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Preface

This volume contains the proceedings of the Ninth Workshop on Fixed Points in Computer Science
(FICS 2013) which took place on September 1st 2013 in Torino, Italy as a satellite event of the conference
Computer Science Logic (CSL 2013).

Fixed points play a fundamental role in several areas of computer science. They are used to jus-
tify (co)recursive definitions and associated reasoning techniques. The construction and properties of
fixed points have been investigated in many different settings such as: design and implementation of
programming languages, logics, verification, databases. The FICS workshop aims to provide a forum
for researchers of the computer science and logic communities who study or apply the theory of fixed
points.

The editors thank all authors who submitted papers to FICS 2013, and program committee members
Andreas Abel, Lars Birkedal, Javier Esparza, Neil Ghani, Dexter Kozen, Ralph Matthes, Paul-André
Mellies, Matteo Mio, Luke Ong, Pawel Parys, Luigi Santocanale, Makoto Tatsuta and Wolfgang Thomas
for their work in selecting papers.

Apart from presentations of accepted papers, we are delighted that FICS 2013 featured three invited
talks: Anuj Dawar on Fixed point approximations of graph isomorphisms, Nicola Gambino on Cartesian
closed bicategories and Alexandra Silva on Rational fixed points in programming languages. Many

thanks to them for having accepted the invitation.

Finally, we would like to express our deep gratitude to CSL 2013 for local organization and to
EACSL, INRIA and Université Marne-la-Vallée for funding FICS 2013.

David Baelde and Arnaud Carayol
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Non-monotonic Pre-fixed Points and Learning

Stefano Berardi Ugo de’Liguoro

Universita di Torino

stefano.berardi@unito.it ugo.deliguoro@unito.it

We consider the problem of finding pre-fixed points of interactive realizers over arbitrary knowledge
spaces, obtaining a relative recursive procedure. Knowledge spaces and interactive realizers are an
abstract setting to represent learning processes, that can interpret non-constructive proofs. Atomic
pieces of information of a knowledge space are stratified into levels, and evaluated into truth values
depending on knowledge states. Realizers are then used to define operators that extend a given
state by adding and possibly removing atoms: in a learning process states of knowledge change
non-monotonically. Existence of a pre-fixed point of a realizer is equivalent to the termination of
the learning process with some state of knowledge which is free of patent contradictions and such
that there is nothing to add. In this paper we generalize our previous results in the case of level 2
knowledge spaces and deterministic operators to the case of w-level knowledge spaces and of non-
deterministic operators.

1 Introduction

A fundamental aspect of constructive interpretations of classical arithmetic is how information is gath-
ered and handled while looking for a witness of the proved formulas. This has been understood by
several authors as a problem of control and side effects, although intended in different ways. Building
over Coquand’s semantics of evidence of classical arithmetic [7] and its representation as limiting inter-
action sequences [3], we have developed the concept of interactive realizability in [2, 4], which consists
of interpreting non constructive proofs as effective strategies that “learn” the witness.

According to [5], learning the truth of an arithmetical statement can be abstractly presented as a
process going through steps, which we call states of knowledge, such that a (candidate) witness can be
relatively computed out of them. These are certain subsets of a countable set A whose elements are
pieces of evidence that we dub answers. On the other hand A is equipped with an equivalence relation ~
whose equivalence classes [a].. are questions; since we allow that in a state of knowledge each question
has at most one answer, we say that X is a state if for all a € A, the set X N [a]~. is either a singleton or
empty. We also denote by S the set of states.

Over states we can define a “query map” q([a]~,X) € Z,(A), taking a question [a]., a state X € S,
and returning the set X N[al., that is a singleton {b} if b € X is the only answer to [a].; the empty set
otherwise. We call state topology the smallest topology making the query map continuous. Equivalently
the state topology is generated by the canonical sub-basics A, = {X € S|a€ X} and B, ={X €S|
XNla). =0} fora € A.

Knowledge is improved by means of “realizers” r : S — &7;,(A) that are functions guessing a finite
set of new information r(X) with respect to the current state of knowledge X. We assume that r(X) C A
is always a finite set, so that a step of an “algorithm” to compute with r consists of proceeding from some
X to X' UY, that we treat here as a reduction relation X—{X'UY, where X’ C X and 0 # Y C r(X)\ X
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2 Non-monotonic Pre-fixed Points and Learning

have to satisfy certain requirements. Under this respect if #(X) C X, namely X is a pre-fixed point of r,
then the computation terminates in the state X.

In [2, 4] we have studied the case where A is essentially made of decidable arithmetical statements
which are known to be true, and considered the case where r(X) is either a singleton or it is empty. In this
case X X Ur(X) if r(X) # 0, and the sequence of reductions Xo—1X;—1 - - - out of some Xj is uniquely
determined by r and the sequence Xy C X; C --- is monotonic. Hence we have proved termination by
applying Knaster-Tarski theorem.

We call deterministic the case in which r(X) is at most a singleton. A first generalization of the
picture is when r(X) may include more than one answer, which is the non-deterministic case. Then r(X)
is not required to be a state, and the next state is X UY, for some non-deterministic choice of a subset
Y C r(X) of pairwise unrelated answers w.r.t. ~. A further extension is when X' is a proper subset of X
in the reduction step X—/X’UY, then loosing the monotonicity of the sequence Xy, Xj,.... This is the
case when the truth values of answers are logically related, and adding some new answer may turn to
false the truth values of some previously true answers. In this case whenever we add some answer we
have also to remove some, and the fixed point result becomes difficult to prove.

To model logical dependencies of answers we assume that A is “stratified” by a map lev: A — N,
splitting the answers into @ levels, in decreasing order of “reliability”. As we explained in [2, 4], we
need w-levels of answers to describe the constructive content of classical proofs of arithmetic. Logical
dependence means that an answer of level n (e.g. a universal statement) that has been considered as
true so far, might be falsified by discovering that an answer of level < n (a counterexample) should
be true. Hence we relativize the truth value of answers to a state (to which they do not necessarily
belong) using a function tr(a,X) that only depends on the answers in X having a smaller level, that is
tr(a,X) =tr(a,{x € X | lev(x) < lev(a)}). Further we require that tr(a,X) depends continuously on the
state parameter w.r.t. the state topology. This is how we abstractly capture the idea that this should be
a relative computable function, which will be recursive in case of a finite set X of answers. Instead, we
add no level restriction on a realizer r: if X € S, then the answers of level n in r(X) may depend on the
answers of any level in X, including the answers of level > n in X. Finally we also say that X € S is
sound if tr(a,X) =T for all a € X. Only sound pre-fixed points are of interest.

The fact that the truth value of an answer w.r.t. a state X only depends on truth values of lower
level answers in X suggests the following non-deterministic algorithm to find a sound pre-fixed point
of the function r: we pick one or more answers with the same level n from r(X) and dropping all
answers of level > n from X. We express the algorithm through the relation X—{X’UY whenever
X' ={xeX|lev(x) <n}and Y C r(X) is a finite homogeneous state made of answers of the same level,
say n, which is considered as the level of the state. Then we establish the main result of the paper, namely
that if r is a realizer (see Definition 2.1 below) then any reduction —" out of some sound X terminates,
within a finite number of steps, by a sound pre-fixed point of r, which is finite if Xy is such.

We have a final warning about the proof in this paper. It is possible to show that our termination
result implies the 1-consistency of First Order Arithmetic, and therefore it is not provable in it. Thus, no
elementary proof of our result is possible, although we have found several non-elementary proofs. The
proof included here is classical and it uses set theory, choice axiom and uncountable reduction sequences:
none of them is strictly required, but we trade off logical complexity for readability. We could remove
ordinals, choice axiom and even Excluded Middle from the proof, at the price of a harder (and longer)
argument.

The plan of the paper is as follows. In §2 we define a reduction relation on states depending on a
realizer r, which is the non-deterministic algorithm to search a pre-fixed point of r. In §3 we prove that
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the set of states from which this algorithm always terminates is an open set in the state topology. In §4
we use this fact to prove that if there is some reduction sequence of length @ out of some state, then there
is a reduction sequence of length @; out of the same state. Eventually, in §5, we prove that reduction
sequences of length @; do not exist, so that we conclude that all reduction sequences of our algorithm
are of finite length. Then in §6 we discuss some related works and we conclude.

2 A non-deterministic parallel algorithm for finding pre-fixed points

For convenience we recall the basic definitions from [5] and the introduction above. We are given a
countable set A and an equivalence relation ~ over A; the map lev : A — N respects ~ that is lev(x) =
lev(y) if x ~y; X C A is a state if for all x,y € X, x # y implies x 7 y; the set S of states is taken with the
state topology, generated by the sub-basics A, = {X € S|a€ X} and B,={X € S| X NJa]. = 0}; we
take A and 2 with the discrete topology and A x S with the product topology.

Definition 2.1 (Layered Valuation, Sound State and Realizer) A layered valuation over (A,~,lev),
shortly a valuation, is a continuous mapping tr : A X S — 2 such that

tr(a,X) =tr(a,{x € X | lev(x) < lev(a)}).

A state X € S is sound if tr(x,X) =T for all x € X.
A realizer w.r.t. the valuation tr is a continuous map r: S — Z;,(A), where 2;,(A) is taken with the
discrete topology, which is such that:

VX eSVaer(X).XN[a).=0 & tr(a,X)=T.
Given n € N and a state X we define the subsets of X:
Xlan={xeX]|lev(x) <n}, X|spn={xeX|lev(x)>n}, X|_,= {xeX|lev(x)=n}.

We also write X [<, = X [, UX |—,. We denote by S;, the set of finite states; let s,s’,¢,¢',... range
over S;,.

Definition 2.2 (Reduction) We say that a state s € S;, is homogeneous if s # 0 and for some n € N,
lev(x) = n for all x € s; then we write lev(s) = n. For any homogeneous s of level n we define a map
Ry: S — S by:

RS(X) F<n =X r<n> R‘S(X) r:n =X r:n Us, R‘S(X) f>n = 0.

Then, given a realizer r and an homogeneous s we define the binary reduction relation over S by:
XY <sCr(X) & Ry(X) =Y.

We say that X reduces to Y in one step and we write X —Y if X—*"Y for some homogeneous s. As
immediate consequence of the definitions of —1, tr and r we establish:

Lemma 2.3
1. X=>Y & X €S, =Y €S,
2. XY & X is sound =Y is sound.
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3. —3Y. XY < r(X) C X.

A reduction sequence of length n from X to Y is a sequence Xj, ..., X, such that X = Xo—X;—1 ...
—1X, =Y. An infinite reduction sequence out of X is an endless sequence X = Xo—1X1—>]... > X,...
of reductions. For any integer n € N we say that X reduces to Y in n steps and we write X —Y if there is
a length n reduction sequence from X to Y. We write X —"Y if X—Y for some n € N.

We observe that X is a pre-fixed point of r, that is 7(X) C X, if and only if there is no homogeneous
set s C r(X) such that X N's = 0, that is if and only if for all Y € S we have X /Y. If ~ is decidable and
both r and tr are relative recursive then we can see Y —Z as the one step relation of a non-deterministic
algorithm computing a pre-fixed point X of r starting with some Xy € S; then such an X, if any, can be
seen as a result of the computation starting with Xy. By lemma 2.3 we know that if we move from some
finite sound state sg, e.g. 0, the reduction relation —/ generates a tree with finite and sound states as
nodes, which is finitary because r(X) is finite even for infinite X so that there can be only finitely many
homogeneous s C r(X). In particular the relation X—1Y is decidable for finite X and Y, and relative
recursive in general.

We say that X € S is strongly normalizing if all reduction sequences out of X are finite. We denote
by SN the set of all strongly normalizing states. Our thesis is that SN = S, namely that the reduction tree
out of any X is finite. This implies that if s € S, and s is sound we can effectively find a finite and sound
pre-fixed point ¢ of r by reducing s.

3 The set of strongly normalizing states is open

The first step toward establishing SN = S is to prove that SN is open in the state topology. To prove this
we first characterize the reduction relation.

Lemma 3.1 (Reduction) Lets € S;, be any homogeneous state of level n. Assume X,Y € S and X—°"Y .

Letm e N.
1. X [-,CY [=,
2. X /57X
3. Ifm<n, then X [<n1CY [<mt1
4 IfX [<m1 €Y [<ms1, thenY [_,,= 0.
S5. If X [<m=Y l<m thenm < n.
6. If X [<cm=Y [<m then X [cmn1CY [<mii
Proof
1. By definition of X—*"Y we have s 20, XNs=0and Y [_,= X [-, Us. We conclude X [_,C

Y [y

2. By point 1, if X—*"Y then X [_,C Y [—,, hence Y # X.
3. Assume m < n in order to prove X [<,+1C Y [<ms1. We reason by cases.
(a) Let m < n. Then m+ 1 < n. By definition of X—*"Y we have X [.,=Y [.,, and from
m+1 <nwe conclude X [ 1 1= (X [<4) [<my1= (Y f<n) l<mt1=Y [<m+1.
(b) Let m =n. Then by point 1 above and X [.,=Y [, wehave X [cpni1=X [<nt1CY [<cnr1=
Y r<m+l
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4.
5.

6.

By point 3, if X [/ 12 Y [<ms1, thenm > n. We deduce Y [-,C Y [5,=0.

Assume X [.,=Y [« in order to prove that m < n. If it were m > n, we would deduce X [_,=
(X T<m) [=n= (Y [<m) |=n=7Y [=,, contradicting point 1. Thus, m < n.

We apply points 5 and 3 in this order.

The next step is to prove that SN is open in the state topology. For all n € N, n > 0 we define
SN, = {X € S|VY € S.X /»Y} the set of states from which there is no reduction sequences of length n
from X. The reduction tree T(X) = {Y € S|X—"Y} from X € S is finitely branching: from any node Y,
the number of children of Y has upper bound the number of subsets of r(Y), which is finite. By Konig’s
Lemma, T(X) is finite if and only if all branches of tree (all reduction sequences from X) are finite. Thus,
T(X) is finite if and only if there is some upper bound n € N to the reduction sequences from X. This
implies SN = |J,,cn SN,,. Therefore in order to prove that SN is open it is enough to prove that all SN,, are

open.

Lemma 3.2 (SN is open) Assume s € S;, is any homogeneous state. Let I,1y,1, € Z7;,(A) be finite sets
of answers. Assume X, Y, X" Y’ € S.

1. Forallae€ A, {X € S|la & X} is open.

2. If (Io, 1) is a partition of I, then {X € S|(INX =I)) N\(I\X =1,)} is open.

3. Ry : S — S is a continuous map.

4. SN is open.

5. Foralln €N, SN, is open.

6. SN is open

Proof

1. Assume a € A and O = {X € S|a &€ X}. The set O consists of all states including some element

. Assume s € S;, is an homogeneous state of level n. Assume a € A and A,{Z € S|la € Z}, B,

of [a].. different from a, or having empty intersection with [a].. Thus O is the union of all sets
{XeS|bg X} forb € [a]. and b 4, and of the set {X € S|X N[a]. = 0}. All these sets are basic
open of the state topology, therefore O is an open set of the state topology.

Assume that (Ip,7;) is a partition of 7 and O = {X € S|INX =) AN(I\X =1;)}. Since both
(INX,I\X) and (Iy, 1)) are partitions of /, the condition (INX = Iy) A (I\ X =1I,) is equivalent to
(INX D 1Ip) AN(I\X D I). Thus, O is equal to the intersection of all sets {X € S|a € X}, for any
a € Iy, and of all sets {X € S|a ¢ X}, for a € I;. These sets are finitely many because / is finite,
and are either sub-basic open, or are open by point 1 above. Thus, O, being a finite intersection of
open sets, is open.

{Z € S|ZNa].} are sub-basic open. We have to prove that if ¥ € A, then Ry !(A,), R; ' (B,) are
open sets. We prove this statement by case analysis.

(a) Iflev(a) > nthen R, '(A,) = 0.

(b) Ifa € sthenR; !(A,) =S.

(c) Iflev(a) <nanda ¢ sthenR;!(A,) = A,.

(d) Iflev(a) > nthenR;!(B,) =S.

(e) If sNa]. # 0 thenR; ' (B,) = 0.
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(f) Iflev(a) < nand sN[a]. = 0 then R, (B,) = B,.

4. SN is the set of states reducing to no state, equivalently, the set of states X € S which are pre-fixed
points of r. Thus, we have to prove that if X is a pre-fixed point of r, then there is some open set
X € Osuch that all Y € O are pre-fixed points of . Let O' = r~ 1 ({r(X)}), 0" ={Y € S|(r(X)NY =
r(X))A(r(X)\Y =0)},and O = 0'N0O". O is open because r: S — Z,,(A) is continuous and
P, (A) has the discrete topology. O” is open by point 2, with Iy = r(X) and I; = 0. Thus, O is
open. By definition, X € O’ =r~!'({r(X)}) and X € 0" = {Y € S|[Y Nr(X) =r(X) AY \ r(X) = 0},
because r(X) C X. Thus, X € O. For any Y € O we have by definition of O: r(Y) = r(X) and
r(Y)=r(X) CY, as we wished to show.

5. We prove that SN,, is open by induction over n € N,n > 0. The case n = 1 is the previous point.
Assume SN,, is open in order to prove that SN, | is open. Let X € SN,,,;: we have to prove that there
is some open set X € O C SN,,4;. r(X) \ X is finite, therefore there are finitely many homogeneous
states s1,...,sx C r(X)\ X. These states define exactly all reductions from X: X—{""X;, for i =
1,...,k. From X € SN,,;; we deduce X; € SN, for all i = 1,...,k. Let O; = RS_I_I(SN,,): O; is
open by point 3 above, and X € O; because Ry,(X) € SN, by the assumption X € SN,;. Let
O =r1{r(X)}), 0" ={y €S|(r(X)NY =r(X)NX)A(r(X)\Y = r(X)\ X)}. By definition
we have X € O', X € O”. O is open because r is continuous, and O” is open by point 2. Let
0=0'N0"N0OIN...N0O0,: then X € O and O is open. For all Y € O we have r(Y) = r(X),
and r(Y)\Y = r(X)\ Y = r(X) \ X. Therefore the reductions from ¥ are exactly in number of k:
Y—»\""Y;foralli=1,...,k. Wehave Y; € SN, by 0 C O; = Rs_,-l (SN,). We conclude that Y € SN, 1,
as wished.

6. SN is the union of all SN,,, therefore is a union of open sets and it is open.

4 Reduction sequences of transfinite length

The next step is to prove that if there are states in S\ SN, then there are reduction sequences of any
transfinite length. From this fact we will derive a contradiction.

We denote the class of ordinals with ON, and ordinals with Greek letters o, 8,Y,A, U, .... We recall
that a limit ordinal is any ordinal A such that for all @ < A we have o+ 1 < A. @, the first infinite
ordinal, and @, the first uncountable ordinal, are limit. ®; has the additional property that any l.u.b. of
some countable set I of ordinals all < @, is some & < .

A sequence of length @ on S is any map o : [0, x[— S. We represent sequences of length a with
indexed sets 0 = {Xg|B < o}. When o = some limit ordinal A, the limit of a sequence {Xg|B < A}
is defined as limg_,, Xg = Ug) Ng<y<p Xy. To put otherwise, limg_,, Xp consists of all answers which
belong to the states of {Xg|B < A} from some B on. A limit sequence of length a is any sequence
{Xp|B < o} of length o such that for all limit ordinal < & we have X) =limg_,; Xg. A limit reduction
sequence of length o is any limit sequence of length o such that for all 8 + 1 < & we have Xg—1Xg. ;.
We will prove that if S\ SN # 0, then there is some limit reduction sequence of length ®; over S\ SN.
Then we will prove that limit reduction sequence of length @, over S (and with more reason, over S\ SN)
cannot exists. The conclusion will be that S\ SN = 0, as wished.

If X € S\ SN, then there is some infinite reduction sequence

X =Xo—>1X1—~>]...21Xp...
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from X. Thus, there is some X; such that X —1X; and there is some infinite reduction sequence from X,
hence X —{X; for some X; € S\ SN. By choice axiom, there is some choice map

next : (S\SN) — (S SN)

such that X —/next(X) for all X € S. next is the empty map if SN = S. From now on, we assume to be
fixed a choice map next as above.

Using next, from any X € S\ SN we may easily define an infinite reduction sequence next”(X) all
in S\ SN. We will prove that we may extend it to a limit reduction sequence on S\ SN of length @;. This
is because closed sets in the State Topology are closed by limit, and S\ SN is a closed set.

In this part of the proof we need the notion of “definitively true”.

Definition 4.1 (Definitively true) Assume A € ON is limit and 6 = {Xg|B < A} is any sequence of length
A.

1. o satisfies Xy C Xyq1 definitively if 3B < a.Vy € [B,A[.Xy C Xyp1.
2. o is definitively weakly increasing if 3 < a.Vy,6 € [B,A[.(y < 6) = Xy C X;.
3. © is definitively constant if I < a.Vy € [B,A[Xp = X;.

The next step is to prove some easy properties of limit reduction sequences.

Lemma 4.2 (Limit Reduction sequences) Assume A € ON is a limit ordinal and 6 = {Xq|0t < A} is
any limit sequence on S of length A. Let L = limy_, 4, Xy.

1. If for some a < A and all o0 < B < A we have Xo C Xp, then Xo C L.

2. If for some o < A and all & < B < A we have Xg C Xg_|, then © is weakly increasing from the
same Q.

3. If o is definitively increasing and A = @y, then © is definitively stationary.

4. Foranyn €N, o [,={Xq [<n | < A} is a limit sequence.

Proof
1. Assume Xy C Xy for all & <y < A. Then Xo C (Ny<yep Xy C limXy 3 Xy = L.

2. Assume a < o’ < A. We prove X,» C Xg by induction on o’ < 8 < A. Assume f8 = . Then
Xoo € Xo. Assume 8 =y+1>7y> o’ > a. Then Xy C X, by induction hypothesis and Xy C X,
by hypothesis, hence Xo C Xg. Assume 3 is limit: then Xy C Xy for all &’ <y < B by induction
hypothesis, therefore X,» C Xg by point 1 applied to the sequence {Xy|y < }.

3. Assume that ¢ is definitively increasing from some « and A = @, in order to prove that ¢ is
definitively stationary. For all a € L we have a € Xy definitively, therefore there is a first &, < ®;
such that a € Xg, C Xy for all y > &,. Let & be Lu.b. of {&;|a € L} U{a}. L is at most countable
because L C A, which is at most countable, and « and all £, are < @y, therefore £ < ;. We
proved that there is some & < & < o, such that for all @ < & <y < @; we have L C X,. From
point 1 and Xy C X; forall y < 6 < w; we have X, C L. We conclude L = X, forall £ <y < w;.

4. Assume u < A is limit. Then Xy = Ugey Na<p<pXp> hence Xy [<n= Ugcpy Na<p<pXp [<n-
Thus, o [, is a limit sequence.
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We explain now how to define a length @; limit reduction sequence in S\ SN. The crucial remark is
the following: for any answer in any element of a limit reduction sequence, either the answer belongs
to the limit of the sequence together with all answers of level less or equal, or in some future step the is
erased together with all answers of the same level (see the first point of the next Lemma).

Lemma 4.3 Assume A € ON is a limit ordinal and 6 = {Xg|B < A} is any limit reduction sequence of
length A. Let L=1img_,, Xg €S, andn € N

1.

AN

Forall oo < A and all n € N, either Xo [ <n-1C L, or there is some ot <y < A such that Xy [—,= 0
L is topologically adherent to {Xg|B < A} (that is, any open set including L intersects {Xg|B < A4 }.
IfC CSis closed and {Xg|B < A} CC then L € C

S\ SN is closed

If S\ SN # 0, then there is some length @, limit reduction sequence in S\ SN.

Proof

1.

Consider the sequence T = {Xg [<,11 |[B < A}: this is a limit sequence by Lemma 4.2.3. If
Xg [<nt1C Xp41 [<nt1 forall @ < B < A, then 7 is weakly increasing from o by Lemma 4.2.1.
In this case Xq [<n+1C Xy [<nt-1C Xy for all & <y < A, therefore Xq [ <441 C L by definition of L.
Assume instead that Xg [, 1Z Xg4 [<nt1 for some a < B < A. Then by Lemma 3.1.4 we have
Xg41 [=n=0.

Fix o < A, and assume O is any sub-basic open and L € O, in order to prove that Xg € O for some
o <P <A.Forsomeac A,eitherO=A,={X€SlaeX},orO=B,={X €S|XNJa].=0}.
We reason by cases.

(a) If O = A, we have a € L. By definition of L, for some o < A and all & < 8 < A we have
ac Xﬁ. In particular, a € Xy, hence X, € O.

(b) If O = B, we have LN [a]. = 0. Assume n = lev(a): by point 1 above there is some o <
B < A such that either Xg [<,+1C L or Xg [—,= 0. In both cases we have Xg [—,C L [,
either because Xg [—,= (Xg [<nt1) [=nC L [=p, or because Xg [—,= 0 C L [—,. We deduce
XgNla]. = (Xg [=x) Na]~ € (L [=n) N[a]~ € LN[a]. = 0. Thus, X5 € B,.

. Assume C C Siis closed and {Xg|B < A} C C in order to prove that L € C. Assume for contradic-

tion that L ¢ C. Then L € S\ C, which is open. By the previous point we have X, € S\ C for some
o < A, contradicting X € C.

4. S\ SN is closed because SN is open.

. From any X € S\ SN we may define a limit reduction sequence of length @; (and in fact of any

length). We set Xo = X, Xo 11 =next(Xg) forall a < @y and X =limg_,; Xg for all limit A < ;.
We check that the definition is correct. By assumption Xp = X € S\ SN. Assume o < @; and
Xo €S\ SN, then X411 =next(Xy) € S\ SN. Assume A < @ is limit and {Xg|B <A} C S\ SN.
Since S\ SN is closed by point 3, then by point 2 above we have X; = limg_,, Xg € S\ SN.

S A termination result from an algorithm searching fixed points

In the previous section we proved that if S\ SN # 0, then there is a limit reduction sequence of length
. In this section we will prove that no limit reduction sequence of length @; may exists, and we will
conclude that S\ SN = 0, as wished. We first prove that limit reduction sequences of length @, are
definitively stationary.
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Lemma 5.1 (Stationarity) Assume 6 = {Xq|0t < @} is any sequence on S. Let n € N.

1. For any limit reduction sequence {Xg|B < @} of length @\ on S, the sequence {Xg [, |[B < o1}
is definitively stationary.

2. Any limit reduction sequence {Xg|B < @1} of length @ on S is definitively stationary.

Proof

1. We argue by induction on n € N. Assume n = 0: then Xg [-,= 0 is definitively stationary.
Assume Xg [<, is definitively stationary, in order to prove Xg [<,1 is definitively stationary.
If Xg [<n= Xp41 [<n then Xg [<n+1C Xgo1 [<n by Lemma 3.1.6, hence we definitively have
Xg [<n+1C Xg41 [<n. By Lemma 4.2.4 Xg [, is a limit sequence, and by Lemma 4.2.2 it
is weakly increasing. It has length @y, therefore by Lemma 4.2.3 it is definitively stationary.

2. By the previous point, for all n € N there is a first @, < @ such that X [, is stationary from @,.
Let a < o by the Lu.b. of {a,|n € N}: then for all n € N, Xp [, is stationary from a. Thus, Xp
is stationary from «.

The strong termination result for the reduction relation —1 easily follows.

Theorem 5.2 (Pre-fixed point Theorem) For all states X € S, for all realizers r : S — Z;,(A), all
reduction sequences X —X1—»1... ... =1 X, ... from X are finite.

Proof Assume there is some X € S\ SN. By Lemma 5.1.5 there is some limit reduction sequence
{Xg|B < o1} C (S\SN) from X of length @;. By Lemma 5.1.2, {Xg|B < @} is definitively stationary,
therefore for some o < @; we have X1 = Xq, hence Xo—1Xq1 = Xo, against Lemma 3.1.2.

6 Related works and conclusions

In this section we stress the most relevant differences of the present work w.r.t. the ones by the authors
themselves and by others. The essential difference w.r.t. [2] and [4] is non-monotonicity. In[1] also the
case of non-monotonic learning is considered, though only deterministic learning processes are treated.
In [6], which is the full version of [5], we propose a deterministic algorithm to compute a (finite) sound
pre-fixed point of any effective realizer; however we have been able to treat the case in which the max-
imum level of answers is 2, while here we have a termination proof of a non-deterministic algorithm
working on states with answers of arbitrary level < ®.

We stress that non-determinism is no minor trick. First, if the output r(X) of a realizer may include
more than one answer, then our convergence result also holds for any 7' : S — Z2,,(A), even if not
continuous, provided there is some continuous r: S — Z7;,(A) such that /(X)) C r(X) for all X € S. This
simple remark shows that the result for the non-deterministic case is much stronger than the result for
the deterministic one.

In [8] Mints considered the @-level version of the problem. In our terminology, he introduced a non-
deterministic reduction relation adding one answer at the time, and proved a weak normalization result:
there is a reduction sequence from the empty state to some sound irreducible state. However, in [8] there
is no normalizing reduction strategy, and we suspect that the strong normalization result would fail in
that setting.

In conclusion we have presented a new result that we consider as a step toward a realistic use of
non constructive proofs as algorithms. Improvements are certainly possible, such as for example a more
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sophisticated way of representing logical dependencies than level. The aim is to find an algorithm re-
moving the minimum amount of answers from a state when adding new ones, hence resulting into a
faster computation.
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We consider state-based systems modelled as coalgebrag wpe incorporates branching, and
show that by suitably adapting the definition of coalgebbééimulation, one obtains a general and
uniform account of the linear-time behaviour of a state iohsa coalgebra. By moving away from
a boolean universe of truth values, our approach can metispextent to which a state in a system
with branching is able to exhibit a particular linear-timehlaviour. This instantiates to measuring
the probability of a specific behaviour occurring in a prabstic system, or measuring the minimal
cost of exhibiting a specific behaviour in the case of weidltmputations.

1 Introduction

When analysing process behaviour, one of the early choiceshas to make is between a linear and a
branching view of time. In branching-time semantics, theiods a process has for proceeding from a
particular state are taken into account when defining a natfgrocess equivalence (with bisimulation
being the typical such equivalence), whereas in lineaets®mmantics such choices are abstracted away
and the emphasis is on the individual executions that a psoseable to exhibit. From a system verifi-
cation perspective, one often chooses the linear-time,\@swhis not only leads to simpler specification
logics and associated verification techniques, but alsagriee practical need to verify all possible
system executions.

While the theory of coalgebras has, from the outset, beentaljprovide a uniform account of var-
ious bisimulation-like observational equivalences (aatdr of various simulation-like behavioural pre-
orders), it has so far not been equally successful in giviggreeric account of the linear-time behaviour
of a state in a system whose type incorporates a notion otbiag For example, the generic trace
theory of [9] only applies to systems modelled as coalgebrageT o F, with the monadr : Set — Set
specifying a branching type (e.g. non-deterministic obaifulistic), and the endofunctét : Set — Set
defining the structure of individual transitions (e.g. lddxb transitions or successful termination). The
approach in loc. cit. is complemented by that of [12], wheaeds are derived using a determinisation
procedure similar to the one for non-deterministic aut@mathe latter approach applies to systems
modelled as coalgebras of ty@e T, where again a monad : Set — Set is used to model branching
behaviour, and an endofunct@r specifies the transition structure. Neither of these ambhres is able
to account for potentially infinite traces, as typically dayed in model-based formal verification. This
limitation is partly addressed in [1], but again, this onpphes to coalgebras of typEo F, albeit with
more flexibility in the underlying category (which in padlar allows a measure-theoretic account of
infinite traces in probabilistic systems). Finally, nonetlod above-mentioned approaches exploits the
compositionality that is intrinsic to the coalgebraic aggarh. In particular, coalgebras of ty@e T o F
(of which systems with both inputs and outputs are an examspke Example 5.7) can not be accounted
for by any of the existing approaches. This paper presentttampt to address the above limitations
concerning the types of coalgebras and the nature of traaesdn be accounted for, by providingia-
form andcompositionatreatment of (possibly infinite) linear-time behaviour ysms with branching.

D. Baelde and A. Carayol (Eds.): Fixed Points © C. Cirstea
in Computer Science 2013 (FICS 2013) This work is licensed under the
EPTCS 126, 2013, pp. 11-27, doi:10.4204/EPTCS.126.2 Creative Commons Attribution License.
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In our view, one of the reasons for only a partial success weldping a fully general coalgebraic
theory of traces is the long-term aspiration within the geafa community to obtain a uniform charac-
terisation of trace equivalence via a finality argument, icinthe same way as is done for bisimulation
(in the presence of a final coalgebra). This encounteredulifiés, as a suitable category for carrying
out such an argument proved difficult to find in the generaé casthis paper, we tackle the problem of
getting a handle on the linear-time behaviour of a state inagebra with branching from a different
angle: we do not attempt to directly define a notion of tracaiedence between two states (e.g. via
finality in some category), but focus destingwhether a state is able to exhibit a particular trace, and
on measuring the extent of this ability. This "measurindates to the type of branching present in the
system, and instantiates to familiar concepts such as titmpility of exhibiting a given trace in prob-
abilistic systems, the minimal cost of exhibiting a givesice in weighted computations, and simply the
ability to exhibit a trace in non-deterministic systems.

The technical tool for achieving this goal is a general@aif the notions of relation and relation
lifting [10], which lie at the heart of the definition of coagraic bisimulation. Specifically, we employ
relations valued in a partial semiring, and a correspondieigeralised version of relation lifting. Our
approach applies to coalgebras whose type is obtained asitiy@osition of several endofunctors Sst:
one of these is a monadthat accounts for the presence of branching in the systeiife tile remaining
endofunctors, assumed here to be polynomial, jointly dates the notion of linear-time behaviour. This
strictly subsumes the types of systems considered in eantigk on coalgebraic traces [9, 1, 12], while
also providing compositionality in the system type.

Our main contribution, presented in Section 5, im#ormandcompositionabccount of linear-time
behaviour in state-based systems with branching. A byymiodf our work is an extension of the study
of additive monads carried out in [14, 3] to what we gadlrtially additive monadgSection 3). Our
approach can be summarised as follows:

e We move from two-valued to multi-valued relations, with tin@iverse of truth values being in-
duced by the choice of monad for modelling branching. Thatantiates to relations valued in the
interval [0, 1] in the case of probabilistic branching, the B&t= NU {0} in the case of weighted
computations, and simplyL, T} in the case of non-deterministic branching. This reflects ou
view that the notion of truth used to reason about the obbraehaviour of a system should be
dependent on the branching behaviour present in that sySeaoh a dependency is also expected
to result in temporal logics that are more natural and mopgessive, and at the same time have
a conceptually simpler semantics. In deriving a suitaligctiire on the universe of truth values,
we generalise results on additive monads [14, 3)ddially additive monadsThis allows us to
incorporate probabilistic branching under our approach.st\ow that for a commutative, partially
additive monadr on Set, the sefT'1 carries a partial semiring structure with an induced pteor
which in turn maked 1 an appropriate choice of universe of truth values.

e \We generalise and adapt the notion of relation lifting usetthé definition of coalgebraic bisimu-
lation, in order to (i) support multi-valued relations, giiflabstract away branching. Specifically,
we make use of the partial semiring structure carried by thieeuse of truth values to generalise
relation lifting of polynomial endofunctors to multi-vad relations, and employ a canoniext-
tension liftinginduced by the monad to capture a move from branching to linear time. The use
of this extension lifting allows us to make formal the ideaexting whether, and to what extent,
a state in a coalgebra with branching can exhibit a partiduiear-timebehaviour. Our approach
resembles the idea employed by partition refinement algostfor computing bisimulation on
labelled transition systems with finite state spaces [13ler&, one starts from a single partition
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of the state space, with all states related to each otheregrahtedly refines it through stepwise
unfolding of the transition structure, until a fixpoint isacdhed. Similarly, we start by assuming
that a state in a system with branching can exhibit any liieae behaviour, and moreover, assign
the maximum possible value to each pair consisting of a atadea linear-time behaviour. We then
repeatedly refine the values associated to such pairs gingiapwise unfolding of the coalgebraic
structure.

The present work is closely related to our earlier work on imak traces and path-based logics
[1], which described a game-theoretic approach to testiagsystem with non-deterministic branching
is able to exhibit a particular trace. Here we consider aatytbranching types, and while we do not
emphasise the game-theoretic aspect, our use of greafasinfsxhas a very similar thrust.

Acknowledgements Several fruitful discussions with participants at the 2@a&ystuhl Seminar on

Coalgebraic Logics helped refine the ideas presented hareug@ of relation lifting was inspired by
the recent work on coinductive predicates [8], itself basadhe seminal work in [10] on the use of
predicate and relation lifting in the formalisation of iradien and coinduction principles. Last but not
least, the comments received from the anonymous revieveaitsilouted to improving the presentation
of this work and to identifying new directions for future vkor

2 Preliminaries

2.1 Relation Lifting

The concepts opredicate liftingandrelation lifting, to our knowledge first introduced in [10], are by
now standard tools in the study of coalgebraic models, ugpdceeprovide an alternative definition of the
notion of bisimulation (see e.g. in [11]), or to describe $benantics of coalgebraic modal logics [17, 16].
While these concepts are very general, their use so farlysealtricts this generality by viewing both
predicates and relations as sub-objects in some categosgify carrying additional structure). In this
paper, we make use of the full generality of these conceptspeve from the standard view of relations
as subsets to a setting where relations are valuations umdvarse of truth values. This section recalls
the definition of relation lifting in the standard setting eva relations are given by monomorphic spans.

Throughout this section (onlyRRel denotes the category whose objects are binary relatiRr{s;,r2))
with (r1,r2) : R— X xY a monomorphic span, and whose arrows frd®(r1,r2)) to (R, (r},r5)) are
given by pairs of functiongf : X — X', g:Y = Y’) s.t. (f xg)o(rq,rp) factors throughry,r5):

Ry sy

I

| fxg

%58 0y

In this setting, theelation lifting of a functor F: Set — Set is defined as a functd®el(F) : Rel — Rel
taking a relationr1,r2) : R— X x Y to the relation defined by the spéf(r1),F(r2)) : F(R) — F(X) x
F(Y), obtained via the unique epi-mono factorisation®fry),F (r2)):

R F(R) —— Rel(F)(R)

<r1,r2>T (F(fl)v':(fz)d

X x Y F(X) x F(Y)
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It follows easily that this construction is functorial, aimd particular preserves the order between
relations on the same objects given (& (r1,r2)) < (S (s1,)) if and only if (r1,r) factors through
(s1,%):

R— — %SMXXY
—_—

(ra,ra)

An alternative definition oRel(F) for F a polynomial functor(i.e. constructed from the identity and
constant functors usinfinite products and set-indexed coproducts) can be given by imtuoh the
structure ofF. We refer the reader to [11, Section 3.1] for details of ti@8rdtion. An extension of this
definition to a more general notion of relation will be giverSection 4.

2.2 Coalgebras

We model state-based, dynamical systems as coalgebragheveategory of sets. Given a functor
F : C — C on an arbitrary category, dcoalgebrais given by a paifC, y) with C an object ofC, used

to model the state space, apdC — FC a morphism inC, describing the one-step evolution of the system
states. Then, a canonical notion of observational equicaldetween the states of twoecoalgebras is
provided by the notion of bisimulation. Of the many, and urtthe assumption thd preserves weak
pullbacks, equivalent definitions of bisimulation (see][1dr a detailed account), we recall the one
based on relation lifting. This applies to coalgebras okierdategory of sets (as described below), but
also more generally to categories with logical factormatsystems (as described in [11]). According to
this definition, arF-bisimulationbetween coalgebrg€, y) and(D, d) overSet is aRel(F )-coalgebra:

R-— - -+ Rel(F)(R)

X XYW F(X) x F(Y)
In the remainder of this section we sketch a coalgebraicrgésation of a well-known partition refine-
ment algorithm for computingisimilarity (i.e. the largest bisimulation) on finite-state labelleahsition
systems [13]. For an arbitrary endofuncter. Set — Set and two finite-staté--coalgebragC, y) and

(D, d), the generalised algorithm iteratively computes relaienC C x D withi=0,1,... as follows:

® ~po— CxD

o ~it1= (Yx0)*(Rel(F)(~)) fori=0,1,...
where(y x 0)* takes a relatiofR C FC x FD to the relation{(c,d) e Cx D | (y(c),d(d)) € R}. Thus,
in the initial approximation~g of the bisimilarity relation, all states are related, wlaerat step + 1
two states are related if and only if their one-step obsematare suitably related using the relatien
Bisimilarity between the coalgebrd€,y) and (D, d) thus arises as the greatest fixpoint of a monotone
operator on the complete lattice of relations betw€eandD, which takes a relatioR C C x D to the
relation(y x d)*(Rel(F)(R)). A similar characterisation of bisimilarity exists for édgabras with infinite
state spaces, but in this case the fixpoint can not, in germrakached in a finite number of steps.

The above greatest fixpoint characterisation of bisinilas generalised and adapted in Section 5,
in order to characterise the extent to which a state in a ebadgwith branching can exhibit a linear-
time behaviour. There, the two coalgebras in question hdfereht types: the former has branching
behaviour and is used to model the system of interest, whéhealatter has linear behaviour only and
describes the domain of possible traces.
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2.3 Monads

In what follows, we use monadd,n, i) onSet (wheren :ld= T andu: ToT = T are theunit and
multiplication of T) to capture branching in coalgebraic types. Moreover, gem@g that these monads
arestrongandcommutativei.e. they come equipped withstrength maptxy : X x TY — T(X xY) as
well as adouble strength magstxy : TX x TY — T(X xY) for each choice of setX,Y; these maps
are natural inX andY, and satisfy coherence conditions w.r.t. the unit and iplidation of T. We also
make direct use of thewapped strength magy  : TX xY — T(X x Y), obtained from the strength via
thetwist maptwy y : X x Y =Y x X: '

Ttwy x

TX Y Y%y s TX =2 TY % X) % T(X x Y)

Example2.1 As examples of monads, we consider:
1. thepowerset monad” : Set — Set, modelling nondeterministic computations, with unit givey
singletons and multiplication given by unions. Its stréngihd double strength are given by

Stx,Y(X,V) = {X} xV dStxy(U,V) =UxV

forxe X,U ¢ #X andV ¢ &Y,

2. thesemiring monadl's : Set — Set with (S,+,0,e,1) a semiring, given by
Ts(X)={f: X — S|sup(f) is finite}

with sup(f) = {x € X | f(x) # 0} thesupportof f. Its unit and multiplication are given by

1 ify=x «
nx(X)(y)z{ . px(f e S9)) = f(g)eg(x)
0 otherwise gesuzp(f) Xesuzp(g)

while its strength and double strength are given by

oly) it z=x

d f = f
0 otherwise stxy(f,9)(zy) = f(2) eg(y)

stxy(X,0)(zy) = {

forxe X, f € Tg(X),ge Tg(Y), ze X andy € Y. As a concrete example, we will consider the
semiringW = (N* min, o, +,0), and useTl to model weighted computations.

3. the sub-probability distribution monad” : Set — Set, modelling probabilistic computations,
with unit given by the Dirac distributions (i.)x(x) = (x — 1)), and multiplication given by
px(®) = % > ®(¢)=*¢(x), with x denoting multiplication orj0,1]. Its strength and

¢ esup(®P) xesup(¢)
double strength are given by

Yly) ifz=x
0 otherwise

stx.y (X ) (zy) = { dstxy (9, ) (zy) = ¢(2) x Y(y)

forxe X, ¢ € Z(X),pe.7(Y), ze Xandy Y.
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3 From Partially Additive, Commutative Monads to Partial Co mmuta-
tive Semirings with Order

Later in this paper we will consider coalgebras whose tyggvien by the composition of several end-
ofunctors onSet, one of which is a commutative mondd: Set — Set accounting for the presence of
branching in the systems of interest. This section exteadslts in [14, 3] to show how to derive a
universe of truth values from such a monad. The assumptidaco€it. concerning thedditivity of
the monad under consideration is here weakenguattal additivity (see Definition 3.1); this allows
us to incorporate the sub-probability distribution monadhith is not additive) into our framework.
Specifically, we show that any commutative, partially aglditmonadT : Set — Set induces a partial
commutative semiring structure on the 3ét, with 1= {x} a final object inSet. We recall that aom-
mutative semiringonsists of a seéb carrying two commutative monoid structures, 0) and(e, 1), with
the latter distributing over the formese 0 = 0 andse (t + u) = set +seu for all sit,u € S. A partial
commutative semirings defined similarly, except that is a partial operation subject to the condition
that whenevet + u is defined, so iset 4 seu, and moreovese (t + u) = Set + se u. The relevance of
a partial commutative semiring structure on the set of tmalties will become clear in Sections 4 and 5.
It follows from results in [3] that any commutative monéf, n, 1) on Set induces a commutative
monoid(T(1),e,n1(x)), with multiplicatione : T(1) x T(1) — T(1) given by the composition

T(1) x T(L) — (1w 1) — % T(1)

Alternatively, this multiplication can be defined as the gasition

T

T(1) xT(1) i>T(1>< T(1) T2(1) T(1)
or as
T(1) x T(L) —=5 T(T(1) x 1) —% T2(1) —25 T(1)

(While the previous two definitions coincide for commutatmonads, this is not the case in general.)
Remark3.1 The following maps define left and right actions(df(1),e) on T(X):

d d
T(1) x TX) S22 T(1x X) 25 T(X) T(X) % T(L) =25 T(X x 1) % T(X)
On the other hand, any mondd: Set — Set with TQ = 1 is such that, for anx, TX has azero
elemen® € TX, obtained agT!x)(x). This yields azero map) :Y — TX for anyX,Y, obtained as the
composition

Y To -5 TX
with the mapsy : Y — T0 and & : 0 — X arising by finality and initiality, respectively. Now coxlgir

the following map:

oTpy,UyoT
T(X+Y) TPubveTP) oy 1)

wherep; = [Nx,0] : X+Y — TX andp, = [0,ny] : X+Y — TY.

Definition 3.1. A monadT : Set — Set is calledadditive* (partially additive if T® = 1 and the map in
(1) is an isomorphism (respectively monomorphism).

1Additive monads were studied in [14, 3].
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The (partial) inverse of the mafpux o Tps, ty o Tpz) can be used to define a (partial) addition on
the setTX, given byT[1x, 1x] o gx x, wheregx x : TX x TX — T(X 4+ X) is the (partial) left inverse of
(Ux o TPy, fy o Tpy):

1.1 < X sHY >
T . Hxo I p1,Uyo I P2

That is,a+ b is defined if and only ifa,b) € Im((ux o Tpy, ty o Tp2)) 2.

[3, Section 5.2] explores the connection between additieepmutative monads and commutative
semirings. The next result provides a generalisation ttighlsr additive, commutative monads and
partial commutative semirings.

The proof of Proposition 3.2 is a slight adaptation of theegponding proofs in [3, Section 5.2].

Proposition 3.2. Let T be a commutative, (partially) additive monad. Then:
1. (T1,e,n1(x)) is a commutative monoid.
2. (TX,0,+) is a (partial) commutative monoid, for each set X.
3. (T1,0,+,e,n1(x)) is a (partial) commutative semiring.

Proof (Sketch).The commutativity of the following diagram lies at the heafrthe proof of item 3:

T[lx,1x]x 111 &
ThxTl TA+)xT1_ — " (T1xTxT1
O1,1x171
J(TEXTTQ,T[ZXT[Z)
. ar(1+1) (T1xT1)x (T1xT1)
%
i T[ix.1x] T+, — "~ TixT1

whereary : TX x T1 — TX is the right action from Remark 3.1, addis the map(uy o Tpa, 10 Tp2)
used in the definition of- on T1. The compositiorw o (T[1x,1x] x 111) o (d1,1 x 111) captures the
computation ofa+b) ec, whereas the composition1x, 1x] o i 10 (e x ) o (Th X Tk, Tk X Tb) captures
the computatiorae c+ bec, with a,b,c € T1. The fact thatd commutes with the strength map (by
(iv) of [3, Lemma 15]), together witlar ;1) ande being essentially given by the double strength maps
dst1411 anddsty 1, yields (e x e) o (Th X T&,T& X TB) 0 (J X 1y1) = 0 oar(141), that is, commutativity
(via the plain arrows) of the right side of the above diagrarhis immediately results iaec+bec
being defined whenever+ b is defined, and hence in the commutativity of the right sidéhefdiagram
also via the dashed arrows. This, combined with the comimityadf the left side of the diagram (which

is simply naturality of the right actioa), gives(a+b) ec = aec-+becwhenever+ bis defined. O

Example3.2 For the monads in Example 2.1, one obtains the commutatmeisgs ({ L, T},V, LA, T)
whenT = 22, (N®, min, o, +,0) whenT = Ty, 3, and the partial commutative semirif@, 1], +,0, x, 1)
whenT = . (where in the latter case+ b is defined if and only ii+b < 1).

2 similar, buttotal, addition operation is defined in [14, 3] for additive monads
3This is sometimes called thepical semiring
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4 Generalised Relations and Relation Lifting

This section introduces generalised relations valued artgh commutative semiring, and shows how to
lift polynomial endofunctors oBet to the category of generalised relations. We begin by fixipgréial
commutative semiringS, +,0, e,1), and noting that the partial monoi&,+,0) can be used to define a
preorder relation o as follows:

XLy ifandonlyif there existz € Ssuch thak+z=y

for X,y € S It is then straightforward to show (using the definition gbatial commutative semiring)
that the preordel has Oc Sas bottom element, and is preservedsby each argument. Proper (i.e. not
partial) semirings where the preordetis a partial order are calleuhturally ordered5]. We here extend
this terminology to partial semirings.

Example4.1 For the monads in Example 2.1, the preorders associate@ iadbced partial semirings
(see Example 3.2) are all partial ordegslon{L, T} for T =22, <on|0,1] for T =.#, and> on N*
for T =Tw.

We let Rel denote the categotywith objects given by triple¢X,Y,R), whereR: X xY — Sis a
function defining amulti-valued relation(or S-relatior), and with arrows from(X,Y,R) to (X',Y',R))
given by pairs of function$f,g) as below, such th&® C R o (f x g):

f
X xY —2 X v

| s

S——————S

Here, the ordeE on Shas been extended pointwiseSwoelations with the same carrier.

We write Rely y for the fibre over(X,Y), that is, the full subcategory dtel whose objects ar&
relations overX x Y and whose arrows are given $x,1y). It is straightforward to check that the
functorq: Rel — Set x Set taking (X,Y,R) to (X,Y) defines a fibration: the reindexing functar,g)* :
Relx’ y» — Relx y takesR : X' x Y’ — StoR o (f xg): X xY — S

We now proceed to generalising relation liftingSaelations.

Definition 4.1. Let F : Set — Set. Arelation lifting of F is a functoP I : Rel — Rel such that ¢ =
(FxF)oq:

Rel —— > Rel

q| s

Set x Set —— Set x Set
FxF

We immediately note a fundamental difference comparedawodsird relation lifting as defined in
Section 2.1. While in the case of standard relations eaattduadmits exactly one lifting, Definition 4.1
implies neither the existence nor the uniqueness of adiftiwe defer the study of a canonical lifting
(similar to Rel(F) in the case of standard relations) to future work, and show teodefine a relation
lifting of F in the case whek is a polynomial functor. To this end, we make the additiorssiuanption
that the unit 1 of the semiring multiplication is a top elemg@vhich we also write ag) for the preorder

4To keep notation simple, the dependencySis left implicit.
SGiven the definition of the fibratiog, such a functor is automatically a morphism of fibrations.
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C. Recall thatZ also has a bottom element (which we will sometimes denote Ypyiven by the unit
0 of the (partial) semiring addition. The definition of théaten lifting of a polynomial functoi- is by
structural induction o and makes use of the semiring structureSon

e If F =1d, Rel(F) takes arS-relation to itself.
e If F =C, Rel(F) takes arSrelation to the equality relatioBq(C) : C x C — Sgiven by

Tifc=c
1 otherwise

ch(C, C/) = {

o If F =F; x F,, Rel(F) takes arSrelationR: X x Y — Sto:

7T1><771»TEZ><TEZ>(F1X X F1Y) x (F2X x FY) Rel(F1)(R)xRel(F2)(R) SxS%sS

(FiX x F2X) % (F2Y x FaY)'
The functoriality of this definition follows from the presation ofC by e (see Section 3).
o if F=F +F, Rel(F)(R) : (FiX+ FX) x (FY + RY) — Sis defined by case analysis:

Rel(F)(R)(WY) if i =]
1 otherwise

Rel(F)(R)(1i (u), 1j(v)) = {

fori,j € {1,2}, ue FX andv € F;Y. This definition generalises straightforwardly from binéw

set-indexed coproducts.
Remark4.2. A more general definition of relation lifting, which appligs arbitrary functors orbet, is
outside the scope of this paper. We note in passing that stathten lifting could be defined by starting
from ageneralised predicate lifting : F o Po = PgoF for the functorF, similar to the predicate liftings
used in the work on coalgebraic modal logic [17]. Here, thet@variant functoPq : Set — Set®P
takes a seK to the hom-sebet(X,S). Future work will also investigate the relevance of the itssa
[6, 7] to a general definition of relation lifting in our seitj. Specifically, the work in loc. cit. shows
how to construct truth-preserving predicate liftings agdadity-preserving relation liftings for arbitrary
functors on the base category of awvere fibrationto the total category of that fibration.

For the remainder of this paper, we tal&+,0,e,1) to be the partial semiring derived in Section 3
from a commutative, partially additive mondd and we viewS as the set of truth values. In the case of
the powerset monad, this corresponds to the standard vieslations as subsets, whereas in the case of
the sub-probability distribution monad, this results itatiens given by valuations in the intervié, 1].
Example4.3 LetF : Set — Set be given byFX = 1+ Ax X, with Aa set (of labels), and €6, +,0,e,1)
be the partial semiring with carri@rl defined in Section 3.

e ForT =2, Rel(F) takes a (standard) relatidhC X x Y to the relation
{(12(+), 1()} U{((ax), (& y)) [a€ A (xy) € R}
e ForT =.7,Rel(F) takesR: X xY — [0,1] to the relatiorR : FX x FY — [0, 1] given by
R(11(x),11(x) =1 R((a,x),(ay)) = R(x,y) R(u,v) =0 in all other cases
e ForT =Tw, Rel(F) takesR: X x Y — N* to the relatiorR : FX x FY — N* given by

R(11(%),11(x)) =0 R((a,x),(ay)) =R(x.Y) R (u,v) = o in all other cases
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5 From Bisimulation to Traces

Throughout this section we fix a commutative, partially #éigldimonadT : Set — Set and assume,
as in the previous section, that the natural preofdenduced by the partial commutative semiring
obtained in Section 3 has the multiplication unit(x) € T1 as top element. Furthermore, we assume
that this preorder is aw°P-chain completgartial order, whereo°P-chain completeness amounts to any
decreasing chaimy J xo J ... having a greatest lower bountc.,%. These assumptions are clearly
satisfied by the orders in Example 4.1.

We now show how combining the liftings of polynomial funaio the category of generalised
relations valued in the partial semiringl (as defined in Section 4) with so-calledtension liftings
which arise canonically from the mondd can be used to give an account of the linear-time behaviour
of a state in a coalgebra with branching. The type of such lgebea can be any composition involving
polynomial endofunctors and the branching mofadlthough compositions of typ€oF, Go T and
GoToF with F andG polynomial endofunctors are particularly emphasised iatvitllows.

We begin with some informal motivation. Whetel is the standard category of binary relations,
recall from Section 2.2 that aR-bisimulation is simply aRel(F)-coalgebra, and that the largdst
bisimulation between tw& -coalgebragC, y) and (D, d) can be obtained as the greatest fixpoint of the
monotone operator dRelc.p Which takes a relatioR to the relation(y x 6)*(Rel(F)(R)). Generalising
the notion ofF-bisimulation from standard relations Td.-relations makes little sense when the systems
of interest ard--coalgebras. However, when considering say, coalgebrggpefl o F, it turns out that
liftings of F to the category off 1-relations (as defined in Section 4) can be used to desérdimear-
time behaviourof states in such a coalgebra, when combined with suitaftiiegé of T to the same
category of relations. To see why, let us consider labeladsition systems viewed as coalgebras of
type Z(1+ A xId). In such a coalgebrg: C — Z(1+ A x C), explicit termination is modelled via
transitionsc — 11(x), whereas deadlock (absence of a transition) is modelladas= 0. In this case,
Rel(2) oRel(1+ A x Id) is naturally isomorphic t®el(Z2(1+ A x Id)) 8, and takes a relatioR C X x Y
to the relatiorR C 2(1+ A x X) x Z(1+AxY) given by

if 11(%) € U theniy(x) € V, and conversely

(U,V)eR ifandonlyif <. _ ,
if (a,x) € U then there existéa,y) € V with (x,y) € R, and conversely

Thus, the larges?”?(1+ A x Id)-bisimulation between two coalgebrés, y) and(D, &) can be computed
as the greatest fixpoint of the operatorReic p obtained as the composition

RCCxD 2L R cFexFDR Ry c #(FC) x 2(FD) L RcexD ()

whereF = 1+ A x Id. Note first thaRel(Z?) (defined in Section 2.1 for an arbitrary endofunctorSet)
takes a relatiofr C X x Y to the relatiorR C Z(X) x Z(Y) given by

(U,V) e R ifand only if for all x € U there existy € V with (x,y) € R, and conversely

Now consider the effect of replaciriRel(%?) in (2) with the lifting L : Rel — Rel that takes a relation
RC X x Y to the relatiorR C 22(X) x Y given by

(U,y) e R ifand only if there existx € U with (x,y) € R

6A similar observation holds more generally f6f o F with F a polynomial endofunctor. In general, only a natural trans-
formationRel(F o G) = Rel(F) o Rel(G) exists, see [11, Exercise 4.4.6].
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To do so, we must change the type of the coalgébra@) from &2 oF to justF. A closer look at the
resulting operator oRelc p reveals that it can be used to test for the existence of a matttace: each
state of thé=-coalgebrgD, §) can be associatednaaximal tracei.e. an element of the fin&l-coalgebra,

by finality. In particular, wheriF = 1+ A x Id, maximal traces are either finite or infinite sequences of
elements ofA. Thus, the greatest fixpoint of the newly defined operatoRéa.p corresponds to the
relation onC x D given by

c 3 d ifand only if there exists a sequence of choices of transdtistarting front € C that leads to
exactly the same maximal trace (elemenfbf) A%) as the single trace af € D

This relation models the ability of the stat¢éo exhibit the same trace as thatdbf

The remainder of this section formalises the above intuiji@nd generalises them to arbitrary mon-
adsT and polynomial endofunctors, as well as to arbitrary compositions involving the mofaend
polynomial endofunctors. We begin by restricting attemtio coalgebras of typ& o F, with the monad
T capturing branching and the endofunckodescribing the structure of individual transitions. Insthi
case it is natural to view the elements of the fiRatoalgebra as possibleear-time observable be-
haviours of states ifi o F-coalgebras. Similarly to the above discussion, wédet/) and(D, &) denote
aT oF-coalgebra and respectively &acoalgebra. The lifting oF to T1-relations will be used as part
of an operator oiiRelc p. In order to generalise the lifting above to arbitrary monads, we recall the
following result from [15], which assumes a strong moffadn a cartesian closed category.

Proposition 5.1([15, Proposition 4.1]) Let (B, 3) be aT-algebra. For any f: X xY — B, there exists
a uniquel-linear f : TX x Y — B making the following triangle commute:

T
TXXY——B

nx XlYT /

XxY

In the above, dinearity is linearity in the first variable. More precisely, foralgebras/A, a) and
(B,B), amapf : AxY — Bis called tlinear if the following diagram commutes:

t/
T(A) xY —25 T(AxY) 2 T(B)

axlyl JB

AxY : B

Clearly 1-linearity should be expected of the liftihgR) : TX xY — T1 of arelationR: X xY — T1,
as this amounts tb(R) commuting with theT-algebra structure§T X, x) and(T1, ). Given this, the
diagram of Proposition 5.1 forces the definition of the gatieed lifting.

Definition 5.2. Theextension liftingLt : Rel — Rel is the functor taking a relation RX x Y — T1to
its uniquel-linear extensiorR: TX xY — T1.

Remark5.1 It follows from [15] that a direct definition of the relatioR: TX xY — T1 is as the
composition

T(R) H

st}
TXxY —5 T(X xY) T1 T1

This also yields functoriality of.+, which follows from the functoriality of its restriction teach fibre
categoryRely v, as proved next.
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Proposition 5.3. The mapping R Relx y — R € Relyx y is functorial.

Proof (Sketch).LetR,R € Relx y be such thaRC R'. Hence, there exis8e Rely y such thaR+S=R
(pointwise). To show thaR C R, it suffices to show thati; o T(R) T p1 0 T(R) (pointwise). To this end,
we note that commutativity of the mapwith the monad multiplication, proved in [3, Lemma 15 (jii)]
and captured by the commutativity of the lower diagram bebaa the plain arrows)

T2 T1

| |

T2(14+1) 5 T(1+1)
T T
Tl JT(S [
| |
T(T1xT1) 5| 1011
|
mi,Tnz) [
|

2 2
T1xT 1WT1XT1

also yields commutativity of the whole diagram (via the dashrrows). This formalises the commuta-
tivity of + (defined asT! o ¢ 1) with the monad multiplication. Now pre-composing this comtative
diagram (dashed arrows) with the map

T(XxY)——T(T1x T1)
given by the image undér of the map(x,y) — (R(x,y),S(x,y)) yields
(Mo T(R)+ (H10T(S)) = o T(R+S) = po TR
and therefore, using the definition ©f 1 o T(R) C p1 0 T(R). This concludes the proof. O

Thus,L+ is a functor making the following diagram commute:

Lt
Rel ——— Rel

q| s

Set x Set —— Set x Set
TxId

We are finally ready to give an alternative account of maxitreades ofT o F-coalgebras.

Definition 5.4. Let (C,y) denote aT o F-coalgebra, and lef{Z, {) denote the final F-coalgebra. The
maximal trace mapr, : C — (T1)% of y is the exponential transpose of the greatest fixpoinER Z —
T1 of the operator& : Relc z — Relc z given by the composition

Rel (F .
Relcz Rel®), RelrcFz T, Relt(re)Fz @, Relcz

The above definition appeals to the existence of least fitpamchain-complete partial orders, as
formalised in the following fixpoint theorem from [4].
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Theorem 5.5([4, 8.22]) Let P be a complete partial order and lét: P — P be order-preserving. Then
0 has a least fixpoint.

Definition 5.4 makes use of this result applied to thel of the orderC. Our assumption thdt
is w°P-chain complete makes the dual order a complete partiar.odenotonicity of the operator in
Definition 5.4 is an immediate consequence of the funcityiaf Rel(F), L+ and(y x d)*.

[4] also gives a construction for the least fixpoint of an onokeserving operator on a complete
partial order, which involves taking a limit over an orduiatlexed chain. Instantiating this construction
to the dual of the order yields an ordinal-indexed sequence of relatigRg), where:

e Ry=T (i.e. the relation o€ x D given by(c,d) — 1),

® Ryi1=0(Ry),
e Ry =Tg-oRg, if a is alimit ordinal.

Remark5.2 While in the casél = &, restricting to finite-state coalgebrés,y) and (D, d) results in
the above sequence of relations stabilising in a finite nurobsteps, forT = . or T = Ty this is
not in general the case. However, for probabilistic or weidhcomputations, an approximation of the
greatest fixpoint may be sufficient for verification purposisce a threshold can be provided as part of
a verification task.

Remarks.3. By replacing the--coalgebraz, ) by (I,a~1) with (1, a) aninitial F -algebra, one obtains
an alternative account dihite traces of states i o F-coalgebras, with thénite trace magftr, : C —
(T1)! of aT o F-coalgebraC, y) being obtained via the greatest fixpoint of essentially traeoperator
0, but this time orRelc;. In fact, one can use arfy-coalgebra in place ofZ,{), and for a specific
verification task, a coalgebra with a finite state space, @gingoa given linear-time behaviour, might be
all that is required.

Remark5.4. The choice of functoF directly impacts on the notion of linear-time behaviourr Egam-
ple, by regarding labelled transition systems as coalgetiréype &2 (A x Id) instead of22(1+ A x Id)

(i.e. not modelling successful termination explicitlyyife traces are not anymore accounted for — the
elements of the findF-coalgebra are given by infinite sequences of elemen#s dthis should not be
regarded as a drawback, in fact it illustrates the flexipiit our approach.

Examples.5. Let F denote an arbitrary polynomial functor (e.g+2 x Id).

e For T = &2, the extension lifting. s : Rel — Rel takes a (standard) relatidRC X x Y to the
relationL »(R) C Z(X) x Y given by

(U,y) € L»(R) ifand only if there existx € U with (x,y) € R

As a result, the greatest fixpoint 6f relates a statein a &2 o F-coalgebraC, y) with a statez of
the finalF-coalgebra if and only if there exists a sequence of choitésa unfolding ofy starting
from c, that results in ar-behaviour bisimilar t@. This was made more precise in [1], where
infinite two-player games were developed for verifying Wiggta state of @2 o F-coalgebra has
a certain maximal trace (element of the fikatoalgebra).

e For T =T, the extension liftingL s : Rel — Rel takes a valuatiorR: X x Y — [0,1] to the
valuationL o (R) : .7(X) x Y — [0, 1] given by

LoR@GY) = T $XRxY)

xesup()



24 From Branching to Linear Time, Coalgebraically

Thus, the greatest fixpoint @f yields, for each state in.& o F-coalgebra and each potential maxi-
mal tracez, the probability of this trace being exhibited. As compgtthese probabilities amounts
to multiplying infinitely-many probability values, the grability of an infinite trace will often turn
out to be 0 (unless from some point in the unfolding of a paldicstate, probability values of 1
are associated to the individual transitions that matchriégcpéar infinite trace). This may appear
as a deficiency of our framework, and one could argue that aunedheoretic approach, whereby
a probability measure is derived from the probabilities witd prefixes of infinite traces, would be
more appropriate. Future work will investigate the needafoneasure-theoretic approach. At this
point, we simply point out that in a future extension of thegant approach to linear-time logics
(where individual maximal traces are to be replaced by thtie@e temporal logic formulas), this
deficiency is expected to disappear.

e ForT = Tw, the extension liftind.y : Rel — Rel takes aweighted relation RX xY — W to the
relationLw (R) : Tw(X) xY — W given by

Lw(R)(f,y) = min (f(x)+R(xy))
xesup(f)

for f : X — W andy € Y. Thus, the greatest fixpoint @ maps a pairc, z), with c a state in a
Tw o F-coalgebra and a maximal trace, to theost(computed via the min function) of exhibiting
that trace. The case of weighted computations is somewffiatatit from our other two examples
of branching types, in that the computation of the fixpoiatrtst from a relation that maps each
pair of stategc, z) to the value G= N* (the top element foE), and refines this down (w.r.t. the
order) through stepwise unfolding of the coalgebra stmestyand(.

The approach presented above also applies to coalgebrgpedGb T with G a polynomial end-
ofunctor, and more generally to coalgebras whose type @irdid as the composition of polynomial
endofunctors and the mondd with possibly several occurrencesin this composition. In the case of
Go T-coalgebras, instantiating our approach yields differestilts to the extension semantics proposed
in [12]. Specifically, the instantiation involves takig, ) to be a finalG-coalgebra andC, y) to be an
arbitraryG o T-coalgebra, and considering the monotone operatdtett)y given by the composition

Re|c_’z i) Re|Tc7z m ReIG(TC),GZ M} Re|c_’z (3)

The following example illustrates the difference betweanapproach and that of [12].

Example5.6. ForG = 2 x Id” with A a finite alphabet and@l = &2, Go T-coalgebras are non-deterministic
automata, whereas the elements of the Babalgebra are given by functiomsA* — 2 and correspond

to languages oveh. In this case, the greatest fixpoint of the operator in (3) srepair(c, z), with c a
state of the automaton arzdh language oved, to T if and only if there exists a sequence of choices in
the unfolding of the automaton starting frarthat results in a deterministic automaton which accepts the
language denoted kyy Taking the union over ait such thatc,z) is mapped tol' now gives the language
accepted by the non-deterministic automaton witts initial state, but only under the assumption that
for eacha € A, ana-labelled transition exists from any state of the automafbims example points to
the need to further generalise our approach, so that ircpéatiit can also be applied to pairs consisting
of a Go T-coalgebra and &'-coalgebra, withG’ different from G. This would involve considering
relation liftings for pairs of (polynomial) endofunctordVe conjecture that takinG and T as above
andG' = 1+ A x Id would allow us to recover the notion of acceptance of a finicedroverA by a
non-deterministic automaton.
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Finally, we sketch the general case of coalgebras whoséagyieained as the composition of several
endofunctors orbet, one of which is a monad that accounts for the presence of branching in the
system, while the remaining endofunctors are polynomidljaimtly determine the notion of linear-time
behaviour. For simplicity of presentation, we only considealgebras of typ&o T o F, with the final
GoF-coalgebrgZ,{) providing the domain of possible linear-time behaviours.

Definition 5.6. Thelinear-time behaviouof a state in a coalgebréC, y) of type Go T oF is the greatest
fixpoint of an operatoy’ on Relc 7z defined by the composition:

Rel(F L Rel(G )"
Relcz Rel®), Relrcrz —— Relr(re) Fz SON Relg(Trc) Gz )y Relc z (4)

The greatest fixpoint of measures the extent with which a state BTl o F-coalgebra can exhibit a
given linear behaviour (element of the fittab F-coalgebra). Definition 5.6 generalises straightforwardl
to coalgebraic types given by arbitrary compositions ofypomial endofunctors and the monadwith
the extension liftind-t being used once for each occurrencé& ah such a composition.

Example5.7. Coalgebras of typ&o T oF, whereG = (1+ Id)* andF = Id x B, model systems with
branching, with both inputs (from a finite s&} and outputs (in a s&). In this case, the possible linear
behaviours are given by special trees, with both finite afidita branches, whose edges are labelled by
elements oA (from each node, one outgoing edge for eaehA), and whose nodes (with the exception
of the root) are either labelled by 1 (for leaves) or by an element Bf(for non-leaves). The linear-time
behaviour of a state in@o T o F-coalgebra is then given by:

e the set of trees that can be exhibited from that state, WhenZ?,

¢ the probability of exhibiting each tree (with the probai@k corresponding to different branches
beingmultiplied when computing this probability), wheh= ./, and

¢ the minimum cost of exhibiting each tree (with the costs ffedent branches beingddedwhen
computing this cost), whel = Ty.

The precise connection between our approach and earlide wd®, 1, 12] is yet to be explored.
In particular, our assumptions are different from those auf. tit., for example in [9] the DCPQO
enrichedness of the Kleisli category bfis required.

Remarlks.8. Our approach does ndirectly apply to the probability distribution monad (defined simlila
to the sub-probability distribution monad, but with proliéies adding up to exactly 1), as this monad
does not satisfy the conditioR = 1 of Definition 3.1. However, systems where branching is wlesd
using probability distributions can still be dealt with, bygarding all probability distributions as sub-
probability distributions.

In the remainder of this section, we briefly explore the usefss of an operator similar @, which
employs a similar extension lifting arising from tdeuble strengttof the monadl'. We begin by noting
that a result similar to Proposition 5.1 is proved in [15] éocommutative monad on a cartesian closed
category.

Proposition 5.7 ([15, Proposition 9.3]) Let (B,3) be aT-algebra. Then any f X xY — B extends
uniquely alongnx x ny to a bilinear f : TX x TY — B, making the following triangle commute:

f
TXXTY ——B

nx XUYT /

XxY
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Here, bilinearity amounts to linearity in each argument.

Definition 5.8. For a commutative monad : Set — Set, thedouble extension liftind.’; : Rel — Rel is
the functor taking a relation RX x Y — T1to its unique bilinear extensioR: TX x TY — T1.

Remark5.9. An alternative definition oL’ is as the composition dfr with a dual lifting, which takes
arelationR: X x Y — T1 to its unique 2-linear extensidi: X x TY — T1.

Remark5.1Q0 Again, it can be shown that a direct definition of the relafioriTX x TY — T1is as the
composition

T(R) U1

ds
TX X TY 25 T(X < Y) 12111

Proposition 5.9. The mapping R Relx y — R € Relx 1y is functorial.

We now fixtwo T o F-coalgebragC, y) and (D, d) and explore the greatest fixpoint of the operator
0" :Relcp — Relcp defined by the composition

Rel(F L. yxQ)*
Relcp RelB), Relrcrp —— Relr(re) 1(FD) LUt Relcp

As before, the operataf’ is monotone and therefore admits a greatest fixpoint. Weeathuat this
fixpoint also yields useful information regarding the lindiane behaviour of states ih o F-coalgebras.
Moreover, this generalises to coalgebras whose types laiteagy compositions of polynomial functors
and the branching monaBl. This is expected to be of relevance when extending therlimea view
presented here to linear-time logics and associated fover#ication techniques. The connection to
formal verification constitutes work in progress, but thikofeing examples motivate our claim that the
lifting L’ is worth further exploration.

Example5.11 LetF : Set — Set be a polynomial endofunctor, describing some linear-tyglealviour.

1. For non-deterministic systems (i#’.o F-coalgebras), the greatest fixpoint®@frelates two states
if and only if they admit a common maximal trace.

2. For probabilistic systems (i.e” o F-coalgebras), the greatest fixpoint@f measures the proba-
bility of two states exhibiting the same maximal trace.

3. For weighted systems (i.€ o F-coalgebras), the greatest fixpoint@f measures th@int min-
imal cost of two states exhibiting the same maximal traces@®this, note that the liftinty, :
Rel — Rel takes a weighted relatioR: X x Y — W to the relatiorL{y (R) : Tw(X) x Tw(Y) =W
given by

Lw(R)(f,9) = min  (f(x)+9(y) +R(XxY))
xesup(f).yesup(g)

6 Conclusions and Future Work

We have provided a general and uniform account of the litiga-behaviour of a state in a coalgebra
whose type incorporates some notion of branching (capthyed monad orbet). Our approach is
compositional, and so far applies to notions of linear bahaspecified bypolynomialendofunctors on
Set. The key ingredient of our approach is the notion of exteméiiting, which allows the branching
behaviour of a state to be abstracted away in a coinductsreda.

Immediate future work will attempt to exploit the results[6f 7] in order to define generalised re-
lation liftings for arbitrary endofunctors orbet, and to extend our approach to other base categories.
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The work in loc. cit. could also provide an alternative dgg@n for the greatest fixpoint used in Defini-
tion 5.6.

The present work constitutes a stepping stone towards gedwralic approach to the formal verifi-
cation of linear-time properties. This will employ lineime coalgebraic temporal logics for the speci-
fication of system properties, and automata-based tecbsifqu the verification of these properties, as
outlined in [2] for the case of non-deterministic systems.
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We propose to study proof search from a coinductive pointiefvv In this paper, we consider
intuitionistic logic and a focused system based on HerlselidT for the implicational fragment.
We introduce a variant of lambda calculus with potentiaiifiriitely deep terms and a means of
expressing alternatives for the description of the “soluspaces” (called Bohm forests), which are
a representation of all (not necessarily well-founded klitlgcally well-formed) proofs of a given
formula (more generally: of a given sequent).

As main result we obtain, for each given formula, the redurctif a coinductive definition of the
solution space to a effective coinductive description imddry term calculus with a formal greatest
fixed-point operator. This reduction works in a quite direnner for the case of Horn formulas.
For the general case, the naive extension would not everube\tve need to study “co-contraction”
of contexts (contraction bottom-up) for dealing with theywmag contexts needed beyond the Horn
fragment, and we point out the appropriate finitary calcwusere fixed-point variables are typed
with sequents. Co-contraction enters the interpretatidgheoformal greatest fixed points - curiously
in the semantic interpretation of fixed-point variables antlof the fixed-point operator.

1 Introduction

Proof theory starts with the observation that a proof is nibam just the truth value of a theorem. A
valid theorem can have many proofs, and several of them camdresting. In this paper, we somehow
extend this to the limit and study all proofs of a given prapos. Of course, who studies proofs can
also study any of them (or count them, if there are only figitelny possible proofs, or try to enumerate
them in the countable case). But we do this study somehowitsin@ously: we introduce a language to
express the full “solution space” of proof search. And siwesfocus on the generative aspects of proof
search, it would seem awkward to filter out failed proof aftésrfrom the outset. This does not mean
that we pursue impossible paths in the proof search (whialldvoardly make sense) but that we allow
to follow infinite paths. An infinite path does not correspdad successful proof, but it is a structure of
locally correct proof steps. In other words, we use coinglacyntax to modedll locally correct proof
figures. This gives rise to a not necessarily wellfoundedcketaee. However, to keep the technical effort
simpler, we have chosen a logic where this tree is finitelypinang, namely the implicational fragment
of intuitionistic propositional logic (with proof systenivgn by the cut-free fragment of the systénty
Herbelin [3]).

Lambda terms or variants of them (expressions that may hawedovariables) are a natural means
to express proofs (an observation that is catleelCurry-Howard isomorphism) in implicational logic.
Proof alternatives (locally, there are only finitely manytkém since our logic has no quantifier that
ranges over infinitely many individuals) can be formally negented by a finite sum of such solution
space expressions, and it is natural to consider those sumesaguivalence of theetof the alternatives.
Since infinite lambda-terms are involved and since wholeatgwl spaces are being modeled, we call
these coinductive termBBdhm forests

D. Baelde and A. Carayol (Eds.): Fixed Points © J. Espirito Santo and R. Matthes and L. Pinto
in Computer Science 2013 (FICS 2013) This work is licensed under the
EPTCS 126, 2013, pp. 28-43, d0i:10.4204/EPTCS.126.3 Creative Commons Attribution License.
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By their coinductive nature, Bohm forests are no propetastic objects: they can be defined by all
mathematical (meta-theoretic) means and are thus not tetaic as would be expected from syntactic
elements. This freedom of definition will be demonstrated arploited in the canonical definition
(Definition 6) of Bohm forests as solutions to the task ofvimg a sequent (a formulA in a given
contextl). In a certain sense, nothing is gained by this representatilthough one can calculate on
a case-by-case basis the Bohm forest for a formula of isttenad see that it is described as fixed point
of a system of equations (involving auxiliary Bohm forea$ssolutions for the other meta-variables that
appear in those equations), an arbitrary Bohm forest cnlmobserved to any finite depth, without
ever knowing whether it is the expansion of a regular cycti@p@ structure (the latter being a finite
structure).

Our main result is that the Bohm forests that appear asisolgpaces of sequents have such a finitary
nature: more precisely, they can be interpreted as sersamttia finite term in a variant of lambda
calculus with alternatives and formal greatest fixed-oirfEor the Horn fragment (where nesting of
implications to the left is disallowed), this works very sotldy without surprises (Theorem 15). The
full implicational case, however, needs some subtletiexeming the fixed-point variables over which
the greatest fixed points are formed and about capturinghdeohey that comes from the introduction of
several hypotheses that suppose the same formula. Thprattgion of the finite expressions in terms
of Bohm forests needs a special operation that weccationtraction(contraction bottom-up). However,
this operation is already definable in terms of Bohm fore¥t#thout this operation, certain repetitive
patterns in the solution spaces due to the presence of wegatturrences of implications could not be
identified. With it, we obtain the finitary representatiorh€brem 24).

In the next section, we quickly recapitulate syntax andrtgpiles of the cut-free fragment of system
A and also carefully describe its restriction to Horn fornsula

Section 3 has the definition of the not necessarily well-ttmehproofs, corresponding to a coinduc-
tive reading ofA (including its typing system). This is syste/?_fr?o. Elimination alternatives are then
added to this system (yielding the Bohm forests), whickedally allow the definition of the solution
spaces for the proof search for sequents. We give severaipdes and then show that the defined
solution spaces adequately represent alﬁtﬁoeproofs of a sequent.

In Section 4, we present first the finitary system to captuee-brn fragment and then modify it to
get the main result for full implicational logic.

The paper closes with discussions on related and future iwd@lkection 5.

2 Background

We recall below the cut-free fragment of systém(a.k.a. LJT), a sequent calculus for intuitionistic
implication by Herbelin [3].

Lettersp,qg,r are used to range over a base set of propositional varialsldsH we also calatoms.
LettersA B,C are used to range over the set of formulas (= types) built fppapositional variables
using the implication connective (that we wri#eD B) that is parenthesized to the right. Often we will
use the fact that any implicational formula can be uniquelgainposed a&; D A, O ... D A; D pwith
n > 0, also written in vectorial notation @& > p. For example, if the vectoh is empty the notation
means simplyp, and if A= Ay, Ay, the notation meang; o (A2 D p).

The cut-free expressions afare separated into terms and lists, and are given by:

(terms) tu = xl|AxAt
(lists) I == ()fu:l
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Figure 1: Typing rules oA
MFu:A T|I:BEp

0 :pEp ™  TFusl:AoBrp [Nt
Mx:AFt:B : :

XS RINtro Fl:AFp (y.A)eFApp
FrNEAxXAt:ADB Fr=yl:p

where a countably infinite set of variables ranged over ligigx, y, w, zis assumed. Note that in lambda-
abstractions we adopt domain-full presentation, annotating the bound variable with a formUlae
term constructokl is usually calledapplication Usually in the meta-level we prefer to writdty, ... ,t,)
(with n € Np) to range over application constructions, and avoid spgpibout lists explicitly (where
obviously, the notationts, ... ,ty) means() if n=0 andt; :: 1, if (t,...,t,) meand). In the meta-level,
when we known = 0, instead ok(ts, .. .,tn), we simply write the variable.

We will view contextsl™ as finite lists of declarations: A, where no variable occurs twice. The
contextl",x: Ais obtained fronT by adding the declaratiox: A, and will only be written if this yields
again a valid context, i. e., is not declared ir. The system has a form of sequent for each class of
expressions:

FEt:A rl:AFPp.

Note the restriction tatomic sequent&he RHS formula is an atom) in the case of list sequents.

The rules ofA for deriving sequents are in Figure 1. Note that, as list eetyuare atomic, the
conclusion of the application rule is also atomic. This i the case in Herbelin's original system [3],
where list sequents can have a non-atomic formula on the RHBe variant of cut-fre we adopted,
the only rule available for deriving a term sequent whose R$1&n implication isRIntro. Still, our
atomic restriction will not cause loss of completeness efdpstem for intuitionistic implication. This
restriction is typically adopted in systems tailored fooqfrsearch, as for example systems of focused
proofs. In factA corresponds to a focused backward chaining system wheatoails areasynchronous
(see e. g. Liang and Miller [7]).

We will need the following properties of.

Lemma 1 (Type uniqueness) 1. Givenl andt, there is at most one A such tiiat t : A.
2. Givenl, | and A, there is at most one p such tiiak: A+ p.

Proof Simultaneous induction on derivability. o

Since the empty list) has no type index, we need to kndwin the second statement of the previous
lemma.

Lemma 2 (Inversion of typing) In A:
1. T AxAt: Biff there exists C s.t. BAD C andln,x: A-t:C;
2. TEx(ty,...,t) : Aiff A= p and there exist8 s.t. . BD pe I andl -t : B;, for any i.

Proof 1. is immediate and 2. follows with the help of the fact thafts, ... tx) : B piff there exist
Bi,...,Bks.t.B=B1 D ... D By D pand, for anyi, I -t : B; (proved by induction o). O
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Figure 2: Typing rules oA yom

A M-u:p F]I:HFqLIt
X Mu:l:pDoHKEQ ntro

O prp -

FM:HEP (y:H)el
F=yl:p App

Now we identify theHorn fragmentof cut-free A, that we denote by om. The class oHorn
formulas(also calledHorn clause}is given by the grammar:

(Hornformulas) H := p|pDH

where p ranges over the set of propositional variables. Note thaHfmrn formulas, in the vectorial
notationH > p, the vector components; are necessarily propositional variables, i. e., any Horméda
is of the formg > p.

The Horn fragment is obtained by restricting sequents dsvist

1. contexts are restricted Korn contextsi. e., contexts where all formulas are Horn formulas;
2. term sequents are restricted to atomic sequents, ir@. sequents are of the formk-t : p.

As a consequence, tileabstraction construction and the riéntro, that types it, are no longer needed.
The restricted typing rules are presented in Figure 2.

3 Coinductive representation of proof search in lambda-bar

We want to represent the whole search space for cut-frefpioo\. This is profitably done with
coinductive structures. Of course, we only consider lgceadirrect proofs. Since proof search may falil
when infinite branches occur (depth-first search could lped there), we will consider such infinite
proofs as proofs in an extended sense and represent thentl abugawe will introduce expressions that
comprise all the possible well-founded and non-wellfouhgeoofs in cut-freel .

The raw syntax of these possibly non-wellfounded proofsésgnted as follows

N :i=co AXM N X(Ny,...,No)

yielding the (co)terms of syste%CO (read coinductively, as indicated by the ind®j. Note that instead
of a formal class of list$ as in theA -system, we adopt here the more intuitive notatidhg, . .., Ny) to
represent finite lists.

Since the raw syntax is interpreted coinductively, alsotyiping rules have to be interpreted coin-
ductively, which is symbolized by the double horizontaklim Figure 3, a notation that we learnt from
Nakata, Uustalu and Bezem [9]. (Of course, the formulas&ygiay inductive.) As expected, the restric-
tion of the typing relation to the finit&-terms coincides with the typing relation of tAesystem:

Lemma3 Foranyte A, T -t:AinAiff T -t:AinA.

Proof By induction ont, with the help of Lemma 2. o
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Figure 3: Typing rules oA’

TXAFt:B o (X:By . BoOPEr THEN:Bi=1. K
ntro
M-AAt:ASB FEX(Ng,.., N p LVecintro

Figure 4: Extra typing rule oy W.r.t.A

NrN-E:pi=1...,n
N-Ei1+---+Eq:p

Alts

Example 4 Considerw := A fP2P.AxP.N with N= f(N) of type p. This infinite term N is also denoted
fe.

It is quite common to describe elements of coinductive sybta(systems of) fixed point equations.
As a notation on theneta-levelfor unique solutions of fixed-point equations, we will use thinderv
for the solution, writingv N.M, whereN typically occurs in the ternM. Intuitively, vN.M is theN s.t.
N = M. (The letterv indicates interpretation in coinductive syntax.)

Example 5 w of Example 4 can be written asfPPPAXP.yN.f(N). I, f: pD p,x: pFVN.f(N): pis
seen coinductively, sowe det- w: (p>p) D pD p.

We now come to the representation of whole search s OacesseTImé coinductive cut-fred-terms
with finite numbers of elimination alternatives is denotgd\y  and is given by the following grammar:

(co-terms) N =coc AXAN|E;+---+E,
(elim. alternatives) E :=¢o X(Ng,...,Ng)

where bothn,k > 0 are arbitrary. Note that summands cannot be lambda-atistra! We will often
usey E; instead ofE; + - - - + Ej if the dependency d; oni is clear, as well as the number of elements.

|
Likewise, we write(N;); instead of(N,...,Ny). If n=0, we writeO for E; +--- + Ej. If n=1, we write
E; for E1 + - - - + E,, (in particular this injects the category of eliminationeaitatives into the category of
co-terms) and do as if was a binary operation on (co)terms. However, this will glsvhave a unique
reading in terms of our raw syntax af zo. In particular, this reading makes associative and) its
neutral element.

Co-terms oﬁg" will also be called Bohm forests. Their coinductive typindes are the ones (X‘CO,
together with the rule given in Figure 4, where the sequemtgdo)terms and elimination alternatives
are not distinguished notationally.

Notice thatl - O : pforall " andp.

Below we consider sequenfts= A with I" a context and\ an implicational formula (corresponding
to term sequents of without proof terms — in fact, = A is nothing but the pair consisting 6fandA,
but which is viewed as a problem description: to prove foamuin contextr).

IThe division into two syntactic categories also forbidsdkaeration of an infinite sum (for whieh= 2 would suffice had
the categories fal andE been amalgamated).
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Definition 6 The function.”, which takes a sequefit = A and produces a &m forest which is a
coinductive representation of the sequent’s solution spacgiven corecursively as follows: In the case
of an implication,

ST =ADB):=AA7 (T x:A=B) ,

since RIntro is the only way to prove the implication.
In the case of an atom p, for the definition.gf(I" = p), let y : A; be the i-th variable il with A
of the formB; O p. LetBj = Bj1,...,Bik. Define Nj := (I = Bj;). Then, E:=yi(N; ;);, and finally,

L(M=p): z E .
This is more sloppily written as
SC=p:= > WS =B,
y:Boper
In this manner, we can even write the whole definition in ome: li
ST =ADp) =ATA 5 Y (A=B)); withA:=T %A
y:BopeA

This is a well-formed definition: for every andA, . (I = A) is a Bohm forest and as such rather a
semantic object.

Lemma 7 Givenl and A, the typind - .#(I = A) : A holds inAy .
Let us illustrate the function” at work with some examples.

Example 8 We consider first the formulaA (p D p) D p D p and the empty context. We have:
L(=(pop)dpdp) =AfPPPAXP.Z(f:pDp,x:p=p)

Now, observe that”(f : pD p,x: p=p)= f(Z(f: pD p,x: p= p)) +X. We identify” (f : pD p,x
p = p) as the solution for N of the equatlond&lf N) +x. Usingv as means to communicate solutlons
of fixed-point equations on thmeta-levelas forA® , we have

L(=(podp)dop2dp) =AfPPPAXP.UN.Ff(N) +x

By unfolding of the fixpoint and by making a choice at each efefimination alternatives, we can
collectfrom this coterm as the finitary solutions of the sequent@|i@hurch numeralsi(f P>P.AxP. f”(
with n € Np), together with the infinitary solutioi fP°P.AxP.f%, studied before as example far
(corresponding to always making the f-choice at the elitidmaalternatives).

Example 9 We consider now an example in the Horn fragment.l[Letx: p> gD p,y: gD p>DQ,Z:
p (again with p# q). Note that the solution spaces of p and q relative to thigieat are mutually
dependent and they give rise to the following system of emsat

Ng = Y(Ng,Np)



34 A Coinductive Approach to Proof Search

Figure 5: Membership relations

mem(M7N) memE(M,Ei)
mem(AXA.M, Ax*.N) mem(M,E; +--- 4+ Ep)

(for somei)

mem(M1,N7) ... mem(My,Ny)
memE(X<M1, ey Mk>,X<N1, R Nk>)

and so we have

L T=p) = VNuX(Np,VNq.y(Ng,Np)) +2

S (T=09) = VNg.Y(Ng,VNp.X(Np,Ng) +2)
Whereas for p we can collect one finite solution (z), for g weaaly collect infinite solutions. Because
in the Horn case the recursive calls of ti¥€ function are all relative to the same (initial) context, g
fragment the solution space of a sequent can always be equtes a finite system of equations (one for
each atom occurring in the sequent), see Theorem 15.

Example 10 Let us consider one further example whereA(((p>q) D p) D p) O q) D q (a formula
that can be viewed as double negation of Pierce’'s law, whendeiwed as absurdity). We have the
following (where in sequents we omit formulas on the LHS)

No = (= A =Ax{((P29)2p)2p)20 N,

Ny = f(x:> q) = X(Ng)

N, = Z(x=((pPD>g)Dp)Dp) =AyPDPNg
N3 = (X y:> p) = Y(Na)

Ng = Z(xy=p>DQq)=AZ".Ns

Ns = (xY,z=0)=X(Ne)

Ns = Z(xy,z2= ((pDa) D p)Dp) =AnPVPN,
N7 = Z(XY,zy1= p)=Y(Ng) +2+Y1(Ns)

Ng = Z(XY,zy1=pDQq) =2AZ.Ng

No = S(XY,zY1,21=70)

Now, in N observe thatyy; both have typé€p D q) O p and zz; both have type p, and we are back at N
but with the duplicates;yof y and z of z. Later, we will call this duplication phenomenoo-contraction
and we will give a finitary description ofd\and, more generally, of all”(I' = A), see Theorem 24. Of
course, by taking the middle alternative in,\ve obtain a finite proof, showing that A is provablelin

We now define a membershlp semantics for co-terms and eliimmalternatives oﬂz in terms of
sets of (co)terms in°

Themembership relatlonmem(M N) andmemg (M, E) are contained iR x Az andA”’ x E}\Z
respectively (wherE)\ s ? stands for the set of elimination alternatlvesr\g?) and are given coinductively
by the rules in Fig. 5.

Proposition 11 For any Ne A°°, mem(N,. (T = A)) iff T - N:AinA
Proof “If”. Consider the relations

R:={(N,.”(T = A))|T-N:A}
= {(X(N)i,x(Z(T = Bi))i) | (X:Ba,...,Bk D p) € T AT F=X(Ng,...,Ng) : p}
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It suffices to show thalR C mem, but this cannot be proven alone sinreem andmemg are defined si-
multaneously. We also prow: C memg, and to prove both by coinduction on the membership relafion
it suffices to show that the relatiofs Rg arebackwards closed. e.:

1. AXAM,AXAN) € Rimplies(M,N) € R,
2. (M,E1+---+E,) € Rimplies for soma, (M, E) € Rg;
3. (X(M1,...,My),X(Ng,...,Nx)) € Re implies for alli, (M;,N;) € R

We illustrate one case. ConsidgM,.(I' = A)) € R, with (I’ = A) = E; +--- + E,. We must
show that, for some (N,E;) € Re. From.(I' = A) = E1 + - - - + Ep, we must havel = p. Now, from
I N: p, there must existx: By,...,Bk D p) € I andNy,...,Ng s.t. N = X(Ny, ..., Ng). By definition of
(I =A), thereis s.t. & =x(Z(I = By1),...,.7 (I = By)).

“Only if”. By coinduction on the typing relation oh“°. This is conceptually easier than the other
direction since- is a single coinductively defined notion. We define a relaRdar which it is sufficient
to proveR CI-:

R:={(I',N,A) | mem(N,.7(I' = A))}

ProvingR g_toby coinduction amounts to showing tHaits backwards closed — with respect to the typing
relation ofA , i. e., we have to show:

1. (T, AxAt,A>B) € Rimplies((I',x: A),t,B) € R;

2. (MXx(Ny,...,Ng), p) € Rimplies the existence d;,...,Bx s.t. (X: By,...,Bx D p) € I and, for
alli = 1,...,k, (F,Ni,Bi) eR

We show the second case (relative to ruMecintrg. So, we havemem(N,.(I' = A)) with N =
X(Ng,...,Nx) andA = p, and we need to show that, for sorie B;,...,Bx D p) € I', we have, for alli,
mem(N;,.7 (I = Bj)). SinceA=p, . (I = A) = E; +---+ En. Hence, the second rule farem was
used to infermem(N,.7 (I = A)), i.e., there is g s.t. memg(N,E;). Therefore Ej = x(Mg,...,My)
with termsMy, ..., My, and, for alli, mem(N;, M;). By the definition of” (I = A), this means that there
are formulasBy, ...,Bxs.t. (x: By,...,Bk D p) € I and, for alli, Mj = .7 (I" = B;). O

Example 12 Let us consider the case of Pierce’s law that is not validitidnistically. We have (for

p # Q):
Z(= ((p>9) D p) D p) = AxXPPI2PxAYP.0)

The fact that we arrived a@ and found no elimination alternatives on the waynihilatesthe co-term
and implies there are no terms in the solution space>af(p O q) D p) D p (hence no proofs, not even
infinite ones).

Corollary 13 (Adequacy of the co-inductive representatiorof proof search inA) For any te A, we
havemem(t,.7 (I = A)) iff [ -t : A (where the latter is the inductive typing relation/of.

Proof By the proposition above and Lemma 3. 0

4  Finitary representation of proof search in lambda-bar

In the first section we define a calculus of finitary repres@na. In the third section we obtain our main
result (Theorem 24): giveh = C, there is a finitary representation.gf(I" = C) in the finitary calculus.
To make the proof easier to understand, we first develop isd¢khend section the particular case of the
Horn fragment.
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4.1 The finitary calculus

The set of inductive cut-fred -terms with finite numbers of elimination alternatives, andixpoint
. —gf] . . . .
operator is denoted by§ P and is given by the following grammar (read inductively):

(terms) N == AxXAN|gfpX.Eg+---+Ep|X
(elim. alternatives) E := X(Ni,...,Ng)

whereX is assumed to range over a countably infinite sefixgoint variables(lettersY, Z will also
be used to range over fixpoint variables that may also be titaafgas meta-variables), and where both
n,k > 0 are arbitrary. Below, when we refer fimitary termswe have in mind the terms o?%fp. The
fixed-point operator is callegfp (“greatest fixed point”) to indicate that its semantics isvih defined in
terms of infinitary syntax, but there, fixed points are unigdence, the reader may just read this as “the
fixed point”.

We now give a straightforward interpretation of the formagéi points (built withgfp) of 22" in
terms of the coinductive syntax E@’ (using thev operation on the meta-level).

Dejcnoition 14 We callenvironmenta function from the set of fixpoint variables into tn%oset ojerms
of As . The interpretation of a finitary term (relative to an enviraent) is a (co)term ofs given via a

family of functiong—J : A5 — As indexed by environments, which is recursively defined #mio]

[X]e = &(X)
[AXAN]e = AXA[Ne
[[gpr-IZEi]]z = VN'IZ[[Ei”EU[XHN]
[X(Np,....NQJe = X([Nafg,..., [Nefle)

where the notatio U [X — N] stands for the environment obtained frgnby setting X to N.

Remark that the recursive definition above has an embeddeduwsive case (pertaining to th#p-
operator). Its definition is well-formed since every eliatiion alternative starts with a head/application
variable and the occurrencesMfare thus guarded.

When a finitary termN has no free occurrences of fixpoint variables, all enviromseetermine the
same coterm, and in this case we simply wjit] to denote that coterm.

4.2 Equivalence of the representations: Horn case

Theorem 15 (Equivalence for the Horn fragment) Let ' be a Horn context. Then, for any atom r,
there exists Ne ngp with no free occurrences of fixpoint variables such ffaf] = .7 (I = r).

Proof

Let us assume there aketoms occurring ifi = r. We define simultaneousk/functionsNp( )
(one for each atorp occurring inl” = r), parameterized by a vector of declarations of the fdrng. The
vector is writtenX : g and is such that no fixpoint variable and no atom %urs twite. simultaneous
definition is by recursion on the number of atomg e r not occurring inX : g, and is as follows:

X4

. Xi R if p=q
No(X:8) =1 gfoXo 5 y(No(X:G,%:p); otherwise
(y:Pop)el
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where vector)ﬁﬁ,xIO . p is obtained by adding the componex : p to the vector)ﬁq. Observe
that o_nI}y fixpoint variables among the fixpoint variablesldesd in the vector have free occurrences in
Np(X: Q).
By induction on the number of atoms of (the fixed sequéng- r not in (the variable)X—:a, we
prove that: N
[Np(X:q

Casep = q;, for somei. Then,

e =T = p)if £(X) =T = q), foranyi. (1)

LHS=[X]¢ = £(X) = #(T = G) = RHS

Otherwise,
_> .
LHS=[gfpXp. T ¥(N,(XZG.Xp: p))ille =N
(Y Pop)er

whereN® is given as the unique solution of the following equation:

0 VS .
N™ = Z y<[[Nrj (X : qaxp : p)HEU[Xp?—)Nm]>J‘ (2)
(Y Fop)er

Now observe that, by I.H., the following equations (3) angaee equivalent.

AT p) = S YNGR X Pleuins o)) ®
(y: ¥ op)er
S (=p)= > W =ry); @)
(y:Fop)er

By definition of & (I" = p), (4) holds; hence — because of (34" = p) is the solutionN® of (2),
concluding the proof thdtHS= RHS

Finally, the theorem follows as the particular case of (1ewetp = r and the vector of fixpoint
variable declarations is empty. O

4.3 Equivalence of the representations: full implicationdcase

The main difference with exhaustive proof search in the cddéorn formulas is that the backwards
application ofRIntro brings new variables into the context that may have the sgpwds an already
existing declaration, and so, for the purpose of proof sedhey should be treated the same way.

We illustrate this phenomenon with the following definitiand lemma and then generalize it to the
form that will be needed for the main theorem (Theorem 24).

Definition 16 For N and E inX§°, we defingxy + - - -+ Xn/Y]N and Xy + - - - + Xn/Y]E by simultaneous
corecursion as follows:

Xp+ -+ % /Y] (AXA.N) AXP X+ -4 X /Y]N

[

pat-+xa/y Y E = bt x/yE

Xa - xa/Y (ZIND) = Z([X 4 X /YN ifzzy
pate /YN = 3 X (a4 /YN

1<j<n
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Lemma 17 (Co-contraction: invertibility of contraction) If x1,%2,y ¢ I, then
L(Mx A% A=C)=[X1+x/y.L(Ty:A=C) .

Proof The proof is omitted since Lemma 20 below is essentially agdization of this result. O

We now capture when a contextis an inessential extension of contéxt
Definition 18 1. |I|={A:3xs.t(x:A) eTl}.

2. Fr<r’ifrcrandil| = ||

3. T=p < (M=p)iflf <Iand p=p.

Let o range over sequents of the fofm=- p. Thus, the last definition clause defines in general when
o<da.
Definiton19 1. Letl <TI’. ForN and E inX§°, we defingl /TN and[[’/T'|E by simultaneous

corecursion as follows:

F/TIAXAN) = AXA M, (x:A)/T,(x: AN

(/7]

rrisE = sIrrE

TTI(INY) = 2 /TIN, it z ¢ dom(r)
CrENg) = s wT/TING ifze dotT)

2. Leto < c'. [0’/g]N =[I""/TIN whereo = (I' = p) ando’ = (I'" = p). Similarly for[o’/0]E.
Lemma 20 (Co-contraction) If I <T'then.”(I'" = C) = [I"/T|(/(I = C)).

Proof LetR:={(/(I'"=C),[I"/T|(<(T =C))) |l <I',Carbitrary}. We prove thaR s backvv_a};rd
closed relative to the canonical equivalencggenerated by the coinductive definition of terms)\g?
(but see the comments following the proof), whefRce=.

S([=C)=AZ"z¢.  § I = B)), (5)
(zBop)ed

and
FMAC=C) =A% 2. T 5 wN/A7 (b= By) (6)
(y:Bop)eh (WA(y)) ety
whereA:=TU{z : A, ,z: An} andd :=T"U{zs: A1, -+ ,Zn: An}.
Froml <T’"we getA < A’, hence

(S (&' = Bj),[A /A (D=Bj)) €R..

To conclude the proof, it suffices to show that (i) each heaihblez that is a “capability” of the sum-
mation in (5) is matched by a head-variablethat is a “capability” of the summation in (6); and (ii)
vice-versa.

(i) Let ze dom(A"). We have to exhibiy € dom(A) such thatz: A(y)) € A'. First casez € domA).
By A<A, (z: A(z)) € A. So we may take =z Second and last case= '\['. By ' < T, there is
ye Tl suchthatz: T (y)) € I'. Butthen(z: A(y)) e A'.

(i) We have to show that, for aly € domA), and all(w: A(y)) € &', w e dom4'). But this is
immediate. 0
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Notice that we cannot expect that the summands appear irathe srder in (5) and (6). Therefore,
we have to be more careful with the notion of equality of Botmmests. It is not just bisimilarity, but
we assume that the sums of elimination alternatives aréettess if they were sets of alternatives, i. e.,
we further assume that is symmetric and idempotent. It has been shown by Picard lemddcond
author [10] that bisimulation up to permutations in unbaemdists of children can be managed in a
coinductive type even with the interactive proof assis@od). In analogy, this coarser notion of equality
(even abstracting away from the number of occurrences oftamative) should not present a major
obstacle for a fully formal presentation.

In the rest of the paper — in particular in Theorem 24 — we asghiat sums of alternatives are treated
as if they were sets.

Example 21 (Example 10 continued)Thanks to the preceding lemma, il obtained by co-contraction
from Ns:

No=[Xx:-y:(PDQ)DpP,Z:pPyL:(PDA) DP,z1:p/X:y:(PDA)Dp,z:pNs ,

where the type of x has been omitted. Hencg, Ny, Ng and Ny can be eliminated, andd\can be
expressed as the (meta-level) fixed point:

Ns = Vv NX</\ y:(I_qu)Dp'y</\ ZE.[X,y, Z Y1, Zl/X’yv Z]N> +Z+ y1</\ Zf'[xv Y,Z Y1, Z]_/X, Y, Z]N>> )
now missing out all types in the context substitution. Hinale obtain the closeddm forest
(= A) = AxU(P2A2P)IP)A y () y(PODOP i) 7P N5))

The question is now how to give a finitary meaning to terms Nkdn the example above, which
are defined by fixed points over variables subject to contglstgution. We might expect to use the

equation definind\s to obtain a finitary representation ﬁfp, provided context substitution is defined
on this system. But how to do that? Applying sayy,z yi,z1/X,y,Z to a plain fixed-point variable
cannot make much sense.

The desired finitary representation in the full implicatibnase is obtained by adjusting the terms of

—gf .
A5’ used in the Horn case as follows:
(terms) N = (---)|gfpX%.Ex+---+En|X°

Hence fixpoint variables are “typed” widequentw.

Different free occurrences of the sadiaenay be "typed” with different’s, as long as a lower bound
of theseo’s can be found w.r.t< (Definition 18).

Relatively to Definition 14, an environmedt now assigns (co)termi of X;O to “typed” fixpoint
variablesx?, providedX does not occur with two different “types” in the domainéaffor all X; we also
change the following clauses:

X [07/0]&(X7) if o <o
[[ngXU-IZEi]]f = VN'Z[[Ei”EU[X"HN}

We will have to assign some default valuex8' in case there is no suah, but this will not play a role
in the main result below.
Map Np(X : q) used in the proof of Theorem 15 is replaced by the following:
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Definition 22 Let=:= X : © = g be a vector of m> 0 declarations(X; : ©; = ¢;) where no fixpoint
variable and no sequent occurs twicg. 1%, (=) is defined as follows:
If, for somel <i<m, p=q and®; CI and|Q;| =

I':>A3p )‘Zﬁ Z?ﬂ XI

otherwise,
N iop(E) =A% 20 gfpY?.  §  y(Nasg(ZY:0)),
(y:Bop)ea
where, in both casedy:=T'U{z :A1,---,z,: An} ando :=A = p.
The definition opr(X—:cﬁ) in the proof of Theorem 15 was by recursion on a certain nurober

atoms. The following lemma spells out the measure that isrsaely decreasing in the definition of
NF:>C(E)-

Lemma 23 For all I = C, N-—¢(+) is well-defined, wheredenotes the empty vector.

Proof Let us callrecursive calla “reduction”
—> —>
NFéﬁQp(X 10=q) ~ Na- (X:©=q,Y:0) (7)

where the if-guard in Def. 22 failsf and o are defined as in the same definition; and, for sgme
(y: B> p) € A. We want to prove that every sequence of recursive calls fipot(-) is finite.

First we introduce some definitionse/S'?:= {B | there isA € &/ such thaB is subformula ofA},
for <7 afinite set of formulas. We say is subformula-closedf «7"*= 7. A stripped sequeris a pair
(4, p), whereZ is a finite set of formulas. [&6 =T = p, then|o| denotes the stripped sequéfit|, p).
We say(%, p) is over.«/ if 28 C o7 andp € <. There aresize.<7 ) := a- 2 stripped sequents over,, if
a (resp.k) is the number of atoms (resp. formulas)dn

Let <7 be subformula-closed. We s@y= C and=:= X : © = g satisfy the</-invariant if:

@) [Fu{C} c«;
(i) @, C O, C--- COnx=T (if m=0then this is meant to be vacuously true);
(i) For1<j<m,qe|r[se

wherem > 0 is the length of vectaE (if m= 0, also item (iii) is vacuously true). In particulag| is over
o, forall o € =. We prove that, if = C and= satisfy thee-invariant for somez, then every sequence
of recursive calls fronNr_.c(=) is finite. The proof is by induction osizg </ ) — sizg =), wheresiz€=)
is the number of elements (| and|=| := {|o|: 0 € =}.

LetC = A > p. We analyze an arbitrary recursive call (7) and prove thatyesequence of recursive
calls fromNa—g,;(Z,Y : 0) is finite. This is achieved by proving:

() A= Bjand=,Y : o satisfy thes/-invariant,
(Il) siz&=,Y :0) > sizg=)
Proof of (1). By assumption, (i), (ii), and (iii) above holtVe want to prove:
) [8]U{B}} C o
(i) ©1COC---CORCA=A
(i) Forl <j<m+1,qj< AP
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Proof of (). |A| = [T|U{A4,--- ,An} € &/ by (i) and.«Z subformula-closedB; is a subformula of
B> pandB > p e |A| becauséy: B D p) € A, for somey.

Proof of (ii"). Immediate by (i) and” C A.

Proof of (jii"). For 1< j <m, gj € [T|SY?C |A[S“®, by (jii) and " C A. On the other handyjj 1 = p €
|A[SPbecausdy : B O p) € A, for somey.

Proof of (II). Given that the if-guard of Def. 22 fails, andatt®; C I due to (ii), we conclude: for all
1<i<m, p#qor|G;| # |A|. But this means thgiA = p| ¢ |=|, hencesizd=,Y : 0) > siz&=).

Now, by I.H., every sequence of recursive calls frdia. g, (=,Y : 0) is finite. This concludes the
proof by induction.

Finally let.e” = (|F| U {C})S“Pand observe thdt = C and= = - satisfy thes/-invariant. 0

Theorem 24 (Equivalence)For any I' and C, there exists fN.¢c € ngp with no free occurrences of
fixpoint variables such thgiNr_.c[] = .7 (I = C).

Proof We prove: if, for alli, E(Xie‘iq‘) =.7(6; = q), then

[N Ele=ST=A>p) , (8)

r=A>p

where=:= X : © = @. In this proof we re-use the concepts introduced in the poddfemma 23. Let
o = ([F|U{A D p})3*. The proof is by induction osiz€.<7) — siz€=).
Casep=q and®; C T and|©!| = |A|, for some 1< i < m, with mthe length of=. Then,

LHS = AZL---Zn X9, (by definition)
= A2 A= /6 = glE(XPT%)  (by definition and (*) below)
= A2 A= G/6 = q|7 (G =q) (byassumption)
— ,\ﬁl S (D= ) (by Lemma 20 and (*))
= RHS (by definition)

whereA:=TU{z : A1, -,z : An}, which implies(©; = q;) < (A = q;). The latter fact is the justifica-
tion (*) used above.

The inductive case is an easy extension of the inductiveinaBeeorem 15. Suppose the case above
holds for no 1<i <m. ThenLHS= /\zfl--.zﬁ".N“, whereN® is the unique solution of the following
equation

N" = 3 y([Naeg (5. 1 0)euyee) (©)
(y:E)Dp)EA

and, againA:=T U{z : A1, -+ ,Z,: An}. Now observe that, by I.H., the following equations (10) and
(11) are equivalent.

LB=p) = >  Y([Na=g(EY:0)egyorssasp))i (10)
(y:@:)p)eA

JB=p = > YWS(B=B)), (11)
(y:ﬁ:)p)eA

By definition of (A = p), (11) holds; hence - because of (10y4A = p) is the solutionN” of (9).
ThereforeLHS= A zfl ..-Z.7 (A = p), and the latter iRH Sby definition of.& (I = A> p).

Finally, the theorem follows as the particular case of (8wl = A > p and the vector of fixpoint
variable declarations is empty. o
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5 Conclusion

We proposed a coinductive approach to proof search, whichllugtrated in the case of the cut-free
systemLJT for intuitionistic implication (Oand its proof-annotate@nsion)). As the fundamental tool,
we introduced the coinductive calculvlg which besides the coinductive readingXaof introduces a
construction for finite alternatives. The (co)terms of tbédculus (also called Bohm forests) are used
to represent the solution space of proof searchLfbF-sequents, and this is achieved by means of a
corecursive function, whose definition arises naturallytdiing a reductive view of the inference rules
and by using the finite alternatives construction to accéaminultiple alternatives in deriving a given
sequent.

We offered also a finitary representation of proof seardhlif, based on the inductive calculﬁ§fp
with finite alternatives and a fixed point construction, ahdveed equivalence of the representations.
The equivalence results turned out to be an easy task in seeatdhe Horn fragment, but demanded for
co-contraction of contexts (contraction bottom-up) in¢ase of full implication.

With Pym and Ritter [11] we share the general goal of settifrgmework for studying proof search,
and the reductive view of inference rules, by which eachrérfee rule is seen as a reduction opera-
tor (from a putative conclusion to a collection of sufficigmemises), and reduction (the process of
repeatedly applying reduction operators) may fail to yielffinite) proof. However, the methods are
very different. Instead of using a coinductive approachmiynd Ritter introduce tha pve-calculus
for classical sequent calculus as the means for repregetiéirivations and for studying intuitionistic
proof search (a task that is carried out both in the conte#t@sequent calculus LJ and of intuitionistic
resolution).

In the context of logic programming with classical first-erdHorn clauses, and building on their
previous work [6, 4], Komendantskaya and Power [5] esthbdiscoalgebraic semantics uniform for
both finite and infinite SLD-resolutions. In particular, aioa of coinductive (and-or) derivation tree
of an atomic goal w.r.t. a (fixed) program is introduced. Smess and completeness results of SLD-
resolution relative to coinductive derivation trees anthecoalgebraic semantics are also proved. Logic
programming is viewed as search for uniform proofs in setcaiculus by Milleret al. [8]. For intuition-
istic implication, uniform proofs correspond to the clag$mp-)expanded normal natural deductions (see
Dyckoff and Pinto [2]), hence to the typedterms we considered in this paper (recall the restriction t
atoms in ruleDer of Fig. 1 for typing application). Under this view, our worlates to Komendantskaya
and Power [5], as both works adopt a coinductive approadhercontext of proof search. However, the
two approaches are different in methods and in goals. Asdkis lof the coinductive representation of
the search space, instead of and-or infinite trees, we fabh@nCurry-Howard view of proofs as terms,
and propose the use of a typed calculus of coinductive landrtias. Whereas Komendantskaya and
Power [5] are already capable of addressing first-ordertification, we only consider intuitionistic im-
plication. Still, as we consider full intuitionistic impiation, our study is not contained in classical Horn
logic. The fact that we need to treat negative occurrencespfcation, raises on the logic programming
side the need for dealing with programs to which clauses eaadded dynamically.

f
As a priority for future work, we plan to develop notions ofmalisation for the calcuils s and)@ P

in connection with aspects of proof search like pruningaeapaces and reading off (finite) proofs.

In order to test for the generality of our approach, we intenextend it to treat the first-order case.
Staying within intuitionistic implication, but changintpe proofs searched for, another case study we
intend to investigate is Dyckhoff’s contraction-free gyst[1].
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We give a natural complete infinitary axiomatization of tlguational theory of the context-free
languages, answering a question of Leil3 (1992).

1 Introduction

Algebraic reasoning about programming language consthag been a popular research topic for many
years. At the propositional level, the theory of flowchadgmams and linear recursion are well handled
by such systems as Kleene algebra and iteration theorgtensy that characterize the equational theory
of the regular sets. To handle more general forms of reauisiduding procedures with recursive calls,
one must extend to the context-free languages, and herdguha is less well understood. One reason
for this is that, unlike the equational theory of the regudats, the equational theory of the context-
free languages is not recursively enumerable. This hasdete gesearchers to declare its complete
axiomatization an insurmountable task [13].

Whereas linear recursion can be characterized with theptaator” of Kleene algebra or the dag-
ger operatior of iteration theories, the theory of context-free langsagguires a more general fixpoint
operatoru. The characterization of the context-free languages a$ $edutions of algebraic inequalities
involving u goes back to a 1971 paper of Gruska [7]. More recently, sexes@archers have given equa-
tional axioms for semirings witpt and have developed fragments of the equational theory téxbfree
languages [3, 5, 6, 8, 9, 13].

In this paper we consider another class of models satistyoandition callegu-continuityanalogous
to the star-continuity condition of Kleene algebra:

a(ux.p)b = Z)a(nx p)b,

where the summation symbol denotes supremum with respéee toatural order in the semiring, and
Ox.p=0 (n+1)x.p = p[x/nx.p|.

This infinitary axiom combines the assertions thatp is the supremum of its finite approximamis p
and that multiplication in the semiring is continuous wittspect to these suprema. Analogous to a
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similar result for star-continuous Kleene algebra, we slioat all context-free languages overua
continuous idempotent semiring have suprema. Our maitiisgbat thep-continuity condition, along
with the axioms of idempotent semirings, completely axitreethe equational theory of the context-free
languages. This is the first completeness result for thetiemad theory of the context-free languages,
answering a question of Leil3 [13].

1.1 Related Work

Courcelle [3] investigatesegular systemdinite systems of fixpoint equations over first-order terwesro
a ranked alphabet with a designated symbalenoting set union, thereby restricting algebras to power
set algebras. He stages their interpretation by first intéimg recursion over first-order terms as infi-
nite trees, essentially as the final object in the correspgndoalgebra, then interpreting the signature
symbols inw-complete algebras. He provides soundness and complstiemdésansforming regular sys-
tems that preserve all solutions and soundness, but notletenpss for preserving their least solutions.
Courcelle’s approach is syntactic since it employs unfgdf terms in fixpoint equations.

LeiR [13] investigates three classes of idempotent segsnmith a syntactic least fixpoint operator
U. The three classes are callédF, KAR, andKAG in increasing order of specificity. All these classes
are assumed to satisfy the fundameRatk axioms

P[X/Ux.p] < pX.p P<X = PXp<X

which say thatux.p is the least solution of the inequalify < x. The classe&KAR and KAG further
assume

ux.(b+ax) = ux.(1+xa)-b ux.(b+xa) =b- ux.(1+ ax)
and

pX.(s+1x) = px.(uy.(1+yr)-s) PX.(S+xr) = px.(s- py.(1+r1y)),

respectively. These axioms can be viewed as imposing aotytiproperties of the semiring operators
with respect tou. All standard interpretations, including the contexteflanguages over an alphabet
X, are continuous and satisfy theAG axioms. Esik and LeiR [5, 6] show that conversion to Greibach
normal form can be performed purely algebraically undesereessumptions.

Esik and Kuich [4] introduceontinuous semiringswvhich are required to have suprema for all di-
rected sets, and they employ domain theory to solve polyalofixipoint equations. Idempotent con-
tinuous semirings arg-continuous Chomsky algebras as defined here, but not alyeAs we shall
prove, the family of context-free languages over any alphabnstitutes @-continuous Chomsky alge-
bra. It is not a continuous semiring, however, since theruofacontext-free languages is not necessarily
context-free.

2 Chomsky Algebras

2.1 Polynomials

Let (C, +, -, 0, 1) be an idempotent semiring axda fixed set of variables. folynomial over indeter-
minates X with coefficients ini€ an element oE[X], whereC[X] is the coproduct (direct sum) 6fand
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the free idempotent semiring on generatérs the category of idempotent semirings. For example, if
a,b,c € C andx,y € X, then the following are polynomials:

0 a axbycxt 1 axCbyx+ by?xc 14+ X+X2+ X3

The elements of[X] are not purely syntactic, as they satisfy all the equatidridesnpotent semirings
and identities o€. For example, iB? = b? =1 inC, then

(axa+ byb)? = ax?a+ axabyb+ bybaxat by?h.
Every polynomial can be written as a finite sum of monomialhefform

ApXpa1X1 -+ - An—1Xn—18n,

where eacla € C— {0} andx € X. Thefree variablesof such an expressiop are the elements of
appearing in it and are denoté¥ (p). The representation is unique up to associativity of miidgpion
and associativity, commutativity, and idempotence of tioiali

2.2 Polynomial Functions and Evaluation

Let C[X] be the semiring of polynomials over indetermina¥esind letD be an idempotent semiring
containingC as a subalgebra. By general considerations of universabedg any valuatiow : X —
D extends uniquely to a semiring homomorphigm C[X] — D preservingC pointwise. Formally,
the functorX — C[X] is left adjoint to a forgetful functor that takes an idempateemiringD to its
underlying set. Intuitivelyd is theevaluation morphisrthat evaluates a polynomial at the paint DX,
Thus each polynomigb € C[X] determines @olynomial functior{p] : DX — D, where[p] (o) = &(p).
The set of all functiond* — D with the pointwise semiring operations is itself an idenemt
semiring withC as an embedded subalgebra under the embeddingh o.c. The map[-] : C[X] —
(DX — D) is actuallyt, wheret(x) = A f.f(x).
For the remainder of the paper, we wréteor G, as there is no longer any need to distinguish them.

2.3 Algebraic Closure and Chomsky Algebras

A system of polynomial inequalities oveiiga set

P1<X1, P2<X2, ...y Pn < Xn 1)

wherex € X and p; € C[X], 1 <i <n. A solutionof (1) in C is a valuationo : X — C such that
o(pi) < o(x), 1<i<n. The solutiono is aleast solutionf o < 1 pointwise for any other solution.
If a least solution exists, then it is unique.

An idempotent semirin@ is said to bealgebraically closedf every finite system of polynomial
inequalities ove€ has a least solution i@.

The category o€homsky algebrasonsists of algebraically closed idempotent semiringagiaith
semiring homomorphisms that preserve least solutionssiésys of polynomial inequalities.

The canonical example of a Chomsky algebra is the family ofeod-free language§F X over an
alphabetX. A system of polynomial inequalities (1) can be regardedamsext-free grammar, and the
least solution of the system is the context-free languagerg¢ed by the grammar. For example, the set
of strings in{a, b}* with equally manya’s andb’s is generated by the grammar

S— ¢|aB|bA A— aS| bAA B— bS| aBB, 2
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which corresponds to the system
1+aB+bA<S aS+bAA< A bS+ aBB< B, ©)

where the symbolga,b are interpreted as the singleton sétg, {b}, the symbolsS A, B are variables
ranging over sets of strings, and the semiring operations 0, and 1 are interpreted as set union, set
productAB= {xy | x € A, y € B}, 0, and{e}, respectively.

2.4 u-Expressions

Let X be a set of indeterminates. Lei3 [13] afisik and Leif3 [5, 6] considen-expressionslefined by
the grammar

tu=x|t+t|t-t|0]1]puxt

wherex € X. These expressions provide a syntax with which least solsitof polynomial systems
can be named. Scope, bound and free occurrences of variabtesiversion, and safe substitution are
defined as usual (see e.g. [1]). We denote[kyu] the result of substituting for all free occurrences of
X in t, renaming bound variables as necessary to avoid captutdl X @enote the set gfi-expressions
over indeterminateX.

Let C be a Chomsky algebra and a set of indeterminates. Aimterpretation over C is a map
o : TX — Cthat is a homomorphism with respect to the semiring operatamd such that

o(uxt) =the least € C such thato[x/aj(t) < a, 4)

whereag[x/a] denoteso with x rebound toa. The element exists and is unique: Informally, eagh
expressiort can be associated with a system of polynomial inequalitiet shato(t) is a designated
component of its least solution, which exists by algebréisure.

Every set ma : X — C extends uniquely to such a homomorphism. An interpretaticatisfies
the equatiors =t if o(s) = og(t) and satisfies the inequality<t if o(s) < o(t). All interpretations
over Chomsky algebras satisfy the axioms of idempotentréaysi a-conversion (renaming of bound
variables), and thBark axioms

t{x/uxt] < uxt t<x = pxt<x (5)

The Park axioms say intuitively thaix.t is the least solution of the single inequality< x. It follows
easily that

t[x/uxt] = uxt. (6)
Thus Chomsky algebras are essentially the ordered fadmirings of [6] with the additional re-
striction that+ is idempotent and the order is the natural ondery < x+y=y.
2.5 Bekic’s Theorem

It is well known that the ability to name least solutions afgle inequalities withu gives the ability
to name least solutions of all finite systems of inequaliti€kis is known as Beki¢'s theorem [2]. The
construction is analogous to the definition\f for a matrixM over a Kleene algebra.
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Bekit's theorem can be proved by regarding a system of @légps as a single inequality on a
Cartesian product, partitioning into two systems of smalienension, then applying the result for the
2 x 2 case inductively. The 2 2 system

p(xy) <X axy) <y
has least solutiong, by, where
a(y) = ux-p(x,y) bo = py.q(aly),y) a0 = a(bo),

as can be shown using the Park axioms (5); see [14] or [6] fongpcehensive treatment.
For example, in the context-free languages, the set ofystiim{ a,b}* with equally manya’s andb’s
is represented by the term

US(1+a- uB.(bS+aBB) +b- uA.(aS+ bAA)) 7)

obtained from the system (2) by this construction.

2.6 u-Continuity

Let nxt be an abbreviation for the-fold composition ot applied to 0, defined inductively by
Oxt=0 (N+1)x.t =t[x/nxt].

A Chomsky algebra is called-continuousf it satisfies theu-continuity axiom

a(uxt)b= Z) a(nxt)b, (8)

where the summation symbol denotes supremum with respebetoatural ordek <y < x+y=Yy.
Note that the supremum afandbis a+ b.

The family CF X of context-free languages over an alphakdbrms au-continuous Chomsky alge-
bra. Thecanonical interpretatiorover this algebra ikx : TX — CFX, where

Lx (X) = {X} Lx (t + U) = Lx (t) U Lx(U)
Lx(O) =0 Lx(tU) = {xy| X e Lx(t), ye Lx(l,l)} (9)
Lx(1) = {€} Lx(uxt) = |J Lx(nxt).

n>0

UnderLy, every term inT X represents a context-free language over its free varigbtgs thatx is not
free innxt). In the example (7) 0§2.5, the free variables agb and the bound variables a&A, B,
corresponding to the terminal and nonterminal symbolpeets/ely, of the grammar (2) ¢2.3.

2.7 Relation to Other Axiomatizations

In this section we show that the various axiomatizationssioared in [5, 6, 13] are valid in afi-
continuous Chomsky algebras.
A p-semiring[6] is a semiring(A, +,-,0,1) satisfying theu-congruenceandsubstitutionproperties:

t=u= uxt=puxu o(tly/u)) = aly/o(u)(t).

Idempotence is not assumed.



N.B.B. Grathwohl, F. Henglein, D. Kozen 49

Lemma 2.1. Every Chomsky algebra isia-semiring.

Proof. The u-congruence property is immediate from the definition of gheperation (4). The substi-
tution property is a general property of systems with vdeddindings; see [1, Lemma 5.1.5]. It can be
proved by induction. For the case pkt, we assume without loss of generality tlyat x (otherwise
there is nothing to prove) and thats not free inu.

o((uxt)ly/u]) = o(px.(tly/u)))
= leasta such thato[x/a](t[y/u]) < a
= leasta such thato[x/a]ly/o(u)]
= leasta such thatoly/o(u)][x/a]

= aly/o(u)](uxt).

(t)<a
(t)<a

We now consider various axioms proposed in [13].

Lemma 2.2. In all y-continuous Chomsky algebras,
px.(1+ax) = ux.(1+xa), x¢FV(a).

Proof. By p-continuity, it suffices to show thaix (1+ax) = nx (1+xa) for all n. We show by induction
that for alln, nx (14 ax) = nx(1+xa) = y{L,a'. The basis1= 0 s trivial. For the inductive case,

(n+1)x.(1+ax) = 1+a(nx(1+ax) = 1+a(3la) = 3% &,
and this is equal tgn+1)x.(1+ xa) by a symmetric argument. O
Lemma 2.3. The following two equations hold in gll-continuous Chomsky algebras:
a(ux.(1+xb)) = px.(a+xb) (ux.(1+bx))a = ux.(a+ bx).

Proof. We show the first equation only; the second follows from a sytnimargument. Byi-continuity,
we need only show that the equation holds for anyhe basisy = 0 is trivial. For the inductive case,

a((n+1)x.(1+xb)) =a+a(nx(1+xb))b
=a+ (nx(a+xb))b
= (n+1)x.(a+xb),
where the induction hypothesis has been used in the seagmd st O

These properties also show thatcontinuous Chomsky algebras are algebraically complatars
ings in the sense of [5, 6].

Lemma 2.4. TheGreibach inequalities
pUX.S(Uy.(1+r1y)) < pux.(s+xr) pux.(uy.(14+yr))s < ux.(s+rx)

of KAG [13] hold in all u-continuous Chomsky algebras.
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Proof. For the left-hand inequality, lat = ux.(s+ xr). By the Park axioms, it suffices to show that
sS(uy.(14ry))[x/u] < u. But

S(Hy-(1+ry))[x/u] = s[x/u](py.(1+r[x/uly))
= sX/u(uy-(1+yrlx/u]))
= py.(s[x/u] +yr[x/u])
= UX.(S+Xr),
where Lemmas 2.2 and 2.3 have been used.
The right-hand ineuuality can be proved by a symmetric agntm O

Various other axioms of [5, 6, 13] follow from the Park axiams
The p-continuity condition (8) implies the Park axioms (5), bug wiust defer the proof of this fact
until §3. For now we just observe a related property of the canoimtadpretationLy.

Lemma 2.5. For any st € T X and ye X,
L (sly/py:t]) = | Lx(sly/ny)).

n>0

Proof. We proceed by induction on the structuresofThe cases for- and- are quite easy, using the
facts that for chains of sets of stringg C A1 C A C--- andBp CB; C B, C - -+,

UAmUUBn:UAnUBn UAm'UBn:UAan'

The base cases are also straightforward. (Bos, assume without loss of generality tha¥ x andx is
not free int.

Lx ((ux.s)[y/py]) = | JLx((mxs)[y/uyt])
= JULx((mxs)[y/ny])
= JULx((mxs)[y/nyt])

= Ubx((uxs)y/my).

3 Main Results

Our main result depends on an analog of a result of [10] (s2p.[1t asserts that the supremum of
a context-free language ovenacontinuous Chomsky algebi& exists, interpreting strings ovét as
products irK. Moreover, multiplication is continuous with respect tpsema of context-free languages.
Lemma 3.1. Let 0 : TX — K be any interpretation over a-continuous Chomsky algebra K. Let
T: TX — CFX be any interpretation over the context-free languaGéx such that for all xc X and
sueTX,

o(sxu = z o(syu.
YET(X)
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Then forany g,ue TX,

o(stu) = o(syu
yet(t)
In particular,
o(stu) = Z o(syu, (10)
yeLx (t)

where Ly is the canonical interpretation defined §2.6.

Remarkl. Note carefully that the lemma does not assuarn@riori knowledge of the existence of the
suprema. The equations should be interpreted as assdrtihghe supremum on the right-hand side
exists and is equal to the expression on the left-hand side.

Proof. The proof is by induction on the structuretothat is by induction on the subexpression relation
t+u-tt+u=ut-u>tt-u=u uxt = nxt, whichis well-founded [11].

All cases are similar to the proof in [12, Lemma 7.1] for stantinuous Kleene algebra, with the
exception of the case= ux.p.

For variableg = x € X, the desired property holds by assumption. For the corsttan0 andt = 1,

o(s0u) =0= z 0= z o(syy = Z o(syy

yed yet(0)
o(slu) = o(su) = z o(syy = Z o(syu.
ye{e} yer(1)

For sumg = p+q,

o(s(p+qu) = a(spu +a(sqy

- Z o (sxu) + Z o(syu (11)
XeT(p) yer1(q)

— a(szy (12)
zer(gur(q)

— o(szu. (13)
ze1(p+q)

Equation (11) is by two applications of the induction hypastis. Equation (12) is by the properties of
supremum. Equation (13) is by the definition of sunCiX.
For productg = pq,

a(spqy = a(sxyy (14)
xet1(p) yet(q)
= o(szy (15)
zet(p)-1(q)
= o(szu. (16)
ze1(pq)

Equation (14) is by two applications of the induction hypsis. Equations (15) and (16) are by the
definition of product inCF X.
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Finally, fort = ux.p,

(s(uxp)u) = ¥ o(s(nxp)u) (17)
=5 3 asw (18)
N yer(nxp)
= a(syu (19)
YEUnT(NXp)
= o(syu. (20)
YET(UX.P)

Equation (17) is just thei-continuity property (8). Equation (18) is by the inductibypothesis, ob-
serving thatux.p = nx.p. Equation (19) is a basic property of suprema. Finally, §qug20) is by the
definition of T(ux.p) in CFX.

The result (10) for the special casetof Ly is immediate, observing thaj satisfies the assumption
of the lemma: fox € X,

o(sxu = o(syu = o(syu.
ye%} z

yeLx (x)

At this point we can show that the-continuity condition implies the Park axioms.
Theorem 3.2. Theu-continuity condition(8) implies the Park axioméb).

Proof. We first showp < x=- ux.p < xin any idempotent semiring satisfying tpecontinuity condition.
Let o be a valuation such that(ux.p) = 3, 0(nx p). Suppose thatr(p) < g(x). We show by induction
that for alln > 0, o(nx.p) < o(x). This is certainly true for @p = 0. Now suppose it is true farx p.
Using monotonicity,

o((n+1)x.p) = a(px/nx.p]) < o(p[x/x]) = o(p) < o(x).
By p-continuity, o(ux.p) = Spo(nx.p) < o(x).
Now we show thatp[x/ux.p] < ux.p. This requires the stronger property thapigexpression is

chain-continuous with respect to suprema of context-famguages as a function of its free variables.
Using Lemmas 2.5 and 3.1,

(plx/px.pl) =3 {o(y) |y € Lx(plx/px-p])}
=Z{ \yeULx X/nxp})}
=22 {oly \ye Lx (plx/nxp))}
=Y o(px/nxp))
= i o((n+1)x.p)

= O(HUX.p).
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The following is our main theorem.
Theorem 3.3. Let X be an arbitrary set and lettse T X. The following are equivalent:

(i) The equation s=t holds in all u-continuous Chomsky algebras; that is+4 is a logical conse-
quence of the axioms of idempotent semirings angiticentinuity condition

a(uxt)b= Z a(nxt)b, (21)

n>0

or equivalently, the universal formulas
a(nxt)b <a(uxt)b, n>0 (22)

(a(nxt)b <w) | = a(uxt)b<w (23)
(Qyamon=)

n>0

(i) The equation s=t holds in the semiring of context-free languagdsy over any setY.

(i) Lx(s) =Lx(t), where Ik : TX — CF X is the standard interpretation mappingLeexpression to
a context-free language of strings over its free variables.

Thus the axioms of idempotent semirings andontinuity are sound and complete for the equational
theory of the context-free languages.

Proof. The implication (i)=- (ii) holds sinceCFY is a u-continuous Chomsky algebra, and (iii) is a
special case of (ii). Finally, if (i) holds, then by two dpations of Lemma 3.1, for any interpretation
o . TX — K over au-continuous Chomsky algebkg,

which proves (i). O

Theorem 3.4. The context-free languages over the alphabet X form the tfreentinuous Chomsky
algebra on generators X.

Proof. LetK be au-continuous Chomsky algebra. Any map X — K extends uniquely to an interpre-
tationo : TX — K. By Lemma 3.1, this decomposes as

0=3YoCFooly,

whereLy : TX — CFX is the canonical interpretation in the context-free lamgsaoverX, CFo :
CFX — CFK isthe mapCF o(A) = {o(x) | x € A}, andy : CFK — K takes the supremum of a context-
free language oveK, which is guaranteed to exist by Lemma 3.1. The unique memliF X — K
corresponding tar is Y o CFo. ThusCF is left adjoint to the forgetful functor fronu-continuous
Chomsky algebras t6et. The maps<+— {x} : X - CFX andy : CFK — K are the unit and counit,
respectively, of the adjunction. O
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4 Conclusion

We have given a natural complete infinitary axiomatizatibthe equational theory of the context-free
languages. Leil3 [13] states as an open problem:

Are there natural equations betwegrregular expressions that are valid in all continuous
models ofKAF, but go beyon&AG?

We have identified such a system in this paper, thereby aimsyvkeill’'s question. He does not state
axiomatization as an open problem, but observes that tleé pairs of equivalent context-free grammars
is not recursively enumerable, then goes on to state:

Since there is an effective translation between conted-frammars and-regular expres-
sions..., the equational theory of context-free languagésrms ofp-regular expressions
is not axiomatizable at all.

Nevertheless, we have given an axiomatization. How do wen@e these two views? Leil is apparently
using “axiomatization” in the sense of “recursive axioreation.” But observe that the axiom (23) is an
infinitary Horn formula. To use it as a rule of inference, onewd need to establish infinitely many

premises of the form(ny.p)z < w. But this in itself is a19-complete problem. One can show that it is
I'Ig’-complete to determine whether a given context-free gran@®maver a two-letter alphabet generates
all strings. By codings as au-expressiorw, the problem becomagsx.(1+ ax+ bx) < w, which by (21)

is equivalent to showing thaix (1+ ax+ bx) < w for all n.
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We introduce a new class of abstract structures, which we call generalized ultrametric semilattices,
and in which the meet operation of the semilattice coexists with a generalized distance function in a
tightly coordinated way. We prove a constructive fixed-point theorem for strictly contracting func-
tions on directed-complete generalized ultrametric semilattices, and introduce a corresponding in-
duction principle. We cite examples of application in the semantics of logic programming and timed
computation, where, until now, the only tool available has been the non-constructive fixed-point the-
orem of Priess-Crampe and Ribenboim for strictly contracting functions on spherically complete
generalized ultrametric semilattices.

1 Introduction

Fixed-point semantics in computer science has almost invariably been based on the fixed-point theory
of order-preserving functions on ordered sets, or that of contraction mappings on metric spaces. More
recently, however, there have been instances of fixed-point problems involving strictly contracting func-
tions on generalized ultrametric spaces, such as in the semantics of logic programming (e.g., see [6],
[19]), or the study of timed systems (e.g., see [17], [11]), that are not amenable to classical methods
(see [15, thm. A.2 and thm. A.4]). Until recently, the only tool available for dealing with such problems
was a non-constructive fixed-point theorem of Priess-Crampe and Ribenboim (see [18]). But in [15], a
constructive theorem was obtained, tailored to the general form in which these problems typically ap-
pear in computer science, also delivering an induction principle for proving properties of the constructed
fixed-points. What is interesting is that the proof of that theorem involved, not just the generalized ultra-
metric structure of the spaces of interest, but also a natural, inherent ordering of these spaces, and more
importantly, the interplay between the two, which was distilled in two simple properties of the following
form:

1. if d(x1,x2) <d(x1,x3), then x; Mx3 Cx;Mxy ;
2. d(x1 Mx2,Xx1 |_|X3> < d(XQ,X3).

As it turns out, these two simple properties imply all formal properties of the relationship between the
generalized distance function and the order relation in those spaces (see [14]).

The purpose of this work is to formulate the fixed-point theory of [15] as an abstract theory that can
be readily applied to different fields and problems, such as the question of meaning of logic programs
or the study of feedback in timed systems. To this end, we introduce a new class of abstract structures,
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which we call generalized ultrametric semilattices, prove a constructive fixed-point theorem of strictly
contracting functions on directed-complete generalized ultrametric semilattices, and introduce a corre-
sponding induction principle.

2 Generalized Ultrametric Semilattices

We assume that the reader is familiar with the concept of many-sorted signature, which is, of course, a
straightforward generalization of that in the one-sorted case (e.g., see [7, chap. 1.1]).
We write X for a two-sorted signature consisting of two sorts A and D, and the following symbols:

1. an infix function symbol I of type A X A — A;
2. an infix relation symbol < of type D x D;

3. aconstant symbol O of type 1 — D;

4. a function symbol d of type A x A — D.

Definition 2.1. A X-structure is a function 2 from the set of sorts and symbols of X such that 2((A) and
2((D) are non-empty sets, and the following are true:

1. 2(M) is a function from A(A) x A(A) to A(A);

2. A(<L) is a subset of A(D) x A(D);

3. 2(0) is a member of A(D);

4. 2A(d) is a function from 2A(A) x 2A(A) to 2A(D).

Assume a X-structure 2A.

We write |2], for (A), || for A(D), M for A(M), < for A(<), 0 for 2(0), and d* for 2A(d).

We call 2|, the carrier of 2 of sort A, or the abstract set of 2, and ||, the carrier of 2 of sort D,
or the distance set of 2.

It is, of course, possible to define concepts of homomorphism, substructure, etc., for X-structures as
instances of the standard concepts homomorphism, substructure, etc., for many-sorted structures, which
are, of course, straightforward generalizations of those for one-sorted structures (e.g., see [7, chap. 1.2])
(see [14]).

The X-structures that we are interested in are those in which the function assigned to M behaves as

the meet operation of a semilattice, the function assigned to d as the generalized distance function of a
generalized ultrametric space, and the two satisfy a couple of simple properties.

Definition 2.2. A generalized ultrametric semilattice is a X-structure 2l such that the following are true:
1. (J2],,M™) is a semilattice';

2. (|]p, <*,0%) is a pointed? ordered set;

! For every set S, and every binary operation M on S, (S,M) is a semilattice if and only if for any s1,s2,53 € S, the following
are true:
(@) (sqMs2)Ms3=s1M(s20Ms3);
(b) s1Msy=s2Ts1;
(c) sylMs; =s.

2 An ordered set? is pointed if and only if it has a least element. We write (P, <,0) for a pointed ordered set (P, <) with least
element 0.

3 An ordered set is an ordered pair (P,<) such that P is a set, and < is a reflexive, transitive, and antisymmetric binary
relation on P.
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3. (||, | AL, <¥,0%,d™) is a generalized ultrametric space®;

4. for every aj,az,a3 € |2, the following are true:
(a) if dm(al,az) Sm dQl(al,a3), then (a1 n& a3) n& (a1 e a2) =ay e as;
(b) dm(al R ar,ay Bk a3) SQ[ dm(ag,ag).

Notice that, in Definition 2.2.1, a semilattice is viewed as an algebraic structure. For the most part, it
will be more convenient to view a semilattice as an ordered set.> The two views are closely connected,
and one may seamlessly switch between them (e.g., see [3, lem. 2.8]). Formally, it is simpler to work
with a meet operation than with an order relation (see [14]). But informally, we will recover the order
relation from the meet operation, and for every a;,a; € ||, write a; C2 g, if and only if a; Mta, =a.
In particular, we may rewrite Definition 2.2.4 in the following form:

4. for every aj,az,a3 € |2, the following are true:
(a) if dm(al,az) SQ[ dm(al,a3), then a; M as EQ[ al n& ay;
(b) d*(a; M az,a1 M az) <* d* (a2, a3).

Of course, all this can be done formally, but we shall not worry ourselves over the details.

For notational convenience, we will informally write =2 for the irreflexive part of C2, and <2 for
the irreflexive part of <%,

Assume a generalized ultrametric semilattice .

We say that 2 is directed-complete if and only if (|2|,C*) is directed-complete®.

If 21 is directed-complete, then for every D C ||, that is directed in (|2l|,,C*), we write | |*D for
the least upper bound of D in (||, C*).

We say that 2 is spherically complete if and only if (2|, ||, <*,0%,d¥) is spherically complete®.

The paradigmatic example of a generalized ultrametric semilattice is the standard generalized ul-
trametric semilattice S[(T,<r),V] of all linear signals from some totally ordered set (T, <r) to some
non-empty set V (see [14]). Indeed, the definition of generalized ultrametric semilattices was motivated
by the fact that every generalized ultrametric semilattice with a totally ordered distance set is isomorphic
to a standard generalized ultrametric semilattice of linear signals (see [14, thm. 2]).

An example of a non-standard generalized ultrametric semilattice of linear signals is the set of all fi-
nite and infinite sequences over some non-empty set of values, equipped with the standard prefix relation
and the so-called “Baire-distance function” (e.g., see [1]).

4 A generalized ultrametric space is a quintuple (A, P,<,0,d) such that A is a set, (P,<,0) is a pointed ordered set, d is a
function from A X A to P, and for any a;,a,,a3 € A and every p € P, the following are true:
(a) d(aj,ap) =0if and only if a; = ay;
(b) d(a1,a2) =d(az,a1);
(c) ifd(ay,az) < pandd(az,as) < p, thend(ay,a3) < p.
We refer to clause 3a as the identity of indiscernibles, clause 3b as symmetry, and clause 3c as the generalized ultrametric
inequality.
5 An ordered set (P, <) is a semilattice (also called a meet-semilattice or a lower semilattice) if and only if for any py, p> € P,
there is a greatest lower bound (also called a meet) of py and p; in (P, <).
6 An ordered set (P, <) is directed-complete if and only if every subset of P that is directed’ in (P,<) has a least upper
bound in (P, <).
7 For every ordered set (P,<), and every D C P, D is directed in (P, <) if and only if D # 0, and every finite subset of D has
an upper bound in (D, <p), where <p is the restriction of < to D.
8 A generalized ultrametric space (A, P,<,0,d) is spherically complete if and only if for every non-empty chain C of balls®
in (A,P,<,0,d), N\C #0.
9 For every generalized ultrametric space (A, P,<,0,d), and every B C A, B is a ball in (A, P,<,0,d) if and only if there is
acAand p € Psuchthat B={d' €A |d(d,a) < p}.
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Example 2.3. Let V be a non-empty set.
Let 2 be a X-structure such that |2|, is the set of all finite and infinite sequences over V,
R>0,'% and the following are true:

Q[’D =

1. M* is a binary operation on |2(|, such that for every 51,52 € [2l],, 51 M s, is the greatest common
prefix of 51 and s7;

2. <*is the standard order on Rx;
3. 0% =0;

4. d¥ is a function from ||, x |2A|  to 2|, such that for every s1,s2 € ||,

0 if 51 = 52
dm (Sl ’ Sz) = H—min {n|n € Nand s1(n) % 52(n)} otherwise.!!

It is easy to verify that 2 is a directed-complete and spherically complete generalized ultrametric
semilattice.

Notice that the generalized ultrametric space associated with the generalized ultrametric semilattice
2 of Example 2.3 is a standard ultrametric space. In such a case, we may omit the term “generalized”,
and speak simply of an ultrametric semilattice.

Another example of a non-standard ultrametric semilattice of linear signals, one that is of particular
interest to the study of timed computation, is the set of all discrete-event'? real-time signals over some
non-empty set of values, equipped with the standard prefix relation and the so-called “Cantor metric”
(e.g., see [10], [9]).

Example 2.4. LetV be a non-empty set.

Let 2 be a X-structure such that |2l|, is the set of all discrete-event signals from (R, <g) to V,!3

|2, = R>0, and the following are true:

1. M is a binary operation on |2| A such that for every sy,s52 € [, 51 M s, is the greatest common
prefix of 51 and s7;

2. <% is the standard order on R>o;
3. 04 =0;

4. d¥ is a function from ||, x || to 2|, such that for every s1,s2 € ||,

0 if 51 = s2;
2 — 1 25
d (S] ) S2) - 9~ min {rlr e Rand s;(r) % s2(r)} otherwise.

Notice that since the domain of every signal in ||, is well ordered by <g, for every s1,s2 € [A|,,
{r|reRands(r) #s2(r)} is also well ordered by <g, and thus, min{r | r € R and s;(r) % s2(r)} is
well defined.

It is easy to verify that 2l is a directed-complete and spherically complete ultrametric semilattice.

10 We write R for the set of all non-negative real numbers.

1T We write N for the set of all natural numbers, and <y for the standard order on N.

12 A signal s from (T, <7) to V is discrete-event if and only if there is an order-embedding of (dom s, <gom,) into (N, <y},
where <goms is the restriction of <7 to doms.

13 We write R for the set of all real numbers, and < for the standard order on R.
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Finally, we include an example from the field of logic programming. We assume familiarity with the
basic concepts of logic programming (e.g., see [12]). Our notation is based on [6].

Example 2.5. Let P be a normal logic program.
Let a be a non-empty countable ordinal, and / a function from Hp, the Herbrand base of P, to «.
Let A be a X-structure such that |2, is the set of all subsets of Hp, ||, = aU{ o}, and the following
are true:

1. ™ is a binary operation on ||, such that for every I, 1, € ||,

LT = {A|A€l,A€L,and forevery A’ such that /(A") € [(A) or [(A") = I(A), A" € I
ifand only if A’ € L };

2. <™ s a binary relation on |2, such that for every 3,7 € |2p,
B<"y <= yeBorB=r.

3. 0% = q

4. d%is a function from |2l|, x |2A| , to [2l|, such that for every I, I, € 2|,

d*(I;,L) = {B | B € a, and for every A such that [(A’) € B or [(A’) = B, A’ € I if and only if
A'eb}.

Let <, be a binary relation on & such that for every 8,y € «,
B<.y <= BeyorB=y.

Clearly, (o, <) is an ordered set.
It is easy to verify that 2 is a directed-complete and spherically complete generalized ultrametric
semilattice.

3 Contracting and Strictly Contracting Functions

Assume a function F on 2.
We say that F is contracting if and only if for every a;,a; € |2

A>
dm(F(al),F(az)) §m dm(al,az).

In other words, a function is contracting just as long as the generalized distance between any two
elements in the range of the function is smaller than or equal to that between the elements in the domain
of the function that map to them. Notice that, because <% is not necessarily a total order, this is different,
in general, from the generalized distance between any two elements in the domain of the function being
no bigger than that between the elements in the range of the function that those map to, which is why we
have opted for the term “contracting” over the term “non-expanding”.

We say that F is strictly contracting if and only if for every a;,a, € || A such that a; # ay,

dm(F(al),F(az)) <Ql dm(m,az).

The following is immediate:
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Proposition 3.1. If F is strictly contracting, then F is contracting.

To return to Example 2.4, the contracting and strictly contracting functions on the generalized ultra-
metric semilattice of all discrete-event real-time signals over V are exactly the causal and strictly causal
functions respectively on such signals (see [15], [16]). And in the case of Example 2.5, if the normal
logic program P is a so-called “locally hierarchical” program, then the level mapping / can be chosen so
that P can be modelled as a strictly contracting function on 2 (see [6]).

Now, contracting functions need not have fixed points (e.g., see [15, exam. 3.4]). But what about
strictly contracting functions?

Proposition 3.2. If F is strictly contracting, then F has at most one fixed point.

Proof. Suppose that F is strictly contracting.
Suppose, toward contradiction, that a; and a, are two distinct fixed points of F'. Then

d*(F(a1),F (a2)) = d*(ay,a2).

obtaining a contradiction.
Thus, F has at most one fixed point. O

Theorem 3.3. If 2 is spherically complete, then every strictly contracting function on A has exactly one
fixed point.

Theorem 3.3 follows immediately from the fixed-point theorem of Priess-Crampe and Ribenboim for
strictly contracting functions on spherically complete generalized ultrametric spaces (see [18, thm. 1]),
which is sometimes, and perhaps a little too liberally, referred to as a generalization of the Banach Fixed-
Point Theorem. The following, which follows immediately from another theorem of Priess-Crampe and
Ribenboim (e.g., see Banach’s Fixed Point Theorem in [23]), justifies the use of the stronger property of
spherical completeness in place of the standard property of Cauchy-completeness used in the latter:

Theorem 3.4. If (||, <*) is totally ordered, then 2 is spherically complete if and only if every strictly
contracting function on 2l has a fixed point.

Note that the hypothesis of (T, <) being totally ordered in Theorem 3.4 cannot be discarded (see [15,
thm. 5.5 and exam. 5.8]).

4 Fixed-Point Theory

We now develop the rudiments of a constructive fixed-point theory for strictly contracting functions.

4.1 Existence

We start by proving another fixed-point existence result for strictly contracting functions, which is similar
to Theorem 3.3, but has a different premise. The proof is more like Naundorf’s proof in [17], but, as also
possible in the case of the existence part of Theorem 3.3 (see [18, p.229]), our main theorem applies to
a more general type of function.

Assume a function F on 2I.

We say that F is strictly contracting on orbits if and only if for every a € |2(|, such that a # F(a),

d*(F(a),F(F(a))) <*d*(a,F(a)).
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In other words, F is strictly contracting on orbits just as long as the generalized distance between
every two successive elements in the orbit'* of every a € || A under F gets smaller and smaller along
the orbit.

The following is immediate:

Proposition 4.1. If F is strictly contracting, then F is strictly contracting on orbits.

Theorem 4.2. If 2 is directed-complete, then every contracting function on 2l that is strictly contracting
on orbits has a fixed point.

Before we embark on the proof of the theorem, we prove two important lemmas that will be useful
throughout this section.

For every function F on 2, and every a € |2|,, we say that a is a post-fixed point of F if and only if
aC* F(a).

Lemma 4.3. For every contracting function F on 2, and every a € || ,, the following are true:
1. F(a)M F(F(a)) is a post-fixed point of F;
2. if ais a post-fixed point of F, then a C* F (a) T* F(F(a)).

Proof. Assume a contracting function F on 2, and a € |2 ,.
Since F is contracting, by Definition 2.2.4b,

d*(F(F(a) ™ F(F (a))), F (F (a))) <* d*(F (a) ™" F (F (a)), F (a))
= d*(F(a) ™ F(F (a)), F (a) T F (a))
<*d*(F(a),F(F(a))),
and thus, by Definition 2.2.4a,

F(a)™ F(F(a)) % F(F (a) T F(F(a))) 1™ F (F (a))
C* F(F(a) T F(F(a))).
Thus, 1 is true.
Suppose that a C* F(a).

Since F' is contracting,
d*(F(a),F (F(a))) <* d¥(a,F (a)),

and thus, by Definition 2.2.4a,
am® F(a) C* F(a) M F(F(a)).

And since a C* F(a), am™ F(a) = a, and thus,
aC* F(a)M* F(F(a)).
Thus, 2 is true. 0

Lemma 4.4. For every contracting function F on 2, and any set P of post-fixed points of F, if P has a
least upper bound in {|2|,,C*), then L[*P is a post-fixed point of F.

14 For every set A, every function f on A, and any a € A, the orbir of a under f is the sequence (f"(a) | n € ).
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Proof. Assume a contracting function F on 2, and a set P of post-fixed points of F' that has a least upper
bound in ([2A|,,C%).
Assume a € P.
Since F is contracting,
d*(F(a),F(U"P)) <* d*(a,|]*P). (1)

By Definition 2.2.4b and (1),
d*(U*P) M F(a), (L*P) M F(UMP)) <™ d™(a,LI*P). e)
Also, since a is a post-fixed point of F, by Definition 2.2.4b,

dgl(a, (|_|Q[P) 2 F(a))= dm(F(a) ks a,F(a) ks |_|QlP)
<% d¥(a,| *P). 3)

By (2), (3), and the generalized ultrametric inequality,
d*(a, (U*P) T F(LTP)) <* d¥(a,LI"P).
Then, by the generalized ultrametric inequality,
(PP (TP T F(UPP)) <™ d¥(a L7P),
and thus, by Definition 2.2.4a,

am P (MR (UPP) M F(LPP)
= (*P)m* F(LUP).

However, since a € P, a C% |_|91P, and thus, a¥ |_]Q[P =a. Thus,

aC* (P F(LUPP)
cA F(L*P).

Thus, by generalization, F(|_|*P) is an upper bound of P in (|| ,,C%). And since | |*P is the least
upper bound of P in (|2|,,C%), LJ*P C* F(|J*P). Thus, | /*P is a post-fixed point of F. O

Proof of Theorem 4.2. Suppose that 2 is directed-complete.
Assume a contracting function F' on 2 that is strictly contracting on orbits.
Let P = {a | a is a post-fixed point of F'}.
Let a be a member of || ,.
By Lemma 4.3.1,
F(a) ™ F(F(a)) £ F(F (@) ™ F(F(a))),

and thus, P # 0. Then, by Kuratowski’s Lemma (see [3, sec. 10.2]), every chain in (P, Em) 1s contained
in a C-maximal chain in (P,C*).

Let C be a C-maximal chain in (P,C*).

Since 2 is directed-complete, C has a least upper bound in (|2|,,C*).

We claim that | |*C is a fixed point of F.

Suppose, toward contradiction, that |[*C is not a fixed point of F.
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Let x = F(| *C) M2 F(F(L*C)).

By Lemma 4.4, | [*C C% F(|[*C), and thus, by Lemma 4.3.2, | [*C % x.

Suppose, toward contradiction, that |/*C = x. Since F is strictly contracting on orbits, and L*C is
not a fixed point of F,

d*(F(L*o), F(F(U*C))) <™ d* (e, F(LU*C)). “)
However, since x = F (| [*C) M F(F(LJ*C)) and | [*C = x, by Definition 2.2.4b,

(e, F(U*o))

d*(F("0), %0

d*(F (), F(* o) M F(F(LUYC)))

d*(F (M) F(U*e), F(LUMe) M F(F(LJPC)))
AN (F (), F(F(UYC))),

IA

contrary to (4).

Therefore, | [*C =% x. Thus, x & C. And by Lemma 4.3.1, x C% F(x), and thus, x € P. Thus, CU {x}
is a chain in (P,C*), and C C CU {x}, contrary to C being a C-maximal chain in (P, C%).

Therefore, | |*C is a fixed point of F. O

There are two things to notice here. First, the proof of Theorem 4.2 is inherently non-constructive,
overtly appealing to the Axiom of Choice through the use of Kuratowski’s Lemma. And second, there
need not be only one fixed point; indeed, the identity function on 2l is trivially causal and strictly con-
tracting on orbits, yet every element is a fixed point of it.

The following is immediate from Proposition 3.1, 3.2, and 4.1, and Theorem 4.2:

Theorem 4.5. If 2 is directed-complete, then every strictly contracting function on 2 has exactly one
fixed point.

If 2 is directed-complete, then for every strictly contracting function F on 2, we write fix F' for the
unique fixed point of F.
The following is immediate from Theorem 3.4 and 4.5:

Corollary 4.6. If (||, <™) is totally ordered, then if  is directed-complete, then 2 is spherically
complete.

We note that the hypothesis of (T, <) being totally ordered in Corollary 4.6 cannot be discarded (see
[15, exam. 5.8]). As a consequence, Theorem 3.3 and 4.5 are incomparable with respect to deduction;
that is, one cannot deduce Theorem 4.5 from Theorem 3.3, nor Theorem 3.3 from Theorem 4.5.

4.2 Construction

Although theoretically pleasing, mere existence of fixed points is practically moot. Theorem 4.2 and 4.5,
just like Theorem 3.3, offer little if no means of deductive reasoning about the fixed points ascertained
to exist.

But how are we to construct these fixed points? Theorem A.2 and A.4 in [15] seem to render standard
fixed-point theories of ordered sets and metric spaces more or less irrelevant. At the same time, it may
well be that the relevant fixed-point theorem of Priess-Crampe and Ribenboim is independent of the



E. Matsikoudis & E. A. Lee 65

theory of generalized ultrametric spaces in the classical Zermelo-Fraenkel set theory without choice,
thus lacking a constructive proof altogether. !>

The answer lies in the non-constructive proof of Theorem 4.2. Indeed, the proof contains all the
ingredients of a transfinite recursion facilitating the construction of a chain that may effectively substitute
for the maximal one only asserted to exist therein by an appeal to Kuratowski’s Lemma. We may start
with any arbitrary post-fixed point of the function F, and iterate through the function Aa: ||, . F(a)
F(F(a)) to form an ascending chain of such points. Every so often, we may take the supremum of all
post-fixed points theretofore constructed, and resume the process therefrom, until no further progress
can be made. Of course, the phrase “every so often” is to be interpreted rather liberally here, and certain
groundwork is required before we can formalize its transfinite intent.

We henceforth assume some familiarity with transfinite set theory, and in particular, ordinal numbers.
The unversed reader may refer to any introductory textbook on set theory for details (e.g., see [4]).

We write 1m2%F for a function on 2!, such that for any a € |2/ ,,

(1m2%F)(a) = F(a) M* F(F(a)).

In other words, 1m2*F is the function Aa : ||, . F(a)* F(F(a)).
Assume a post-fixed point a of F.
We let
(1m2mF)0(a) =a,
for every ordinal «,
1Am22F)*" (a) = (A1m2%F)((1m2¥F)%(a)),

and for every limit ordinal A,
1m2*F) (@) = M (1m2*F)*(a) | ot € 1}

The following implies that for every ordinal o, (1m2*F )a(a) is well defined:

Lemma 4.7. If 2 is directed-complete, then for every contracting function F on 2, any post-fixed point
a of F, and every ordinal o,

1. (1m22F)%(a) C® F((1m2%F)%(a));
2. forany B € a, (1m291F)B (a) C* (1m22lF)a(a).

Proof. Suppose that 2 is directed-complete.
Assume a contracting function F' on 2, a post-fixed point a of F', and an ordinal «.
We use transfinite induction on the ordinal ¢ to jointly prove that 1 and 2 are true.
If o =0, then (1m2*F )a(a) = a. Thus, 1 is trivially true, whereas 2 is vacuously true.
Suppose that there is an ordinal 8 such that @ = 8 + 1.
Then

(1m22F)% (@) = (1m2¥F)((1m2%F)’ (a))
= F(Am2%F)’ (a)) R F(F (1m2*F)" (a)). 5)

15 A purportedly constructive proof for the fixed-point theorem of Priess-Crampe and Ribenboim under the hypothesis of a
totally ordered set of distances was presented in [5, thm. 1.3.9]. However, the proof covertly appeals to the Axiom of Choice
through a potentially transfinite sequence of choices.
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Thus, by Lemma 4.3.1, 1 is true.
For every y € a, either y = 3, or y € B3, and thus, by the induction hypothesis,

(1m2%F)" () =¥ (1m2¥F) (a). ©6)
Also, by the induction hypothesis,
(1m22F)’ (@) = F(1m22F) (a)).
Thus, by Lemma 4.3.2 and (5),

1m22F)’ (@) 2 F(A1m22F)P (@) 1 F(F(1m22F) (a)))
= (1m2*F)“(a). )

And by (6) and (7), (1m2%F)"(a) C% (1m2%F)*(a). Thus, 2 is true.

Otherwise, « is a limit ordinal. By the induction hypothesis, <{(1m2QlF)B (a)| B € a},C*%) is to-
tally ordered, and thus, {(lmZmF)B(a) | B € a} is directed in (|A|,,C%). And since 2 is directed-
complete, {(1m2mF)B(a) | B € &} has a least upper bound in (|2(|,,C%), and

(1m2*F)"(a) = L {(1m2*F)’ (a) | B € a1}.

Thus, 2 is trivially true.

By the induction hypothesis, for every € a, (lmZQ[F)B(a) c* F((lmZQlF)B(a)). Thus, by
Lemma 4.4, 1 is true. O

By Lemma 4.7.2, and a simple cardinality argument, there is an ordinal ¢ such that for every ordinal

B such that o € 3, (lmZmF)ﬁ(a) = (1m2mF)a(a). In fact, there is a least ordinal o such that for
every contracting function F on 2, any post-fixed point a of F, and every ordinal 8 such that @ € 3,
1m2*F)’ (a) = (1m2%F)* ().

We write oh®l for the least ordinal o such that there is no function ¢ from o to |2(|, such that for
every B,y € a, if B € 7, then @(B) = (7).

In other words, oh2l is the least ordinal that cannot be orderly embedded in (|2|,,C*), which we
may think of as the ordinal height of 2. Notice that the Hartogs number of |2(|, is an ordinal that cannot
be orderly embedded in (|2|,, C), and thus, oh® is well defined, and in particular, smaller than or
equal to the Hartogs number of |2 ,.

Lemma 4.8. If 2 is directed-complete, then for every contracting function F on 2, any post-fixed point
a
a of F, and every ordinal o, if (1m2%F)" (a) is not a fixed point of 1m2*F, then ot +2 € oh .

Proof. Suppose that 2 is directed-complete.
Assume a contracting function F on I, a post-fixed point a of F', and an ordinal .
Suppose that (lmZmF)a(a) is not a fixed point of 1Im2%F.
We claim that for any B,y € ot + 2, if B # 7, then

1m22F)? (a) # (1m22F) ().
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Suppose, toward contradiction, that there are 3,7 € o + 2 such that 8 # ¥, but
1m2*F)’ (a) = Am2%F)"(a).
Without loss of generality, assume that 8 € y. Since F is contracting, by Lemma 4.7.2,
(1m22F)? (o) £ (1m22F) P ()
C¥ (1m2*F) (a),

B+1

and thus,

1m22F)P (@) = 1m22F) P ().

And since B € y € a+2, either B € @, or f = a. Thus, by an easy transfinite induction,
1m22*F)’ (@) = (1m2%F)% (a),
contrary to the assumption that (1m2%F )a (a) is not a fixed point of 1m2*F.
Therefore, for any B,y € o + 2,
1m22F)’ (@) = (1m2%F)" (a)

if and only if B = y. Thus, since F is contracting, by Lemma 4.7.2, there is a function ¢ from o + 2
to ||, such that for every B,y € o +2, if B € ¥, then ¢(B) C* ¢(y). Thus, by definition of oh%l,
o +2 € ohil U

By Lemma 4.8, (1m2mF)°hm(a) is a fixed point of 1m2¥F. Nevertheless, (lmZQLF)OhQ[(a) need
not be a fixed point of F' as intended. Indeed, the recursion process might start stuttering at points that are
not fixed under the function in question (e.g., see [15, exam.3.4]). If the function is strictly contracting
on orbits, however, progress at such points is guaranteed.

Lemma 4.9. For every function F on A that is strictly contracting on orbits, a is a fixed point of F if
and only if a is a fixed point of 1m2*F.

Proof. Assume a function F on 2l that is strictly contracting on orbits.
If a is a fixed point of F, then

a=F(a)
=F(F(a)),
and thus,
a="F(a) I‘IQ[F(F(a))
= (1m2%F)(a).

Conversely, suppose that a is a fixed point of 1m2%F.
Then, by Definition 2.2.4b,

d*(a, F(a)) = d*((1m2%F)(a), F(a))

=d*(F(a) " F(F(a)),F(a))
=d*(F(a) T F(F(a)), F(a) " F(a))
<*d¥(F(a),F(F(a))). (8)
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Suppose, toward contradiction, that a is not a fixed point of . Then, since F is strictly contracting

on orbits,
d*(F (a), F (F(a))) <™ d*(a,F (a)),

contrary to (8).
Therefore, a is a fixed point of F. O

We may at last put all the different pieces together to obtain a constructive version of Theorem 4.2.

Theorem 4.10. If 2 is directed-complete, then for every contracting function F on A that is strictly
. . . h2l . .
contracting on orbits, and any post-fixed point a of F, (1m2*F )o (a) is a fixed point of F.

Proof. Suppose that 2 is directed-complete.

Assume a contracting function F on 2 that is strictly contracting on orbits, and a post-fixed point a
of F.

Suppose, toward contradiction, that (1m2%F
Lemma 4.8, oh2(+ 2 € oh 2, a contradiction.

Therefore, (lmZQ‘F)OhQ[

by Lemma 4.9, (1m2*F

)Ohm(a) is not a fixed point of 1m2%*F. Then, by

(a) is a fixed point of 1m2%F. And since F is strictly contracting on orbits,
)Ohm(a) is a fixed point of F. O

To be pedantic, Theorem 4.10 does not directly prove that F" has a fixed point; unless there is a post-
fixed point of F, the theorem is true vacuously. But by Lemma 4.3.1, for every a € || ,, (1m2%F)(a) is
a post-fixed point of F.

The following is immediate from Proposition 3.1 and 4.1, Lemma 4.3.1, and Theorem 4.10:

Theorem 4.11. If 2 is directed-complete, then for every strictly contracting function F on 2, and every
ae |

A’
oh2l

fix F = (1m2%F)” " ((1m2%F)(a)).

This construction of fixed points as “limits of stationary transfinite iteration sequences” is very similar
to the construction of extremal fixed points of monotone operators in [2] and references therein, where
the function iterated is not 1m2%F , but F itself. Notice, however, that if F' preserves C*, then for any
post-fixed point a of F, (1m2%F)(a) = F(a).

The astute reader will at this point anticipate the following:

Theorem 4.12. If 2 is directed-complete, then for every strictly contracting function F on 2,
fix F =| [*{a| a is a post-fixed point of F}.

Proof. Suppose that 2 is directed-complete.

Assume a strictly contracting function F on 2I.

Assume a post-fixed point a of F.

By Lemma 4.7.2, a C* (1m2*F )Ohm(a), and thus, since F is strictly contracting, by Proposition 3.1
and 4.1, Lemma 4.7.2, and Theorem 4.10, a =2 fix F.

Thus, by generalization, fixF is an upper bound of {a | a is a post-fixed point of F} in (|2],,C™).
And since fix F is a post-fixed point of F, for every upper bound u of {a | a is a post-fixed point of F} in
(|2] o, ™), fix F C* u. Thus,

fix F = | [*{a | a is a post-fixed point of F}. O
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In retrospect, we find that Theorem 4.12 may be derived directly from first principles. In particular,
and under the premise of the corollary, it is easy to establish without any use of Theorem 4.10 that for
every a € ||, a C* fix F if and only if a C* F(a), as the reader may wish to verify.

The construction of Theorem 4.12 is identical in form to Tarski’s well known construction of greatest
fixed points of order-preserving functions on complete lattices (see [25, thm. 1]).

Finally, we note that 1m2%F is not, in general, order-preserving under the above premises (see [15,
exam. 2.15]), as might be suspected, and thus, our fixed-point theorem is not a reduction to a standard
order-theoretic one.

In view of Example 2.4 and 2.5, and the comments in the paragraph following Proposition 3.1,
Theorem 4.11 and 4.12 can be directly applied to study the behaviour of strictly causal discrete-event
components in feedback (see [15], [16]), and obtain, constructively, the unique supported model of
locally hierarchical normal logic programs (see [6]).

4.3 Induction

Having used transfinite recursion to construct fixed points, we may use transfinite induction to prove
properties of them. And in the case of strictly contracting endofunctions, which have exactly one fixed
point, we may use Theorem 4.11 to establish a special proof rule.

Assume P C |A],.

We say that P is strictly inductive if and only if every non-empty chain in (P, E% has a least upper
bound in (P,C%).

Note that P is strictly inductive if and only if (P, Em) is directed-complete (see [13, cor. 2]).
Theorem 4.13. If 2 is directed-complete, then for every strictly contracting function F on 2, and every
non-empty, strictly inductive P C ||, if for every a € P, (1m2%F)(a) € P, then fixF € P.

Proof. Suppose that 2 is directed-complete.
Assume a strictly contracting function F on 2, and non-empty, strictly inductive P C |2] ,.
Suppose that for every a € P, (1m2%F)(a) € P.
Let a be a member of P.
By Lemma 4.3.1, (1m2%F)(a) is a post-fixed point of F.
We use transfinite induction to prove that for every ordinal o, (1m2%F)%((1m2%F)(a)) € P.
If @ =0, then
(1m22F)*(1m2%F)(a)) = (1m2%F)(a),
and thus, since P is closed under Im2%F, (1m2%F)* ((1m2%F)(a)) € P.
If there is an ordinal 8 such that &« = 8 + 1, then

(1m2%F)* (1m2¥F)(a)) = (AIm2%F)((1m2%F)” (1m2%F)(a))).

By the induction hypothesis, (1m2*F )ﬁ ((Im2%F)(a)) € P, and thus, since P is closed under 1Im2*F,
(1m2%F)*((1m2%F)(a)) € P.
Otherwise, o is a limit ordinal, and thus,

(1m22F)*(Im22F)(a)) = L {(1m2%F)° (1m22F)(a)) | B € a1}.
By the induction hypothesis,

{(1m2%F)P (1m2%F)(a)) | B € @} C P,
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and by Lemma 4.7.2, <{(1m2mF)ﬁ((1m2mF)(a)) | B € a},C*) is totally ordered. Thus, since P is
strictly inductive, (1m2%F)* ((1m2%F)(a)) € P.
Therefore, by transfinite induction, for every ordinal e, (1m2%F)”((1m2%F)(a)) € P.

By Theorem 4.11,

oh®2l

fixF = (1m2%*F)”"" (1m2%F)(a)),

and thus, fixF € P. O

Theorem 4.13 is an induction principle that one may use to prove properties of fixed points of strictly
contracting endofunctions. We think of properties extensionally here; that is, a property is a subset of
|2| ,. And the properties that are admissible for use with this principle are those that are non-empty
and strictly inductive. According to the principle, then, for every strictly contracting function F' on any
directed-complete generalized ultrametric semilattice 2, every non-empty, strictly inductive property that
is preserved by 1m2%F is true of fixF.

We refer to [15, sec. 5.3] for a comparison between this principle with the fixed-point induction prin-
ciple for order-preserving functions on complete partial orders (see [24]), and the fixed-point induction
principle for contraction mappings on complete metric spaces (see [20], [22], [21], [8]).
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Motivated by the recent interest in models of guarded (co-)recursion we study its equational proper-
ties. We formulate axioms for guarded fixpoint operators generalizing the axioms of iteration theories
of Bloom and Esik. Models of these axioms include both standard (e.g., cpo-based) models of iter-
ation theories and models of guarded recursion such as complete metric spaces or the topos of trees
studied by Birkedal et al. We show that the standard result on the satisfaction of all Conway axioms
by a unique dagger operation generalizes to the guarded setting. We also introduce the notion of
guarded trace operator on a category, and we prove that guarded trace and guarded fixpoint operators
are in one-to-one correspondence. Our results are intended as first steps leading to the description
of classifying theories for guarded recursion and hence completeness results involving our axioms of
guarded fixpoint operators in future work.

1 Introduction

Our ability to describe concisely potentially infinite computations or infinite behaviour of systems re-
lies on recursion, corecursion and iteration. Most programming languages and specification formalisms
include a fixpoint operator. In order to give semantics to such operators one usually considers either

e models based on complete partial orders where fixpoint operators are interpreted by least fixpoints
using the Kleene-Knaster-Tarski theorem or

e models based on complete metric spaces and unique fixpoints via Banach’s theorem or
e term models where unique fixpoints arise by unfolding specifications syntactically.

In the last of these cases, one only considers guarded (co-)recursive definitions; see e.g. Milner’s
solution theorem for CCS [21] or Elgot’s iterative theories [13]. Thus, the fixpoint operator becomes
a partial operator defined only on a special class of maps. For a concrete example consider complete
metric spaces which form a category with all non-expansive maps as morphisms, but unique fixpoints
are taken only of contractive maps.

Recently, there has been a wave of interest in expressing guardedness by a new type constructor ¢,
a kind of “later” modality, which allows to make the fixpoint operator total, see, e.g., Nakano [23, 24],
Appel et al. [4], Benton and Tabareau [7], Krishnaswami and Benton [19, 18], Birkedal et al. [9, 8] and
Atkey and McBride [5]. For example, in the case of complete metric spaces & can be an endofunctor
scaling the metric of any given space by a fixed factor 0 < r < 1 so that non-expansive maps of type
X — X are precisely contractive maps with a contraction factor of at most r. This allows to define
a guarded (parametrized) fixpoint operator on all morphisms of type =X x Y — X of the model. So
far various models allowing the interpretation of a typed language including a guarded fixpoint operator
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have been studied: complete metric spaces, the “topos of trees”, i.e., presheaves on @°” [9] or, more
generally, sheaves on complete Heyting algebras with a well-founded basis [12, 9].

This paper initiates the study of the essential properties of guarded fixpoint operators. In the realm
of ordinary fixpoint operators, it is well-known that iteration theories of Bloom and Esik [10] completely
axiomatize equalities of fixpoint terms in models based on complete partial orders (see also Simpson and
Plotkin [25]). We make here the first steps towards similar completeness results in the guarded setting.

We begin with formalizing the notion of guarded fixpoint operator on a cartesian category. We
discuss a number of models, including not only all those mentioned above, but also some not mentioned
so far in the context of c>-guarded (co-)recursion. In fact, we consider the inclusion of examples such
as the lifting functor on CPO (which also happens to be a paradigm example of a fixpoint monad, see
Example 2.4.6 and the concluding remark of Section 2.7) or completely iterative monads (see Section
2.2) a pleasant by-product of our work and a potentially fruitful connection for future research. Then,
we formulate generalizations of standard iteration theory axioms for guarded fixpoint operators and we
establish these axioms are sound in all models under consideration. In particular, the central result of
Section 2 is Theorem 2.16: models with unique guarded fixpoint operators satisfy all our axioms.

Hasegawa [16] proved that giving a parametrized fixpoint operator on a category satisfying the so-
called Conway axioms (see, e.g., [10, 25] and Section 2.3 below) is equivalent to giving a traced cartesian
structure [17] on that category.! Section 3 lifts this result to the guarded setting. We introduce a natural
notion of a guarded trace operator on a category, and we prove in Theorem 3.5 that guarded traces and
guarded fixpoint operators are in one-to-one correspondence. This extends to an isomorphism between
the (2-)categories of guarded traced cartesian categories and guarded Conway categories.

Section 4 concludes and discusses further work.

Proofs of the major theorems will be made available in the full version.

1.1 Notational conventions

We will assume throughout that readers are familiar with basic notions from category theory. We denote
the product of two objects by

7 73

A AXB B

)

and A: A — A x A denotes the diagonal. For every functor F we write can = (Fm,Fm,) : F(A X B) —
FA x FB for the canonical morphism.

We denote by CPO the category of complete partial orders (cpo’s), i.e. partially ordered sets (not
necessarily with a least element) having joins of ®-chains. The morphisms of CPO are Scott-continuous
maps, i.e. maps preserving joins of @-chains. And CPQO is the full subcategory of CPO given by all
cpo’s with a least element L. We will also consider the category CMS of complete 1-bounded metric
spaces and non-expansive maps.

2 Guarded Fixpoint Operators

In this section we define the notion of a guarded fixpoint operator on a cartesian category and present an
extensive list of examples. Some of these examples like the lifting functor (—); on CPO (see Example
2.4.6) or completely iterative monads (see Section 2.2) do not seem to have been considered as instances
of the guarded setting before. We then introduce (equational) properties of guarded fixpoint operators.

! Cartesian here refers to the monoidal product being the ordinary categorical product.
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These properties are motivated by and closely resemble properties of the fixpoint operator in iteration
theories of Bloom and Esik [10]. We conclude this section with Theorem 2.16 stating that unique fixpoint
operators satisfy all the properties we study.

2.1 Definition and Examples of Guarded Fixpoint Operators

Assumption 2.1. We assume throughout the rest of the paper that (¢, ) is a pair consisting of a category
% with finite products (also know as a cartesian category) and a pointed endofunctor > : € — €, i.e. we
have a natural transformation p : Ild — . The endofunctor ¢ is called delay.

Remark 2.2. In references like [9, 8], much more is assumed about both the underlying category and the
delay endofunctor. Whenever one wants to model simply-typed lambda calculus, one obviously imposes
the condition of being cartesian closed. Furthermore, whenever one considers dependent types, one wants
to postulate conditions like being a type-theoretic fibration category (see, e.g., [8, Definition IV.1]).
In such a case, one also wants to impose some limit-preservation or at least finite-limit-preservation
condition on the delay endofunctor, see [9, Definition 6.1]—e.g., to ensure the transfer of the guarded
fixpoint operator to slices. We do not impose any of those restrictions because we do not need them in
this paper. It is an interesting fact that all our derivations require no more than Assumption 2.1. For more
on the connection with the setting of [9], see Proposition 2.6 below.

Definition 2.3. A guarded fixpoint operator on (€',c) is a family of operations
Tx7y : %(DX X Y,X) — %(Y,X)
such that for every f : =X x Y — X the following square commutes”:

"
y —1——x

<f77Y>l Tf 2.1)

XXY —cX XY
px XY

where (as usual) we drop the subscripts and write " : Y — X in lieu of Tx,y(f). We call the triple
(¢,c,1) a guarded fixpoint category.

Usually, one either assumes that 1 satisfies further properties or even that 7 is unique such that (2.1)
commutes. We will come to the study of properties of guarded fixpoint operators in Section 2.3. Let us
begin with a list of examples.

Examples 2.4. (1) Taking as ¢ the identity functor on 4 and py the identity on X we arrive at the special
case of categories with an ordinary fixpoint operator (X xY,X) — € (Y,X) (see e.g. Hasegawa [ 16,
15] or Simpson and Plotkin [25]). Concrete examples are: the category CPO, with its usual least
fixpoint operator or (the dual of) any iteration theory of Bloom and Esik [10].

(2) Taking ¢ to be the constant functor on the terminal object 1 and px =!: X — 1 the unique morphism,
a trivial guarded fixpoint operator is given by the family of identity maps on the hom-sets € (¥, X).

(3) Take % to be the category CMS of complete 1-bounded metric spaces (see [19, 18] or [9, Section
5] and references therein), &, (0 < r < 1) to be an endofunctor which keeps the carrier of the space
and multiplies all distances by r and px : X — &,.X to be the obvious “contracted identity” mapping.

2Notice that we use the convention of simply writing objects to denote the identity morphisms on them.
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Note that a non-expansive mapping f : &,X — X is the same as an r-contractive endomap, i.e. an
endomap satisfying d(fx, fy) < r-d(x,y). A guarded fixpoint operator is given by an application of
Banach’s unique fixpoint theorem: for every f : ,.X X ¥ — X we consider the map

@y CMS(Y,X) = CMS(Y,X),  ®s(m)=f (px x¥) - (m,¥);

notice that CMS(Y, X) is a complete metric space with the sup-metric dy x (m,n) = sup cy {dx (my,ny)};
it is then easy to show that ® is an r-contractive map, and so its unique fixpoint is a unique non-
expansive map f1 : ¥ — X such that (2.1) commutes.

(4) Let o/ be a category with finite products, and let % be the presheaf category presh(w, o) := o7 **
of w°P-chains in /. The delay functor o takes a presheaf X : @°P — &/ to the presheaf =X with
cX(0)=1and oX(n+1) = X(n) for n > 0. And px is given by (px)o : X(0) — 1 unique and
(px)nt1 =X(n+1>n): X(n+1) — X(n). Forevery f: =X x ¥ — X there is a unique f7:¥V — X
making (2.1) commutative; it is defined as follows: given f: =X xY — X (i.e. fo : Y (0) — X (0) and
far1:X(n) xY(n+1) = X (n+ 1)) one defines 7 : ¥ — X by fI = fo: ¥(0) — X(0) and

(fi-Y (n+12n).Y (n+1)) X(n) x Y (n+ 1)f"—“>X(n+ 1)).

f;—&-l =(Y(n+1)

It is not difficult to prove that fT is the unique morphism such that (2.1) commutes.

Notice that for &/ = Set, € is the “topos of trees” studied by Birkedal et al. [9]; they prove in
Theorem 2.4 that Set®” has a unique guarded fixpoint operator.

The next example generalizes this one.

(5) Assume 20 := (W, <) is a well-founded poset, i.e, contains no infinite descending chains; for sim-
plicity, we can assume 2 has a root r. Furthermore, let & be a (small) complete category and
€ := presh(20,2), ie., € = 2W>). Define (=X)(w) to be the limit of the diagram whose nodes
are X (u) for u < w and whose arrows are restriction morphisms: X (w) = lim,«,, X (v). Then as
X (w) itself with restriction mappings forms a cone on that diagram, a natural px : X — X is given
by the universal property of the limits. Note that for r, we have that (=X)(r) is the terminal object
1 of 2. The t-operation is defined as follows: given f: X x Y — X one defines f1:Y — X by
induction on (W, <); for the root r let £ = f,: Y(r) = 1 x Y(r) — X(r), and assuming that £ is
already defined for all v < w let

£ = (Y () =X ) x ¥ ()X (),

where k : Y (w) — =X (w) is the morphism uniquely induced by the cone f/ - Y (w > v) : Y (w) —

Y(v) — X(v) for every v < w. One can prove that f7 is a morphism of presheaves and that it is

the unique one such that (2.1) commutes. Details will be given in the full version. Regarding the

examples given in [9], see also Proposition 2.6 below.

(6) Let & be the lifting functor (—), on CPO, i.e. for any cpo X, X is the cpo with a newly added
least element. The natural transformation px : X — X is the embedding of X into X, . Then CPO
has a guarded fixpoint operator given by taking least fixpoints. To see this notice that the hom-
sets CPO(X,Y) are cpos with the pointwise order: f < g iff f(x) < g(x) for all x € X. Now any
continuous f : X; XY — X gives rise to a continuous map ®; on CPO(Y, X ):

®,: CPO(Y,X,) = CPO(Y,X,), Pr(m)=px-f-(mY).
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Using the least fixpoint s of ® one then defines:

oy cy—Lax);

using that s = ®(s) it is not difficult to prove that 7 makes (2.1) commutative.

Birkedal et al. [9] provide a general setting for topos-theoretic examples like (4) and (5) (the latter

restricted to the case of Set-presheaves) by defining a notion of a model of guarded recursive terms and
showing that sheaves over complete Heyting algebras with a well-founded basis proposed by [12] are
instances of this notion. The difference between Definition 6.1 in [9] and our Definition 2.3 is that in the
former a) the delay endofunctor ¢ is also assumed to preserve finite limits. On other hand b) our equality

(2.

1) is only postulated in the case when Y is the terminal object, i.e., only non-parametrized fixpoint

identity is assumed but c) the dagger in this less general version of (2.1) is assumed to be unique. Now,
one can show that assumptions a) and c¢) imply our parametrized identity (2.1) whenever the underlying
category is cartesian closed, in particular whenever % is a topos. Let us state both the definition and the
result formally:

Definition 2.5 ([9]). A model of guarded fixpoint terms is a triple (¢, >, %), where

e (¢,c) satisfy our general Assumption 2.1, i.e., & : % — % is a pointed endofunctor (with point
p:ld — ) and € has finite limits

e ¢ preserves finite limits and
e i is a family of operations fx : € (=X,X) — €(1,X) such that for every f: X — X, ffisa

unique morphism making the following square commute:

fi
] —

fil Tf 2.2)

X —cX
Px

We write ca nily :eX x Y — (X x Y) for the isomorphism provided by the assumption of limit

preservation for the special case of product® of X and Y.

Proposition 2.6. If (¢, c, ) is a model of guarded recursive terms and € is cartesian closed with

curryy, € (XxY,Z) —€(X,Z"),
uncurryy , : €(X,Z") —E (X xY,Z),
evaly z (Y x 7Y — Z,

then the operator Txy : € (X xY,X) — € (Y,X) defined as

Y K
uncurry} ([currys &) (- ((cevalyx) - cany Ly - (py x (X)), m)[F)

is a guarded fixpoint operator on (€ ,c).

30ne can note here that for the purpose of stating and proving Proposition 2.6, the assumption of finite limit preservation in

Definition 2.5 can be weakened to finite product preservation. We only keep the stronger assumption for full consistency with
[9, Definition 6.1].
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Obviously, we implicitly identified ¥ and 1 x Y above. Note that the converse implication does
not hold. Example 2.4.6 is a a guarded fixpoint category, but (—) clearly fails to preserve even finite
products and hence it does not yield a model of guarded recursive terms.

Also, while we do not have a counterexample at the moment, Proposition 2.6 is not likely to hold
when the assumption that % is cartesian closed is removed: we believe there are examples of models of
guarded recursive terms which are not guarded fixpoint categories. However, to apply Proposition 2.6, it
is enough that (¢, &, %) is a full subcategory of a cartesian closed model of guarded recursive terms such
that, moreover, the inclusion functor preserves products and c.

Remark 2.7. Monads provide perhaps the most natural and well-known examples of pointed endofunc-
tors. The reader may ask whether delay endofunctors in Example 2.4 happen to be monads. Clearly,
the delay functors in (1), (2) and (6) are. In fact, while the first two ones are rather trivial monads, 6
is a paradigm example of a fixpoint monad of Crole and Pitts [11]. In (3), i.e. the CMS example, the
type A — A is still inhabited (by any constant mapping), but one can easily show that monad laws
cannot hold whatever candidate for monad multiplication is postulated. In the remaining (i.e., topos-
theoretic) examples, monad laws fail more dramatically: A — A is not even always inhabited. The
following section discusses perhaps the most interesting subclass of monads which happen to be delay
endofunctors with unique dagger.

2.2 Completely Iterative Theories

In this subsection we will explain how categories with guarded fixpoint operator capture a classical
setting in which guarded recursive definitions are studied—Elgot’s (completely) iterative theories [13,
14]. The connection to guarded fixpoint operators is most easily seen if we consider monads in lieu
of Lawvere theories, and so we follow the presentation of (completely) iterative monads in [20]. The
motivating example for completely iterative monads are infinite trees on a signature, and we recall this
now. Let X be a signature, i.e. a sequence (¥,),<¢ of sets of operation symbols with prescribed arity n.
A X-tree t on a set X of generators is a rooted and ordered (finite or infinite) tree whose nodes with n > 0
children are labelled by n-ary operation symbols from X and a leaf is labelled by a constant symbol from
Yy or by a generator from X. One considers systems of mutually recursive equations of the form

xi%tl'()_éay)) i€l

where X = {x; | i € I'} is a set of recursion variables and each #; is a E-tree on X +Y with Y a set of
parameters (i.e. generators that do not occur on the left-hand side of a recursive equation). A system of
recursive equations is guarded if none of the trees #; is only a recursion variable x € X. Every guarded
system has a unique solution, which assigns to every recursion variable x; € X a X-tree tiT (¥) on Y such
that ] (¥) = {71 (5) /7], i.e. #; with each x; replaced by t}' (¥). For a concrete example, let ¥ consist of a
binary operation symbol * and a constant symbol ¢, i.e. £y = {c}, £, = {*} and X, = 0 else. Then the
following system

X] R Xp %Y Xy R (X1 % y2) *C,
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where y; and y; are parameters, has the following unique solution:

/ AN
) / \c\)l ) /*\}2 C
*/ \YZ 4 >I</ \yl
= */’\yl and 1] = SN\,
*/ \C */ \)72
,*/ »2 _,*/ \Y1
- \yl \c

For any set X, let 7 (X) be the set of X-trees on X. It has been realized by Badouel [6] that T is the
object part of a monad. A system of equations is then nothing but a map

fiX = Te(X+Y)

and a solution is a map 7 : X — TxY such that the following square commutes:

;
X ! oY
fl TIJY

TZ (X + Y) Tszy

[ffvnY]

where 77 and p are the unit and multiplication of the monad Ty, respectively.

It is clear that the notion of equation and solution can be formulated for every monad S. However,
the notion of guardedness requires one to speak about non-variables in S. This is enabled by Elgot’s
notion of ideal theory [13], which for a finitary monad on Set is equivalent to the notion recalled in the
following definition. We assume for the rest of this subsection that <7 is a category with finite coproducts
such that coproduct injections are monomorphic.

Definition 2.8 ([2]). By an ideal monad on <7 is understood a six-tuple

(S,n,u,8,0,1)
consisting of a monad (S,n, i) on 7, a subfunctor o : ' < S and a natural transformation u’ : 'S — §’
such that
(1) S =S+ Id with coproduct injections ¢ and 71, and

(2) p restricts to 4’ along o, i.e., the square below commutes:

/

P L

GSJ Jo

§§ —————$

The subfunctor S’ of an ideal monad S allows us to formulate the notion of a guarded equation system
abstractly; this leads to the notion of completely iterative theory of Elgot et al. [14] for which we here
present the formulation with monads from [20]:
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Definition 2.9. Let (S,n,u,S’,0,1’) be an ideal monad on <7

1. By an equation morphism is meant a morphism
f:X—=>SX+Y)

in 7, where X is an object (“of variables”) and Y is an object (“of parameters”).

2. By a solution of f is meant a morphism f' : X — SY for which the following square commutes:

X%SY

fl % 2.3)

S(X+Y) —— 55
S[.f‘:nY]

3. The equation morphism f is called guarded if it factors through the summand S'(X +Y) +Y of
SX+Y)=S(X+Y)+X+7Y:

Xx— i s(x+y)

T[waﬂxw'inf]
s
S/(X +Y)+Y

4. The given ideal monad is called completely iterative if every guarded equation morphism has a
unique solution.

Examples 2.10. We only briefly mention two examples of completely iterative monads. More can be
found in [2, 20, 3].

(1) The monad Ty, of X-trees is a completely iterative monad.

(2) A more general example is given by parametrized final coalgebras. Let H : &/ — < be an endofunc-
tor such that for every object X of .o a final coalgebra TX for H(—)+ X exists. Then T is the object
assignment of a completely iterative monad; in fact, T is the free completely iterative monad on H
(see [20]).

We will now explain how completely iterative monads are subsumed by the notion of categories with
a guarded fixpoint operator. To this end we fix a completely iterative monad S. We will show that the dual
of its Kleisli category ¢ = (/)7 is equipped with a guarded fixpoint operator. First notice, that since
s has coproducts given by the coproducts in &7 we see that 6 has products. Next we need to obtain the
endofunctor & on 4. This will be given as the dual of an extension of the subfunctor 8’ : &/ — <7 of §
to the Kleisli category .o%. Indeed, it is well-known that to have an extension of S’ to .27 is equivalent to
having a distributive law of the functor S’ over the monad S (see Mulry [22]).

But it is easy to verify that the natural transformation

AR VLN T

satisfies the two required laws and thus yields a distributive law. Moreover, the ensuing endofunctor
% = §' on .o is copointed, i.e. we have a natural transformation p from S’ to Id : &7 — <7; indeed,
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its components at X are given by the coproduct injections oy : $’X — SX, and it is not difficult to verify
that this is a natural transformation; thus, ¢ is a pointed endofunctor on %.
Now observe that a morphism f : =X XY — X is equivalently a morphism

f:X—=SEX+Y)

in /. We are ready to describe the guarded fixpoint operator on %
Construction 2.11. For any morphism f : X — S(8'X +Y) form the following morphism

S
7= (X—Lo8(% + 1) 2 65X 4 57) 52N, 55(X + 7)1 5(X 4 7)),

where can = [Sinl, Sinr] : SX + SY — S(X +Y). It is not difficult to verify that f is a guarded equation
morphism for S, and we define f7 : X — SY to be the unique solution of f.

Proposition 2.12. For every f, f' from Construction 2.11 is a unique morphism Y — X in € such
that (2.1) commutes.

In fact, to prove this proposition one shows that solutions of f: X — S(X +Y) (i.e. morphisms
s : X — SY such that (2.3) commutes) are in one-to-one correspondence with morphisms ¥ — X is ¢
such that (2.1) commutes.

2.3 Properties of Guarded Fixpoint Operators

In this section we study properties of guarded fixpoint operators. Except for uniformity these properties
are purely equational. They are generalizing analogous properties of iteration theories; more precisely,
they would collapse to the original, unguarded counterparts when ¢ is instantiated to the identity endo-
functor (see Example 2.4(1)).

Definition 2.13. Let (¢’,,T) be a guarded fixpoint category. We define the following properties of :

(1) Fixpoint Identity. For every f: X xY — X the diagram (2.1) commutes. This is built into the
definition of guarded fixpoint categories and only mentioned here again for the sake of completeness.

(2) Parameter Identity. For every f: >X xY — X and every h : Z — Y we have

3
z My Lox — (ex x2S ex xy — L x0T

(3) (Simplified) Composition Identity. Given f : X XY — Z and g : Z — X we have

(X xY—L oz 5 x)t = (y LE&I) ;&

X).
(4) Double Dagger Identity. For every f: X X =X x Y — X we have

(YL X)= (X x Y 2 LeX x X x Y —1—X)

(5) Uniformity. Given f: X xY — X, g:X'xY — X" and h: X — X' we have

f +
cX XY —X f/
thYl lh
<>X’><YT>X’ g\
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We call the first four properties (1)-(4) the Conway axioms.

Notice that the Conway axioms are equational properties while (5) is quasiequational (i.e. an impli-
cation between equations).

Next we shall show that in the presence of certain of the above properties the natural transformation
p:ld — & is a derived structure. Let (4,c) be equipped with an operator T not necessarily satisfy-
ing (2.1). For every object X of ¢ define gx : X — X as follows: consider

(o

fx = (c(cX xX) ><X4X><>X><X)

and form
qx = (Xi>(>X X X 5eX).

Lemma 2.14. Let (4, ) be equipped with the operator t. Then:

1. If T satisfies the parameter identity and uniformity, then q : |d — © is a natural transformation.

2. If T satisfies the fixpoint identity, then gx = px for all X.
Definition 2.15. A guarded fixpoint category (%, c, 1) satisfying the Conway axioms (i.e. fixpoint, pa-
rameter, composition and double dagger identities) is called a guarded Conway category.

If in addition uniformity is satisfied, we call (%, >, T) a uniform guarded Conway category.

And (¢, ,7) is called a unique guarded fixpoint category if for every f: X xY — X, f1:¥ = X
is the unique morphism such that (2.1) commutes. In this case, we can just write a pair (%¢,c) rather
than a triple (¢, >, 1).

The next theorem states that such a unique { satisfies all the properties in Definition 2.13.

Theorem 2.16. If (¢,c) is a unique guarded fixpoint category, then it is a uniform guarded Conway

category.

Examples 2.17. (1) Several of our examples in 2.4 are unique guarded fixpoint categories and hence
their unique | satisfies all the properties in Definition 2.13. This holds for Examples 2.4(2)—(6), and

also for the example of completely iterative monads in Section 2.2.

(2) One can prove that Example 2.4(7), i.e., ¢ = CPO with the lifting functor & = (—) | satisfies all the
properties of Definition 2.13, i.e. (CPO,(—) ) is a uniform guarded Conway category. But it is not
a unique guarded fixpoint category: for let X = {0, 1} be the two-chain, Y = 1 the one element cpo
and f: X, =X, xY — X be the map with f(0) = f(L) =0and f(1) = 1. Then both 0: 1 — X and
1:1 — X make (2.1) commutative.

3 Guarded Trace Operators

In the case special case where ¢ is the identity functor (see Example 2.4(1)), it is well-known that a
fixpoint operator satisfying the Conway axioms is equivalent to a trace operator w.r.t. the product on ¢
(see Hasegawa [16, 15]). In this section we present a similar result for a generalized notion of a guarded
trace operator on (%, ).

Remark 3.1. Recall that the notion of an (ordinary) trace operator was introduced by Joyal, Street and
Verity [17] for symmetric monoidal categories. The applicability of the notion of trace to non-cartesian
tensor products is in fact one of main reasons of its popularity. Our generalization can also be formulated
for symmetric monoidal categories, see the remark preceding Construction 3.4 below. However, the main
results in this section, i.e., Theorems 3.5 and 3.7 do not make any use of this added generality. Hence,
we keep the Assumption 2.1 like in the remainder of the paper.
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Definition 3.2. A (cartesian) guarded trace operator on (¢ ,c) is a natural family of operations
Trip: ¢(cX xA,X xB) = %(A,B)
subject to the following three conditions:
1. Vanishing. (I) For every f: 1 x A — B we have

Tras(f) =(A=1 x AL o1 xa—L ).

(II) Forevery f: X x oY XA — X XY x B we have

canxA

TrXB(TréYXA,YxA(f)) = Trﬁ’EY(D(X XY) X A———cX x Y XAL>X XY xA).

2. Superposing. For every f: >X XA — X X B we have
Tri&(xC,BxC(f xC) = TVXB(f) xC.

3. Yanking. Consider the canonical isomorphism ¢ : =X X X — X x =X. Then we have
Tr§ ox(c) = (X—"50X).

If Tr is a (cartesian) guarded trace operator on (¢',c), (¢',,Tr) is called a guarded traced (carte-
sian) category.

Of course, when ¢ is taken to be the identity on % (as in Example 2.4(1)), our notion of guarded
trace specializes to the notion of an ordinary trace operator (w.r.t. product) of Joyal, Street and Verity.

In addition, as in the case of ordinary trace operators naturality of Tr can equivalently be expressed
by three more axioms:

4. Left-tightening. Given f: =X xA — X x Band g: A’ — A we have

Tris(f)
Tr§,73((>X xA— ¢ Loxxa—tox x B) = (A'—5-A e

5. Right-tightening. Given f : =X x A — X x Band g : B— B’ we have

T ()
L ox xB XX «B)=(A—" g 8

T p(cX xA B).

6. Sliding. Given f: X xA — X' x Band g: X' — X we have
Tr§73(<>X wA—Lx xBE8x XB) = Tri\(:B(<>X’ x AT o x x ALy X B).

Remark 3.3. The generalization for a symmetric monoidal category (%', ®,1,c) equipped with a pointed
endofunctor ¢ : 6 — % requires the assumption that o is comonoidal, i.e., equipped with a morphism
my : I — I and a natural transformation myy : >(X xY) — X x Y satisfying the usual coherence
conditions. In fact, in the formulation of Vanishing (II) we used that in every category the product X is
comonoidal via my y = can.
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Construction 3.4. 1. Let (¢,>, Tr) be a guarded traced category. Define a guarded fixpoint operator
T € (X xA) — € (A, X) by

ﬁ“zT&ﬂbeAgﬁ%xXﬂ:A%X.

2. Conversely, suppose (¢, ¢, T) is a guarded fixpoint category. Define TI’-]—X 5  C(CX XA, X xB)—
% (A, B) by setting for every f: =X XA — X x B

ay

s

oX xA—L X xB

B).

The main result in this section states that the category % is guarded traced iff it is a guarded Conway
category:
Theorem 3.5. 1. Whenever (¢,c,Tr) is a guarded traced category, (¢ ,,11) is a guarded Con-
way category. Furthermore, Try, is the original operator Tr.

2. Whenever (¢,c,t) is a guarded Conway category, (€¢,c,Trs) is guarded traced. Furthermore,
T 1. is the original operator .

The proof details are similar to the proof details for ordinary fixpoint operators and traced cartesian
categories (see Hasegawa [15]). Here one has to stick  in “all the right places” in all the necessary
verifications of the axioms for trace and dagger, respectively. However, some of proof steps, in particular
the derivation of a guarded version of the so-called Beki¢ identity require some creativity; it is not a
completely automatic adaptation.

Hasegawa related uniformity of trace to uniformity of dagger and we can do the same in the guarded
setup. Recall that in iteration theories uniformity (called functorial dagger implication) plays an impor-
tant role. On the one hand, this quasiequation implies the so-called commutative identities, an infinite set
of equational axioms that are added to the Conway axioms in order to yield a complete axiomatization
of fixpoint operators in domains. On the other hand, most examples of iteration theories actually sat-
isfy uniformity, and so uniformity gives a convenient sufficient condition to verify that a given Conway
theory is actually an iteration theory.

Definition 3.6. A guarded trace operator Tr is called uniform if for every morphism f: X XA — X X B,
ffieX'xA— X' xBand h: X — X' we have

CX xA—'XxB
e [mo = W= aE

<>X’><AT>X’><B

Theorem 3.7. 1. Whenever (¢ ,c>, Tr) is a uniform guarded traced category, T, is a uniform guarded
Conway operator.

2. Whenever (€,c,7) is a uniform guarded Conway category, Tr+ is a uniform guarded trace oper-
ator.

Remark 3.8. Actually, Hasegawa proved a slightly stronger statement concerning uniformity then what
we stated in Theorem 3.7; he showed that a Conway operator is uniform w.r.t. any fixed morphism
h:X — X’ (i.e. satisfies uniformity just for &) iff the corresponding trace operator is uniform w.r.t. this
morphism 4. The proof is somewhat more complicated and in our guarded setting we leave this as an
exercise to the reader.
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Finally, let us note that the bijective correspondence between guarded Conway operators and guarded
trace operators established in Theorem 3.5 yields an isomorphism of the (2-)categories of (small) guarded
Conway categories and guarded traced (cartesian) categories. The corresponding notions of morphisms
are, of course, as expected:

Definition 3.9.

1. F:(%¢,6%,1) = (2,7,%) is a morphism of guarded Conway categories whenever F : € — &
is a finite-product-preserving functor satisfying

.
FJ{ J{F and piy =F(p%):FX —» o7FX = F(c°X), (3.1)
=

and preserving dagger, i.e., for every f: >X X A — X we have
i , F
F(f') = (67FX x FA= F(c7X x A)——FX ) .

2. A morphism F : (¢,c% Try) — (2,7, Try) is a finite-product-preserving F : € — & satis-
fying (3.1) above and preserving the trace operation: for every f: >“X x A — X x B in € we
have

g & Ff
F(Tr 5(f) = Tro fXep (07 FX x FA ™ F(o%X x A)—2—F(X x B) = FX x FB).

Corollary 3.10. The (2-)categories of guarded Conway categories and of guarded traced (cartesian)
categories are isomorphic.

4 Conclusions and Future Work

We have made the first steps in the study of equational properties of guarded fixpoint operators popular
in the recent literature, e.g., [23, 24,4, 7,9, 19, 18, 9, 5]. We began with an extensive list of examples,
including both those already discussed in the above references and some whose connection with the
“later” modality has not seemed obvious so far—e.g., Example 2.4.6 or completely iterative theories in
Section 2.2. Furthermore, we formulated the four Conway properties and uniformity in analogy to the
respective properties in iteration theories and we showed them to be sound w.r.t. all models discussed
in Section 2. In particular, Theorem 2.16 proved that our axioms hold in all categories with a unique
guarded dagger. In Theorem 3.5, we have a generalization of a result by Hasegawa for ordinary fixpoint
operators: we proved that to give a (uniform) guarded fixpoint operator satisfying the Conway axioms is
equivalent to giving a (uniform) guarded trace operator on the same category.

Our paper can be considered as a work in progress report. Our aim is to eventually arrive at complete-
ness results similar to the ones on iteration theories. We do not claim that the axioms we presented are
complete. In the unguarded setting, completeness is obtained by adding to the Conway axioms an infinite
set of equational axioms called the commutative identities, see [10, 25]. We did not consider those here,
but we considered the quasi-equational property of uniformity which implies the commutative identities
and is satisfied in most models of interest. Only further research can show whether this property can
ensure completeness in the guarded setup or one needs to postulate stronger ones.
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Other future work pertains to a syntactic type-theoretic presentation of the axioms we studied and a
description of a classifying guarded Conway category.

Concerning further models of guarded fixpoint operators, it would be worthwhile to consider fixpoint
monads of Crole and Pitts [11] more closely. These generalize our example of the category CPO with
the lifting monad. One can prove that any fixpoint monad induces a guarded fixpoint operator satisfying
parameter and simplified composition identities as well as uniformity. However, proving the double
dagger identity in the general case is an open problem.

It would also be interesting to obtain examples of guarded traced monoidal categories which are not
ordinary traced monoidal categories and which do not arise from guarded Conway categories. Traces
w.r.t. a trace ideal as considered by Abramsky, Blute and Panangaden [1] might be a good starting point.
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for their very insistence on major modal undertones in modern modelling of this phenomenon.
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The paper explores propertiestaikasiewiczu-calculus a version of the quantitative/probabilistic
modalp-calculus containing both weak and strong conjunctionsdasidnctions from tukasiewicz
(fuzzy) logic. We show that this logic encodes the well-kmgevobabilistic temporal logi®CTL.
And we give a model-checking algorithm for computing théomzl denotational value of a formula
at any state in a finite rational probabilistic nondeterstinitransition system.

1 Introduction

Among logics for expressing properties of nondetermiaigincluding concurrent) processes, repre-
sented as transition systems, Kozen’s madadalculus [15] plays a fundamental rble. It subsumes
other temporal logics of processes, suclhBls, CTL andCTL *. It does not distinguish bisimilar pro-
cesses, but separates (finite) non-bisimilar ones. Morergly, by a remarkable result of Janin and
Walukiewicz [14], it is exactly as expressive as the bis@tioh-invariant fragment of monadic second-
order logic. Furthermore, there is an intimate connectidth warity games, which offers an intuitive
reading of fixed-points, and underpins the existing teatayfor model-checkingi-calculus properties.

For many purposes, it is useful to add probability to the cotaonal model, leading to probabilistic
nondeterministic transition systems, cf. [23]. Among thféedent approaches that have been followed
to developing analogues of the modalcalculus in this setting, the most significant is that idtroed
independently by Huth and Kwiatkowska [12] and by Morgan &taver [22], under which auanti-
tative interpretation is given, with formulas denoting valueqQrl]. This quantitative setting permits
several variations. In particular, three different quatitte extensions of conjunction from booleans to
[0,1] (with O as false and 1 as true) arise naturally [12]: minimunm(x,y); multiplication, xy; and
the strong conjunction (a.k.a. Lukasiewicz t-norm) fronkasiewicz fuzzy logic, max+y—1, 0). In
each case, there is a dual operator giving a correspondtegsean of disjunction: maximum, méaxy);
comultiplication,x+y — xy; and tukasiewicz strong disjunction, nfi+-y, 1). The choice of min and
max for conjunction and disjunction is particularly natusince the corresponding-calculus, called
gLy in [18], has an interpretation in terms of 2-playgochastigparity games, which extends the usual
parity-game interpretation of the ordinary mogaktalculus. This allows the real number denoted by a
formula to be understood as thialueof the associated game [18, 20].

The present paper contributes to a programme of ongoin@naseone of whose overall aims is
to investigate the extent to which quantitatiMecalculi play as fundamental a rdle in the probabilistic
setting as that of Kozen'g-calculus in the nondeterministic setting. The logicuglwith min/max as
conjunction/disjunction, is insufficiently expressiveorfexample, it cannot encode the standard prob-
abilistic temporal logidPCTL of [2]. Nevertheless, richer calculi can be obtained by agiging qlLu
with the other alternatives for conjunction/disjunctidn, be used in combination with max and min.
Such extensions were investigated by the first author in]Q], where the game-theoretic interpretation
was generalized to accommodate the new operations.

D. Baelde and A. Carayol (Eds.): Fixed Points
in Computer Science 2013 (FICS 2013) This work is dedicated to the public domain.
EPTCS 126, 2013, pp. 87-104, doi:10.4204/EPTCS.126.7
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In this paper, we focus on a calculus containing two differi@terpretations of conjunction and
disjunction: min and max (written asandu) and the tukasiewicz operations (written@and®). In
addition, as is natural in the quantitative setting, wetidela basic operation for multiplying the value of
a formula by a rational constant j@,1]. Since these operations are all familiar from Lukasiewicz§
logic (see, e.g., [11]), we call the resulting logiokasiewiczu-calculus(k ).

As our first contribution, we show that the standard proligtil temporal logicPCTL [2] can be
encoded in {u. A similar translation was originally given in the first aatts PhD thesis [19], where
PCTL was translated into a quantitatigyecalculus containing all three pairs of quantitative coiju
tion/disjunction operations in combination. Here, we atnéine the treatment by implementing the ob-
servation that the (co)multiplication operations are mojuired once the tukasiewicz operations are in
place. In fact, all that is needed is the encodability ofaiathreshold modalitiessee Remark 3.6 below.

An advantage of the tukasiewiqz-calculus considered in the present paper is that it enjogs t
property that the value of a formula in a finite rational moetational, a property which does not
hold when the (co)multiplication operations are includedhie logic. As our second contribution, we
exploit this property by giving a (quantitative) model-ckimg algorithm that computes the value of a
L u formula at a state in a finite rational probabilistic nond®ii@istic transition system. The algorithm
adapts the approximation-based approach to nested fixatgabculation to our quantitative calculus.

One could combine our two contributions and obtain a new frdlalecking algorithm folPCTL.
But this is not advisable since the complexity bounds weinlftr model-checking {u are abysmal.
The positive messages of this paper are ratheREALL fits into the conceptually appealing framework
of quantitativeu-calculi, and that this framework is itself algorithmigalipproachable.

2 Technical background

Definition 2.1. Given a setSwe denote withZ(S) the set of(discrete) probability distribution®n S
defined as7(S)={d : S— [0,1] | Zd(s) = 1}. We say that € () is rational if d(s) is a rational
sc

number, for alls€ S,

Definition 2.2. A probabilistic nondeterministic transition syst§RNTS) is a paiS —) whereSis a
set of states anek C Sx Z(9) is theaccessibilityrelation. We writes /4 if {d | s—d} =0. APNTS
(S —) isfinite rationalif Sis finite and Jo_s{d | s— d} is a finite set of rational probability distributions.

We now introduce the novel logict which extends the probabilistic (or quantitative) mogal
calculus (glu) of [12, 22, 18, 5].

Definition 2.3. The logic tu is generated by the following grammar:

p:=X|P|Plae|leue|ene|ese|eoe| Op| Dp|uX.@|vX.@ ,

whereq ranges over rationals ij9, 1], X over a countable sétar of variables and® over a seProp
of propositional letters which come paired with associatechplements$. As a convention we denote
with 1 the formulavX.X and withq the formulag1.

Thus, tu extends the syntax of the probabilistic mogatalculus by the new pair of connectives
(®, ®), which we refer to akukasiewicz conjunctioanddisjunction respectively, and a form afcalar
multiplication (q¢) by rationals numbers if9, 1]. For mild convenience in the encodingPETL below,
we consider a version with unlabelled modalities and pritioos! letters. However, the approach of this
paper easily adapts to a labeled version apf L.

Formulas are interpreted over PNTS’s as we now describe.
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Definition 2.4. Given a PNTS(S —), aninterpretationfor the variables and propositional letters is a
functionp : (VarwProp) — (S— [0,1]) such thap(P)(x) = 1— p(P)(x). Given a functionf : S— [0, 1]
andX € var we define the interpretation[f /X] asp[f/X](X) = f andp[f/X](Y) = p(Y), for X #Y.

Definition 2.5. The semantics of a ft formula ¢ interpreted overS —) with interpretationp is a
function [¢], : S— [0,1] defined inductively on the structure @fas follows:

[X]p = p(X) [9¢]o(X) = a-[@]p(x)
[Plo = p(P) [Plo=1-p(P)
[ou @lp(x) = max{[@]p(X), [¢]p(X)} [en @lp(x) = min{[@] o (X), [W]p(X)}
[9® Ylp(x) = min{1, [[(P]]p( X)+ [@]o(X)} [p® Llf]]p(x) max{0, [[fP]]p( X)+ [@]o(x) — 1}
1001000 = || ( 5 dw)lelo) 10000 = [ ( 3 d)leloy)
x—d Y& x—d Y€
[uX.@] =1fp (f — [@]pt/x) [uX.@] = gfp (f — [@lor/x))

It is straightforward to verify that the interpretation afegy operator is monotone, thus the existence of
least and greatest points in the last two clauses is guadbtethe the Knaster-Tarski theorem.

As customary in fixed-point logics, we presented the logicih positive normal form. A negation
operationdual (@) can be defined onlosedformulas by replacing every connective with its dual and
(g@) with ((1—q) @). Itis simple to verify thafldual(@)],(x) = 1 — [@]o(X).

Next, we introduce the syntax and the semantics of the IB@IGL of [2]. We refer to [1] for an
extensive presentation of this logic.

The notions opaths schedulersandMarkov runsin a PNTS are at the basis of the log€TL .

Definition 2.6. For a given PNTSYZ = (S —) the binary relation~ ¢ C Sx Sis defined as follows:
~g={(st) | 3d.(s—d A d(t) > 0)}. Note thats 4 if and only if s4. We refer to(S,~~) as the
graph underlying?.

Definition 2.7. A pathin a PNTS.Z = (S —) is an ordinary path in the gragl®,~~), i.e., a finite or
infinite sequences }ic| of states such tha ~~ 54, for alli+ 1 € 1. We say that a path imaximal
if either it is infinite or it is finite and its last entry is a #tas, without successors, i.e., such tisgts.
We denote with RZ’) the set of all maximal paths i¥’. The set P.¥) is endowed with the topology
generated by the basic open dd¢s= {T | SC 7'} whereSis a finite sequence of states @nalenotes the
prefix relation on sequences. The spa¢&® is always 0-dimensional, i.e., the basic dé¢sare both
open and closed and thus form a Boolean algebra. We dendtésjtthe open set), of all maximal
paths having as first state.

Definition 2.8. A schedulerin a PNTS(S —) is a partial functiono from non-empty finite sequences
S. ... S of states to probability distributiond € 2(S) such thato(s....s,) is not defined if and only

if sy /4 and, if o is defined aty....s, with 0(s....s)) = d, thens, — d holds. A pair(s, o) is called
aMarkov runin . and denoted b3. It is clear that each Markov ruM3 can be identified with a
(generally) infinite Markov chain (having a tree structund)ose vertices are finite sequences of states
and having{s} as root.

Markov runs are useful as they naturally induce probabitigasures on the spacé®).
Definition 2.9. Let.¥Z = (S —) be a PNTS an#15 a Markov run. We define the measurg on R.Z)
as the unique (by Carathéodory extension theorem) meapedfied by the following assignment of

basic open sets:
n—-1

mSU(USO--~-Sn) = E!) di(s+1)
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whered, = 0(s....5) and [0 = 1. It is simple to verify thatm? is a probability measure, i.e.,
me,(P(.Z)) = 1. We refer tamg, as the probability measure orfi.#) induced by the Markov rum;,.

We are now ready to specify the syntax and semanti€xCGy¥fL .

Definition 2.10. Let the letterP range over a countable set of propositional symbelsp. The class of
PCTL state-formulasp is generated by the following two-sorted grammar:

Q= true‘ P ‘ _‘(P’ (P\/(P‘ g | vy ‘ Piqw | P\quﬂ
with g € QN [0,1] and x € {>,>}, wherepath-formulasy are generated by the simple grammar:
Y= o@| m% @. Adopting standard terminology, we refer to the connestivand7 as thenextand
until operators, respectively.

Definition 2.11. Given a PNTS S —), aPCTL-interpretationfor the propositional letters is a function
p : Prop — 25, where 2 denotes the powerset 8f

Definition 2.12. Given a PNTS(S —) and aPCTL-interpretationp for the propositional letters, the
semanticq @), of aPCTL state-formulapis a subset 0§ (i.e., (@), : S— {0,1}) defined by induction
on the structure op as follows:

o (true)p =S (P)p=p(P), (@ V @2)p = (@)pU (@), (—®Dp =S\ (@),
e (3Y)p(s) =1if and only there exists € P(s) such that thas € [(/]
e (YY), (s) =1ifand only foralls € P(s) it holds thatSe (), (S)

o (PiqW)p(s) =1ifand only (L, m5((¥)p)) xd

o (PLqw)p(s) =1Lifand only([o G ((w)p)) > q
whereo ranges over schedulers and the semarftizl, of path formulas, defined as a subset &P
(i.e.,asamagy), : P(Z) — {0,1}) is defined as:

o (o@)p(S)=1ifand onlyif|s > 2 (i.e.,.S=s.51....) ands; € (@),

o (0% ®))p(3) =1ifand only if 3n.((sh € (@)p) AYM<N.(Sn € (@1)p)).

It is simple to verify that, for all path-formulag, the set(y ), is Borel measurable [1]. Therefore
the definition is well specified. Note how the log€TL can express probabilistic properties, by means

of the connectiveﬁb\;q and[P’ﬂlq, as well as (qualitative) properties of the graph undegytime PNTS by

means of the quantifieksand3.

3 Encoding of PCTL

We prove in this section hoWwCTL can be seen as a simple fragment of hy means of an explicit
encoding. We first introduce a few useful macro formulas i lbgic £y which, crucially, are not
expressible in the probabilistig-calculus (qlu).

Definition 3.1. Let @ be a (possibly open) g formula. We define:
e Poop=puX. X @) o PL1ig=vX.(XO@Q) o Poqp=P.o(¢p01l-0q) e Poqp=P_1(@d1—q)
forge QN (0,1). We writeP,q¢, for g QN 0, 1], to denote one of the four cases.

The following proposition describes the denotational ssina of these macro formulas.

Proposition 3.2. Let (S —) be a PNTSg a tu formula andp an interpretation of the variables. Then
it holds that:
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1 if [@lo(s) xq
[Prq@lo(s) :{ 0 otheerise

Proof. For the cas@- o, observe that the map— q@ x, for a fixedge [0,1], has 1 as unique fixed
point wheng> 0, and O as the least fixed point whga:- 0. The result then follows trivially. Similarly
for P_1¢. The other cases are trivial. O
The following lemma is also useful.
Lemma 3.3. Let (S, —) be a PNTSg a £u formula andp an interpretation of the variables. Then:
o [Poo(OX)]p(s) = 1iff St.(s~tAp(X)(t) > 0)
o [P_1(OX)]p(s) = 1iff Vt.(s~t— p(X)(t) =1)

Proof. Note that[0X],(s) > 0 iff there existss — d such thatzsd(t)p(X)(t) > 0 holds. This is the case
te

iff d(t)>0 (i.e.,s~t) andp(X)(t) >0, for somet € S. The result then follows by Proposition 3.2. The
case forP_1(0X) is similar. O

Remark 3.4. When considerind0, 1}-valued interpretations foX, the macro formul®-o{ expresses
the meaning of the diamond modality in classical modal legtb respect to the grap(s, ~~) underlying
the PNTS. SimilarlyP_;0 corresponds to the the classical box modality.

We are now ready to define the encodindP@TL into L u.

Definition 3.5. We define the encoding from PCTL formulas to closed u formulas (whereag stands
for the £ formulalCem $1), by induction on the structure of tHeCTL formulasg as follows:

1. E(P) =P,
E(true =1

© 00k~ w0 DN

10. E(PY4(09)) = Prq( DE(9)),
11, E(P3a(@% 92)) = Pua(1X.(E(g) U (E(@)10X)) ),

12. E(PLo(@% @) = Poq (kX (E(g2) U (E(@)N1EX)) ),

Note that Case 4 is well defined sinEég) is closed by construction.
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Remark 3.6. The only occurrences of tukasiewicz operatrs,©} and scalar multiplicatior{q )

in encodedPCTL formulas appear in the formation of the macro formufag(-) which we refer to
asthreshold modalities Thus, PCTL can be also seen as a fragment ofugéxtended with thresh-
old modalities as primitive operations. With the aid of #aesodalities the encoding is, manifestly, a
straightforward adaption of the standard encoding of CTa the modalu-calculus (see, e.g., [24]).

We are now ready to prove the correctness theorem which fmi@sbitrary models.

Theorem 3.7. For every PNT$S,—), PCTL-interpretationp : Prop— (S—{0,1}) of the propositional
letters andPCTL formula ¢, the equality| @), (s) = [E(@)],(s) holds, for all sc S.

Proof (outline). The proof goes by induction on the complexity @f Cases 1-4 of Definition 3.5 are
trivial. Case 5 follows directly from Lemma 3.3. Observifgt[&¢],(s) = 0 if s+~ and[@¢],(s) =
[B¢],(s) otherwise, also Case 6 is a consequence of Lemma 3.3. Conagks 7 and 8. The encoding
is of the formuX.(F U (GMH (X)), whereF andG (by induction hypothesis) and (X) (by Proposition
3.2) are al{0, 1}-valued. Therefore the functdr— [F U (G H(X))]p(/x] maps{0, 1}-valued func-
tions to{0,1}-valued functions and has on{, 1}-valued fixed-points. It then follows by Remark 3.4
that the correctness of the encoding for these two casesecproled with the standard technique used
to prove the correctness of the encoding of CTL into Kozentalculus (see, e.g., [24]). Consider Case
9. Itis immediate to verify that |, {mg (U)}, whereU = (o@), = U{Usty | t € (@)p}, is equal (by
induction hypothesis) thOE(¢)],(s). The desired equalitﬂ/IPiq o @)p = [PuqOE(®)], then follows by
Proposition 3.2. Case 10 is similar. The two cases 11 andel&iwmilar, thus we just consider case 11.
Letp= Piq(w) andy = ¢ % . We denote with¥ the set of path§y ),. Denote byF (X) the formula
E(@) U (E(e)NOX). Itis clearly sufficient to prove that the equality, {m (W)} = [uX.F(X))]o(s)
holds. Note thapX.F(X) can be expressed as an equivalentidbrmulas by substituting the closed
subformulasE (@) andE(¢) with two fresh atomic predicatdd with interpretationg(R) = [E(@)].
The equality can then be proved by simple arguments basekeogame-semantics of gi(see, e.g.,
[18] and [20]), similar to the ones used to prove that the K&zg-calculus formulguX.(P,V (P A QX))
has the same denotation of the CTL formd(@,% P,) (see, e.g., [24]). O

4 tukasiewicz u-terms

The aim of the second half of the paper is to show how to comiingt€rational) denotational value of
a tu formula at any state in a finite rational probabilistic tigina system. In this section, we build the
main machinery for doing this, based on a system of fixedtgenmns for defining monotone functions
from [0,1)" to [0, 1]. The syntax oftukasiewicz)u-termsis specified by the grammar:

to=x|qt|tut|tnt|tat|tot] uxt|vxt

Again, qranges over rationals i, 1]. As expected, thet andv operators bind their variables. We write
t(xg,...,X,) to mean that all free variables bére contained ifx,...,X,}.

Thevalue t(T') (we eschew semantic brackets) gf-dermt(x,...,X,) applied to a vectofrs,...,rn) €
[0,1]" is defined inductively in the obvious way, cf. Definition 2(fhdeed,u-terms form a fragment of
t u of formulas whose value is independent of the transitiotesysn which they are interpreted.)

In Section 6, the model-checking task will be reduced to treblem of computing the value of
u-terms. The fundamental property that allows such valudset@omputed is that, for any-term
t(x,...,X,) and vector of rational$qs, . ..,qn), the value ot (q) is rational and can be computed from
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t andg. One way of establishing this result is by a simple reductthe first-order theory of rational
linear arithmetic, which provides an indirect means of catmg the value ot(g). The current sec-
tion presents a brief outline of this approach. After thisSiection 5, we provide an alternative direct
algorithm for computind(d).

A linear expressiorin variablesxy, . .., X, is an expression

01Xy =+ -+ +0OnXn+Q

whereqy,...,0n,g are real numbers. In the sequel, we only consi@gional linear expressions, in
which qy, ..., 0n, g are all rational, and we henceforth assume this propertyowitmention. We write
e(X,...,Xn) if eis a linear expression ixy, ..., X,, in which case, given real numbers...,r,, we write
e(1) for the value of the expression when the varialfleske values. We also make use of the closure of
linear expressions under substitution: giveRry,...,X,) andey(y1,...,Ym),---,en(Y1,--.,Ym), We write
e(e,...,ey) for the evident substituted expression in variabjes. ., ym (which is defined formally by
multiplying out and adding coefficients).

The first-order theory ofational linear arithmetichas linear expressions as terms, and strict and
non-strict inequalities between linear expressions,

a<e a<e, 1)

as atomic formulas. Equality can be expressed as the cdigoraf two non-strict inequalities and the
negation of an atomic formula can itself be expressed asaniatformula. The truth of a first-order
formula is given via its interpretation in the reals, or eqléntly in the rationals since the inclusion of
the latter in the former is an elementary embedding. Therthejoys quantifier elimination [8].

Proposition 4.1. For every tukasiewicgi-term t(xq, ..., %), its graph{(X,y) € [0,1]™ | t(X) =y} is
definable by a formulaiFxy, ..., xn,Y) in the first-order theory of rational linear arithmetic, wieek, is
computable from t.

Proof. The proof is a straightforward induction on the structuré. a/e consider two cases, in order to
illustrate the simple manipulations used in the constomctf F .
If tist; @ty thenk is the formula

J21,. R, (Xz1) NR,(R2) AN((n+22<1IAz=z+2)V (1<zn+2AZ=1))
If tis uxn,1.t’ thenk is the formula

R (X1, %, oY) AVZ Ri(Xg,. .0, %,22) 2y < Z .
O

Proposition 4.1 provides the following method of computthg valuet(q) of u-termt(xs,...,xn) at
a rational vector(qs,...,0qn) € [0,1]". First constructi (xq,...,%),Y). Next, perform quantifier elim-
ination to obtain an equivalent quantifier-free form@g(xs,...,%n,Y), and consider its instantiation
Gi(qs,.--,0n,Y) atd. (Alternatively, obtain an equivalent formu@yq(y) by performing quantifier elim-
ination onk(q,...,0n,Y).) By performing obvious simplifications of atomic formulisone variable,
Gt(qs,---,0n,Y) reduces to a boolean combination of inequalities each bawie of the following forms

y<q y<q y=q y>q.



94 tukasiewiczu-calculus

By the correctness @ there must be a unique rational satisfying the boolean caatibin of constraints,
and this can be extracted in a straightforward way f@ytts, - . .,qn,Y)-

We give a crude (but sufficient for our purposes) complexiiglgsis of the above procedure. In
general, for au-termt of lengthu containingv fixed points, the length df is bounded by Yc, for
some constant. The quantifier-elimination procedure in [8], when giveroanfiula of length as input

produces a formula of length at most 2s output, for some constadf and takes time at mos®2.
Thus the length of the formul@ (i, .., X,,y) is bounded by 24°d, and the computation time fatd)

is 0(222V“°d), using a unit cost model for rational arithmetic.

5 Adirect algorithm for evaluating u-terms

Our direct approach to computing the valuegueferms is based on a simple explicit representation of
the functions defined by such terms.cAnditioned linear expressias a pair, writterC - e, wheree is
a linear expression, ar@is a finite set of strict and non-strict inequalities betwépear expressions;
i.e., each element & has one of the forms in (1). We wri@) for the conjunction of the inequations
obtained by instantiating for X in C. Clearly, if g is a vector of rationals then it is decidabledf{d)
is true or false. The intended meaning of a conditioned tim@ressiorC i e is that it denotes the
valuee(') when applied to a vector of reatfor which C(r) is true, otherwise it is undefined. A basic
property we exploit in the sequel is that every conditionggC(xy,...,%,) defines a convex subset
{(r1,...,rn) | C(F)} of R".

Let .# be asystem(i.e., finite set) of conditioned linear expresssions inaldesxs, . ..,X,. We say
that.# represents functionf : [0,1]" — [0, 1] if the following conditions hold:

1. Foralldy,...,dy € [0,1], there exists a conditioned linear expressior- e) € .# such thaC(d)
is true, and

—

2. foralldy,...,d, € [0,1], and every conditioned linear expressi@i- e) € .Z, if C(d) is true then
e(d) = f(d).
Note that, for two conditioned linear expressid@s + e1), (Co - &) € .#, we do not require different
conditioning set&; andC; to be disjoint. However;, ande, must agree on any overlap.

Obviously, the function represented by a system of conmiolinear expressions is unique, when it
exists. But not every system represents a function. Onelédmpose syntactic conditions on a system
to ensure that it represents a function, but we shall notyguifsis.

While conditioned linear expressions provide a syntax nalinectly tailored to expressing functions
than general logical formulas, their expressivity in tlagard coincides with rational linear arithmetic.

Proposition 5.1. A function f: [0,1]" — [0, 1] is representable by a system of conditioned linear expres-

sions if and only if its grapH (X,y) € [0,1]" | f(X) =y} is definable by a formula fy, . .. , X,,y) in the

first-order theory of rational linear arithmetic. Moreovex defining formula and a representing system

of conditioned linear equations can each be computed franother.

We believe this result to be folklore. The proof is a straigiward application of quantifier elimination.
Combining Propositions 4.1 and 5.1 we obtain:

Corollary 5.2. For every Lukasiewicg-term t(xy,...,X,), the function
F—1(f): [0,1]" — [0,1]

is representable by a system of conditioned linear expgrassin variables x...,x,. Furthermore a
representing system can be computed from t.
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The computation of a representing systemtfeia quantifier elimination, provided by the proofs
of Propositions 4.1 and 5.1, is indirect. The goal of thigtisecis to present an alternative algorithm
for calculating the valué(r) of a u-term at rationalsy,...,r, € [0,1], which is directly based on ma-
nipulating conditioned linear expressions. Rather thanputing an entire system of conditioned linear
expressions representimgthe algorithm works locally to provide a single conditidnexpression that
applies to the input vectar.

The algorithm takes, as inputgatermt(xy, ..., %,) and a vector of rationalgy, . ..,r,) € [0,1]", and
returns a conditioned linear expressioi g, in variablesxy, ..., X,, with the following two properties.

(P1) C(T) is true.
(P2) Forallsy,...,sh € R, if C(S) is true thers,...,s, € [0,1] ande(S) =t(3S).

It follows thate(r) =t(T), soe can indeed be used to compute the value.

5.1 The algorithm

The algorithm takes, as input,tatermt(xs,...,%,) and a vector of rational§,...,rn) € [0,1]", and
returns a conditioned linear expressiom- €, in variablesx,, ..., X,, with the properties (P1) and (P2)
above. For the purposes of the correctness proof in Sectiit & convenient to consider the running of
the algorithm in the more general case that. ., r, are arbitrary real numbers j@, 1]. This more general
algorithm can be understood as an algorithm in the Real RAKM&aBSS) model of computation [3].
When the input vector is rational, all real numbers encaeateluring execution of the algorithm are
themselves rational, and so the general Real RAM algorigmegialises to &dona fide(Turing Machine)
algorithm in this case. Moreover, even in the case of irnationputs, all linear expressions constructed
in the course of the algorithm are rational.

The algorithm works recursively on the structure of the terkVe present illustrative cases for terms
ty ®ty anduxn,1.t’. The latter is the critical case. The algorithm fog, ;.t" is an obvious dualization.

If tisty @ty then recursively comput@; - e andC; - ;. If e1(T) +ex(F) < 1 then return

C,C,e+ea<lte+e .
Otherwise, return
C,Che+eo>1F1 .

In the case thatis uxy,1.t", enter the following loop starting with = 0 andd = 0.

Loop: At the entry of the loop we have a finite dBtof inequalities between linear expressions in
X1,...,X%n, and we have a linear expressiofx, . ..,X,). The loop invariant that applies is:

(11) D(r) is true; and
(12) foralls€[0,1)", if D(S) thend(S) < (UXnt1.t)(3).

We think of D as constraints propagated from earlier iterations of tlop,land ofd as the current
approximation to the least fixed point subject to the conga
Recursively computé(x, ..., X,+1) at(F,d(F)) asC - e, wheree has the form:

QiXt+ -+ 0OnXn+ On1Xnr1+0 - (2
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In the case thad, ; # 1, define the linear expression:

=1 (QiXi+-+ X +0q) - 3)
— On+1

TestifC(T, f(T)) is true. If it is, exit the loop and return:

D UC(Xla'-'ade(Xl?"'vXn)) UC(Xla"'aXm f(X17-~-aXn)) = f (4)

as the result of the algorithm farx.t” at¥. Otherwise, ifC(F, f(F)) is false, defineN(xy,...,X%,) to be
the negation of the inequalitgy (X, ..., %n, f(X1,...X1)) < €(Xq,.-.,%n, F(X1,...X,)) (using < to stand
for either < or <), wheree;(Xg,...,Xn+1) < €(X1,...,%X1+1) IS @ chosen inequality i€ for which
el (F, () < e (r, f(r)) is false, and go tfind next approximation below.

In the case that, 1 = 1, test the equalitgi r1 +--- +gnrn+9 = 0. If true, exit the loop with result:

DUCX1,.. -, Xn,d(X1,.... %)) U{Q1X1 + -+ OnXn+q=0} - d . (5)
If insteadq r1+ -+ +0anrn+q+# 0, chooseN(xg, . ..,X,) to be whichever of the inequalities

QuX1+--+0nX+q < 0 0 < X+ +0hX+Q

is true forr, and proceed witfind next approximation below.

Find next approximation: Arrange the inequalities i@ so they have the following structure.

C'U {Xn11 > & br<i<rr U X1 > @ brcicr U {Xnr1 < bibacicn U {Xn+1 < bibrv<i<m (6)

such that the only variables in the inequalit®s and linear expressiors, bj arex,...,%,. Choosej
with 1 < j <msuch thab; () < b;(r) for all i with 1 <i < m. Then go back tdoop, taking

DUCKX1, -+, X0, d(Xq, .., %)) U {N(Xq,..., %)} U {bj <b [1<i<m}  eXbj(X) (7)

to replaceD andd respectively.

5.2 A simple example

xu3), Where]Pz%x is the macro formula as in Definition 3.1, that is
1)). Thus,

t=px (vy.(yo (xe %)) . %)

Here,t'(x) = vy.(y® (x@ 1)) L 3 is a discontinuous function, and the value @ 1.

We omit giving a detailed simulation of the algorithm on tiWeexpression’ (x) atx = r. The result
it produces, however, 0 <x< 3} F2ifr < 1 and{i <x<1}r1ifr>1.

We run the algorithm on inpytix.t’(x). SetD = 0 andd = 0. Calculatingt’(x) atx = 0 we obtain

Creas{0<x< 3} 3. We now need to calculate:= 125(3) = 3. The constrain€(3) does not hold.

Thus we need to improve the approximatios= 0. Sincee = % is constant, the next approximation is
%. The new set of constraints is still the emptyset. Thus watiethe algorithm witld = 0 andd = %
Calculatingt/(x) atx = 3 produceC - eas{3 < x< 1} 1. Computef := :15(1) = 1. SinceC(1)
holds, the algorithm terminates with-01, as desired.
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5.3 Correctness of the algorithm

Theorem 5.3. Let t(x1,...,Xy) be any Lukasiewicg-term. Then, for every input vectdrs,...,r,) €
[0,1]", the above (Real RAM) algorithm terminates with a condébtinear expression{C- e satisfy-
ing properties (P1) and (P2). Moreover, the set of all pokesilesulting conditioned linear expressions

{GFelre0l} (8)
is finite, and thus provides a representing system for thetifomt: [0, 1]" — [0,1].

Before the proof it is convenient to introduce some ternugglassociated with the properties stated in
the theorem. For @-termt, we call the cardinality of the set (8) of possible resulis|- e, thebasis
size and we call the maximum number of inequalities in &yhe condition size

Proof. By induction on the structure of We verify the critical case whenis pix,1.t'.

We show first that the loop invariants (11), (12) guaranteat thny result returned via (4) or (5)
satisfies (P1) and (P2). By induction hypothesis, the re@icomputation of’(xs,...,X,+1) at(F,d(r))
asC I e, wheree has the formgy X3 + - - - + On X0 + On+-1 %01 + g @s in (2), satisfiesC(r,d(r)); and, for
allsy,...,sne1 €R, if C(s1,...,5+1) thense [0,1]" andt’(sy,...,Sn11) = €(S1,- - -, Snel)-

In the case thai, 1 # 1, the linear expressiof, defined in (3), maps arg, ..., s, € R to the unique
solution f(3) to the equatiorn,,1 = €(s1,...,S,%+1) in R. Suppose thabD(S) holds. Then, by loop
invariant (12),d(3) < (Uxn+1.t")(5). Suppose also th&(S, f(5)). Thent'(§,f(3)) = €5, f(3)) = (),
i.e., f(5) is a fixed point ofx,;1 — t'(5,%n1); whence,(uxn;1.t")(5) < f(5). Suppose, finally, that
C(5,d(5)) also holds. Then, because b@ls,d(3)) andC(s, f(5)), andd(5) < (uxy1.t")(5) < f(9),
we have, by the convexity of constraints, th&g,s,.1) = (S, sh+1) for all .11 € [d(S), f(5)]. Sof(5)
is the unique fixed-point ok,;1 — t'(5,X,+1) on [d(S), f(S)]. Since,d(3) < (UXyt1.t')(S), we have
f(8) = (UXn41-t')(S). This argument justifies that the conditioned linear exgicesof (4) satisfies (P2).
It satisfies (P1) justi€(T, f(I)), which is exactly the condition under which (4) is returnedfze result.

In the case that},.1 = 1 then, for anysy,...,s, € R, the equationk,;1 = €(s1,...,S,%+1) has a
solution if and only ifq1 S + - - - + gnSh+ g = O, in which case any,.,1 € R is a solution. Suppose that
QiS1+- -+ 0nSh+g=0andC(5,d(5)) both hold. Ther'(s;,...,s,,d(3)) =€(5,d(35)) = d(5), sod(X) is
a fixed point ofX, 1 — t'(5,%y+1). If alsoD(3) holds then, by loop invariant (124(X) = (tUxn1-t")(3).
We have justified that the conditioned linear expression5yfsatisfies (P2). It satisfies (P1) just if
Oir1+---+0nrn+9q=0, which is exactly the condition under which (5) is returredhe result.

Next we show that the loop invariants are preserved througledmputation. Properties (11) and (12)
are trivially satisfied by the initial valud3 = @ andd = 0. We must show that they are preserved when
D andd are modified via (7), which happens when execution pasdasdtaext approximation. In this
subroutine, the inequalities @ are first arranged as in (6) where, &, d(r)), we must haven > 1, as
otherwiseC(T,s) would hold for all reak > d(F), contradicting tha€(r,s) impliess € [0, 1]. (Similarly,
| > 1.) Thus there indeed exisjswith 1 < j < msuch thato; (') < by() for all i with 1 <i <m. Itis
immediate that the constraints in the modifiedf (7) are true for. Thus (I1) is preserved. To show
(12), supposes,, ..., s, satisfy the constraints, i.e.,

DE CEd®) N {E<hE[1<i<m} .

Definingr’ = (UXa+1.1')(S), by (12) for D,d we haved(S) <r’. We must show thag(s,b;(s)) <r’. By
the definition ofN(xy, ..., %), in either thegn, 1 # 1 orgn.1 = 1 caseN(S) implies thatC(s, r’) does not
hold. Becaus€(S,d(S)) and by the choice of, it holds thatC(S;s), for all s€ [0, 1] such thas = d(5) or
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d(S) < s< bj(8). SinceC(s,r') is false andd(S) < r', it follows from the convexity of the conditioning
setC that, for everys with s=d(S) or d(5) < s < bj(3), we haves < r’. Whence, since’ is the least
prefixed point forxn, 1 — t'(35,Xn+1), alsos< t'(5,s) <r’, i.e.,

s<egs <r' . 9)

Thus, e(S,bj(3)) = sup{e(S,s) | s=d(5) ord(s) <s<bj(5} <r'. Thus,e(sb;j(s)) <r, ie., itis an
approximation to the fixed point. Moreover, it is a good neypragimation to choose in the sense that:

d(S) < e(s,bj(s)) and notC(s,e(S,bi())) . (10)

The former holds becauss) < e(s,d(S)), by (9), andd(S) < b;(S). The latter becaused(s, &(S,bj(5)))
then, in particularg(s, b (S)) < b;(3), sob;(5) = &(§,bj(S)) =r’, contradicting that ndE(s,r’).

To show termination, by induction hypothesis, collectifigpassible results of running the algorithm
ont’ produces a representing systemtfor{0, 1]"** — [0, 1]:

Citeg ... Cvler, (11)

wherek’ is the basis size df. We now analyse the execution of the algorithm fiof, 1.t" on a given

input vector(rq,...,rn). On iteration numbei, the loop is entered with constrairilg and approximation
di (whereD; = 0 andd; = 0), after which the recursive call to the algorithm foryields one of the

conditioned linear expressiorg - &, from (11) above, such th& (r,d;(r)) holds. Then, depending
on conditions involving onlZy, - &, andr, either a result is returned, @, andd;; are constructed
for the loop to be repeated. By (10), at iteration 1 of the loop, we havel.1(T) > di(F) and also

Cy (1,di+1(1) is false. Since each conditioning set is convex, it follolwatnoC; can occur twice in

the listCy,,Cy,,.... Hence the algorithm must exit the loop after at midsterations. Therefore, the
computation fox.t’” atr terminates.

It remains to show that the algorithm fax.t’ produces only finitely many conditioned linear expres-
sionsCr F er. The crucial observation is that the vectas used only to determine the control flow of
the algorithm, i.e., which branches of conditional statetsare followed, the choices made in selecting
N andb; in (7), and the order in which the differe@f I- e;, from (11) are visited (given by the sequence
ki, ko,... of values taken byj). Using this, ifl’ is the condition size of , then a loose upper bound is
that the number of possible results - & for the algorithm forux,,1.t" is at most(K (1)2)¥, and the
number of inequalities i€ is at most R'I. O

The above proof gives a truly abysmal complexity bound ferdlgorithm. Let the basis and con-
dition size for the term’(xy,...,%,+1) be k andl’ respectively. Then, as in the proof, the basis and
condition size fomx,1.t" are respectively bounded by:

k< (K(1?)X and | < 2K1" .

Using these bounds, the basis and condition size have eomeatary growth in the number of fixed
points in a ternt.
5.4 Comparison

According to the crude complexity analyses we have gives etraluation of Lukasiewica-terms via
rational linear arithmetic is (in having doubly- and trigd¢xponential space and time complexity bounds)
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preferable to the (non-elementary space and hence timkjatizan via the direct algorithm. Neverthe-
less, we expect the direct algorithm to work better thanithjgractice. Indeed, a main motivating factor
in the design of the direct algorithm is that the algorithmex, . 1.t" only explores as much of the basis
set fort’ as it needs to, and does so in an order that is tightly constlddy the monotone improvements
made to the approximatind expressions along the way. In contrast, the crude complexialysis is
based on a worst-case scenario in which the algorithm isreeduo visit the entire basis faf, and,
moreover, to do so, for different input vectatsin every possible order for visiting the different basis
sets. Perhaps better bounds can be obtained by a more carafysis of the algorithm.

6 Model checking

Let ¢ be a closed 1 formula and(S, —) a finite rational PNTS. We wish to compute the va]gé(s) at
any given stats € S We do this by effectively producing a closgdtermts(¢), with the property that
ts(@) = [¢](s), whence the rational value @] (s) can be calculated by the algorithm in Section 5.

We assume, without loss of generality, that all fixed-poperators inp bind distinct variables. Let
X1,...,Xm be the variables appearing n We write g; X;. {; for the unique subformula ap in which X;
is bound. The strict (i.e., irreflexivejominationrelationX; > X; between variables is defined to mean
that oj Xj. (j occurs as a subformula ify.

SupposeS = n. For eachs € S, we translatep to a u-termts(@) containing at mosinn variables
X.¢, Where 1< i <mands € S The translation is defined using a more general fundfiorefined
on subformulas o, wherel C {1,...,m} x Sis an auxiliary component keeping track of the states at
which variables have previously been encountered. Givend(i,s) € {1,...,m} x S, we define:

Fe(,9) = (TU{i,9H\{(J,8) €T [ X > X} .

This operation is used in the definition below to ‘reset’ sulimate fixed-point variables whenever a new
variable that dominates them is declared.

" it (i,9) el
(X)) =147 '
s (%) {a.x.stsrb's(t,u.) otherwise

te(P)=p(P)(9

t(om) =ti(@)eti (@) ec{uneo}
t(0p) = || P d&)ti(e)
s—d seS
(Do) =[] P dS) (o)
s—d €S

ru{(s)}

tg(GiXi-QUl) OiXis. I (W)
This is well defined because changing frérto I > (i,s) or tol" U{(i,s)} strictly increases the function
i— |{(,9)](i,s) €l}:{1,...,m} -{0,...,n}

under the lexicographic order on functions relative-to



100 tukasiewiczu-calculus

Proposition 6.1. For any closed y formulag, finite PNTSS, —) and s S, it holds thaf @] (s) =t2(¢).

We omit the laborious proof. It is reminiscent of the redostof modalp-calculus model checking to a
system of nested boolean fixed-point equations in Sectidi4/f

7 Related and future work

The first encodings of probabilistic temporal logics in alyabilistic version of the modal-calculus
were given in [4], where a versidACTL*, tailored to processes exhibiting probabilistic but natae-
terministic choice, was translated into a non-quantigapivobabilisitic variant of thei-calculus, which
included explicit (probabilistic) path quantifiers butaliswed fixed-point alternation.

In their original paper on quantitative-calculi [12], Huth and Kwiatkowska attempted a model
checking algorithm for alternation-free formulas in thesien of £u with & and® but withoutr1, U and
scalar multiplication. Subsequently, several authorereldressed the problem of computing (some-
times approximating) fixed points for monotone functionsnbining linear (sometimes polynomial)
expressions with min and max operations; see [10] for a sumntdowever, such work has focused
on (efficiently) finding outermost (simultaneous) fixedsgsifor systems of equations whose underlying
monotone functions are continuous. The nested fixed pointsidered in the present paper give rise to
the complication of non-continuous functions, as the exaropSection 5.2 demonstrates.

As future work, it is planned to run an experimental comparisf the direct algorithm against the
reduction to linear arithmetic. As suggested in Sectionwelexpect the direct algorithm to work better
in practice than the non-elementary upper bound on its oaxitp] given by our crude analysis, suggests.
Furthermore, as a natural generalization of the approximatpproach to computing fixed points, the
direct algorithm should be amenable to optimizations ssaha simultaneous solution of adjacent fixed
points of the same kind, and the reuse of previous approidmsatvhen applicable due to monotonicity
considerations. Unlike the black-box reduction to lined@thanetic, based on quantifier elimination, the
linear-constraint-based approach of the direct algoritiivould also offer a flexible machinery helpful
in the design of optimized procedures for calculating velagparticular subclasses ofuterms. An
important example is given by the fragment gi tapable of encodinBCTL (see Remark 3.6).

Our results on 4 are a contribution towards the development of a robust yhefiixed-point prob-
abilistic logics. The simplicity of the proposed encodirfd@&TL (see Remark 3.6 above) suggests that
the direction we are following is promising. In a follow-upger, by the first author, it will be shown
that the process equivalence characterised by tukasiguitzalculus is the standard notion pfoba-
bilistic bisimilarity [23]. Thus the quantitative approach to probabiligticcalculi may be considered
equally suitable as a mechanism for characterising prazgssalence as the non-quantitativecalculi
advocated for this purpose in [4] and [7].

Further research will have to explore the relations betwegantitativeu-calculi such as 1 and
other established frameworks for verification and desigmrobabilistic systems. Important exam-
ples include thebstract probabilistic automataf [6], the compositionahssume-guaranteechniques
of [16, 9] and the recenp-automataof [13]. In particular, with respect to the latter formalisnve
note that the acceptance condition of p-automata is spedifieerms of stochastic games whose con-
figurations may have preseeded threshold values whosenadtisely resembles that of the threshold
modalities considered in this work (Definition 3.1). Exphay the relations between p-automata games
and tu-games [19] could shed light on some underlying fundamedeéss.
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A Appendix: some omitted proof details

We add detail to the outlined proof of Theorem 3.7, by suppythe omited argument for the equality
| {m5 (W)} = [uX-F(X))1o(s) .
g

which appears as case 11. Although game semantics protiel@sdst intuitive justification, we instead
give a direct denotational proof, in order to avoid introdgcgame-theoretic machinery.

Expanded proof of Theorem 3.Case 11<). We first show that

L {m& (W)} < [HXF(X)]o(9) (12)

DefineWy = {s.51.%... | o =sand3n < k.(s, € (@)p AVYM< N.(Sn € (@1)p))}. ClearlyW = [J, Wk
Suppose Inequality 12 does not hold. Then there exists &@and scheduleo such that

me(Wi) > [UX.F(X)]o(9) (13)

We prove that this is not possible by inductionlorin thek = 0 case, since we are assumimg(¥) > 0,
it holds thats€ (¢|),. By inductive hypothesis og,, we know thaf E(¢)](s) = 1 and this implies that
uX.F(X) = 1, which is a contradiction with the assumed strict inedydlB. Consider the cade+ 1.
Note that ifs€ (@), then, [uX.F(X)],(s) = 1 as before, contradicting Inequality 13. So asssyge
(@) p- Since we are assumimg; (Wi1) > O it must be the case thaE (@ )o. Similarly, mg(W1) >0
ands¢ (@), imply thats 4 does not hold. This means (see Definition 2.8) thgfs}) is defined. Let
d = o({s}) and observe that (W 1) = st(t)nfa,(wk), whered’(s,s1,.-.,%) = 0(S,%,S1,---,5n)-
te
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By induction onk we know that the inequalityt, (Wy) < [uX.F(X)],(t) holds for everyt € S Thus,
by definition of the semantics df, we obtainm(Wy) < [0 (uX.F(X ))]]p. Recall that we previously
assumed ¢ (@), andse (@ ),. Hence the equality

[O (X.F(X))]p(s) = [E(g2) U (E(qn) 1 (OUX.F(X)))]o(s)

holds. The formula on the right is just the unfoldiRguX.F (X)) of uX.F(X). This implies the desired
contradiction.
Case 11>). We now prove that also the inequality

|_|{ms )} = [UX.F(X)]p(s) (14)

holds. By Knaster-Tarski theorerfyX.F (X)], = [l [F(X)]5, wherea ranges over the ordinals and
[F(X)] 5« with p* = p[l g [F (X)] 55 /X]. We prove Inequality 14 by showing, by transfinite induction
that for every ordinabr ande > 0, the inequality

|_|{ms )} > [UXF(X)]pa(s) — € (15)

holds, for alls€ S. The case foor = 0 is immediate sincgF] ,o(s) > 0if and only if[E(¢2)]»(s) =1 and
this implies| |, {m¢ ()} = 1. Consider = B+ 1. If [E(@)],(s) = 1 then Inequality 14 holds as above.

Thus assumég,],(s) = 0. Note that[F],(s) > 0 only if s€ [E(q)]. Thus assum@E(cpl)]]g(s) =
1. Under these assumptioff (X)]p« = [OF(X)],s as it is immediate to verify. By definition of the

semantics of) we have:
[OF(X)]ps(8) = |] (3 d®IF(X)]e(t))

s—d t€
By induction hypothesis off we know that for everyg,

[OF (o () < LI (3 d) (Lo (w)}+¢))
s—d te

For eachs — d ando definec® asa?®({s}) = d anda¥(sto....) = a(to...). A simple argument shows

that

L] ( (|_|{mt )}+¢)) |_|{ W)} +e

s—d te
and this conclude the proof for the case= 3+ 1. Lastly, the case far a limit ordinal follows straight-
forwardly from the inductive hypothesis ¢h< a. O

Proof of Proposition 5.1.Suppose we have a systemkofonditioned linear expressions representfng
Each conditioned expressi@t eis captured by the implicatiof\AC) — y = e, so the whole system
translates into a conjunction &fsuch implications. To this conjunction, one need only addringe
constraints < zandz < 1 for each variable, as further conjuncts. In this way, the graph is easily
expressed as a quantifier free formula. (Since the imptinatare equivalent to disjunctions of atomic
formulas, the resulting formula is naturally in conjunetiwormal form.)

Conversely, suppode(x, ..., X, Yy) defines the graph df. By quantifier elimination, we can assume
thatF is quantifier free and in disjunctive normal form. Théns a disjunction of conjunctions, where
each conjunctionk, can be easily rewritten in the form

(/\C)/\(/_\y>a;>A</\y2bi>A</\_y<c,> </\y<d.) , (16)

1<i<h 1<i<k 1<i<m



104 tukasiewiczu-calculus

such that the only variables in the finite set of atomic fors@, and linear expressiors, b;, ¢, d; are
X1,...,X%n. SinceF is the graph of a function, for all reals, ..., r,, there is at most onesuch thak (T, s)
holds, and, if it does, then all of, ... ,ry,sare in[0,1]. Given such ais, we therefore have:

max{a(F) | 1 <i<h} <max{bi(F) | 1<i<k}=s=min{c(F) |1<i<I} <min{di(F)|1<i<m} .

A system of conditioned linear expressions fois thus obtained as follows. For each conjuiian F,
written in the form of (16) above, and ea¢hvith 1 < j <k, include the conditioned linear expression:

C, {bj > & }1<i<n, {bj > bi}1<i<k, {bj < Gi}1<icr, {bj < di}icicm, F bj .
O

We supplement the proof of Theorem 5.3 with more detail orbthends on basis and condition size.

Expanded proof of Theorem 5.8Ve analyse the control flow in the algorithm fax,, 1.t on a given
input vector(rq,...,rn). On iteration numbei, the loop is entered with constrairils and approximation
d;, after which the recursive call to the algorithm foyields one of the conditioned linear expressions,
Cy - &. Suppose thaty, andD; containu andv inequalities respectively. If the loop is exited producing
(4) as result then the resulti@y has 21+ v inequalities. If it is exited producing (5) as result thHgn
hasu+ v+ 2 inequalities (wherei+ v+ 2 < 2u+ v becauseCy, has to enforce the range constraint
0 < xny1 <1). Otherwise, the algorithm repeats the loop, enterimgti@ni + 1 with Dj, 1, given by (7),
having at most @+ v inequalities N contributes 1 inequality, and there are at most1 inequalities

bj <bjin (7) sincel > 1).

Therefore, ifl” is now maximum number of inequalities occurring in @yfrom (11) (i.e., if it is
the condition size fot’) the algorithm forux,1.t" at¥, which runs for at most’ iterations, results iy
containing at mosti2l’ inequalities.

To bound the number of resul@ F e, we count the possible control flows of the algorithm. At
iterationi, the algorithm use€y, + g, from (11), using which it might terminate with either (4) &)(
or it might repeat the loop, entering iteratios 1 with D;. 1, given by (7), which can arise frof, in
a number of ways determined by the possible pairs of chomeN fandb; in (7). In the case that the
variable vectorxy, ..., X,) is empty (i.e., the ternux,,1.t" is closed) the constraints b are redundant
(they are simply true inequalities between rathionals) smdan be discarded. In the case that 1,
there are at least 2 inequalities@ngiving range constraints or, so there are at moktchoices forN
(I’ — 2 choices in the case that, 1 # 1, and 2 in the casa, .1 = 1). Irrespective of, there are at most
I”— 1 choices foib; (takingn into account this can be improvedIite- 2n— 1). Therefore, the execution
of the algorithm, is determined by the sequence:

kla Uy, k2) u, ..., km,V

where:m < K’ is the number of loop iterations performed; eaghwhere 1< u; < 1’(l’ — 1), represents
the choice ofN andb; used in the construction d;,; (7), andv is 1 or 2 according to whether the
resultingGr + e is returned via (4) or (5). Since each numkgis distinct, the number of different such
sequences is bounded by:

k/ /
Z%ﬁ(“"—l))m‘l < KK @

where the right-hand-side gives a somewhat loose uppeidbdirerefore, the number of possible results
C; I & for the algorithm forux,. 1.t is at most(k'(I)2)¥. O



