
EPTCS 126

Proceedings of the

Workshop on

Fixed Points in Computer Science
Turino, Italy, September 1st, 2013

Edited by: David Baelde and Arnaud Carayol

Published: 28th August 2013
DOI: 10.4204/EPTCS.126
ISSN: 2075-2180
Open Publishing Association

i

Preface

This volume contains the proceedings of the Ninth Workshop on Fixed Points in Computer Science
(FICS 2013) which took place on September 1st 2013 in Torino, Italy as a satellite event of the conference
Computer Science Logic (CSL 2013).

Fixed points play a fundamental role in several areas of computer science. They are used to jus-
tify (co)recursive definitions and associated reasoning techniques. The construction and properties of
fixed points have been investigated in many different settings such as: design and implementation of
programming languages, logics, verification, databases. The FICS workshop aims to provide a forum
for researchers of the computer science and logic communities who study or apply the theory of fixed
points.

The editors thank all authors who submitted papers to FICS 2013, and program committee members
Andreas Abel, Lars Birkedal, Javier Esparza, Neil Ghani, Dexter Kozen, Ralph Matthes, Paul-André
Melliès, Matteo Mio, Luke Ong, Pawel Parys, Luigi Santocanale, Makoto Tatsuta and Wolfgang Thomas
for their work in selecting papers.

Apart from presentations of accepted papers, we are delighted that FICS 2013 featured three invited
talks: Anuj Dawar on Fixed point approximations of graph isomorphisms, Nicola Gambino on Cartesian
closed bicategories and Alexandra Silva on Rational fixed points in programming languages. Many
thanks to them for having accepted the invitation.

Finally, we would like to express our deep gratitude to CSL 2013 for local organization and to
EACSL, INRIA and Université Marne-la-Vallée for funding FICS 2013.

David Baelde and Arnaud Carayol

ii

Table of Contents

Preface .. i

Table of Contents .. ii

Non-monotonic Pre-fixed Points and Learning 1
Stefano Berardi and Ugo de’ Liguoro

From Branching to Linear Time, Coalgebraically 11
Corina Cirstea

A Coinductive Approach to Proof Search 28
José Espírito Santo, Ralph Matthes and Luís Pinto

Infinitary Axiomatization of the Equational Theory of Context-Free Languages. 44
Niels Bjørn Bugge Grathwohl, Fritz Henglein and Dexter Kozen

The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices . 56
Eleftherios Matsikoudis and Edward A. Lee

Guard Your Daggers and Traces: On The Equational Propertiesof Guarded (Co-)recursion 72
Stefan Milius and Tadeusz Litak

Łukasiewicz mu-Calculus .. 87
Matteo Mio and Alex Simpson

D. Baelde and A. Carayol (Eds.): Fixed Points
in Computer Science 2013 (FICS 2013)
EPTCS 126, 2013, pp. 1–10, doi:10.4204/EPTCS.126.1

c© S. Berardi & U. de’ Liguoro
This work is licensed under the
Creative Commons Attribution License.

Non-monotonic Pre-fixed Points and Learning

Stefano Berardi Ugo de’Liguoro

Università di Torino

stefano.berardi@unito.it ugo.deliguoro@unito.it

We consider the problem of finding pre-fixed points of interactive realizers over arbitrary knowledge
spaces, obtaining a relative recursive procedure. Knowledge spaces and interactive realizers are an
abstract setting to represent learning processes, that can interpret non-constructive proofs. Atomic
pieces of information of a knowledge space are stratified into levels, and evaluated into truth values
depending on knowledge states. Realizers are then used to define operators that extend a given
state by adding and possibly removing atoms: in a learning process states of knowledge change
non-monotonically. Existence of a pre-fixed point of a realizer is equivalent to the termination of
the learning process with some state of knowledge which is free of patent contradictions and such
that there is nothing to add. In this paper we generalize our previous results in the case of level 2
knowledge spaces and deterministic operators to the case of ω-level knowledge spaces and of non-
deterministic operators.

1 Introduction

A fundamental aspect of constructive interpretations of classical arithmetic is how information is gath-
ered and handled while looking for a witness of the proved formulas. This has been understood by
several authors as a problem of control and side effects, although intended in different ways. Building
over Coquand’s semantics of evidence of classical arithmetic [7] and its representation as limiting inter-
action sequences [3], we have developed the concept of interactive realizability in [2, 4], which consists
of interpreting non constructive proofs as effective strategies that “learn” the witness.

According to [5], learning the truth of an arithmetical statement can be abstractly presented as a
process going through steps, which we call states of knowledge, such that a (candidate) witness can be
relatively computed out of them. These are certain subsets of a countable set A whose elements are
pieces of evidence that we dub answers. On the other hand A is equipped with an equivalence relation∼
whose equivalence classes [a]∼ are questions; since we allow that in a state of knowledge each question
has at most one answer, we say that X is a state if for all a ∈ A, the set X ∩ [a]∼ is either a singleton or
empty. We also denote by S the set of states.

Over states we can define a “query map” q([a]∼,X) ∈Pfin(A), taking a question [a]∼, a state X ∈ S,
and returning the set X ∩ [a]∼, that is a singleton {b} if b ∈ X is the only answer to [a]∼; the empty set
otherwise. We call state topology the smallest topology making the query map continuous. Equivalently
the state topology is generated by the canonical sub-basics Aa = {X ∈ S | a ∈ X} and Ba = {X ∈ S |
X ∩ [a]∼ = /0} for a ∈ A.

Knowledge is improved by means of “realizers” r : S→Pfin(A) that are functions guessing a finite
set of new information r(X) with respect to the current state of knowledge X . We assume that r(X)⊆ A
is always a finite set, so that a step of an “algorithm” to compute with r consists of proceeding from some
X to X ′∪Y , that we treat here as a reduction relation X�r

1X ′∪Y , where X ′ ⊆ X and /0 6= Y ⊆ r(X) \X

2 Non-monotonic Pre-fixed Points and Learning

have to satisfy certain requirements. Under this respect if r(X) ⊆ X , namely X is a pre-fixed point of r,
then the computation terminates in the state X .

In [2, 4] we have studied the case where A is essentially made of decidable arithmetical statements
which are known to be true, and considered the case where r(X) is either a singleton or it is empty. In this
case X�r

1X∪r(X) if r(X) 6= /0, and the sequence of reductions X0�r
1X1�r

1 · · · out of some X0 is uniquely
determined by r and the sequence X0 ⊆ X1 ⊆ ·· · is monotonic. Hence we have proved termination by
applying Knaster-Tarski theorem.

We call deterministic the case in which r(X) is at most a singleton. A first generalization of the
picture is when r(X) may include more than one answer, which is the non-deterministic case. Then r(X)
is not required to be a state, and the next state is X ∪Y , for some non-deterministic choice of a subset
Y ⊆ r(X) of pairwise unrelated answers w.r.t. ∼. A further extension is when X ′ is a proper subset of X
in the reduction step X�r

1X ′ ∪Y , then loosing the monotonicity of the sequence X0,X1, This is the
case when the truth values of answers are logically related, and adding some new answer may turn to
false the truth values of some previously true answers. In this case whenever we add some answer we
have also to remove some, and the fixed point result becomes difficult to prove.

To model logical dependencies of answers we assume that A is “stratified” by a map lev : A→ N,
splitting the answers into ω levels, in decreasing order of “reliability”. As we explained in [2, 4], we
need ω-levels of answers to describe the constructive content of classical proofs of arithmetic. Logical
dependence means that an answer of level n (e.g. a universal statement) that has been considered as
true so far, might be falsified by discovering that an answer of level < n (a counterexample) should
be true. Hence we relativize the truth value of answers to a state (to which they do not necessarily
belong) using a function tr(a,X) that only depends on the answers in X having a smaller level, that is
tr(a,X) = tr(a,{x ∈ X | lev(x)< lev(a)}). Further we require that tr(a,X) depends continuously on the
state parameter w.r.t. the state topology. This is how we abstractly capture the idea that this should be
a relative computable function, which will be recursive in case of a finite set X of answers. Instead, we
add no level restriction on a realizer r: if X ∈ S, then the answers of level n in r(X) may depend on the
answers of any level in X , including the answers of level ≥ n in X . Finally we also say that X ∈ S is
sound if tr(a,X) = T for all a ∈ X . Only sound pre-fixed points are of interest.

The fact that the truth value of an answer w.r.t. a state X only depends on truth values of lower
level answers in X suggests the following non-deterministic algorithm to find a sound pre-fixed point
of the function r: we pick one or more answers with the same level n from r(X) and dropping all
answers of level > n from X . We express the algorithm through the relation X�r

1X ′ ∪Y whenever
X ′ = {x ∈ X | lev(x)≤ n} and Y ⊆ r(X) is a finite homogeneous state made of answers of the same level,
say n, which is considered as the level of the state. Then we establish the main result of the paper, namely
that if r is a realizer (see Definition 2.1 below) then any reduction�r out of some sound X0 terminates,
within a finite number of steps, by a sound pre-fixed point of r, which is finite if X0 is such.

We have a final warning about the proof in this paper. It is possible to show that our termination
result implies the 1-consistency of First Order Arithmetic, and therefore it is not provable in it. Thus, no
elementary proof of our result is possible, although we have found several non-elementary proofs. The
proof included here is classical and it uses set theory, choice axiom and uncountable reduction sequences:
none of them is strictly required, but we trade off logical complexity for readability. We could remove
ordinals, choice axiom and even Excluded Middle from the proof, at the price of a harder (and longer)
argument.

The plan of the paper is as follows. In §2 we define a reduction relation on states depending on a
realizer r, which is the non-deterministic algorithm to search a pre-fixed point of r. In §3 we prove that

S. Berardi & U. de’ Liguoro 3

the set of states from which this algorithm always terminates is an open set in the state topology. In §4
we use this fact to prove that if there is some reduction sequence of length ω out of some state, then there
is a reduction sequence of length ω1 out of the same state. Eventually, in §5, we prove that reduction
sequences of length ω1 do not exist, so that we conclude that all reduction sequences of our algorithm
are of finite length. Then in §6 we discuss some related works and we conclude.

2 A non-deterministic parallel algorithm for finding pre-fixed points

For convenience we recall the basic definitions from [5] and the introduction above. We are given a
countable set A and an equivalence relation ∼ over A; the map lev : A→ N respects ∼ that is lev(x) =
lev(y) if x∼ y; X ⊆A is a state if for all x,y ∈ X , x 6= y implies x 6∼ y; the set S of states is taken with the
state topology, generated by the sub-basics Aa = {X ∈ S | a ∈ X} and Ba = {X ∈ S | X ∩ [a]∼ = /0}; we
take A and 2 with the discrete topology and A×S with the product topology.

Definition 2.1 (Layered Valuation, Sound State and Realizer) A layered valuation over (A,∼, lev),
shortly a valuation, is a continuous mapping tr : A×S→ 2 such that

tr(a,X) = tr(a,{x ∈ X | lev(x)< lev(a)}).

A state X ∈ S is sound if tr(x,X) = T for all x ∈ X.
A realizer w.r.t. the valuation tr is a continuous map r : S→Pfin(A), where Pfin(A) is taken with the

discrete topology, which is such that:

∀X ∈ S ∀a ∈ r(X). X ∩ [a]∼ = /0 & tr(a,X) = T.

Given n ∈ N and a state X we define the subsets of X :

X �<n = {x ∈ X | lev(x)< n}, X �>n = {x ∈ X | lev(x)> n}, X �=n = {x ∈ X | lev(x) = n}.

We also write X �≤n = X �<n ∪ X �=n. We denote by Sfin the set of finite states; let s,s′, t, t ′, . . . range
over Sfin.

Definition 2.2 (Reduction) We say that a state s ∈ Sfin is homogeneous if s 6= /0 and for some n ∈ N,
lev(x) = n for all x ∈ s; then we write lev(s) = n. For any homogeneous s of level n we define a map
Rs : S→ S by:

Rs(X) �<n = X �<n, Rs(X) �=n = X �=n ∪ s, Rs(X) �>n = /0.

Then, given a realizer r and an homogeneous s we define the binary reduction relation over S by:

X�s,rY ⇔ s⊆ r(X) & Rs(X) = Y.

We say that X reduces to Y in one step and we write X�r
1Y if X�s,rY for some homogeneous s. As

immediate consequence of the definitions of�r
1, tr and r we establish:

Lemma 2.3

1. X�r
1Y & X ∈ Sfin⇒ Y ∈ Sfin.

2. X�r
1Y & X is sound⇒ Y is sound.

4 Non-monotonic Pre-fixed Points and Learning

3. ¬∃Y. X�r
1Y ⇔ r(X)⊆ X.

A reduction sequence of length n from X to Y is a sequence X0, . . . ,Xn such that X = X0�r
1X1�r

1 . . .
�r

1Xn =Y . An infinite reduction sequence out of X is an endless sequence X = X0�r
1X1�r

1 . . .�r
1Xn . . .

of reductions. For any integer n ∈N we say that X reduces to Y in n steps and we write X�r
nY if there is

a length n reduction sequence from X to Y . We write X�rY if X�r
nY for some n ∈ N.

We observe that X is a pre-fixed point of r, that is r(X)⊆ X , if and only if there is no homogeneous
set s⊆ r(X) such that X ∩ s = /0, that is if and only if for all Y ∈ S we have X 6�r

1Y . If∼ is decidable and
both r and tr are relative recursive then we can see Y�r

1Z as the one step relation of a non-deterministic
algorithm computing a pre-fixed point X of r starting with some X0 ∈ S; then such an X , if any, can be
seen as a result of the computation starting with X0. By lemma 2.3 we know that if we move from some
finite sound state s0, e.g. /0, the reduction relation �r

1 generates a tree with finite and sound states as
nodes, which is finitary because r(X) is finite even for infinite X so that there can be only finitely many
homogeneous s ⊆ r(X). In particular the relation X�r

1Y is decidable for finite X and Y , and relative
recursive in general.

We say that X ∈ S is strongly normalizing if all reduction sequences out of X are finite. We denote
by SN the set of all strongly normalizing states. Our thesis is that SN= S, namely that the reduction tree
out of any X is finite. This implies that if s ∈ Sfin and s is sound we can effectively find a finite and sound
pre-fixed point t of r by reducing s.

3 The set of strongly normalizing states is open

The first step toward establishing SN = S is to prove that SN is open in the state topology. To prove this
we first characterize the reduction relation.

Lemma 3.1 (Reduction) Let s∈ Sfin be any homogeneous state of level n. Assume X ,Y ∈ S and X�s,rY .
Let m ∈ N.

1. X �=n⊂ Y �=n

2. X 6�s,rX.

3. If m≤ n, then X �<m+1⊆ Y �<m+1

4. If X �<m+1 6⊆ Y �<m+1, then Y �=m= /0.

5. If X �<m= Y �<m then m≤ n.

6. If X �<m= Y �<m then X �<m+1⊆ Y �<m+1

Proof

1. By definition of X�s,rY we have s 6= /0, X ∩ s = /0 and Y �=n= X �=n ∪s. We conclude X �=n⊂
Y �=n.

2. By point 1, if X�s,rY then X �=n⊂ Y �=n, hence Y 6= X .

3. Assume m≤ n in order to prove X �<m+1⊆ Y �<m+1. We reason by cases.

(a) Let m < n. Then m+ 1 ≤ n. By definition of X�s,rY we have X �<n= Y �<n, and from
m+1≤ n we conclude X �<m+1= (X �<n) �<m+1= (Y �<n) �<m+1= Y �<m+1.

(b) Let m = n. Then by point 1 above and X �<n=Y �<n we have X �<m+1= X �<n+1⊂Y �<n+1=
Y �<m+1

S. Berardi & U. de’ Liguoro 5

4. By point 3, if X �<m+1 6⊆ Y �<m+1, then m > n. We deduce Y �=m⊆ Y �>n= /0.

5. Assume X �<m= Y �<m in order to prove that m ≤ n. If it were m > n, we would deduce X �=n=
(X �<m) �=n= (Y �<m) �=n= Y �=n, contradicting point 1. Thus, m≤ n.

6. We apply points 5 and 3 in this order.

The next step is to prove that SN is open in the state topology. For all n ∈ N, n > 0 we define
SNn = {X ∈ S|∀Y ∈ S.X 6�r

nY} the set of states from which there is no reduction sequences of length n
from X . The reduction tree T(X) = {Y ∈ S|X�rY} from X ∈ S is finitely branching: from any node Y ,
the number of children of Y has upper bound the number of subsets of r(Y), which is finite. By König’s
Lemma, T(X) is finite if and only if all branches of tree (all reduction sequences from X) are finite. Thus,
T(X) is finite if and only if there is some upper bound n ∈ N to the reduction sequences from X . This
implies SN=

⋃
n∈NSNn. Therefore in order to prove that SN is open it is enough to prove that all SNn are

open.

Lemma 3.2 (SN is open) Assume s ∈ Sfin is any homogeneous state. Let I, I0, I1 ∈Pfin(A) be finite sets
of answers. Assume X ,Y,X ′,Y ′ ∈ S.

1. For all a ∈ A, {X ∈ S|a 6∈ X} is open.

2. If (I0, I1) is a partition of I, then {X ∈ S|(I∩X = I0)∧ (I \X = I1)} is open.

3. Rs : S→ S is a continuous map.

4. SN1 is open.

5. For all n ∈ N, SNn is open.

6. SN is open

Proof

1. Assume a ∈ A and O = {X ∈ S|a 6∈ X}. The set O consists of all states including some element
of [a]∼ different from a, or having empty intersection with [a]∼. Thus O is the union of all sets
{X ∈ S|b 6∈ X} for b ∈ [a]∼ and b 6 a, and of the set {X ∈ S|X ∩ [a]∼ = /0}. All these sets are basic
open of the state topology, therefore O is an open set of the state topology.

2. Assume that (I0, I1) is a partition of I and O = {X ∈ S|(I ∩X = I0)∧ (I \X = I1)}. Since both
(I∩X , I \X) and (I0, I1) are partitions of I, the condition (I∩X = I0)∧ (I \X = I1) is equivalent to
(I ∩X ⊇ I0)∧ (I \X ⊇ I1). Thus, O is equal to the intersection of all sets {X ∈ S|a ∈ X}, for any
a ∈ I0, and of all sets {X ∈ S|a 6∈ X}, for a ∈ I1. These sets are finitely many because I is finite,
and are either sub-basic open, or are open by point 1 above. Thus, O, being a finite intersection of
open sets, is open.

3. Assume s ∈ Sfin is an homogeneous state of level n. Assume a ∈ A and Aa{Z ∈ S|a ∈ Z}, Ba =
{Z ∈ S|Z ∩ [a]∼} are sub-basic open. We have to prove that if Y ∈ Aa then R−1

s (Aa), R−1
s (Ba) are

open sets. We prove this statement by case analysis.

(a) If lev(a)> n then R−1
s (Aa) = /0.

(b) If a ∈ s then R−1
s (Aa) = S.

(c) If lev(a)≤ n and a 6∈ s then R−1
s (Aa) = Aa.

(d) If lev(a)> n then R−1
s (Ba) = S.

(e) If s∩ [a]∼ 6= /0 then R−1
s (Ba) = /0.

6 Non-monotonic Pre-fixed Points and Learning

(f) If lev(a)≤ n and s∩ [a]∼ = /0 then R−1
s (Ba) = Ba.

4. SN1 is the set of states reducing to no state, equivalently, the set of states X ∈ S which are pre-fixed
points of r. Thus, we have to prove that if X is a pre-fixed point of r, then there is some open set
X ∈O such that all Y ∈O are pre-fixed points of r. Let O′= r−1({r(X)}), O′′= {Y ∈ S|(r(X)∩Y =
r(X))∧ (r(X)\Y = /0)}, and O = O′∩O′′. O′ is open because r : S→Pfin(A) is continuous and
Pfin(A) has the discrete topology. O′′ is open by point 2, with I0 = r(X) and I1 = /0. Thus, O is
open. By definition, X ∈O′ = r−1({r(X)}) and X ∈O′′ = {Y ∈ S|Y ∩r(X) = r(X)∧Y \r(X) = /0},
because r(X) ⊆ X . Thus, X ∈ O. For any Y ∈ O we have by definition of O: r(Y) = r(X) and
r(Y) = r(X)⊆ Y , as we wished to show.

5. We prove that SNn is open by induction over n ∈ N,n > 0. The case n = 1 is the previous point.
Assume SNn is open in order to prove that SNn+1 is open. Let X ∈ SNn+1: we have to prove that there
is some open set X ∈O⊆ SNn+1. r(X)\X is finite, therefore there are finitely many homogeneous
states s1, . . . ,sk ⊆ r(X) \X . These states define exactly all reductions from X : X�si,r

1 Xi, for i =
1, . . . ,k. From X ∈ SNn+1 we deduce Xi ∈ SNn for all i = 1, . . . ,k. Let Oi = R−1

si
(SNn): Oi is

open by point 3 above, and X ∈ Oi because Rsi(X) ∈ SNn by the assumption X ∈ SNn+1. Let
O′ = r−1({r(X)}), O′′ = {Y ∈ S|(r(X)∩Y = r(X)∩X)∧ (r(X) \Y = r(X) \X)}. By definition
we have X ∈ O′, X ∈ O′′. O′ is open because r is continuous, and O′′ is open by point 2. Let
O = O′ ∩O′′ ∩O1 ∩ . . .∩On: then X ∈ O and O is open. For all Y ∈ O we have r(Y) = r(X),
and r(Y)\Y = r(X)\Y = r(X)\X . Therefore the reductions from Y are exactly in number of k:
Y�si,r

1 Yi for all i = 1, . . . ,k. We have Yi ∈ SNn by O⊆Oi = R−1
si
(SNn). We conclude that Y ∈ SNn+1,

as wished.

6. SN is the union of all SNn, therefore is a union of open sets and it is open.

4 Reduction sequences of transfinite length

The next step is to prove that if there are states in S \ SN, then there are reduction sequences of any
transfinite length. From this fact we will derive a contradiction.

We denote the class of ordinals with ON, and ordinals with Greek letters α,β ,γ,λ ,µ, We recall
that a limit ordinal is any ordinal λ such that for all α < λ we have α + 1 < λ . ω , the first infinite
ordinal, and ω1, the first uncountable ordinal, are limit. ω1 has the additional property that any l.u.b. of
some countable set I of ordinals all < ω1 is some ξ < ω1.

A sequence of length α on S is any map σ : [0,α[→ S. We represent sequences of length α with
indexed sets σ = {Xβ |β < α}. When α = some limit ordinal λ , the limit of a sequence {Xβ |β < λ}
is defined as limβ→λ Xβ = ∪β<λ ∩β≤γ<λ Xγ . To put otherwise, limβ→λ Xβ consists of all answers which
belong to the states of {Xβ |β < λ} from some β on. A limit sequence of length α is any sequence
{Xβ |β < α} of length α such that for all limit ordinal λ < α we have Xλ = limβ→λ Xβ . A limit reduction
sequence of length α is any limit sequence of length α such that for all β +1 < α we have Xβ�r

1Xβ+1.
We will prove that if S \ SN 6= /0, then there is some limit reduction sequence of length ω1 over S \ SN.
Then we will prove that limit reduction sequence of length ω1 over S (and with more reason, over S\SN)
cannot exists. The conclusion will be that S\SN= /0, as wished.

If X ∈ S\SN, then there is some infinite reduction sequence

X = X0�r
1X1�r

1 . . .�r
1Xn . . .

S. Berardi & U. de’ Liguoro 7

from X . Thus, there is some X1 such that X�r
1X1 and there is some infinite reduction sequence from X1,

hence X�r
1X1 for some X1 ∈ S\SN. By choice axiom, there is some choice map

next : (S\SN)→ (S\SN)

such that X�r
1next(X) for all X ∈ S. next is the empty map if SN= S. From now on, we assume to be

fixed a choice map next as above.
Using next, from any X ∈ S\SN we may easily define an infinite reduction sequence nextn(X) all

in S\SN. We will prove that we may extend it to a limit reduction sequence on S\SN of length ω1. This
is because closed sets in the State Topology are closed by limit, and S\SN is a closed set.

In this part of the proof we need the notion of “definitively true”.

Definition 4.1 (Definitively true) Assume λ ∈ ON is limit and σ = {Xβ |β < λ} is any sequence of length
λ .

1. σ satisfies Xγ ⊆ Xγ+1 definitively if ∃β < α.∀γ ∈ [β ,λ [.Xγ ⊆ Xγ+1.

2. σ is definitively weakly increasing if ∃β < α.∀γ,δ ∈ [β ,λ [.(γ ≤ δ) =⇒ Xγ ⊆ Xδ .

3. σ is definitively constant if ∃β < α.∀γ ∈ [β ,λ [.Xβ = Xγ .

The next step is to prove some easy properties of limit reduction sequences.

Lemma 4.2 (Limit Reduction sequences) Assume λ ∈ ON is a limit ordinal and σ = {Xα |α < λ} is
any limit sequence on S of length λ . Let L = limγ→ω1 Xγ .

1. If for some α < λ and all α ≤ β < λ we have Xα ⊆ Xβ , then Xα ⊆ L.

2. If for some α < λ and all α ≤ β < λ we have Xβ ⊆ Xβ+1, then σ is weakly increasing from the
same α .

3. If σ is definitively increasing and λ = ω1, then σ is definitively stationary.

4. For any n ∈ N, σ �<n= {Xα �<n |α < λ} is a limit sequence.

Proof

1. Assume Xα ⊆ Xγ for all α ≤ γ < λ . Then Xα ⊆
⋂

α≤γ<λ Xγ ⊆ limXγ→λ Xγ = L.

2. Assume α ≤ α ′ < λ . We prove Xα ′ ⊆ Xβ by induction on α ′ ≤ β < λ . Assume β = α ′. Then
Xα ′ ⊆Xα ′ . Assume β = γ+1> γ ≥α ′≥α . Then Xα ′ ⊆Xγ by induction hypothesis and Xγ ⊆Xγ+1
by hypothesis, hence Xα ′ ⊆ Xβ . Assume β is limit: then Xα ′ ⊆ Xγ for all α ′ ≤ γ < β by induction
hypothesis, therefore Xα ′ ⊆ Xβ by point 1 applied to the sequence {Xγ |γ < β}.

3. Assume that σ is definitively increasing from some α and λ = ω1, in order to prove that σ is
definitively stationary. For all a ∈ L we have a ∈ Xγ definitively, therefore there is a first ξa < ω1
such that a ∈ Xξa ⊆ Xγ for all γ ≥ ξa. Let ξ be l.u.b. of {ξa|a ∈ L}∪{α}. L is at most countable
because L ⊆ A, which is at most countable, and α and all ξa are < ω1, therefore ξ < ω1. We
proved that there is some α ≤ ξ < ω1 such that for all α ≤ ξ ≤ γ < ω1 we have L ⊆ Xγ . From
point 1 and Xγ ⊆ Xδ for all γ ≤ δ < ω1 we have Xγ ⊆ L. We conclude L = Xγ for all ξ ≤ γ < ω1.

4. Assume µ < λ is limit. Then Xµ =
⋃

α<µ
⋂

α≤β<µ Xβ , hence Xµ �<n=
⋃

α<µ
⋂

α≤β<µ Xβ �<n.
Thus, σ �<n is a limit sequence.

8 Non-monotonic Pre-fixed Points and Learning

We explain now how to define a length ω1 limit reduction sequence in S\SN. The crucial remark is
the following: for any answer in any element of a limit reduction sequence, either the answer belongs
to the limit of the sequence together with all answers of level less or equal, or in some future step the is
erased together with all answers of the same level (see the first point of the next Lemma).

Lemma 4.3 Assume λ ∈ ON is a limit ordinal and σ = {Xβ |β < λ} is any limit reduction sequence of
length λ . Let L = limβ→λ Xβ ∈ S, and n ∈ N

1. For all α < λ and all n ∈N, either Xα �<n+1⊆ L, or there is some α < γ < λ such that Xγ �=m= /0

2. L is topologically adherent to {Xβ |β < λ} (that is, any open set including L intersects {Xβ |β < λ}.
3. If C ⊆ S is closed and {Xβ |β < λ} ⊆C then L ∈C

4. S\SN is closed

5. If S\SN 6= /0, then there is some length ω1 limit reduction sequence in S\SN.

Proof
1. Consider the sequence τ = {Xβ �<n+1 |β < λ}: this is a limit sequence by Lemma 4.2.3. If

Xβ �<n+1⊆ Xβ+1 �<n+1 for all α ≤ β < λ , then τ is weakly increasing from α by Lemma 4.2.1.
In this case Xα �<n+1⊆ Xγ �<n+1⊆ Xγ for all α ≤ γ < λ , therefore Xα �<n+1⊆ L by definition of L.
Assume instead that Xβ �<n+1 6⊆ Xβ+1 �<n+1 for some α ≤ β < λ . Then by Lemma 3.1.4 we have
Xβ+1 �=n= /0.

2. Fix α < λ , and assume O is any sub-basic open and L ∈O, in order to prove that Xβ ∈O for some
α ≤ β < λ . For some a ∈A, either O = Aa = {X ∈ S|a ∈ X}, or O = Ba = {X ∈ S|X ∩ [a]∼ = /0}.
We reason by cases.

(a) If O = Aa we have a ∈ L. By definition of L, for some α < λ and all α ≤ β < λ we have
a ∈ Xβ . In particular, a ∈ Xα , hence Xα ∈ O.

(b) If O = Ba we have L∩ [a]∼ = /0. Assume n = lev(a): by point 1 above there is some α ≤
β < λ such that either Xβ �<n+1⊆ L or Xβ �=n= /0. In both cases we have Xβ �=n⊆ L �=n,
either because Xβ �=n= (Xβ �<n+1) �=n⊆ L �=n, or because Xβ �=n= /0 ⊆ L �=n. We deduce
Xβ ∩ [a]∼ = (Xβ �=n)∩ [a]∼ ⊆ (L �=n)∩ [a]∼ ⊆ L∩ [a]∼ = /0. Thus, Xβ ∈ Ba.

3. Assume C ⊆ S is closed and {Xβ |β < λ} ⊆C in order to prove that L ∈C. Assume for contradic-
tion that L 6∈C. Then L ∈ S\C, which is open. By the previous point we have Xα ∈ S\C for some
α < λ , contradicting Xα ∈C.

4. S\SN is closed because SN is open.

5. From any X ∈ S \ SN we may define a limit reduction sequence of length ω1 (and in fact of any
length). We set X0 = X , Xα+1 = next(Xα) for all α <ω1 and Xλ = limβ→λ Xβ for all limit λ <ω1.
We check that the definition is correct. By assumption X0 = X ∈ S \ SN. Assume α < ω1 and
Xα ∈ S\SN, then Xα+1 = next(Xα) ∈ S\SN. Assume λ < ω1 is limit and {Xβ |β < λ} ⊆ S\SN.
Since S\SN is closed by point 3, then by point 2 above we have Xλ = limβ→λ Xβ ∈ S\SN.

5 A termination result from an algorithm searching fixed points

In the previous section we proved that if S \ SN 6= /0, then there is a limit reduction sequence of length
ω . In this section we will prove that no limit reduction sequence of length ω1 may exists, and we will
conclude that S \ SN = /0, as wished. We first prove that limit reduction sequences of length ω1 are
definitively stationary.

S. Berardi & U. de’ Liguoro 9

Lemma 5.1 (Stationarity) Assume σ = {Xα |α < ω1} is any sequence on S. Let n ∈ N.

1. For any limit reduction sequence {Xβ |β < ω1} of length ω1 on S, the sequence {Xβ �<n |β < ω1}
is definitively stationary.

2. Any limit reduction sequence {Xβ |β < ω1} of length ω1 on S is definitively stationary.

Proof

1. We argue by induction on n ∈ N. Assume n = 0: then Xβ �<n= /0 is definitively stationary.
Assume Xβ �<n is definitively stationary, in order to prove Xβ �<n+1 is definitively stationary.
If Xβ �<n= Xβ+1 �<n then Xβ �<n+1⊆ Xβ+1 �<n by Lemma 3.1.6, hence we definitively have
Xβ �<n+1⊆ Xβ+1 �<n. By Lemma 4.2.4 Xβ �<n+1 is a limit sequence, and by Lemma 4.2.2 it
is weakly increasing. It has length ω1, therefore by Lemma 4.2.3 it is definitively stationary.

2. By the previous point, for all n ∈ N there is a first αn < ω1 such that Xβ �<n is stationary from αn.
Let α < ω1 by the l.u.b. of {αn|n ∈ N}: then for all n ∈ N, Xβ �<n is stationary from α . Thus, Xβ
is stationary from α .

The strong termination result for the reduction relation�r
1 easily follows.

Theorem 5.2 (Pre-fixed point Theorem) For all states X ∈ S, for all realizers r : S → Pfin(A), all
reduction sequences X�r

1X1�r
1�r

1Xn�r
1 . . . from X are finite.

Proof Assume there is some X ∈ S \ SN. By Lemma 5.1.5 there is some limit reduction sequence
{Xβ |β < ω1} ⊆ (S\SN) from X of length ω1. By Lemma 5.1.2, {Xβ |β < ω1} is definitively stationary,
therefore for some α < ω1 we have Xα+1 = Xα , hence Xα�r

1Xα+1 = Xα , against Lemma 3.1.2.

6 Related works and conclusions

In this section we stress the most relevant differences of the present work w.r.t. the ones by the authors
themselves and by others. The essential difference w.r.t. [2] and [4] is non-monotonicity. In[1] also the
case of non-monotonic learning is considered, though only deterministic learning processes are treated.
In [6], which is the full version of [5], we propose a deterministic algorithm to compute a (finite) sound
pre-fixed point of any effective realizer; however we have been able to treat the case in which the max-
imum level of answers is 2, while here we have a termination proof of a non-deterministic algorithm
working on states with answers of arbitrary level < ω .

We stress that non-determinism is no minor trick. First, if the output r(X) of a realizer may include
more than one answer, then our convergence result also holds for any r′ : S →Pfin(A), even if not
continuous, provided there is some continuous r : S→Pfin(A) such that r′(X)⊆ r(X) for all X ∈ S. This
simple remark shows that the result for the non-deterministic case is much stronger than the result for
the deterministic one.

In [8] Mints considered the ω-level version of the problem. In our terminology, he introduced a non-
deterministic reduction relation adding one answer at the time, and proved a weak normalization result:
there is a reduction sequence from the empty state to some sound irreducible state. However, in [8] there
is no normalizing reduction strategy, and we suspect that the strong normalization result would fail in
that setting.

In conclusion we have presented a new result that we consider as a step toward a realistic use of
non constructive proofs as algorithms. Improvements are certainly possible, such as for example a more

10 Non-monotonic Pre-fixed Points and Learning

sophisticated way of representing logical dependencies than level. The aim is to find an algorithm re-
moving the minimum amount of answers from a state when adding new ones, hence resulting into a
faster computation.

References
[1] F. Aschieri. Learning, Realizability and Games in Classical Arithmetic, Ph. d. thesis, Univer-

sity of Turin and Queen Mary University of London, 2010. http://www.di.unito.it/~stefano/

Aschieri-PhDThesis.pdf

[2] F. Aschieri, S. Berardi, Interactive Learning-Based Realizability Interpretation for Heyting Arithmetic
with EM1, Proceedings of TLCA 2009, Springer Lecture Notes in Computer Science, vol. 5608, 2009.
doi:10.1007/978-3-642-02273-9 4

[3] S. Berardi, U. de’Liguoro, Toward the interpretation of non-constructive reasoning as non-monotonic learn-
ing, Information and Computation, vol. 207, 1, pag. 63-81, (2009). doi:10.1016/j.ic.2008.10.003

[4] S. Berardi, U. de’Liguoro, Interactive realizers. A new approach to program extraction from non constructive
proofs, ACM Transactions on Computational Logic, vol. 13 n. 2, 2012. doi:10.1145/2159531.2159533

[5] S. Berardi, U. de’Liguoro, Knowledge Spaces and Interactive Realizers. Proc. of CSL 2012, LIPICs vol. 16,
pag. 77-91, 2012. doi:10.4230/LIPIcs.CSL.2012.77

[6] S. Berardi, U. de’Liguoro, Knowledge Spaces and the Completeness of Learning Strategies. Submitted
for publication, 2013. Draft version vailable from http://www.di.unito.it/~deligu/papers/BdL_

Knowledge.pdf

[7] T. Coquand. A semantics of evidence for classical arithmetic. J. Symb. Log., 60:325–337,
1995.doi:10.2307/2275524.

[8] G. Mints. Non-Deterministic Epsilon Substitution Method for PA and ID1, Logic, Construction, Computation,
Ontos-Verlag Series in Mathematical Logic, Berger et al. editors, 2012.

D. Baelde and A. Carayol (Eds.): Fixed Points
in Computer Science 2013 (FICS 2013)
EPTCS 126, 2013, pp. 11–27, doi:10.4204/EPTCS.126.2

c© C. Cı̂rstea
This work is licensed under the
Creative Commons Attribution License.

From Branching to Linear Time, Coalgebraically

Corina Cı̂rstea
University of Southampton

cc2@ecs.soton.ac.uk

We consider state-based systems modelled as coalgebras whose type incorporates branching, and
show that by suitably adapting the definition of coalgebraicbisimulation, one obtains a general and
uniform account of the linear-time behaviour of a state in such a coalgebra. By moving away from
a boolean universe of truth values, our approach can measurethe extent to which a state in a system
with branching is able to exhibit a particular linear-time behaviour. This instantiates to measuring
the probability of a specific behaviour occurring in a probabilistic system, or measuring the minimal
cost of exhibiting a specific behaviour in the case of weighted computations.

1 Introduction

When analysing process behaviour, one of the early choices one has to make is between a linear and a
branching view of time. In branching-time semantics, the choices a process has for proceeding from a
particular state are taken into account when defining a notion of process equivalence (with bisimulation
being the typical such equivalence), whereas in linear-time semantics such choices are abstracted away
and the emphasis is on the individual executions that a process is able to exhibit. From a system verifi-
cation perspective, one often chooses the linear-time view, as this not only leads to simpler specification
logics and associated verification techniques, but also meets the practical need to verify all possible
system executions.

While the theory of coalgebras has, from the outset, been able to provide a uniform account of var-
ious bisimulation-like observational equivalences (and later, of various simulation-like behavioural pre-
orders), it has so far not been equally successful in giving ageneric account of the linear-time behaviour
of a state in a system whose type incorporates a notion of branching. For example, the generic trace
theory of [9] only applies to systems modelled as coalgebrasof typeT◦F , with the monadT : Set→ Set
specifying a branching type (e.g. non-deterministic or probabilistic), and the endofunctorF : Set→ Set
defining the structure of individual transitions (e.g. labelled transitions or successful termination). The
approach in loc. cit. is complemented by that of [12], where traces are derived using a determinisation
procedure similar to the one for non-deterministic automata. The latter approach applies to systems
modelled as coalgebras of typeG◦T, where again a monadT : Set → Set is used to model branching
behaviour, and an endofunctorG specifies the transition structure. Neither of these approaches is able
to account for potentially infinite traces, as typically employed in model-based formal verification. This
limitation is partly addressed in [1], but again, this only applies to coalgebras of typeT ◦F, albeit with
more flexibility in the underlying category (which in particular allows a measure-theoretic account of
infinite traces in probabilistic systems). Finally, none ofthe above-mentioned approaches exploits the
compositionality that is intrinsic to the coalgebraic approach. In particular, coalgebras of typeG◦T◦F
(of which systems with both inputs and outputs are an example, see Example 5.7) can not be accounted
for by any of the existing approaches. This paper presents anattempt to address the above limitations
concerning the types of coalgebras and the nature of traces that can be accounted for, by providing auni-
formandcompositionaltreatment of (possibly infinite) linear-time behaviour in systems with branching.

12 From Branching to Linear Time, Coalgebraically

In our view, one of the reasons for only a partial success in developing a fully general coalgebraic
theory of traces is the long-term aspiration within the coalgebra community to obtain a uniform charac-
terisation of trace equivalence via a finality argument, in much the same way as is done for bisimulation
(in the presence of a final coalgebra). This encountered difficulties, as a suitable category for carrying
out such an argument proved difficult to find in the general case. In this paper, we tackle the problem of
getting a handle on the linear-time behaviour of a state in a coalgebra with branching from a different
angle: we do not attempt to directly define a notion of trace equivalence between two states (e.g. via
finality in some category), but focus ontestingwhether a state is able to exhibit a particular trace, and
on measuring the extent of this ability. This ”measuring” relates to the type of branching present in the
system, and instantiates to familiar concepts such as the probability of exhibiting a given trace in prob-
abilistic systems, the minimal cost of exhibiting a given trace in weighted computations, and simply the
ability to exhibit a trace in non-deterministic systems.

The technical tool for achieving this goal is a generalisation of the notions of relation and relation
lifting [10], which lie at the heart of the definition of coalgebraic bisimulation. Specifically, we employ
relations valued in a partial semiring, and a correspondinggeneralised version of relation lifting. Our
approach applies to coalgebras whose type is obtained as thecomposition of several endofunctors onSet:
one of these is a monadT that accounts for the presence of branching in the system, while the remaining
endofunctors, assumed here to be polynomial, jointly determine the notion of linear-time behaviour. This
strictly subsumes the types of systems considered in earlier work on coalgebraic traces [9, 1, 12], while
also providing compositionality in the system type.

Our main contribution, presented in Section 5, is auniformandcompositionalaccount of linear-time
behaviour in state-based systems with branching. A by-product of our work is an extension of the study
of additive monads carried out in [14, 3] to what we callpartially additive monads(Section 3). Our
approach can be summarised as follows:

• We move from two-valued to multi-valued relations, with theuniverse of truth values being in-
duced by the choice of monad for modelling branching. This instantiates to relations valued in the
interval [0,1] in the case of probabilistic branching, the setN∞ = N∪{∞} in the case of weighted
computations, and simply{⊥,⊤} in the case of non-deterministic branching. This reflects our
view that the notion of truth used to reason about the observable behaviour of a system should be
dependent on the branching behaviour present in that system. Such a dependency is also expected
to result in temporal logics that are more natural and more expressive, and at the same time have
a conceptually simpler semantics. In deriving a suitable structure on the universe of truth values,
we generalise results on additive monads [14, 3] topartially additive monads. This allows us to
incorporate probabilistic branching under our approach. We show that for a commutative, partially
additive monadT onSet, the setT1 carries a partial semiring structure with an induced preorder,
which in turn makesT1 an appropriate choice of universe of truth values.

• We generalise and adapt the notion of relation lifting used in the definition of coalgebraic bisimu-
lation, in order to (i) support multi-valued relations, and(ii) abstract away branching. Specifically,
we make use of the partial semiring structure carried by the universe of truth values to generalise
relation lifting of polynomial endofunctors to multi-valued relations, and employ a canonicalex-
tension liftinginduced by the monadT to capture a move from branching to linear time. The use
of this extension lifting allows us to make formal the idea oftesting whether, and to what extent,
a state in a coalgebra with branching can exhibit a particular linear-timebehaviour. Our approach
resembles the idea employed by partition refinement algorithms for computing bisimulation on
labelled transition systems with finite state spaces [13]. There, one starts from a single partition

C. Cı̂rstea 13

of the state space, with all states related to each other, andrepeatedly refines it through stepwise
unfolding of the transition structure, until a fixpoint is reached. Similarly, we start by assuming
that a state in a system with branching can exhibit any linear-time behaviour, and moreover, assign
the maximum possible value to each pair consisting of a stateand a linear-time behaviour. We then
repeatedly refine the values associated to such pairs, through stepwise unfolding of the coalgebraic
structure.

The present work is closely related to our earlier work on maximal traces and path-based logics
[1], which described a game-theoretic approach to testing if a system with non-deterministic branching
is able to exhibit a particular trace. Here we consider arbitrary branching types, and while we do not
emphasise the game-theoretic aspect, our use of greatest fixpoints has a very similar thrust.

Acknowledgements Several fruitful discussions with participants at the 2012Dagstuhl Seminar on
Coalgebraic Logics helped refine the ideas presented here. Our use of relation lifting was inspired by
the recent work on coinductive predicates [8], itself basedon the seminal work in [10] on the use of
predicate and relation lifting in the formalisation of induction and coinduction principles. Last but not
least, the comments received from the anonymous reviewers contributed to improving the presentation
of this work and to identifying new directions for future work.

2 Preliminaries

2.1 Relation Lifting

The concepts ofpredicate liftingand relation lifting, to our knowledge first introduced in [10], are by
now standard tools in the study of coalgebraic models, used e.g. to provide an alternative definition of the
notion of bisimulation (see e.g. in [11]), or to describe thesemantics of coalgebraic modal logics [17, 16].
While these concepts are very general, their use so far usually restricts this generality by viewing both
predicates and relations as sub-objects in some category (possibly carrying additional structure). In this
paper, we make use of the full generality of these concepts, and move from the standard view of relations
as subsets to a setting where relations are valuations into auniverse of truth values. This section recalls
the definition of relation lifting in the standard setting where relations are given by monomorphic spans.

Throughout this section (only),Rel denotes the category whose objects are binary relations(R,〈r1, r2〉)
with 〈r1, r2〉 : R→ X×Y a monomorphic span, and whose arrows from(R,〈r1, r2〉) to (R′,〈r ′1, r ′2〉) are
given by pairs of functions(f : X → X′ , g : Y →Y′) s.t. (f ×g)◦ 〈r1, r2〉 factors through〈r ′1, r ′2〉:

R

��
�
�
�

//
〈r1,r2〉

// X×Y

f×g
��

R′ //
〈r ′1,r ′2〉 // X′×Y′

In this setting, therelation lifting of a functor F: Set→ Set is defined as a functorRel(F) : Rel→ Rel
taking a relation〈r1, r2〉 : R→ X×Y to the relation defined by the span〈F(r1),F(r2)〉 : F(R)→ F(X)×
F(Y), obtained via the unique epi-mono factorisation of〈F(r1),F(r2)〉:

R��

〈r1,r2〉
��

F(R)

〈F(r1),F(r2)〉
��

// // Rel(F)(R)
ww

wwooooooooooo

X×Y F(X)×F(Y)

14 From Branching to Linear Time, Coalgebraically

It follows easily that this construction is functorial, andin particular preserves the order≤ between
relations on the same objects given by(R,〈r1, r2〉) ≤ (S,〈s1,s2〉) if and only if 〈r1, r2〉 factors through
〈s1,s2〉:

R // //___
//

〈r1,r2〉
//

S //
〈s1,s2〉

// X×Y

An alternative definition ofRel(F) for F a polynomial functor(i.e. constructed from the identity and
constant functors usingfinite products and set-indexed coproducts) can be given by induction on the
structure ofF . We refer the reader to [11, Section 3.1] for details of this definition. An extension of this
definition to a more general notion of relation will be given in Section 4.

2.2 Coalgebras

We model state-based, dynamical systems as coalgebras overthe category of sets. Given a functor
F : C→ C on an arbitrary category, anF-coalgebrais given by a pair(C,γ) with C an object ofC, used
to model the state space, andγ :C→FC a morphism inC, describing the one-step evolution of the system
states. Then, a canonical notion of observational equivalence between the states of twoF-coalgebras is
provided by the notion of bisimulation. Of the many, and under the assumption thatF preserves weak
pullbacks, equivalent definitions of bisimulation (see [11] for a detailed account), we recall the one
based on relation lifting. This applies to coalgebras over the category of sets (as described below), but
also more generally to categories with logical factorisation systems (as described in [11]). According to
this definition, anF-bisimulationbetween coalgebras(C,γ) and(D,δ) overSet is aRel(F)-coalgebra:

R //_____
��

��

Rel(F)(R)
��

��

X×Y
γ×δ

// F(X)×F(Y)

In the remainder of this section we sketch a coalgebraic generalisation of a well-known partition refine-
ment algorithm for computingbisimilarity (i.e. the largest bisimulation) on finite-state labelled transition
systems [13]. For an arbitrary endofunctorF : Set → Set and two finite-stateF-coalgebras(C,γ) and
(D,δ), the generalised algorithm iteratively computes relations≃i ⊆ C×D with i = 0,1, . . . as follows:

• ∼0= C×D

• ∼i+1= (γ ×δ)∗(Rel(F)(≃i)) for i = 0,1, . . .

where(γ × δ)∗ takes a relationR⊆ FC×FD to the relation{(c,d) ∈C×D | (γ(c),δ (d)) ∈ R}. Thus,
in the initial approximation≃0 of the bisimilarity relation, all states are related, whereas at stepi + 1
two states are related if and only if their one-step observations are suitably related using the relation≃i.
Bisimilarity between the coalgebras(C,γ) and(D,δ) thus arises as the greatest fixpoint of a monotone
operator on the complete lattice of relations betweenC andD, which takes a relationR⊆C×D to the
relation(γ ×δ)∗(Rel(F)(R)). A similar characterisation of bisimilarity exists for coalgebras with infinite
state spaces, but in this case the fixpoint can not, in general, be reached in a finite number of steps.

The above greatest fixpoint characterisation of bisimilarity is generalised and adapted in Section 5,
in order to characterise the extent to which a state in a coalgebra with branching can exhibit a linear-
time behaviour. There, the two coalgebras in question have different types: the former has branching
behaviour and is used to model the system of interest, whereas the latter has linear behaviour only and
describes the domain of possible traces.

C. Cı̂rstea 15

2.3 Monads

In what follows, we use monads(T,η ,µ) onSet (whereη : Id⇒ T andµ : T◦T⇒ T are theunit and
multiplicationof T) to capture branching in coalgebraic types. Moreover, we assume that these monads
arestrongandcommutative, i.e. they come equipped with astrength mapstX,Y : X×TY → T(X×Y) as
well as adouble strength mapdstX,Y : TX×TY → T(X ×Y) for each choice of setsX,Y; these maps
are natural inX andY, and satisfy coherence conditions w.r.t. the unit and multiplication ofT. We also
make direct use of theswapped strength mapst′X,Y : TX×Y → T(X×Y), obtained from the strength via
the twist maptwX,Y : X×Y →Y×X:

TX×Y
twTX,Y

// Y×TX
stY,X

// T(Y×X)
TtwY,X

// T(X×Y)

Example2.1. As examples of monads, we consider:

1. thepowerset monadP : Set→ Set, modelling nondeterministic computations, with unit given by
singletons and multiplication given by unions. Its strength and double strength are given by

stX,Y(x,V) = {x}×V dstX,Y(U,V) =U ×V

for x∈ X, U ∈ PX andV ∈ PY,

2. thesemiring monadTS : Set→ Set with (S,+,0,•,1) a semiring, given by

TS(X) = { f : X → S| sup(f) is finite}

with sup(f) = {x∈ X | f (x) 6= 0} thesupportof f . Its unit and multiplication are given by

ηX(x)(y) =

{
1 if y= x

0 otherwise
µX(f ∈ S(S

X)) = ∑
g∈sup(f)

∑
x∈sup(g)

f (g)•g(x)

while its strength and double strength are given by

stX,Y(x,g)(z,y) =

{
g(y) if z= x

0 otherwise
dstX,Y(f ,g)(z,y) = f (z)•g(y)

for x∈ X, f ∈ TS(X), g∈ TS(Y), z∈ X andy∈Y. As a concrete example, we will consider the
semiringW = (N∞,min,∞,+,0), and useTW to model weighted computations.

3. the sub-probability distribution monadS : Set → Set, modelling probabilistic computations,
with unit given by the Dirac distributions (i.e.ηX(x) = (x 7→ 1)), and multiplication given by
µX(Φ) = ∑

ϕ∈sup(Φ)
∑

x∈sup(ϕ)
Φ(ϕ) ∗ϕ(x), with ∗ denoting multiplication on[0,1]. Its strength and

double strength are given by

stX,Y(x,ψ)(z,y) =

{
ψ(y) if z= x

0 otherwise
dstX,Y(ϕ ,ψ)(z,y) = ϕ(z)∗ψ(y)

for x∈ X, ϕ ∈ S (X), ψ ∈ S (Y), z∈ X andy∈Y.

16 From Branching to Linear Time, Coalgebraically

3 From Partially Additive, Commutative Monads to Partial Commuta-
tive Semirings with Order

Later in this paper we will consider coalgebras whose type isgiven by the composition of several end-
ofunctors onSet, one of which is a commutative monadT : Set → Set accounting for the presence of
branching in the systems of interest. This section extends results in [14, 3] to show how to derive a
universe of truth values from such a monad. The assumption ofloc. cit. concerning theadditivity of
the monad under consideration is here weakened topartial additivity (see Definition 3.1); this allows
us to incorporate the sub-probability distribution monad (which is not additive) into our framework.
Specifically, we show that any commutative, partially additive monadT : Set → Set induces a partial
commutative semiring structure on the setT1, with 1= {∗} a final object inSet. We recall that acom-
mutative semiringconsists of a setScarrying two commutative monoid structures(+,0) and(•,1), with
the latter distributing over the former:s•0= 0 ands• (t +u) = s• t + s•u for all s, t,u ∈ S. A partial
commutative semiringis defined similarly, except that+ is a partial operation subject to the condition
that whenevert +u is defined, so iss• t +s•u, and moreovers• (t +u) = s• t +s•u. The relevance of
a partial commutative semiring structure on the set of truthvalues will become clear in Sections 4 and 5.

It follows from results in [3] that any commutative monad(T,η ,µ) on Set induces a commutative
monoid(T(1),•,η1(∗)), with multiplication• : T(1)×T(1)→ T(1) given by the composition

T(1)×T(1)
dst1,1

// T(1×1)
Tπ2 // T(1)

Alternatively, this multiplication can be defined as the composition

T(1)×T(1)
st′1,1

// T(1×T(1))
Tπ2 // T2(1)

µ1
// T(1)

or as

T(1)×T(1)
st1,1

// T(T(1)×1)
Tπ1 // T2(1)

µ1
// T(1)

(While the previous two definitions coincide for commutative monads, this is not the case in general.)

Remark3.1. The following maps define left and right actions of(T(1),•) onT(X):

T(1)×T(X)
dst1,X

// T(1×X)
Tπ2 // T(X) T(X)×T(1)

dstX,1
// T(X×1)

Tπ1 // T(X)

On the other hand, any monadT : Set → Set with T /0 = 1 is such that, for anyX, TX has azero
element0∈ TX, obtained as(T!X)(∗). This yields azero map0 :Y → TX for anyX,Y, obtained as the
composition

Y
!Y // T /0

T!X // TX

with the maps !Y : Y → T /0 and !X : /0→ X arising by finality and initiality, respectively. Now consider
the following map:

T(X+Y)
〈µX◦Tp1,µY◦Tp2〉

// TX×TY (1)

wherep1 = [ηX,0] : X+Y → TX andp2 = [0,ηY] : X+Y → TY.

Definition 3.1. A monadT : Set→ Set is calledadditive1 (partially additive) if T /0= 1 and the map in
(1) is an isomorphism (respectively monomorphism).

1Additive monads were studied in [14, 3].

C. Cı̂rstea 17

The (partial) inverse of the map〈µX ◦Tp1,µY ◦Tp2〉 can be used to define a (partial) addition on
the setTX, given byT[1X ,1X]◦qX,X , whereqX,X : TX×TX → T(X+X) is the (partial) left inverse of
〈µX ◦Tp1,µY ◦Tp2〉:

TX T(X+X)
〈µX◦Tp1,µY◦Tp2〉

//T[1X ,1X]
oo TX×TX

qX,X
oo_ _ _ _ _ _ _ _

+

kk

That is,a+b is defined if and only if(a,b) ∈ Im(〈µX ◦Tp1,µY ◦Tp2〉) 2.
[3, Section 5.2] explores the connection between additive,commutative monads and commutative

semirings. The next result provides a generalisation to partially additive, commutative monads and
partial commutative semirings.

The proof of Proposition 3.2 is a slight adaptation of the corresponding proofs in [3, Section 5.2].

Proposition 3.2. LetT be a commutative, (partially) additive monad. Then:

1. (T1,•,η1(∗)) is a commutative monoid.

2. (TX,0,+) is a (partial) commutative monoid, for each set X.

3. (T1,0,+,•,η1(∗)) is a (partial) commutative semiring.

Proof (Sketch).The commutativity of the following diagram lies at the heartof the proof of item 3:

T1×T1

•

��

T(1+1)×T1
T[1X ,1X]×1T1

oo

aT(1+1)

��

δ×1T1 //
(T1×T1)×T1

q1,1×1T1

oo_ _ _ _ _

〈π1×π2,π2×π2〉
��

(T1×T1)× (T1×T1)

•×•
��

T1 T(1+1)
δ //

T[1X ,1X]
oo T1×T1

q1,1
oo_ _ _ _ _ _ _

whereaTX : TX×T1→ TX is the right action from Remark 3.1, andδ is the map〈µ1 ◦Tp1,µ1 ◦Tp2〉
used in the definition of+ on T1. The composition• ◦ (T[1X ,1X]× 1T1) ◦ (q1,1 × 1T1) captures the
computation of(a+b)•c, whereas the compositionT[1X ,1X]◦q1,1◦(•×•)◦〈π1×π2,π2×π2〉 captures
the computationa• c+ b• c, with a,b,c ∈ T1. The fact thatδ commutes with the strength map (by
(iv) of [3, Lemma 15]), together withaT(1+1) and• being essentially given by the double strength maps
dst1+1,1 anddst1,1, yields (•×•) ◦ 〈π1 × π2,π2× π2〉 ◦ (δ × 1T1) = δ ◦aT(1+1), that is, commutativity
(via the plain arrows) of the right side of the above diagram.This immediately results ina• c+ b• c
being defined whenevera+b is defined, and hence in the commutativity of the right side ofthe diagram
also via the dashed arrows. This, combined with the commutativity of the left side of the diagram (which
is simply naturality of the right actiona), gives(a+b)•c= a•c+b•c whenevera+b is defined.

Example3.2. For the monads in Example 2.1, one obtains the commutative semirings({⊥,⊤},∨,⊥,∧,⊤)
whenT=P, (N∞,min,∞,+,0) whenT=TW

3, and the partial commutative semiring([0,1],+,0,∗,1)
whenT= S (where in the latter casea+b is defined if and only ifa+b≤ 1).

2A similar, buttotal, addition operation is defined in [14, 3] for additive monads.
3This is sometimes called thetropical semiring.

18 From Branching to Linear Time, Coalgebraically

4 Generalised Relations and Relation Lifting

This section introduces generalised relations valued in a partial commutative semiring, and shows how to
lift polynomial endofunctors onSet to the category of generalised relations. We begin by fixing apartial
commutative semiring(S,+,0,•,1), and noting that the partial monoid(S,+,0) can be used to define a
preorder relation onSas follows:

x⊑ y if and only if there existsz∈ Ssuch thatx+z= y

for x,y ∈ S. It is then straightforward to show (using the definition of apartial commutative semiring)
that the preorder⊑ has 0∈ Sas bottom element, and is preserved by• in each argument. Proper (i.e. not
partial) semirings where the preorder⊑ is a partial order are callednaturally ordered[5]. We here extend
this terminology to partial semirings.

Example4.1. For the monads in Example 2.1, the preorders associated to the induced partial semirings
(see Example 3.2) are all partial orders:≤ on {⊥,⊤} for T= P, ≤ on [0,1] for T= S , and≥ onN∞

for T= TW.

We letRel denote the category4 with objects given by triples(X,Y,R), whereR : X ×Y → S is a
function defining amulti-valued relation(or S-relation), and with arrows from(X,Y,R) to (X′,Y′,R′)
given by pairs of functions(f ,g) as below, such thatR⊑ R′ ◦ (f ×g):

X×Y

⊑

f×g
//

R
��

X′×Y′

R′

��

S S

Here, the order⊑ on Shas been extended pointwise toS-relations with the same carrier.
We writeRelX,Y for the fibre over(X,Y), that is, the full subcategory ofRel whose objects areS-

relations overX ×Y and whose arrows are given by(1X,1Y). It is straightforward to check that the
functorq : Rel→ Set×Set taking(X,Y,R) to (X,Y) defines a fibration: the reindexing functor(f ,g)∗ :
RelX′,Y′ → RelX,Y takesR′ : X′×Y′ → S to R′ ◦ (f ×g) : X×Y → S.

We now proceed to generalising relation lifting toS-relations.

Definition 4.1. Let F : Set→ Set. A relation lifting of F is a functor5 Γ : Rel → Rel such that q◦Γ =
(F ×F)◦q:

Rel

q

��

Γ // Rel

q

��

Set×Set
F×F

// Set×Set

We immediately note a fundamental difference compared to standard relation lifting as defined in
Section 2.1. While in the case of standard relations each functor admits exactly one lifting, Definition 4.1
implies neither the existence nor the uniqueness of a lifting. We defer the study of a canonical lifting
(similar toRel(F) in the case of standard relations) to future work, and show how to define a relation
lifting of F in the case whenF is a polynomial functor. To this end, we make the additional assumption
that the unit 1 of the semiring multiplication is a top element (which we also write as⊤) for the preorder

4To keep notation simple, the dependency onS is left implicit.
5Given the definition of the fibrationq, such a functor is automatically a morphism of fibrations.

C. Cı̂rstea 19

⊑. Recall that⊑ also has a bottom element (which we will sometimes denote by⊥), given by the unit
0 of the (partial) semiring addition. The definition of the relation lifting of a polynomial functorF is by
structural induction onF and makes use of the semiring structure onS:

• If F = Id, Rel(F) takes anS-relation to itself.

• If F =C, Rel(F) takes anS-relation to the equality relationEq(C) : C×C→ Sgiven by

EqC(c,c
′) =

{
⊤ if c= c′

⊥ otherwise

• If F = F1×F2, Rel(F) takes anS-relationR : X×Y → S to:

(F1X×F2X)× (F1Y×F2Y)
〈π1×π1,π2×π2〉

// (F1X×F1Y)× (F2X×F2Y)
Rel(F1)(R)×Rel(F2)(R)

// S×S
• // S

The functoriality of this definition follows from the preservation of⊑ by • (see Section 3).

• if F = F1+F2, Rel(F)(R) : (F1X+F2X)× (F1Y+F2Y)→ S is defined by case analysis:

Rel(F)(R)(ιi(u), ι j(v)) =

{
Rel(Fi)(R)(u,v) if i = j

⊥ otherwise

for i, j ∈ {1,2}, u∈ FiX andv∈ FjY. This definition generalises straightforwardly from binary to
set-indexed coproducts.

Remark4.2. A more general definition of relation lifting, which appliesto arbitrary functors onSet, is
outside the scope of this paper. We note in passing that such arelation lifting could be defined by starting
from ageneralised predicate liftingδ : F ◦P0 ⇒ P0◦F for the functorF, similar to the predicate liftings
used in the work on coalgebraic modal logic [17]. Here, the contravariant functorP0 : Set → Setop

takes a setX to the hom-setSet(X,S). Future work will also investigate the relevance of the results in
[6, 7] to a general definition of relation lifting in our setting. Specifically, the work in loc. cit. shows
how to construct truth-preserving predicate liftings and equality-preserving relation liftings for arbitrary
functors on the base category of aLawvere fibration, to the total category of that fibration.

For the remainder of this paper, we take(S,+,0,•,1) to be the partial semiring derived in Section 3
from a commutative, partially additive monadT, and we viewSas the set of truth values. In the case of
the powerset monad, this corresponds to the standard view ofrelations as subsets, whereas in the case of
the sub-probability distribution monad, this results in relations given by valuations in the interval[0,1].

Example4.3. Let F : Set→ Set be given byFX = 1+A×X, with A a set (of labels), and let(S,+,0,•,1)
be the partial semiring with carrierT1 defined in Section 3.

• ForT= P, Rel(F) takes a (standard) relationR⊆ X×Y to the relation

{(ι1(∗), ι1(∗)}∪{((a,x),(a,y)) | a∈ A,(x,y) ∈ R}

• ForT= S , Rel(F) takesR : X×Y → [0,1] to the relationR′ : FX×FY → [0,1] given by

R′(ι1(∗), ι1(∗)) = 1 R′((a,x),(a,y)) = R(x,y) R′(u,v) = 0 in all other cases

• ForT= TW, Rel(F) takesR : X×Y → N∞ to the relationR′ : FX×FY → N∞ given by

R′(ι1(∗), ι1(∗)) = 0 R′((a,x),(a,y)) = R(x,y) R′(u,v) = ∞ in all other cases

20 From Branching to Linear Time, Coalgebraically

5 From Bisimulation to Traces

Throughout this section we fix a commutative, partially additive monadT : Set → Set and assume,
as in the previous section, that the natural preorder⊑ induced by the partial commutative semiring
obtained in Section 3 has the multiplication unitη1(∗) ∈ T1 as top element. Furthermore, we assume
that this preorder is anωop-chain completepartial order, whereωop-chain completeness amounts to any
decreasing chainx1 ⊒ x2 ⊒ . . . having a greatest lower bound⊓i∈ωxi . These assumptions are clearly
satisfied by the orders in Example 4.1.

We now show how combining the liftings of polynomial functors to the category of generalised
relations valued in the partial semiringT1 (as defined in Section 4) with so-calledextension liftings
which arise canonically from the monadT, can be used to give an account of the linear-time behaviour
of a state in a coalgebra with branching. The type of such a coalgebra can be any composition involving
polynomial endofunctors and the branching monadT, although compositions of typeT ◦F , G◦T and
G◦T◦F with F andG polynomial endofunctors are particularly emphasised in what follows.

We begin with some informal motivation. WhenRel is the standard category of binary relations,
recall from Section 2.2 that anF-bisimulation is simply aRel(F)-coalgebra, and that the largestF-
bisimulation between twoF-coalgebras(C,γ) and(D,δ) can be obtained as the greatest fixpoint of the
monotone operator onRelC×D which takes a relationR to the relation(γ ×δ)∗(Rel(F)(R)). Generalising
the notion ofF-bisimulation from standard relations toT1-relations makes little sense when the systems
of interest areF-coalgebras. However, when considering say, coalgebras oftypeT ◦F, it turns out that
liftings of F to the category ofT1-relations (as defined in Section 4) can be used to describe the linear-
time behaviourof states in such a coalgebra, when combined with suitable liftings of T to the same
category of relations. To see why, let us consider labelled transition systems viewed as coalgebras of
type P(1+A× Id). In such a coalgebraγ : C → P(1+A×C), explicit termination is modelled via
transitionsc→ ι1(∗), whereas deadlock (absence of a transition) is modelled asγ(c) = /0. In this case,
Rel(P)◦Rel(1+A× Id) is naturally isomorphic toRel(P(1+A× Id)) 6, and takes a relationR⊆ X×Y
to the relationR′ ⊆ P(1+A×X)×P(1+A×Y) given by

(U,V)∈R′ if and only if

{
if ι1(∗) ∈U thenι1(∗) ∈V, and conversely

if (a,x) ∈U then there exists(a,y) ∈V with (x,y) ∈ R, and conversely

Thus, the largestP(1+A× Id)-bisimulation between two coalgebras(C,γ) and(D,δ) can be computed
as the greatest fixpoint of the operator onRelC,D obtained as the composition

R⊆C×D � Rel(F) // R1 ⊆ FC×FD � Rel(P)
// R2 ⊆ P(FC)×P(FD) � (γ×δ)∗

// R′ ⊆C×D (2)

whereF = 1+A× Id. Note first thatRel(P) (defined in Section 2.1 for an arbitrary endofunctor onSet)
takes a relationR⊆ X×Y to the relationR′ ⊆ P(X)×P(Y) given by

(U,V) ∈ R′ if and only if for all x∈U there existsy∈V with (x,y) ∈ R, and conversely

Now consider the effect of replacingRel(P) in (2) with the lifting L : Rel → Rel that takes a relation
R⊆ X×Y to the relationR′ ⊆ P(X)×Y given by

(U,y) ∈ R′ if and only if there existsx∈U with (x,y) ∈ R

6A similar observation holds more generally forP ◦F with F a polynomial endofunctor. In general, only a natural trans-
formationRel(F ◦G)⇒ Rel(F)◦Rel(G) exists, see [11, Exercise 4.4.6].

C. Cı̂rstea 21

To do so, we must change the type of the coalgebra(D,δ) from P ◦F to justF . A closer look at the
resulting operator onRelC,D reveals that it can be used to test for the existence of a matching trace: each
state of theF-coalgebra(D,δ) can be associated amaximal trace, i.e. an element of the finalF-coalgebra,
by finality. In particular, whenF = 1+A× Id, maximal traces are either finite or infinite sequences of
elements ofA. Thus, the greatest fixpoint of the newly defined operator onRelC×D corresponds to the
relation onC×D given by

c∋tr d if and only if there exists a sequence of choices of transitions starting fromc∈C that leads to

exactly the same maximal trace (element ofA∗∪Aω) as the single trace ofd ∈ D

This relation models the ability of the statec to exhibit the same trace as that ofd.
The remainder of this section formalises the above intuitions, and generalises them to arbitrary mon-

adsT and polynomial endofunctorsF, as well as to arbitrary compositions involving the monadT and
polynomial endofunctors. We begin by restricting attention to coalgebras of typeT◦F, with the monad
T capturing branching and the endofunctorF describing the structure of individual transitions. In this
case it is natural to view the elements of the finalF-coalgebra as possiblelinear-time observable be-
haviours of states inT◦F-coalgebras. Similarly to the above discussion, we let(C,γ) and(D,δ) denote
aT◦F-coalgebra and respectively anF-coalgebra. The lifting ofF to T1-relations will be used as part
of an operator onRelC,D. In order to generalise the liftingL above to arbitrary monadsT, we recall the
following result from [15], which assumes a strong monadT on a cartesian closed category.

Proposition 5.1([15, Proposition 4.1]). Let (B,β) be aT-algebra. For any f: X×Y → B, there exists
a unique1-linear f : TX×Y → B making the following triangle commute:

TX×Y
f

// B

X×Y

ηX×1Y

OO

f

;;wwwwwwwww

In the above, 1-linearity is linearity in the first variable. More precisely, forT-algebras(A,α) and
(B,β), a mapf : A×Y → B is called 1-linear if the following diagram commutes:

T(A)×Y
st′A,Y

//

α×1Y

��

T(A×Y)
T(f)

// T(B)

β
��

A×Y
f

// B

Clearly 1-linearity should be expected of the liftingL(R) : TX×Y → T1 of a relationR : X×Y → T1,
as this amounts toL(R) commuting with theT-algebra structures(TX,µX) and(T1,µ1). Given this, the
diagram of Proposition 5.1 forces the definition of the generalised lifting.

Definition 5.2. Theextension liftingLT : Rel→ Rel is the functor taking a relation R: X×Y → T1 to
its unique1-linear extensionR : TX×Y → T1.

Remark5.1. It follows from [15] that a direct definition of the relationR : TX ×Y → T1 is as the
composition

TX×Y
st′X,Y

// T(X×Y)
T(R)

// T21
µ1

// T1

This also yields functoriality ofLT, which follows from the functoriality of its restriction toeach fibre
categoryRelX,Y, as proved next.

22 From Branching to Linear Time, Coalgebraically

Proposition 5.3. The mapping R∈ RelX,Y 7→ R∈ RelTX,Y is functorial.

Proof (Sketch).Let R,R′ ∈RelX,Y be such thatR⊑R′. Hence, there existsS∈RelX,Y such thatR+S=R′

(pointwise). To show thatR⊑ R′, it suffices to show thatµ1◦T(R)⊑ µ1◦T(R′) (pointwise). To this end,
we note that commutativity of the mapδ with the monad multiplication, proved in [3, Lemma 15 (iii)]
and captured by the commutativity of the lower diagram below(via the plain arrows)

T21
µ1

// T1

T2(1+1)
µ1+1

//

Tδ
��

T2!

OO

T(1+1)

δ

��

T!

OO

T(T1×T1)

〈Tπ1,Tπ2〉
��

Tq1,1

OO�
�
�

T21×T21 µ1×µ1

// T1×T1

q1,1

OO�
�
�
�
�
�
�

also yields commutativity of the whole diagram (via the dashed arrows). This formalises the commuta-
tivity of + (defined asT! ◦q1,1) with the monad multiplication. Now pre-composing this commutative
diagram (dashed arrows) with the map

T(X×Y) // T(T1×T1)

given by the image underT of the map(x,y) 7→ 〈R(x,y),S(x,y)〉 yields

(µ1 ◦T(R))+ (µ1◦T(S)) = µ1◦T(R+S) = µ1◦TR′

and therefore, using the definition of⊑, µ1 ◦T(R)⊑ µ1◦T(R′). This concludes the proof.

Thus,LT is a functor making the following diagram commute:

Rel

q

��

LT // Rel

q

��

Set×Set
T×Id

// Set×Set

We are finally ready to give an alternative account of maximaltraces ofT◦F-coalgebras.

Definition 5.4. Let (C,γ) denote aT ◦F-coalgebra, and let(Z,ζ) denote the final F-coalgebra. The
maximal trace maptrγ : C→ (T1)Z of γ is the exponential transpose of the greatest fixpoint R: C×Z →
T1 of the operatorO : RelC,Z → RelC,Z given by the composition

RelC,Z
Rel(F)

// RelFC,FZ
LT // RelT(FC),FZ

(γ×ζ)∗
// RelC,Z

The above definition appeals to the existence of least fixpoints in chain-complete partial orders, as
formalised in the following fixpoint theorem from [4].

C. Cı̂rstea 23

Theorem 5.5([4, 8.22]). Let P be a complete partial order and letO : P→ P be order-preserving. Then
O has a least fixpoint.

Definition 5.4 makes use of this result applied to thedual of the order⊑. Our assumption that⊑
is ωop-chain complete makes the dual order a complete partial order. Monotonicity of the operator in
Definition 5.4 is an immediate consequence of the functoriality of Rel(F), LT and(γ ×δ)∗.

[4] also gives a construction for the least fixpoint of an order-preserving operator on a complete
partial order, which involves taking a limit over an ordinal-indexed chain. Instantiating this construction
to the dual of the order⊑ yields an ordinal-indexed sequence of relations(Rα), where:

• R0 =⊤ (i.e. the relation onC×D given by(c,d) 7→ 1),

• Rα+1 = O(Rα),

• Rα = ⊓β<αRβ , if α is a limit ordinal.

Remark5.2. While in the caseT = P, restricting to finite-state coalgebras(C,γ) and(D,δ) results in
the above sequence of relations stabilising in a finite number of steps, forT = S or T = TW this is
not in general the case. However, for probabilistic or weighted computations, an approximation of the
greatest fixpoint may be sufficient for verification purposes, since a threshold can be provided as part of
a verification task.

Remark5.3. By replacing theF-coalgebra(Z,ζ) by (I ,α−1) with (I ,α) aninitial F -algebra, one obtains
an alternative account offinite traces of states inT ◦F-coalgebras, with thefinite trace mapftrγ : C →
(T1)I of aT◦F-coalgebra(C,γ) being obtained via the greatest fixpoint of essentially the same operator
O, but this time onRelC,I . In fact, one can use anyF-coalgebra in place of(Z,ζ), and for a specific
verification task, a coalgebra with a finite state space, encoding a given linear-time behaviour, might be
all that is required.

Remark5.4. The choice of functorF directly impacts on the notion of linear-time behaviour. For exam-
ple, by regarding labelled transition systems as coalgebras of typeP(A× Id) instead ofP(1+A× Id)
(i.e. not modelling successful termination explicitly), finite traces are not anymore accounted for – the
elements of the finalF-coalgebra are given by infinite sequences of elements ofA. This should not be
regarded as a drawback, in fact it illustrates the flexibility of our approach.

Example5.5. Let F denote an arbitrary polynomial functor (e.g. 1+A× Id).

• For T = P, the extension liftingLP : Rel → Rel takes a (standard) relationR⊆ X ×Y to the
relationLP(R)⊆ P(X)×Y given by

(U,y) ∈ LP(R) if and only if there existsx∈U with (x,y) ∈ R

As a result, the greatest fixpoint ofO relates a statec in aP ◦F-coalgebra(C,γ) with a statezof
the finalF-coalgebra if and only if there exists a sequence of choices in the unfolding ofγ starting
from c, that results in anF-behaviour bisimilar toz. This was made more precise in [1], where
infinite two-player games were developed for verifying whether a state of aP ◦F-coalgebra has
a certain maximal trace (element of the finalF-coalgebra).

• For T = TS , the extension liftingLS : Rel → Rel takes a valuationR : X ×Y → [0,1] to the
valuationLS (R) : S (X)×Y → [0,1] given by

LS (R)(ϕ ,y) = ∑
x∈sup(ϕ)

ϕ(x)∗R(x,y)

24 From Branching to Linear Time, Coalgebraically

Thus, the greatest fixpoint ofO yields, for each state in aS ◦F-coalgebra and each potential maxi-
mal tracez, the probability of this trace being exhibited. As computing these probabilities amounts
to multiplying infinitely-many probability values, the probability of an infinite trace will often turn
out to be 0 (unless from some point in the unfolding of a particular state, probability values of 1
are associated to the individual transitions that match a particular infinite trace). This may appear
as a deficiency of our framework, and one could argue that a measure-theoretic approach, whereby
a probability measure is derived from the probabilities of finite prefixes of infinite traces, would be
more appropriate. Future work will investigate the need fora measure-theoretic approach. At this
point, we simply point out that in a future extension of the present approach to linear-time logics
(where individual maximal traces are to be replaced by linear-time temporal logic formulas), this
deficiency is expected to disappear.

• ForT= TW, the extension liftingLW : Rel→ Rel takes aweighted relation R: X×Y →W to the
relationLW(R) : TW(X)×Y →W given by

LW(R)(f ,y) = min
x∈sup(f)

(f (x)+R(x,y))

for f : X → W andy ∈Y. Thus, the greatest fixpoint ofO maps a pair(c,z), with c a state in a
TW ◦F-coalgebra andza maximal trace, to thecost(computed via the min function) of exhibiting
that trace. The case of weighted computations is somewhat different from our other two examples
of branching types, in that the computation of the fixpoint starts from a relation that maps each
pair of states(c,z) to the value 0∈ N∞ (the top element for⊑), and refines this down (w.r.t. the⊑
order) through stepwise unfolding of the coalgebra structuresγ andζ .

The approach presented above also applies to coalgebras of type G◦T with G a polynomial end-
ofunctor, and more generally to coalgebras whose type is obtained as the composition of polynomial
endofunctors and the monadT, with possibly several occurrences ofT in this composition. In the case of
G◦T-coalgebras, instantiating our approach yields differentresults to the extension semantics proposed
in [12]. Specifically, the instantiation involves taking(Z,ζ) to be a finalG-coalgebra and(C,γ) to be an
arbitraryG◦T-coalgebra, and considering the monotone operator onRelC,Z given by the composition

RelC,Z
LT // RelTC,Z

Rel(G)
// RelG(TC),GZ

(γ×ζ)∗
// RelC,Z (3)

The following example illustrates the difference between our approach and that of [12].

Example5.6. ForG= 2× IdA with A a finite alphabet andT=P, G◦T-coalgebras are non-deterministic
automata, whereas the elements of the finalG-coalgebra are given by functionsz: A∗ → 2 and correspond
to languages overA. In this case, the greatest fixpoint of the operator in (3) maps a pair(c,z), with c a
state of the automaton andz a language overA, to⊤ if and only if there exists a sequence of choices in
the unfolding of the automaton starting fromc that results in a deterministic automaton which accepts the
language denoted byz. Taking the union over allzsuch that(c,z) is mapped to⊤ now gives the language
accepted by the non-deterministic automaton withc as initial state, but only under the assumption that
for eacha∈ A, ana-labelled transition exists from any state of the automaton. This example points to
the need to further generalise our approach, so that in particular it can also be applied to pairs consisting
of a G◦T-coalgebra and aG′-coalgebra, withG′ different from G. This would involve considering
relation liftings for pairs of (polynomial) endofunctors.We conjecture that takingG andT as above
andG′ = 1+A× Id would allow us to recover the notion of acceptance of a finite word overA by a
non-deterministic automaton.

C. Cı̂rstea 25

Finally, we sketch the general case of coalgebras whose typeis obtained as the composition of several
endofunctors onSet, one of which is a monadT that accounts for the presence of branching in the
system, while the remaining endofunctors are polynomial and jointly determine the notion of linear-time
behaviour. For simplicity of presentation, we only consider coalgebras of typeG◦T ◦F, with the final
G◦F-coalgebra(Z,ζ) providing the domain of possible linear-time behaviours.

Definition 5.6. Thelinear-time behaviourof a state in a coalgebra(C,γ) of type G◦T◦F is the greatest
fixpoint of an operatorO onRelC,Z defined by the composition:

RelC,Z
Rel(F)

// RelFC,FZ
LT // RelT(FC),FZ

Rel(G)
// RelG(TFC),GFZ

(γ×ζ)∗
// RelC,Z (4)

The greatest fixpoint ofO measures the extent with which a state in aG◦T◦F-coalgebra can exhibit a
given linear behaviour (element of the finalG◦F-coalgebra). Definition 5.6 generalises straightforwardly
to coalgebraic types given by arbitrary compositions of polynomial endofunctors and the monadT, with
the extension liftingLT being used once for each occurrence ofT in such a composition.
Example5.7. Coalgebras of typeG◦T ◦F , whereG= (1+ Id)A andF = Id×B, model systems with
branching, with both inputs (from a finite setA) and outputs (in a setB). In this case, the possible linear
behaviours are given by special trees, with both finite and infinite branches, whose edges are labelled by
elements ofA (from each node, one outgoing edge for eacha∈ A), and whose nodes (with the exception
of the root) are either labelled by∗ ∈ 1 (for leaves) or by an element ofB (for non-leaves). The linear-time
behaviour of a state in aG◦T◦F-coalgebra is then given by:

• the set of trees that can be exhibited from that state, whenT= P ,

• the probability of exhibiting each tree (with the probabilities corresponding to different branches
beingmultipliedwhen computing this probability), whenT= S , and

• the minimum cost of exhibiting each tree (with the costs of different branches beingaddedwhen
computing this cost), whenT= TW.

The precise connection between our approach and earlier work in [9, 1, 12] is yet to be explored.
In particular, our assumptions are different from those of loc. cit., for example in [9] the DCPO⊥-
enrichedness of the Kleisli category ofT is required.
Remark5.8. Our approach does notdirectlyapply to the probability distribution monad (defined similarly
to the sub-probability distribution monad, but with probabilities adding up to exactly 1), as this monad
does not satisfy the conditionT /0= 1 of Definition 3.1. However, systems where branching is described
using probability distributions can still be dealt with, byregarding all probability distributions as sub-
probability distributions.

In the remainder of this section, we briefly explore the usefulness of an operator similar toO, which
employs a similar extension lifting arising from thedouble strengthof the monadT. We begin by noting
that a result similar to Proposition 5.1 is proved in [15] fora commutative monad on a cartesian closed
category.

Proposition 5.7 ([15, Proposition 9.3]). Let (B,β) be aT-algebra. Then any f: X ×Y → B extends
uniquely alongηX ×ηY to a bilinear f̃ : TX×TY → B, making the following triangle commute:

TX×TY
f̃

// B

X×Y

ηX×ηY

OO

f

::vvvvvvvvvv

26 From Branching to Linear Time, Coalgebraically

Here, bilinearity amounts to linearity in each argument.

Definition 5.8. For a commutative monadT : Set→ Set, thedouble extension liftingL′
T : Rel→ Rel is

the functor taking a relation R: X×Y → T1 to its unique bilinear extensioñR : TX×TY → T1.

Remark5.9. An alternative definition ofL′
T is as the composition ofLT with a dual lifting, which takes

a relationR : X×Y → T1 to its unique 2-linear extensionR : X×TY → T1.

Remark5.10. Again, it can be shown that a direct definition of the relationR̃ : TX×TY → T1 is as the
composition

TX×TY
dstX,Y

// T(X×Y)
T(R)

// T21
µ1

// T1

Proposition 5.9. The mapping R∈ RelX,Y 7→ R∈ RelX,TY is functorial.

We now fix twoT ◦F-coalgebras(C,γ) and(D,δ) and explore the greatest fixpoint of the operator
O ′ : RelC,D → RelC,D defined by the composition

RelC,D
Rel(F)

// RelFC,FD
L′
T // RelT(FC),T(FD)

(γ×ζ)∗
// RelC,D

As before, the operatorO ′ is monotone and therefore admits a greatest fixpoint. We argue that this
fixpoint also yields useful information regarding the linear-time behaviour of states inT◦F-coalgebras.
Moreover, this generalises to coalgebras whose types are arbitrary compositions of polynomial functors
and the branching monadT. This is expected to be of relevance when extending the linear-time view
presented here to linear-time logics and associated formalverification techniques. The connection to
formal verification constitutes work in progress, but the following examples motivate our claim that the
lifting L′

T is worth further exploration.

Example5.11. Let F : Set→ Set be a polynomial endofunctor, describing some linear-type behaviour.

1. For non-deterministic systems (i.e.P ◦F-coalgebras), the greatest fixpoint ofO ′ relates two states
if and only if they admit a common maximal trace.

2. For probabilistic systems (i.e.S ◦F-coalgebras), the greatest fixpoint ofO ′ measures the proba-
bility of two states exhibiting the same maximal trace.

3. For weighted systems (i.e.TW ◦F-coalgebras), the greatest fixpoint ofO ′ measures thejoint min-
imal cost of two states exhibiting the same maximal trace. Tosee this, note that the liftingL′

W :
Rel→ Rel takes a weighted relationR : X×Y →W to the relationL′

W(R) : TW(X)×TW(Y)→W
given by

L′
W(R)(f ,g) = min

x∈sup(f),y∈sup(g)
(f (x)+g(y)+R(x,y))

6 Conclusions and Future Work

We have provided a general and uniform account of the linear-time behaviour of a state in a coalgebra
whose type incorporates some notion of branching (capturedby a monad onSet). Our approach is
compositional, and so far applies to notions of linear behaviour specified bypolynomialendofunctors on
Set. The key ingredient of our approach is the notion of extension lifting, which allows the branching
behaviour of a state to be abstracted away in a coinductive fashion.

Immediate future work will attempt to exploit the results of[6, 7] in order to define generalised re-
lation liftings for arbitrary endofunctors onSet, and to extend our approach to other base categories.

C. Cı̂rstea 27

The work in loc. cit. could also provide an alternative description for the greatest fixpoint used in Defini-
tion 5.6.

The present work constitutes a stepping stone towards a coalgebraic approach to the formal verifi-
cation of linear-time properties. This will employ linear-time coalgebraic temporal logics for the speci-
fication of system properties, and automata-based techniques for the verification of these properties, as
outlined in [2] for the case of non-deterministic systems.

References

[1] Corina Cı̂rstea (2011):Maximal Traces and Path-Based Coalgebraic Temporal Logics. Theoretical Computer
Science412(38), pp. 5025–5042, doi:10.1016/j.tcs.2011.04.025.

[2] Corina Cı̂rstea (2011):Model Checking Linear Coalgebraic Temporal Logics: An Automata-Theoretic Ap-
proach. In: Proc. CALCO 2011, Lecture Notes in Computer Science6859, Springer, pp. 130–144, doi:10.

1007/978-3-642-22944-2_10.

[3] Dion Coumans & Bart Jacobs (2013):Scalars, Monads, and Categories. In C. Heunen, M. Sadrzadeh
& E. Grefenstette, editors:Quantum Physics and Linguistics. A Compositional, Diagrammatic Discourse,
Oxford Univ. Press, pp. 184–216, doi:10.1093/acprof:oso/9780199646296.001.0001.

[4] Brian A. Davey & Hilary A. Priestley (2002):Introduction to Lattices and Order (2. ed.). Cambridge Uni-
versity Press, doi:10.1017/CBO9780511809088.

[5] Zoltan Ésik & Werner Kuich (2007):Modern Automata Theory. http://dmg.tuwien.ac.at/kuich/.

[6] Clément Fumex, Neil Ghani & Patricia Johann (2011):Indexed Induction and Coinduction, Fibrationally.
In: Proc. CALCO 2011, Lecture Notes in Computer Science6859, Springer, pp. 176–191, doi:10.1007/

978-3-642-22944-2_13.

[7] Neil Ghani, Patricia Johann & Clément Fumex (2012):Generic Fibrational Induction. Logical Methods in
Computer Science8(2), doi:10.2168/LMCS-8(2:12)2012.

[8] Ichiro Hasuo, Kenta Cho, Toshiki Kataoka & Bart Jacobs (2013): Coinductive Predicates and Final Se-
quences in a Fibration. In: Proc. MFPS XXIX, pp. 181–216.

[9] Ichiro Hasuo, Bart Jacobs & Ana Sokolova (2007):Generic Trace Semantics via Coinduction. Logical
Methods in Computer Science3(4), pp. 1–36, doi:10.2168/LMCS-3(4:11)2007.

[10] Claudio Hermida & Bart Jacobs (1998):Structural Induction and Coinduction in a Fibrational Setting. Inf.
Comput.145(2), pp. 107–152, doi:10.1006/inco.1998.2725.

[11] Bart Jacobs (2012):Introduction to Coalgebra. Towards Mathematics of States and Observations (Version
2.0). Draft.

[12] Bart Jacobs, Alexandra Silva & Ana Sokolova (2012):Trace Semantics via Determinization. In:
Proc. CMCS 2012, Lecture Notes in Computer Science7399, Springer, pp. 109–129, doi:10.1007/

978-3-642-32784-1.

[13] Paris C. Kanellakis & Scott A. Smolka (1990):CCS Expressions, Finite State Processes, and Three Problems
of Equivalence. Inf. Comput.86(1), pp. 43–68, doi:10.1016/0890-5401(90)90025-D.

[14] Anders Kock (2011):Monads and extensive quantities. ArXiv:1103.6009.

[15] Anders Kock (2012):Commutative monads as a theory of distributions. Theory and Applications of Cate-
gories26(4), pp. 97–131.

[16] Lawrence S. Moss (1999):Coalgebraic Logic. Ann. Pure Appl. Logic96(1-3), pp. 277–317, doi:10.1016/
S0168-0072(98)00042-6.

[17] Dirk Pattinson (2003):Coalgebraic modal logic: soundness, completeness and decidability of local conse-
quence. Theor. Comput. Sci.309(1-3), pp. 177–193, doi:10.1016/S0304-3975(03)00201-9.

D. Baelde and A. Carayol (Eds.): Fixed Points
in Computer Science 2013 (FICS 2013)
EPTCS 126, 2013, pp. 28–43, doi:10.4204/EPTCS.126.3

c© J. Espı́rito Santo and R. Matthes and L. Pinto
This work is licensed under the
Creative Commons Attribution License.

A Coinductive Approach to Proof Search

José Espı́rito Santo
Centro de Matemática

Universidade do Minho

Portugal

Ralph Matthes
Institut de Recherche en Informatique de Toulouse (IRIT)

C.N.R.S. and University of Toulouse

France

Luı́s Pinto
Centro de Matemática

Universidade do Minho

Portugal

We propose to study proof search from a coinductive point of view. In this paper, we consider
intuitionistic logic and a focused system based on Herbelin’s LJT for the implicational fragment.
We introduce a variant of lambda calculus with potentially infinitely deep terms and a means of
expressing alternatives for the description of the “solution spaces” (called Böhm forests), which are
a representation of all (not necessarily well-founded but still locally well-formed) proofs of a given
formula (more generally: of a given sequent).

As main result we obtain, for each given formula, the reduction of a coinductive definition of the
solution space to a effective coinductive description in a finitary term calculus with a formal greatest
fixed-point operator. This reduction works in a quite directmanner for the case of Horn formulas.
For the general case, the naive extension would not even be true. We need to study “co-contraction”
of contexts (contraction bottom-up) for dealing with the varying contexts needed beyond the Horn
fragment, and we point out the appropriate finitary calculus, where fixed-point variables are typed
with sequents. Co-contraction enters the interpretation of the formal greatest fixed points - curiously
in the semantic interpretation of fixed-point variables andnot of the fixed-point operator.

1 Introduction

Proof theory starts with the observation that a proof is morethan just the truth value of a theorem. A
valid theorem can have many proofs, and several of them can beinteresting. In this paper, we somehow
extend this to the limit and study all proofs of a given proposition. Of course, who studies proofs can
also study any of them (or count them, if there are only finitely many possible proofs, or try to enumerate
them in the countable case). But we do this study somehow simultaneously: we introduce a language to
express the full “solution space” of proof search. And sincewe focus on the generative aspects of proof
search, it would seem awkward to filter out failed proof attempts from the outset. This does not mean
that we pursue impossible paths in the proof search (which would hardly make sense) but that we allow
to follow infinite paths. An infinite path does not correspondto a successful proof, but it is a structure of
locally correct proof steps. In other words, we use coinductive syntax to modelall locally correct proof
figures. This gives rise to a not necessarily wellfounded search tree. However, to keep the technical effort
simpler, we have chosen a logic where this tree is finitely branching, namely the implicational fragment
of intuitionistic propositional logic (with proof system given by the cut-free fragment of the systemλ by
Herbelin [3]).

Lambda terms or variants of them (expressions that may have bound variables) are a natural means
to express proofs (an observation that is calledthe Curry-Howard isomorphism) in implicational logic.
Proof alternatives (locally, there are only finitely many ofthem since our logic has no quantifier that
ranges over infinitely many individuals) can be formally represented by a finite sum of such solution
space expressions, and it is natural to consider those sums up to equivalence of thesetof the alternatives.
Since infinite lambda-terms are involved and since whole solution spaces are being modeled, we call
these coinductive termsBöhm forests.

J. Espı́rito Santo and R. Matthes and L. Pinto 29

By their coinductive nature, Böhm forests are no proper syntactic objects: they can be defined by all
mathematical (meta-theoretic) means and are thus not “concrete”, as would be expected from syntactic
elements. This freedom of definition will be demonstrated and exploited in the canonical definition
(Definition 6) of Böhm forests as solutions to the task of proving a sequent (a formulaA in a given
contextΓ). In a certain sense, nothing is gained by this representation: although one can calculate on
a case-by-case basis the Böhm forest for a formula of interest and see that it is described as fixed point
of a system of equations (involving auxiliary Böhm forestsas solutions for the other meta-variables that
appear in those equations), an arbitrary Böhm forest can only be observed to any finite depth, without
ever knowing whether it is the expansion of a regular cyclic graph structure (the latter being a finite
structure).

Our main result is that the Böhm forests that appear as solution spaces of sequents have such a finitary
nature: more precisely, they can be interpreted as semantics of a finite term in a variant of lambda
calculus with alternatives and formal greatest fixed-points. For the Horn fragment (where nesting of
implications to the left is disallowed), this works very smoothly without surprises (Theorem 15). The
full implicational case, however, needs some subtleties concerning the fixed-point variables over which
the greatest fixed points are formed and about capturing redundancy that comes from the introduction of
several hypotheses that suppose the same formula. The interpretation of the finite expressions in terms
of Böhm forests needs a special operation that we callco-contraction(contraction bottom-up). However,
this operation is already definable in terms of Böhm forests. Without this operation, certain repetitive
patterns in the solution spaces due to the presence of negative occurrences of implications could not be
identified. With it, we obtain the finitary representation (Theorem 24).

In the next section, we quickly recapitulate syntax and typing rules of the cut-free fragment of system
λ and also carefully describe its restriction to Horn formulas.

Section 3 has the definition of the not necessarily well-founded proofs, corresponding to a coinduc-
tive reading ofλ (including its typing system). This is systemλ

co
. Elimination alternatives are then

added to this system (yielding the Böhm forests), which directly allow the definition of the solution
spaces for the proof search for sequents. We give several examples and then show that the defined
solution spaces adequately represent all theλ co

proofs of a sequent.
In Section 4, we present first the finitary system to capture the Horn fragment and then modify it to

get the main result for full implicational logic.
The paper closes with discussions on related and future workin Section 5.

2 Background

We recall below the cut-free fragment of systemλ (a.k.a. LJT), a sequent calculus for intuitionistic
implication by Herbelin [3].

Lettersp,q, r are used to range over a base set of propositional variables (which we also callatoms).
LettersA,B,C are used to range over the set of formulas (= types) built frompropositional variables
using the implication connective (that we writeA⊃ B) that is parenthesized to the right. Often we will
use the fact that any implicational formula can be uniquely decomposed asA1 ⊃ A2 ⊃ . . .⊃ An ⊃ p with
n ≥ 0, also written in vectorial notation as~A ⊃ p. For example, if the vector~A is empty the notation
means simplyp, and if~A= A1,A2, the notation meansA1 ⊃ (A2 ⊃ p).

The cut-free expressions ofλ are separated into terms and lists, and are given by:

(terms) t,u ::= xl |λxA.t
(lists) l ::= 〈〉 |u :: l

30 A Coinductive Approach to Proof Search

Figure 1: Typing rules ofλ

Γ|〈〉 : p⊢ p
LAx

Γ ⊢ u : A Γ|l : B⊢ p

Γ|u :: l : A⊃ B⊢ p
LIntro

Γ,x : A⊢ t : B

Γ ⊢ λxA.t : A⊃ B
RIntro

Γ|l : A⊢ p (y : A) ∈ Γ
Γ ⊢ yl : p

App

where a countably infinite set of variables ranged over by lettersx, y, w, z is assumed. Note that in lambda-
abstractions we adopt adomain-full presentation, annotating the bound variable with a formula. The
term constructorxl is usually calledapplication. Usually in the meta-level we prefer to writex〈t1, . . . , tn〉
(with n ∈ N0) to range over application constructions, and avoid speaking about lists explicitly (where
obviously, the notation〈t1, . . . , tn〉 means〈〉 if n= 0 andt1 :: l , if 〈t2, . . . , tn〉 meansl). In the meta-level,
when we known= 0, instead ofx〈t1, . . . , tn〉, we simply write the variablex.

We will view contextsΓ as finite lists of declarationsx : A, where no variablex occurs twice. The
contextΓ,x : A is obtained fromΓ by adding the declarationx : A, and will only be written if this yields
again a valid context, i. e., ifx is not declared inΓ. The system has a form of sequent for each class of
expressions:

Γ ⊢ t : A Γ|l : A⊢ p.

Note the restriction toatomic sequents(the RHS formula is an atom) in the case of list sequents.
The rules ofλ for deriving sequents are in Figure 1. Note that, as list sequents are atomic, the

conclusion of the application rule is also atomic. This is not the case in Herbelin’s original system [3],
where list sequents can have a non-atomic formula on the RHS.In the variant of cut-freeλ we adopted,
the only rule available for deriving a term sequent whose RHSis an implication isRIntro. Still, our
atomic restriction will not cause loss of completeness of the system for intuitionistic implication. This
restriction is typically adopted in systems tailored for proof search, as for example systems of focused
proofs. In fact,λ corresponds to a focused backward chaining system where allatoms areasynchronous
(see e. g. Liang and Miller [7]).

We will need the following properties ofλ .

Lemma 1 (Type uniqueness) 1. GivenΓ and t, there is at most one A such thatΓ ⊢ t : A.

2. GivenΓ, l and A, there is at most one p such thatΓ|l : A⊢ p.

Proof Simultaneous induction on derivability. �

Since the empty list〈〉 has no type index, we need to knowA in the second statement of the previous
lemma.

Lemma 2 (Inversion of typing) In λ :

1. Γ ⊢ λxA.t : B iff there exists C s.t. B= A⊃C andΓ,x : A⊢ t : C;

2. Γ ⊢ x〈t1, . . . , tk〉 : A iff A= p and there exists~B s.t. x: ~B⊃ p∈ Γ andΓ ⊢ ti : Bi, for any i.

Proof 1. is immediate and 2. follows with the help of the fact that:Γ|〈t1, . . . , tk〉 : B ⊢ p iff there exist
B1, ...,Bk s.t. B= B1 ⊃ ...⊃ Bk ⊃ p and, for anyi, Γ ⊢ ti : Bi (proved by induction onk). �

J. Espı́rito Santo and R. Matthes and L. Pinto 31

Figure 2: Typing rules ofλHorn

Γ|〈〉 : p⊢ p
LAx

Γ ⊢ u : p Γ|l : H ⊢ q

Γ|u :: l : p⊃ H ⊢ q
LIntro

Γ|l : H ⊢ p (y : H) ∈ Γ
Γ ⊢ yl : p

App

Now we identify theHorn fragmentof cut-freeλ , that we denote byλHorn. The class ofHorn
formulas(also calledHorn clauses) is given by the grammar:

(Horn formulas) H ::= p| p⊃ H

where p ranges over the set of propositional variables. Note that for Horn formulas, in the vectorial
notation~H ⊃ p, the vector componentsHi are necessarily propositional variables, i. e., any Horn formula
is of the form~q⊃ p.

The Horn fragment is obtained by restricting sequents as follows:

1. contexts are restricted toHorn contexts, i. e., contexts where all formulas are Horn formulas;

2. term sequents are restricted to atomic sequents, i. e., term sequents are of the formΓ ⊢ t : p.

As a consequence, theλ -abstraction construction and the ruleRIntro, that types it, are no longer needed.
The restricted typing rules are presented in Figure 2.

3 Coinductive representation of proof search in lambda-bar

We want to represent the whole search space for cut-free proofs in λ . This is profitably done with
coinductive structures. Of course, we only consider locally correct proofs. Since proof search may fail
when infinite branches occur (depth-first search could be trapped there), we will consider such infinite
proofs as proofs in an extended sense and represent them as well, thus we will introduce expressions that
comprise all the possible well-founded and non-wellfounded proofs in cut-freeλ .

The raw syntax of these possibly non-wellfounded proofs is presented as follows

N ::=co λxA.N |x〈N1, . . . ,Nk〉 ,

yielding the (co)terms of systemλ
co

(read coinductively, as indicated by the indexco). Note that instead
of a formal class of listsl as in theλ -system, we adopt here the more intuitive notation〈N1, . . . ,Nk〉 to
represent finite lists.

Since the raw syntax is interpreted coinductively, also thetyping rules have to be interpreted coin-
ductively, which is symbolized by the double horizontal line in Figure 3, a notation that we learnt from
Nakata, Uustalu and Bezem [9]. (Of course, the formulas/types stay inductive.) As expected, the restric-
tion of the typing relation to the finiteλ -terms coincides with the typing relation of theλ system:

Lemma 3 For any t∈ λ , Γ ⊢ t : A in λ iff Γ ⊢ t : A in λ co
.

Proof By induction ont, with the help of Lemma 2. �

32 A Coinductive Approach to Proof Search

Figure 3: Typing rules ofλ
co

Γ,x : A⊢ t : B

Γ ⊢ λxA.t : A⊃ B
RIntro

(x : B1, . . . ,Bk ⊃ p) ∈ Γ Γ ⊢ Ni : Bi, i = 1, . . . ,k

Γ ⊢ x〈N1, . . . ,Nk〉 : p
LVecIntro

Figure 4: Extra typing rule ofλ co
Σ w. r. t. λ co

Γ ⊢ Ei : p, i = 1, . . . ,n

Γ ⊢ E1+ · · ·+En : p Alts

Example 4 Considerω := λ f p⊃p.λxp.N with N= f 〈N〉 of type p. This infinite term N is also denoted
f ∞.

It is quite common to describe elements of coinductive syntax by (systems of) fixed point equations.
As a notation on themeta-levelfor unique solutions of fixed-point equations, we will use the binderν
for the solution, writingν N.M, whereN typically occurs in the termM. Intuitively, ν N.M is theN s. t.
N = M. (The letterν indicates interpretation in coinductive syntax.)

Example 5 ω of Example 4 can be written asλ f p⊃p.λxp.ν N. f 〈N〉. Γ, f : p⊃ p,x : p⊢ ν N. f 〈N〉 : p is
seen coinductively, so we getΓ ⊢ ω : (p⊃ p)⊃ p⊃ p.

We now come to the representation of whole search spaces. Theset of coinductive cut-freeλ -terms
with finite numbers of elimination alternatives is denoted by λ co

Σ and is given by the following grammar:

(co-terms) N ::=co λxA.N |E1+ · · ·+En

(elim. alternatives) E ::=co x〈N1, . . . ,Nk〉

where bothn,k ≥ 0 are arbitrary. Note that summands cannot be lambda-abstractions.1 We will often
use∑

i
Ei instead ofE1+ · · ·+En if the dependency ofEi on i is clear, as well as the number of elements.

Likewise, we write〈Ni〉i instead of〈N1, . . . ,Nk〉. If n= 0, we writeO for E1+ · · ·+En. If n= 1, we write
E1 for E1+ · · ·+En (in particular this injects the category of elimination alternatives into the category of
co-terms) and do as if+ was a binary operation on (co)terms. However, this will always have a unique
reading in terms of our raw syntax ofλ co

Σ . In particular, this reading makes+ associative andO its
neutral element.

Co-terms ofλ co
Σ will also be called Böhm forests. Their coinductive typingrules are the ones ofλ co

,
together with the rule given in Figure 4, where the sequents for (co)terms and elimination alternatives
are not distinguished notationally.

Notice thatΓ ⊢O : p for all Γ andp.
Below we consider sequentsΓ ⇒ A with Γ a context andA an implicational formula (corresponding

to term sequents ofλ without proof terms – in fact,Γ ⇒ A is nothing but the pair consisting ofΓ andA,
but which is viewed as a problem description: to prove formula A in contextΓ).

1The division into two syntactic categories also forbids thegeneration of an infinite sum (for whichn= 2 would suffice had
the categories forN andE been amalgamated).

J. Espı́rito Santo and R. Matthes and L. Pinto 33

Definition 6 The functionS , which takes a sequentΓ ⇒ A and produces a B̈ohm forest which is a
coinductive representation of the sequent’s solution space, is given corecursively as follows: In the case
of an implication,

S (Γ ⇒ A⊃ B) := λxA.S (Γ,x : A⇒ B) ,

since RIntro is the only way to prove the implication.
In the case of an atom p, for the definition ofS (Γ ⇒ p), let yi : Ai be the i-th variable inΓ with Ai

of the form~Bi ⊃ p. Let~Bi = Bi,1, . . . ,Bi,ki . Define Ni, j := S (Γ ⇒ Bi, j). Then, Ei := yi〈Ni, j〉 j , and finally,

S (Γ ⇒ p) := ∑
i

Ei .

This is more sloppily written as

S (Γ ⇒ p) := ∑
y:~B⊃p∈Γ

y〈S (Γ ⇒ B j)〉 j .

In this manner, we can even write the whole definition in one line:

S (Γ ⇒ ~A⊃ p) := λ~x : ~A. ∑
y:~B⊃p∈∆

y〈S (∆ ⇒ B j)〉 j with ∆ := Γ,~x : ~A

This is a well-formed definition: for everyΓ andA, S (Γ ⇒ A) is a Böhm forest and as such rather a
semantic object.

Lemma 7 GivenΓ and A, the typingΓ ⊢ S (Γ ⇒ A) : A holds inλ co
Σ .

Let us illustrate the functionS at work with some examples.

Example 8 We consider first the formula A= (p⊃ p)⊃ p⊃ p and the empty context. We have:

S (⇒ (p⊃ p)⊃ p⊃ p) = λ f p⊃p.λxp.S (f : p⊃ p,x : p⇒ p)

Now, observe thatS (f : p⊃ p,x : p⇒ p) = f 〈S (f : p⊃ p,x : p⇒ p)〉+x. We identifyS (f : p⊃ p,x :
p⇒ p) as the solution for N of the equation N= f 〈N〉+x. Usingν as means to communicate solutions
of fixed-point equations on themeta-levelas forλ co

, we have

S (⇒ (p⊃ p)⊃ p⊃ p) = λ f p⊃p.λxp.ν N. f 〈N〉+x

By unfolding of the fixpoint and by making a choice at each of the elimination alternatives, we can
collectfrom this coterm as the finitary solutions of the sequent all the Church numerals (λ f p⊃p.λxp. f n〈x〉
with n∈ N0), together with the infinitary solutionλ f p⊃p.λxp. f ∞, studied before as example forλ co

(corresponding to always making the f -choice at the elimination alternatives).

Example 9 We consider now an example in the Horn fragment. LetΓ = x : p⊃ q⊃ p,y : q⊃ p⊃ q,z :
p (again with p6= q). Note that the solution spaces of p and q relative to this sequent are mutually
dependent and they give rise to the following system of equations:

Np = x〈Np,Nq〉+z
Nq = y〈Nq,Np〉

34 A Coinductive Approach to Proof Search

Figure 5: Membership relations

mem(M,N)

mem(λxA.M,λxA.N)

memE(M,Ei)

mem(M,E1+ · · ·+En)
(for somei)

mem(M1,N1) . . . mem(Mk,Nk)

memE(x〈M1, . . . ,Mk〉,x〈N1, . . . ,Nk〉)

and so we have
S (Γ ⇒ p) = ν Np.x〈Np,ν Nq.y〈Nq,Np〉〉+z
S (Γ ⇒ q) = ν Nq.y〈Nq,ν Np.x〈Np,Nq〉+z〉

Whereas for p we can collect one finite solution (z), for q we can only collect infinite solutions. Because
in the Horn case the recursive calls of theS function are all relative to the same (initial) context, in this
fragment the solution space of a sequent can always be expressed as a finite system of equations (one for
each atom occurring in the sequent), see Theorem 15.

Example 10 Let us consider one further example where A= ((((p⊃ q)⊃ p)⊃ p)⊃ q)⊃ q (a formula
that can be viewed as double negation of Pierce’s law, when q is viewed as absurdity). We have the
following (where in sequents we omit formulas on the LHS)

N0 = S (⇒ A) = λx(((p⊃q)⊃p)⊃p)⊃q.N1

N1 = S (x⇒ q) = x〈N2〉
N2 = S

(
x⇒ ((p⊃ q)⊃ p)⊃ p

)
= λy(p⊃q)⊃p.N3

N3 = S (x,y⇒ p) = y〈N4〉
N4 = S (x,y⇒ p⊃ q) = λzp.N5

N5 = S (x,y,z⇒ q) = x〈N6〉
N6 = S

(
x,y,z⇒ ((p⊃ q)⊃ p)⊃ p

)
= λy(p⊃q)⊃p

1 .N7

N7 = S (x,y,z,y1 ⇒ p) = y〈N8〉+z+y1〈N8〉
N8 = S (x,y,z,y1 ⇒ p⊃ q) = λzp

1.N9

N9 = S (x,y,z,y1,z1 ⇒ q)

Now, in N9 observe that y,y1 both have type(p⊃ q)⊃ p and z,z1 both have type p, and we are back at N5

but with the duplicates y1 of y and z1 of z. Later, we will call this duplication phenomenonco-contraction,
and we will give a finitary description of N0 and, more generally, of allS (Γ ⇒ A), see Theorem 24. Of
course, by taking the middle alternative in N7, we obtain a finite proof, showing that A is provable inλ .

We now define a membership semantics for co-terms and elimination alternatives ofλ co
Σ in terms of

sets of (co)terms inλ co
.

Themembership relationsmem(M,N) andmemE(M,E) are contained inλ co×λ co
Σ andλ co×Eλ co

Σ
respectively (whereEλ co

Σ stands for the set of elimination alternatives ofλ co
Σ) and are given coinductively

by the rules in Fig. 5.

Proposition 11 For any N∈ λ co
, mem(N,S (Γ ⇒ A)) iff Γ ⊢ N : A in λ co

.

Proof “If”. Consider the relations

R := {(N,S (Γ ⇒ A)) | Γ ⊢ N : A}
RE := {(x〈Ni〉i ,x〈S (Γ ⇒ Bi)〉i) | (x : B1, . . . ,Bk ⊃ p) ∈ Γ∧Γ ⊢ x〈N1, . . . ,Nk〉 : p}

J. Espı́rito Santo and R. Matthes and L. Pinto 35

It suffices to show thatR⊆ mem, but this cannot be proven alone sincemem andmemE are defined si-
multaneously. We also proveRE ⊆memE, and to prove both by coinduction on the membership relations,
it suffices to show that the relationsR, RE arebackwards closed, i. e.:

1. (λxA.M,λxA.N) ∈ R implies(M,N) ∈ R;

2. (M,E1+ · · ·+En) ∈ R implies for somei, (M,Ei) ∈ RE;

3. (x〈M1, . . . ,Mk〉,x〈N1, . . . ,Nk〉) ∈ RE implies for all i, (Mi,Ni) ∈ R

We illustrate one case. Consider(N,S (Γ ⇒ A)) ∈ R, with S (Γ ⇒ A) = E1+ · · ·+En. We must
show that, for somei, (N,Ei) ∈ RE. FromS (Γ ⇒ A) = E1+ · · ·+En, we must haveA= p. Now, from
Γ ⊢ N : p, there must exist(x : B1, . . . ,Bk ⊃ p) ∈ Γ andN1, ...,Nk s. t. N = x〈N1, . . . ,Nk〉. By definition of
S (Γ ⇒ A), there isi s. t. Ei = x〈S (Γ ⇒ B1), . . . ,S (Γ ⇒ Bk)〉.

“Only if”. By coinduction on the typing relation ofλ co
. This is conceptually easier than the other

direction since⊢ is a single coinductively defined notion. We define a relationR for which it is sufficient
to proveR⊆⊢:

R := {(Γ,N,A) |mem(N,S (Γ ⇒ A))}
ProvingR⊆⊢ by coinduction amounts to showing thatR is backwards closed – with respect to the typing
relation ofλ co

, i. e., we have to show:

1. (Γ,λxA.t,A⊃ B) ∈ R implies((Γ,x : A), t,B) ∈ R;

2. (Γ,x〈N1, . . . ,Nk〉, p) ∈ R implies the existence ofB1, . . . ,Bk s. t. (x : B1, . . . ,Bk ⊃ p) ∈ Γ and, for
all i = 1, . . . ,k, (Γ,Ni,Bi) ∈ R.

We show the second case (relative to ruleLVecIntro). So, we havemem(N,S (Γ ⇒ A)) with N =
x〈N1, . . . ,Nk〉 andA= p, and we need to show that, for some(x : B1, . . . ,Bk ⊃ p) ∈ Γ, we have, for alli,
mem(Ni,S (Γ ⇒ Bi)). SinceA= p, S (Γ ⇒ A) = E1+ · · ·+En. Hence, the second rule formem was
used to infermem(N,S (Γ ⇒ A)), i. e., there is aj s. t. memE(N,E j). Therefore,E j = x〈M1, . . . ,Mk〉
with termsM1, . . . ,Mk, and, for alli, mem(Ni ,Mi). By the definition ofS (Γ ⇒ A), this means that there
are formulasB1, . . . ,Bk s. t. (x : B1, . . . ,Bk ⊃ p) ∈ Γ and, for alli, Mi = S (Γ ⇒ Bi). �

Example 12 Let us consider the case of Pierce’s law that is not valid intuitionistically. We have (for
p 6= q):

S (⇒ ((p⊃ q)⊃ p)⊃ p) = λx(p⊃q)⊃p.x〈λyp.O〉
The fact that we arrived atO and found no elimination alternatives on the wayannihilatesthe co-term
and implies there are no terms in the solution space of⇒ ((p⊃ q)⊃ p) ⊃ p (hence no proofs, not even
infinite ones).

Corollary 13 (Adequacy of the co-inductive representationof proof search inλ) For any t∈ λ , we
havemem(t,S (Γ ⇒ A)) iff Γ ⊢ t : A (where the latter is the inductive typing relation ofλ).

Proof By the proposition above and Lemma 3. �

4 Finitary representation of proof search in lambda-bar

In the first section we define a calculus of finitary representations. In the third section we obtain our main
result (Theorem 24): givenΓ ⇒C, there is a finitary representation ofS (Γ ⇒C) in the finitary calculus.
To make the proof easier to understand, we first develop in thesecond section the particular case of the
Horn fragment.

36 A Coinductive Approach to Proof Search

4.1 The finitary calculus

The set of inductive cut-freeλ -terms with finite numbers of elimination alternatives, anda fixpoint

operator is denoted byλ gfp
Σ and is given by the following grammar (read inductively):

(terms) N ::= λxA.N |gfpX.E1+ · · ·+En |X
(elim. alternatives) E ::= x〈N1, . . . ,Nk〉

whereX is assumed to range over a countably infinite set offixpoint variables(lettersY, Z will also
be used to range over fixpoint variables that may also be thought of as meta-variables), and where both

n,k ≥ 0 are arbitrary. Below, when we refer tofinitary termswe have in mind the terms ofλ
gfp
Σ . The

fixed-point operator is calledgfp (“greatest fixed point”) to indicate that its semantics is (now) defined in
terms of infinitary syntax, but there, fixed points are unique. Hence, the reader may just read this as “the
fixed point”.

We now give a straightforward interpretation of the formal fixed points (built withgfp) of λ gfp
Σ in

terms of the coinductive syntax ofλ co
Σ (using theν operation on the meta-level).

Definition 14 We callenvironmenta function from the set of fixpoint variables into the set of (co)terms
of λ co

Σ . The interpretation of a finitary term (relative to an environment) is a (co)term ofλ co
Σ given via a

family of functions[[−]]ξ : λ gfp
Σ → λ co

Σ indexed by environments, which is recursively defined as follows:

[[X]]ξ = ξ (X)

[[λxA.N]]ξ = λxA.[[N]]ξ
[[gfpX.∑

i
Ei]]ξ = ν N.∑

i
[[Ei]]ξ∪[X 7→N]

[[x〈N1, . . . ,Nk〉]]ξ = x〈[[N1]]ξ , . . . , [[Nk]]ξ 〉
where the notationξ ∪ [X 7→ N] stands for the environment obtained fromξ by setting X to N.

Remark that the recursive definition above has an embedded corecursive case (pertaining to thegfp-
operator). Its definition is well-formed since every elimination alternative starts with a head/application
variable and the occurrences ofN are thus guarded.

When a finitary termN has no free occurrences of fixpoint variables, all environments determine the
same coterm, and in this case we simply write[[N]] to denote that coterm.

4.2 Equivalence of the representations: Horn case

Theorem 15 (Equivalence for the Horn fragment) Let Γ be a Horn context. Then, for any atom r,

there exists Nr ∈ λ gfp
Σ with no free occurrences of fixpoint variables such that[[Nr]] = S (Γ ⇒ r).

Proof
Let us assume there arek atoms occurring inΓ ⇒ r. We define simultaneouslyk functionsNp(

−−→
X : q)

(one for each atompoccurring inΓ⇒ r), parameterized by a vector of declarations of the formX : q. The
vector is written

−−→
X : q and is such that no fixpoint variable and no atom occurs twice.The simultaneous

definition is by recursion on the number of atoms ofΓ ⇒ r not occurring in
−−→
X : q, and is as follows:

Np(
−−→
X : q) =





Xi if p= qi

gfpXp. ∑
(y:−→r ⊃p)∈Γ

y〈Nr j (
−−→
X : q,Xp : p)〉 j otherwise

J. Espı́rito Santo and R. Matthes and L. Pinto 37

where vector
−−→
X : q,Xp : p is obtained by adding the componentXp : p to the vector

−−→
X : q. Observe

that only fixpoint variables among the fixpoint variables declared in the vector have free occurrences in
Np(

−−→
X : q).

By induction on the number of atoms of (the fixed sequent)Γ ⇒ r not in (the variable)
−−→
X : q, we

prove that:
[[Np(

−−→
X : q)]]ξ = S (Γ ⇒ p) if ξ (Xi) = S (Γ ⇒ qi), for any i. (1)

Casep= qi , for somei. Then,

LHS= [[Xi]]ξ = ξ (Xi) = S (Γ ⇒ qi) = RHS.

Otherwise,

LHS= [[gfpXp. ∑
(y:−→r ⊃p)∈Γ

y〈Nr j (
−−→
X : q,Xp : p)〉 j]]ξ = N∞

whereN∞ is given as the unique solution of the following equation:

N∞ = ∑
(y:−→r ⊃p)∈Γ

y〈[[Nr j (
−−→
X : q,Xp : p)]]ξ∪[Xp 7→N∞]〉 j (2)

Now observe that, by I.H., the following equations (3) and (4) are equivalent.

S (Γ ⇒ p) = ∑
(y:−→r ⊃p)∈Γ

y〈[[Nr j (
−−→
X : q,Xp : p)]]ξ∪[Xp 7→S (Γ⇒p)]〉 j (3)

S (Γ ⇒ p) = ∑
(y:−→r ⊃p)∈Γ

y〈S (Γ ⇒ r j)〉 j (4)

By definition of S (Γ ⇒ p), (4) holds; hence – because of (3) –S (Γ ⇒ p) is the solutionN∞ of (2),
concluding the proof thatLHS= RHS.

Finally, the theorem follows as the particular case of (1) where p = r and the vector of fixpoint
variable declarations is empty. �

4.3 Equivalence of the representations: full implicational case

The main difference with exhaustive proof search in the caseof Horn formulas is that the backwards
application ofRIntro brings new variables into the context that may have the same type as an already
existing declaration, and so, for the purpose of proof search, they should be treated the same way.

We illustrate this phenomenon with the following definitionand lemma and then generalize it to the
form that will be needed for the main theorem (Theorem 24).

Definition 16 For N and E inλ co
Σ , we define[x1+ · · ·+ xn/y]N and[x1+ · · ·+ xn/y]E by simultaneous

corecursion as follows:

[x1+ · · ·+xn/y](λxA.N) = λxA.[x1+ · · ·+xn/y]N
[x1+ · · ·+xn/y]∑

i
Ei = ∑

i
[x1+ · · ·+xn/y]Ei

[x1+ · · ·+xn/y]
(
z〈Ni〉i

)
= z〈[x1+ · · ·+xn/y]Ni〉i if z 6= y

[x1+ · · ·+xn/y]
(
y〈Ni〉i

)
= ∑

1≤ j≤n
x j〈[x1+ · · ·+xn/y]Ni〉i

38 A Coinductive Approach to Proof Search

Lemma 17 (Co-contraction: invertibility of contraction) If x1,x2,y /∈ Γ, then

S (Γ,x1 : A,x2 : A⇒C) = [x1+x2/y]S (Γ,y : A⇒C) .

Proof The proof is omitted since Lemma 20 below is essentially a generalization of this result. �

We now capture when a contextΓ′ is an inessential extension of contextΓ:

Definition 18 1. |Γ|= {A : ∃x s.t.(x : A) ∈ Γ}.

2. Γ ≤ Γ′ if Γ ⊆ Γ′ and |Γ|= |Γ′|.
3. (Γ ⇒ p)≤ (Γ′ ⇒ p′) if Γ ≤ Γ′ and p= p′.

Let σ range over sequents of the formΓ ⇒ p. Thus, the last definition clause defines in general when
σ ≤ σ ′.

Definition 19 1. LetΓ ≤ Γ′. For N and E inλ co
Σ , we define[Γ′/Γ]N and [Γ′/Γ]E by simultaneous

corecursion as follows:

[Γ′/Γ](λxA.N) = λxA.[Γ′,(x : A)/Γ,(x : A)]N
[Γ′/Γ]∑

i
Ei = ∑

i
[Γ′/Γ]Ei

[Γ′/Γ]
(
z〈Ni〉i

)
= z〈[Γ′/Γ]Ni〉i if z /∈ dom(Γ)

[Γ′/Γ]
(
z〈Ni〉i

)
= ∑

(w:Γ(z))∈Γ′
w〈[Γ′/Γ]Ni〉i if z∈ dom(Γ)

2. Letσ ≤ σ ′. [σ ′/σ]N = [Γ′/Γ]N whereσ = (Γ ⇒ p) andσ ′ = (Γ′ ⇒ p). Similarly for [σ ′/σ]E.

Lemma 20 (Co-contraction) If Γ ≤ Γ′ thenS (Γ′ ⇒C) = [Γ′/Γ](S (Γ ⇒C)).

Proof Let R := {(S (Γ′ ⇒C), [Γ′/Γ](S (Γ ⇒C))) | Γ ≤ Γ′,C arbitrary}. We prove thatR is backward
closed relative to the canonical equivalence= generated by the coinductive definition of terms ofλ co

Σ
(but see the comments following the proof), whenceR⊆=.

S (Γ′ ⇒C) = λzA1
1 · · ·zAn

n . ∑
(z:~B⊃p)∈∆′

z〈S (∆′ ⇒ B j)〉 j (5)

and
[Γ′/Γ](S (Γ ⇒C)) = λzA1

1 · · ·zAn
n . ∑

(y:~B⊃p)∈∆
∑

(w:∆(y))∈∆′
w〈[∆′/∆]S (∆ ⇒ B j)〉 j (6)

where∆ := Γ∪{z1 : A1, · · · ,zn : An} and∆′ := Γ′∪{z1 : A1, · · · ,zn : An}.
FromΓ ≤ Γ′ we get∆ ≤ ∆′, hence

(S (∆′ ⇒ B j), [∆′/∆]S (∆ ⇒ B j)) ∈ R .

To conclude the proof, it suffices to show that (i) each head-variablez that is a “capability” of the sum-
mation in (5) is matched by a head-variablew that is a “capability” of the summation in (6); and (ii)
vice-versa.

(i) Let z∈ dom(∆′). We have to exhibity∈ dom(∆) such that(z : ∆(y)) ∈ ∆′. First case:z∈ dom(∆).
By ∆ ≤ ∆′, (z : ∆(z)) ∈ ∆′. So we may takey= z. Second and last case:z∈ Γ′\Γ. By Γ ≤ Γ′, there is
y∈ Γ such that(z : Γ(y)) ∈ Γ′. But then(z : ∆(y)) ∈ ∆′.

(ii) We have to show that, for ally ∈ dom(∆), and all(w : ∆(y)) ∈ ∆′, w ∈ dom(∆′). But this is
immediate. �

J. Espı́rito Santo and R. Matthes and L. Pinto 39

Notice that we cannot expect that the summands appear in the same order in (5) and (6). Therefore,
we have to be more careful with the notion of equality of Böhmforests. It is not just bisimilarity, but
we assume that the sums of elimination alternatives are treated as if they were sets of alternatives, i. e.,
we further assume that+ is symmetric and idempotent. It has been shown by Picard and the second
author [10] that bisimulation up to permutations in unbounded lists of children can be managed in a
coinductive type even with the interactive proof assistantCoq. In analogy, this coarser notion of equality
(even abstracting away from the number of occurrences of an alternative) should not present a major
obstacle for a fully formal presentation.

In the rest of the paper – in particular in Theorem 24 – we assume that sums of alternatives are treated
as if they were sets.

Example 21 (Example 10 continued)Thanks to the preceding lemma, N9 is obtained by co-contraction
from N5:

N9 = [x : ·,y : (p⊃ q)⊃ p,z : p,y1 : (p⊃ q)⊃ p,z1 : p/x : ·,y : (p⊃ q)⊃ p,z : p]N5 ,

where the type of x has been omitted. Hence, N6, N7, N8 and N9 can be eliminated, and N5 can be
expressed as the (meta-level) fixed point:

N5 = ν N.x〈λy(p⊃q)⊃p
1 .y〈λzp

1.[x,y,z,y1,z1/x,y,z]N〉+z+y1〈λzp
1.[x,y,z,y1,z1/x,y,z]N〉〉 ,

now missing out all types in the context substitution. Finally, we obtain the closed B̈ohm forest

S (⇒ A) = λx(((p⊃q)⊃p)⊃p)⊃q.x〈λy(p⊃q)⊃p.y〈λzp.N5〉〉

The question is now how to give a finitary meaning to terms likeN5 in the example above, which
are defined by fixed points over variables subject to context substitution. We might expect to use the

equation definingN5 to obtain a finitary representation inλ gfp
Σ , provided context substitution is defined

on this system. But how to do that? Applying say[x,y,z,y1,z1/x,y,z] to a plain fixed-point variable
cannot make much sense.

The desired finitary representation in the full implicational case is obtained by adjusting the terms of

λ gfp
Σ used in the Horn case as follows:

(terms) N ::= (· · ·)|gfpXσ .E1+ · · ·+En |Xσ

Hence fixpoint variables are “typed” withsequentsσ .
Different free occurrences of the sameX may be ”typed” with differentσ ’s, as long as a lower bound

of theseσ ’s can be found w.r.t.≤ (Definition 18).
Relatively to Definition 14, an environmentξ now assigns (co)termsN of λ co

Σ to “typed” fixpoint
variablesXσ , providedX does not occur with two different “types” in the domain ofξ , for all X; we also
change the following clauses:

[[Xσ ′
]]ξ = [σ ′/σ]ξ (Xσ) if σ ≤ σ ′

[[gfpXσ .∑
i

Ei]]ξ = ν N.∑
i
[[Ei]]ξ∪[Xσ 7→N]

We will have to assign some default value toXσ ′
in case there is no suchσ , but this will not play a role

in the main result below.
Map Np(

−−→
X : q) used in the proof of Theorem 15 is replaced by the following:

40 A Coinductive Approach to Proof Search

Definition 22 Let Ξ :=
−−−−−−→
X : Θ ⇒ q be a vector of m≥ 0 declarations(Xi : Θi ⇒ qi) where no fixpoint

variable and no sequent occurs twice. NΓ⇒~A⊃p(Ξ) is defined as follows:
If, for some1≤ i ≤ m, p= qi andΘi ⊆ Γ and |Θi |= |∆|, then

NΓ⇒~A⊃p(Ξ) = λzA1
1 · · ·zAn

n .Xσ
i

otherwise,

NΓ⇒~A⊃p(Ξ) = λzA1
1 · · ·zAn

n .gfpYσ . ∑
(y:~B⊃p)∈∆

y〈N∆⇒B j (Ξ,Y : σ)〉 j

where, in both cases,∆ := Γ∪{z1 : A1, · · · ,zn : An} andσ := ∆ ⇒ p.

The definition ofNp(
−−→
X : q) in the proof of Theorem 15 was by recursion on a certain numberof

atoms. The following lemma spells out the measure that is recursively decreasing in the definition of
NΓ⇒C(Ξ).

Lemma 23 For all Γ ⇒C, NΓ⇒C(·) is well-defined, where· denotes the empty vector.

Proof Let us callrecursive calla “reduction”

NΓ⇒~A⊃p(
−−−−−−→
X : Θ ⇒ q) N∆⇒B j (

−−−−−−→
X : Θ ⇒ q,Y : σ) (7)

where the if-guard in Def. 22 fails;∆ and σ are defined as in the same definition; and, for somey,
(y : ~B⊃ p) ∈ ∆. We want to prove that every sequence of recursive calls fromNΓ⇒C(·) is finite.

First we introduce some definitions.A sub := {B | there isA∈ A such thatB is subformula ofA},
for A a finite set of formulas. We sayA is subformula-closedif A sub=A . A stripped sequentis a pair
(B, p), whereB is a finite set of formulas. Ifσ = Γ ⇒ p, then|σ | denotes the stripped sequent(|Γ|, p).
We say(B, p) is overA if B ⊆ A andp∈ A . There aresize(A) := a·2k stripped sequents overA , if
a (resp.k) is the number of atoms (resp. formulas) inA .

Let A be subformula-closed. We sayΓ ⇒C andΞ :=
−−−−−−→
X : Θ ⇒ q satisfy theA -invariant if:

(i) |Γ|∪ {C} ⊆ A ;

(ii) Θ1 ⊆ Θ2 ⊆ ·· · ⊆ Θm = Γ (if m= 0 then this is meant to be vacuously true);

(iii) For 1 ≤ j ≤ m, q j ∈ |Γ|sub,

wherem≥ 0 is the length of vectorΞ (if m= 0, also item (iii) is vacuously true). In particular,|σ | is over
A , for all σ ∈ Ξ. We prove that, ifΓ⇒C andΞ satisfy theA -invariant for someA , then every sequence
of recursive calls fromNΓ⇒C(Ξ) is finite. The proof is by induction onsize(A)−size(Ξ), wheresize(Ξ)
is the number of elements of|Ξ| and|Ξ| := {|σ | : σ ∈ Ξ}.

LetC= ~A⊃ p. We analyze an arbitrary recursive call (7) and prove that every sequence of recursive
calls fromN∆⇒B j (Ξ,Y : σ) is finite. This is achieved by proving:

(I) ∆ ⇒ B j andΞ,Y : σ satisfy theA -invariant;

(II) size(Ξ,Y : σ)> size(Ξ).

Proof of (I). By assumption, (i), (ii), and (iii) above hold.We want to prove:

(i’) |∆|∪ {B j} ⊆ A ;

(ii’) Θ1 ⊆ Θ2 ⊆ ·· · ⊆ Θm ⊆ ∆ = ∆;

(iii’) For 1 ≤ j ≤ m+1, q j ∈ |∆|sub.

J. Espı́rito Santo and R. Matthes and L. Pinto 41

Proof of (i’). |∆| = |Γ| ∪ {A1, · · · ,An} ⊆ A by (i) andA subformula-closed.B j is a subformula of
~B⊃ p and~B⊃ p∈ |∆| because(y : ~B⊃ p) ∈ ∆, for somey.

Proof of (ii’). Immediate by (ii) andΓ ⊆ ∆.
Proof of (iii’). For 1≤ j ≤ m, q j ∈ |Γ|sub⊆ |∆|sub, by (iii) andΓ ⊆ ∆. On the other hand,q j+1 = p∈

|∆|sub because(y : ~B⊃ p) ∈ ∆, for somey.
Proof of (II). Given that the if-guard of Def. 22 fails, and that Θi ⊆ Γ due to (ii), we conclude: for all

1≤ i ≤ m, p 6= qi or |Θi | 6= |∆|. But this means that|∆ ⇒ p| /∈ |Ξ|, hencesize(Ξ,Y : σ)> size(Ξ).
Now, by I.H., every sequence of recursive calls fromN∆⇒B j (Ξ,Y : σ) is finite. This concludes the

proof by induction.
Finally letA = (|Γ|∪ {C})sub and observe thatΓ ⇒C andΞ = · satisfy theA -invariant. �

Theorem 24 (Equivalence)For any Γ and C, there exists NΓ⇒C ∈ λ gfp
Σ with no free occurrences of

fixpoint variables such that[[NΓ⇒C]] = S (Γ ⇒C).

Proof We prove: if, for alli, ξ (XΘi⇒qi
i) = S (Θi ⇒ qi), then

[[NΓ⇒~A⊃p(Ξ)]]ξ = S (Γ ⇒ ~A⊃ p) , (8)

whereΞ :=
−−−−−−→
X : Θ ⇒ q. In this proof we re-use the concepts introduced in the proofof Lemma 23. Let

A := (|Γ|∪ {~A⊃ p})sub. The proof is by induction onsize(A)−size(Ξ).
Casep= qi andΘ′

i ⊆ Γ and|Θ′
i |= |∆|, for some 1≤ i ≤ m, with m the length ofΞ. Then,

LHS = λzA1
1 · · ·zAn

n .[[X∆⇒qi
i]]ξ (by definition)

= λzA1
1 · · ·zAn

n .[∆ ⇒ qi/Θi ⇒ qi]ξ (XΘi⇒qi
i) (by definition and (*) below)

= λzA1
1 · · ·zAn

n .[∆ ⇒ qi/Θi ⇒ qi]S (Θi ⇒ qi) (by assumption)
= λzA1

1 · · ·zAn
n .S (∆ ⇒ qi) (by Lemma 20 and (*))

= RHS (by definition)

where∆ := Γ∪{z1 : A1, · · · ,zn : An}, which implies(Θi ⇒ qi)≤ (∆ ⇒ qi). The latter fact is the justifica-
tion (*) used above.

The inductive case is an easy extension of the inductive casein Theorem 15. Suppose the case above
holds for no 1≤ i ≤ m. ThenLHS= λzA1

1 · · ·zAn
n .N∞, whereN∞ is the unique solution of the following

equation

N∞ = ∑
(y:

−→
B⊃p)∈∆

y〈[[N∆⇒B j (Ξ,Y : σ)]]ξ∪[Yσ 7→N∞]〉 j (9)

and, again,∆ := Γ∪{z1 : A1, · · · ,zn : An}. Now observe that, by I.H., the following equations (10) and
(11) are equivalent.

S (∆ ⇒ p) = ∑
(y:

−→
B⊃p)∈∆

y〈[[N∆⇒B j (Ξ,Y : σ)]]ξ∪[Yσ 7→S (∆⇒p)]〉 j (10)

S (∆ ⇒ p) = ∑
(y:

−→
B⊃p)∈∆

y〈S (∆ ⇒ B j)〉 j (11)

By definition ofS (∆ ⇒ p), (11) holds; hence - because of (10) -S (∆ ⇒ p) is the solutionN∞ of (9).
ThereforeLHS= λzA1

1 · · ·zAn
n .S (∆ ⇒ p), and the latter isRHSby definition ofS (Γ ⇒ ~A⊃ p).

Finally, the theorem follows as the particular case of (8) whereC = ~A⊃ p and the vector of fixpoint
variable declarations is empty. �

42 A Coinductive Approach to Proof Search

5 Conclusion

We proposed a coinductive approach to proof search, which weillustrated in the case of the cut-free
systemLJT for intuitionistic implication (and its proof-annotated versionλ). As the fundamental tool,
we introduced the coinductive calculusλ co

Σ , which besides the coinductive reading ofλ , introduces a
construction for finite alternatives. The (co)terms of thiscalculus (also called Böhm forests) are used
to represent the solution space of proof search forLJT-sequents, and this is achieved by means of a
corecursive function, whose definition arises naturally bytaking a reductive view of the inference rules
and by using the finite alternatives construction to accountfor multiple alternatives in deriving a given
sequent.

We offered also a finitary representation of proof search inLJT, based on the inductive calculusλ gfp
Σ

with finite alternatives and a fixed point construction, and showed equivalence of the representations.
The equivalence results turned out to be an easy task in the case of the Horn fragment, but demanded for
co-contraction of contexts (contraction bottom-up) in thecase of full implication.

With Pym and Ritter [11] we share the general goal of setting aframework for studying proof search,
and the reductive view of inference rules, by which each inference rule is seen as a reduction opera-
tor (from a putative conclusion to a collection of sufficientpremises), and reduction (the process of
repeatedly applying reduction operators) may fail to yielda (finite) proof. However, the methods are
very different. Instead of using a coinductive approach, Pym and Ritter introduce theλ µνε-calculus
for classical sequent calculus as the means for representing derivations and for studying intuitionistic
proof search (a task that is carried out both in the context ofthe sequent calculus LJ and of intuitionistic
resolution).

In the context of logic programming with classical first-order Horn clauses, and building on their
previous work [6, 4], Komendantskaya and Power [5] establish a coalgebraic semantics uniform for
both finite and infinite SLD-resolutions. In particular, a notion of coinductive (and-or) derivation tree
of an atomic goal w. r. t. a (fixed) program is introduced. Soundness and completeness results of SLD-
resolution relative to coinductive derivation trees and tothe coalgebraic semantics are also proved. Logic
programming is viewed as search for uniform proofs in sequent calculus by Milleret al. [8]. For intuition-
istic implication, uniform proofs correspond to the class of (η-)expanded normal natural deductions (see
Dyckoff and Pinto [2]), hence to the typedλ -terms we considered in this paper (recall the restriction to
atoms in ruleDer of Fig. 1 for typing application). Under this view, our work relates to Komendantskaya
and Power [5], as both works adopt a coinductive approach in the context of proof search. However, the
two approaches are different in methods and in goals. As the basis of the coinductive representation of
the search space, instead of and-or infinite trees, we followthe Curry-Howard view of proofs as terms,
and propose the use of a typed calculus of coinductive lambda-terms. Whereas Komendantskaya and
Power [5] are already capable of addressing first-order quantification, we only consider intuitionistic im-
plication. Still, as we consider full intuitionistic implication, our study is not contained in classical Horn
logic. The fact that we need to treat negative occurrences ofimplication, raises on the logic programming
side the need for dealing with programs to which clauses can be added dynamically.

As a priority for future work, we plan to develop notions of normalisation for the calculiλ co
Σ andλ gfp

Σ
in connection with aspects of proof search like pruning search spaces and reading off (finite) proofs.

In order to test for the generality of our approach, we intendto extend it to treat the first-order case.
Staying within intuitionistic implication, but changing the proofs searched for, another case study we
intend to investigate is Dyckhoff’s contraction-free system [1].

J. Espı́rito Santo and R. Matthes and L. Pinto 43

Acknowledgments We thank our anonymous referees for their helpful comments.José Espı́rito Santo
and Luı́s Pinto have been financed by FEDER funds through “Programa Operacional Factores de Com-
petitividade – COMPETE” and by Portuguese funds through FCT– “Fundação para a Ciência e a Tec-
nologia”, within the project PEst-C/MAT/UI0013/2011. Ralph Matthes thanks the Centro de Matemática
of Universidade do Minho for funding research visits to Jos´e Espı́rito Santo and Luı́s Pinto to start this
research (2011/2012). Subsequently, he has been funded by theClimt project (ANR-11-BS02-016 of the
French Agence Nationale de la Recherche).

References

[1] Roy Dyckhoff (1992):Contraction-Free Sequent Calculi for Intuitionistic Logic. J. Symb. Log.57(3), pp.
795–807, doi:10.2307/2275431.

[2] Roy Dyckhoff & Luı́s Pinto (1994):Uniform Proofs and Natural Deductions. In Didier Galmiche & Lincoln
Wallen, editors:Proceedings of CADE–12 Workshop on Proof Search in Type-Theoretic Languages, IN-
RIA Lorraine – CRIN, pp. 717–23. Available athttp://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.43.9659.

[3] H. Herbelin (1995):A λ -calculus structure isomorphic to a Gentzen-style sequentcalculus structure. In
L. Pacholski & J. Tiuryn, editors:Proceedings of CSL’94, Lecture Notes in Computer Science933, Springer-
Verlag, pp. 61–75, doi:10.1007/BFb0022247.

[4] Ekaterina Komendantskaya, Guy McCusker & John Power (2010): Coalgebraic Semantics for Parallel
Derivation Strategies in Logic Programming. In Michael Johnson & Dusko Pavlovic, editors:AMAST,
Lecture Notes in Computer Science6486, Springer, pp. 111–127, doi:10.1007/978-3-642-17796-5_7.

[5] Ekaterina Komendantskaya & John Power (2011):Coalgebraic Derivations in Logic Programming. In Marc
Bezem, editor:CSL, LIPIcs 12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 352–366, doi:10.
4230/LIPIcs.CSL.2011.352.

[6] Ekaterina Komendantskaya & John Power (2011):Coalgebraic Semantics for Derivations in Logic Program-
ming. In Andrea Corradini, Bartek Klin & Corina Cı̂rstea, editors: CALCO, Lecture Notes in Computer
Science6859, Springer, pp. 268–282, doi:10.1007/978-3-642-22944-2_19.

[7] Chuck Liang & Dale Miller (2009):Focusing and Polarization in Linear, Intuitionistic, and Classical Logic.
Theoretical Computer Science410, pp. 4747–4768, doi:10.1016/j.tcs.2009.07.041.

[8] Dale Miller, Gopalan Nadathur, Frank Pfenning & Andre Scedrov (1991):Uniform Proofs as a Founda-
tion for Logic Programming. Annals of Pure and Applied Logic51(1-2), pp. 125–157, doi:10.1016/
0168-0072(91)90068-W.

[9] Keiko Nakata, Tarmo Uustalu & Marc Bezem (2011):A Proof Pearl with the Fan Theorem and Bar Induction
- Walking through Infinite Trees with Mixed Induction and Coinduction. In Hongseok Yang, editor:APLAS,
LNCS 7078, Springer, pp. 353–368, doi:10.1007/978-3-642-25318-8_26.

[10] Celia Picard & Ralph Matthes (2012):Permutations in Coinductive Graph Representation. In Dirk Pattin-
son & Lutz Schröder, editors:Coalgebraic Methods in Computer Science (CMCS 2012), Lecture Notes in
Computer Science, IFIP subseries7399, Springer, pp. 218–237, doi:10.1007/978-3-642-32784-1_12.

[11] D.J. Pym & E. Ritter (2004):Reductive Logic and Proof-search: Proof Theory, Semantics, and Control.
Oxford Logic Guides, Oxford University Press, Incorporated, doi:10.1093/acprof:oso/9780198526339.
001.0001.

D. Baelde and A. Carayol (Eds.): Fixed Points
in Computer Science 2013 (FICS 2013)
EPTCS 126, 2013, pp. 44–55, doi:10.4204/EPTCS.126.4

c© N.B.B. Grathwohl, F. Henglein, D. Kozen
This work is licensed under the
Creative Commons Attribution License.

Infinitary Axiomatization of the Equational Theory of
Context-Free Languages

Niels Bjørn Bugge Grathwohl
Department of Computer Science (DIKU)

University of Copenhagen
Universitetsparken 5

DK-2100 Copenhagen, Denmark

bugge@diku.dk

Fritz Henglein
Department of Computer Science (DIKU)

University of Copenhagen
Universitetsparken 5

DK-2100 Copenhagen, Denmark

henglein@diku.dk

Dexter Kozen
Department of Computer Science

Cornell University
Ithaca, NY 14853-7501, USA

kozen@cs.cornell.edu

We give a natural complete infinitary axiomatization of the equational theory of the context-free
languages, answering a question of Leiß (1992).

1 Introduction

Algebraic reasoning about programming language constructs has been a popular research topic for many
years. At the propositional level, the theory of flowchart programs and linear recursion are well handled
by such systems as Kleene algebra and iteration theories, systems that characterize the equational theory
of the regular sets. To handle more general forms of recursion including procedures with recursive calls,
one must extend to the context-free languages, and here the situation is less well understood. One reason
for this is that, unlike the equational theory of the regularsets, the equational theory of the context-
free languages is not recursively enumerable. This has led some researchers to declare its complete
axiomatization an insurmountable task [13].

Whereas linear recursion can be characterized with the staroperator⋆ of Kleene algebra or the dag-
ger operation† of iteration theories, the theory of context-free languages requires a more general fixpoint
operatorµ . The characterization of the context-free languages as least solutions of algebraic inequalities
involving µ goes back to a 1971 paper of Gruska [7]. More recently, several researchers have given equa-
tional axioms for semirings withµ and have developed fragments of the equational theory of context-free
languages [3, 5, 6, 8, 9, 13].

In this paper we consider another class of models satisfyinga condition calledµ-continuityanalogous
to the star-continuity condition of Kleene algebra:

a(µx.p)b= ∑
n≥0

a(nx.p)b,

where the summation symbol denotes supremum with respect tothe natural order in the semiring, and

0x.p= 0 (n+1)x.p= p[x/nx.p].

This infinitary axiom combines the assertions thatµx.p is the supremum of its finite approximantsnx.p
and that multiplication in the semiring is continuous with respect to these suprema. Analogous to a

N.B.B. Grathwohl, F. Henglein, D. Kozen 45

similar result for star-continuous Kleene algebra, we showthat all context-free languages over aµ-
continuous idempotent semiring have suprema. Our main result is that theµ-continuity condition, along
with the axioms of idempotent semirings, completely axiomatize the equational theory of the context-free
languages. This is the first completeness result for the equational theory of the context-free languages,
answering a question of Leiß [13].

1.1 Related Work

Courcelle [3] investigatesregular systems, finite systems of fixpoint equations over first-order terms over
a ranked alphabet with a designated symbol+ denoting set union, thereby restricting algebras to power
set algebras. He stages their interpretation by first interpreting recursion over first-order terms as infi-
nite trees, essentially as the final object in the corresponding coalgebra, then interpreting the signature
symbols inω-complete algebras. He provides soundness and completeness for transforming regular sys-
tems that preserve all solutions and soundness, but not completeness for preserving their least solutions.
Courcelle’s approach is syntactic since it employs unfolding of terms in fixpoint equations.

Leiß [13] investigates three classes of idempotent semirings with a syntactic least fixpoint operator
µ . The three classes are calledKAF, KAR, andKAG in increasing order of specificity. All these classes
are assumed to satisfy the fundamentalPark axioms

p[x/µx.p] ≤ µx.p p≤ x ⇒ µx.p≤ x,

which say thatµx.p is the least solution of the inequalityp ≤ x. The classesKAR andKAG further
assume

µx.(b+ax) = µx.(1+xa) ·b µx.(b+xa) = b·µx.(1+ax)

and

µx.(s+ rx) = µx.(µy.(1+yr) ·s) µx.(s+xr) = µx.(s·µy.(1+ ry)),

respectively. These axioms can be viewed as imposing continuity properties of the semiring operators
with respect toµ . All standard interpretations, including the context-free languages over an alphabet
X, are continuous and satisfy theKAG axioms. Ésik and Leiß [5, 6] show that conversion to Greibach
normal form can be performed purely algebraically under these assumptions.

Ésik and Kuich [4] introducecontinuous semirings, which are required to have suprema for all di-
rected sets, and they employ domain theory to solve polynomial fixpoint equations. Idempotent con-
tinuous semirings areµ-continuous Chomsky algebras as defined here, but not conversely. As we shall
prove, the family of context-free languages over any alphabet constitutes aµ-continuous Chomsky alge-
bra. It is not a continuous semiring, however, since the union of context-free languages is not necessarily
context-free.

2 Chomsky Algebras

2.1 Polynomials

Let (C,+, ·, 0, 1) be an idempotent semiring andX a fixed set of variables. Apolynomial over indeter-
minates X with coefficients in Cis an element ofC[X], whereC[X] is the coproduct (direct sum) ofC and

46 Infinitary Axiomatization of the Equational Theory of Context-Free Languages

the free idempotent semiring on generatorsX in the category of idempotent semirings. For example, if
a,b,c∈C andx,y∈ X, then the following are polynomials:

0 a axbycx+1 ax2byx+by2xc 1+x+x2+x3

The elements ofC[X] are not purely syntactic, as they satisfy all the equations of idempotent semirings
and identities ofC. For example, ifa2 = b2 = 1 inC, then

(axa+byb)2 = ax2a+axabyb+bybaxa+by2b.

Every polynomial can be written as a finite sum of monomials ofthe form

a0x0a1x1 · · ·an−1xn−1an,

where eachai ∈C−{0} andxi ∈ X. The free variablesof such an expressionp are the elements ofX
appearing in it and are denotedFV(p). The representation is unique up to associativity of multiplication
and associativity, commutativity, and idempotence of addition.

2.2 Polynomial Functions and Evaluation

Let C[X] be the semiring of polynomials over indeterminatesX and letD be an idempotent semiring
containingC as a subalgebra. By general considerations of universal algebra, any valuationσ : X →
D extends uniquely to a semiring homomorphismσ̂ : C[X] → D preservingC pointwise. Formally,
the functorX 7→ C[X] is left adjoint to a forgetful functor that takes an idempotent semiringD to its
underlying set. Intuitively,̂σ is theevaluation morphismthat evaluates a polynomial at the pointσ ∈DX.
Thus each polynomialp∈C[X] determines apolynomial functionJpK : DX → D, whereJpK(σ) = σ̂(p).

The set of all functionsDX → D with the pointwise semiring operations is itself an idempotent
semiring withC as an embedded subalgebra under the embeddingc 7→ λσ .c. The mapJ·K : C[X] →
(DX → D) is actuallyτ̂, whereτ(x) = λ f . f (x).

For the remainder of the paper, we writeσ for σ̂ , as there is no longer any need to distinguish them.

2.3 Algebraic Closure and Chomsky Algebras

A system of polynomial inequalities over Cis a set

p1 ≤ x1, p2 ≤ x2, . . . , pn ≤ xn (1)

wherexi ∈ X and pi ∈ C[X], 1 ≤ i ≤ n. A solution of (1) in C is a valuationσ : X → C such that
σ(pi)≤ σ(xi), 1≤ i ≤ n. The solutionσ is a least solutionif σ ≤ τ pointwise for any other solutionτ .
If a least solution exists, then it is unique.

An idempotent semiringC is said to bealgebraically closedif every finite system of polynomial
inequalities overC has a least solution inC.

The category ofChomsky algebrasconsists of algebraically closed idempotent semirings along with
semiring homomorphisms that preserve least solutions of systems of polynomial inequalities.

The canonical example of a Chomsky algebra is the family of context-free languagesCFX over an
alphabetX. A system of polynomial inequalities (1) can be regarded as context-free grammar, and the
least solution of the system is the context-free language generated by the grammar. For example, the set
of strings in{a,b}⋆ with equally manya’s andb’s is generated by the grammar

S→ ε | aB | bA A→ aS| bAA B→ bS| aBB, (2)

N.B.B. Grathwohl, F. Henglein, D. Kozen 47

which corresponds to the system

1+aB+bA≤ S aS+bAA≤ A bS+aBB≤ B, (3)

where the symbolsa,b are interpreted as the singleton sets{a},{b}, the symbolsS,A,B are variables
ranging over sets of strings, and the semiring operations+, ·, 0, and 1 are interpreted as set union, set
productAB= {xy | x∈ A, y∈ B}, /0, and{ε}, respectively.

2.4 µ-Expressions

Let X be a set of indeterminates. Leiß [13] andÉsik and Leiß [5, 6] considerµ-expressionsdefined by
the grammar

t ::= x | t + t | t · t | 0 | 1 | µx.t

wherex ∈ X. These expressions provide a syntax with which least solutions of polynomial systems
can be named. Scope, bound and free occurrences of variables, α-conversion, and safe substitution are
defined as usual (see e.g. [1]). We denote byt[x/u] the result of substitutingu for all free occurrences of
x in t, renaming bound variables as necessary to avoid capture. Let TX denote the set ofµ-expressions
over indeterminatesX.

Let C be a Chomsky algebra andX a set of indeterminates. Aninterpretation over C is a map
σ : TX →C that is a homomorphism with respect to the semiring operations and such that

σ(µx.t) = the leasta∈C such thatσ [x/a](t) ≤ a, (4)

whereσ [x/a] denotesσ with x rebound toa. The elementa exists and is unique: Informally, eachµ-
expressiont can be associated with a system of polynomial inequalities such thatσ(t) is a designated
component of its least solution, which exists by algebraic closure.

Every set mapσ : X →C extends uniquely to such a homomorphism. An interpretationσ satisfies
the equations= t if σ(s) = σ(t) and satisfies the inequalitys≤ t if σ(s) ≤ σ(t). All interpretations
over Chomsky algebras satisfy the axioms of idempotent semirings, α-conversion (renaming of bound
variables), and thePark axioms

t[x/µx.t] ≤ µx.t t ≤ x ⇒ µx.t ≤ x. (5)

The Park axioms say intuitively thatµx.t is the least solution of the single inequalityt ≤ x. It follows
easily that

t[x/µx.t] = µx.t. (6)

Thus Chomsky algebras are essentially the ordered Parkµ-semirings of [6] with the additional re-
striction that+ is idempotent and the order is the natural orderx≤ y⇔ x+y= y.

2.5 Bekíc’s Theorem

It is well known that the ability to name least solutions of single inequalities withµ gives the ability
to name least solutions of all finite systems of inequalities. This is known as Bekić’s theorem [2]. The
construction is analogous to the definition ofM⋆ for a matrixM over a Kleene algebra.

48 Infinitary Axiomatization of the Equational Theory of Context-Free Languages

Bekić’s theorem can be proved by regarding a system of inequalities as a single inequality on a
Cartesian product, partitioning into two systems of smaller dimension, then applying the result for the
2×2 case inductively. The 2×2 system

p(x,y) ≤ x q(x,y) ≤ y

has least solutiona0,b0, where

a(y) = µx.p(x,y) b0 = µy.q(a(y),y) a0 = a(b0),

as can be shown using the Park axioms (5); see [14] or [6] for a comprehensive treatment.
For example, in the context-free languages, the set of strings in{a,b}⋆ with equally manya’s andb’s

is represented by the term

µS.(1+a·µB.(bS+aBB)+b·µA.(aS+bAA)) (7)

obtained from the system (2) by this construction.

2.6 µ-Continuity

Let nx.t be an abbreviation for then-fold composition oft applied to 0, defined inductively by

0x.t = 0 (n+1)x.t = t[x/nx.t].

A Chomsky algebra is calledµ-continuousif it satisfies theµ-continuity axiom:

a(µx.t)b= ∑
n≥0

a(nx.t)b, (8)

where the summation symbol denotes supremum with respect tothe natural orderx ≤ y ⇔ x+ y = y.
Note that the supremum ofa andb is a+b.

The familyCFX of context-free languages over an alphabetX forms aµ-continuous Chomsky alge-
bra. Thecanonical interpretationover this algebra isLX : TX → CFX, where

LX(x) = {x} LX(t +u) = LX(t)∪LX(u)

LX(0) = /0 LX(tu) = {xy | x∈ LX(t), y∈ LX(u)} (9)

LX(1) = {ε} LX(µx.t) =
⋃

n≥0

LX(nx.t).

UnderLX, every term inTX represents a context-free language over its free variables(note thatx is not
free innx.t). In the example (7) of§2.5, the free variables area,b and the bound variables areS,A,B,
corresponding to the terminal and nonterminal symbols, respectively, of the grammar (2) of§2.3.

2.7 Relation to Other Axiomatizations

In this section we show that the various axiomatizations considered in [5, 6, 13] are valid in allµ-
continuous Chomsky algebras.

A µ-semiring[6] is a semiring(A,+, ·,0,1) satisfying theµ-congruenceandsubstitutionproperties:

t = u⇒ µx.t = µx.u σ(t[y/u]) = σ [y/σ(u)](t).

Idempotence is not assumed.

N.B.B. Grathwohl, F. Henglein, D. Kozen 49

Lemma 2.1. Every Chomsky algebra is aµ-semiring.

Proof. The µ-congruence property is immediate from the definition of theµ operation (4). The substi-
tution property is a general property of systems with variable bindings; see [1, Lemma 5.1.5]. It can be
proved by induction. For the case ofµx.t, we assume without loss of generality thaty 6= x (otherwise
there is nothing to prove) and thatx is not free inu.

σ((µx.t)[y/u]) = σ(µx.(t[y/u]))

= leasta such thatσ [x/a](t[y/u]) ≤ a

= leasta such thatσ [x/a][y/σ(u)](t) ≤ a

= leasta such thatσ [y/σ(u)][x/a](t) ≤ a

= σ [y/σ(u)](µx.t).

We now consider various axioms proposed in [13].

Lemma 2.2. In all µ-continuous Chomsky algebras,

µx.(1+ax) = µx.(1+xa), x 6∈ FV(a).

Proof. By µ-continuity, it suffices to show thatnx.(1+ax) = nx.(1+xa) for all n. We show by induction
that for alln, nx.(1+ax) = nx.(1+xa) = ∑n

i=0 ai . The basisn= 0 is trivial. For the inductive case,

(n+1)x.(1+ax) = 1+a(nx.(1+ax)) = 1+a(∑n
i=0ai) = ∑n+1

i=0 ai ,

and this is equal to(n+1)x.(1+xa) by a symmetric argument.

Lemma 2.3. The following two equations hold in allµ-continuous Chomsky algebras:

a(µx.(1+xb)) = µx.(a+xb) (µx.(1+bx))a = µx.(a+bx).

Proof. We show the first equation only; the second follows from a symmetric argument. Byµ-continuity,
we need only show that the equation holds for anyn. The basisn= 0 is trivial. For the inductive case,

a((n+1)x.(1+xb)) = a+a(nx.(1+xb))b

= a+(nx.(a+xb))b

= (n+1)x.(a+xb),

where the induction hypothesis has been used in the second step.

These properties also show thatµ-continuous Chomsky algebras are algebraically complete semir-
ings in the sense of [5, 6].

Lemma 2.4. TheGreibach inequalities

µx.s(µy.(1+ ry)) ≤ µx.(s+xr) µx.(µy.(1+yr))s≤ µx.(s+ rx)

of KAG [13] hold in all µ-continuous Chomsky algebras.

50 Infinitary Axiomatization of the Equational Theory of Context-Free Languages

Proof. For the left-hand inequality, letu = µx.(s+ xr). By the Park axioms, it suffices to show that
s(µy.(1+ ry))[x/u] ≤ u. But

s(µy.(1+ ry))[x/u] = s[x/u](µy.(1+ r[x/u]y))

= s[x/u](µy.(1+yr[x/u]))

= µy.(s[x/u]+yr[x/u])

= µx.(s+xr),

where Lemmas 2.2 and 2.3 have been used.
The right-hand ineuuality can be proved by a symmetric argument.

Various other axioms of [5, 6, 13] follow from the Park axioms.
Theµ-continuity condition (8) implies the Park axioms (5), but we must defer the proof of this fact

until §3. For now we just observe a related property of the canonicalinterpretationLX.

Lemma 2.5. For any s, t ∈ TX and y∈ X,

LX(s[y/µy.t]) =
⋃

n≥0

LX(s[y/ny.t]).

Proof. We proceed by induction on the structure ofs. The cases for+ and · are quite easy, using the
facts that for chains of sets of stringsA0 ⊆ A1 ⊆ A2 ⊆ ·· · andB0 ⊆ B1 ⊆ B2 ⊆ ·· · ,

⋃

m

Am∪
⋃

n

Bn =
⋃

n

An∪Bn

⋃

m

Am ·
⋃

n

Bn =
⋃

n

AnBn.

The base cases are also straightforward. Forµx.s, assume without loss of generality thaty 6= x andx is
not free int.

LX((µx.s)[y/µy.t]) =
⋃

m

LX((mx.s)[y/µy.t])

=
⋃

m

⋃

n

LX((mx.s)[y/ny.t])

=
⋃

n

⋃

m

LX((mx.s)[y/ny.t])

=
⋃

n

LX((µx.s)[y/ny.t]).

3 Main Results

Our main result depends on an analog of a result of [10] (see [12]). It asserts that the supremum of
a context-free language over aµ-continuous Chomsky algebraK exists, interpreting strings overK as
products inK. Moreover, multiplication is continuous with respect to suprema of context-free languages.

Lemma 3.1. Let σ : TX → K be any interpretation over aµ-continuous Chomsky algebra K. Let
τ : TX → CFX be any interpretation over the context-free languagesCFX such that for all x∈ X and
s,u∈ TX,

σ(sxu) = ∑
y∈τ(x)

σ(syu).

N.B.B. Grathwohl, F. Henglein, D. Kozen 51

Then for any s, t,u∈ TX,

σ(stu) = ∑
y∈τ(t)

σ(syu).

In particular,

σ(stu) = ∑
y∈LX(t)

σ(syu), (10)

where LX is the canonical interpretation defined in§2.6.

Remark1. Note carefully that the lemma does not assumea priori knowledge of the existence of the
suprema. The equations should be interpreted as asserting that the supremum on the right-hand side
exists and is equal to the expression on the left-hand side.

Proof. The proof is by induction on the structure oft, that is by induction on the subexpression relation
t +u≻ t, t +u≻ u, t ·u≻ t, t ·u≻ u,µx.t ≻ nx.t, which is well-founded [11].

All cases are similar to the proof in [12, Lemma 7.1] for star-continuous Kleene algebra, with the
exception of the caset = µx.p.

For variablest = x∈ X, the desired property holds by assumption. For the constants t = 0 andt = 1,

σ(s0u) = 0= ∑ /0= ∑
y∈ /0

σ(syu) = ∑
y∈τ(0)

σ(syu)

σ(s1u) = σ(su) = ∑
y∈{ε}

σ(syu) = ∑
y∈τ(1)

σ(syu).

For sumst = p+q,

σ(s(p+q)u) = σ(spu)+σ(squ)

= ∑
x∈τ(p)

σ(sxu)+ ∑
y∈τ(q)

σ(syu) (11)

= ∑
z∈τ(p)∪τ(q)

σ(szu) (12)

= ∑
z∈τ(p+q)

σ(szu). (13)

Equation (11) is by two applications of the induction hypothesis. Equation (12) is by the properties of
supremum. Equation (13) is by the definition of sum inCFX.

For productst = pq,

σ(spqu) = ∑
x∈τ(p)

∑
y∈τ(q)

σ(sxyu) (14)

= ∑
z∈τ(p)·τ(q)

σ(szu) (15)

= ∑
z∈τ(pq)

σ(szu). (16)

Equation (14) is by two applications of the induction hypothesis. Equations (15) and (16) are by the
definition of product inCFX.

52 Infinitary Axiomatization of the Equational Theory of Context-Free Languages

Finally, for t = µx.p,

σ(s(µx.p)u) = ∑
n

σ(s(nx.p)u) (17)

= ∑
n

∑
y∈τ(nx.p)

σ(syu) (18)

= ∑
y∈⋃nτ(nx.p)

σ(syu) (19)

= ∑
y∈τ(µx.p)

σ(syu). (20)

Equation (17) is just theµ-continuity property (8). Equation (18) is by the inductionhypothesis, ob-
serving thatµx.p≻ nx.p. Equation (19) is a basic property of suprema. Finally, equation (20) is by the
definition ofτ(µx.p) in CFX.

The result (10) for the special case ofτ = LX is immediate, observing thatLX satisfies the assumption
of the lemma: forx∈ X,

σ(sxu) = ∑
y∈{x}

σ(syu) = ∑
y∈LX(x)

σ(syu).

At this point we can show that theµ-continuity condition implies the Park axioms.

Theorem 3.2. Theµ-continuity condition(8) implies the Park axioms(5).

Proof. We first showp≤ x⇒ µx.p≤ x in any idempotent semiring satisfying theµ-continuity condition.
Let σ be a valuation such thatσ(µx.p) = ∑n σ(nx.p). Suppose thatσ(p)≤ σ(x). We show by induction
that for alln≥ 0, σ(nx.p) ≤ σ(x). This is certainly true for 0x.p = 0. Now suppose it is true fornx.p.
Using monotonicity,

σ((n+1)x.p) = σ(p[x/nx.p]) ≤ σ(p[x/x]) = σ(p)≤ σ(x).

By µ-continuity,σ(µx.p) = ∑n σ(nx.p)≤ σ(x).
Now we show thatp[x/µx.p] ≤ µx.p. This requires the stronger property that aµ-expression is

chain-continuous with respect to suprema of context-free languages as a function of its free variables.
Using Lemmas 2.5 and 3.1,

σ(p[x/µx.p]) = ∑ {σ(y) | y∈ LX(p[x/µx.p])}

= ∑
{

σ(y) | y∈
⋃

n

LX(p[x/nx.p])

}

= ∑
n

∑ {σ(y) | y∈ LX(p[x/nx.p])}

= ∑
n

σ(p[x/nx.p])

= ∑
n

σ((n+1)x.p)

= σ(µx.p).

N.B.B. Grathwohl, F. Henglein, D. Kozen 53

The following is our main theorem.

Theorem 3.3. Let X be an arbitrary set and let s, t ∈ TX. The following are equivalent:

(i) The equation s= t holds in all µ-continuous Chomsky algebras; that is, s= t is a logical conse-
quence of the axioms of idempotent semirings and theµ-continuity condition

a(µx.t)b= ∑
n≥0

a(nx.t)b, (21)

or equivalently, the universal formulas

a(nx.t)b≤ a(µx.t)b, n≥ 0 (22)
(
∧

n≥0

(a(nx.t)b≤ w)

)
⇒ a(µx.t)b≤ w. (23)

(ii) The equation s= t holds in the semiring of context-free languagesCFY over any set Y .

(iii) LX(s) = LX(t), where LX : TX → CFX is the standard interpretation mapping aµ-expression to
a context-free language of strings over its free variables.

Thus the axioms of idempotent semirings andµ-continuity are sound and complete for the equational
theory of the context-free languages.

Proof. The implication (i)⇒ (ii) holds sinceCFY is a µ-continuous Chomsky algebra, and (iii) is a
special case of (ii). Finally, if (iii) holds, then by two applications of Lemma 3.1, for any interpretation
σ : TX → K over aµ-continuous Chomsky algebraK,

σ(s) = ∑
x∈LK (s)

σ(x) = ∑
x∈LK (t)

σ(x) = σ(t),

which proves (i).

Theorem 3.4. The context-free languages over the alphabet X form the freeµ-continuous Chomsky
algebra on generators X.

Proof. Let K be aµ-continuous Chomsky algebra. Any mapσ : X → K extends uniquely to an interpre-
tationσ : TX → K. By Lemma 3.1, this decomposes as

σ = ∑◦CFσ ◦LX,

whereLX : TX → CFX is the canonical interpretation in the context-free languages overX, CFσ :
CFX → CFK is the mapCFσ(A) = {σ(x) | x∈ A}, and∑ : CFK → K takes the supremum of a context-
free language overK, which is guaranteed to exist by Lemma 3.1. The unique morphism CFX → K
corresponding toσ is ∑ ◦CFσ . ThusCF is left adjoint to the forgetful functor fromµ-continuous
Chomsky algebras toSet. The mapsx 7→ {x} : X → CFX and∑ : CFK → K are the unit and counit,
respectively, of the adjunction.

54 Infinitary Axiomatization of the Equational Theory of Context-Free Languages

4 Conclusion

We have given a natural complete infinitary axiomatization of the equational theory of the context-free
languages. Leiß [13] states as an open problem:

Are there natural equations betweenµ-regular expressions that are valid in all continuous
models ofKAF, but go beyondKAG?

We have identified such a system in this paper, thereby answering Leiß’s question. He does not state
axiomatization as an open problem, but observes that the setof pairs of equivalent context-free grammars
is not recursively enumerable, then goes on to state:

Since there is an effective translation between context-free grammars andµ–regular expres-
sions . . . , the equational theory of context-free languagesin terms ofµ-regular expressions
is not axiomatizable at all.

Nevertheless, we have given an axiomatization. How do we reconcile these two views? Leiß is apparently
using “axiomatization” in the sense of “recursive axiomatization.” But observe that the axiom (23) is an
infinitary Horn formula. To use it as a rule of inference, one would need to establish infinitely many
premises of the formx(ny.p)z≤ w. But this in itself is aΠ0

1-complete problem. One can show that it is
Π0

1-complete to determine whether a given context-free grammar G over a two-letter alphabet generates
all strings. By codingG as aµ-expressionw, the problem becomesµx.(1+ax+bx) ≤ w, which by (21)
is equivalent to showing thatnx.(1+ax+bx) ≤ w for all n.

Acknowledgments

We thank ZoltánÉsik, Hans Leiß, and the anonymous referees for helpful comments. The DIKU-
affiliated authors express their thanks to the Department ofComputer Science at Cornell University
for hosting them in the Spring 2013 and to the Danish Council for Independent Research for financial
support for this work under Project 11-106278, “Kleene Meets Church (KMC): Regular Expressions and
Types”.

References

[1] Henk Barendregt (1984):The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the Foun-
dations of Mathematics103, North-Holland.

[2] Hans Bekić (1984):Definable operations in general algebras, and the theory of automata and flowcharts. In
C.B. Jones, editor:Programming Languages and Their Definition, Lecture Notes in Computer Science177,
Springer Berlin Heidelberg, pp. 30–55, doi:10.1007/BFb0048939.

[3] Bruno Courcelle (1986): Equivalences and Transformations of Regular Systems – Applications
to Recursive Program Schemes and Grammars. Theoretical Computer Science42, pp. 1–122,
doi:10.1016/0304-3975(86)90050-2.

[4] Zoltán Ésik & Werner Kuich (2007):Modern automata theory. Unpublished manuscript.

[5] ZoltánÉsik & Hans Leiß (2002):Greibach Normal Form in Algebraically Complete Semirings. In: CSL ’02:
Proceedings of the 16th International Workshop and 11th Annual Conference of the EACSL on Computer
Science Logic, Springer-Verlag, London, UK, pp. 135–150, doi:10.1007/3-540-45793-310.

[6] Zoltán Ésik & Hans Leiß (2005):Algebraically Complete Semirings and Greibach Normal Form. Annals of
Pure and Applied Logic133, pp. 173–203, doi:10.1016/j.apal.2004.10.008.

N.B.B. Grathwohl, F. Henglein, D. Kozen 55

[7] Jozef Gruska (1971):A characterization of context-free languages. J. Comput. Syst. Sci.5(4), pp. 353–364,
doi:10.1016/S0022-0000(71)80023-5.

[8] Mark Hopkins (2008): The Algebraic Approach I: The Algebraization of the ChomskyHierarchy. In
R. Berghammer, B. Möller & G. Struth, editors:Proc. 10th Int. Conf. Relational Methods in Computer Sci-
ence and 5th Int. Conf. Applications of Kleene Algebra (RelMiCS/AKA 2008), Lecture Notes in Computer
Science4988, Springer-Verlag, Berlin Heidelberg, pp. 155–172, doi:10.1007/978-3-540-78913-013.

[9] Mark Hopkins (2008):The Algebraic Approach II: Dioids, Quantales and Monads. In R. Berghammer,
B. Möller & G. Struth, editors:Proc. 10th Int. Conf. Relational Methods in Computer Science and 5th Int.
Conf. Applications of Kleene Algebra (RelMiCS/AKA 2008), Lecture Notes in Computer Science4988,
Springer-Verlag, Berlin Heidelberg, pp. 173–190, doi:10.1007/978-3-540-78913-014.

[10] Dexter Kozen (1981):On Induction vs. *-Continuity. In: Proc. Logics of Programs, Lecture Notes in Com-
puter Science (LNCS)131, Springer, pp. 167–176, doi:10.1007/BFb0025769.

[11] Dexter Kozen (1983):Results on the propositional [mu]-calculus. Theoretical Computer Science27(3), pp.
333 – 354, doi:10.1016/0304-3975(82)90125-6.

[12] Dexter Kozen (1991): The Design and Analysis of Algorithms. Springer-Verlag, New York,
doi:10.1007/978-1-4612-4400-4.

[13] Hans Leiß (1992):Towards Kleene Algebra with Recursion. In: CSL ’91: Proceedings of the 5th Workshop
on Computer Science Logic, Springer-Verlag, London, UK, pp. 242–256, doi:10.1007/BFb0023771.

[14] Glynn Winskel (1993):The Formal Semantics of Programming Languages. MIT Press.

D. Baelde and A. Carayol (Eds.): Fixed Points
in Computer Science 2013 (FICS 2013)
EPTCS 126, 2013, pp. 56–71, doi:10.4204/EPTCS.126.5

c© E. Matsikoudis & E. A. Lee

The Fixed-Point Theory of Strictly Contracting Functions on
Generalized Ultrametric Semilattices∗

Eleftherios Matsikoudis
University of California, Berkeley

ematsi@eecs.berkeley.edu

Edward A. Lee
University of California, Berkeley

eal@eecs.berkeley.edu

We introduce a new class of abstract structures, which we call generalized ultrametric semilattices,
and in which the meet operation of the semilattice coexists with a generalized distance function in a
tightly coordinated way. We prove a constructive fixed-point theorem for strictly contracting func-
tions on directed-complete generalized ultrametric semilattices, and introduce a corresponding in-
duction principle. We cite examples of application in the semantics of logic programming and timed
computation, where, until now, the only tool available has been the non-constructive fixed-point the-
orem of Priess-Crampe and Ribenboim for strictly contracting functions on spherically complete
generalized ultrametric semilattices.

1 Introduction

Fixed-point semantics in computer science has almost invariably been based on the fixed-point theory
of order-preserving functions on ordered sets, or that of contraction mappings on metric spaces. More
recently, however, there have been instances of fixed-point problems involving strictly contracting func-
tions on generalized ultrametric spaces, such as in the semantics of logic programming (e.g., see [6],
[19]), or the study of timed systems (e.g., see [17], [11]), that are not amenable to classical methods
(see [15, thm. A.2 and thm. A.4]). Until recently, the only tool available for dealing with such problems
was a non-constructive fixed-point theorem of Priess-Crampe and Ribenboim (see [18]). But in [15], a
constructive theorem was obtained, tailored to the general form in which these problems typically ap-
pear in computer science, also delivering an induction principle for proving properties of the constructed
fixed-points. What is interesting is that the proof of that theorem involved, not just the generalized ultra-
metric structure of the spaces of interest, but also a natural, inherent ordering of these spaces, and more
importantly, the interplay between the two, which was distilled in two simple properties of the following
form:

1. if d(x1,x2)≤ d(x1,x3), then x1u x3 v x1u x2 ;

2. d(x1u x2,x1u x3)≤ d(x2,x3).

As it turns out, these two simple properties imply all formal properties of the relationship between the
generalized distance function and the order relation in those spaces (see [14]).

The purpose of this work is to formulate the fixed-point theory of [15] as an abstract theory that can
be readily applied to different fields and problems, such as the question of meaning of logic programs
or the study of feedback in timed systems. To this end, we introduce a new class of abstract structures,

∗This work was supported in part by the Center for Hybrid and Embedded Software Systems (CHESS) at UC Berkeley,
which receives support from the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET), #0931843 (CPS:
Large: ActionWebs), and #1035672 (CPS: Medium: Ptides)), the Naval Research Laboratory (NRL #N0013-12-1-G015), and
the following companies: Bosch, National Instruments, and Toyota.

E. Matsikoudis & E. A. Lee 57

which we call generalized ultrametric semilattices, prove a constructive fixed-point theorem of strictly
contracting functions on directed-complete generalized ultrametric semilattices, and introduce a corre-
sponding induction principle.

2 Generalized Ultrametric Semilattices

We assume that the reader is familiar with the concept of many-sorted signature, which is, of course, a
straightforward generalization of that in the one-sorted case (e.g., see [7, chap. 1.1]).

We write Σ for a two-sorted signature consisting of two sorts A and D, and the following symbols:

1. an infix function symbol u of type A×A→ A;

2. an infix relation symbol ≤ of type D×D;

3. a constant symbol 0 of type 1→ D;

4. a function symbol d of type A×A→ D.

Definition 2.1. A Σ-structure is a function A from the set of sorts and symbols of Σ such that A(A) and
A(D) are non-empty sets, and the following are true:

1. A(u) is a function from A(A)×A(A) to A(A);

2. A(≤) is a subset of A(D)×A(D);

3. A(0) is a member of A(D);

4. A(d) is a function from A(A)×A(A) to A(D).

Assume a Σ-structure A.
We write |A|A for A(A), |A|D for A(D), uA for A(u), ≤A for A(≤), 0A for A(0), and dA for A(d).
We call |A|A the carrier of A of sort A, or the abstract set of A, and |A|D the carrier of A of sort D,

or the distance set of A.
It is, of course, possible to define concepts of homomorphism, substructure, etc., for Σ-structures as

instances of the standard concepts homomorphism, substructure, etc., for many-sorted structures, which
are, of course, straightforward generalizations of those for one-sorted structures (e.g., see [7, chap. 1.2])
(see [14]).

The Σ-structures that we are interested in are those in which the function assigned to u behaves as
the meet operation of a semilattice, the function assigned to d as the generalized distance function of a
generalized ultrametric space, and the two satisfy a couple of simple properties.

Definition 2.2. A generalized ultrametric semilattice is a Σ-structure A such that the following are true:

1. 〈|A|A,uA〉 is a semilattice1;

2. 〈|A|D,≤A,0A〉 is a pointed2 ordered set;

1 For every set S, and every binary operation u on S, 〈S,u〉 is a semilattice if and only if for any s1,s2,s3 ∈ S, the following
are true:

(a) (s1u s2)u s3 = s1u (s2u s3);
(b) s1u s2 = s2u s1;
(c) s1u s1 = s1.

2 An ordered set3 is pointed if and only if it has a least element. We write 〈P,6,0〉 for a pointed ordered set 〈P,6〉 with least
element 0.

3 An ordered set is an ordered pair 〈P,6〉 such that P is a set, and 6 is a reflexive, transitive, and antisymmetric binary
relation on P.

58 The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices

3. 〈|A|A, |A|D,≤A,0A,dA〉 is a generalized ultrametric space4;

4. for every a1,a2,a3 ∈ |A|A, the following are true:

(a) if dA(a1,a2)≤A dA(a1,a3), then (a1uA a3)uA (a1uA a2) = a1uA a3;
(b) dA(a1uA a2,a1uA a3)≤A dA(a2,a3).

Notice that, in Definition 2.2.1, a semilattice is viewed as an algebraic structure. For the most part, it
will be more convenient to view a semilattice as an ordered set.5 The two views are closely connected,
and one may seamlessly switch between them (e.g., see [3, lem. 2.8]). Formally, it is simpler to work
with a meet operation than with an order relation (see [14]). But informally, we will recover the order
relation from the meet operation, and for every a1,a2 ∈ |A|A, write a1 vA a2 if and only if a1uA a2 = a1.
In particular, we may rewrite Definition 2.2.4 in the following form:

4. for every a1,a2,a3 ∈ |A|A, the following are true:

(a) if dA(a1,a2)≤A dA(a1,a3), then a1uA a3 vA a1uA a2;
(b) dA(a1uA a2,a1uA a3)≤A dA(a2,a3).

Of course, all this can be done formally, but we shall not worry ourselves over the details.
For notational convenience, we will informally write @A for the irreflexive part of vA, and <A for

the irreflexive part of ≤A.
Assume a generalized ultrametric semilattice A.
We say that A is directed-complete if and only if 〈|A|,vA〉 is directed-complete6.
If A is directed-complete, then for every D ⊆ |A|A that is directed in 〈|A|A,vA〉, we write

⊔AD for
the least upper bound of D in 〈|A|A,vA〉.

We say that A is spherically complete if and only if 〈|A|A, |A|D,≤A,0A,dA〉 is spherically complete8.
The paradigmatic example of a generalized ultrametric semilattice is the standard generalized ul-

trametric semilattice S[〈T,≤T 〉,V] of all linear signals from some totally ordered set 〈T,≤T 〉 to some
non-empty set V (see [14]). Indeed, the definition of generalized ultrametric semilattices was motivated
by the fact that every generalized ultrametric semilattice with a totally ordered distance set is isomorphic
to a standard generalized ultrametric semilattice of linear signals (see [14, thm. 2]).

An example of a non-standard generalized ultrametric semilattice of linear signals is the set of all fi-
nite and infinite sequences over some non-empty set of values, equipped with the standard prefix relation
and the so-called “Baire-distance function” (e.g., see [1]).

4 A generalized ultrametric space is a quintuple 〈A,P,6,0,d〉 such that A is a set, 〈P,6,0〉 is a pointed ordered set, d is a
function from A×A to P, and for any a1,a2,a3 ∈ A and every p ∈ P, the following are true:

(a) d(a1,a2) = 0 if and only if a1 = a2;
(b) d(a1,a2) = d(a2,a1);
(c) if d(a1,a2)6 p and d(a2,a3)6 p, then d(a1,a3)6 p.

We refer to clause 3a as the identity of indiscernibles, clause 3b as symmetry, and clause 3c as the generalized ultrametric
inequality.

5 An ordered set 〈P,6〉 is a semilattice (also called a meet-semilattice or a lower semilattice) if and only if for any p1, p2 ∈ P,
there is a greatest lower bound (also called a meet) of p1 and p2 in 〈P,6〉.

6 An ordered set 〈P,6〉 is directed-complete if and only if every subset of P that is directed7 in 〈P,6〉 has a least upper
bound in 〈P,6〉.

7 For every ordered set 〈P,6〉, and every D⊆ P, D is directed in 〈P,6〉 if and only if D 6= /0, and every finite subset of D has
an upper bound in 〈D,6D〉, where 6D is the restriction of 6 to D.

8 A generalized ultrametric space 〈A,P,6,0,d〉 is spherically complete if and only if for every non-empty chain C of balls9

in 〈A,P,6,0,d〉, ⋂C 6= /0.
9 For every generalized ultrametric space 〈A,P,6,0,d〉, and every B ⊆ A, B is a ball in 〈A,P,6,0,d〉 if and only if there is

a ∈ A and p ∈ P such that B = {a′ ∈ A | d(a′,a)6 p}.

E. Matsikoudis & E. A. Lee 59

Example 2.3. Let V be a non-empty set.
Let A be a Σ-structure such that |A|A is the set of all finite and infinite sequences over V , |A|D =

R≥0,10 and the following are true:

1. uA is a binary operation on |A|A such that for every s1,s2 ∈ |A|A, s1uA s2 is the greatest common
prefix of s1 and s2;

2. ≤A is the standard order on R≥0;

3. 0A = 0;

4. dA is a function from |A|A×|A|A to |A|D such that for every s1,s2 ∈ |A|A,

dA(s1,s2) =

{
0 if s1 = s2;
2−min{n|n ∈ N and s1(n) 6' s2(n)} otherwise.11

It is easy to verify that A is a directed-complete and spherically complete generalized ultrametric
semilattice.

Notice that the generalized ultrametric space associated with the generalized ultrametric semilattice
A of Example 2.3 is a standard ultrametric space. In such a case, we may omit the term “generalized”,
and speak simply of an ultrametric semilattice.

Another example of a non-standard ultrametric semilattice of linear signals, one that is of particular
interest to the study of timed computation, is the set of all discrete-event12 real-time signals over some
non-empty set of values, equipped with the standard prefix relation and the so-called “Cantor metric”
(e.g., see [10], [9]).
Example 2.4. Let V be a non-empty set.

Let A be a Σ-structure such that |A|A is the set of all discrete-event signals from 〈R,≤R〉 to V ,13

|A|D = R≥0, and the following are true:

1. uA is a binary operation on |A|A such that for every s1,s2 ∈ |A|A, s1uA s2 is the greatest common
prefix of s1 and s2;

2. ≤A is the standard order on R≥0;

3. 0A = 0;

4. dA is a function from |A|A×|A|A to |A|D such that for every s1,s2 ∈ |A|A,

dA(s1,s2) =

{
0 if s1 = s2;
2−min{r|r ∈ R and s1(r) 6' s2(r)} otherwise.

Notice that since the domain of every signal in |A|A is well ordered by ≤R, for every s1,s2 ∈ |A|A,
{r | r ∈ R and s1(r) 6' s2(r)} is also well ordered by ≤R, and thus, min{r | r ∈ R and s1(r) 6' s2(r)} is
well defined.

It is easy to verify that A is a directed-complete and spherically complete ultrametric semilattice.

10 We write R≥0 for the set of all non-negative real numbers.
11 We write N for the set of all natural numbers, and ≤N for the standard order on N.
12 A signal s from 〈T,≤T 〉 to V is discrete-event if and only if there is an order-embedding of 〈doms,≤doms〉 into 〈N,≤N〉,

where ≤doms is the restriction of ≤T to doms.
13 We write R for the set of all real numbers, and ≤R for the standard order on R.

60 The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices

Finally, we include an example from the field of logic programming. We assume familiarity with the
basic concepts of logic programming (e.g., see [12]). Our notation is based on [6].
Example 2.5. Let P be a normal logic program.

Let α be a non-empty countable ordinal, and l a function from HP, the Herbrand base of P, to α .
Let A be a Σ-structure such that |A|A is the set of all subsets of HP, |A|D =α∪{α}, and the following

are true:

1. uA is a binary operation on |A|A such that for every I1, I2 ∈ |A|A,

I1uA I2 = {A | A ∈ I1, A ∈ I2, and for every A′ such that l(A′) ∈ l(A) or l(A′) = l(A), A′ ∈ I1
if and only if A′ ∈ I2};

2. ≤A is a binary relation on |A|D such that for every β ,γ ∈ |A|D,

β ≤A γ ⇐⇒ γ ∈ β or β = γ .

3. 0A = α;

4. dA is a function from |A|A×|A|A to |A|D such that for every I1, I2 ∈ |A|A,

dA(I1, I2) = {β | β ∈ α , and for every A such that l(A′) ∈ β or l(A′) = β , A′ ∈ I1 if and only if
A′ ∈ I2}.

Let ≤a be a binary relation on α such that for every β ,γ ∈ α ,

β ≤a γ ⇐⇒ β ∈ γ or β = γ .

Clearly, 〈α,≤α〉 is an ordered set.
It is easy to verify that A is a directed-complete and spherically complete generalized ultrametric

semilattice.

3 Contracting and Strictly Contracting Functions

Assume a function F on A.
We say that F is contracting if and only if for every a1,a2 ∈ |A|A,

dA(F(a1),F(a2))≤A dA(a1,a2).

In other words, a function is contracting just as long as the generalized distance between any two
elements in the range of the function is smaller than or equal to that between the elements in the domain
of the function that map to them. Notice that, because≤A is not necessarily a total order, this is different,
in general, from the generalized distance between any two elements in the domain of the function being
no bigger than that between the elements in the range of the function that those map to, which is why we
have opted for the term “contracting” over the term “non-expanding”.

We say that F is strictly contracting if and only if for every a1,a2 ∈ |A|A such that a1 6= a2,

dA(F(a1),F(a2))<
A dA(a1,a2).

The following is immediate:

E. Matsikoudis & E. A. Lee 61

Proposition 3.1. If F is strictly contracting, then F is contracting.

To return to Example 2.4, the contracting and strictly contracting functions on the generalized ultra-
metric semilattice of all discrete-event real-time signals over V are exactly the causal and strictly causal
functions respectively on such signals (see [15], [16]). And in the case of Example 2.5, if the normal
logic program P is a so-called “locally hierarchical” program, then the level mapping l can be chosen so
that P can be modelled as a strictly contracting function on A (see [6]).

Now, contracting functions need not have fixed points (e.g., see [15, exam. 3.4]). But what about
strictly contracting functions?

Proposition 3.2. If F is strictly contracting, then F has at most one fixed point.

Proof. Suppose that F is strictly contracting.
Suppose, toward contradiction, that a1 and a2 are two distinct fixed points of F . Then

dA(F(a1),F(a2)) = dA(a1,a2),

obtaining a contradiction.
Thus, F has at most one fixed point.

Theorem 3.3. If A is spherically complete, then every strictly contracting function on A has exactly one
fixed point.

Theorem 3.3 follows immediately from the fixed-point theorem of Priess-Crampe and Ribenboim for
strictly contracting functions on spherically complete generalized ultrametric spaces (see [18, thm. 1]),
which is sometimes, and perhaps a little too liberally, referred to as a generalization of the Banach Fixed-
Point Theorem. The following, which follows immediately from another theorem of Priess-Crampe and
Ribenboim (e.g., see Banach’s Fixed Point Theorem in [23]), justifies the use of the stronger property of
spherical completeness in place of the standard property of Cauchy-completeness used in the latter:

Theorem 3.4. If 〈|A|D,≤A〉 is totally ordered, then A is spherically complete if and only if every strictly
contracting function on A has a fixed point.

Note that the hypothesis of 〈T,�〉 being totally ordered in Theorem 3.4 cannot be discarded (see [15,
thm. 5.5 and exam. 5.8]).

4 Fixed-Point Theory

We now develop the rudiments of a constructive fixed-point theory for strictly contracting functions.

4.1 Existence

We start by proving another fixed-point existence result for strictly contracting functions, which is similar
to Theorem 3.3, but has a different premise. The proof is more like Naundorf’s proof in [17], but, as also
possible in the case of the existence part of Theorem 3.3 (see [18, p. 229]), our main theorem applies to
a more general type of function.

Assume a function F on A.
We say that F is strictly contracting on orbits if and only if for every a ∈ |A|A such that a 6= F(a),

dA(F(a),F(F(a)))<A dA(a,F(a)).

62 The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices

In other words, F is strictly contracting on orbits just as long as the generalized distance between
every two successive elements in the orbit14 of every a ∈ |A|A under F gets smaller and smaller along
the orbit.

The following is immediate:

Proposition 4.1. If F is strictly contracting, then F is strictly contracting on orbits.

Theorem 4.2. If A is directed-complete, then every contracting function on A that is strictly contracting
on orbits has a fixed point.

Before we embark on the proof of the theorem, we prove two important lemmas that will be useful
throughout this section.

For every function F on A, and every a ∈ |A|A, we say that a is a post-fixed point of F if and only if
avA F(a).

Lemma 4.3. For every contracting function F on A, and every a ∈ |A|A, the following are true:

1. F(a)uA F(F(a)) is a post-fixed point of F;

2. if a is a post-fixed point of F, then avA F(a)uA F(F(a)).

Proof. Assume a contracting function F on A, and a ∈ |A|A.
Since F is contracting, by Definition 2.2.4b,

dA(F(F(a)uA F(F(a))),F(F(a)))≤A dA(F(a)uA F(F(a)),F(a))

= dA(F(a)uA F(F(a)),F(a)uA F(a))

≤A dA(F(a),F(F(a))),

and thus, by Definition 2.2.4a,

F(a)uA F(F(a))vA F(F(a)uA F(F(a)))uA F(F(a))

vA F(F(a)uA F(F(a))).

Thus, 1 is true.
Suppose that avA F(a).
Since F is contracting,

dA(F(a),F(F(a)))≤A dA(a,F(a)),

and thus, by Definition 2.2.4a,
auA F(a)vA F(a)uA F(F(a)).

And since avA F(a), auA F(a) = a, and thus,

avA F(a)uA F(F(a)).

Thus, 2 is true.

Lemma 4.4. For every contracting function F on A, and any set P of post-fixed points of F, if P has a
least upper bound in 〈|A|A,vA〉, then

⊔AP is a post-fixed point of F.

14 For every set A, every function f on A, and any a ∈ A, the orbit of a under f is the sequence 〈 f n(a) | n ∈ ω〉.

E. Matsikoudis & E. A. Lee 63

Proof. Assume a contracting function F on A, and a set P of post-fixed points of F that has a least upper
bound in 〈|A|A,vA〉.

Assume a ∈ P.
Since F is contracting,

dA(F(a),F(
⊔AP))≤A dA(a,

⊔AP). (1)

By Definition 2.2.4b and (1),

dA((
⊔AP)uA F(a),(

⊔AP)uA F(
⊔AP))≤A dA(a,

⊔AP). (2)

Also, since a is a post-fixed point of F , by Definition 2.2.4b,

dA(a,(
⊔AP)uA F(a)) = dA(F(a)uA a,F(a)uA⊔AP)

≤A dA(a,
⊔AP). (3)

By (2), (3), and the generalized ultrametric inequality,

dA(a,(
⊔AP)uA F(

⊔AP))≤A dA(a,
⊔AP).

Then, by the generalized ultrametric inequality,

dA(
⊔AP,(

⊔AP)uA F(
⊔AP))≤A dA(a,

⊔AP),

and thus, by Definition 2.2.4a,

auA⊔APvA (
⊔AP)uA (⊔AP)uA F(

⊔AP)

= (
⊔AP)uA F(

⊔AP).

However, since a ∈ P, avA ⊔AP, and thus, auA⊔AP = a. Thus,

avA (
⊔AP)uA F(

⊔AP)

vA F(
⊔AP).

Thus, by generalization, F(
⊔AP) is an upper bound of P in 〈|A|A,vA〉. And since

⊔AP is the least
upper bound of P in 〈|A|A,vA〉, ⊔APvA F(

⊔AP). Thus,
⊔AP is a post-fixed point of F .

Proof of Theorem 4.2. Suppose that A is directed-complete.
Assume a contracting function F on A that is strictly contracting on orbits.
Let P = {a | a is a post-fixed point of F}.
Let a be a member of |A|A.
By Lemma 4.3.1,

F(a)uA F(F(a))vA F(F(a)uA F(F(a))),

and thus, P 6= /0. Then, by Kuratowski’s Lemma (see [3, sec. 10.2]), every chain in 〈P,vA〉 is contained
in a ⊂-maximal chain in 〈P,vA〉.

Let C be a ⊂-maximal chain in 〈P,vA〉.
Since A is directed-complete, C has a least upper bound in 〈|A|A,vA〉.
We claim that

⊔AC is a fixed point of F .
Suppose, toward contradiction, that

⊔AC is not a fixed point of F .

64 The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices

Let x = F(
⊔AC)uA F(F(

⊔AC)).
By Lemma 4.4,

⊔AC vA F(
⊔AC), and thus, by Lemma 4.3.2,

⊔AC vA x.
Suppose, toward contradiction, that

⊔AC = x. Since F is strictly contracting on orbits, and
⊔AC is

not a fixed point of F ,

dA(F(
⊔AC),F(F(

⊔AC)))<A dA(
⊔AC,F(

⊔AC)). (4)

However, since x = F(
⊔AC)uA F(F(

⊔AC)) and
⊔AC = x, by Definition 2.2.4b,

dA(
⊔AC,F(

⊔AC)) = dA(F(
⊔AC),

⊔AC)

= dA(F(
⊔AC),F(

⊔AC)uA F(F(
⊔AC)))

= dA(F(
⊔AC)uA F(

⊔AC),F(
⊔AC)uA F(F(

⊔AC)))

≤A dA(F(
⊔AC),F(F(

⊔AC))),

contrary to (4).
Therefore,

⊔AC@A x. Thus, x 6∈C. And by Lemma 4.3.1, xvA F(x), and thus, x ∈ P. Thus, C∪{x}
is a chain in 〈P,vA〉, and C ⊂C∪{x}, contrary to C being a ⊂-maximal chain in 〈P,vA〉.

Therefore,
⊔AC is a fixed point of F .

There are two things to notice here. First, the proof of Theorem 4.2 is inherently non-constructive,
overtly appealing to the Axiom of Choice through the use of Kuratowski’s Lemma. And second, there
need not be only one fixed point; indeed, the identity function on A is trivially causal and strictly con-
tracting on orbits, yet every element is a fixed point of it.

The following is immediate from Proposition 3.1, 3.2, and 4.1, and Theorem 4.2:

Theorem 4.5. If A is directed-complete, then every strictly contracting function on A has exactly one
fixed point.

If A is directed-complete, then for every strictly contracting function F on A, we write fixF for the
unique fixed point of F .

The following is immediate from Theorem 3.4 and 4.5:

Corollary 4.6. If 〈|A|D,≤A〉 is totally ordered, then if A is directed-complete, then A is spherically
complete.

We note that the hypothesis of 〈T,�〉 being totally ordered in Corollary 4.6 cannot be discarded (see
[15, exam. 5.8]). As a consequence, Theorem 3.3 and 4.5 are incomparable with respect to deduction;
that is, one cannot deduce Theorem 4.5 from Theorem 3.3, nor Theorem 3.3 from Theorem 4.5.

4.2 Construction

Although theoretically pleasing, mere existence of fixed points is practically moot. Theorem 4.2 and 4.5,
just like Theorem 3.3, offer little if no means of deductive reasoning about the fixed points ascertained
to exist.

But how are we to construct these fixed points? Theorem A.2 and A.4 in [15] seem to render standard
fixed-point theories of ordered sets and metric spaces more or less irrelevant. At the same time, it may
well be that the relevant fixed-point theorem of Priess-Crampe and Ribenboim is independent of the

E. Matsikoudis & E. A. Lee 65

theory of generalized ultrametric spaces in the classical Zermelo-Fraenkel set theory without choice,
thus lacking a constructive proof altogether.15

The answer lies in the non-constructive proof of Theorem 4.2. Indeed, the proof contains all the
ingredients of a transfinite recursion facilitating the construction of a chain that may effectively substitute
for the maximal one only asserted to exist therein by an appeal to Kuratowski’s Lemma. We may start
with any arbitrary post-fixed point of the function F , and iterate through the function λa : |A|A . F(a)uA
F(F(a)) to form an ascending chain of such points. Every so often, we may take the supremum of all
post-fixed points theretofore constructed, and resume the process therefrom, until no further progress
can be made. Of course, the phrase “every so often” is to be interpreted rather liberally here, and certain
groundwork is required before we can formalize its transfinite intent.

We henceforth assume some familiarity with transfinite set theory, and in particular, ordinal numbers.
The unversed reader may refer to any introductory textbook on set theory for details (e.g., see [4]).

We write 1m2AF for a function on A, such that for any a ∈ |A|A,

(1m2AF)(a) = F(a)uA F(F(a)).

In other words, 1m2AF is the function λa : |A|A . F(a)uA F(F(a)).
Assume a post-fixed point a of F .
We let

(1m2AF)
0
(a) = a,

for every ordinal α ,
(1m2AF)

α+1
(a) = (1m2AF)((1m2AF)

α
(a)),

and for every limit ordinal λ ,

(1m2AF)
λ
(a) =

⊔A{(1m2AF)
α
(a) | α ∈ λ}.

The following implies that for every ordinal α , (1m2AF)
α
(a) is well defined:

Lemma 4.7. If A is directed-complete, then for every contracting function F on A, any post-fixed point
a of F, and every ordinal α ,

1. (1m2AF)
α
(a)vA F((1m2AF)

α
(a));

2. for any β ∈ α , (1m2AF)
β
(a)vA (1m2AF)

α
(a).

Proof. Suppose that A is directed-complete.
Assume a contracting function F on A, a post-fixed point a of F , and an ordinal α .
We use transfinite induction on the ordinal α to jointly prove that 1 and 2 are true.
If α = 0, then (1m2AF)

α
(a) = a. Thus, 1 is trivially true, whereas 2 is vacuously true.

Suppose that there is an ordinal β such that α = β +1.
Then

(1m2AF)
α
(a) = (1m2AF)((1m2AF)

β
(a))

= F((1m2AF)
β
(a))uA F(F((1m2AF)

β
(a))). (5)

15 A purportedly constructive proof for the fixed-point theorem of Priess-Crampe and Ribenboim under the hypothesis of a
totally ordered set of distances was presented in [5, thm. 1.3.9]. However, the proof covertly appeals to the Axiom of Choice
through a potentially transfinite sequence of choices.

66 The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices

Thus, by Lemma 4.3.1, 1 is true.
For every γ ∈ α , either γ = β , or γ ∈ β , and thus, by the induction hypothesis,

(1m2AF)
γ
(a)vA (1m2AF)

β
(a). (6)

Also, by the induction hypothesis,

(1m2AF)
β
(a)vA F((1m2AF)

β
(a)).

Thus, by Lemma 4.3.2 and (5),

(1m2AF)
β
(a)vA F((1m2AF)

β
(a))uA F(F((1m2AF)

β
(a)))

= (1m2AF)
α
(a). (7)

And by (6) and (7), (1m2AF)
γ
(a)vA (1m2AF)

α
(a). Thus, 2 is true.

Otherwise, α is a limit ordinal. By the induction hypothesis, 〈{(1m2AF)
β
(a) | β ∈ α},vA〉 is to-

tally ordered, and thus, {(1m2AF)
β
(a) | β ∈ α} is directed in 〈|A|A,vA〉. And since A is directed-

complete, {(1m2AF)
β
(a) | β ∈ α} has a least upper bound in 〈|A|A,vA〉, and

(1m2AF)
α
(a) =

⊔A{(1m2AF)
β
(a) | β ∈ α}.

Thus, 2 is trivially true.

By the induction hypothesis, for every β ∈ α , (1m2AF)
β
(a) vA F((1m2AF)

β
(a)). Thus, by

Lemma 4.4, 1 is true.

By Lemma 4.7.2, and a simple cardinality argument, there is an ordinal α such that for every ordinal
β such that α ∈ β , (1m2AF)

β
(a) = (1m2AF)

α
(a). In fact, there is a least ordinal α such that for

every contracting function F on A, any post-fixed point a of F , and every ordinal β such that α ∈ β ,
(1m2AF)

β
(a) = (1m2AF)

α
(a).

We write ohA for the least ordinal α such that there is no function ϕ from α to |A|A such that for
every β ,γ ∈ α , if β ∈ γ , then ϕ(β)@A ϕ(γ).

In other words, ohA is the least ordinal that cannot be orderly embedded in 〈|A|A,vA〉, which we
may think of as the ordinal height of A. Notice that the Hartogs number of |A|A is an ordinal that cannot
be orderly embedded in 〈|A|A,vA〉, and thus, ohA is well defined, and in particular, smaller than or
equal to the Hartogs number of |A|A.

Lemma 4.8. If A is directed-complete, then for every contracting function F on A, any post-fixed point
a of F, and every ordinal α , if (1m2AF)

α
(a) is not a fixed point of 1m2AF, then α +2 ∈ ohA.

Proof. Suppose that A is directed-complete.
Assume a contracting function F on A, a post-fixed point a of F , and an ordinal α .
Suppose that (1m2AF)

α
(a) is not a fixed point of 1m2AF .

We claim that for any β ,γ ∈ α +2, if β 6= γ , then

(1m2AF)
β
(a) 6= (1m2AF)

γ
(a).

E. Matsikoudis & E. A. Lee 67

Suppose, toward contradiction, that there are β ,γ ∈ α +2 such that β 6= γ , but

(1m2AF)
β
(a) = (1m2AF)

γ
(a).

Without loss of generality, assume that β ∈ γ . Since F is contracting, by Lemma 4.7.2,

(1m2AF)
β
(a)vA (1m2AF)

β+1
(a)

vA (1m2AF)
γ
(a),

and thus,
(1m2AF)

β
(a) = (1m2AF)

β+1
(a).

And since β ∈ γ ∈ α +2, either β ∈ α , or β = α . Thus, by an easy transfinite induction,

(1m2AF)
β
(a) = (1m2AF)

α
(a),

contrary to the assumption that (1m2AF)
α
(a) is not a fixed point of 1m2AF .

Therefore, for any β ,γ ∈ α +2,

(1m2AF)
β
(a) = (1m2AF)

γ
(a)

if and only if β = γ . Thus, since F is contracting, by Lemma 4.7.2, there is a function ϕ from α + 2
to |A|A such that for every β ,γ ∈ α + 2, if β ∈ γ , then ϕ(β) @A ϕ(γ). Thus, by definition of ohA,
α +2 ∈ ohA.

By Lemma 4.8, (1m2AF)
ohA

(a) is a fixed point of 1m2AF . Nevertheless, (1m2AF)
ohA

(a) need
not be a fixed point of F as intended. Indeed, the recursion process might start stuttering at points that are
not fixed under the function in question (e.g., see [15, exam.3.4]). If the function is strictly contracting
on orbits, however, progress at such points is guaranteed.
Lemma 4.9. For every function F on A that is strictly contracting on orbits, a is a fixed point of F if
and only if a is a fixed point of 1m2AF.

Proof. Assume a function F on A that is strictly contracting on orbits.
If a is a fixed point of F , then

a = F(a)

= F(F(a)),

and thus,

a = F(a)uA F(F(a))

= (1m2AF)(a).

Conversely, suppose that a is a fixed point of 1m2AF .
Then, by Definition 2.2.4b,

dA(a,F(a)) = dA((1m2AF)(a),F(a))

= dA(F(a)uA F(F(a)),F(a))

= dA(F(a)uA F(F(a)),F(a)uA F(a))

≤A dA(F(a),F(F(a))). (8)

68 The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices

Suppose, toward contradiction, that a is not a fixed point of F . Then, since F is strictly contracting
on orbits,

dA(F(a),F(F(a)))<A dA(a,F(a)),

contrary to (8).
Therefore, a is a fixed point of F .

We may at last put all the different pieces together to obtain a constructive version of Theorem 4.2.

Theorem 4.10. If A is directed-complete, then for every contracting function F on A that is strictly
contracting on orbits, and any post-fixed point a of F, (1m2AF)

ohA
(a) is a fixed point of F.

Proof. Suppose that A is directed-complete.
Assume a contracting function F on A that is strictly contracting on orbits, and a post-fixed point a

of F .
Suppose, toward contradiction, that (1m2AF)

ohA
(a) is not a fixed point of 1m2AF . Then, by

Lemma 4.8, ohA+2 ∈ ohA, a contradiction.
Therefore, (1m2AF)

ohA
(a) is a fixed point of 1m2AF . And since F is strictly contracting on orbits,

by Lemma 4.9, (1m2AF)
ohA

(a) is a fixed point of F .

To be pedantic, Theorem 4.10 does not directly prove that F has a fixed point; unless there is a post-
fixed point of F , the theorem is true vacuously. But by Lemma 4.3.1, for every a ∈ |A|A, (1m2AF)(a) is
a post-fixed point of F .

The following is immediate from Proposition 3.1 and 4.1, Lemma 4.3.1, and Theorem 4.10:

Theorem 4.11. If A is directed-complete, then for every strictly contracting function F on A, and every
a ∈ |A|A,

fixF = (1m2AF)
ohA

((1m2AF)(a)).

This construction of fixed points as “limits of stationary transfinite iteration sequences” is very similar
to the construction of extremal fixed points of monotone operators in [2] and references therein, where
the function iterated is not 1m2AF , but F itself. Notice, however, that if F preserves vA, then for any
post-fixed point a of F , (1m2AF)(a) = F(a).

The astute reader will at this point anticipate the following:

Theorem 4.12. If A is directed-complete, then for every strictly contracting function F on A,

fixF =
⊔A{a | a is a post-fixed point of F}.

Proof. Suppose that A is directed-complete.
Assume a strictly contracting function F on A.
Assume a post-fixed point a of F .
By Lemma 4.7.2, avA (1m2AF)

ohA
(a), and thus, since F is strictly contracting, by Proposition 3.1

and 4.1, Lemma 4.7.2, and Theorem 4.10, avA fixF .
Thus, by generalization, fixF is an upper bound of {a | a is a post-fixed point of F} in 〈|A|A,vA〉.

And since fixF is a post-fixed point of F , for every upper bound u of {a | a is a post-fixed point of F} in
〈|A|A,vA〉, fixF vA u. Thus,

fixF =
⊔A{a | a is a post-fixed point of F}.

E. Matsikoudis & E. A. Lee 69

In retrospect, we find that Theorem 4.12 may be derived directly from first principles. In particular,
and under the premise of the corollary, it is easy to establish without any use of Theorem 4.10 that for
every a ∈ |A|A, avA fixF if and only if avA F(a), as the reader may wish to verify.

The construction of Theorem 4.12 is identical in form to Tarski’s well known construction of greatest
fixed points of order-preserving functions on complete lattices (see [25, thm. 1]).

Finally, we note that 1m2AF is not, in general, order-preserving under the above premises (see [15,
exam. 2.15]), as might be suspected, and thus, our fixed-point theorem is not a reduction to a standard
order-theoretic one.

In view of Example 2.4 and 2.5, and the comments in the paragraph following Proposition 3.1,
Theorem 4.11 and 4.12 can be directly applied to study the behaviour of strictly causal discrete-event
components in feedback (see [15], [16]), and obtain, constructively, the unique supported model of
locally hierarchical normal logic programs (see [6]).

4.3 Induction

Having used transfinite recursion to construct fixed points, we may use transfinite induction to prove
properties of them. And in the case of strictly contracting endofunctions, which have exactly one fixed
point, we may use Theorem 4.11 to establish a special proof rule.

Assume P⊆ |A|A.
We say that P is strictly inductive if and only if every non-empty chain in 〈P,vA〉 has a least upper

bound in 〈P,vA〉.
Note that P is strictly inductive if and only if 〈P,vA〉 is directed-complete (see [13, cor. 2]).

Theorem 4.13. If A is directed-complete, then for every strictly contracting function F on A, and every
non-empty, strictly inductive P⊆ |A|A, if for every a ∈ P, (1m2AF)(a) ∈ P, then fixF ∈ P.

Proof. Suppose that A is directed-complete.
Assume a strictly contracting function F on A, and non-empty, strictly inductive P⊆ |A|A.
Suppose that for every a ∈ P, (1m2AF)(a) ∈ P.
Let a be a member of P.
By Lemma 4.3.1, (1m2AF)(a) is a post-fixed point of F .
We use transfinite induction to prove that for every ordinal α , (1m2AF)

α
((1m2AF)(a)) ∈ P.

If α = 0, then
(1m2AF)

α
((1m2AF)(a)) = (1m2AF)(a),

and thus, since P is closed under 1m2AF , (1m2AF)
α
((1m2AF)(a)) ∈ P.

If there is an ordinal β such that α = β +1, then

(1m2AF)
α
((1m2AF)(a)) = (1m2AF)((1m2AF)

β
((1m2AF)(a))).

By the induction hypothesis, (1m2AF)
β
((1m2AF)(a)) ∈ P, and thus, since P is closed under 1m2AF ,

(1m2AF)
α
((1m2AF)(a)) ∈ P.

Otherwise, α is a limit ordinal, and thus,

(1m2AF)
α
((1m2AF)(a)) =

⊔A{(1m2AF)
β
((1m2AF)(a)) | β ∈ α}.

By the induction hypothesis,

{(1m2AF)
β
((1m2AF)(a)) | β ∈ α} ⊆ P,

70 The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices

and by Lemma 4.7.2, 〈{(1m2AF)
β
((1m2AF)(a)) | β ∈ α},vA〉 is totally ordered. Thus, since P is

strictly inductive, (1m2AF)
α
((1m2AF)(a)) ∈ P.

Therefore, by transfinite induction, for every ordinal α , (1m2AF)
α
((1m2AF)(a)) ∈ P.

By Theorem 4.11,

fixF = (1m2AF)
ohA

((1m2AF)(a)),

and thus, fixF ∈ P.

Theorem 4.13 is an induction principle that one may use to prove properties of fixed points of strictly
contracting endofunctions. We think of properties extensionally here; that is, a property is a subset of
|A|A. And the properties that are admissible for use with this principle are those that are non-empty
and strictly inductive. According to the principle, then, for every strictly contracting function F on any
directed-complete generalized ultrametric semilattice A, every non-empty, strictly inductive property that
is preserved by 1m2AF is true of fixF .

We refer to [15, sec. 5.3] for a comparison between this principle with the fixed-point induction prin-
ciple for order-preserving functions on complete partial orders (see [24]), and the fixed-point induction
principle for contraction mappings on complete metric spaces (see [20], [22], [21], [8]).

References

[1] Jaco W. de Bakker & Erik P. de Vink (1998): Denotational models for programming languages: applications
of Banach’s Fixed Point Theorem. Topology and its Applications 85(1-3), pp. 35–52, doi:10.1016/S0166-
8641(97)00140-5.

[2] Patrick Cousot & Radhia Cousot (1979): Constructive versions of Tarski’s fixed point theorems. Pacific J. of
Math. 82(1), pp. 43–57, doi:10.2140/pjm.1979.82.43.

[3] Brian A. Davey & Hilary A. Priestley (2002): Introduction to Lattices and Order, second edition. Cambridge
University Press, doi:10.1017/CBO9780511809088.

[4] Herbert B. Enderton (1977): Elements of Set Theory. Academic Press.

[5] Pascal Hitzler (2001): Generalized Metrics and Topology in Logic Programming Semantics. Ph.D. thesis,
Department of Mathematics, National University of Ireland, University College Cork.

[6] Pascal Hitzler & Anthony Karel Seda (2003): Generalized metrics and uniquely determined logic programs.
Theoretical Computer Science 305(1-3), pp. 187–219, doi:10.1016/S0304-3975(02)00709-0.

[7] Wilfrid Hodges (1993): Model Theory. Encyclopedia of Mathematics and its Applications 42, Cambridge
University Press, doi:10.1017/CBO9780511551574.

[8] Dexter Kozen & Nicholas Ruozzi (2007): Applications of Metric Coinduction. In: CALCO’07: Proceedings
of the 2nd international conference on Algebra and coalgebra in computer science, Springer-Verlag, Berlin,
Heidelberg, pp. 327–341, doi:10.1007/978-3-540-73859-6_22.

[9] Edward A. Lee (1999): Modeling concurrent real-time processes using discrete events. Annals of Software
Engineering 7(1), pp. 25–45, doi:10.1023/A:1018998524196.

[10] Edward A. Lee & Alberto Sangiovanni-Vincentelli (1998): A Framework for Comparing Models of Com-
putation. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 17(12), pp.
1217–1229, doi:10.1109/43.736561.

[11] Xiaojun Liu, Eleftherios Matsikoudis & Edward A. Lee (2006): Modeling Timed Concurrent Systems. In
Christel Baier & Holger Hermanns, editors: CONCUR 2006 – Concurrency Theory, Lecture Notes in Com-
puter Science 4137, Springer Berlin / Heidelberg, pp. 1–15, doi:10.1007/11817949_1.

E. Matsikoudis & E. A. Lee 71

[12] John W. Lloyd (1987): Foundations of Logic Programming, second, extended edition. Springer-Verlag,
doi:10.1007/978-3-642-83189-8.

[13] George Markowsky (1976): Chain-complete posets and directed sets with applications. Algebra Universalis
6(1), pp. 53–68, doi:10.1007/BF02485815.

[14] Eleftherios Matsikoudis & Edward A. Lee (2013): An Axiomatization of the Theory of Generalized Ul-
trametric Semilattices of Linear Signals. In Leszek Gąsieniec & Frank Wolter, editors: Fundamentals of
Computation Theory, Lecture Notes in Computer Science 8070, Springer Berlin Heidelberg, pp. 248–258,
doi:10.1007/978-3-642-40164-0_24.

[15] Eleftherios Matsikoudis & Edward A. Lee (2013): The Fixed-Point Theory of Strictly Causal Functions.
Technical Report UCB/EECS-2013-122, EECS Department, University of California, Berkeley.

[16] Eleftherios Matsikoudis & Edward A. Lee (2013): On Fixed Points of Strictly Causal Functions. In Víctor
Braberman & Laurent Fribourg, editors: Formal Modeling and Analysis of Timed Systems, Lecture Notes in
Computer Science 8053, Springer Berlin Heidelberg, pp. 183–197, doi:10.1007/978-3-642-40229-6_13.

[17] Holger Naundorf (2000): Strictly causal functions have a unique fixed point. Theoretical Computer Science
238(1-2), pp. 483–488, doi:10.1016/S0304-3975(99)00165-6.

[18] Sibylla Priess-Crampe & Paulo Ribenboim (1993): Fixed Points, Combs and Generalized Power Se-
ries. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 63(1), pp. 227–244,
doi:10.1007/BF02941344.

[19] Sibylla Priess-Crampe & Paulo Ribenboim (2000): Ultrametric spaces and logic programming. The Journal
of Logic Programming 42(2), pp. 59–70, doi:10.1016/S0743-1066(99)00002-3.

[20] George M. Reed & A. William Roscoe (1986): A Timed Model for Communicating Sequential Processes.
In Laurent Kott, editor: Automata, Languages and Programming, Lecture Notes in Computer Science 226,
Springer Berlin / Heidelberg, pp. 314–323, doi:10.1007/3-540-16761-7_81.

[21] A. William Roscoe (1991): Topology, computer science, and the mathematics of convergence. In G. M. Reed,
A. W. Roscoe & R. F. Wachter, editors: Topology and category theory in computer science, chapter 1, Oxford
University Press, Inc., New York, NY, USA, pp. 1–27.

[22] William C. Rounds (1985): Applications of topology to semantics of communicating processes. In Stephen
Brookes, Andrew Roscoe & Glynn Winskel, editors: Seminar on Concurrency, Lecture Notes in Computer
Science 197, Springer Berlin / Heidelberg, pp. 360–372, doi:10.1007/3-540-15670-4_17.

[23] Erwin Schörner (2003): Ultrametric Fixed Point Theorems and Applications. In: Valuation Theory and its
Applications, Fields Institute Communications II, American Mathematical Society, pp. 353–359.

[24] Dana S. Scott & Jaco W. de Bakker (1969): A theory of programs. Unpublished notes, Seminar on Program-
ming, IBM Research Center, Vienna, Austria.

[25] Alfred Tarski (1955): A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific J. of Math. 5(2),
pp. 285–309, doi:10.2140/pjm.1955.5.285.

D. Baelde and A. Carayol (Eds.): Fixed Points
in Computer Science 2013 (FICS 2013)
EPTCS 126, 2013, pp. 72–86, doi:10.4204/EPTCS.126.6

c© S. Milius and T. Litak
This work is licensed under the
Creative Commons Attribution License.

Guard Your Daggers and Traces: On The Equational
Properties of Guarded (Co-)recursion

Stefan Milius Tadeusz Litak
Chair for Theoretical Computer Science (Informatik 8)

Friedrich-Alexander University Erlangen-Nürnberg, Germany

mail@stefan-milius.eu tadeusz.litak@gmail.com

Motivated by the recent interest in models of guarded (co-)recursion we study its equational proper-
ties. We formulate axioms for guarded fixpoint operators generalizing the axioms of iteration theories
of Bloom and Ésik. Models of these axioms include both standard (e.g., cpo-based) models of iter-
ation theories and models of guarded recursion such as complete metric spaces or the topos of trees
studied by Birkedal et al. We show that the standard result on the satisfaction of all Conway axioms
by a unique dagger operation generalizes to the guarded setting. We also introduce the notion of
guarded trace operator on a category, and we prove that guarded trace and guarded fixpoint operators
are in one-to-one correspondence. Our results are intended as first steps leading to the description
of classifying theories for guarded recursion and hence completeness results involving our axioms of
guarded fixpoint operators in future work.

1 Introduction

Our ability to describe concisely potentially infinite computations or infinite behaviour of systems re-
lies on recursion, corecursion and iteration. Most programming languages and specification formalisms
include a fixpoint operator. In order to give semantics to such operators one usually considers either

• models based on complete partial orders where fixpoint operators are interpreted by least fixpoints
using the Kleene-Knaster-Tarski theorem or

• models based on complete metric spaces and unique fixpoints via Banach’s theorem or

• term models where unique fixpoints arise by unfolding specifications syntactically.

In the last of these cases, one only considers guarded (co-)recursive definitions; see e.g. Milner’s
solution theorem for CCS [21] or Elgot’s iterative theories [13]. Thus, the fixpoint operator becomes
a partial operator defined only on a special class of maps. For a concrete example consider complete
metric spaces which form a category with all non-expansive maps as morphisms, but unique fixpoints
are taken only of contractive maps.

Recently, there has been a wave of interest in expressing guardedness by a new type constructor 3,
a kind of “later” modality, which allows to make the fixpoint operator total, see, e.g., Nakano [23, 24],
Appel et al. [4], Benton and Tabareau [7], Krishnaswami and Benton [19, 18], Birkedal et al. [9, 8] and
Atkey and McBride [5]. For example, in the case of complete metric spaces 3 can be an endofunctor
scaling the metric of any given space by a fixed factor 0 < r < 1 so that non-expansive maps of type
3X → X are precisely contractive maps with a contraction factor of at most r. This allows to define
a guarded (parametrized) fixpoint operator on all morphisms of type 3X ×Y → X of the model. So
far various models allowing the interpretation of a typed language including a guarded fixpoint operator

S. Milius and T. Litak 73

have been studied: complete metric spaces, the “topos of trees”, i.e., presheaves on ωop [9] or, more
generally, sheaves on complete Heyting algebras with a well-founded basis [12, 9].

This paper initiates the study of the essential properties of guarded fixpoint operators. In the realm
of ordinary fixpoint operators, it is well-known that iteration theories of Bloom and Ésik [10] completely
axiomatize equalities of fixpoint terms in models based on complete partial orders (see also Simpson and
Plotkin [25]). We make here the first steps towards similar completeness results in the guarded setting.

We begin with formalizing the notion of guarded fixpoint operator on a cartesian category. We
discuss a number of models, including not only all those mentioned above, but also some not mentioned
so far in the context of 3-guarded (co-)recursion. In fact, we consider the inclusion of examples such
as the lifting functor on CPO (which also happens to be a paradigm example of a fixpoint monad, see
Example 2.4.6 and the concluding remark of Section 2.7) or completely iterative monads (see Section
2.2) a pleasant by-product of our work and a potentially fruitful connection for future research. Then,
we formulate generalizations of standard iteration theory axioms for guarded fixpoint operators and we
establish these axioms are sound in all models under consideration. In particular, the central result of
Section 2 is Theorem 2.16: models with unique guarded fixpoint operators satisfy all our axioms.

Hasegawa [16] proved that giving a parametrized fixpoint operator on a category satisfying the so-
called Conway axioms (see, e.g., [10, 25] and Section 2.3 below) is equivalent to giving a traced cartesian
structure [17] on that category.1 Section 3 lifts this result to the guarded setting. We introduce a natural
notion of a guarded trace operator on a category, and we prove in Theorem 3.5 that guarded traces and
guarded fixpoint operators are in one-to-one correspondence. This extends to an isomorphism between
the (2-)categories of guarded traced cartesian categories and guarded Conway categories.

Section 4 concludes and discusses further work.
Proofs of the major theorems will be made available in the full version.

1.1 Notational conventions

We will assume throughout that readers are familiar with basic notions from category theory. We denote
the product of two objects by

A A×B
π`oo

πr //B,

and ∆ : A→ A×A denotes the diagonal. For every functor F we write can = 〈Fπ`,Fπr〉 : F(A×B)→
FA×FB for the canonical morphism.

We denote by CPO the category of complete partial orders (cpo’s), i.e. partially ordered sets (not
necessarily with a least element) having joins of ω-chains. The morphisms of CPO are Scott-continuous
maps, i.e. maps preserving joins of ω-chains. And CPO⊥ is the full subcategory of CPO given by all
cpo’s with a least element ⊥. We will also consider the category CMS of complete 1-bounded metric
spaces and non-expansive maps.

2 Guarded Fixpoint Operators

In this section we define the notion of a guarded fixpoint operator on a cartesian category and present an
extensive list of examples. Some of these examples like the lifting functor (−)⊥ on CPO (see Example
2.4.6) or completely iterative monads (see Section 2.2) do not seem to have been considered as instances
of the guarded setting before. We then introduce (equational) properties of guarded fixpoint operators.

1Cartesian here refers to the monoidal product being the ordinary categorical product.

74 On The Equational Properties of Guarded (Co-)recursion

These properties are motivated by and closely resemble properties of the fixpoint operator in iteration
theories of Bloom and Ésik [10]. We conclude this section with Theorem 2.16 stating that unique fixpoint
operators satisfy all the properties we study.

2.1 Definition and Examples of Guarded Fixpoint Operators

Assumption 2.1. We assume throughout the rest of the paper that (C ,3) is a pair consisting of a category
C with finite products (also know as a cartesian category) and a pointed endofunctor 3 : C → C , i.e. we
have a natural transformation p : Id→3. The endofunctor 3 is called delay.

Remark 2.2. In references like [9, 8], much more is assumed about both the underlying category and the
delay endofunctor. Whenever one wants to model simply-typed lambda calculus, one obviously imposes
the condition of being cartesian closed. Furthermore, whenever one considers dependent types, one wants
to postulate conditions like being a type-theoretic fibration category (see, e.g., [8, Definition IV.1]).
In such a case, one also wants to impose some limit-preservation or at least finite-limit-preservation
condition on the delay endofunctor, see [9, Definition 6.1]—e.g., to ensure the transfer of the guarded
fixpoint operator to slices. We do not impose any of those restrictions because we do not need them in
this paper. It is an interesting fact that all our derivations require no more than Assumption 2.1. For more
on the connection with the setting of [9], see Proposition 2.6 below.

Definition 2.3. A guarded fixpoint operator on (C ,3) is a family of operations

†X ,Y : C (3X×Y,X)→ C (Y,X)

such that for every f : 3X×Y → X the following square commutes2:

Y
f †

//

〈 f †,Y 〉
��

X

X×Y
pX×Y

// 3X×Y

f

OO

(2.1)

where (as usual) we drop the subscripts and write f † : Y → X in lieu of †X ,Y (f). We call the triple
(C ,3,†) a guarded fixpoint category.

Usually, one either assumes that † satisfies further properties or even that f † is unique such that (2.1)
commutes. We will come to the study of properties of guarded fixpoint operators in Section 2.3. Let us
begin with a list of examples.

Examples 2.4. (1) Taking as 3 the identity functor on C and pX the identity on X we arrive at the special
case of categories with an ordinary fixpoint operator C (X×Y,X)→C (Y,X) (see e.g. Hasegawa [16,
15] or Simpson and Plotkin [25]). Concrete examples are: the category CPO⊥ with its usual least
fixpoint operator or (the dual of) any iteration theory of Bloom and Ésik [10].

(2) Taking 3 to be the constant functor on the terminal object 1 and pX = ! : X→ 1 the unique morphism,
a trivial guarded fixpoint operator is given by the family of identity maps on the hom-sets C (Y,X).

(3) Take C to be the category CMS of complete 1-bounded metric spaces (see [19, 18] or [9, Section
5] and references therein), 3r (0 < r < 1) to be an endofunctor which keeps the carrier of the space
and multiplies all distances by r and pX : X→3rX to be the obvious “contracted identity” mapping.

2Notice that we use the convention of simply writing objects to denote the identity morphisms on them.

S. Milius and T. Litak 75

Note that a non-expansive mapping f : 3rX → X is the same as an r-contractive endomap, i.e. an
endomap satisfying d(f x, f y)≤ r ·d(x,y). A guarded fixpoint operator is given by an application of
Banach’s unique fixpoint theorem: for every f : 3rX×Y → X we consider the map

Φ f : CMS(Y,X)→ CMS(Y,X), Φ f (m) = f · (pX ×Y) · 〈m,Y 〉;

notice that CMS(Y,X) is a complete metric space with the sup-metric dY,X(m,n)= supy∈Y{dX(my,ny)};
it is then easy to show that Φ f is an r-contractive map, and so its unique fixpoint is a unique non-
expansive map f † : Y → X such that (2.1) commutes.

(4) Let A be a category with finite products, and let C be the presheaf category presh(ω,A) := A ωop

of ωop-chains in A . The delay functor 3 takes a presheaf X : ωop→ A to the presheaf 3X with
3X(0) = 1 and 3X(n+ 1) = X(n) for n ≥ 0. And pX is given by (pX)0 : X(0)→ 1 unique and
(pX)n+1 = X(n+1≥ n) : X(n+1)→ X(n). For every f : 3X×Y → X there is a unique f † : Y → X
making (2.1) commutative; it is defined as follows: given f : 3X×Y → X (i.e. f0 : Y (0)→ X(0) and
fn+1 : X(n)×Y (n+1)→ X(n+1)) one defines f † : Y → X by f †

0 = f0 : Y (0)→ X(0) and

f †
n+1 = (Y (n+1)

〈 f †
n ·Y (n+1≥n),Y (n+1)〉

//X(n)×Y (n+1)
fn+1

//X(n+1)).

It is not difficult to prove that f † is the unique morphism such that (2.1) commutes.
Notice that for A = Set, C is the “topos of trees” studied by Birkedal et al. [9]; they prove in
Theorem 2.4 that Setωop

has a unique guarded fixpoint operator.
The next example generalizes this one.

(5) Assume W := (W,<) is a well-founded poset, i.e, contains no infinite descending chains; for sim-
plicity, we can assume W has a root r. Furthermore, let D be a (small) complete category and
C := presh(W,D), i.e., C = D (W,>). Define (3X)(w) to be the limit of the diagram whose nodes
are X(u) for u < w and whose arrows are restriction morphisms: 3X(w) = limv<w X(v). Then as
X(w) itself with restriction mappings forms a cone on that diagram, a natural pX : X →3X is given
by the universal property of the limits. Note that for r, we have that (3X)(r) is the terminal object
1 of D . The †-operation is defined as follows: given f : 3X ×Y → X one defines f † : Y → X by
induction on (W,<); for the root r let f †

r = fr : Y (r) = 1×Y (r)→ X(r), and assuming that f †
v is

already defined for all v < w let

f †
w = (Y (w)

〈k,Y (w)〉
//3X(w)×Y (w)

fw
//X(w)),

where k : Y (w)→ 3X(w) is the morphism uniquely induced by the cone f †
v ·Y (w > v) : Y (w)→

Y (v)→ X(v) for every v < w. One can prove that f † is a morphism of presheaves and that it is
the unique one such that (2.1) commutes. Details will be given in the full version. Regarding the
examples given in [9], see also Proposition 2.6 below.

(6) Let 3 be the lifting functor (−)⊥ on CPO, i.e. for any cpo X , X⊥ is the cpo with a newly added
least element. The natural transformation pX : X → X⊥ is the embedding of X into X⊥. Then CPO
has a guarded fixpoint operator given by taking least fixpoints. To see this notice that the hom-
sets CPO(X ,Y) are cpos with the pointwise order: f ≤ g iff f (x) ≤ g(x) for all x ∈ X . Now any
continuous f : X⊥×Y → X gives rise to a continuous map Φ f on CPO(Y,X⊥):

Φ f : CPO(Y,X⊥)→ CPO(Y,X⊥), Φ f (m) = pX · f · 〈m,Y 〉.

76 On The Equational Properties of Guarded (Co-)recursion

Using the least fixpoint s of Φ f one then defines:

f † = (Y
〈s,Y 〉

//X⊥×Y
f

//X);

using that s = Φ f (s) it is not difficult to prove that f † makes (2.1) commutative.

Birkedal et al. [9] provide a general setting for topos-theoretic examples like (4) and (5) (the latter
restricted to the case of Set-presheaves) by defining a notion of a model of guarded recursive terms and
showing that sheaves over complete Heyting algebras with a well-founded basis proposed by [12] are
instances of this notion. The difference between Definition 6.1 in [9] and our Definition 2.3 is that in the
former a) the delay endofunctor 3 is also assumed to preserve finite limits. On other hand b) our equality
(2.1) is only postulated in the case when Y is the terminal object, i.e., only non-parametrized fixpoint
identity is assumed but c) the dagger in this less general version of (2.1) is assumed to be unique. Now,
one can show that assumptions a) and c) imply our parametrized identity (2.1) whenever the underlying
category is cartesian closed, in particular whenever C is a topos. Let us state both the definition and the
result formally:

Definition 2.5 ([9]). A model of guarded fixpoint terms is a triple (C ,3,‡), where

• (C ,3) satisfy our general Assumption 2.1, i.e., 3 : C → C is a pointed endofunctor (with point
p : Id→3) and C has finite limits

• 3 preserves finite limits and

• ‡ is a family of operations ‡X : C (3X ,X)→ C (1,X) such that for every f : 3X → X , f ‡ is a
unique morphism making the following square commute:

1
f ‡

//

f ‡

��

X

X pX
// 3X

f

OO

(2.2)

We write can−1
X ,Y : 3X ×3Y → 3(X ×Y) for the isomorphism provided by the assumption of limit

preservation for the special case of product3 of X and Y .

Proposition 2.6. If (C ,3,‡) is a model of guarded recursive terms and C is cartesian closed with
curryX

Y,Z : C (X×Y,Z) → C (X ,ZY),

uncurryX
Y,Z : C (X ,ZY) → C (X×Y,Z),

evalY,Z : Y ×ZY → Z,
then the operator †X ,Y : C (3X×Y,X)→ C (Y,X) defined as

uncurry1
Y,X([curry

3(XY)
Y,X (f · 〈(3evalY,X) · can−1

Y,XY · (pY ×3(XY)),π`〉)]‡)

is a guarded fixpoint operator on (C ,3).

3One can note here that for the purpose of stating and proving Proposition 2.6, the assumption of finite limit preservation in
Definition 2.5 can be weakened to finite product preservation. We only keep the stronger assumption for full consistency with
[9, Definition 6.1].

S. Milius and T. Litak 77

Obviously, we implicitly identified Y and 1×Y above. Note that the converse implication does
not hold. Example 2.4.6 is a a guarded fixpoint category, but (−)⊥ clearly fails to preserve even finite
products and hence it does not yield a model of guarded recursive terms.

Also, while we do not have a counterexample at the moment, Proposition 2.6 is not likely to hold
when the assumption that C is cartesian closed is removed: we believe there are examples of models of
guarded recursive terms which are not guarded fixpoint categories. However, to apply Proposition 2.6, it
is enough that (C ,3,‡) is a full subcategory of a cartesian closed model of guarded recursive terms such
that, moreover, the inclusion functor preserves products and 3.

Remark 2.7. Monads provide perhaps the most natural and well-known examples of pointed endofunc-
tors. The reader may ask whether delay endofunctors in Example 2.4 happen to be monads. Clearly,
the delay functors in (1), (2) and (6) are. In fact, while the first two ones are rather trivial monads, 6
is a paradigm example of a fixpoint monad of Crole and Pitts [11]. In (3), i.e. the CMS example, the
type 33A→3A is still inhabited (by any constant mapping), but one can easily show that monad laws
cannot hold whatever candidate for monad multiplication is postulated. In the remaining (i.e., topos-
theoretic) examples, monad laws fail more dramatically: 33A→3A is not even always inhabited. The
following section discusses perhaps the most interesting subclass of monads which happen to be delay
endofunctors with unique dagger.

2.2 Completely Iterative Theories

In this subsection we will explain how categories with guarded fixpoint operator capture a classical
setting in which guarded recursive definitions are studied—Elgot’s (completely) iterative theories [13,
14]. The connection to guarded fixpoint operators is most easily seen if we consider monads in lieu
of Lawvere theories, and so we follow the presentation of (completely) iterative monads in [20]. The
motivating example for completely iterative monads are infinite trees on a signature, and we recall this
now. Let Σ be a signature, i.e. a sequence (Σn)n<ω of sets of operation symbols with prescribed arity n.
A Σ-tree t on a set X of generators is a rooted and ordered (finite or infinite) tree whose nodes with n > 0
children are labelled by n-ary operation symbols from Σ and a leaf is labelled by a constant symbol from
Σ0 or by a generator from X . One considers systems of mutually recursive equations of the form

xi ≈ ti(~x,~y) i ∈ I,

where X = {xi | i ∈ I} is a set of recursion variables and each ti is a Σ-tree on X +Y with Y a set of
parameters (i.e. generators that do not occur on the left-hand side of a recursive equation). A system of
recursive equations is guarded if none of the trees ti is only a recursion variable x ∈ X . Every guarded
system has a unique solution, which assigns to every recursion variable xi ∈ X a Σ-tree t†

i (~y) on Y such
that t†

i (~y) = ti[~t†(~y)/~x], i.e. ti with each x j replaced by t†
j (~y). For a concrete example, let Σ consist of a

binary operation symbol ∗ and a constant symbol c, i.e. Σ0 = {c}, Σ2 = {∗} and Σn = /0 else. Then the
following system

x1 ≈ x2 ∗ y1 x2 ≈ (x1 ∗ y2)∗ c,

78 On The Equational Properties of Guarded (Co-)recursion

where y1 and y2 are parameters, has the following unique solution:

t†
1 =

∗
∗

∗
∗

∗
∗

∗

y1

c
y2

y1

c
y2

y1

��
�

��
�

��
�

��
�

��
�

��
�

???

??
?

???

???

??
?

???

???

and t†
2 =

∗
∗

∗
∗

∗
∗

∗

c
y2

y1

c
y2

y1

c

��
�

��
�

��
�

��
�

��
�

��
�

??
?

???

???

??
?

???

???

??
?

For any set X , let TΣ(X) be the set of Σ-trees on X . It has been realized by Badouel [6] that TΣ is the
object part of a monad. A system of equations is then nothing but a map

f : X → TΣ(X +Y)

and a solution is a map f † : X → TΣY such that the following square commutes:

X
f †

//

f
��

TΣY

TΣ(X +Y)
[f †,ηY]

// TΣTΣY

µY

OO

where η and µ are the unit and multiplication of the monad TΣ, respectively.
It is clear that the notion of equation and solution can be formulated for every monad S. However,

the notion of guardedness requires one to speak about non-variables in S. This is enabled by Elgot’s
notion of ideal theory [13], which for a finitary monad on Set is equivalent to the notion recalled in the
following definition. We assume for the rest of this subsection that A is a category with finite coproducts
such that coproduct injections are monomorphic.

Definition 2.8 ([2]). By an ideal monad on A is understood a six-tuple

(S,η ,µ,S′,σ ,µ ′)

consisting of a monad (S,η ,µ) on A , a subfunctor σ : S′ ↪→ S and a natural transformation µ ′ : S′S→ S′

such that

(1) S = S′+ Id with coproduct injections σ and η , and

(2) µ restricts to µ ′ along σ , i.e., the square below commutes:

S′S
µ ′

//

σS
��

S′

σ
��

SS µ
// S

The subfunctor S′ of an ideal monad S allows us to formulate the notion of a guarded equation system
abstractly; this leads to the notion of completely iterative theory of Elgot et al. [14] for which we here
present the formulation with monads from [20]:

S. Milius and T. Litak 79

Definition 2.9. Let (S,η ,µ,S′,σ ,µ ′) be an ideal monad on A .

1. By an equation morphism is meant a morphism

f : X → S(X +Y)

in A , where X is an object (“of variables”) and Y is an object (“of parameters”).

2. By a solution of f is meant a morphism f † : X → SY for which the following square commutes:

X
f †

//

f
��

SY

S(X +Y)
S[f †,ηY]

// SSY

µY

OO

(2.3)

3. The equation morphism f is called guarded if it factors through the summand S′(X +Y)+Y of
S(X +Y) = S′(X +Y)+X +Y :

X
f

//

((

S(X +Y)

S′(X +Y)+Y

[σX+Y ,ηX+Y ·inr]
OO

4. The given ideal monad is called completely iterative if every guarded equation morphism has a
unique solution.

Examples 2.10. We only briefly mention two examples of completely iterative monads. More can be
found in [2, 20, 3].

(1) The monad TΣ of Σ-trees is a completely iterative monad.

(2) A more general example is given by parametrized final coalgebras. Let H : A →A be an endofunc-
tor such that for every object X of A a final coalgebra T X for H(−)+X exists. Then T is the object
assignment of a completely iterative monad; in fact, T is the free completely iterative monad on H
(see [20]).

We will now explain how completely iterative monads are subsumed by the notion of categories with
a guarded fixpoint operator. To this end we fix a completely iterative monad S. We will show that the dual
of its Kleisli category C = (AS)

op is equipped with a guarded fixpoint operator. First notice, that since
AS has coproducts given by the coproducts in A we see that C has products. Next we need to obtain the
endofunctor 3 on C . This will be given as the dual of an extension of the subfunctor S′ : A →A of S
to the Kleisli category AS. Indeed, it is well-known that to have an extension of S′ to AS is equivalent to
having a distributive law of the functor S′ over the monad S (see Mulry [22]).

But it is easy to verify that the natural transformation

S′S
µ ′

//S′
ηS′

//SS′

satisfies the two required laws and thus yields a distributive law. Moreover, the ensuing endofunctor
3op = S′ on AS is copointed, i.e. we have a natural transformation p from S′ to Id : AS → AS; indeed,

80 On The Equational Properties of Guarded (Co-)recursion

its components at X are given by the coproduct injections σX : S′X → SX , and it is not difficult to verify
that this is a natural transformation; thus, 3 is a pointed endofunctor on C .

Now observe that a morphism f : 3X×Y → X is equivalently a morphism

f : X → S(S′X +Y)

in A . We are ready to describe the guarded fixpoint operator on C .
Construction 2.11. For any morphism f : X → S(S′X +Y) form the following morphism

f = (X
f

//S(S′X +Y)
S(σX+ηY)

//S(SX +SY) Scan //SS(X +Y)
µX+Y

//S(X +Y)),

where can = [Sinl,Sinr] : SX + SY → S(X +Y). It is not difficult to verify that f is a guarded equation
morphism for S, and we define f † : X → SY to be the unique solution of f .
Proposition 2.12. For every f , f † from Construction 2.11 is a unique morphism Y → X in C such
that (2.1) commutes.

In fact, to prove this proposition one shows that solutions of f : X → S(X +Y) (i.e. morphisms
s : X → SY such that (2.3) commutes) are in one-to-one correspondence with morphisms Y → X is C
such that (2.1) commutes.

2.3 Properties of Guarded Fixpoint Operators

In this section we study properties of guarded fixpoint operators. Except for uniformity these properties
are purely equational. They are generalizing analogous properties of iteration theories; more precisely,
they would collapse to the original, unguarded counterparts when 3 is instantiated to the identity endo-
functor (see Example 2.4(1)).
Definition 2.13. Let (C ,3,†) be a guarded fixpoint category. We define the following properties of †:

(1) Fixpoint Identity. For every f : 3X ×Y → X the diagram (2.1) commutes. This is built into the
definition of guarded fixpoint categories and only mentioned here again for the sake of completeness.

(2) Parameter Identity. For every f : 3X×Y → X and every h : Z→ Y we have

Z h //Y
f †

//X = (3X×Z
3X×h

//3X×Y
f

//X)†.

(3) (Simplified) Composition Identity. Given f : 3X×Y → Z and g : Z→ X we have

(3X×Y
f

//Z
g

//X)† = (Y
(f ·(3g×Y))†

//Z
g

//X).

(4) Double Dagger Identity. For every f : 3X×3X×Y → X we have

(Y
f ††

//X) = (3X×Y ∆×Y
//3X×3X×Y

f
//X)†.

(5) Uniformity. Given f : 3X×Y → X , g : 3X ′×Y → X ′ and h : X → X ′ we have

3X×Y
f

//

3h×Y
��

X

h
��

3X ′×Y g
// X ′

=⇒

X

h

��

Y

f † 99ttttttt

g† $$JJJJJJ

X ′

S. Milius and T. Litak 81

We call the first four properties (1)–(4) the Conway axioms.
Notice that the Conway axioms are equational properties while (5) is quasiequational (i.e. an impli-

cation between equations).
Next we shall show that in the presence of certain of the above properties the natural transformation

p : Id→ 3 is a derived structure. Let (C ,3) be equipped with an operator † not necessarily satisfy-
ing (2.1). For every object X of C define qX : X →3X as follows: consider

fX = (3(3X×X)×X
3πr×X

//3X×X)

and form

qX = (X
f †
X //3X×X

π` //3X).

Lemma 2.14. Let (C ,3) be equipped with the operator †. Then:
1. If † satisfies the parameter identity and uniformity, then q : Id→3 is a natural transformation.

2. If † satisfies the fixpoint identity, then qX = pX for all X.
Definition 2.15. A guarded fixpoint category (C ,3,†) satisfying the Conway axioms (i.e. fixpoint, pa-
rameter, composition and double dagger identities) is called a guarded Conway category.

If in addition uniformity is satisfied, we call (C ,3,†) a uniform guarded Conway category.
And (C ,3,†) is called a unique guarded fixpoint category if for every f : 3X ×Y → X , f † : Y → X

is the unique morphism such that (2.1) commutes. In this case, we can just write a pair (C ,3) rather
than a triple (C ,3,†).

The next theorem states that such a unique † satisfies all the properties in Definition 2.13.
Theorem 2.16. If (C ,3) is a unique guarded fixpoint category, then it is a uniform guarded Conway
category.
Examples 2.17. (1) Several of our examples in 2.4 are unique guarded fixpoint categories and hence

their unique † satisfies all the properties in Definition 2.13. This holds for Examples 2.4(2)–(6), and
also for the example of completely iterative monads in Section 2.2.

(2) One can prove that Example 2.4(7), i.e., C = CPO with the lifting functor 3= (−)⊥ satisfies all the
properties of Definition 2.13, i.e. (CPO,(−)⊥) is a uniform guarded Conway category. But it is not
a unique guarded fixpoint category: for let X = {0,1} be the two-chain, Y = 1 the one element cpo
and f : X⊥ = X⊥×Y → X be the map with f (0) = f (⊥) = 0 and f (1) = 1. Then both 0 : 1→ X and
1 : 1→ X make (2.1) commutative.

3 Guarded Trace Operators

In the case special case where 3 is the identity functor (see Example 2.4(1)), it is well-known that a
fixpoint operator satisfying the Conway axioms is equivalent to a trace operator w.r.t. the product on C
(see Hasegawa [16, 15]). In this section we present a similar result for a generalized notion of a guarded
trace operator on (C ,3).
Remark 3.1. Recall that the notion of an (ordinary) trace operator was introduced by Joyal, Street and
Verity [17] for symmetric monoidal categories. The applicability of the notion of trace to non-cartesian
tensor products is in fact one of main reasons of its popularity. Our generalization can also be formulated
for symmetric monoidal categories, see the remark preceding Construction 3.4 below. However, the main
results in this section, i.e., Theorems 3.5 and 3.7 do not make any use of this added generality. Hence,
we keep the Assumption 2.1 like in the remainder of the paper.

82 On The Equational Properties of Guarded (Co-)recursion

Definition 3.2. A (cartesian) guarded trace operator on (C ,3) is a natural family of operations

TrX
A,B : C (3X×A,X×B)→ C (A,B)

subject to the following three conditions:

1. Vanishing. (I) For every f : 31×A→ B we have

Tr1
A,B(f) = (A∼= 1×A

p1×A
//31×A

f
//B).

(II) For every f : 3X×3Y ×A→ X×Y ×B we have

TrYA,B(Tr
X
3Y×A,Y×A(f)) = TrX×Y

A,B (3(X×Y)×A
can×A

//3X×3Y ×A
f

//X×Y ×A).

2. Superposing. For every f : 3X×A→ X×B we have

TrX
A×C,B×C(f ×C) = TrX

A,B(f)×C.

3. Yanking. Consider the canonical isomorphism c : 3X×X → X×3X . Then we have

TrX
X ,3X(c) = (X

pX
//3X).

If Tr is a (cartesian) guarded trace operator on (C ,3), (C ,3,Tr) is called a guarded traced (carte-
sian) category.

Of course, when 3 is taken to be the identity on C (as in Example 2.4(1)), our notion of guarded
trace specializes to the notion of an ordinary trace operator (w.r.t. product) of Joyal, Street and Verity.

In addition, as in the case of ordinary trace operators naturality of Tr can equivalently be expressed
by three more axioms:

4. Left-tightening. Given f : 3X×A→ X×B and g : A′→ A we have

TrX
A′,B(3X×A′

3X×g
//3X×A

f
//X×B) = (A′

g
//A

TrX
A,B(f)

//B).

5. Right-tightening. Given f : 3X×A→ X×B and g : B→ B′ we have

TrX
A,B′(3X×A

f
//X×B

X×g
//X×B′) = (A

TrX
A,B(f)

//B
g

//B′).

6. Sliding. Given f : 3X×A→ X ′×B and g : X ′→ X we have

TrX
A,B(3X×A

f
//X ′×B

g×B
//X×B) = TrX ′

A,B(3X ′×A
3g×A

//3X×A
f

//X ′×B).

Remark 3.3. The generalization for a symmetric monoidal category (C ,⊗, I,c) equipped with a pointed
endofunctor 3 : C → C requires the assumption that 3 is comonoidal, i.e., equipped with a morphism
mI : 3I → I and a natural transformation mX ,Y : 3(X ×Y)→ 3X ×3Y satisfying the usual coherence
conditions. In fact, in the formulation of Vanishing (II) we used that in every category the product × is
comonoidal via mX ,Y = can.

S. Milius and T. Litak 83

Construction 3.4. 1. Let (C ,3,Tr) be a guarded traced category. Define a guarded fixpoint operator
†Tr : C (3X×A)→ C (A,X) by

f †Tr = TrX
A,X(3X×A

〈 f , f 〉
//X×X)) : A→ X .

2. Conversely, suppose (C ,3,†) is a guarded fixpoint category. Define Tr†
X
A,B : C (3X×A,X×B)→

C (A,B) by setting for every f : 3X×A→ X×B

Tr†
X
A,B(f) = (A

〈(π`· f)†,A〉
//X×A

pX×A
//3X×A

f
//X×B

πr //B).

The main result in this section states that the category C is guarded traced iff it is a guarded Conway
category:

Theorem 3.5. 1. Whenever (C ,3,Tr) is a guarded traced category, (C ,3,†Tr) is a guarded Con-
way category. Furthermore, Tr†Tr is the original operator Tr.

2. Whenever (C ,3,†) is a guarded Conway category, (C ,3,Tr†) is guarded traced. Furthermore,
†Tr† is the original operator †.

The proof details are similar to the proof details for ordinary fixpoint operators and traced cartesian
categories (see Hasegawa [15]). Here one has to stick 3 in “all the right places” in all the necessary
verifications of the axioms for trace and dagger, respectively. However, some of proof steps, in particular
the derivation of a guarded version of the so-called Bekič identity require some creativity; it is not a
completely automatic adaptation.

Hasegawa related uniformity of trace to uniformity of dagger and we can do the same in the guarded
setup. Recall that in iteration theories uniformity (called functorial dagger implication) plays an impor-
tant role. On the one hand, this quasiequation implies the so-called commutative identities, an infinite set
of equational axioms that are added to the Conway axioms in order to yield a complete axiomatization
of fixpoint operators in domains. On the other hand, most examples of iteration theories actually sat-
isfy uniformity, and so uniformity gives a convenient sufficient condition to verify that a given Conway
theory is actually an iteration theory.

Definition 3.6. A guarded trace operator Tr is called uniform if for every morphism f : 3X×A→ X×B,
f ′ : 3X ′×A→ X ′×B and h : X → X ′ we have

3X×A
f

//

3h×A
��

X×B

h×B
��

3X ′×A
f ′

// X ′×B

=⇒ TrX
A,B(f) = TrX ′

A,B(f ′) : A→ B.

Theorem 3.7. 1. Whenever (C ,3,Tr) is a uniform guarded traced category, †Tr is a uniform guarded
Conway operator.

2. Whenever (C ,3,†) is a uniform guarded Conway category, Tr† is a uniform guarded trace oper-
ator.

Remark 3.8. Actually, Hasegawa proved a slightly stronger statement concerning uniformity then what
we stated in Theorem 3.7; he showed that a Conway operator is uniform w.r.t. any fixed morphism
h : X → X ′ (i.e. satisfies uniformity just for h) iff the corresponding trace operator is uniform w.r.t. this
morphism h. The proof is somewhat more complicated and in our guarded setting we leave this as an
exercise to the reader.

84 On The Equational Properties of Guarded (Co-)recursion

Finally, let us note that the bijective correspondence between guarded Conway operators and guarded
trace operators established in Theorem 3.5 yields an isomorphism of the (2-)categories of (small) guarded
Conway categories and guarded traced (cartesian) categories. The corresponding notions of morphisms
are, of course, as expected:

Definition 3.9.
1. F : (C ,3C ,†)→ (D ,3D ,‡) is a morphism of guarded Conway categories whenever F : C → D

is a finite-product-preserving functor satisfying

C
3C

//

F
��

C

F
��

D 3D
// D

and pD
FX = F(pC

X) : FX →3DFX = F(3CX), (3.1)

and preserving dagger, i.e., for every f : 3X×A→ X we have

F(f †) = (3DFX×FA∼= F(3C X×A)
F f

//FX)‡.

2. A morphism F : (C ,3C ,TrC)→ (D ,3D ,TrD) is a finite-product-preserving F : C → D satis-
fying (3.1) above and preserving the trace operation: for every f : 3C X ×A→ X ×B in C we
have

F(Tr X
C A,B(f)) = Tr FX

D FA,FB(3DFX×FA∼= F(3C X×A)
F f

//F(X×B)∼= FX×FB).

Corollary 3.10. The (2-)categories of guarded Conway categories and of guarded traced (cartesian)
categories are isomorphic.

4 Conclusions and Future Work

We have made the first steps in the study of equational properties of guarded fixpoint operators popular
in the recent literature, e.g., [23, 24, 4, 7, 9, 19, 18, 9, 5]. We began with an extensive list of examples,
including both those already discussed in the above references and some whose connection with the
“later” modality has not seemed obvious so far—e.g., Example 2.4.6 or completely iterative theories in
Section 2.2. Furthermore, we formulated the four Conway properties and uniformity in analogy to the
respective properties in iteration theories and we showed them to be sound w.r.t. all models discussed
in Section 2. In particular, Theorem 2.16 proved that our axioms hold in all categories with a unique
guarded dagger. In Theorem 3.5, we have a generalization of a result by Hasegawa for ordinary fixpoint
operators: we proved that to give a (uniform) guarded fixpoint operator satisfying the Conway axioms is
equivalent to giving a (uniform) guarded trace operator on the same category.

Our paper can be considered as a work in progress report. Our aim is to eventually arrive at complete-
ness results similar to the ones on iteration theories. We do not claim that the axioms we presented are
complete. In the unguarded setting, completeness is obtained by adding to the Conway axioms an infinite
set of equational axioms called the commutative identities, see [10, 25]. We did not consider those here,
but we considered the quasi-equational property of uniformity which implies the commutative identities
and is satisfied in most models of interest. Only further research can show whether this property can
ensure completeness in the guarded setup or one needs to postulate stronger ones.

S. Milius and T. Litak 85

Other future work pertains to a syntactic type-theoretic presentation of the axioms we studied and a
description of a classifying guarded Conway category.

Concerning further models of guarded fixpoint operators, it would be worthwhile to consider fixpoint
monads of Crole and Pitts [11] more closely. These generalize our example of the category CPO with
the lifting monad. One can prove that any fixpoint monad induces a guarded fixpoint operator satisfying
parameter and simplified composition identities as well as uniformity. However, proving the double
dagger identity in the general case is an open problem.

It would also be interesting to obtain examples of guarded traced monoidal categories which are not
ordinary traced monoidal categories and which do not arise from guarded Conway categories. Traces
w.r.t. a trace ideal as considered by Abramsky, Blute and Panangaden [1] might be a good starting point.

Acknowledgements We would like to acknowledge an inspiring discussion with Erwin R. Cates-
beiana on (un-)productive (non-)termination. We would also like to thank in general William and Arthur
for their very insistence on major modal undertones in modern modelling of this phenomenon.

References

[1] Samson Abramsky, Richard Blute & Prakash Panangaden (1999): Nuclear and Trace Ideals in Tensored
∗-Categories. J. Pure Appl. Algebra 143(1–3), pp. 3–47, doi:10.1016/S0022-4049(98)00106-6.

[2] Peter Aczel, Jiřı́ Adámek, Stefan Milius & Jiřı́ Velebil (2003): Infinite Trees and Completely Iterative Theo-
ries: A Coalgebraic View. Theoret. Comput. Sci. 300, pp. 1–45, doi:10.1016/S0304-3975(02)00728-4.

[3] Jiřı́ Adámek & Stefan Milius (2006): Terminal Coalgebras and Free Iterative Theories. Inform. and Comput.
204, pp. 1139–1172, doi:10.1016/j.ic.2005.11.005.

[4] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards & Jérôme Vouillon (2007): A very modal
model of a modern, major, general type system. In Martin Hofmann & Matthias Felleisen, editors: POPL,
ACM, pp. 109–122. Available at http://doi.acm.org/10.1145/1190216.1190235.

[5] Robert Atkey & Conor McBride (2013): Productive Coprogramming with Guarded Recursion. Accepted for
ICFP.

[6] Eric Badouel (1989): Terms and infinite trees as monads over a signature. Lecture Notes Comput. Sci. 351,
pp. 89–103, doi:10.1007/3-540-50939-9 126.

[7] Nick Benton & Nicolas Tabareau (2009): Compiling functional types to relational specifications for low
level imperative code. In Andrew Kennedy & Amal Ahmed, editors: TLDI, ACM, pp. 3–14. Available at
http://doi.acm.org/10.1145/1481861.1481864.

[8] Lars Birkedal & Rasmus E. Møgelberg (2013): Intensional Type Theory with Guarded Recursive Types qua
Fixed Points on Universes. In: Proceedings of LICS, pp. 213–222, doi:10.1109/LICS.2013.27.

[9] Lars Birkedal, Rasmus E. Møgelberg, Jan Schwinghammer & Kristian Støvring (2012): First Steps in Syn-
thetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. Logical Methods in Computer Science
8(4:1), pp. 1–45, doi:10.2168/LMCS-8(4:1)2012.

[10] Stephen L. Bloom & Zoltán Ésik (1993): Iteration Theories: the equational logic of iterative processes.
EATCS Monographs on Theoretical Computer Science, Springer.

[11] Roy L. Crole & Andrew M. Pitts (1992): New Foundations for Fixpoint Computations: FIX-Hyperdoctrines
and FIX-Logic. Inform. and Comput. 98(2), pp. 171–210, doi:10.1016/0890-5401(92)90018-B.

[12] Pietro Di Gianantonio & Marino Miculan (2004): Unifying Recursive and Co-recursive Definitions in Sheaf
Categories. In Igor Walukiewicz, editor: Foundations of Software Science and Computation Structures,
Lecture Notes in Computer Science 2987, Springer Berlin / Heidelberg, pp. 136–150. Available at http:
//dx.doi.org/10.1007/978-3-540-24727-2_11. 10.1007/978-3-540-24727-2 11.

86 On The Equational Properties of Guarded (Co-)recursion

[13] Calvin C. Elgot (1975): Monadic Computation and Iterative Algebraic Theories. In H. E. Rose & J. C.
Sheperdson, editors: Logic Colloquium ’73, 80, North-Holland Publishers, Amsterdam, pp. 175–230,
doi:10.1007/978-1-4613-8177-8 6.

[14] Calvin C. Elgot, Stephen L. Bloom & Ralph Tindell (1978): On the algebraic structure of rooted trees.
J. Comput. System Sci. 16, pp. 362–399, doi:10.1007/978-1-4613-8177-8 7.

[15] Masahito Hasegawa (1999): Models of Sharing Graphs: A Categorical Semantics of let and letrec. Distin-
guished Dissertation Series, Springer, doi:10.1007/978-1-4471-0865-8.

[16] Masihito Hasegawa (1997): Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of
Cyclic Lambda Calculi. In: Proc. 3rd International Conference on Typed Lambda Calculi and Applications,
Lecture Notes Comput. Sci. 1210, Springer-Verlag, pp. 196–213, doi:10.1007/3-540-62688-3 37.

[17] André Joyal, Ross Street & Dominic Verity (1996): Traced Monoidal Categories. Math. Proc. Cambridge
Philos. Soc. 119(3), pp. 447–468, doi:10.1017/S0305004100074338.

[18] Neelakantan R. Krishnaswami & Nick Benton (2011): A semantic model for graphical user interfaces. In
Manuel M. T. Chakravarty, Zhenjiang Hu & Olivier Danvy, editors: ICFP, ACM, pp. 45–57. Available at
http://doi.acm.org/10.1145/2034773.2034782.

[19] Neelakantan R. Krishnaswami & Nick Benton (2011): Ultrametric Semantics of Reactive Programs. In:
LICS, IEEE Computer Society, IEEE Computer Society, pp. 257–266. Available at http://dx.doi.org/
10.1109/LICS.2011.38.

[20] Stefan Milius (2005): Completely Iterative Algebras and Completely Iterative Monads. Inform. and Comput.
196, pp. 1–41, doi:10.1016/j.ic.2004.05.003.

[21] Robin Milner (1989): Communication and Concurrency. International Series in Computer Science, Prentice
Hall.

[22] Philip S. Mulry (1994): Lifting Theorems for Kleisli Categories. In S. Brookes, M. Main, A. Melton, M. Mis-
love & D. Schmidt, editors: Proc. Mathematical Foundations of Programming Semantics (MFPS’93), Lecture
Notes Comput. Sci. 802, Springer, pp. 304–319, doi:10.1007/3-540-58027-1 15.

[23] Hiroshi Nakano (2000): A Modality for Recursion. In: LICS, IEEE Computer Society, pp. 255–266,
doi:10.1109/LICS.2000.855774.

[24] Hiroshi Nakano (2001): Fixed-Point Logic with the Approximation Modality and Its Kripke Completeness. In
Naoki Kobayashi & Benjamin C. Pierce, editors: TACS, Lecture Notes in Computer Science 2215, Springer,
pp. 165–182, doi:10.1007/3-540-45500-0 8.

[25] Alex Simpson & Gordon D. Plotkin (2000): Complete axioms for categorical fixed-point operators. In:
Proc. 15th Symposium on Logic in Computer Science (LICS’00), IEEE Computer Society, pp. 30–41,
doi:10.1109/LICS.2000.855753.

D. Baelde and A. Carayol (Eds.): Fixed Points
in Computer Science 2013 (FICS 2013)
EPTCS 126, 2013, pp. 87–104, doi:10.4204/EPTCS.126.7

This work is dedicated to the public domain.

Łukasiewicz µ-calculus

Matteo Mio
CWI, Amsterdam (NL)

miomatteo@gmail.com

Alex Simpson
LFCS, School of Informatics

University of Edinburgh

Alex.Simpson@ed.ac.uk

The paper explores properties ofŁukasiewiczµ-calculus, a version of the quantitative/probabilistic
modalµ-calculus containing both weak and strong conjunctions anddisjunctions from Łukasiewicz
(fuzzy) logic. We show that this logic encodes the well-known probabilistic temporal logicPCTL .
And we give a model-checking algorithm for computing the rational denotational value of a formula
at any state in a finite rational probabilistic nondeterministic transition system.

1 Introduction

Among logics for expressing properties of nondeterministic (including concurrent) processes, repre-
sented as transition systems, Kozen’s modalµ-calculus [15] plays a fundamental rôle. It subsumes
other temporal logics of processes, such asLTL , CTL andCTL ∗. It does not distinguish bisimilar pro-
cesses, but separates (finite) non-bisimilar ones. More generally, by a remarkable result of Janin and
Walukiewicz [14], it is exactly as expressive as the bisimulation-invariant fragment of monadic second-
order logic. Furthermore, there is an intimate connection with parity games, which offers an intuitive
reading of fixed-points, and underpins the existing technology for model-checkingµ-calculus properties.

For many purposes, it is useful to add probability to the computational model, leading to probabilistic
nondeterministic transition systems, cf. [23]. Among the different approaches that have been followed
to developing analogues of the modalµ-calculus in this setting, the most significant is that introduced
independently by Huth and Kwiatkowska [12] and by Morgan andMcIver [22], under which aquanti-
tative interpretation is given, with formulas denoting values in[0,1]. This quantitative setting permits
several variations. In particular, three different quantitative extensions of conjunction from booleans to
[0,1] (with 0 as false and 1 as true) arise naturally [12]: minimum,min(x,y); multiplication, xy; and
the strong conjunction (a.k.a. Łukasiewicz t-norm) from Łukasiewicz fuzzy logic, max(x+y−1, 0). In
each case, there is a dual operator giving a corresponding extension of disjunction: maximum, max(x,y);
comultiplication,x+ y− xy; and Łukasiewicz strong disjunction, min(x+ y, 1). The choice of min and
max for conjunction and disjunction is particularly natural, since the correspondingµ-calculus, called
qLµ in [18], has an interpretation in terms of 2-playerstochasticparity games, which extends the usual
parity-game interpretation of the ordinary modalµ-calculus. This allows the real number denoted by a
formula to be understood as thevalueof the associated game [18, 20].

The present paper contributes to a programme of ongoing research, one of whose overall aims is
to investigate the extent to which quantitativeµ-calculi play as fundamental a rôle in the probabilistic
setting as that of Kozen’sµ-calculus in the nondeterministic setting. The logic qLµ , with min/max as
conjunction/disjunction, is insufficiently expressive. For example, it cannot encode the standard prob-
abilistic temporal logicPCTL of [2]. Nevertheless, richer calculi can be obtained by augmenting qLµ
with the other alternatives for conjunction/disjunction,to be used in combination with max and min.
Such extensions were investigated by the first author in [21,19], where the game-theoretic interpretation
was generalized to accommodate the new operations.

88 Łukasiewiczµ-calculus

In this paper, we focus on a calculus containing two different interpretations of conjunction and
disjunction: min and max (written as⊓ and⊔) and the Łukasiewicz operations (written as⊙ and⊕). In
addition, as is natural in the quantitative setting, we include a basic operation for multiplying the value of
a formula by a rational constant in[0,1]. Since these operations are all familiar from Łukasiewicz fuzzy
logic (see, e.g., [11]), we call the resulting logicŁukasiewiczµ-calculus(Łµ).

As our first contribution, we show that the standard probabilistic temporal logicPCTL [2] can be
encoded in Łµ . A similar translation was originally given in the first author’s PhD thesis [19], where
PCTL was translated into a quantitativeµ-calculus containing all three pairs of quantitative conjunc-
tion/disjunction operations in combination. Here, we streamline the treatment by implementing the ob-
servation that the (co)multiplication operations are not required once the Łukasiewicz operations are in
place. In fact, all that is needed is the encodability of certain threshold modalities, see Remark 3.6 below.

An advantage of the Łukasiewiczµ-calculus considered in the present paper is that it enjoys the
property that the value of a formula in a finite rational modelis rational, a property which does not
hold when the (co)multiplication operations are included in the logic. As our second contribution, we
exploit this property by giving a (quantitative) model-checking algorithm that computes the value of a
Łµ formula at a state in a finite rational probabilistic nondeterministic transition system. The algorithm
adapts the approximation-based approach to nested fixed-point calculation to our quantitative calculus.

One could combine our two contributions and obtain a new model-checking algorithm forPCTL .
But this is not advisable since the complexity bounds we obtain for model-checking Łµ are abysmal.
The positive messages of this paper are rather thatPCTL fits into the conceptually appealing framework
of quantitativeµ-calculi, and that this framework is itself algorithmically approachable.

2 Technical background

Definition 2.1. Given a setS we denote withD(S) the set of(discrete) probability distributionson S
defined asD(S)={d : S→ [0,1] | ∑

s∈S

d(s) = 1}. We say thatd ∈ D(S) is rational if d(s) is a rational

number, for alls∈ S.

Definition 2.2. A probabilistic nondeterministic transition system(PNTS) is a pair(S,→) whereS is a
set of states and→ ⊆ S×D(S) is theaccessibilityrelation. We writes 6→ if {d | s→ d} = /0. A PNTS
(S,→) is finite rational if Sis finite and

⋃
s∈S{d | s→ d} is a finite set of rational probability distributions.

We now introduce the novel logic Łµ which extends the probabilistic (or quantitative) modalµ-
calculus (qLµ) of [12, 22, 18, 5].

Definition 2.3. The logic Łµ is generated by the following grammar:

φ ::= X | P | P | qφ | φ ⊔φ | φ ⊓φ | φ ⊕φ | φ ⊙φ | ♦φ | �φ | µX.φ | νX.φ ,

whereq ranges over rationals in[0,1], X over a countable setVar of variables andP over a setProp
of propositional letters which come paired with associatedcomplementsP. As a convention we denote
with 1 the formulaνX.X and withq the formulaq1.

Thus, Łµ extends the syntax of the probabilistic modalµ-calculus by the new pair of connectives
(⊙, ⊕), which we refer to asŁukasiewicz conjunctionanddisjunction, respectively, and a form ofscalar
multiplication(qφ) by rationals numbers in[0,1]. For mild convenience in the encoding ofPCTL below,
we consider a version with unlabelled modalities and propositional letters. However, the approach of this
paper easily adapts to a labeled version of Łµ .

Formulas are interpreted over PNTS’s as we now describe.

Matteo Mio & Alex Simpson 89

Definition 2.4. Given a PNTS(S,→), an interpretationfor the variables and propositional letters is a
functionρ : (Var⊎Prop)→ (S→ [0,1]) such thatρ(P)(x) = 1−ρ(P)(x). Given a functionf : S→ [0,1]
andX ∈ Var we define the interpretationρ [f/X] asρ [f/X](X) = f andρ [f/X](Y) = ρ(Y), for X 6=Y.

Definition 2.5. The semantics of a Łµ formula φ interpreted over(S,→) with interpretationρ is a
functionJφKρ : S→ [0,1] defined inductively on the structure ofφ as follows:

JXKρ = ρ(X) JqφKρ(x) = q· JφKρ(x)
JPKρ = ρ(P) JPKρ = 1−ρ(P)
Jφ ⊔ψKρ(x) = max{JφKρ(x),JψKρ(x)} Jφ ⊓ψKρ(x) = min{JφKρ(x),JψKρ(x)}
Jφ ⊕ψKρ(x) = min{1,JφKρ(x)+ JψKρ(x)} Jφ ⊙ψKρ(x) = max{0,JφKρ(x)+ JψKρ(x)−1}
J♦φKρ(x) =

⊔

x→d

(
∑
y∈X

d(y)JφKρ(y)
)

J�φKρ(x) =
l

x→d

(
∑
y∈X

d(y)JφKρ(y)
)

JµX.φK = lfp
(

f 7→ JφKρ [f/X]

)
JµX.φK = gfp

(
f 7→ JφKρ [f/X]

)

It is straightforward to verify that the interpretation of every operator is monotone, thus the existence of
least and greatest points in the last two clauses is guaranteed by the the Knaster-Tarski theorem.

As customary in fixed-point logics, we presented the logic Łµ in positive normal form. A negation
operationdual(φ) can be defined onclosedformulas by replacing every connective with its dual and
(qφ) with ((1−q)φ). It is simple to verify thatJdual(φ)Kρ(x) = 1− JφKρ(x).

Next, we introduce the syntax and the semantics of the logicPCTL of [2]. We refer to [1] for an
extensive presentation of this logic.

The notions ofpaths, schedulersandMarkov runsin a PNTS are at the basis of the logicPCTL .

Definition 2.6. For a given PNTSL = (S,→) the binary relation L ⊆ S×S is defined as follows:
 L = {(s, t) | ∃d.(s→ d ∧ d(t) > 0)}. Note thats 6→ if and only if s 6 . We refer to(S,) as the
graph underlyingL .

Definition 2.7. A path in a PNTSL = (S,→) is an ordinary path in the graph(S,), i.e., a finite or
infinite sequence{si}i∈I of states such thatsi si+1, for all i + 1 ∈ I . We say that a path ismaximal
if either it is infinite or it is finite and its last entry is a state sn without successors, i.e., such thatsn 6 .
We denote with P(L) the set of all maximal paths inL . The set P(L) is endowed with the topology
generated by the basic open setsU~s = {~r |~s⊑~r} where~s is a finite sequence of states and⊑ denotes the
prefix relation on sequences. The space P(L) is always 0-dimensional, i.e., the basic setsU~s are both
open and closed and thus form a Boolean algebra. We denote with P(s) the open setU{s} of all maximal
paths havingsas first state.

Definition 2.8. A schedulerin a PNTS(S,→) is a partial functionσ from non-empty finite sequences
s0. . . .sn of states to probability distributionsd ∈ D(S) such thatσ(s0. . . .sn) is not defined if and only
if sn 6→ and, if σ is defined ats0. . . .sn with σ(s0. . . .sn) = d, thensn → d holds. A pair(s,σ) is called
a Markov run in L and denoted byMs

σ . It is clear that each Markov runMs
σ can be identified with a

(generally) infinite Markov chain (having a tree structure)whose vertices are finite sequences of states
and having{s} as root.

Markov runs are useful as they naturally induce probabilitymeasures on the space P(L).

Definition 2.9. Let L = (S,→) be a PNTS andMs
σ a Markov run. We define the measurems

σ on P(L)
as the unique (by Carathéodory extension theorem) measurespecified by the following assignment of
basic open sets:

ms
σ
(
Us0....sn

)
=

n−1

∏
i=0

di(si+1)

90 Łukasiewiczµ-calculus

where di = σ(s0. . . .si) and ∏ /0 = 1. It is simple to verify thatms
σ is a probability measure, i.e.,

ms
σ (P(L)) = 1. We refer toms

σ as the probability measure on P(L) induced by the Markov runMs
σ .

We are now ready to specify the syntax and semantics ofPCTL .

Definition 2.10. Let the letterP range over a countable set of propositional symbolsProp. The class of
PCTL state-formulasφ is generated by the following two-sorted grammar:

φ ::= true | P | ¬φ | φ ∨φ | ∃ψ | ∀ψ | P∃
⋊qψ | P∀

⋊qψ
with q ∈ Q∩ [0,1] and⋊ ∈ {>,≥}, wherepath-formulasψ are generated by the simple grammar:
ψ ::= ◦φ | φ1U φ2. Adopting standard terminology, we refer to the connectives ◦ andU as thenextand
until operators, respectively.

Definition 2.11. Given a PNTS(S,→), aPCTL-interpretationfor the propositional letters is a function
ρ : Prop→ 2S, where 2S denotes the powerset ofS.

Definition 2.12. Given a PNTS(S,→) and aPCTL-interpretationρ for the propositional letters, the
semanticsLφ Mρ of aPCTL state-formulaφ is a subset ofS(i.e.,Lφ Mρ : S→{0,1}) defined by induction
on the structure ofφ as follows:

• L trueMρ = S, LPMρ = ρ(P), Lφ1∨φ2Mρ = Lφ1 Mρ ∪ Lφ2Mρ , L¬φ Mρ = S\ Lφ Mρ ,

• L∃ψ Mρ(s) = 1 if and only there exists~s∈ P(s) such that that~s∈ JψK
• L∀ψ Mρ(s) = 1 if and only forall~s∈ P(s) it holds that~s∈ Lψ Mρ(~s)

• LP∃
⋊qψ Mρ(s) = 1 if and only

(⊔
σ ms

σ (Lψ Mρ)
)
⋊q

• LP∀
⋊qψ Mρ(s) = 1 if and only

(d
σ ms

σ (Lψ Mρ)
)
⋊q

whereσ ranges over schedulers and the semanticsLψ Mρ of path formulas, defined as a subset of P(L)
(i.e., as a mapLψ Mρ : P(L)→{0,1}) is defined as:

• L◦φ Mρ(~s) = 1 if and only if |~s| ≥ 2 (i.e.,~s= s0.s1. . . .) ands1 ∈ Lφ Mρ ,

• Lφ1U φ2 Mρ(~s) = 1 if and only if∃n.
(
(sn ∈ Lφ2 Mρ)∧∀m< n.(sm ∈ Lφ1 Mρ)

)
,

It is simple to verify that, for all path-formulasψ , the setLψ Mρ is Borel measurable [1]. Therefore
the definition is well specified. Note how the logicPCTL can express probabilistic properties, by means
of the connectivesP∀

⋊q andP∃
⋊q, as well as (qualitative) properties of the graph underlying the PNTS by

means of the quantifiers∀ and∃.

3 Encoding of PCTL

We prove in this section howPCTL can be seen as a simple fragment of Łµ by means of an explicit
encoding. We first introduce a few useful macro formulas in the logic Łµ which, crucially, are not
expressible in the probabilisticµ-calculus (qLµ).

Definition 3.1. Let φ be a (possibly open) Łµ formula. We define:

• P>0φ = µX.(X⊕φ) • P=1φ = νX.(X⊙φ) • P>qφ = P>0(φ ⊙1−q) • P≥qφ = P=1(φ ⊕1−q)

for q∈Q∩ (0,1). We writeP⋊qφ , for q∈Q∩ [0,1], to denote one of the four cases.

The following proposition describes the denotational semantics of these macro formulas.

Proposition 3.2. Let (S,→) be a PNTS,φ a Łµ formula andρ an interpretation of the variables. Then
it holds that:

Matteo Mio & Alex Simpson 91

JP⋊qφKρ(s) =

{
1 if JφKρ(s)⋊q
0 otherwise

Proof. For the caseP>0φ , observe that the mapx 7→ q⊕ x, for a fixedq∈ [0,1], has 1 as unique fixed
point whenq>0, and 0 as the least fixed point whenq=0. The result then follows trivially. Similarly
for P=1φ . The other cases are trivial.

The following lemma is also useful.

Lemma 3.3. Let (S,→) be a PNTS,φ a Łµ formula andρ an interpretation of the variables. Then:

• JP>0(♦X)Kρ(s) = 1 iff ∃t.
(
s t ∧ρ(X)(t)> 0

)

• JP=1(�X)Kρ(s) = 1 iff ∀t.
(
s t → ρ(X)(t) = 1

)

Proof. Note thatJ♦XKρ(s)> 0 iff there existss→ d such that∑
t∈S

d(t)ρ(X)(t)> 0 holds. This is the case

iff d(t)>0 (i.e.,s t) andρ(X)(t)>0, for somet∈S. The result then follows by Proposition 3.2. The
case forP=1(�X) is similar.

Remark 3.4. When considering{0,1}-valued interpretations forX, the macro formulaP>0♦ expresses
the meaning of the diamond modality in classical modal logicwith respect to the graph(S,) underlying
the PNTS. Similarly,P=1� corresponds to the the classical box modality.

We are now ready to define the encoding ofPCTL into Łµ .

Definition 3.5. We define the encodingE from PCTL formulas to closed Łµ formulas (where�φ stands
for the Łµ formula�φ ⊓♦1), by induction on the structure of thePCTL formulasφ as follows:

1. E(P) = P,

2. E(true)=1,

3. E(φ1∨φ2) = E(φ1)⊔E(φ2),

4. E(¬φ) = dual(E(φ)),

5. E(∃(◦φ)) = P>0
(
♦E(φ)

)
,

6. E(∀(◦φ)) = P=1
(
�E(φ)

)
,

7. E(∃(φ1 U φ2)) = µX.
(

E(φ2)⊔
(
E(φ1)⊓P>0(♦X)

))
,

8. E(∀(φ1 U φ2)) = µX.
(

E(φ2)⊔
(
E(φ1)⊓P=1(�X)

))
,

9. E(P∃
⋊q(◦φ)) = P⋊q

(
♦E(φ)

)
,

10. E(P∀
⋊q(◦φ)) = P⋊q

(
�E(φ)

)
,

11. E(P∃
⋊q(φ1U φ2)) = P⋊q

(
µX.

(
E(φ2)⊔

(
E(φ1)⊓♦X

)))
,

12. E(P∀
⋊q(φ1U φ2)) = P⋊q

(
µX.

(
E(φ2)⊔

(
E(φ1)⊓�X

)))
,

Note that Case 4 is well defined sinceE(φ) is closed by construction.

92 Łukasiewiczµ-calculus

Remark 3.6. The only occurrences of Łukasiewicz operators{⊕,⊙} and scalar multiplication(qφ)
in encodedPCTL formulas appear in the formation of the macro formulasP⋊q() which we refer to
as threshold modalities. Thus,PCTL can be also seen as a fragment of qLµ extended with thresh-
old modalities as primitive operations. With the aid of these modalities the encoding is, manifestly, a
straightforward adaption of the standard encoding of CTL into the modalµ-calculus (see, e.g., [24]).

We are now ready to prove the correctness theorem which holdsfor arbitrary models.

Theorem 3.7. For every PNTS(S,→), PCTL-interpretationρ :Prop→ (S→{0,1}) of the propositional
letters andPCTL formulaφ , the equalityLφ Mρ(s) = JE(φ)Kρ(s) holds, for all s∈ S.

Proof (outline). The proof goes by induction on the complexity ofφ . Cases 1–4 of Definition 3.5 are
trivial. Case 5 follows directly from Lemma 3.3. Observing thatJ�φKρ(s) = 0 if s 6 andJ�φKρ(s) =
J�φKρ(s) otherwise, also Case 6 is a consequence of Lemma 3.3. Consider cases 7 and 8. The encoding
is of the formµX.(F ⊔ (G⊓H(X)), whereF andG (by induction hypothesis) andH(X) (by Proposition
3.2) are all{0,1}-valued. Therefore the functorf 7→ JF ⊔ (G⊓H(X))Kρ [f/X] maps{0,1}-valued func-
tions to{0,1}-valued functions and has only{0,1}-valued fixed-points. It then follows by Remark 3.4
that the correctness of the encoding for these two cases can be proved with the standard technique used
to prove the correctness of the encoding of CTL into Kozen’sµ-calculus (see, e.g., [24]). Consider Case
9. It is immediate to verify that

⊔
σ{ms

σ (U)}, whereU = L◦φ Mρ =
⋃{U{s.t} | t ∈ Lφ Mρ}, is equal (by

induction hypothesis) toJ♦E(φ)Kρ(s). The desired equalityLP∃
⋊q◦φ Mρ = JP⋊q♦E(φ)Kρ then follows by

Proposition 3.2. Case 10 is similar. The two cases 11 and 12 are similar, thus we just consider case 11.
Let φ = P∃

⋊q(ψ) andψ = φ1U φ2. We denote withΨ the set of pathsLψ Mρ . Denote byF(X) the formula
E(φ2)⊔ (E(φ1)⊓♦X). It is clearly sufficient to prove that the equality

⊔
σ{ms

σ (Ψ)} = JµX.F(X)
)
Kρ(s)

holds. Note thatµX.F(X) can be expressed as an equivalent qLµ formulas by substituting the closed
subformulasE(φ1) andE(φ2) with two fresh atomic predicatesPi with interpretationsρ(Pi) = JE(φi)K.
The equality can then be proved by simple arguments based on the game-semantics of qLµ (see, e.g.,
[18] and [20]), similar to the ones used to prove that the Kozen’s µ-calculus formulaµX.(P2∨(P1∧♦X))
has the same denotation of the CTL formula∃(P1U P2) (see, e.g., [24]).

4 Łukasiewiczµ-terms

The aim of the second half of the paper is to show how to computethe (rational) denotational value of
a Łµ formula at any state in a finite rational probabilistic transition system. In this section, we build the
main machinery for doing this, based on a system of fixed-point terms for defining monotone functions
from [0,1]n to [0,1]. The syntax of(Łukasiewicz)µ-termsis specified by the grammar:

t ::= x | qt | t ⊔ t | t ⊓ t | t ⊕ t | t ⊙ t | µx. t | νx. t

Again,q ranges over rationals in[0,1]. As expected, theµ andν operators bind their variables. We write
t(x1, . . . ,xn) to mean that all free variables oft are contained in{x1, . . . ,xn}.

Thevalue t(~r) (we eschew semantic brackets) of aµ-termt(x1, . . . ,xn) applied to a vector(r1, . . . , rn)∈
[0,1]n is defined inductively in the obvious way, cf. Definition 2.5.(Indeed,µ-terms form a fragment of
Łµ of formulas whose value is independent of the transition system in which they are interpreted.)

In Section 6, the model-checking task will be reduced to the problem of computing the value of
µ-terms. The fundamental property that allows such values tobe computed is that, for anyµ-term
t(x1, . . . ,xn) and vector of rationals(q1, . . . ,qn), the value oft(~q) is rational and can be computed from

Matteo Mio & Alex Simpson 93

t andq. One way of establishing this result is by a simple reductionto the first-order theory of rational
linear arithmetic, which provides an indirect means of computing the value oft(~q). The current sec-
tion presents a brief outline of this approach. After this, in Section 5, we provide an alternative direct
algorithm for computingt(~q).

A linear expressionin variablesx1, . . . ,xn is an expression

q1x1+ · · ·+qnxn+q

whereq1, . . . ,qn,q are real numbers. In the sequel, we only considerrational linear expressions, in
which q1, . . . ,qn,q are all rational, and we henceforth assume this property without mention. We write
e(x1, . . . ,xn) if e is a linear expression inx1, . . . ,xn, in which case, given real numbersr1, . . . , rn, we write
e(~r) for the value of the expression when the variables~x take values~r . We also make use of the closure of
linear expressions under substitution: givene(x1, . . . ,xn) ande1(y1, . . . ,ym), . . . ,en(y1, . . . ,ym), we write
e(e1, . . . ,en) for the evident substituted expression in variablesy1, . . . ,ym (which is defined formally by
multiplying out and adding coefficients).

The first-order theory ofrational linear arithmetichas linear expressions as terms, and strict and
non-strict inequalities between linear expressions,

e1 < e1 e1 ≤ e2 , (1)

as atomic formulas. Equality can be expressed as the conjunction of two non-strict inequalities and the
negation of an atomic formula can itself be expressed as an atomic formula. The truth of a first-order
formula is given via its interpretation in the reals, or equivalently in the rationals since the inclusion of
the latter in the former is an elementary embedding. The theory enjoys quantifier elimination [8].

Proposition 4.1. For every Łukasiewiczµ-term t(x1, . . . ,xn), its graph{(~x,y) ∈ [0,1]n+1 | t(~x) = y} is
definable by a formula Ft(x1, . . . ,xn,y) in the first-order theory of rational linear arithmetic, where Ft is
computable from t.

Proof. The proof is a straightforward induction on the structure oft. We consider two cases, in order to
illustrate the simple manipulations used in the construction ofFt .

If t is t1⊕ t2 thenFt is the formula

∃z1,z2.Ft1(~x,z1) ∧ Ft2(~x,z2) ∧ ((z1+z2 ≤ 1∧z= z1+z2) ∨ (1≤ z1+z2∧z= 1))

If t is µxn+1. t ′ thenFt is the formula

Ft ′(x1, . . . ,xn,y,y) ∧ ∀z.Ft ′(x1, . . . ,xn,z,z)→ y≤ z .

Proposition 4.1 provides the following method of computingthe valuet(~q) of µ-term t(x1, . . . ,xn) at
a rational vector(q1, . . . ,qn) ∈ [0,1]n. First constructFt(x1, . . . ,xn,y). Next, perform quantifier elim-
ination to obtain an equivalent quantifier-free formulaGt(x1, . . . ,xn,y), and consider its instantiation
Gt(q1, . . . ,qn,y) at~q. (Alternatively, obtain an equivalent formulaG~q

t (y) by performing quantifier elim-
ination onFt(q1, . . . ,qn,y).) By performing obvious simplifications of atomic formulasin one variable,
Gt(q1, . . . ,qn,y) reduces to a boolean combination of inequalities each having one of the following forms

y≤ q y< q y≥ q y> q .

94 Łukasiewiczµ-calculus

By the correctness ofGt there must be a unique rational satisfying the boolean combination of constraints,
and this can be extracted in a straightforward way fromGt(q1, . . . ,qn,y).

We give a crude (but sufficient for our purposes) complexity analysis of the above procedure. In
general, for aµ-term t of lengthu containingv fixed points, the length ofFt is bounded by 2vuc, for
some constantc. The quantifier-elimination procedure in [8], when given a formula of lengthl as input

produces a formula of length at most 2dl as output, for some constantd, and takes time at most 22d′ l
.

Thus the length of the formulaGt(x1, . . . ,xn,y) is bounded by 22
vucd, and the computation time fort(~q)

is O
(
222vucd′)

, using a unit cost model for rational arithmetic.

5 A direct algorithm for evaluating µ-terms

Our direct approach to computing the values ofµ-terms is based on a simple explicit representation of
the functions defined by such terms. Aconditioned linear expressionis a pair, writtenC ⊢ e, wheree is
a linear expression, andC is a finite set of strict and non-strict inequalities betweenlinear expressions;
i.e., each element ofC has one of the forms in (1). We writeC(~r) for the conjunction of the inequations
obtained by instantiating~r for ~x in C. Clearly, if~q is a vector of rationals then it is decidable ifC(~q)
is true or false. The intended meaning of a conditioned linear expressionC ⊢ e is that it denotes the
valuee(~r) when applied to a vector of reals~r for whichC(~r) is true, otherwise it is undefined. A basic
property we exploit in the sequel is that every conditioningsetC(x1, . . . ,xn) defines a convex subset
{(r1, . . . , rn) |C(~r)} of Rn.

Let F be asystem(i.e., finite set) of conditioned linear expresssions in variablesx1, . . . ,xn. We say
thatF representsa function f : [0,1]n → [0,1] if the following conditions hold:

1. For alld1, . . . ,dn ∈ [0,1], there exists a conditioned linear expression(C ⊢ e) ∈ F such thatC(~d)
is true, and

2. for all d1, . . . ,dn ∈ [0,1], and every conditioned linear expression(C ⊢ e) ∈ F , if C(~d) is true then
e(~d) = f (~d).

Note that, for two conditioned linear expressions(C1 ⊢ e1),(C2 ⊢ e2) ∈ F , we do not require different
conditioning setsC1 andC2 to be disjoint. However,e1 ande2 must agree on any overlap.

Obviously, the function represented by a system of conditioned linear expressions is unique, when it
exists. But not every system represents a function. One could impose syntactic conditions on a system
to ensure that it represents a function, but we shall not pursue this.

While conditioned linear expressions provide a syntax moredirectly tailored to expressing functions
than general logical formulas, their expressivity in this regard coincides with rational linear arithmetic.

Proposition 5.1. A function f: [0,1]n → [0,1] is representable by a system of conditioned linear expres-
sions if and only if its graph{(~x,y) ∈ [0,1]n+1 | f (~x) = y} is definable by a formula F(x1, . . . ,xn,y) in the
first-order theory of rational linear arithmetic. Moreover, a defining formula and a representing system
of conditioned linear equations can each be computed from the other.

We believe this result to be folklore. The proof is a straightforward application of quantifier elimination.
Combining Propositions 4.1 and 5.1 we obtain:

Corollary 5.2. For every Łukasiewiczµ-term t(x1, . . . ,xn), the function

~r 7→ t(~r) : [0,1]n → [0,1]

is representable by a system of conditioned linear expressions in variables x1, . . . ,xn. Furthermore a
representing system can be computed from t.

Matteo Mio & Alex Simpson 95

The computation of a representing system fort via quantifier elimination, provided by the proofs
of Propositions 4.1 and 5.1, is indirect. The goal of this section is to present an alternative algorithm
for calculating the valuet(~r) of a µ-term at rationalsr1, . . . , rn ∈ [0,1], which is directly based on ma-
nipulating conditioned linear expressions. Rather than computing an entire system of conditioned linear
expressions representingt, the algorithm works locally to provide a single conditioned expression that
applies to the input vector~r.

The algorithm takes, as input, aµ-termt(x1, . . . ,xn) and a vector of rationals(r1, . . . , rn)∈ [0,1]n, and
returns a conditioned linear expressionC ⊢ e, in variablesx1, . . . ,xn, with the following two properties.

(P1) C(~r) is true.

(P2) For alls1, . . . ,sn ∈ R, if C(~s) is true thens1, . . . ,sn ∈ [0,1] ande(~s) = t(~s).

It follows thate(~r) = t(~r), soecan indeed be used to compute the valuet(~r).

5.1 The algorithm

The algorithm takes, as input, aµ-term t(x1, . . . ,xn) and a vector of rationals(r1, . . . , rn) ∈ [0,1]n, and
returns a conditioned linear expressionC ⊢ e, in variablesx1, . . . ,xn, with the properties (P1) and (P2)
above. For the purposes of the correctness proof in Section 5.3, it is convenient to consider the running of
the algorithm in the more general case thatr1, . . . , rn are arbitrary real numbers in[0,1]. This more general
algorithm can be understood as an algorithm in the Real RAM (a.k.a. BSS) model of computation [3].
When the input vector is rational, all real numbers encountered during execution of the algorithm are
themselves rational, and so the general Real RAM algorithm specialises to abona fide(Turing Machine)
algorithm in this case. Moreover, even in the case of irrational inputs, all linear expressions constructed
in the course of the algorithm are rational.

The algorithm works recursively on the structure of the termt. We present illustrative cases for terms
t1⊕ t2 andµxn+1. t ′. The latter is the critical case. The algorithm forνxn+1. t ′ is an obvious dualization.

If t is t1⊕ t2 then recursively computeC1 ⊢ e1 andC2 ⊢ e2. If e1(~r)+e2(~r)≤ 1 then return

C1,C2, e1+e2 ≤ 1 ⊢ e1+e2 .

Otherwise, return
C1,C2, e1+e2 ≥ 1 ⊢ 1 .

In the case thatt is µxn+1. t ′, enter the following loop starting withD = /0 andd = 0.

Loop: At the entry of the loop we have a finite setD of inequalities between linear expressions in
x1, . . . ,xn, and we have a linear expressiond(x1, . . . ,xn). The loop invariant that applies is:

(I1) D(~r) is true; and

(I2) for all~s∈ [0,1]n, if D(~s) thend(~s)≤ (µxn+1. t ′)(~s).

We think of D as constraints propagated from earlier iterations of the loop, and ofd as the current
approximation to the least fixed point subject to the constraints.

Recursively computet ′(x1, . . . ,xn+1) at (~r ,d(~r)) asC ⊢ e, whereehas the form:

q1x1+ · · ·+qn xn+qn+1xn+1+q . (2)

96 Łukasiewiczµ-calculus

In the case thatqn+1 6= 1, define the linear expression:

f :=
1

1−qn+1
(q1 x1+ · · ·+qnxn+q) . (3)

Test ifC(~r , f (~r)) is true. If it is, exit the loop and return:

D ∪C(x1, . . . ,xn,d(x1, . . . ,xn)) ∪ C(x1, . . . ,xn, f (x1, . . . ,xn)) ⊢ f (4)

as the result of the algorithm forµx. t ′ at~r. Otherwise, ifC(~r , f (~r)) is false, defineN(x1, . . . ,xn) to be
the negation of the inequalitye1(x1, . . . ,xn, f (x1, . . .xn)) ⊳ e2(x1, . . . ,xn, f (x1, . . .xn)) (using⊳ to stand
for either < or ≤), wheree1(x1, . . . ,xn+1) ⊳ e2(x1, . . . ,xn+1) is a chosen inequality inC for which
e1(~r , f (~r))⊳ e2(~r , f (~r)) is false, and go tofind next approximation below.

In the case thatqn+1 = 1, test the equalityq1 r1+ · · ·+qn rn+q= 0. If true, exit the loop with result:

D ∪C(x1, . . . ,xn,d(x1, . . . ,xn)) ∪ {q1 x1+ · · ·+qnxn+q= 0} ⊢ d . (5)

If insteadq1 r1+ · · ·+qn rn+q 6= 0, chooseN(x1, . . . ,xn) to be whichever of the inequalities

q1 x1+ · · ·+qnxn+q < 0 0 < q1 x1+ · · ·+qnxn+q

is true for~r , and proceed withfind next approximation below.

Find next approximation: Arrange the inequalities inC so they have the following structure.

C′ ∪ {xn+1 > ai}1≤i≤l ′ ∪ {xn+1 ≥ ai}l ′<i≤l ∪ {xn+1 ≤ bi}1≤i≤m′ ∪ {xn+1 < bi}m′<i≤m (6)

such that the only variables in the inequalitiesC′, and linear expressionsai ,bi arex1, . . . ,xn. Choosej
with 1≤ j ≤ m such thatb j(~r)≤ bi(~r) for all i with 1≤ i ≤ m. Then go back toloop, taking

D ∪C(x1, . . . ,xn,d(x1, . . . ,xn)) ∪ {N(x1, . . . ,xn)} ∪ {b j ≤ bi | 1≤ i ≤ m} e(~x,b j(~x)) (7)

to replaceD andd respectively.

5.2 A simple example

Consider the Łµ termt = µx.(P≥ 1
2
x ⊔ 1

2), whereP≥ 1
2
x is the macro formula as in Definition 3.1, that is

P≥ 1
2
x= P=1(x⊕ 1

2) = νy.(y⊙ (x⊕ 1
2)). Thus,

t = µx.
(

νy.
(
y⊙ (x⊕ 1

2
)
)
⊔ 1

2

)

Here,t ′(x) = νy.
(
y⊙ (x⊕ 1

2)
)
⊔ 1

2 is a discontinuous function, and the value oft is 1.
We omit giving a detailed simulation of the algorithm on the subexpressiont ′(x) atx= r. The result

it produces, however, is{0≤ x< 1
2} ⊢ 1

2 if r < 1
2, and{1

2 ≤ x≤ 1} ⊢ 1 if r ≥ 1
2.

We run the algorithm on inputµx.t ′(x). SetD = /0 andd = 0. Calculatingt ′(x) at x= 0 we obtain
C⊢ eas{0≤ x< 1

2} ⊢ 1
2. We now need to calculatef := 1

1−0(
1
2) =

1
2. The constraintC(1

2) does not hold.
Thus we need to improve the approximationd = 0. Sincee= 1

2 is constant, the next approximation is
1
2. The new set of constraints is still the emptyset. Thus we iterate the algorithm withD = /0 andd = 1

2.
Calculatingt ′(x) at x = 1

2 producesC ⊢ e as{1
2 ≤ x ≤ 1} ⊢ 1. Computef := 1

1−0(1) = 1. SinceC(1)
holds, the algorithm terminates with /0⊢ 1, as desired.

Matteo Mio & Alex Simpson 97

5.3 Correctness of the algorithm

Theorem 5.3. Let t(x1, . . . ,xn) be any Łukasiewiczµ-term. Then, for every input vector(r1, . . . , rn) ∈
[0,1]n, the above (Real RAM) algorithm terminates with a conditioned linear expression C~r ⊢ e~r satisfy-
ing properties (P1) and (P2). Moreover, the set of all possible resulting conditioned linear expressions

{C~r ⊢ e~r |~r ∈ [0,1]n} (8)

is finite, and thus provides a representing system for the function t: [0,1]n → [0,1].

Before the proof it is convenient to introduce some terminology associated with the properties stated in
the theorem. For aµ-term t, we call the cardinality of the set (8) of possible results,C~r ⊢ e~r , thebasis
size, and we call the maximum number of inequalities in anyC~r thecondition size.

Proof. By induction on the structure oft. We verify the critical case whent is µxn+1. t ′.
We show first that the loop invariants (I1), (I2) guarantee that any result returned via (4) or (5)

satisfies (P1) and (P2). By induction hypothesis, the recursive computation oft ′(x1, . . . ,xn+1) at (~r ,d(~r))
asC ⊢ e, wheree has the formq1 x1+ · · ·+qnxn+qn+1xn+1+q as in (2), satisfies:C(~r ,d(~r)); and, for
all s1, . . . ,sn+1 ∈R, if C(s1, . . . ,sn+1) then~s∈ [0,1]n andt ′(s1, . . . ,sn+1) = e(s1, . . . ,sn+1).

In the case thatqn+1 6= 1, the linear expressionf , defined in (3), maps anys1, . . . ,sn ∈R to the unique
solution f (~s) to the equationxn+1 = e(s1, . . . ,sn,xn+1) in R. Suppose thatD(~s) holds. Then, by loop
invariant (I2),d(~s) ≤ (µxn+1. t ′)(~s). Suppose also thatC(~s, f (~s)). Thent ′(~s, f (~s)) = e(~s, f (~s)) = f (~s),
i.e., f (~s) is a fixed point ofxn+1 7→ t ′(~s,xn+1); whence,(µxn+1. t ′)(~s) ≤ f (~s). Suppose, finally, that
C(~s,d(~s)) also holds. Then, because bothC(~s,d(~s)) andC(~s, f (~s)), andd(~s) ≤ (µxn+1. t ′)(~s) ≤ f (~s),
we have, by the convexity of constraints, thatt ′(~s,sn+1) = e(~s,sn+1) for all sn+1 ∈ [d(~s), f (~s)]. So f (~s)
is the unique fixed-point ofxn+1 7→ t ′(~s,xn+1) on [d(~s), f (~s)]. Since,d(~s) ≤ (µxn+1. t ′)(~s), we have
f (~s) = (µxn+1. t ′)(~s). This argument justifies that the conditioned linear expression of (4) satisfies (P2).
It satisfies (P1) just ifC(~r , f (~r)), which is exactly the condition under which (4) is returned as the result.

In the case thatqn+1 = 1 then, for anys1, . . . ,sn ∈ R, the equationxn+1 = e(s1, . . . ,sn,xn+1) has a
solution if and only ifq1 s1+ · · ·+qn sn+q= 0, in which case anyxn+1 ∈ R is a solution. Suppose that
q1 s1+ · · ·+qnsn+q= 0 andC(~s,d(~s)) both hold. Thent ′(s1, . . . ,sn,d(~s)) = e(~s,d(~s)) = d(~s), sod(~x) is
a fixed point ofxn+1 7→ t ′(~s,xn+1). If also D(~s) holds then, by loop invariant (I2),d(~x) = (µxn+1. t ′)(~s).
We have justified that the conditioned linear expression of (5) satisfies (P2). It satisfies (P1) just if
q1 r1+ · · ·+qn rn+q= 0, which is exactly the condition under which (5) is returnedas the result.

Next we show that the loop invariants are preserved through the computation. Properties (I1) and (I2)
are trivially satisfied by the initial valuesD = /0 andd = 0. We must show that they are preserved when
D andd are modified via (7), which happens when execution passes tofind next approximation. In this
subroutine, the inequalities inC are first arranged as in (6) where, asC(~r,d(~r)), we must havem≥ 1, as
otherwiseC(~r ,s) would hold for all reals≥ d(~r), contradicting thatC(~r ,s) impliess∈ [0,1]. (Similarly,
l ≥ 1.) Thus there indeed existsj with 1≤ j ≤ m such thatb j(~r) ≤ bi(~r) for all i with 1≤ i ≤ m. It is
immediate that the constraints in the modifiedD of (7) are true for~r . Thus (I1) is preserved. To show
(I2), supposes1, . . . ,sn satisfy the constraints, i.e.,

D(~s) C(~s,d(~s)) N(~s) {b j(~s)≤ bi(~s) | 1≤ i ≤ m} .

Defining r ′ = (µxn+1. t ′)(~s), by (I2) for D,d we haved(~s) ≤ r ′. We must show thate(~s,b j(~s)) ≤ r ′. By
the definition ofN(x1, . . . ,xn), in either theqn+1 6= 1 orqn+1 = 1 case,N(~s) implies thatC(~s, r ′) does not
hold. BecauseC(~s,d(~s)) and by the choice ofj, it holds thatC(~s,s), for all s∈ [0,1] such thats= d(~s) or

98 Łukasiewiczµ-calculus

d(~s) < s< b j(~s). SinceC(~s, r ′) is false andd(~s) ≤ r ′, it follows from the convexity of the conditioning
setC that, for everys with s= d(~s) or d(~s) < s< b j(~s), we haves< r ′. Whence, sincer ′ is the least
prefixed point forxn+1 7→ t ′(~s,xn+1), alsos< t ′(~s,s)≤ r ′, i.e.,

s< e(~s,s)≤ r ′ . (9)

Thus,e(~s,b j(~s)) = sup{e(~s,s) | s= d(~s) or d(~s)≤ s< b j(~s)} ≤ r ′. Thus,e(~s,b j(~s)) ≤ r ′, i.e., it is an
approximation to the fixed point. Moreover, it is a good new approximation to choose in the sense that:

d(~s)< e(~s,b j(~s)) and notC(~s,e(~s,b j(~s))) . (10)

The former holds becaused(~s)< e(~s,d(~s)), by (9), andd(~s)≤ b j(~s). The latter because ifC(~s,e(~s,b j(~s)))
then, in particular,e(~s,b j(~s))≤ b j(~s), sob j(~s) = e(~s,b j(~s)) = r ′, contradicting that notC(~s, r ′).

To show termination, by induction hypothesis, collecting all possible results of running the algorithm
on t ′ produces a representing system fort ′ : [0,1]n+1 → [0,1]:

C1 ⊢ e1 . . . Ck′ ⊢ ek′ , (11)

wherek′ is the basis size oft ′. We now analyse the execution of the algorithm forµxn+1. t ′ on a given
input vector(r1, . . . , rn). On iteration numberi, the loop is entered with constraintsDi and approximation
di (whereD1 = /0 andd1 = 0), after which the recursive call to the algorithm fort ′ yields one of the
conditioned linear expressions,Cki ⊢ eki , from (11) above, such thatCki (~r ,di(~r)) holds. Then, depending
on conditions involving onlyCki ⊢ eki and~r, either a result is returned, orDi+1 anddi+1 are constructed
for the loop to be repeated. By (10), at iterationi + 1 of the loop, we havedi+1(~r) > di(~r) and also
Cki (~r,di+1(~r)) is false. Since each conditioning set is convex, it follows that noCj can occur twice in
the listCk1,Ck2, Hence the algorithm must exit the loop after at mostk′ iterations. Therefore, the
computation forµx. t ′ at~r terminates.

It remains to show that the algorithm forµx. t ′ produces only finitely many conditioned linear expres-
sionsC~r ⊢ e~r . The crucial observation is that the vector~r is used only to determine the control flow of
the algorithm, i.e., which branches of conditional statements are followed, the choices made in selecting
N andb j in (7), and the order in which the differentCj ⊢ ej , from (11) are visited (given by the sequence
k1,k2, . . . of values taken byj). Using this, if l ′ is the condition size oft ′, then a loose upper bound is
that the number of possible resultsC~r ⊢ e~r for the algorithm forµxn+1. t ′ is at most(k′(l ′)2)k′ , and the
number of inequalities inC~r is at most 2k′l ′.

The above proof gives a truly abysmal complexity bound for the algorithm. Let the basis and con-
dition size for the termt ′(x1, . . . ,xn+1) be k′ and l ′ respectively. Then, as in the proof, the basis and
condition size forµxn+1. t ′ are respectively bounded by:

k ≤ (k′(l ′)2)k′ and l ≤ 2k′l ′ .

Using these bounds, the basis and condition size have non-elementary growth in the number of fixed
points in a termt.

5.4 Comparison

According to the crude complexity analyses we have given, the evaluation of Łukasiewiczµ-terms via
rational linear arithmetic is (in having doubly- and triply-exponential space and time complexity bounds)

Matteo Mio & Alex Simpson 99

preferable to the (non-elementary space and hence time) evaluation via the direct algorithm. Neverthe-
less, we expect the direct algorithm to work better than thisin practice. Indeed, a main motivating factor
in the design of the direct algorithm is that the algorithm for µxn+1. t ′ only explores as much of the basis
set fort ′ as it needs to, and does so in an order that is tightly constrained by the monotone improvements
made to the approximatingd expressions along the way. In contrast, the crude complexity analysis is
based on a worst-case scenario in which the algorithm is assumed to visit the entire basis fort ′, and,
moreover, to do so, for different input vectors~r , in every possible order for visiting the different basis
sets. Perhaps better bounds can be obtained by a more carefulanalysis of the algorithm.

6 Model checking

Let φ be a closed Łµ formula and(S,→) a finite rational PNTS. We wish to compute the valueJφK(s) at
any given states∈ S. We do this by effectively producing a closedµ-term ts(φ), with the property that
ts(φ) = JφK(s), whence the rational value ofJφK(s) can be calculated by the algorithm in Section 5.

We assume, without loss of generality, that all fixed-point operators inφ bind distinct variables. Let
X1, . . . ,Xm be the variables appearing inφ . We writeσi Xi.ψi for the unique subformula ofφ in whichXi

is bound. The strict (i.e., irreflexive)dominationrelationXi ⊲ Xj between variables is defined to mean
thatσ j Xj .ψ j occurs as a subformula inψi .

Suppose|S| = n. For eachs∈ S, we translateφ to a µ-term ts(φ) containing at mostmnvariables
xi,s′ , where 1≤ i ≤ m ands′ ∈ S. The translation is defined using a more general functiontΓ

s , defined
on subformulas ofφ , whereΓ ⊆ {1, . . . ,m}×S is an auxiliary component keeping track of the states at
which variables have previously been encountered. GivenΓ and(i,s) ∈ {1, . . . ,m}×S, we define:

Γ⊲ (i,s) = (Γ∪{(i,s)})\{(j,s′) ∈ Γ | Xi ⊲ Xj} .

This operation is used in the definition below to ‘reset’ subordinate fixed-point variables whenever a new
variable that dominates them is declared.

tΓ
s (Xi) =

{
xi,s if (i,s) ∈ Γ
σi xi,s. tΓ⊲(i,s)

s (ψi) otherwise

tΓ
s (P) = ρ(P)(s)

tΓ
s (P) = 1−ρ(P)(s)

tΓ
s (qφ) = qtΓs (φ)

tΓ
s (φ1 •φ2) = tΓ

s (φ1)• tΓ
s (φ2) • ∈ {⊔,⊓,⊕,⊙}

tΓ
s (♦φ) =

⊔

s→d

⊕

s′∈S

d(s′) tΓ
s′(φ)

tΓ
s (�φ) =

l

s→d

⊕

s′∈S

d(s′) tΓ
s′(φ)

tΓ
s (σi Xi.ψi) = σi xi,s. tΓ∪{(i,s)}

s (ψi)

This is well defined because changing fromΓ to Γ⊲ (i,s) or toΓ∪{(i,s)} strictly increases the function

i 7→ |{(i,s) | (i,s) ∈ Γ}| : {1, . . . ,m} → {0, . . . ,n}

under the lexicographic order on functions relative to⊲.

100 Łukasiewiczµ-calculus

Proposition 6.1. For any closed Łµ formulaφ , finite PNTS(S,→) and s∈S, it holds thatJφK(s) = t /0
s (φ).

We omit the laborious proof. It is reminiscent of the reduction of modalµ-calculus model checking to a
system of nested boolean fixed-point equations in Section 4 of [17].

7 Related and future work

The first encodings of probabilistic temporal logics in a probabilistic version of the modalµ-calculus
were given in [4], where a versionPCTL∗, tailored to processes exhibiting probabilistic but not nonde-
terministic choice, was translated into a non-quantitative probabilisitic variant of theµ-calculus, which
included explicit (probabilistic) path quantifiers but disallowed fixed-point alternation.

In their original paper on quantitativeµ-calculi [12], Huth and Kwiatkowska attempted a model
checking algorithm for alternation-free formulas in the version of Łµ with ⊕ and⊙ but without⊓, ⊔ and
scalar multiplication. Subsequently, several authors have addressed the problem of computing (some-
times approximating) fixed points for monotone functions combining linear (sometimes polynomial)
expressions with min and max operations; see [10] for a summary. However, such work has focused
on (efficiently) finding outermost (simultaneous) fixed-points for systems of equations whose underlying
monotone functions are continuous. The nested fixed points considered in the present paper give rise to
the complication of non-continuous functions, as the example of Section 5.2 demonstrates.

As future work, it is planned to run an experimental comparison of the direct algorithm against the
reduction to linear arithmetic. As suggested in Section 5.4, we expect the direct algorithm to work better
in practice than the non-elementary upper bound on its complexity, given by our crude analysis, suggests.
Furthermore, as a natural generalization of the approximation approach to computing fixed points, the
direct algorithm should be amenable to optimizations such as the simultaneous solution of adjacent fixed
points of the same kind, and the reuse of previous approximations when applicable due to monotonicity
considerations. Unlike the black-box reduction to linear arithmetic, based on quantifier elimination, the
linear-constraint-based approach of the direct algorithmshould also offer a flexible machinery helpful
in the design of optimized procedures for calculating values of particular subclasses of Łµ-terms. An
important example is given by the fragment of Łµ capable of encodingPCTL (see Remark 3.6).

Our results on Łµ are a contribution towards the development of a robust theory of fixed-point prob-
abilistic logics. The simplicity of the proposed encoding of PCTL (see Remark 3.6 above) suggests that
the direction we are following is promising. In a follow-up paper, by the first author, it will be shown
that the process equivalence characterised by Łukasiewiczµ-calculus is the standard notion ofproba-
bilistic bisimilarity [23]. Thus the quantitative approach to probabilisticµ-calculi may be considered
equally suitable as a mechanism for characterising processequivalence as the non-quantitativeµ-calculi
advocated for this purpose in [4] and [7].

Further research will have to explore the relations betweenquantitativeµ-calculi such as Łµ and
other established frameworks for verification and design ofprobabilistic systems. Important exam-
ples include theabstract probabilistic automataof [6], the compositionalassume-guaranteetechniques
of [16, 9] and the recentp-automataof [13]. In particular, with respect to the latter formalism, we
note that the acceptance condition of p-automata is specified in terms of stochastic games whose con-
figurations may have preseeded threshold values whose action closely resembles that of the threshold
modalities considered in this work (Definition 3.1). Exploring the relations between p-automata games
and Łµ-games [19] could shed light on some underlying fundamentalideas.

Matteo Mio & Alex Simpson 101

Acknowledgements

We thank Kousha Etessami, Grant Passmore, Colin Stirling and the anonymous reviewers for helpful
comments and for pointers to the literature.

The first author carried out this work during the tenure of an ERCIM “Alain Bensoussan” Fellow-
ship, supported by the Marie Curie Co-funding of Regional, National and International Programmes
(COFUND) of the European Commission.

References

[1] Christel Baier & Joost Pieter Katoen (2008):Principles of Model Checking. The MIT Press.

[2] Andrea Bianco & Luca de Alfaro (1995):Model Checking of Probabilistic and Nondeterministic Systems. In:
Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science
1026, Springer-Verlag, pp. 499–513, doi:10.1007/3-540-60692-0_70.

[3] Lenore Blum, Mike Shub & Steve Smale (1989):On a Theory of Computation and Complexity over the
Real Numbers: NP-completeness, Recursive Functions and Universal Machines. Bulletin of the AMS21(1),
doi:10.1109/SFCS.1988.21955.

[4] Rance Cleaveland, S. Purushothaman Iyer & Muralidhar Narasimha (1999):Probabilistic Temporal Logics
via the Modal mu-Calculus. In: Foundations of Software Science and Computation Structures, doi:10.1007/
3-540-49019-1_20.

[5] Luca de Alfaro & Rupak Majumdar (2004):Quantitative Solution of omega-Regular Games. Journal of
Computer and System Sciences, Volume 68, Issue 2, pp. 374 – 397, doi:10.1016/j.jcss.2003.07.009.

[6] Benoit Delahaye, Joost Pieter Katoen, Kim Larsen, Axel Legay, Mikkel Pedersen, Falak Sher & An-
drzej Wasowski (2011):Abstract Probabilistic Automata. In: Proc. of 12th VMCAI, doi:10.1007/
978-3-642-18275-4_23.

[7] Yuxin Deng & Rob van Glabbeek (2010):Characterising Probabilistic Processes Logically. In: Logic for
programming, artificial intelligence and reasoning, Lecture Notes in Computer Science6397, doi:10.1007/
978-3-642-16242-8_20.

[8] Jeanne Ferrante & Charles Rackoff (1975):A Decision Procedure for the First Order Theory of Real Addition
with Order. SIAM Journal of Computing4(1), pp. 69–76, doi:10.1137/0204006.

[9] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker & Hongyang Qu (2011):Quanti-
tative multi-Objective Verification for Probabilistic Systems. In: Proc. of 14th TACAS, doi:10.1007/
978-3-642-19835-9_11.

[10] Thomas Martin Galwitza & Helmut Seidl (2011):Solving Systems of Rational Equations through Strategy
Iteration. ACM Trabnsactions on Programming Languages and Systems33(3), doi:10.1145/1961204.
1961207.

[11] Petr Hájek (2001):Metamathematics of Fuzzy Logic. Springer.

[12] Michael Huth & Marta Kwiatkowska (1997):Quantitative Analysis and Model Checking. In: Proceeding of
the 12th Annual IEEE Symposium on Logic in Computer Science.

[13] Michael Huth, Nir Piterman & Daniel Wagner (2012):p-Automata: New Foundations for discrete-time
Probabilistic Verification. Perform. Eval.69(7-8), doi:10.1016/j.peva.2012.05.005.

[14] David Janin & Igor Walukiewicz (1996):On the Expressive Completeness of the Propositional mu-Calculus
with Respect to Monadic Second Order Logic. Lecture Notes in Computer Science1119, pp. 263–277,
doi:10.1007/3-540-61604-7_60.

[15] D. Kozen (1983):Results on the Propositional mu-Calculus. In: Theoretical Computer Science, pp. 333–354,
doi:10.1016/0304-3975(82)90125-6.

102 Łukasiewiczµ-calculus

[16] Marta Kwiatkowska, Gethin Norman, David Parker & Hongyang Qu (2010):Assume-Guarantee Verification
for Probabilistic Systems. In: Proceedings of 16th TACAS, doi:10.1007/978-3-642-12002-2_3.

[17] Angelika Mader (1995):Modal µ-Calculus, Model Checking and Gauß Elimination. In: Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS), LNCS 1019, pp. 72–88, doi:10.1007/
3-540-60630-0_4.

[18] Annabelle McIver & Carroll Morgan (2007):Results on the Quantitativeµ-Calculus qMµ . ACM Transac-
tions on Computational Logic8(1), doi:10.1145/1182613.1182616.

[19] Matteo Mio (2012):Game Semantics for Probabilisticµ-Calculi. Ph.D. thesis, School of Informatics, Uni-
versity of Edinburgh. Permanent URL:http://hdl.handle.net/1842/6223.

[20] Matteo Mio (2012): On The Equivalence of Denotational and Game Semantics for the Probabilisticµ-
Calculus. Logical Methods in Computer Science8(2), doi:10.2168/LMCS-8(2:7)2012.

[21] Matteo Mio (2012):Probabilistic Modalµ-Calculus with Independent Product. Logical Methods in Com-
puter Science8(4), doi:10.2168/LMCS-8(4:18)2012.

[22] Carroll Morgan & Annabelle McIver (1997):A Probabilistic Temporal Calculus Based on Expectations. In:
In Lindsay Groves and Steve Reeves, editors, Proc. Formal Methods, Springer Verlag.

[23] Roberto Segala (1995):Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D.
thesis, Laboratory for Computer Science, M.I.T.

[24] Colin Stirling (2001):Modal and Temporal Logics for Processes. Springer, doi:10.1007/3-540-60915-6_
5.

A Appendix: some omitted proof details

We add detail to the outlined proof of Theorem 3.7, by supplying the omited argument for the equality

⊔

σ
{ms

σ (Ψ)}= JµX.F(X)
)
Kρ(s) ,

which appears as case 11. Although game semantics provides the most intuitive justification, we instead
give a direct denotational proof, in order to avoid introducing game-theoretic machinery.

Expanded proof of Theorem 3.7.Case 11(≤). We first show that

⊔

σ
{ms

σ (Ψ)} ≤ JµX.F(X)
)
Kρ(s) (12)

DefineΨk = {s0.s1.s2 . . . | s0 = sand∃n≤ k.
(
sn ∈ Lφ2 Mρ ∧∀m< n.(sm ∈ Lφ1 Mρ)

)
}. ClearlyΨ =

⋃
k Ψk.

Suppose Inequality 12 does not hold. Then there exists somek and schedulerσ such that

ms
σ (Ψk)> JµX.F(X)Kρ(s) (13)

We prove that this is not possible by induction onk. In thek= 0 case, since we are assumingms
σ (Ψ0)> 0,

it holds thats∈ Lφ2 Mρ . By inductive hypothesis onφ2, we know thatJE(φ2)K(s) = 1 and this implies that
µX.F(X) = 1, which is a contradiction with the assumed strict inequality 13. Consider the casek+1.
Note that ifs∈ Lφ2 Mρ then,JµX.F(X)Kρ(s) = 1 as before, contradicting Inequality 13. So assumes 6∈
Lφ2 Mρ . Since we are assumingms

σ (Ψk+1)> 0 it must be the case thats∈ Lφ1 Mρ . Similarly,ms
σ (Ψk+1)> 0

ands 6∈ Lφ2 Mρ imply thats 6→ does not hold. This means (see Definition 2.8) thatσ({s}) is defined. Let
d = σ({s}) and observe thatms

σ (Ψk+1) = ∑
t∈S

d(t)mt
σ ′(Ψk), whereσ ′(s0,s1, . . . ,sn) = σ(s,s0,s1, . . . ,sn).

Matteo Mio & Alex Simpson 103

By induction onk we know that the inequalitymt
σ ′(Ψk) ≤ JµX.F(X)Kρ(t) holds for everyt ∈ S. Thus,

by definition of the semantics of♦, we obtainms
σ (Ψk) ≤ J♦

(
µX.F(X)

)
Kρ . Recall that we previously

assumeds 6∈ Lφ2 Mρ ands∈ Lφ1 Mρ . Hence the equality

J♦
(
µX.F(X)

)
Kρ(s) = JE(φ2)⊔ (E(φ1)⊓

(
♦µX.F(X)

)
)Kρ(s)

holds. The formula on the right is just the unfoldingF(µX.F(X)) of µX.F(X). This implies the desired
contradiction.

Case 11(≥). We now prove that also the inequality
⊔

σ
{ms

σ (ψ)} ≥ JµX.F(X)Kρ(s) (14)

holds. By Knaster-Tarski theorem,JµX.F(X)Kρ =
⊔

αJF(X)Kα
ρ , whereα ranges over the ordinals and

JF(X)Kα
ρα with ρα = ρ [

⊔
β<αJF(X)Kρβ /X]. We prove Inequality 14 by showing, by transfinite induction,

that for every ordinalα andε > 0, the inequality
⊔

σ
{ms

σ (ψ)}> JµX.F(X)Kρα (s)− ε (15)

holds, for alls∈S. The case forα = 0 is immediate sinceJFKρ0(s)> 0 if and only ifJE(φ2)Kρ(s) = 1 and
this implies

⊔
σ{ms

σ (ψ)}= 1. Considerα = β +1. If JE(φ2)Kρ(s) = 1 then Inequality 14 holds as above.

Thus assumeJφ2Kρ(s) = 0. Note thatJFKρ0(s) > 0 only if s∈ JE(φ1)K. Thus assumeJE(φ1)Kβ
ρ (s) =

1. Under these assumption,JF(X)Kρα = J♦F(X)Kρβ as it is immediate to verify. By definition of the
semantics of♦ we have:

J♦F(X)Kρβ (s) =
⊔

s→d

(
∑
t∈S

d(t)JF(X)Kρβ (t)
)

By induction hypothesis onβ we know that for everyε ,

J♦F(X)Kρβ (s)<
⊔

s→d

(
∑
t∈S

d(t)
(⊔

σ
{mt

σ (ψ)}+ ε
))

For eachs→ d andσ defineσd asσd({s}) = d andσd(s.t0. . . .) = σ(t0 . . .). A simple argument shows
that ⊔

s→d

(
∑
t∈S

d(t)
(⊔

σ
{mt

σ (ψ)}+ ε
))

=
⊔

σd

{ms
σd(ψ)}+ ε

and this conclude the proof for the caseα = β +1. Lastly, the case forα a limit ordinal follows straight-
forwardly from the inductive hypothesis onβ < α .

Proof of Proposition 5.1.Suppose we have a system ofk conditioned linear expressions representingf .
Each conditioned expressionC ⊢ e is captured by the implication(

∧
C) → y= e, so the whole system

translates into a conjunction ofk such implications. To this conjunction, one need only add the range
constraints 0≤ z andz≤ 1 for each variablez, as further conjuncts. In this way, the graph is easily
expressed as a quantifier free formula. (Since the implications are equivalent to disjunctions of atomic
formulas, the resulting formula is naturally in conjunctive normal form.)

Conversely, supposeF(x1, . . . ,xn,y) defines the graph off . By quantifier elimination, we can assume
thatF is quantifier free and in disjunctive normal form. ThenF is a disjunction of conjunctions, where
each conjunction,K, can be easily rewritten in the form

(∧
C
)
∧
(
∧

1≤i≤h

y> ai

)
∧
(
∧

1≤i≤k

y≥ bi

)
∧
(
∧

1≤i≤l

y≤ ci

)
∧
(
∧

1≤i≤m

y< di

)
, (16)

104 Łukasiewiczµ-calculus

such that the only variables in the finite set of atomic formulasC, and linear expressionsai ,bi ,ci ,di are
x1, . . . ,xn. SinceF is the graph of a function, for all realsr1, . . . , rn, there is at most onessuch thatK(~r ,s)
holds, and, if it does, then all ofr1, . . . , rn,s are in[0,1]. Given such ans, we therefore have:

max{ai(~r) | 1≤ i ≤ h}< max{bi(~r) | 1≤ i ≤ k}= s= min{ci(~r) | 1≤ i ≤ l}< min{di(~r) | 1≤ i ≤ m} .

A system of conditioned linear expressions forf is thus obtained as follows. For each conjunctK in F,
written in the form of (16) above, and eachj with 1≤ j ≤ k, include the conditioned linear expression:

C, {b j > ai}1≤i≤h, {b j ≥ bi}1≤i≤k, {b j ≤ ci}1≤i≤l , {b j < di}1≤i≤m, ⊢ b j .

We supplement the proof of Theorem 5.3 with more detail on thebounds on basis and condition size.

Expanded proof of Theorem 5.3.We analyse the control flow in the algorithm forµxn+1. t ′ on a given
input vector(r1, . . . , rn). On iteration numberi, the loop is entered with constraintsDi and approximation
di , after which the recursive call to the algorithm fort ′ yields one of the conditioned linear expressions,
Cki ⊢ eki . Suppose thatCki andDi containu andv inequalities respectively. If the loop is exited producing
(4) as result then the resultingC~r has 2u+ v inequalities. If it is exited producing (5) as result thenC~r
hasu+ v+ 2 inequalities (whereu+ v+ 2 ≤ 2u+ v becauseCki has to enforce the range constraint
0≤ xn+1 ≤ 1). Otherwise, the algorithm repeats the loop, entering iteration i+1 with Di+1, given by (7),
having at most 2u+ v inequalities (N contributes 1 inequality, and there are at mostu− 1 inequalities
b j ≤ bi in (7) sincel ≥ 1).

Therefore, ifl ′ is now maximum number of inequalities occurring in anyCj from (11) (i.e., if it is
the condition size fort ′) the algorithm forµxn+1. t ′ at~r, which runs for at mostk′ iterations, results inC~r
containing at most 2k′l ′ inequalities.

To bound the number of resultsC~r ⊢ e~r , we count the possible control flows of the algorithm. At
iteration i, the algorithm usesCki ⊢ eki from (11), using which it might terminate with either (4) or (5),
or it might repeat the loop, entering iterationi +1 with Di+1, given by (7), which can arise fromCki in
a number of ways determined by the possible pairs of choices for N andb j in (7). In the case that the
variable vector(x1, . . . ,xn) is empty (i.e., the termµxn+1. t ′ is closed) the constraints inD are redundant
(they are simply true inequalities between rathionals) andso can be discarded. In the case thatn ≥ 1,
there are at least 2 inequalities inC giving range constraints onx1, so there are at mostl ′ choices forN
(l ′−2 choices in the case thatqn+1 6= 1, and 2 in the caseqn+1 = 1). Irrespective ofn, there are at most
l ′−1 choices forb j (takingn into account this can be improved tol ′−2n−1). Therefore, the execution
of the algorithm, is determined by the sequence:

k1, u1, k2, u2, . . . , km, v

where:m≤ k′ is the number of loop iterations performed; eachui , where 1≤ ui ≤ l ′(l ′−1), represents
the choice ofN andb j used in the construction ofDi+1 (7), andv is 1 or 2 according to whether the
resultingC~r ⊢ e~r is returned via (4) or (5). Since each numberki is distinct, the number of different such
sequences is bounded by:

2
k′

∑
m=1

k′!
(k′−m)!

(l ′ (l ′−1))m−1 ≤ (k′(l ′)2)k′ , (17)

where the right-hand-side gives a somewhat loose upper bound. Therefore, the number of possible results
C~r ⊢ e~r for the algorithm forµxn+1. t ′ is at most(k′(l ′)2)k′ .

