spectrum for EESs is the same as that for PESs: the inclu-
sions depicted in the upper part of Figure 1 also hold for EESs; what changes are the counterexamples
needed to distinguish them. We now provide the distinguishing examples in the framework of EESs.

Proposition 6. For EESs, there exist & and .F such that & =y, F and & =~y &, whereas & g, & and
& by F.

Proof. Consider the EESs & =a;aand . =a || a. O
Proposition 7. For EESs, there exist & and ¥ such that & =~ F, whereas & %, F.

Proof. Consider the EESs & = (a || b);(a || b) and .# = (a;b) || (b;a). Trivially, & ~j .#, since
SeqTr(&) = SeqTr(F) = {€,a,b,ab,ba,aba,abb, baa,bab,abab,abba,baab,baba}. By contrast & #;p,
&, since in % we can reach, after executing the leftmost a and b, a state where only b is possible,
whereas in &, after every a and b, both a and b are always enabled. O

Proposition 8. For EESs, there exist & and .F such that & =~y F whereas & #ip, F.

Proof. Consider the EESs

&= b b F = b b
PR

The step LTSs resulting from these EESs (where states are configurations and arrows represent transi-

tions) are:
AN
s e
AN

N Tt 0 a//\
a. a /
SN
b

\a
AN
ay b\
AN e
“\f b b\f/
\, N |

e o

N\

3 The transitive reduction of a DAG D is the (unique) smallest DAG D’ which preserves the reachability relation of D. Note
that two transitively reduced DAGs are isomorphic if and only if their transitive closures are isomorphic.
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From them, checking ~ is immediate. On the other hand, =, does not hold because there exists a
configuration in the left-hand side LTS (marked with ‘e’) reachable after an a that cannot perform a b; by
contrast, every configuration reachable after an a in the right-hand side LTS can always perform a b. U

An easy corollary of the previous result is that, for EESs, ~ is not contained in ~,; and ~,.
Proposition 9. For EESs, there exist & and F such that & ~g, .# whereas & Zwn, F and & Fp F .

Proof. Consider the EESs

£ = e - &
// \\ /SN N

where all events e, ..., e7,¢(,...,e; have the same label. It can be readily checked that & % .% because
events eg and e7 in & have no isomorphic correspondence in .#. Thus, trivially, & and .% cannot be in
~pt; moreover, they cannot either be in ~yp, because every weak history preserving bisimulation must
contain the pair (E, F), but this is not possible since & % .Z.

By contrast, we shall now prove that & ~, .%. To this aim, for a generic EES & = (E, <,[) and for
every X € Conf(&'), we denote with & the EES (E'\ X, < |g\x,!|g\x). It is now easy to check that:

F

® 8oy} = F gy, viasome isomorphism f,, . (for example: (er,e}), (e2,€5), (e3,€}), (ea,€5), (5, €3),
(e5,€7), (€7, €5)):
® &ley = F oy, viasome isomorphism f,, .. (for example: (e, ep), (e2,€}), (€3,€3), (ea,€3), (es,€5),
(667 eg)a (67 ) 8,7)),
® Sleper) = F(ee}> Via some isomorphism fo, oo (for example: (ez,e5), (e3,€}), (eae5), (es,€3),
(667 6/7)7 (67 ) eg))
Notationally, let f(X) denote { f(x) : x € X}; it can be now verified that the relation

R = {(0,0)}u
U Uxecont(6,,) {({eo} UX, {ep} U fi ¢, (X))}
U Uxeconf (s, p{Her }UX {el } U fe o (X))}
U Uxeconf (6., {({e0,€1F U X {€5, €1} U feger e (X)) }

is a step bisimulation between & and .%. O

An easy corollary of the previous result is that, for EESs, ~, is not contained in ~p, ~b, ~hnb, and
2. Furthermore, notice that the examples provided in Propositions 6 and 9 use EESs with a “flattening”
labeling function (mapping all events to the same label); by contrast, this is not the case in Propositions
7 and 8. This is not incidental, since, for EESs with all events labeled the same, ~;, and =;; coincide; to
prove this, we first need a lemma.

Lemma 1. Let & = (E,<,l) be an EES and let X € Conf(&); then either X 19 xu {e}, for some

ecE\X,orX=E.
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Proof. Let e € E; by induction on |{¢’ : ¢’ < e}|, we prove that either e € X or there exists an ¢’ < e

(e . .. . . .
such that X Q X U{e'}. The base case is trivial. For the inductive case, let us assume e with at

least one predecessor. If e € X, we are done. If X contains all the predecessors of e (but not e), then

X ﬁ X U{e}. Otherwise, consider any ¢’ < e not contained in X; the claim follows by induction, since

¢ has less predecessors than e (indeed, every predecessor of € is also a predecessor of e). ]
Proposition 10. For EESs with labeling set of = {a}, ~ijp=~j.

Proof. Lemma 1 entails that SeqTr(&) is {a" : 0 <n < |E|}, if E is finite, or {a" : n > 0}, otherwise.
The same holds for .%; hence, if & ~;; .#, then |E| = |F|.

Now, let & ~j .# and R = {(X,Y) : X € Conf(&),Y € Conf(F),|X| =|Y|}. Trivially, (0,0) € R.
Furthermore, if (X,Y) € R and X —% X/, then |Y| = |X| < |E| = |F|; again by Lemma 1, there exists
Y -4 Y’ and, by construction, (X’,Y’) € R. O

Hence, differently from CSs, in the framework of EESs the labeling function has an impact on the
distinguishing power of the equivalences studied.

To complete the hierarchy of equivalences for EESs, we surprisingly discovered that there is a deep
difference if we consider finite or infinite event structures. For the former ones, we have been able to
completely define the spectrum; for the latter ones, we still have some open questions, mostly on the
history preserving bisimulations.

4.1 Finite EESs

For finite EESs, we have the following results that lead to the spectrum in Figure 3.

Proposition 11. Let & and .7 be finite EESs such that & =~y 7 ; then & = 7.

Proof. The key observation is that, in every finite EES &, the set of all the events E is a configuration
(it is finite, conflict-free and closed by causal predecessors). Hence, Pomset(E) = &. So, if & Rpt F, it
holds that & and .% have the same pomsets; in particular, the pomsets corresponding to E and F must be
the same. Hence, the two EESs are isomorphic. U

Proposition 12. For finite EESs, = = ~ppp, = Rhp = Rwhb = ~pb = ~pt-

Proof. For all equivalences but ~np the claim is an easy corollary of the previous proposition, by the
fact that = C ~ for PESs (and, hence, also for EESs). For ~yup, take & ~ynp % and consider a
sequence of transitions @ s .. 2% E (whenever |E| = n). The only possible reply to this sequence
is some 0 % ... % F’ such that F' = F, otherwise F/ —» whereas E —/. Thus, & = .%, since
& = poset(E) and .# = poset(F). O

4.2 Infinite EESs

For infinite EESs, we first notice that, if we consider EESs of different cardinality, Proposition 11 does
not hold. To see this, consider & and .# made up, respectively, by a numerable and by a non-numerable
set of concurrent copies of the same pomset; clearly, the two structures have the same (finite) pomsets
and, hence, are pomset trace equivalent, but of course they are not isomorphic.

Moreover, Proposition 11 does not hold either for EESs of the same cardinality, as the following
Propositions entail.
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Proposition 13. There exist & and F infinite EESs such that & ~p, 7, & %np F and & FEypy F .

Proof. Assume two numerable sets of events, E = {¢;; }o<j<; and F = {egj}hjzo. Let <g (resp., <r) be
such that ¢;; <g ej (resp., e i <F e},) if and only if j < k. Finally, let every event be labeled with the
same label a, both in & and in .#. Pictorially:

72 6’62 8/12 9/22

& — (O N |
6%1 71 F = 961 e’“ 8/21

e0 e e (N

To show that & &y, .Z and & Fwnp -Z, consider @ —— {ego}: the only possible reply in .% is 0 SN
{€y}, for some i. However, {ego} and {€,} cannot be related by any history or weak history preserving
bisimulation: indeed, the challenge {e},} — {e,, €/, } has no possible reply, since there is no event in £
causally dependent on egy (Whereas e§0 <F egl).

To prove that & =, 7, consider

Ry = {(0,0)}
Ry = {(X,Y):3(xX,Y)eR,Ip.Xx Lx'ny Loy}
R = UnZORn

We now prove that R is a pomset bisimulation. By construction, (0,0) € R. Let (X,Y) € R. If X 25 X,
then p is a finite collection of finite chains (w.rt. <g) and, hence, can be embedded into {é; j}i>n’ >0
where n is the largest integer such that ¢/, € Y. Let ¥ C {e/ i }in,j>0 be such that Pomset(Y) = p; then,
Y L5 Yw? =Y and (X',Y') € R by construction. If ¥ 25 Y’, then p is a finite collection of finite
chains (w.r.t. <p); let i be the shortest of such chains. Now, p can be embedded into {e;;}i~m0<j<i,
where m = max{h,n} and n is the largest integer such that e,o € X. Let X C {¢; j Yi>m,0<j<i be such that

Pomset(X) = p; then, X -+ XwX =X’ and (X',Y’) € R by construction. O
Proposition 14. There exist & and .7 infinite EESs such that & ~y F but & %, F.

Proof. Let us consider

b b b b b b
PRI s b b
We have that & =, . because
b b b
pomsets(&) = pomsets(F) =< a a ... a 2 2 N 2
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By contrast, the singleton a in & cannot be replied to by any a in % because the latter enables a b,
whereas the former does not. ]

An easy corollary of the last Proposition is that ~; does not imply ~yny, ~pp and ~g,. We conclude
this section by a list of questions that remain to be answered.

Open questions: Are there & and .% (infinite EESs) such that
1. & =y F but & Zpp F?
2. & ~wp F but & Zyy, F?
3. & =~y F but & Zpnp F?
4. & ~pyp F but & # F?

If all these open questions have a positive answer, the spectrum for infinite EESs, depicted in Figure 4, is
the same as the one for general PESs, depicted in Figure 1. Notice that, if open question 1 has a positive
answer, the same holds also for open question 2. However, we conjecture that also in the setting of
infinite EESs all history-preserving bisimulation equivalences coincide and coincide with isomorphism;
however, we still do not have enough evidences for formally proving this claim.

5 Conclusion

In this paper we studied how the spectrum of equivalences for PESs defined in [11, 16] changes when
alternatively removing causality and conflict. In both cases, equivalences that are properly included in
one another for PESs turn out to coincide and this is more evident in CSs than in EESs. Moreover, both
the labeling function and the cardinality of the event set influence the spectrum for EESs, whereas they
have no impact on the spectrum for CSs. For these reasons, we argue that causality is a more foundational
building block than conflict in event structures, since it has a deeper impact on the discriminating power
of equivalences for such models and because it is more sensitive than conflict to issues like the cardinality
of the set of events and their labeling.

Surely, our results can be also related to the fact that the equivalences considered are causality-based
(apart from the interleaving ones). Maybe, conflict could have a deeper impact than causality on other
kinds of equivalences or on different models (for instance, variants of ESs with asymmetric choice, or
with two different kinds of choices — external and internal, or nondeterministic and probabilistic). This
is a first interesting line for future research.

Another possible extension of our work is the investigation of other equivalences (like, e.g., those
presented in [17, Sect. 3]) and their impact on the spectra presented in this paper. However, we do not
believe that this would change the message conveyed by this paper. By contrast, a challenging direction
for future research would be the adaptation to CSs and EESs of the logical characterizations given by [1]
to the equivalences studied in this paper. In particular, it would be nice to see how the logical operators
defined in [1] can be simplified for capturing the equivalences in the simplified frameworks.

Finally, it is interesting to note that the pair of EESs in the proof of Proposition 9 has been obtained
through an exhaustive search on transitively reduced DAGs, using the tools in the nauty/Traces [20,
21] distribution. More precisely, it is the smallest (with respect to number of vertices) pair of non-
isomorphic transitively reduced DAGs having the same multiset of source-deleted subgraphs.

Acknowledgements We are grateful to Silvia Crafa and Paolo Baldan for fruitful discussions and to Rob
van Glabbeek for the counterexample of Proposition 4.
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In this paper we analyze the computational power of variants of population protocols (PP), a formal-
ism for distributed systems with anonymous agents having very limited capabilities. The capabilities
of agents are enhanced in mediated population protocols (MPP) by recording the states in the edges
of the interaction graph. Restricting the interactions to the communication model of immediate
observation (IO) reduces the computational power of the resulting formalism. We show that this en-
hancement and restriction, when combined, yield a model (IOMPP) at least as powerful as the basic
PP. The proof requires a novel notion of configurations in the MPP model allowing differentiation
of agents and uses techniques similar to methods of analyzing encoding criteria, namely operational
correspondence. The constructional part of the proof is generic in a way that all protocols can be
translated into the new model without losing the desirable properties they might have besides a sta-
ble output. Furthermore, we illustrate how this approach could be utilized to prove our conjecture
of IOMPP model being even as expressive as the MPP model. If our conjecture holds, this would
result in a sharp characterization of the computational power and reveal the nonnecessity of two-way
communication in the context of mediated population protocols.

1 Introduction

Population protocols have been introduced in 2004 as a computational model for passively mobile fi-
nite state sensors by Angluin et al. [2, 3]. They feature a finite state space, making them suitable for
computation units with very limited capabilities and full anonymity, resulting directly from this restric-
tion. Since the number of possible states that each agent could be in may not grow with the number of
participating agents, there is no space for memorizing the ids of already met communication partners or
similar constructs. Therefore, the outcome of any binary communication does not depend on whether
the participants have communicated before. Another feature is the fully distributed approach of the base
version for population protocols that does not need a base station, leader, or scheduler of any kind. The
impact of such extensions has been studied [5, 7, 1].

It is well known that predicates computable by population protocols are exactly the semilinear pred-
icates. The first study on the computational power of this model was in 2007 by Angluin et al. [4]. In
this context, also several different communication patterns have been modeled in population protocols
and their computational power have been studied as well. One of those mechanisms has been the imme-
diate observation model, which is a special kind of one-way communication as opposed to the two-way
communication that comes with the base model. The idea is that an agent may observe another agent
without it noticing being observed. Clearly the observed agent cannot change its state in such an in-
teraction whereas the observer can use the information given by its own and the observed agent’s state.
In contrast to stronger mechanisms no synchronization between the communication partners is needed.
Consequently the communication in such a model is asynchronous and applicable to a broader variety
of systems. With the fully distributed setting in mind the immediate observation communication seems
to be a desirable feature. But these qualities come with a price. Protocols with this limitation to the

J.A. Pérez and J. Rot (Eds.): Combined Workshop on Expressiveness in © T. Prehn & M. Rotter
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2019). This work is licensed under the
EPTCS 300, 2019, pp. 102-113, doi:10.4204/EPTCS.300.7 Creative Commons Attribution License.
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communication can only compute predicates in COUNT,, i.e. predicates that count multiplicities of input
values and compare them to previously given thresholds.

Another approach to altering population protocols has been the work of Michail et al. [12]. In their
model agents are allowed to store distinct information for different communication partners. To achieve
this they extended the base formalism by states for each pair of agents residing in the edges of the
interaction graph. Some previous work on mediated population protocols modelled directed interaction
graphs with one state per edge [12] and others used undirected graphs where each edge has a state
for each of its two endpoints [8]. This extension is a reasonable compromise between maintaining the
anonymity of each agent and being able to memorize the already met communication partners. An
agent is capable of telling an agent, that it has not yet communicated with, apart from one it has already
met. But two other agents being in the same state and with the same communication history are still
indistinguishable. Aside from this the edge states can be used for storing several other information. This
mediated population protocols are able to compute all symmetric predicates in NSPACE (n?).

We now present a model in this paper that combines the extended storage possibilities of mediated
population protocols and the limited communication model of immediate observation protocols. The
computational power of our resulting formalism has to be studied as it is unclear how this extension and
restriction interact.

In section 2 the basic formalisms and existing models are defined. We are using a representation of
population that allows the distinction of agents from a global point of view. This does not interfere with
the anonymity of the agents and is for analysis purposes only. Based on this we define our model of
immediate observation mediated population protocols (IOMPP) in section 3. Subsequently we study the
computational power of our model in section 4. We take the approach simulating population protocols
in immediate observation mediated population protocols in 3.1. Additionally, we give a translation of
configurations from one model to the other and define criteria such a translation has to meet for it to
express desirable attributes in 4.1. Our work is inspired by and makes use of the encodability criteria
stated by Gorla in [11]. To the best of our knowledge this technique is novel to population protocols in
the way we utilize it in 4.2 to prove that immediate observation mediated population protocols are at least
as expressive as the base model of population protocols. In 4.3 we conjecture that our approach could
also be used to show that immediate observation does not restrict the computational power of mediated
population protocols. We conclude our paper by a discussion on the given results and possible application
of the used techniques in section 5. We also give an outlook on future work and open questions.

2 Technical preliminaries

First we introduce populations, which form the base of all population protocols. They are often modeled
as multisets to emphasize the indistinguishability of the participating agents. We will use vectors where
each entry represents the state of a specific agent, because we want to efficiently compare populations
in different models from a global viewpoint. Note that this will not give agents a distinct id they could
make use from their local point of view. A different kind of vector representation can be found in [10]
and is not to be confused with ours. They use vectors where each entry describes for an agent state the
multiplicities of agents in that state. Their vector representation efficiently stores sets of agents with their
states, making it easy to identify equivalent protocol states. In contrast to this, our representation can
be used to compare sets of agents in population protocols with sets of agents in extended variants like
mediated population protocols.
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Definition 1 (Populations). Let A be a nonempty finite set and n € N. Then A" describes the set of
n-tuples over A also referred to as vectors of length n. A population over A, denoted by POP (A), is the
set of all vectors of arbitrary but finite length over A. If v € A" we use |v| = n to denote the length of v
and (v), to reference the i element of v (with i € NZT,).

Next we define how calculations in population protocols are modeled from a local point of view. Each
agent has the same set of states and rules how to change states according to a communication partner’s
state. Additionally, functions to map input to an initial state and a state to some output are defined to be
identical for each agent.

Definition 2 (Population Protocols [6]). A population protocol P is a 5-tuple P = (Q,X,1,0,8) where
Q is a finite set of agent states, ¥ a finite input alphabet, I : ¥ — Q describes the input function, O :
0O — {0, 1} is the output function, and 6 : 0% — Q7 is referred to as transition function and describes all
possible pairwise interactions. We also making use of a set representation of § C Q* whenever we write
t=(p,q) —s (P',q) referring to a specific transition ¢ € §.

To analyze protocols we need a global perspective. Here states are configurations holding state
information for each agent. This kind of global view has been used to study the computational power of
population protocols [4].

Definition 3 (Global Protocols [4]). Let P = (Q,X,1,0,8) be a population protocol. The global protocol
to P is a 5-tuple Gp = (C,X,J,0,—) where € = POP(Q) is the set of configurations, i.e., vectors of
agent states Q, J: POP(X) — C maps input vectors to initial configurations, O : € — {0, 1, L} maps
configurations to outputs, and —: € — C is the global transition function with —* being its reflexive
and transitive closure. For C,C’ € € it holds that C — C’ iff there is a transition € § and i, j € N*
with i # j such that 1 = ((C);, (C);) —5 ((C');,(C");) and (C); = (C"), for every k € N*\ {7, j}. We also

write C 25 ' and call agent i the initiator of t and j the responder or (if the state of i is not changed by
t) observer. The global input function takes use of / to get an agent state for each single value in its input
and O aggregates the outputs of the agents according to O. It holds that O(C) =x € {0,1} iff O((C),) = x
for each i € NJ<F|C| and O(C) = L in every other case. When the underlying protocol P is clear from the
context we often omit the index of Gp and simply state that G is the global protocol to P.

Based on a global protocol we can describe what it means for a protocol to compute some predicate.

For this we need to define executions and fairness.

Definition 4 (Computation). Let G = (C,X,J,0,—) be a global protocol. A configuration C € C is
output stable with output x € {0,1} iff O(C’") = x for each C’ € € with C —* C’. We call a sequence of
configurations Cy,C1,C3,--- € C with C; — C;; | for each i € N an execution. An execution is fair iff for
each C € € with C; = C for infinitely many i € N it holds that if there is a transition C — C’ then also
C;j = C' for infinitely many j € N. A population protocol P is well-specified if for each input Inp, it holds
that all fair executions of P starting in J (Inp) reach a configuration that is output stable. P computes a
predicate if this reached configuration is output stable with output 1 if Inp satisfies the predicate and with
output O otherwise.

In the context of population protocols several communication mechanisms have been studied [4].
Immediate observation is one of those mechanisms. It reduces the class of computable predicates to
predicates counting multiplicities of input values COUNT,. To model this kind of communication, restric-
tions to the allowed form of transitions are made.

Definition 5 (Immediate Observation). Let P = (Q,X,1,0, 8) be a population protocol. P is an immedi-
ate observation protocol, if there is no transition that changes the state of the initiator. In other words, all
transitions 7 € § have to be of the formz = (p,q) —s (p,q’)-
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Another extension to population protocols is the mediated variant. The idea is to introduce states in
all edges of the communication graph. Since the most general graph is the complete graph, each pair of
agents is given such a state. In the context of an immediate observation communication mechanism, it is
not reasonable to assume a storage that both agents can write to. Therefore, we introduce a pair of edge
states for each pair of agents. Edge states are always initialized with the same value.

Definition 6 (Mediated Population Protocols [12]). A mediated population Protocol P is a 7-tuple P =
(0,%,8,50,1,0,6) where Q,X,I and O are analogous to population protocols. The set of edge states S
includes the initial edge state sy € S and the transition function & : (Q x S)* — (Q x S)? incorporates the
edge states for each pair of agents.

Configurations in mediated population protocols cannot be represented by simple vectors. We need
to introduce matrices as configurations containing the agent states on the diagonal and the states of the
edge between agents a and b in fields C,, (side of agent a) and Cp, , (side of agent b).

Definition 7 (Mediated Populations). A"*" describes the set of square matrices over A of size n X n. A
mediated population over A denoted by POPy (A) is the set of all matrices of arbitrary but finite length
over A. If m € A" we use (m)l ; to reference the element of m at column i and row j with i, j € N;n
and |m| = n to denote the length as well as the height of a square matrix m.

We can now proceed with lifting our global protocol definitions to represent mediated population
protocols as well.

Definition 8 (Global Protocols for Mediated Population Protocols). Let P = (Q,X,S,s0,1,0,5) be a
mediated population protocol. The global protocol to P is again a 5-tuple G = (C,X,7,0,—). In
contrast to global protocols for simple population protocols € = POPy; (Q) is the set of configurations
and J : POP(X) — C maps input vectors to initial configurations, initializing the diagonal fields with
the corresponding agent states and every other field with sg. The output function O : € — {0,1, L}
ignores all fields not on the diagonal and —: € — € now also changes the respective edge states.
For C,C’ € C it holds that C — C’ iff there is a transition € & and i, j € N with i # j such that
%Ij\(({c)i.,i?(C)i,j’(c)jJ‘v(C)jj) =5 ((C);;,(C");;,(C);;,(C);,;) and (C'); = (C'), for every k,I €
i,j}.

3 Modelling immediate observation in mediated population protocols

From the technical preliminaries in section 2 we can easily combine the models for mediated population
protocols and immediate observation conform communication. We get our model of population protocols
with two edge states in every edge, one per communication partner, and transitions that keeps the states
of the initiator unaltered and changes the states of the observer.

Definition 9 (Immediate Observation Mediated Population Protocols). An immediate observation me-
diated population protocol P is a 7-tuple P = (Q,X,S,so,1,0,8) where Q is a finite set of agent states,
¥ a finite input alphabet, 7 : £ — Q describes the input function, O : Q — {0, 1} is the output func-
tion, and & : (Q x §)* — (Q x S)? is referred to as transition function and describes all possible pair-
wise interactions. We also making use of a set representation of & C (Q x S)4 whenever we write
t = (p,s,q,r) —s (p',5',q,r) referring to a specific transition 7 € §. Since our model uses the im-
mediate observation communication mechanism, all transitions 7 = (p,s,q,r) —s (p/,s',¢,r') have to
satisfy p=p’ and s = s'.
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3.1 Simulating population protocols by immediate observation mediated population pro-
tocols

We can now simulate protocols in the basic population protocol model by immediate observation me-
diated population protocols. The main idea is to split every two-way communication with an initiator
and a responder into 4 steps. Two steps are required to signal the request and the acknowledgement of a
communication and another two steps are needed to finish the communication resolving all pending state
changes. Additionally, a reset transition is given for the case of an unsuccessful communication.

Simulation 10. Let P = (Q,X,1,0, ) be a population protocol. The following immediate observation
mediated population protocol P’ simulates the protocol P and is given by the tuple (Q',X', 5, s(,I’,0', ')
where

Y = I,
Q" = {LU}xQ,
S = {SinitsSponr} UQ,
S6 = Sinits
I'(c) := (U,(o))forallc €Xx,
O0'(l,q) = O(q)forall (I,q) € Q.

The states of the agents are of the form (/,q) where [ € {L,U} indicates whether the agent is locked or
unlocked and g € Q is the computation state according to the original population protocol P. For easier
referencing we call the first component of an agent state (/,q) the locking state / of this agent and the
second component its computation state g. We use the formulation of an agent being locked whenever its
locking state is L and say this agent is unlocked otherwise. W.1.0.g. we assume that {s;;, sp{,,,,} Nno =0.
The input function / maps each input symbol ¢ € X to the state (U,I(c)). The output function O’
maps each state (/,q) € Q to O(q) independent of the locking indicator /. We specify for each transition
t=(p,q) —s (p',q") of 6 with p,q,p’,q' € Q the following transitions for &'.

(D = (U, p),Sinit; (U,q), i) =5 (U, D), Sini» (L,4'),q) (1)
(D =((L.q),4,U,p)sii) —5 (L.q),q,(L.D');Sponr) )
%) = = ((L, P) sponrv(L Q) q9) —s (L, ) spvnr>(U q/)7sinil) 3)
1Y = ((0,3), Sinie, (L) Sponr) et (6,9, Simies (U, 1), Sinie) 4)
for every (x,y) € Q'
¥ = ((x3),2,(L.d).q) =5 ((%3):2U,q); i) 5)
for every (x,y) € Q'
and z € §"\ {sponr }

The locking state of each agent prohibits simultaneous participation in several different communi-
cations. Whenever an agent took part in a two-way communication ¢ in the original protocol, it could
be the observer of a transition of type (1) in the simulation. A (") transition locks the observing agent
and puts its old computation state in the edge state this agent controls on the edge with the observed
agent. This has two reasons: First it signals the interest in a communication with the other agent and
second it backups the old state for a potential future reset. If the other agent observes the change in the
edge state, it may signal the acknowledgement of requested communication by locking itself, changing



T. Prehn & M. Rotter 107

its computation state according to the transition ¢ and putting s, in its edge state. This is achieved by
transition 12). Now the two agents have to reset their edge states to s;,; and unlock themselves. The
agent mimicking the responder of the original transition 7 starts by taking ), followed by the simulator
of the original initiator taking #*). If a communication was not successful, either because the initiators
surrogate has taken an other transition with another agent in the meantime or because responder sim-
ulating agent observes its partner before it could acknowledge the communication, ) is taken. This
transition assures that in the described cases an agent can give up on a communication attempt and reset
its state, readying itself for another attempt, potentially with a different partner.

Note that if a transition = (p,q) —5 (p,¢’) is already immediate observation compliant we do not
need to add the whole set of transitions. We could instead add a slightly altered version of the original
transition as follows.

t(6) - ((va)vsinitv(U)q)usinit) _>5’ ((va)asinita(U7q/)asinit) (6)

Clearly the result would be the same. This kind of transition is only needed if the simulation needs to
be more efficient in the sense of steps needed to get to an output stable configuration. We will therefore
omit this type of transitions in our analyses.

Observation 11 (Output Changing Transitions). By definition of O’ the output of an agent only depends
on its computation state. As transitions 1), +*) do not change the computation states, only transitions
tM, +@) and +® can have an impact on the output of an agent. Since Simulation 10 is an immediate
observation protocol, this agent has to be the observer of such transitions.

Observation 12 (Number of Started Conversations). Every agent has at most one started and not yet
concluded conversation at any point in time. Starting a conversation by taking transition ¢(!) as respon-
der brings an agent to a locked state. Therefore, no other conversation can be started or acknowledged by
this agent until the conversation is concluded with transition t®) or aborted with transition &), Acknowl-
edging a conversation by taking transition 1) as responder also brings an agent to a locked state. Again
no other conversation can be started or acknowledged by this agent until the conversation is concluded
with transition 7*) or aborted with transition (%)

Observation 13 (Point of no Return). Every occurrence of transition t(i)

eventually followed by transitions t( ) and t( ). After execution of t( ) agent i is locked with g € Q in
its edge state to j and agent j is locked Wlth Sponr 1N it edge state to l From Observation 12 we know
that neither i nor j can be observer of any transition with some agent different from i and j. From
the transitions with i and j only t( ) is enabled and will be taken at some point because of the fairness
assumptions in population protocols After that agent j is still locked with s, in its edge state to i.
Therefore, j can only be observer of transitions 1®),#*), or #5). Again from Observation 12 we know

that only ti(j')

with acting agents i and j is

is possible.

4 Computational power

We now show that our model can compute all predicates computable in population protocols by giving a
translation, that relates configurations from a protocol to configurations from its simulation representing
the same state of computation. Additionally, we identify requirements imposed on such a translation to
be helpful in proving the equality of computed predicates. We will ultimately show how this proof is
executed.
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4.1 Translation and criteria

We provide a translation, that constructs configurations in mediated population protocols from configu-
rations of population protocols by giving all agents an unlocked state and setting all edges to the neutral
Sinit State.

Definition 14 (Translation of Configurations). Let P = (Q,X,1,0,8) be a population protocol and P’ =
(0.X,8,s;,I',0',8") aimmediate observation mediated population protocol constructed from P using
Simulation 10. By [-] : POP(Q) — POPy; (Q') we denote the translation of configurations C € POP (Q)
in the population protocol into configurations D € POPy (Q’) from the mediated population protocol.
This translation is defined as follows:

(U7 Q1) Sinit e Sinit
s. . U’ . .
[(q0,q1,---,qn)] = "flf ( . )
' : Sinit
Sinit e Sinit (Uyqn)

From the criteria for good encodings defined by Gorla [11] we adopt the notion of operational corre-
spondence.

Definition 15 (Operational Correspondence). A translation [-] : POP (Q) — POPy (Q') is operationally
corresponding if it is
(1) (operationally) complete, i.e., for all C,C’ € POP(Q) with C —* C” it holds that [C] —* [C'],
and

(2) (operationally) sound, i.e., for all C € POP(Q) and D € POPy; (Q') with [C] —* D there exists a
C' € POP(Q) with D —* [C'] and C —* '’

If our translation in Def. 14 instantiated with concrete population protocol P and mediated popula-
tion protocol P’ is operationally corresponding, we get that every configuration reachable in P is also
reachable in P’ and vice versa.

Definition 16 (Input/Output Correspondence). Let P be a population protocol, P’ be a mediated popula-
tion protocol and G, G’ be the global protocols to P and P’ respectively. A translation [-] : POP(Q) —
POPy (Q) is I/O corresponding if it is

(1) input corresponding, i.e., for all V. € POP(X) it holds that [J (V)] =7 (V), and
(2) output corresponding, i.e., for all C € POP (Q) it holds that O (C) = O’ ([C]).

Input/Output Correspondence gives us the assurance that input and output functions of the protocols
related by a translation behave in a similar way. If it holds, translating an input configuration of the
original protocol or directly using the input function of the corresponding mediated population protocol
yields the same result. Additionally, configurations are always translated into configurations with the
same output.

Definition 17 (Output Stability Preservation). Let P be a population protocol, P’ be a mediated popula-
tion protocol and G, G’ be the global protocols to P and P’ respectively. A translation [-] : POP(Q) —
POPy (Q') is output stability preserving if for each C € POP (Q) it holds that [C] is output stable iff C
is output stable.

From the output stability preservation we get that each output stable configuration is translated into
a configuration also being output stable.
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Lemma 18. Let P = (Q,X,1,0,8) be a population protocol and P' = (Q',X',S',s(,1',0’,8") a mediated
population protocol. If there is a translation [-] : POP(Q) — POPy (Q') that is operationally corre-
sponding, input/output corresponding, and output stability preserving, then P and P' compute the same
predicate.

Proof. Since the translation is input corresponding every initial configuration in P has a correspond-
ing initial configuration in P’. From the operational correspondence we know that a configuration is
reachable from an initial configuration in P’ iff it has a corresponding configuration reachable from the
corresponding initial configuration in P. With output correspondence both configurations clearly have
the same output and, since the translation is output stability preserving, the output is either stable in both
configurations or in none. Therefore, the protocol P calculates the same semilinear predicate as P'. [

4.2 All semilinear predicates can be computed by immediate observation mediated pop-
ulation protocols

Lemma 19. The translation [-]| given in Def. 14 is operationally corresponding for any population pro-
tocol P = (Q,X,1,0,0) and the mediated population protocol P' = (Q',X',§',s;,,I',0',8") constructed
using Simulation 10.

Proof. To prove operational completeness assume that C,C’ € POP(Q) with C —* C’. Since —*
is defined as reflexive-transitive closure of — we get that C;,Cs,...,C, € POP(Q) exist with C —
C; —Cy—> ... —» C, — C'. We can always simulate a step C; — C;1 in P by making 4 steps in P’.
Assume that the step is due to transition ¢ € 0 and agents at a and b are acting as initiator and responder

(1) (2 3) (4)
respectively in C; Lady Ci+1. This can be simulated as [C;] tl%b C? tbﬂa Cl-3 t’%b ct t}%a [Cit1] and thus
[C;] —* [Ci11] holds. Thus, [C] —* [C1] —* ... —* [C.] —* [C'] exemplifies [C] —* [C].
To prove operational soundness assume that C € POP(Q) and D € POPy (Q') with [C] —* D. We
construct C’ as follows. For this assume (D);; = (I;,d;).

() = {g , if there is exactly one j € N;D"# such that (D); ; = g and (D) ; # Sponr

d; ,otherwise

We can show that D —* [C'] by taking the appropriate transitions for all i, j € NQ D| with i # j as
follows. B

if (D)ij=gq and (D);; = Sponr take transitions tj(.i),tf]‘.)
if (D); j =sinir and  (D);; =Sponr take transition tl-(j->

(5)

if (D)ij=gq and (D);; # Sponr take transition ¢ i

otherwise do nothing

Since [C] —* D by assumption and D —* [C'] we get that [C] —* [C']. We can construct C —

C; — C; —» ... — C' from the path [C] — Dy — D, — ... — [C’] as follows. Whenever there
2

is astep D, t'% Dy, in this path, take transition C, BN C,, in the path of C —* C'. By Observation 12 we

get that each such step of type (2) is eventually followed by transitions of type (3) and (4) and since [C']

has only edge states s;,;, this has to happen before [C'] is reached. Therefore, there exists a C’ € POP (Q)

with D —* [C'] and C —* C'. O
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Lemma 20. The translation [-] given in Def. 14 is I/O corresponding for any population protocol
P=(Q.%,1,0,0) and the mediated population protocol P' = (Q',X',§',s;,,I',0’,8") constructed using
Simulation 10.

Proof. The input function I’ of P’ makes use of the input function / of P by putting an agent in the
unlocked state (U,I(0o)) iff the same agent would be in state /(o) in P. Also every edge state is initialized
with s;,;,. This matches [-] that translates each state ¢ to (U,q) and sets every edge state to s;,;. Thus,
[7(V)] =9 (V) and [-] is input corresponding.

The output function O’ of P’ makes use of the output function O of P by ignoring the locking state of
an agent and giving back the output of O for the computation state. As seen above, [-] translates every
agents state g to a tuple with g being the second component i.e. its computation state. For each agent a

it holds that O ((C),) = O ((D) a a). As O aggregates the outputs of all agents, which are the same in P
and P, O(C) = O’ ([C]) and consequently [-] is output corresponding. O

Lemma 21. The translation [-] given in Def. 14 is output stability preserving for any population protocol
P =(Q,%,1,0,0) and the mediated population protocol P' = (Q',X',§',s(,I',0’,8") constructed using
Simulation 10.

Proof. Let C be a configuration that is output stable in P. Assume towards contradiction [C] is not
output stable in P’. From the definition of output stability follows that a configuration D exists with
O’ ([C]) # O’ (D) and D is reachable from [C], i.e. there is a path [C] — Dy — D, — ... — D.
W.l.o.g assume that D is the first such configuration in this path, i.e. O’ ([C]) = O’ (D;) for each such D;.
Since O aggregates the values of O’ for each agent and because P’ is an immediate observation protocol,
there has to be a single agent a that has changed its output because of the transition leading to D. From
Observation 11 we know that this transition has to be of type (1), (2), or (5) and a has to be its observer.

If it is (1) or (2) we can construct a configuration in the same way as C’ was constructed in the proof
of operational soundness for Lemma 19. This C’ is reachable from C in P and [C’] is reachable from
D in P'. Note that on the path from D to [C'] agent a is never an observer of any transition with type
(1), (2), or (5) and therefore does not change its output. Because our translation maintains outputs for

each agent 0((C),) = 0’ (([CD)y) #0' (D)) = O ((IC'])4) = O((C"),) holds. This resuls in
O (C) # 0O (C'"), a contradiction to C being output stable.

If the transition agent a took was of type (5), there has to be a configuration along the path from
[C] to D where agent a took a transition of type (1). Observation 12 states that there has to be such a
transition in advance and by the definition of [-] this has to be after [C]. But if the transition of type (5)
changes the output of a, the corresponding type (1) transition must also have changed it, contradicting
our assumption of D being the first configuration with an output different from O’ ([C])). This is due
to a type (5) transition resetting the computation state of an agent back to the state it had before the
corresponding type (1) transition.

For the other direction assume towards contradiction [C] is output stable in P’ and C is not output
stable in P. Then there exists a configuration C that is reachable from C with O (C) # O (C). Because []
is operationally complete by Lemma 19 it holds that [C] is reachable from [C]. From the output corre-
spondence of [-] in Lemma 20 follows that O’ ([C]) = O (C) # O (C) = O’ ([C] ). This is a contradiction
to the output stability of [C] in P’ O

Theorem 22. For any population protocol P = (Q,%,1,0,0), the immediate observation mediated pop-
ulation protocol P’ constructed from P using Simulation 10 calculates the same semilinear predicate.
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Proof. We have shown that [-] from Definition 14 is operationally corresponding, I/O corresponding and
output stability preserving in Lemmas 19, 20, and 21. By Lemma 18 the statement directly follows. [

Corollary 23. Immediate observation mediated population protocols can compute every semilinear
predicate and are therefore at least as expressive as population protocols.

4.3 Immediate observation does not restrict the computational power of mediated pop-
ulation protocols

The approach in the previous sections can be used to prove that two-way communication in mediated
population protocols does not add to the computational power of the model. To achieve this we define a
simulation of mediated population protocols into the variant with immediate observation communication.

Simulation 24. Let P = (Q,X,S,50,1,0,0) be a mediated population protocol. The following imme-
diate observation mediated population protocol P’ simulates the protocol P and is given by the tuple
(0.X,8,s;,I',0',8") where

Yy o= X
Qo = {LU}xQ,
S" = ({Sinit»Sponr U (Q X S)) X S,
so = (Sinis50),
I'(c) = (U,I(o))forallo X,
O'(l,q) := O(q)forall (I,q) € Q.

W.l.0.g. we assume that {sim-,,spon,} N(QUS) = 0. In contrast to Simulation 10 the edge state has two
components. The first component again signals the current state of the simulated communication and
serves as a backup for the condition prior to the communication. Here we need to save both, computation
state and edge state. The second component represents the actual edge state present in the original
protocol. We specify for each transition t = (p,r,q,s) —s (p',7,¢,s") of 6 with p,q,p',q' € QO and
r,s,r,s' € S the following transitions for 6'.

(D = ((U,p), (sii»7), U,q), (Sinit+S)

(D =((L,q), (4:9):5), (U,p), (sinit:7)
(D =((L,p), Sponrs7), (L,d), ((g,5),5)
(9 = ((x,y), (i), (L r)

U,p); (inits7), (Lyq'); ((4:5),5))
.q), ((¢:5),8"), (L, P"), (Sponrs7"))
0')s Sponrs ™), (U4, (Sinie»s"))
(,Y)s (Sinie,s")s (U, ), (Simie, 7))
for every (x,y) € Q'

I(S) - ((x,y), (V,W), (L7ql)7 ((%5)7*9/)) s ((x,y), (V,W), (U7‘I)a (Sinihs))
for every (x,y) € Q'

and (V,W) es \ {(Sponmr/)}

) ((
) (L
) —s (L
) (

q
P )a (Sponr,

This simulation follows the same ideas as the Simulation 10. The only difference is the edge state of
the original protocol that needs to be taken into account by transitions of the simulation and that needs to
be backed up for possible future resets. We can now give a translation similar to Definition 14 required
for our line of argumentation.
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Definition 25 (Translation of Mediated Configurations). Let P = (Q,X,S,so,1,0, ) be a mediated pop-
ulation protocol and P' = (Q', X', §',s;,,I',0’,8’) a immediate observation mediated population protocol
constructed from P using Simulation 24. By [-] : POPv (Q) — POPy (Q') we denote the translation of
configurations C € POPy (Q) in the population protocol into configurations D € POPy(Q’) from the
mediated population protocol. This translation is defined as follows:

qr s21 .. Sn1 U,q1)  (Sinit>$2,1) - (Sinit»Sn,1)
Sip @ - ; _ | Gairss12) (U, q2) :

: ’ ' Snn—1 (Sinihsn,n—l)
Stn oo+ Sn—1n dn (Sinitasl,n) e (sinitvsnfl,n) (U7Qn)

With this simulation and translation we conjecture that each mediated population protocol can be
simulated by a immediate observation mediated population protocol that shares several attributes, espe-
cially computing the same predicates.

Conjecture 26. For any mediated population protocol P = (Q,X,S,s0,1,0, ), the immediate observa-
tion mediated population protocol P’ = (Q',X/,',s(,I’,0’, ') constructed from P using Simulation 24
calculates the same semilinear predicate.

5 Conclusion and future work

We have given a proof for the model of immediate observation mediated population protocols to compute
all semilinear predicates. Thus they are as least as powerful in computation as population protocols.
Additionally, we have given arguments why we believe this model is even equivalent to the model of
mediated population protocols with two-way communication. Consequently allowing the initiator of a
transition to change its agent and edge states does not contribute to the computational power. The proof
of our Conjecture 26 can hopefully be done in our future research.

Our approach asks for a simulation and a translation which might seem overly complicated for a
proof of equal computational power. But additionally several other attributes, besides the computation
of the same predicate, carry over from the one protocol to the other if our Simulation 10 and translation
from Definition 14 are used. Consider for example livelock freedom, i.e. no configuration is reached that
has no successor besides itself. The simulation can reach a livelock iff the original protocol can reach
such a configuration. This can easily be derived from the operational correspondence in Definition 15.
In the context of protocols computing some predicate, a livelock is only possible if an output is reached.
Otherwise the requirements for a well-specified protocol are not met. A livelock can be a desirable state
as the computation can clearly be stopped in such a configuration. If the protocol does something else
than computing a predicate, livelocks can be even more important to be reached or avoided, depending
on the situation.

Another example is the analysis of a required communication structure. Whereas some protocols
need a full interaction graph to carry out a computation, a path structure would suffice for others to get a
correct result. The interaction graphs supporting a protocol do also support its simulation.

As a last example consider failure resistance [9]. If a protocol is designed to tolerate a certain
number and type of faults, the simulation of this protocol could be capable of a comparable behaviour.
This however depends on the type of failure and the chosen strategy to handle it. Crash failures, where
an agent may leave the population at any time, should be manageable in the simulation with the same
mechanisms as the original protocol did. Message losses could lead to new problems in the simulation
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like deadlocked communication partners. Some error handling and error masking strategies could lead
to the number of failures tolerable by the simulation being reduced in contrast to the original protocol.

A study on desirable attributes and how they carry over from one protocol to another by our simula-

tion is something we wish to address in the future.
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