
EPTCS 77

Proceedings of the

8th Workshop on

Fixed Points in Computer Science
Tallinn, Estonia, 24th March 2012

Edited by: Dale Miller and Zolt́anÉsik

Published: 14th February 2012
DOI: 10.4204/EPTCS.77
ISSN: 2075-2180
Open Publishing Association

i

Table of Contents

Table of Contents .. i

Preface .. iii

Invited Presentation: Type-Based Termination, Inflationary Fixed-Points, and Mixed
Inductive-Coinductive Types .. 1

Andreas Abel

Invited Presentation: Higher-Order Model Checking 13
C.-H. Luke Ong

Characteristic Formulae for Relations with Nested Fixed Points . 15
Luca Aceto and Anna Ingólfsdóttir

IO vs OI in Higher-Order Recursion Schemes 23
Axel Haddad

Initial Semantics for Strengthened Signatures 31
André Hirschowitz and Marco Maggesi

Model-Checking the Higher-Dimensional Modal mu-Calculus. 39
Martin Lange and Etienne Lozes

Cut-elimination for the mu-calculus with one variable. 47
Grigori Mints and Thomas Studer

Structured general corecursion and coinductive graphs [extended abstract] . 55
Tarmo Uustalu

D. Miller and Z.Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. iii–iv, doi:10.4204/EPTCS.77.0

Preface

This volume contains the proceedings of the Eighth Workshopon Fixed Points in Computer Science
which took place on 24 March 2012 in Tallinn, Estonia as an ETAPS-affiliated workshop. Past workshops
have been held in Brno (1998, MFCS/CSL workshop), Paris (2000, LC workshop), Florence (2001, PLI
workshop), Copenhagen (2002, LICS (FLoC) workshop), Warsaw (2003, ETAPS workshop), Coimbra
(2009, CSL workshop), and Brno (2010, MFCS-CSL workshop).

Fixed points play a fundamental role in several areas of computer science and logic by justifying in-
duction and recursive definitions. The construction and properties of fixed points have been investigated
in many different frameworks such as: design and implementation of programming languages, program
logics, and databases. The aim of this workshop is to providea forum for researchers to present their
results to those members of the computer science and logic communities who study or apply the theory
of fixed points.

We wish to thank Andreas Abel (Ludwig-Maximilians-Universität) and Luke Ong (University of
Oxford) for accepting our invitation to speak at this workshop and for their contributions to these pro-
ceedings. We also thank all those authors who have submittedextended abstracts for evaluation to the
program committee. Thanks are also due to Keiko Nakata and Tarmo Uustalu for their support of this
workshop, both organizational and financial, and to ZoltánL. Németh for his help with the workshop’s
web pages and with assembling these proceedings.

This workshop received support from the Estonian Centre of Excellence in Computer Science (EXCS),
a project financed by the European Regional Development Fund(ERDF). We thank them for their sup-
port.

ZoltánÉsik and Dale Miller

iv Preface

The FICS 2012 Program Committee

David Baelde, University of Paris 11, France
Julian Bradfield, University of Edinburgh, UK
Arnaud Carayol, Institut Gaspard-Monge, France
ZoltánÉsik, University of Szeged, Hungary (co-Chair)
Wan Fokkink, Vrije Universiteit, Holland
Fabio Gadducci, University of Pisa, Italy
Irène Guessarian, University of Paris 7, France
Achim Jung, University of Birmingham, UK
Stephan Kreutzer, Technische Universität Berlin, Germany
Dale Miller, INRIA-Saclay & LIX/Ecole Polytechnique, France (co-Chair)
Ralph Matthes, IRIT Toulouse, France
Jan Rutten, CWI, Amsterdam, Radboud University, Holland
Luigi Santocanale, Université Aix-Marseille I, France
Tarmo Uustalu, Institute of Cybernetics, Estonia
Igor Walukiewicz, LaBRI Bordeaux, France

The FICS Steering Committee

Peter Dybjer, Chalmers University of Technology
ZoltánÉsik, University of Szeged
Anna Ingólfsdóttir, Reykjavı́k University
Ralph Matthes, IRIT, Toulouse, (Chair)
Damian Niwinski, University of Warsaw
Luigi Santocanale, LIF, Université Aix-Marseille I
Alex Simpson, University of Edinburgh
Tarmo Uustalu, Institute of Cybernetics, Tallinn
Igor Walukiewicz, LaBRI, Bordeaux

D. Miller and Z.Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 1–11, doi:10.4204/EPTCS.77.1

c© Andreas Abel
This work is licensed under the
Creative Commons AttributionLicense.

Type-Based Termination, Inflationary Fixed-Points,
and Mixed Inductive-Coinductive Types

Andreas Abel
Department of Computer Science

Ludwig-Maximilians-University Munich, Germany

andreas.abel@ifi.lmu.de

Type systems certify program properties in a compositionalway. From a bigger program one can
abstract out a part and certify the properties of the resulting abstract program by just using the type
of the part that was abstracted away.Terminationandproductivityare non-trivial yet desired pro-
gram properties, and several type systems have been put forward that guarantee termination, com-
positionally. These type systems are intimately connectedto the definition of least and greatest
fixed-points by ordinal iteration. While most type systems use “conventional” iteration, we consider
inflationary iteration in this article. We demonstrate how this leads to a more principled type system,
with recursion based on well-founded induction. The type system has a prototypical implementa-
tion, MiniAgda, and we show in particular how it certifies productivity of corecursive and mixed
recursive-corecursive functions.

1 Introduction: Types, Compositionality, and Termination

While basic types likeinteger, floating-point number, andmemory addressarise on the machine-level of
most current computers, higher types like function and tuple types are abstractions that classify values.
Higher types serve to guarantee certain good program behaviors, like the classic “don’t go wrong” ab-
sence of runtime errors [Mil78]. Such properties are usually not compositional, i. e., while a function f
and its argumenta might both be well-behaved on their own, their applicationf a might still go wrong.
This issue also pops up in termination proofs: takef = a= λx.xx, then both are terminating, but their
application loops. To be compositional, the propertyterminatingneeds to be strengthened to what is of-
ten calledreducible[Gir72] or strongly computable[Tai67], leading to a semantic notion of type. While
the bare properties are not compositional,typing is.

Type polymorphism[Rey74, Gir72, Mil78] has been invented for compositionality in the opposite
direction: We want to decompose a larger program into smaller parts such that the well-typedness of
the parts imply the well-typedness of the whole program. Consider(λx.x)(λx.x)true, a simply-typed
program which can be abstracted tolet id= λx.x in id id true. The two occurrences ofid have different
type, namelyBool → Bool and (Bool → Bool) → Bool → Bool, and the easiest way to type check
the new program is to just inline the definition ofid. This trick does not scale, however, making type
checking infeasible and separate compilation of modules impossible. The accepted solution is to giveid
the polymorphic type∀X.X → X which can be instantiated to the two required types ofid.

Termination checking, if it is to scale to software development with powerful abstractions, needs
to be compositional. Just like for other non-standard analyses, e. g., strictness, resource consumption
and security, type-based termination promises to be a modelof success. Current termination check-
ers, however, likefoetus [AA02, Wah00, AD10], the one of Agda [Nor07], and Coq’s guardedness
check [Gim95, Bar10b] are not type-based, but syntactic. Let us see how this affects compositionality.
Consider the following recursive program defined by patternmatching. We use the syntax of MiniAgda

2 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

[Abe10], in this and all following examples.

fun everyOther : [A : Set] → List A → List A

{ everyOther A nil = nil

; everyOther A (cons a nil) = nil

; everyOther A (cons a (cons a’ as)) = cons a (everyOther A as)

}

The polymorphic functioneveryOther returns a list consisting of every second element of the input list.
Since the only recursive call happens on sublistas of the input listcons a (cons a’ as), termination
is evident. We say that the call argument decreases in thestructural order; this order, plus lexicographic
extensions, is in essence the termination order accepted bythe proof assistants Agda, Coq, and Twelf
[Pie01].

The function distinguishes on the empty list, the singletonlist, and lists with at least 2 elements. Such
a case distinction is used in list sorting algorithms, too, so we may want to abstract it fromeveryOther.

fun zeroOneMany : [A : Set] → List A → [C : Set] →
(zero : C) →
(one : A → C) →
(many : A → A → List A → C) →
C

{ zeroOneMany A nil C zero one many = zero

; zeroOneMany A (cons a nil) C zero one many = one a

; zeroOneMany A (cons a (cons a’ as)) C zero one many = many a a’ as

}

After abstracting away the case distinction, termination is no longer evident; the program is rejected by
Agda’s termination checkerfoetus.

fun everyOther : [A : Set] → List A → List A

{ everyOther A l = zeroOneMany A l (List A)

nil

(λ a → nil)

(λ a a’ as → cons a (everyOther A as))

}

Whether the recursive call argumentas is structurally smaller than the inputl depends on the definition
of zeroOneMany. In such situations, Coq’s guardedness check may inline thedefinition ofzeroOneMany
and succeed. Yet in general, as we have discussed in the context of type checking, inlining definitions is
expensive, and in case of recursive definitions, incompleteand brittle. Current Coq [INR10] may spend
minutes on checking a single definition, and fail nevertheless.

Type-based termination can handle abstraction as in the above example, by assigning a more infor-
mative type tozeroOneMany that guarantees that the list passed tomany is structurally smaller than the
list analyzed byzeroOneMany. Using this restriction, termination ofeveryOther can be guaranteed. To
make this work, we introduce a purely administrative typeSize and let variablesi, j, andk range over
Size. The type of lists is refined asList A i, meaning lists of length< i. We also add bounded size
quantification

⋂
j<i T(j), in concrete syntax[j < i] → T j, which letsj only be instantiated to sizes

strictly smaller thani. The refined type ofzeroOneMany thus becomes:

Andreas Abel 3

fun zeroOneMany : [A : Set] → [i : Size] → List A i → [C : Set] →
(zero : C) →
(one : A → C) →
(many : [j < i] → A → A → List A j → C) →
C

The list passed tomany is bounded by sizej, which is strictly smaller thanj. This is exactly the infor-
mation needed to makeeveryOther termination-check.

Barthe et. al. [BGP06] study type-based termination as an automatic analysis “behind the curtain”,
with no change to the user syntax of types. Size quantification is restricted to rank-1 quantifiers, known as
ML-style quantification [Mil78]. This excludes the type ofzeroOneMany, which has a rank-2 (bounded)
quantification. Higher-rank polymorphism is not inferableautomatically, yet without it we fall short of
our aim: compositional termination. Anyway, the prerequisite for inference is the availability of the
source code, which fails for abstract interfaces (such as parametrized modules in Agda, Coq, or ML).
Thus, we advocate a type system with explicit size information based on the structural order. It will be
presented in the remainder of this article.

2 Sizes, Iteration, and Fixed-Points

In the following, rather than syntactic we consider semantic types such as sets of terminating terms. We
assume that types form a complete lattice(T ,⊆,

⋂
,
⋃
) with least element⊥ and greatest element⊤.

Further, let the usual type operators+ (disjoint sum),× (Cartesian product), and→ (function type) have
a sensible definition.

Inductive typesµF , such asList A, are conceived as least fixed points of monotone type constructors
F, for lists this beingF X = ⊤+A×X. Constructively [CC79], least fixed points are obtained on a
∪-semilattice by ordinal iteration up to a sufficiently largeordinal γ . Let µαF denote theα th iterateor
approximant, which is defined by transfinite recursion onα :

µ0 F = ⊥ zero ordinal: least element of the lattice
µα+1 F = F (µαF) successor ordinal: iteration step
µλ F =

⋃
α<λ µαF limit ordinal: upper limit

For monotoneF, iteration is monotone, i. e.,µαF ⊆ µβ F for α ≤ β . At some ordinalγ , which we
call closure ordinalof this inductive type, we haveµαF = µγF for all α ≥ γ—the chain has become
stationary, the least fixed point has been reached. For polynomial F , i. e., those expressible without a
function space, the closure ordinal isω . The indexα to the approximantµαF is a strict upper bound on
theheightof the well-founded trees inhabiting this type; in the case of lists (which are linear trees) it is
a strict upper bound on the length.

Dually, coinductive typesνF are constructed on a∩-semilattice by iteration from above.

ν0 F = ⊤ zero ordinal: greatest element of the lattice
να+1 F = F (ναF) successor ordinal: iteration step
νλ F =

⋂
α<λ ναF limit ordinal: lower limit

Iteration from above is antitone, i. e.,ναF ⊇ νβ F for α ≤ β . The chain of approximants starts with
the all-type⊤ and descends towards the greatest fixed-pointνF. In case of the aboveF this would be
CoList A, the type of possibly infinite lists over element typeA. The indexα in the approximantναF

4 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

could be called thedepthof the non-well-founded trees inhabiting this type. It is a lower bound on how
deep we can descend into the tree before we hit undefined behavior (⊤).

The central idea of type-based termination, going all the way back to Mendler [Men87], Hughes,
Pareto, and Sabry [HPS96], Giménez [Gim98], and Amadio and Coupet-Grimal [ACG98] is to introduce
syntax to speak about approximants in the type system. Common to the more expressible systems, such
as Barthe et. al. [BGR08a] and Blanqui [Bla04] is syntax for ordinal variablesi, ordinal successorsa
(MiniAgda: $a), closure ordinal∞ (MiniAgda: #) and data type approximantsDa (MiniAgda: e. g.,
List A i). Hughes et. al. and the author [Abe08b] have also quantifiers∀i.T over ordinals (MiniAgda:
[i : Size] → T).

How do we get a recursion principle from approximants? Consider the simplest example: construct-
ing an infinite repetitionr of a fixed elementa by corecursion. After assembling the colist-constructor
cons : A → CoList A i → CoList A (i + 1) on approximants, we give a recursive equationr = cons a r
with the following typing of the r.h.s.

i : Size, r : CoList A i ⊢ cons a r : CoList A (i +1)

The types certify that each unfolding of the recursive definition of r increases the number of produced
colist elements by one, hence, in the limit we obtain an infinite sequence and, in particular,r is productive.
Our example is a special instance of the recursion principleof type-based termination, expressible as type
assignment for the fixpoint combinator:

f : ∀i. T i → T (i +1)

fix f : ∀i. T i

(TakeT =CoList A and f = λ r. cons a r to reconstruct the example.) The fixed-point rule can be justified
by transfinite induction on ordinal indexi. While the successor case is covered by the premise of the rule,
for zero and limit case the size-indexed typeT must satisfy two conditions:T 0=⊤ (bottom check) and⋂

α<λ T α ⊆ T λ for limit ordinals λ [HPS96]. The latter condition is non-compositional, but has a
compositional generalization,upper semi-continuity

⋂
α<λ

⋃
α≤β<λ T β ⊆ T λ [Abe08b].

The soundness of type-based termination in different variants for different type systems has been as-
sessed in at least 5 PhD theses: Barras [Bar99] (CIC), Pareto [Par00] (lazy ML), Frade [Fra03] (STL), the
author [Abe06] (Fω), and Sacchini [Sac11] (CIC). Recently, Barras [Bar10a] has completed a compre-
hensive formal verification in Coq, by implementing a set-theoretical model of the CIC with type-based
termination.

However, type-based termination has not been integrated into bigger systems like Agda and Coq.
There are a number of reasons:

1. Subtyping.
The inclusion relation between approximants gives rise to subtyping, and for dependent types,
subtyping has not been fully explored. While there are basictheory [AC01, Che97], substantial
work on coercive subtyping [Che03, LA08] and new results on Pure Subtype Systems [Hut10],
no theory of higher-order polarized subtyping [Ste98, Abe08a] has been formulated for dependent
types yet. In practice, the introduction of subtyping meansthat already complicated higher-order
unification has to be replaced by preunification [QN94].

2. Erasure.
Mixing sizes into types and expressions means that one also needs to erase them after type check-
ing, since they have no computational significance. The typesystem must be able to distinguish

Andreas Abel 5

relevant from irrelevant parts. This is also work in progress, partial solutions have been given,
e. g., by Barras and Bernardo [BB08] and the author [Abe11].

3. Semi-continuity.
A technical condition like semi-continuity can kill a system as a candidate for the foundation of
logics and programming. It seems that it even deters the experts: Most systems for type-based ter-
mination replace semi-continuity by a rough approximation, trading expressivity for simplicity—
Pareto and the author being notable exceptions.

4. Pattern matching.
The literature on type-based termination is a bit thin when it comes to pattern matching. Pattern
matching on sized inductive types has only been treated by Blanqui [Bla04]. Pattern matching on
coinductive types is known to violate subject reduction in dependent type theory (detailed analysis
by McBride [McB09]). Deep matching on sized types can lead to a surprising paradox [Abe10].

While items1 and2 require more work, items3 and4 can be addressed by switching to a different
style of type-based termination, which we study in the next section.

3 Inflationary Iteration and Bounded Size Quantification

Sprenger and Dam [SD03] note that for monotoneF ,

µαF =
⋃

β<α
F (µβ F)

and base their system ofcircular proofs in theµ-calculuson this observation. They introduce syntax
for unbounded∃i and bounded∃ j < i ordinal existentials and for approximantsµ i (cf. Dam and Gurov
[DG02] and Schöpp and Simpson [SS02]). Induction is well-founded induction on ordinals, and no
semi-continuity is required.

A first thing to note is that if we take above equation as thedefinitionfor µαF, the chainα 7→ µαF
is monotone regardless of monotonicity ofF . This style of iteration from below is calledinflationary
iteration and the dual,deflationary iteration,

ναF =
⋂

β<α
F (νβ F)

always produces a descending chain. While inflationary iteration ofF becomes stationary at some closure
ordinalγ , the limit µγF is only a pre-fixed point ofF, i. e.,F (µγ F)⊆ µγF. This means we can construct
elements in a inflationary fixed-point as usual, but not necessarily analyze them sensibly. UnlessF is
monotone, destructing an element ofµγ F yields only an element ofF (µβ F) for someβ < γ and not
one ofF (µγF). Dually, deflationary iteration reaches a post-fixed pointνγF ⊆ F (νγF) giving the usual
destructor, but the constructor has type(∀β < γ . F (νβ F))→ νγF.

While we have not come across a useful application of negative inflationary fixed points in program-
ming, inflationary iteration leads to “cleaner” type-basedtermination. Inductive data constructors have
type (∃ j < i. F (µ jF)) → µ iF, meaning that when we pattern match at inductive typeµ iF, we get a
fresh size variablej < i and a rest of typeF (µ jF). This is the “good” way of matching that avoids
paradoxes [Abe10]; find it also in Barras [Bar10a]. Coinductive data has typeν iF ∼= ∀ j < i. F (ν jF),

6 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

akin to a dependent function type. We cannot match on it, onlyapply it to a size, preventing subject re-
duction problems mentioned in the previous section. Finally, recursion becomes well-founded recursion
on ordinals,

f : ∀i. (∀ j < i. T j)→ T i

fix f : ∀i. T i
with no condition onT. Also, just like in PiSigma [ADLO10], we can dispose of inductive and coinduc-
tive types in favor of recursion. We just define approximantsrecursively using bounded quantifiers; for
instance, sized streams areStream A i = ∀ j < i. A×Stream A j, and in MiniAgda:

cofun Stream : +(A : Set) -(i : Size) → Set
{ Stream A i = [j < i] → A & Stream A j

}

MiniAgda checks thatStream A i is monotone in element typeA and antitone in depthi, as specified
by the polarities+ and- in the type signature. If we erase sizes to() andSize to the non-informative
type⊤, we obtainStream A () =⊤→ A×Stream A () which is a possible representation of streams in
call-by-value languages. Thus, size quantification can be considered as typelifting, size application as
forcing and size abstraction asdelaying.

let tail [A : Set] [i : Size] (s : Stream A $i) : Stream A i
= case (s i) { (a, as) → as }

Taking the tail requires a stream of non-zero depthi+1. Sinces : ∀ j < (i+1). A×Stream A j, we can
apply it to i (force it) and then take its second component.

Zipping two streamssa= a0,a1, . . . and sb= b0,b1, . . . with a function f yields a streamsc=
f (a0,b0), f (a1,b1), . . . whose depth is the minimum of the depths ofsaandsb. Since depths are lower
bounds, we can equally state that all three streams have a common depthi.

cofun zipWith : [A, B, C : Set] (f : A → B → C)

[i : Size] (sa : Stream A i) (sb : Stream B i) → Stream C i

{ zipWith A B C f i sa sb j =

case (sa j, sb j) : (A & Stream A j) & (B & Stream B j)
{ ((a, as), (b, bs)) → (f a b, zipWith A B C f j as bs)

}

}

Forcing the recursively defined streamzipWith A B C f i sa sbby applying it to j < i yields a head-tail
pair (f a b, zipWith A B C f j as bs) which is computed from headsa andb and tailsasandbsof the
forced input streamssa j andsb j. The recursion is well-founded sincej < i.

The famous Haskell one-line definitionfib = 0 : 1 : zipWith (+)fib (tail fib) of the Fi-
bonacci stream0 : 1 : 1 : 2 : 3 : 5 : 8 : 13... can now be replayed in MiniAgda.

cofun fib : [i : Size] → |i| → Stream Nat i

{ fib i = λ j → (zero,

λ k → (one,

zipWith Nat Nat Nat add k

(fib k)

(tail Nat k (fib j))))

}

The |i| in the type explicitly states that ordinali shall serve as termination measure (syntax due to
Xi [Xi02]). Note the two delaysλ j < i andλk < j and the two recursive calls, both at smaller depth
j,k< i. Such a definition is beyond the guardedness check [Coq93] of Agda and Coq, but here the type

Andreas Abel 7

system communicates thatzipWith preserves the stream depth and, thus, productivity.
While our type system guarantees termination and productivity at run-time,strongnormalization, in

particular when reducing underλ -abstractions, is lost when coinductive types are just defined recursively.
Thus, equality testing of functions has to be very intensional (α-equality [ADLO10]), since testingη-
equality may loop. McBride [McB09] suggests an extensional propositional equality [AMS07] as cure.

Having explained away inductive and coinductive types, mixing them does not pose a problem any-
more, as we will see in the next section.

4 Mixing Induction and Coinduction

A popular mixed coinductive-inductive type are stream processors [GHP06] given recursively by the
equationSP A B= (A → SP A B)+ (B×SP A B). The intention is thatSP A B represents continuous
functions fromStream A to Stream B, meaning that only finitely manyA’s are taken from the input
stream before aB is emitted on the output stream. This property can be ensuredby nesting a least
fixed-point into a greatest one:SP A B= νX.µY.(A → Y)+ (B×X) [Abe07, GHP09]. The greatest
fixed-point unfolds toµY.(A → Y)+ (B× SP A B), hence, whenever we chose the second alternative,
the least fixed-point is “restarted”. Thus, we can conceiveSP A B by a lexicographicordinal iteration

SP A B α β =
⋂

α ′<α

⋃

β ′<β
(A→ SP A B α β ′)+ (B×SP A B α ′ ∞)

where∞ represents the closure ordinal. The nesting is now defined bythe lexicographic recursion pattern,
so we do not need to represent it in the order of quantifiers. Pushing them in maximally yields an
alternative definition:

SP A B α β = (A→
⋃

β ′<β
SP A B α β ′)+ (B×

⋂

α ′<α
SP A B α ′ ∞)

This variant is close to the mixed data types of Agda [DA10], where recursive occurrences are inductive
unless marked with∞:
data SP (A B : Set) : Set where

get : (A → SP A B) → SP A B

put : B → ∞ (SP A B) → SP A B

In Agda, one cannot specify the nesting order, it always considers the greatest fixed-point to be on the
outside [AD10].

Let us program with mixed types via bounded quantification inMiniAgda! The type of stream
processors is defined recursively, with lexicographic termination measure|i,j|. The bounded existential
∃ j ′ < j.T has concrete syntax[j’ <j] & T, andEither X Y with constructorsleft: X → Either

X Y andright : Y → Either X Y is the (definable) disjoint sum type. We directly code the “mixed”
definition ofSP:

cofun SP : -(A : Set) +(B : Set) -(i : Size) +(j : Size) → |i,j| → Set
{ SP A B i j = Either (A → [j’ < j] & SP A B i j’)

(B & ([i’ < i] → SP A B i’ #))

}

pattern get f = left f

pattern put b sp = right (b , sp)

We canrun a stream processor of depthi and heightj on anA-stream of unbounded depth (∞) to yield a

8 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

B-stream of depthi (this is also called streameating[GHP09]). If the stream processor is aget f , we feed
the head of the stream tof , getting an new stream processor of smaller height (indexj), and continue
running on the stream tail. If the stream processor is aput b sp, we produce aλ i′ < i delayed stream
whose head isb and tail is computed by runningsp, which has smaller depth (indexi) but unbounded
height (indexj).

cofun run : [A, B : Set] [i, j : Size] → |i,j| → SP A B i j → Stream A # →
Stream B i

{ run A B i j (get f) as = case f (head A # as)
{ (j’, sp) → run A B i j’ sp (tail A # as) }

; run A B i j (put b sp) as = λi’ → (b, run A B i’ # (sp i’) as)

}

A final note on quantifier placement: For monotoneF andµα =F (
⋃

β<α µβ)we haveµαF = µα+1F. In

particularµ0F = F⊥, thus for the list generatorF X =⊤+A×X the first approximantµ0F is not empty
but contains exactly the empty list. TypeµαF contains the lists of maximal lengthα . This encoding of
data type approximants is more suitable for size arithmeticand has been advocated by Barthe, Grégoire,
and Riba [BGR08b]; in practice, it might be superior—time will tell.

5 Conclusions

We have given a short introduction into a type system for termination based on ordinal iteration. Bounded
size quantification, inspired by inflationary fixed points, and recursion with ordinal lexicographic termi-
nation measures are sufficient to encode inductive and coinductive types and recursive and corecursive
definitions and all mixings thereof. The full power of classical ordinals is not needed to justify our recur-
sion schemes: We only need a well-founded order< that is “long enough” and has a successor operation.
I conjecture that set induction or constructive ordinals (Aczel and Rathjen [AR08]) can play this role,
leading to a constructive justification of type-based termination.

While our prototype MiniAgda lacks type reconstruction needed for an enjoyable programming ex-
perience, it is evolving into a core language for dependent type theory with termination certificates. Our
long-term goal is to extend Agda with type-based termination in a way that most termination certificates
will be constructed automatically. MiniAgda could serve asan intermediate language that double-checks
proofs constructed by Agda, erases static code, and feeds the rest into a compiler back-end.

Acknowledgements.I am grateful for discussions with Cody Roux which exposed a problem with Mini-
Agda’s pattern matching and set me on the track towards bounded quantification as basic principle for
type-based termination. Thanks to Brigitte Pientka for many discussions on sized types and the invitation
to McGill, where some ideas of this paper prospered. Finally, I thank the MiniAgda users, especially Nils
Anders Danielsson and David Thibodeau, who have coped with the user-unfriendliness of the system and
kept me busy fixing bugs.

References

[AA02] Andreas Abel & Thorsten Altenkirch (2002):A Predicative Analysis of Structural Recursion. J. Func.
Program.12(1), pp. 1–41, doi:10.1017/S0956796801004191.

[Abe06] Andreas Abel (2006):A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Ph.D. thesis,
Ludwig-Maximilians-Universität München.

Andreas Abel 9

[Abe07] Andreas Abel (2007):Mixed Inductive/Coinductive Types and Strong Normalization. In Zhong Shao,
editor: Proc. of the 5th Asian Symp. on Programming Languages and Systems, APLAS 2007, Lect.
Notes in Comput. Sci.4807, Springer, pp. 286–301, doi:10.1007/978-3-540-76637-7_19.

[Abe08a] Andreas Abel (2008):Polarized Subtyping for Sized Types. Math. Struct. in Comput. Sci.18, pp. 797–
822, doi:10.1017/S0960129508006853. Special issue on subtyping, edited by Healfdene Goguen
and Adriana Compagnoni.

[Abe08b] Andreas Abel (2008):Semi-continuous Sized Types and Termination. Logical Meth. in Comput. Sci.
4(2), doi:10.2168/LMCS-4(2:3)2008. CSL’06 special issue.

[Abe10] Andreas Abel (2010):MiniAgda: Integrating Sized and Dependent Types. In Ana Bove, Ekaterina
Komendantskaya & Milad Niqui, editors:Wksh. on Partiality And Recursion in Interactive Theorem
Provers (PAR 2010), Electr. Proc. in Theor. Comp. Sci.43, pp. 14–28, doi:10.4204/EPTCS.43.2.

[Abe11] Andreas Abel (2011):Irrelevance in Type Theory with a Heterogeneous Equality Judgement. In
Martin Hofmann, editor:Proc. of the 14th Int. Conf. on Foundations of Software Science and Compu-
tational Structures, FOSSACS 2011, Lect. Notes in Comput. Sci.6604, Springer, pp. 57–71, doi:10.
1007/978-3-642-19805-2_5.

[AC01] David Aspinall & Adriana B. Compagnoni (2001):Subtyping dependent types. Theor. Comput. Sci.
266(1-2), pp. 273–309, doi:10.1016/S0304-3975(00)00175-4.

[ACG98] Roberto M. Amadio & Solange Coupet-Grimal (1998):Analysis of a Guard Condition in Type Theory
(Extended Abstract).In Maurice Nivat, editor:Proc. of the 1st Int. Conf. on Foundations of Software
Science and Computation Structure, FoSSaCS’98, Lect. Notes in Comput. Sci.1378, Springer, pp.
48–62, doi:10.1007/BFb0053541.

[AD10] Thorsten Altenkirch & Nils Anders Danielsson (2010): Termination Checking in the Presence of
Nested Inductive and Coinductive Types. Short note supporting a talk given at PAR 2010, Workshop
on Partiality and Recursion in Interactive Theorem Provers, FLoC 2010. Available athttp://www.
cse.chalmers.se/˜nad/publications/altenkirch-danielsson-par2010.pdf.

[ADLO10] Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh & Nicolas Oury (2010):PiSigma: Depen-
dent Types without the Sugar. In Matthias Blume, Naoki Kobayashi & Germán Vidal, editors: Proc.
of the 10th Int. Symp. on Functional and Logic Programming, FLOPS 2010, Lect. Notes in Comput.
Sci.6009, Springer, pp. 40–55, doi:10.1007/978-3-642-12251-4_5.

[AMS07] Thorsten Altenkirch, Conor McBride & Wouter Swierstra (2007):Observational equality, now!In
Aaron Stump & Hongwei Xi, editors:Proc. of the Wksh. Programming Languages meets Program
Verification, PLPV 2007, ACM Press, pp. 57–68, doi:10.1145/1292597.1292608.

[AR08] Peter Aczel & Michael Rathjen (2008):Notes on Constructive Set Theory. Available athttp://www.
maths.manchester.ac.uk/logic/mathlogaps/workshop/CST-book-June-08.pdf. Draft.

[Bar99] Bruno Barras (1999):Auto-validation d’un système de preuves avec familles inductives. Ph.D. thesis,
Université Paris 7.

[Bar10a] Bruno Barras (2010):Sets in Coq, Coq in Sets. J. Formalized Reasoning3(1). Available athttp://
jfr.cib.unibo.it/article/view/1695.

[Bar10b] Bruno Barras (2010):The syntactic guard condition of Coq. Talk at the Journée “égalité et terminai-
son” du 2 février 2010 in conjunction with JFLA 2010. Available athttp://coq.inria.fr/files/
adt-2fev10-barras.pdf.

[BB08] Bruno Barras & Bruno Bernardo (2008):The Implicit Calculus of Constructions as a Programming
Language with Dependent Types. In Roberto M. Amadio, editor:FoSSaCS, Lect. Notes in Comput.
Sci.4962, Springer, pp. 365–379, doi:10.1007/978-3-540-78499-9_26.

[BGP06] Gilles Barthe, Benjamin Grégoire & Fernando Pastawski (2006): CICˆ: Type-Based Termination
of Recursive Definitions in the Calculus of Inductive Constructions. In Miki Hermann & Andrei
Voronkov, editors:Proc. of the 13th Int. Conf. on Logic for Programming, Artificial Intelligence, and

10 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

Reasoning, LPAR 2006, Lect. Notes in Comput. Sci.4246, Springer, pp. 257–271, doi:10.1007/
11916277_18.

[BGR08a] Gilles Barthe, Benjamin Grégoire & Colin Riba (2008): A Tutorial on Type-Based Termina-
tion. In Ana Bove, Luı́s Soares Barbosa, Alberto Pardo & Jorge Sousa Pinto, editors:LerNet
ALFA Summer School, Lect. Notes in Comput. Sci.5520, Springer, pp. 100–152, doi:10.1007/
978-3-642-03153-3_3.

[BGR08b] Gilles Barthe, Benjamin Grégoire & Colin Riba (2008): Type-Based Termination with Sized Products.
In Michael Kaminski & Simone Martini, editors:Computer Science Logic, 22nd Int. Wksh., CSL
2008, 17th Annual Conf. of the EACSL, Lect. Notes in Comput. Sci.5213, Springer, pp. 493–507,
doi:10.1007/978-3-540-87531-4_35.

[Bla04] Frédéric Blanqui (2004):A Type-Based Termination Criterion for Dependently-TypedHigher-Order
Rewrite Systems. In Vincent van Oostrom, editor:Rewriting Techniques and Applications (RTA
2004), Aachen, Germany, Lect. Notes in Comput. Sci.3091, Springer, pp. 24–39, doi:10.1007/
978-3-540-25979-4_2.

[CC79] Patrick Cousot & Radhia Cousot (1979):Constructive Versions of Tarski’s Fixed Point Theorems.
Pacific Journal of Mathematics81(1), pp. 43–57.

[Che97] Gang Chen (1997):Subtyping Calculus of Construction (Extended Abstract). In Igor Prı́vara & Peter
Ruzicka, editors:Proc. of the 22nd Int. Symb. on Mathematical Foundations of Computer Science,
MFCS’97, Lect. Notes in Comput. Sci.1295, Springer, pp. 189–198, doi:10.1007/BFb0029962.

[Che03] Gang Chen (2003):Coercive subtyping for the calculus of constructions. In: Proc. of the 30st ACM
Symp. on Principles of Programming Languages, POPL 2003, ACM SIGPLAN Notices38, ACM
Press, pp. 150–159, doi:10.1145/640128.604145.

[Coq93] Thierry Coquand (1993):Infinite Objects in Type Theory. In H. Barendregt & T. Nipkow, editors:
Types for Proofs and Programs (TYPES ’93), Lect. Notes in Comput. Sci.806, Springer, pp. 62–78,
doi:10.1007/3-540-58085-9_72.

[DA10] Nils Anders Danielsson & Thorsten Altenkirch (2010): Subtyping, Declaratively. In Claude Bolduc,
Jules Desharnais & Béchir Ktari, editors:Proc. of the 10th Int. Conf. on Mathematics of Program
Construction, MPC 2010, Lect. Notes in Comput. Sci.6120, Springer, pp. 100–118, doi:10.1007/
978-3-642-13321-3_8.

[DG02] Mads Dam & Dilian Gurov (2002):µ-Calculus with Explicit Points and Approximations. J. Log.
Comput.12(2), pp. 255–269, doi:10.1093/logcom/12.2.255.

[Fra03] Maria João Frade (2003):Type-Based Termination of Recursive Definitions and Constructor Subtyp-
ing in Typed Lambda Calculi. Ph.D. thesis, Universidade do Minho, Departamento de Informática.

[GHP06] Neil Ghani, Peter Hancock & Dirk Pattinson (2006):Continuous Functions on Final Coalgebras.
Electr. Notes in Theor. Comp. Sci.164(1), pp. 141–155, doi:10.1016/j.entcs.2006.06.009.

[GHP09] Neil Ghani, Peter Hancock & Dirk Pattinson (2009):Representations of Stream Processors Using
Nested Fixed Points. Logical Meth. in Comput. Sci.5(3), doi:10.2168/LMCS-5(3:9)2009.

[Gim95] Eduardo Giménez (1995):Codifying Guarded Definitions with Recursive Schemes. In Peter Dybjer,
Bengt Nordström & Jan Smith, editors:Types for Proofs and Programs, Int. Wksh., TYPES’94, Lect.
Notes in Comput. Sci.996, Springer, pp. 39–59, doi:10.1007/3-540-60579-7_3.

[Gim98] Eduardo Giménez (1998):Structural Recursive Definitions in Type Theory. In K. G. Larsen, S. Skyum
& G. Winskel, editors:Int. Colloquium on Automata, Languages and Programming (ICALP’98), Aal-
borg, Denmark, Lect. Notes in Comput. Sci.1443, Springer, pp. 397–408, doi:10.1007/BFb0055070.

[Gir72] Jean-Yves Girard (1972):Interprétation fonctionnelle et́elimination des coupures dans l’arithmétique
d’ordre suṕerieur. Thèse de Doctorat d’État, Université de Paris VII.

[HPS96] John Hughes, Lars Pareto & Amr Sabry (1996):Proving the Correctness of Reactive Systems Using
Sized Types. In: Proc. of the 23rd ACM Symp. on Principles of Programming Languages, POPL’96,
pp. 410–423, doi:10.1145/237721.240882.

Andreas Abel 11

[Hut10] DeLesley S. Hutchins (2010):Pure subtype systems. In Manuel V. Hermenegildo & Jens Palsberg,
editors:Proc. of the 37th ACM Symp. on Principles of Programming Languages, POPL 2010, ACM
Press, pp. 287–298, doi:10.1145/1706299.1706334.

[INR10] INRIA (2010): The Coq Proof Assistant Reference Manual, version 8.3 edition. INRIA. Available at
http://coq.inria.fr/.

[LA08] Zhaohui Luo & Robin Adams (2008):Structural subtyping for inductive types with functorial equality
rules. Math. Struct. in Comput. Sci.18(5), pp. 931–972, doi:10.1017/S0960129508006956.

[McB09] Conor McBride (2009):Let’s See How Things Unfold: Reconciling the Infinite with the Intensional.
In Alexander Kurz, Marina Lenisa & Andrzej Tarlecki, editors: 3rd Int. Conf. on Algebra and Coal-
gebra in Computer Science, CALCO 2009, Lect. Notes in Comput. Sci.5728, Springer, pp. 113–126,
doi:10.1007/978-3-642-03741-2_9.

[Men87] Nax Paul Mendler (1987):Recursive Types and Type Constraints in Second-Order Lambda Calculus.
In: Proc. of the 2nd IEEE Symp. on Logic in Computer Science (LICS’87), IEEE Computer Soc.
Press, pp. 30–36.

[Mil78] Robin Milner (1978):A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci.17, pp.
348–375, doi:10.1016/0022-0000(78)90014-4.

[Nor07] Ulf Norell (2007): Towards a Practical Programming Language Based on Dependent Type Theory.
Ph.D. thesis, Dept of Comput. Sci. and Engrg., Chalmers, Göteborg, Sweden.

[Par00] Lars Pareto (2000):Types for Crash Prevention. Ph.D. thesis, Chalmers University of Technology.

[Pie01] Brigitte Pientka (2001):Termination and Reduction Checking for Higher-Order LogicPrograms. In
Rajeev Goré, Alexander Leitsch & Tobias Nipkow, editors:Automated Reasoning, First International
Joint Conference, IJCAR 2001, Lect. Notes in Art. Intell.2083, Springer, pp. 401–415, doi:10.1007/
3-540-45744-5_32.

[QN94] Zhenyu Qian & Tobias Nipkow (1994):Reduction and Unification in Lambda Calculi with a General
Notion of Subtype. J. of Autom. Reasoning12(3), pp. 389–406, doi:10.1007/BF00885767.

[Rey74] John C. Reynolds (1974):Towards a Theory of Type Structure. In B. Robinet, editor:Program-
ming Symposium, Lect. Notes in Comput. Sci.19, Springer, Berlin, pp. 408–425, doi:10.1007/
3-540-06859-7_148.

[Sac11] Jorge Luis Sacchini (2011):On Type-Based Termination and Pattern Matching in the Calculus of
Inductive Constructions. Ph.D. thesis, INRIA Sophia-Antipolis and́Ecole des Mines de Paris.

[SD03] Christoph Sprenger & Mads Dam (2003):On the Structure of Inductive Reasoning: Circular and
Tree-Shaped Proofs in theµ-Calculus. In Andrew D. Gordon, editor:Proc. of the 6th Int. Conf.
on Foundations of Software Science and Computational Structures, FoSSaCS 2003, Lect. Notes in
Comput. Sci.2620, Springer, pp. 425–440, doi:10.1007/3-540-36576-1_27.

[SS02] Ulrich Schöpp & Alex K. Simpson (2002):Verifying Temporal Properties Using Explicit Approxi-
mants: Completeness for Context-free Processes. In Mogens Nielsen & Uffe Engberg, editors:Proc.
of the 5th Int. Conf. on Foundations of Software Science and Computational Structures, FoSSaCS
2002, Lect. Notes in Comput. Sci.2303, Springer, pp. 372–386, doi:10.1007/3-540-45931-6_26.

[Ste98] Martin Steffen (1998):Polarized Higher-Order Subtyping. Ph.D. thesis, Technische Fakultät, Univer-
sität Erlangen.

[Tai67] William W. Tait (1967):Intensional Interpretations of Functionals of Finite TypeI. J. Symb. Logic
32(2), pp. 198–212.

[Wah00] David Wahlstedt (2000):Detecting termination using size-change in parameter values. Master’s
thesis, Göteborgs Universitet.

[Xi02] Hongwei Xi (2002): Dependent Types for Program Termination Verification. J. Higher-Order and
Symb. Comput.15(1), pp. 91–131, doi:10.1023/A:1019916231463.

D. Miller and Z.Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 13–14, doi:10.4204/EPTCS.77.2

c© C.-H. Luke Ong
This work is licensed under the
Creative Commons Attribution License.

High-Order Model Checking

C.-H. Luke Ong
University of Oxford

lo@cs.ox.ac.uk

Recursion schemes are in essence the simply-typed lambda calculus with recursion, generated from
uninterpreted first-order symbols. An old model of computation much studied in the Seventies, there
has been a revival of interest in recursion schemes as generators of infinite structures (such as infinite
trees) with rich algorithmic properties.Higher-order model checking—the model checking of trees gen-
erated by higher-order recursion schemes—is a natural generalisation of finite-state and pushdown model
checking; it can serve as a basis for software model checkersfor functional languages such as ML and
Haskell.

After a quick survey of expressivity and decidability results in higher-order model checking [6, 2, 5,
1], we present our recent application [7] to the model checking of higher-order functional programs with
pattern-matching algebraic data types. We are concerned with the (undecidable) verification problem:
given a correctness propertyφ , a functional programP and a regular input setI , does every term that is
reachable fromI under rewriting byP satisfyφ? Our solution is a sound semi-algorithm (i.e. given a no-
instance of the verification problem, the method is guaranteed to terminate) which uses counterexample-
guided abstraction refinement, and is based on a backend model checker.

Given a trivial automaton (i.e. Büchi tree automaton with atrivial acceptance condition) and a non-
deterministic higher-order recursion scheme with case construct over finite date-types, the model checker
decides if the language of trees generated by the scheme is accepted by the automaton. The model check-
ing problem is characterised by an intersection type system[4, 5] extended with a carefully restricted
form of union types; the decision procedure is based on the notion of traversal from game semantics
[3, 6]. We demonstrate the effectiveness of an implementation of the algorithm on abstract models of
functional programs obtained from an abstraction-refinement procedure.

This talk is based on joint work with Steven Ramsay and Robin Neatherway.

References

[1] Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong & Olivier Serre (2010):Recursion Schemes and
Logical Reflection. In: LICS, pp. 120–129. Available athttp://doi.ieeecomputersociety.org/10.
1109/LICS.2010.40.

[2] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong & Olivier Serre (2008):Collapsible Pushdown Au-
tomata and Recursion Schemes. In: LICS, pp. 452–461. Available athttp://doi.ieeecomputersociety.
org/10.1109/LICS.2008.34.

[3] J. M. E. Hyland & C.-H. Luke Ong (2000):On Full Abstraction for PCF: I, II, and III. Inf. Comput.163(2),
pp. 285–408. Available athttp://dx.doi.org/10.1006/inco.2000.2917.

[4] Naoki Kobayashi (2009):Types and higher-order recursion schemes for verification of higher-order programs.
In: POPL, pp. 416–428. Available athttp://doi.acm.org/10.1145/1480881.1480933.

[5] Naoki Kobayashi & C.-H. Luke Ong (2009):A Type System Equivalent to the Modal Mu-Calculus Model
Checking of Higher-Order Recursion Schemes. In: LICS, pp. 179–188. Available athttp://dx.doi.org/
10.1109/LICS.2009.29.

14 High-Order Model Checking

[6] C.-H. Luke Ong (2006):On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In:
LICS, pp. 81–90. Available athttp://doi.ieeecomputersociety.org/10.1109/LICS.2006.38. Long
version (55 pp.)www.cs.ox.ac.uk/people/luke.ong/personal.

[7] C.-H. Luke Ong & Steven James Ramsay (2011):Verifying higher-order functional programs with pattern-
matching algebraic data types. In: POPL, pp. 587–598. Available athttp://doi.acm.org/10.1145/
1926385.1926453.

D. Miller and Z.Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 15–22, doi:10.4204/EPTCS.77.3

Characteristic Formulae for Relations with Nested Fixed
Points∗

Luca Aceto Anna Ingólfsdóttir†

ICE-TCS, School of Computer Science
Reykjavik University
Reykjavik, Iceland

{luca,annai}@ru.is

A general framework for the connection between characteristic formulae and behavioral semantics
is described in [2]. This approach does not suitably cover semantics defined by nested fixed points,
such as then-nested simulation semantics forn greater than 2. In this study we address this deficiency
and give a description of nested fixed points that extends theapproach for single fixed points in an
intuitive and comprehensive way.

1 Introduction

In process theory it has become a standard practice to describe behavioural semantics in terms of equiv-
alences or preorders. A wealth of such relations has been classified by van Glabbeek in his linear
time/branching time spectrum [4]. Branching-time behavioural semantics are often defined as largest
fixed points of monotonic functions over the complete lattice of binary relations over processes.

In [2] we give a general framework to reason about how this type of behavioral semantics can be
characterized by a modal logic equipped with a greatest fixedpoint operator, or more precisely by char-
acteristic formulae expressed in such a logic. In that reference we show that a behavioural relation that
is derived as a greatest fixed point of a function of relationsover processes is given by the greatest fixed
point of the semantic interpretation of a logical declaration that expresses the function in a formal sense
that is defined in present paper. Roughly speaking if a logical declaration describes a monotonic func-
tion over a complete lattice then its fixed point describes exactly the fixed point of the function. In [2]
preorders and equivalences such as simulation preorder andbisimulation equivalence are characterized
following this approach in a simple and constructive way. However, when the definition of a behavioural
relation involves nested fixed points, i. e. when the monotonic function that defines the relation takes an-
other fixed point as an argument, things get more complicated. The framework offered in [2] only deals
with nesting on two levels and in a rather clumsy and unintuitive way. Furthermore it does not extend
naturally to deeper nesting, like for then-nested simulations forn > 2. In this study we address this
deficiency and define a logical framework in which relations obtained as a chain of nested fixed points
of monotonic functions can be characterized following general principles. This extends the approach for
single fixed points in an intuitive and comprehensive way.

As the applications we present in the paper only deal with nesting of greatest fixed points, this study
only focuses on greatest fixed points. However it is straightforward to extend it to deal with alternating
nesting of both least and greatest fixed points. We also believe that our approach gives some idea about
how fixed point theories in different domains can be comparedin a structured way.

∗Supported by the project Processes and Modal Logics’ (project nr. 100048021) of the Icelandic Research Fund.
†Supported by the VELUX visiting professorship funded by theVILLUM FOUNDATION.

16 Fixed points

The remainder of the paper is organized as follows. Section 2presents some background on fixed
points of monotone functions. Section 3 briefly introduces the model of labelled transition systems and
some results on behavioural relations defined as greatest fixed points of monotonic functions over binary
relations. The logic we shall use to define characteristic formulae in a uniform fashion is discussed in
Section 4. The key notion of a declaration expressing a monotone function is also given in that section.
Section 5 is devoted to an application of our framework to thelogical characterization of the family of
nested simulation semantics.

2 Posets, monotone functions and fixed points

In this section we introduce some basic concepts we need in the paper.

Definition 2.1

• A partially ordered set, or poset, (A,⊑A) (usually referred to simply as A) consists of a set A and a
partial order⊑A over it.

• If A is a poset and M⊆ A, then a∈ A is anupper boundfor M if m⊑A a for all m∈ M. a is aleast
upper bound(lub) for M if it is an upper bound for M and if whenever b is an upper bound for M
then a⊑A b.

• A poset A is acomplete latticeif the lub for M exists for all M⊆ A.

• For posets A and B, a functionφ : A→B is monotone if it is order preserving; it is anisomorphism
if it is bijective and bothφ and its inverseφ−1 are monotone. We let A→monoB denote the set of
monotone functions from A to B.

• If A is a poset and f∈ A →monoA, then x∈ A is a fixed point of f if f(x) = x. We writeν f (or
νx. f (x)) for the greatest fixed point of f if it exists.

• If A and B are posets, f∈ A →mono A and φ ∈ A →mono B is an isomorphism then we define
φ∗ f : B→ B asφ∗ f = φ ◦ f ◦φ−1.

Note that thelub of a subset of a posetA is unique if it exists and the same holds for greatest fixed points
of monotone functions over posets. It is well known, that ifA andB are posets/complete lattices andI is
some set, then the Cartesian productA×B and the function spaceI → A are a posets/complete lattices
under the pointwise ordering. The following theorem is due to Tarski.

Theorem 2.2 ([10]) If A is a complete lattice and f∈ A →monoA, then f has a unique greatest fixed
point.

The theorem below is proved in [2] and is the key to the generaltheory we present in this paper.

Theorem 2.3 Let A and B be posets, f∈ A→monoA andφ : A→ B be an isomorphism. Thenν f exists
iff ν(φ∗ f) exists. If these fixed points exist thenφ(ν f) = ν(φ∗ f).

3 Labelled transition systems and behavioural relations

It has become standard practice to describe behavioural semantics of processes by means of alabelled
transition systemas defined below.

Definition 3.1 ([7]) A labelled transition system (LTS)is a triple P= (P,A,→) where

• A is a finite set (of actions),

Aceto & Ingólfsdóttir 17

• P is a finite set (of processes), and

• →⊆ P×A ×P is a transition relation.

As usual, we writep
a−→ p′ for (p,a, p′) ∈→. Throughout this paper we assume that the setA is fixed.

As LTSs are in general to concrete, processes are compared bypreorders or equivalences. These are
often obtained as the greatest fixed points to monotone endofunctions on the complete latticeP(P×P).
We will show some example of such functions but first we state and prove some properties.

Definition 3.2 If F ∈ P(P×P)→monoP(P×P) and A∈ P(P×P), we define

• F̃ : S 7→ (F (S−1))−1, and

• F ∩A : S 7→ F (S)∩A.

The following lemma will be applied below.

Lemma 3.3 LetF ∈ P(P×P)→monoP(P×P) and A∈ P(P×P). Then

• F̃ ,F ∩A∈ P(P×P)→monoP(P×P),

• νF̃ = (νF)−1 and

• F̃ ∩A= F̃ ∩A−1.

Proof The first two statements are proved in [2]. To prove the third one we proceed follows:

(F̃ ∩A)(S) = ((F ∩A)(S−1))−1 = (F (S−1))−1∩A−1 = (F̃ ∩A−1)(S).

We will complete this section by giving some examples of endofunction that define some standard be-
havioural preorders and equivalences [4, 1].

Definition 3.4 LetF : P(P×P)→ P(P×P) be defined as follows:

(p,q) ∈ F (S) iff ∀a∈ A, p′ ∈ P.p a−→ p′ ⇒∃q′ ∈ P.q
a−→ q′∧ (p′,q′) ∈ S.

It is easy to check thatF is monotonic and therefore it has a greatest fixed point.

Definition 3.5 We define:

• Fsim= F and⊑sim= νFsim (simulation preorder),

• Fopsim= F̃ and⊑opsim= νFopsim(inverse simulation preorder),

• ∼sim=⊑sim∩ ⊑opsim(simulation equivalence) and

• Fbisim= Fsim∩Fopsimand∼bisim= νFbisim (bisimulation equivalence).

4 Equational modal ν-calculi with nested fixed-points

In this section we introduce variants of the standard equational modalµ-calculus [8]. Like in [9] these
variants only allow for nested fixed points, i. e. where the logical languages form a hierarchy where fixed
points in a language on one level are allowed as constants in the logic on the level above. Our approach,
however, differs from the original one in the sense that the fixed-point operator is explicit in the syntax
and can therefore be used in logical expressions. In this study we only focus on greatest fixed points
(which explains the title of this section) but the frameworkcan easily be extended to involve nesting

18 Fixed points

of both greatest and least fixed points. The logical languages we introduce depend on the implicitly
assumed fixed finite setA.

Our basic logicM is the standard Hennessy-Milner Logic (HML) [6] without variables. This logic
is generated byΣ = (Σ0,Σ1,Σ2) whereΣ0 = {tt, ff} are the constants or the operators of arity 0,Σ1 =
{〈a〉, [a],a ∈ A} are the operators of arity 1, andΣ2 = {∧,∨} are the operators of arity 2.

The formulae inM are interpreted over an LTS(P,A,→) as the set of elements fromP that satisfy
them. Satisfaction is determined by a semantic function that is defined below. ForM ⊆P we let〈·a·〉M =

{p∈ P | ∃q∈ M.p
a−→ q}, and[·a·]M = 〈·a·〉M whereM is the complement of the setM.

Definition 4.1 The semantic functionM [[]] is defined as follows:

1. M [[tt]] = P, M [[ff]] = /0,

2. M [[F1∧F2]] = M [[F1]]∩M [[F2]], M [[F1∨F2]] = M [[F1]]∪M [[F2]],

3. M [[〈a〉F]] = 〈·a·〉M [[F]], M [[[a]F]] = [·a·]M [[F]].

The logicV is the standard Hennessy-Milner logic with variables that was introduced in [9]. It assumes
a finite index setI and anI -indexed set of variablesX . In what remains of this paper we assume a fixed
pair of suchI andX , unless stated otherwise.

As the elements ofV typically contain variables, they have to be interpreted with respect to a variable
interpretationσ ∈P(P)I that associates to eachi ∈ I the set of processes inP that are assumed to satisfy
the variableXi. The semantic functionV [[]] in this case takes a formulaF and aσ ∈P(P)I and delivers
an element ofP(P).

Definition 4.2 The semantic functionV [[]] is defined as follows:

1. V [[F]]σ = M [[F]] if F ∈ Σ0,

2. V [[Xi]]σ = σ(i), i ∈ I,

3. V [[F1∧F2]]σ = V [[F1]]σ ∩V [[F2]]σ , V [[F1∨F2]]σ = V [[F1]]σ ∪V [[F2]]σ ,

4. V [[〈a〉F]]σ = 〈·a·〉V [[F]]σ , V [[[a]F]]σ = [·a·]V [[F]]σ .

In [9] the meaning of the variables in the logicV is defined by means of a declaration, or a function
D : I → V . Intuitively the syntactic function generates a monotonicendofunctionV [[D]] over P(P)I

defined by(V [[D]])(i) = V [[D(i)]] for all i ∈ I . By Theorem 2.2,V [[D]] has a unique largest fixed point
νV [[D]] ∈ P(P)I that can be used to give the semantics for the variables and the formulae that contain
those in the logicV . We can then use this to extend the logicM with {νD(i)|i ∈ I} as constants
interpreted as{νV [[D]](i)|i ∈ I}. By this we get a logicM ′ that is generated byΣ′ = (Σ0∪{νD(i)|i ∈
I},Σ2,Σ3). Then this procedure can be repeated for another declaration that possibly depends onνD as
a constant and withM ′ as the basic logic. The following example shows how this construction works.

Example Let I = {1}, X = {X1} andA = {a,b} and let the property “invariantly〈a〉tt” be defined
as the greatest fixed point corresponding to the declarationD0 defined asD0(1) = 〈a〉tt ∧ [a]X1∧ [b]X1.
To interpret this we defineM = M0 andV0 = V whereM andV have the meaning described above.
The derived semantic functionV0[[D0]] : P(P){1} → P(P){1} is easily shown to be monotonic and has
the greatest fixed pointνV0[[D0]] ∈ P(P){1}. Now we defineM1 as the extension ofM0 that is gener-
ated byΣ1 = ({tt, ff ,νD0(1)},Σ1,Σ2), i.e. hasνD0(1) as a constant that is interpreted asνV0[[D0]](1),
i.e.M1[[νD0(1)]] = νV0[[D0]](1).

Next let us assume that we have the declarationD1 : {1} → V1 whereV1 is the variable logic gener-
ated by({tt, ff ,νD0(1),X1},Σ2,Σ3) andD1 is defined asD1(1) = 〈b〉νD0(1)∧ [b]X1 . As before the dec-
laration is interpreted overP(P){1} but usingM1[[]] to interpret the constantνD0(1). AgainD1 is inter-
preted by usingV1[[]] which leads to a monotonic endofunctionV1[[D1]] overP(P){1} with a fixed point

Aceto & Ingólfsdóttir 19

νV1[[D1]]. The logicM2 is now defined as the one generated byΣ2 = ({tt, ff ,νD1(1),νD2(1)},Σ2,Σ3)
whereM0[[]] andM1[[]] are used to define the meaning ofνD1(1) andνD2(1) respectively.

We will now generalize this procedure and define our hierarchy of nested fixed point logics, derived
from a sequence of nested declarationsD j , j = 1,2, . . . ,N, i.e. where for eachn< N, Dn+1 is allowed to
depend on the constantstt, ff andνD j(i) for j ≤ n andi ∈ I . In the definition we assume a finite index
setI and anI -indexed variable setX . We use the notationG (Σ0) for the logic generated by(Σ0,Σ1,Σ2)
andGI (Σ0) for the logic generated by(Σ0∪X ,Σ1,Σ2).

Definition 4.3

• Define

– Σ0
0 = {tt, ff},

– M0 = G (Σ0
0) and

– V0 = GI (Σ0
0).

• For n≥ 1, if Dn : I → Vn, define

– Σn+1
0 = Σn

0∪{νDn(i)|i ∈ I},

– Mn+1 = G (Σn+1
0) and

– Vn+1 = GI (Σn+1
0).

To define the semantic functions associated with these logics we need the following lemma.

Lemma 4.4 Assume thatM = G (C) andV = GI (C) for some set of constants C whereM [[c]] is well
defined for all c∈C. Then for all D: I → V , the derived semantic functionV [[D]] defined by

∀i ∈ I .(V [[D]]σ)(i) = V [[D(i)]]σ

is in P(P)I →monoP(P)I and hence, by Theorem 2.2,νV [[D]] ∈ P(P)I exists.

Now we are ready to define the semantic functions forMn andVn for all n≥ 0.

Definition 4.5

• M0 = M andV0 = V as defined in Definition 4.1 and 4.2 respectively.

• For n≥ 0 the semantic functions forMn+1 is defined as follows:

1. Mn+1[[F]] = Mn[[F]] if F ∈ Σn
0,

2. Mn+1[[(νDn)(i)]] = νVn[[Dn]](i) for i ∈ I,

3. Mn+1[[F1∧F2]] = Mn+1[[F1]]∩Mn+1[[F2]], Mn+1[[F1∨F2]] = Mn+1[[F1]]∪Mn+1[[F2]],

4. Mn+1[[〈a〉F]] = 〈·a·〉Mn+1[[F]], Mn+1[[[a]F]] = [·a·]Mn+1[[F]].

• For n≥ 0 the semantic function forVn+1 is defined as follows:

1. Vn+1[[F]]σ = Mn+1[[F]] if F ∈ Σ0
n,

2. Vn+1[[Xi]]σ = σ(i), i ∈ I,

3. Vn+1[[F1∧F2]]σ = Vn+1[[F1]]σ ∩Vn+1[[F2]]σ , Vn+1[[F1∨F2]]σ = Vn+1[[F1]]σ ∪Vn+1[[F2]]σ ,

4. Vn+1[[〈a〉F]]σ = 〈·a·〉Vn+1[[F]]σ , Vn+1[[[a]F]]σ = [·a·]Vn+1[[F]]σ .

20 Fixed points

4.1 Characteristic Formulae by means of Declarations

The aim of this section is to show how each processp∈ P can be characterized up to a binary relation
⊲⊳ over processes (such as an equivalence or a preorder) by a single formula, the so called characteristic
formula for p up to⊲⊳.

To achieve this, we takeI =P in the definitions in the previous section. A declarationD for a variable
logic V assigns exactly one formulaD(p) from V to each processp∈ P. We have seen that each such
function induces an endofunctionV [[D]] ∈P(P)P →monoP(P)P and thereforeV [[D]] exists. This leads
to the following definition:

Definition 4.6 A declaration D for the logicV characterizes⊲⊳⊆ P×P iff for each p,q∈ P,

(p,q) ∈⊲⊳ iff q ∈ (νV [[D]])(p).

In what follows, we will describe how we can devise a characterizing declaration for a relation that is
obtained as a fixed point, or a sequence of nested fixed points of monotone endofunctions, which can be
expressed in the logic. In order to define this precisely we use the notation introduced in Definition 4.7
below.
Definition 4.7 If S⊆ P×P we define the variable interpretationσS∈ P(P)P associated to S by

σS(p) = {q∈ P | (p,q) ∈ S}, for each p∈ P.

ThusσS assigns top all those processesq that are related to it viaS.
Definition 4.8 A declaration D forV expressesa monotone endofunctionF onP(P×P) when

(p,q) ∈ F (S) iff q ∈ V [[D(p)]]σS= (V [[D]]σS)(p),

for every relation S⊆ P×P and every p,q∈ P.
We need the following to prove our main result.
Definition 4.9 Let Φ : P(P×P)→ P(P)P be defined byΦ(S) = σS.

Lemma 4.10
• Φ : P(P×P)→ P(P)P is an isomorphism.

• If A1,A2 ∈ P(P×P) andF1,F2 ∈ P(P×P)→monoP(P×P) then

– Φ(A1∩A2) = Φ(A1)∩Φ(A2),
– Φ∗(F1∩A1) = Φ∗(F1)∩Φ(A1) and
– Φ∗(F1∩F2) = Φ∗(F1)∩Φ∗(F2).

Proof The first part is proved in [2] whereas the second part followsdirectly from the definition ofΦ.

Corollary 4.11 Assume that D∈ P→ V andF ∈ P(P×P)→monoP(P×P). Then

D expressesF iff Φ∗(F) = V [[D]] iff D characterizesνF .

5 Applications

Following the approach in [2], we define declarationsD andD̃ that express the functionsF andF̃ that
were defined in Section 3.
Definition 5.1 Let

• Let D : p 7→∧
a∈A

∧
p′∈P. p a−→p′〈a〉Xp′ and

• D̃ : p 7→∧
a∈A [a]

∨
p′∈P. p a−→p′ Xp′ .

Aceto & Ingólfsdóttir 21

From [2] we have:

Lemma 5.2

• D expressesF and characterizesνF , and

• D̃ expressesF̃ and characterizesνF̃ .

Now we recall from [2] the declarations that characterize simulation equivalence and bisimulation equiv-
alence.

Definition 5.3 Define Dbisim= Dsim∧Dopsimand Dsimeq= νDsim∧νDopsim.

Lemma 5.4 Dbisim characterizes∼bisim and Dsimeqcharacterizes∼sim.

Proof Dbisim does not contain nested fixed points and can therefore be interpreted directly overV0 = V .
Now we proceed as follows:

Φ∗(Fbisim) = Φ∗(Fsim)∩Φ∗(Fopsim) = V [[Dsim]]∩V [[Dopsim]] = V [[Dsim∧Dopsim]] = V [[Dbisim]].

To interpretDsimeqwe defineΣ1 = {tt, ff}∪{νDsim(p)|p∈P} andΣ2 = Σ1∪{νDopsim(p)|p∈P} and let
M0,M1,M2 andV0,V1 be defined as before. ThenDsimeq: P→ V1. If we letFsimeq= νFsim∩νFopsim,
we get

Φ∗(Fsimeq) = Φ(νFsim)∩Φ(νFopsim) = νV1[[Dsim]]∩νV1[[Dopsim]] =

M2[[νDsim]]∩M2[[νDopsim]] = M2[[νDsim∧νDopsim]] = V1[[Dsimeq]].

The result now follows from Cor. 4.11.

Next we define the nested simulation preorders introduced in[5] by using the functionF . These
definition involve nesting of fixed points and are defined recursively on the depth of the nesting. The
1-nested simulation⊑(1)sim is just the simulation preorder⊑sim as defined in Section 3 and the function
F(1)sim is therefore the functionF . As the preorder⊑(n+1)sim depends on the inverse of the preorder
⊑(n)sim, which we call⊑(n)opsim, we simultaneously define the nested simulations and their inverse in
our recursive definition. The functions that define⊑(n)sim and⊑(n)opsimare calledF(n)sim andF(n)opsim

respectively.

Definition 5.5 (Nested simulations)

1. F(1)sim= F and⊑(1)sim= νF(1)sim,

2. F(1)opsim= F̃ and⊑(1)opsim= νF(1)opsim,

3. F(n+1)sim= F(1)sim∩νF(n)opsimand⊑(n+1)sim= νF(n+1)sim.

4. F(n+1)opsim= F(1)opsim∩νF(n)sim and⊑(n+1)opsim= νF(n+1)opsim.

We complete this note by defining a sequence of nested declarations and prove that they characterize the
sequence ofn-nested simulation preorders.

Theorem 5.6

1. D(1)sim= D expressesF(1)sim and characterizes⊑(1)sim,

2. D(1)opsim= D̃ expressesF(1)opsim and characterizes⊑(1)opsim,

3. D(n+1)sim= D(1)sim∧νD(n)opsim expressesF(n+1)sim and characterizes⊑(n+1)sim,

22 Fixed points

4. D(n+1)opsim= D(1)opsim∧νD(n)sim expressesF(n+1)opsim an d characterizes⊑(n+1)opsim.

Proof We prove the statements simultaneously by induction onn. First we note thatD1,D2, . . . , where
D2i−2 =D(i)sim andD2i−1 = D(i)opsimfor i ≥ 1 is a sequence of nested declarations. For the casen= 1 we
get from Lemma 5.2 thatΦ∗(F(1)sim) = V0[[D(1)sim]] andΦ∗(F(1)opsim) = V1[[D(1)opsim]]. Next assume
that Φ∗(F(n)sim) = V2n−2[[D(n)sim]] andΦ∗(F(n)opsim) = V2n−1[[D(n)opsim]]. To prove 3. we proceed as
follows:

Φ∗(F(n+1)sim) = Φ∗(F(1)sim)∩Φ(νF(n)opsim) = V0[[D(1)sim]]∩νV2n−2[[D(n)opsim]] =

V2n−2[[D(1)sim∧νD(n)opsim]] = V2n[[D(n+1)sim]].

Finally, to prove 4. we have:

Φ∗(F(n+1)opsim) = Φ∗(F(1)opsem)∩Φ(νF(n)sim) = V1[[D(1)opsim]]∩νV2n−1[[D(n)sim]] =

V2n−1[[D(1)opsim∧νD(n)sim]] = V2n+1[[D(n+1)opsim]].

References

[1] L. Aceto, A. Ingolfsdottir, K.G. Larsen & J. Srba (2007):Reactive Systems: Modelling, Specification and
Verification. Cambridge University Press, doi:10.1017/CBO9780511814105.

[2] L. Aceto, A. Ingolfsdottir, P. B. Levy & J. Sack (2012):Characteristic Formulae for Fixed-Point Semantics:
A General Framework. Mathematical Structures in Computer Sciencedoi:10.4204/EPTCS.8.1. Special issue
devoted to selected papers from EXPRESS 2009, Cambridge University Press.

[3] Jan Bergstra, Alban Ponse & Scott A. Smolka, editors (2001): Handbook of Process Algebra. Elsevier.

[4] R. van Glabbeek (2001):The linear time–branching time spectrum. I. The semantics of concrete, sequential
processes. In Bergstra et al. [3], pp. 3–99, doi:10.1016/B978-044482830-9/50019-9.

[5] Jan Friso Groote & Frits W. Vaandrager (1992):Structured Operational Semantics and Bisimulation as a
Congruence. Information and Computation100(2), pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

[6] M. Hennessy & R. Milner (1985):Algebraic laws for nondeterminism and concurrency. Journal of the ACM
32(1), pp. 137–161, doi:10.1145/2455.2460.

[7] R.M. Keller (1976): Formal verification of parallel programs. Communications of the ACM19(7), pp.
371–384, doi:10.1145/360248.360251.

[8] Dexter Kozen (1983):Results on the Propositional mu-Calculus. Theoretical Computer Science27, pp.
333–354, doi:10.1016/0304-3975(82)90125-6.

[9] Kim Guldstrand Larsen (1990):Proof Systems for Satisfiability in Hennessy–Milner Logic with Recursion.
Theoretical Computer Science72(2–3), pp. 265–288, doi:10.1016/0304-3975(90)90038-J.

[10] A. Tarski (1955):A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific Journal of Mathemat-
ics5(2), pp. 285–309. Available athttp://projecteuclid.org/euclid.pjm/1103044538.

D. Miller and Z. Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 23–30, doi:10.4204/EPTCS.77.4

c© A. Haddad

IO vs OI in Higher-Order Recursion Schemes

Axel Haddad
LIAFA (Université Paris 7 & CNRS) & LIGM (Université Paris Est & CNRS)

We propose a study of the modes of derivation of higher-order recursion schemes, proving that
value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those
obtained using unrestricted derivations.

Given that higher-order recursion schemes can be used as a model of functional programs,
innermost-outermost derivations policy represents a theoretical view point of call by value evaluation
strategy.

1 Introduction

Recursion schemes have been first considered as a model of computation, representing the syntactical
aspect of a recursive program [15, 2, 3, 4] . At first, (order-1) schemes were modelling simple recursive
programs whose functions only take values as input (and not functions). Since, higher-order versions of
recursion schemes [11, 5, 6, 7, 8, 9] have been studied.

More recently, recursion schemes were studied as generators of infinite ranked trees and the focus was
on deciding logical properties of those trees [12, 8, 10, 1, 13, 14].

As for programming languages, the question of the evaluation policy has been widely studied. Indeed,
different policies results in the different evaluation [8, 9, 7]. There are two main evaluations policy
for schemes: outermost-innermost derivations (OI) and inner-outermost IO derivations, respectively
corresponding to call by need and call by value in programming languages.

Standardization theorem for the lambda-calculus shows that for any scheme, outermost-innermost
derivations (OI) lead to the same tree as unrestricted derivation. However, this is not the case for IO
derivations. In this paper we prove that the situation is different for schemes. Indeed, we establish that
the trees produced using schemes with IO policy are the same as those produced using schemes with OI
policy. For a given a scheme of order n, we can use a simplified continuation passing style transformation,
to get a new scheme of order n+ 1 in which IO derivations will be the same as OI derivations in the
initial scheme (Section 3). Conversely, in order to turn a scheme into another one in which unrestricted
derivations lead to the same tree as IO derivations in the initial scheme, we adapt Kobayashi’s [13] recent
results on HORS model-checking, to compute some key properties over terms (Section 4.1). Then we
embed these properties into a scheme turning it into a self-correcting scheme of the same order of the
initial scheme, in which OI and IO derivations produce the same tree (Section 4.2).

2 Preliminaries

Types are defined by the grammar τ ::= o | τ → τ; o is called the ground type. Considering that→ is
associative to the right (i.e. τ1 → (τ2 → τ3) can be written τ1 → τ2 → τ3), any type τ can be written
uniquely as τ1→ ...→ τk→ o. The integer k is called the arity of τ . We define the order of a type by
order(o) = 0 and order(τ1→ τ2) = max(order(τ1)+1,order(τ2)). For instance o→ o→ o→ o is a type

24 IO vs OI in Higher-Order Recursion Schemes

of order 1 and arity 3, (o→ o)→ (o→ o), that can also be written (o→ o)→ o→ o is a type of order 2.
Let τ`→ τ ′ be a shortcut for τ → ...→ τ︸ ︷︷ ︸

` times

→ τ ′.

Let Γ be a finite set of symbols such that to each symbol is associated a type. Let Γτ denote the set of
symbols of type τ . For all type τ , we define the set of terms of type T τ(Γ) as the smallest set satisfying:
Γτ ⊆ T τ(Γ) and

⋃
τ ′{t s | t ∈ T τ ′→τ(Γ),s ∈ T τ ′(Γ)} ⊆ T τ(Γ). If a term t is in T τ(Γ), we say that t

has type τ . We shall write T (Γ) as the set of terms of any type, and t : τ if t has type τ . The arity of a
term t, arity(t), is the arity of its type. Remark that any term t can be uniquely written as t = α t1...tk with
α ∈ Γ. We say that α is the head of the term t. For instance, let Γ = {F : (o→ o)→ o→ o , G : o→
o→ o , H : (o→ o) , a : o}: F H and G a are terms of type o→ o; F(G a) (H (H a)) is a term of type
o; F a is not a term since F is expecting a first argument of type o→ o while a has type o.

Let t : τ , t ′ : τ ′ be two terms, x : τ ′ be a symbol of type τ ′, then we write t[x 7→t ′] : τ the term obtained
by substituting all occurences of x by t ′ in the term t. A τ-context is a term C[•τ] ∈ T (Γ]{•τ : τ})
containing exactly one occurrence of •τ ; it can be seen as an application turning a term into another, such
that for all t : τ , C[t] =C[•τ][•τ 7→t]. In general we will only talk about ground type context where τ = o
and we will omit to specify the type when it is clear. For instance, if C[•] = F • (H (H a)) and t ′ = G a
then C[t ′] = F (G a) (H (H a)).

Let Σ be a set of symbols of order at most 1 (i.e. each symbols has type o or o→ ...→ o) and ⊥ : o
be a fresh symbol. A tree t over Σ]⊥ is a mapping t : domt → Σ]⊥, where domt is a prefix-closed
subset of {1, ...,m}∗ such that if u ∈ domt and t(u) = a then { j | u j ∈ domt} = {1, ...,arity(a)}. Note
that there is a direct bijection between ground terms of T o(Σ]⊥) and finite trees . Hence we will freely
allow ourselves to treat ground terms over Σ]⊥ as trees. We define the partial order v over trees as
the smallest relation satisfying ⊥ v t and t v t for any tree t, and a t1...tk v a t ′1...t

′
k iff ti v t ′i . Given a

(possibly infinite) sequence of trees t0, t1, t2, ... such that ti v ti+1 for all i, one can prove that the set of all
ti has a supremum that is called the limit tree of the sequence.

A higher order recursion scheme (HORS) G = 〈V ,Σ,N ,R,S〉 is a tuple such that: V is a finite
set of typed symbols called variables; Σ is a finite set of typed symbols of order at most 1, called
the set of terminals; N is a finite set of typed symbols called set of non-terminals; R is a set of
rewrite rules, one per non terminal F : τ1 → ...→ τk → o ∈ N , of the form F x1 ... xk → e with
e : o ∈T (Σ]N]{x1, ...,xk}); S ∈N is the initial non-terminal.

We define the rewriting relation→G ∈ T (Σ]N)2 (or just→ when G is clear) as t→G t ′ iff there
exists a context C[•], a rewrite rule F x1...xk→ e, and a term F t1 ... tk : o such that t =C[F t1...tk] and
t ′ =C[e[x1 7→t1]...[xk 7→tk]]. We call F t1 ... tk : o a redex. Finally we define→∗G as the reflexive and transitive
closure of→G.

We define inductively the⊥-transformation (·)⊥ : T o(N]Σ)→T o(Σ]{⊥ : o}): (F t1 ... tk)⊥ =
⊥ ∀F ∈N and (a t1 ... tk)⊥ = a t⊥1 ...t⊥k for all a ∈ Σ. We define a derivation, as a possibly infinite
sequence of terms linked by the rewrite relation. Let t0 = S→G t1→G t2→G ... be a derivation, then one
can check that (t0)⊥ v (t1)⊥ v (t2)⊥ v ..., hence it admits a limit. One can prove that the set of all such
limit trees has a greatest element that we denote ‖G‖ and refer to as the value tree of G. Note that ‖G‖ is
the supremum of {t⊥ | S→∗ t}. Given a term t : o, we denote by Gt the scheme obtained by transforming
G such that it starts derivations with the term t, formally, Gt = 〈V ,Σ,N]{S′},R]{S′→ t},S′〉. One
can prove that if t→ t ′ then ‖Gt‖= ‖Gt ′‖.
Example. Let G= 〈V ,Σ,N ,R,S〉 be the scheme such that: V = {x : o,φ : o→ o,ψ : (o→ o)→ o→ o},
Σ = {a : o3→ o,b : o→ o→ o,c : o}, N = {F :

(
(o→ o)→ o→ o

)
→ (o→ o)→ o→ o,H : (o→

A. Haddad 25

o)→ o→ o, I,J,K : o→ o,S : o}, and R contains the following rewrite rules:

F ψ φ x → ψ φ x I x → x H φ x → a (J x) (K x) (φ x)
J x → b (J x) (J x) K x → K (K x) S → F H I c

Here is an example of finite derivation:

S → F H I c → H I c → a (J c) (K c) (I c)

→ a (J c) (K (K c)) (I c) → a (J c) (K (K (K c))) (I c)

If one extends it by always rewriting a redex of head K, its limit is the tree a ⊥ ⊥ ⊥, but this is not the
value tree of G. The value tree ‖G‖ is depicted below.

...

b

...

b

...

b

...

b

...

b

...

b

...

a

b

...

⊥ c

Evaluation Policies

We now put constraints on the derivations we allow. If there are no constraints, then we say that the
derivations are unrestricted and we let AccG = {t : o | S→∗ t} be the set of accessible terms using
unrestricted derivations. Given a rewriting t→ t ′ such that t =C[F s1 ... sk] and t ′ =C[e[∀ j x j 7→s j]] with
F x1...xk→ e∈R.

• We say that t → t ′ is an outermost-innermost (OI) rewriting (written t →OI t ′) there is no redex
containing the occurrence of • as a subterm of C[•].
• We say that t→ t ′ is an innermost-outermost (IO) rewriting (written t→IO t ′), if for all j there is

no redex as a subterm of s j.

Let AccG
OI = {t : o | S→∗OI t} be the set of accessible terms using OI derivations and AccG

IO = {t :
o | S→∗IO t} be the set of accessible terms using IO derivations. There exists a supremum of AccG

OI (resp.
AccG

IO) which is the maximum of the limit trees of OI derivations(resp. IO derivations). We write it
‖G‖OI (resp. ‖G‖IO). For all recursive scheme G, (AccG)⊥ = (AccG

OI)
⊥, in particular ‖G‖OI = ‖G‖. But

‖G‖IO v ‖G‖ and in general, the equality does not hold (see the example is the next section).

3 From OI to IO

Fix a recursion scheme G = 〈V ,Σ,N ,R,S〉. Our goal is to define another scheme G = 〈V ,Σ,N ,R, I〉
such that ‖G‖IO = ‖G‖. The idea is to add an extra argument (∆) to each non terminal, that will be
required to rewrite it (hence the types are changed). We feed this argument to the outermost non terminal,
and duplicate it to subterms only if the head of the term is a terminal. Hence all derivations will be
IO-derivations.

We define the (·) transformation over types by o = o→ o, and τ1→ τ2 = τ1→ τ2. In particular, if
τ = τ1→ ...→ τk→ o then τ = τ1→ ...→ τk→ o→ o. Note that for all τ , order(τ) = order(τ)+1.

26 IO vs OI in Higher-Order Recursion Schemes

For all x : τ ∈ V we define x : τ as a fresh variable. Let armax be the maximum arity of terminals, we
define η1, ...,ηaritymax : o→ o and δ : o as fresh variables, and we let V = {x : τ | x∈V }]{η1, ...,ηarmax}]
{δ : o}. Note that δ is the only variable of type o. For all a : τ ∈ Σ define a : τ as a fresh non-terminal and
for all F : τ ∈N define F : τ as a fresh non-terminal. Let N = {a : τ | a ∈ Σ}]{F : τ | F ∈N }]{∆ :
o, I : o}. Note that I and ∆ are the only symbols in N of type o.

Let t : τ ∈ T (V]Σ]N), we define inductively the term t : τ ∈ T (V]N): If t = x ∈ V (resp.
t = a ∈ Σ, t = F ∈N), we let t = x ∈ V (resp. t = a ∈ Σ, t = F ∈N), if t = t1 t2 : τ then t = t1 t2.

Let F x1 ... xk → e be a rewrite rule of R. We define the (valid) rule F x1 ... xk δ → e ∆ in R.
Let a ∈ Σ of arity k, we define the rule a η1 ... ηk δ → a (η1 ∆) ... (ηk ∆) in R. We also add the rule
I → S ∆ to R. Finally let G = 〈V ,Σ,N ,R, I〉.
Example. Let G = 〈V ,Σ,N ,R,S〉 be the order-1 recursion scheme with Σ = {a,c : o}, N = {S : o,F :
o→ o→ o,H : o→ o}, V = {x,y : o}, and the following rewrite rules:

S → F (H a) c F x y → y H x → H (H x)

Then we have ‖G‖OI = c while ‖G‖IO = ⊥ (indeed, the only IO derivation is the following S →
F (Ha) c → F (H (H a)) c → F (H (H (H a))) c → ...). The order-2 recursion scheme G =
〈V ,Σ,N ,R, I〉 is given by N = {I,∆ : o,S,a,c : o→ o,F : (o→ o)→ (o→ o)→ o→ o,H : (o→
o)→ o→ o},V = {δ : o,x,y : o→ o} and the following rewrite rules:

I → S ∆ S δ → F (H a) c ∆ F x y δ → y ∆
H x δ → H (H x) ∆ c δ → c a δ → a

Note that in the term F (H a) c ∆, the subterm H a is no longer a redex since it lacks its last argument,
hence it cannot be rewritten, then the only IO derivation, which is the only unrestricted derivation is
I→ S ∆→ F (H a) c ∆→ c ∆→ c. Therefore ‖Ḡ‖IO = ‖Ḡ‖= c= ‖G‖.
Lemma 1. Any derivation of G is in fact an OI and an IO derivation. Hence that ‖G‖IO = ‖G‖.

Proof (Sketch). The main idea is that the only redexes will be those that have ∆ as last argument of the
head non-terminal. The scheme is constructed so that ∆ remains only on the outermost non-terminals, that
is why any derivation is an OI derivation. Furthermore, we have that if t = F t1...tk∆ is a redex, then none
of the ti contains ∆, therefore they do not contain any redex, hence t is an innermost redex.

Note that OI derivations in G acts like OI derivations in G, hence ‖G‖= ‖G‖.
Theorem 2 (OI vs IO). Let G be an order-n scheme. Then one can construct an order-(n+1) scheme G
such that ‖G‖= ‖G‖IO.

4 From IO to OI

The goal of this section is to transform the scheme G into a scheme G′′ such that ‖G′′‖ = ‖G‖IO. The
main difference between IO and OI derivations is that some redex would lead to ⊥ in IO derivation
while OI derivations could be more productive. For example take F : o→ o such that F x→ c, and H : o
such that H → a H, with a : o→ o and c : o being terminal symbols. The term F H has a unique OI
derivation, F H→OI c, it is finite and it leads to the value tree assiocated. On the other hand, the (unique)
IO derivation is the following F H→ F(a H)→ F (a (a H))→ ... which leads to the tree ⊥.

The idea of the transformation is to compute a tool (based on a type system) that decides if a redex
would produce ⊥ with IO derivations (Section 4.1); then we embed it into G and force any such redex to
produce ⊥ even with unrestricted derivations (Section 4.2).

A. Haddad 27

4.1 The Type System

Given a term t : τ ∈T (Σ]N), we define the two following properties on t: P⊥(t) =“The term t has
type o and its associated IO valuation tree is ⊥”, and P∞(t) =“the term t has not necessarily ground type,
it contains a redex r such that any IO derivation from r producing it’s IO valuation tree is infinite”. Note
that P∞(t) is equivalent to “the term t contains a redex r such that ‖Gr‖IO is either infinite or contains ⊥”.
In this section we describe a type system, inspired from the work of Kobayashi [13], that characterises if a
term verifies these properties.

Let Q be the set {q⊥,q∞}. Given a type τ , we define inductively the sets (τ)atom and (τ)∧ called
respectively set of atomic mappings and set of conjunctive mappings:
(o)atom = Q , (o)∧ = {∧{θ1, ...,θi} | θ1, ...,θi ∈ Q} , (τ1 → τ2)

atom = {q∞}] {(τ1)
∧ → (τ2)

atom}
(τ1→ τ2)

∧ = {∧{θ1, ...,θi} | θ1, ...,θi ∈ (τ1→ τ2)
atom}.

We will usually use the letter θ to represents atomic mappings, and the letter σ to represent conjunctive
mappings. Given a conjunctive mapping σ (resp. an atomic mapping θ) and a type τ , we write σ :: τ
(resp. θ ::a τ) the relation σ ∈ (τ)∧ (resp. θ ∈ (τ)atom). For the sake of simplicity, we identify the atomic
mapping θ with the conjunctive mapping

∧{θ}.
Given a term t and a conjunctive mapping σ , we define a judgment as a tuple Θ ` t .σ , pronounce

“from the environment Θ, one can prove that t matches the conjunctive mapping σ”, where the environment
Θ is a partial mapping from V]N to conjunctive mapping. Given an environment Θ, α ∈ V]N and
a conjunctive mapping σ , we define the environment Θ′ = Θ,α .σ as Dom(Θ′) = Dom(Θ)∪{α} and
Θ′(α) = σ if α 6∈ Dom(Θ), Θ′(α) = σ ∧Θ(α) otherwise, and Θ′(β) = Θ(β) if β 6= α .

We define the following judgement rules:

Θ ` t .θ1 ... Θ ` t .θn

Θ ` t .
∧{θ1, ...,θn}

(Set)
Θ,α .

∧{θ1, ...,θn} ` α .θi
(At) (for all i)

Θ ` a.σ1→ ...→ σi≤arity(a)→ q∞
(Σ) (for a ∈ Σ and ∃ j σ j = q∞)

Θ ` t1 .σ → θ Θ ` t2 .σ
Θ ` t1 t2 .θ

(App)
Θ ` t .q∞→ q∞

(q∞→ q∞ I) (if t : τ1→ τ2)
Θ ` t1 .q∞

Θ ` t1 t2 .q∞
(q∞ I)

Remark that there is no rules that directly involves q⊥, but it does not mean that no term matches q⊥,
since it can appear in Θ. Rules like (At) or (App) may be used to state that a term matches q⊥.

We say that (G, t) matches the conjunctive mapping σ written ` (G, t).σ if there exists an environment
Θ, called a witness environment of ` (G, t).σ , such that (1) Dom(Θ) = N , (2) ∀F : τ ∈N Θ(F) :: τ ,
(3) if F x1...xk→ e∈R and Θ ` F .σ1→ ...→ σi≤k→ q then either there exists j such that q∞ ∈ σ j, or
i = k and Θ,x1 .σ1, ...,xk .σk ` e.q, (4) Θ ` t .σ .

The following two results state that this type system matches the properties P⊥ and P∞ and further-
more we can construct a universal environment, Θ?, that can correctly judge any term.

Theorem 3 (Soundness and Completeness). Let G be an HORS, and t be term (of any type), ` (G, t).q∞
(resp. ` (G, t).q⊥) if and only if P∞(t) (resp. P⊥(t)) holds.

Proposition 4 (Universal Witness). There exists an environment Θ? such that for all term t, the judgment
` (G, t).σ holds if and only if Θ? ` t .σ .

28 IO vs OI in Higher-Order Recursion Schemes

Proof (Sketch). To compute Θ?, we start with an environment Θ0 satisfying Properties (1) and (2)
(Dom(Θ0) = N and ∀F : τ ∈N Θ0(F) :: τ) that is able to judge any term t : τ with any conjunctive
mapping σ :: τ .

Then let F be the mapping from the set of environments to itself, such that for all F : τ1→ ...→
τk→ o ∈N , if F x1...xk→ e∈R then,

F (Θ)(F) = {σ1→ ...→ σk→ q | q ∈ Q∧∀i σi :: τi∧Θ,x1 .σ1, ...,xk .σk ` e : q}
∪{σ1→ ...→ σi≤k→ q∞ | ∧∀i σi :: τi∧∃ j q∞ ∈ σ j}

∪{σ1→ ...→ σk→ q⊥ | ∀i σi :: τi∧∃ j q∞ ∈ σ j}.

We iterate F until we reach a fixpoint. The environment we get is Θ?, it verifies properties (1) (2)
and (3). Furthermore we can show that this is the maximum of all environment satisfying these properties,
i.e. if ` (G, t).σ then Θ? ` t .σ .

4.2 Self-Correcting Scheme

For all term t : τ ∈T (Σ]N), we define JtK ∈ (τ)∧, called the semantics of t, as the conjunction of all
atomic mappings θ such that Θ? ` t .θ (recall that Θ? is the environment of Proposition 4). In particular
P⊥(t) (resp. P∞(t)) holds if and only if q⊥ ∈ JtK (resp. q∞ ∈ JtK). Given two terms t1 : τ2→ τ and t2 : τ2
the only rules we can apply to judge Θ? ` t1 t2 .θ are (App), (q∞→ q∞ I) and (q∞ I). We see that θ only
depends on which atomic mappings are matched by t1 and t2. In other words Jt1 t2K only depends on Jt1K
and Jt2K, we write Jt1K Jt2K = Jt1 t2K.

In this section, given a scheme G = 〈V ,Σ,N ,R,S〉, we transform it into G′ = 〈V ′,Σ,N ′,R ′,S〉
which is basically the same scheme except that while it is producing an IO derivation, it evaluates Jt ′K for
any subterm t ′ of the current term and label t ′ with Jt ′K. Note that if t→IO t ′, then JtK = Jt ′K. Since we
cannot syntactically label terms, we will label all symbols by the semantics of their arguments, e.g. if we
want to label F t1...tk, we will label F with the k-tuple (Jt1K, ...,JtkK).

A problem may appear if some of the arguments are not fully applied, for example imagine we want
to label F H with H : o→ o. We will label F with JHK, but since H has no argument we do not know
how to label it. The problem is that we cannot wait to label it because once a non-terminal is created, the
derivation does not deal explicitly with it. The solution is to create one copy of H per possible semantics
for its argument (here there are four of them:

∧{},∧{q⊥},
∧{q∞},

∧{q⊥,q∞}). This means that FJHK

would not have the same type as F: F has type (o→ o)→ o, but FJGK will have type (o→ o)4 → o.
Hence, F H will be labelled the following way: FJHK H

∧{}H
∧{q⊥}H

∧{q∞}H
∧{q⊥,q∞}. Note that even if F

has 4 arguments, it only has to be labelled with one semantics since all four arguments represent different
labelling of the same term. We now formalize these notions.

Let us generalize the notion of semantics to deals with terms containing some variables. Given an
environment on the variables ΘV such that Dom(ΘV)⊆ V and if x : τ then ΘV (x) :: τ , and given a term
t : τ ∈T (Σ]N]Dom(ΘV)), we define JtKΘV ∈ (τ)∧, as the conjunction of all atomic mappings θ such
that Θ?,ΘV ` t .θ . Given two terms t1 : τ2→ τ and t2 : τ2 we still have that Jt1 t2KΘV only depends on
Jt1KΘV and Jt2KΘV .

To a type τ = τ1→ ...→ τk→ o we associate the integer dτe=Card({(σ1, ...,σk) | ∀i σi ∈ (τi)
∧})

and a complete ordering of {(σ1, ...,σk) | ∀i σi ∈ (τi)
∧} denoted ~σ τ

1 , ~σ τ
2 , ... , ~σ τ

dτe. We define inductively

the type τ+ = (τ+
1)dτ1e→ ...→ (τ+

k)dτke→ o.

A. Haddad 29

To a non terminal F : τ1 → ... → τk → o (resp. a variable x : τ1 → ... → τk → o) and a tuple
σ1 :: τ1, ...,σk :: τk, we associate the non-terminal Fσ1,...,σk : τdτ1e

1 → ...→ τdτke
k → o ∈ N ′ (resp. a

variable xσ1,...,σk : τdτ1e
1 → ...→ τdτke

k → o ∈ V ′).
Given a term t : τ = τ1→ ...→ τk→ o ∈ T (V]Σ]N) and an environment on the variables ΘV

such that Dom(ΘV) ⊆ V contains all variables in t, we define inductively the term t+σ1,...,σk
ΘV : τ+ ∈

T (V ′]Σ′]N ′) for all σ1 :: τ1, ...,σk :: τk. If t = F ∈N (resp. t = x ∈ V), t+σ1,...,σk
ΘV = Fσ1,...,σk (resp.

t+σ1,...,σk
ΘV = xσ1,...,σk), if t = a ∈ Σ, t+σ1,...,σk

ΘV = a. Finally consider the case where t = t1 t2 with t1 : τ ′→ τ
and t2 : τ ′. Let σ = Jt2KΘV . Remark that t1

+σ ,σ1,...,σk
ΘV : (τ ′+)dτ ′e → τ+. We define (t1 t2)

+σ1,...,σk
ΘV =

t1
+σ ,σ1,...,σk
ΘV t2

+~σ τ ′
1

ΘV ... t2
+~σ τ ′
dτ ′e

ΘV . Note that since this transformation is only duplicating and anotating, given a
term t+σ1,...,σk we can uniquely find the unique term t associated to it.

Let F : τ1→ ...→ τk→ o∈N , σ1 :: τ1, ...,σk :: τk, and ΘV = x1.σ1, ...,xk.σk . If F x1...xk → e∈R,

we define in R ′ the rule Fσ1,...,σk x+
~σ τ1

1
1 ... x

+~σ τ1
dτ1e

1 ... x+
~σ τk

1
k ... x

+~σ τk
dτke

k → e+ΘV . Finally, recall that
G′ = 〈V ′,Σ,N ′,R ′,S〉.

The following theorem states that G′ is just a labeling version of G and that it acts the same.

Theorem 5 (Equivalence between G and G′). Given a term t : o, ‖G′t+‖IO = ‖Gt‖IO.

We transform G′ into the scheme G′′ that will directly turn into ⊥ a redex t such that q⊥ ∈ JtK.
For technical reason, instead of adding ⊥ we add a non terminal Void : o and a rule Void → Void.
G′ = 〈V ′,Σ,N ′]{Void : o},R ′′,S〉 such that R ′′ contains the rule Void→Void and for all F ∈N , if

q⊥ ∈ JFK σ1 ... σk then Fσ1,...,σk x+
~σ τ1

1
1 ... x

+~σ τ1
dτ1e

1 ... x+
~σ τk

1
k ... x

+~σ τk
dτke

k →Void otherwise we keep the rule of
R ′.

The following theorem concludes Section 4.

Theorem 6 (IO vs OI). Let G be a higher-order recursion scheme. Then one can construct a scheme G′′

having the same order of G such that ‖G′′‖= ‖G‖IO.

Proof (Sketch). First, given a term t : o, one can prove that ‖G′′t+‖IO = ‖G′t+‖IO.
Then take a redex t such that ‖G′′t ‖IO = ⊥, i.e. q⊥ ∈ JGtK. There is only one OI derivation from

t: t→Void→Void→ ..., then ‖G′′t ‖=⊥. We can extend this result saying that if there is the symbol
⊥ at node u in ‖G′′t ‖IO, then there is ⊥ at node u in ‖G′′t ‖. Hence, since ‖G′′t ‖IO v ‖G′′t ‖, we have
‖G′′‖= ‖G′′‖IO. Then ‖G′′‖= ‖G′′‖IO = ‖G′‖IO = ‖G‖IO.

5 Conclusion

We have shown that value trees obtained from schemes using innermost-outermost derivations (IO) are
the same as those obtained using unrestricted derivations. More precisely, given an order-n scheme G
we create an order-(n+1) scheme G such that ‖G‖IO = ‖G‖. However, the increase of the order seems
unavoidable. We also create an order-n scheme G′′ such that ‖G′′‖= ‖G‖IO. In this case the order does
not increase, however the size of the scheme deeply increases while it remains almost the same in G.

30 IO vs OI in Higher-Order Recursion Schemes

References
[1] Klaus Aehlig (2006): A Finite Semantics of Simply-Typed Lambda Terms for Infinite Runs of Automata. In:

"Proc. of Computer Science Logic, 20th Annual Conference of the EACSL", Lecture Notes in Comput. Sci.
4207, Springer-Verlag, pp. 104–118, doi:10.1007/11874683_7.

[2] Bruno Courcelle (1978): A Representation of Trees by Languages I. Theoret. Comput. Sci. 6, pp. 255–279,
doi:10.1016/0304-3975(78)90008-7.

[3] Bruno Courcelle (1978): A Representation of Trees by Languages II. Theoret. Comput. Sci. 7, pp. 25–55,
doi:10.1016/0304-3975(78)90039-7.

[4] Bruno Courcelle & Maurice Nivat (1978): The Algebraic Semantics of Recursive Program Schemes. In: Proc.
7th Symposium, Mathematical Foundations of Computer Science 1978, Lecture Notes in Comput. Sci. 64,
Springer-Verlag, pp. 16–30.

[5] Werner Damm (1977): Higher type program schemes and their tree languages. In: Theoretical Computer
Science, 3rd GI-Conference, Lecture Notes in Comput. Sci. 48, Springer-Verlag, pp. 51–72.

[6] Werner Damm (1977): Languages Defined by Higher Type Program Schemes. In: Proc. 4th Colloq. on
Automata, Languages, and Programming (ICALP), Lecture Notes in Comput. Sci. 52, Springer-Verlag, pp.
164–179.

[7] Werner Damm (1982): The IO- and OI-Hierarchies. Theoret. Comput. Sci. 20, pp. 95–207, doi:10.1016/0304-
3975(82)90009-3.

[8] Joost Engelfriet & Erik Meineche Schmidt (1977): IO and OI. I. J. Comput. System Sci. 15(3), pp. 328–353,
doi:10.1016/S0022-0000(77)80034-2.

[9] Joost Engelfriet & Erik Meineche Schmidt (1978): IO and OI. II. J. Comput. System Sci. 16(1), pp. 67–99,
doi:10.1016/0022-0000(78)90051-X.

[10] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong & Olivier Serre (2008): Collapsible Pushdown
Automata and Recursion Schemes. In: Proceedings of the 23rd Annual IEEE Symposium on Logic in
Computer Science (LICS), IEEE Computer Society, pp. 452–461.

[11] Klaus Indermark (1976): Schemes with Recursion on Higher Types. In: Proc. 5th Symposium, Mathematical
Foundations of Computer Science 1976, Lecture Notes in Comput. Sci. 45, Springer-Verlag, pp. 352–358.

[12] Teodor Knapik, Damian Niwiński & Pawel Urzyczyn (2002): Higher-Order Pushdown Trees Are Easy.
In: Proceedings of the 5th International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS), Lecture Notes in Comput. Sci. 2303, Springer-Verlag, pp. 205–222, doi:10.1007/3-540-
45931-6_15.

[13] Naoki Kobayashi (2009): Types and higher-order recursion schemes for verification of higher-order programs.
In: Proc. 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
ACM, pp. 416–428.

[14] Naoki Kobayashi & C.-H. Luke Ong (2009): A Type System Equivalent to the Modal Mu-Calculus Model
Checking of Higher-Order Recursion Schemes. In: Proceedings of the 24th Annual IEEE Symposium on
Logic in Computer Science (LICS), IEEE Computer Society, pp. 179–188.

[15] M. Nivat (1972): On the interpretation of recursive program schemes. In: Symposia Matematica.

D. Miller and Z.Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 31–38, doi:10.4204/EPTCS.77.5

c© A. Hirschowitz, M. Maggesi
This work is licensed under the
Creative Commons AttributionLicense.

Initial Semantics for Strengthened Signatures

André Hirschowitz
Laboratoire J.-A. Dieudonné

Université de Nice - Sophia Antipolis
France

ah@unice.fr

Marco Maggesi
Dipartimento di Matematica “U. Dini”

Università degli Studi di Firenze
Italy

maggesi@math.unifi.it

We give a new general definition of arity, yielding the companion notions of signature and associated
syntax. This setting is modular in the sense requested by [12]: merging two extensions of syntax
corresponds to building an amalgamated sum. These signatures are too general in the sense that we
are not able to prove the existence of an associated syntax inthis general context. So we have to
select arities and signatures for which there exists the desired initial monad. For this, we follow a
track opened by Matthes and Uustalu [16]: we introduce a notion of strengthened arity and prove that
the corresponding signatures have initial semantics (i.e.associated syntax). Our strengthened arities
admit colimits, which allows the treatment of theλ-calculus with explicit substitution in the spirit of
[12].

1 Introduction

Many programming or logical languages allow constructionswhich bind variables and this higher-order
feature causes much trouble in the formulation, the understanding and the formalization of the theory of
these languages. For instance, there is no universally accepted discipline for such formalizations: that
is precisely why the POPLmark Challenge [4] offers benchmarks for testing old and new approaches.
Although this problem may ultimately concern typed languages and their operational semantics, it al-
ready concerns untyped languages. In this work, we extend tonew kinds of constructions our treatment
of higher-order abstract syntax [13], based on modules and linearity.

First of all, we give a new general definition of arity, yielding the companion notion of signature.
The notion is coined in such a way to induce a companion notionof representation of an arity (or of a
signature) in a monad: such a representation is a morphism among modules over the given monad, so that
an arity simply assigns two modules to each monad. There is a natural category of such representations of
a signature and whenever it exists, the initial representation deserves the name of syntax associated with
the given signature. This approach enjoys modularity in thesense introduced by [12]: in our category of
representations, merging two extensions of a syntax corresponds to building an amalgamated sum.

Our notion of arity (or signature) is too general in the sensethat we are not able to build, for each
signature, a corresponding initial representation. Following a track opened in Matthes-Uustalu [16], we
define a fairly general notion ofstrengthenedarity, yielding the corresponding notion of strengthened
signature. Our main result (Theorem7.8) says that any strengthened signature yields the desired initial
representation. As usual, this initial object is built as a minimal fixpoint.

Understanding the syntax of the lambda-calculus with explicit substitution was already done in [12],
where the arity for this construction was identified as a coend, hence a colimit, of elementary arities (see
Section8). Our main motivation for the present work (and for our next one) was to propose a general
approach to syntax (and ultimately to semantics) accounting for this example in the spirit of our previous
work [14]. This is achieved thanks to our second main result (Theorem4.3) which states the existence
of colimits in the category of (strengthened) arities.

32 Initial Semantics for Strengthened Signatures

In this extended abstract, we do not discuss proofs. A complete version is available on-line.1

2 Related and future work

The idea that the notion of monad is suited for modeling substitution concerning syntax (and semantics)
has been retained by many recent contributions on the subject (see e.g. [5, 12, 16]) although some other
settings have been considered. For instance in [15] the authors argue in favor of a setting based on
Lawvere theories, while in [7] the authors work within a setting roughly based on operads (although they
do not write this word down). The latter approach has been broadly extended, notably by M. Fiore [8,
9, 10]. Our main specificity here is the systematic use of the observation that the natural transformations
we deal with are linear with respect to natural structures ofmodule (a form of linearity had already been
observed, in the operadic setting, see [11], Section 4).

The signatures we consider here are much more general than the signatures in [7], and cover the
signatures appearing in [16, 12]. Note however that the latter works treat also non-wellfounded syntax,
an aspect which we do not consider at all.

In our next work, we will propose a treatment of equational semantics for the present syntaxes. This
approach should also be accommodated to deal with typed languages as done for elementary signatures
in [17, 18, 2], or to model operational semantics as done for elementary signatures in [1].

3 The big category of modules

Modules over monads and the associated notion of linear natural transformation intend to capture the
notion of “algebraic structure which is well-behaved with respect to substitution”. An introduction on
this subject can be found in our papers [13, 14]. Let us recall here the very basic idea.

Let R be a monad over a base categoryC. A module overR with range in a categoryD is a functor
M : C→ D endowed with an action ofR, i.e., a natural “substitution” transformationρ : M ·R−→ M
compatible with the substitution ofR in the obvious sense. Given two modulesM,N over the same
monad and with the same range, a linear natural transformation φ : M→ N is a natural transformation
of functors which is compatible with the actions in the obvious sense. This gives a category ModD(R) of
modules with fixed baseRand rangeD.

It is useful for the present paper to consider a larger category which collects modules over different
monads. For the following definition, we fix a range categoryD.

Definition 3.1 (The big module category). We define the big module category BModD
C as follows:

• its objects are pairs (R,M) of a monadRon C and anR-moduleM with range inD.

• a morphism from (R,M) to (S,N) is a pair (f ,m) where f : R−→ S is a morphism of monads, and
m: M −→ f ∗N is a morphism ofR-modules (heref ∗N is the functorN equipped with the obvious
structure ofR-module).

4 The category of arities

In this section, we give our new notion of arity. The destiny of an arity is to have representations in
monads. A representation of an aritya in a monadR should be a morphism between two modules

1http://web.math.unifi.it/users/maggesi/strengthened/.

A. Hirschowitz, M. Maggesi 33

dom(a,R) and codom(a,R). For instance, in the case of the aritya of a binary operation, we have
dom(a,R) := R2 and codom(a,R) := R. Hence an arity should consist of two halves, each of which
assigns to each monadR a module overR in a functorial way. However, in all our natural examples, we
have codom(a,R) = R as above. Although this will no longer be the case in the typedcase (which we do
not consider here), we choose to restrict our attention to arities of this kind, where codom(a,R) is R.

From now on we will consider only monads over the categorySet and modules with rangeSet. For
technical reasons, see Section7, we restrict our attention to the category ofω-cocontinuous endofunctors
that we will denote Endω(Set). Analogously we will write Monω (resp. BModω) for the full subcategory
of monads (resp. of modules over these monads) which areω-cocontinuous.

We recall that finite limits commute with filtered colimits inSet. It follows that Endω(Set) has finite
limits and arbitrary (small) colimits. This is the key ingredient in the proofs ofω-cocontinuity for most
of our functors.

Definition 4.1 (Arities). An arity is a right-inverse functor to the forgetful functor from thecategory
BModω to the category Monω.

Now we give our basic examples of arities:

• Every monadR is itself aR-module. The assignmentR 7→ Rgives an arity which we denote byΘ.

• The assignmentR 7→ ∗R, where∗R denotes the final module overR is an arity which we denote by∗.
• Given two aritiesa andb, the assignmentR 7→ a(R)×b(R) is an arity which we denote bya×b . In

particularΘ2 = Θ×Θ is the arity of any (first-order) binary operation and, in generalΘn is the arity
of n-ary operations.

• Given an endofunctorF of Set, we consider thederivedfunctor given byF′ : X 7→ F(X+ ∗). It can
be checked how whenF is a module so isF′. Given an aritya, the assignmentR 7→ a(R)′ is an arity
which we denotea′ and is calledderivativeof a.

• Derivation can be iterated. We denote bya(n) then-th derivative ofa. Hence, in particular, we have
a(0) = a, a(1) = a′, a(2) = a′′.
• For each sequence of non-negative integerss= (s1, . . . , sn), the assignmentR 7→ R(s1)× · · ·×R(sn) is an

arity which we denote byΘ(s). Arities of the formΘ(s) are saidalgebraic. These algebraic arities are
those which appear in [7].

• Given two aritiesa, b their compositiona ·b := R 7→ a(R) ·b(R) is an arity.

Definition 4.2. A morphism among two aritiesa1,a2 : Monω −→ BModω is a natural transformation
m: a1 −→ a2 which, post-composed with the projection BModω −→ Monω, becomes the identity. We
easily check that arities form a subcategory Ar of the category of functors from Monω to BModω.

Now we give two examples of morphisms of arities:

• The natural transformationµ : Θ ·Θ −→ Θ induced by the structural composition of monads is a
morphism of arities.

• The two natural transformationsΘ ·η andη ·Θ fromΘ toΘ ·Θ are morphisms of arities.

Theorem 4.3. The category of arities has finite limits and arbitrary (small) colimits.

5 Categories of representations

Definition 5.1 (Signatures). We define a signatureΣ = (O,α) to be a family of aritiesα : O−→ Ar. A
signature is said to be algebraic if it consists of algebraicarities.

34 Initial Semantics for Strengthened Signatures

Definition 5.2 (Representation of an arity, of a signature). Given anω-cocontinuous monadR overSet,
we define a representation of the aritya in R to be a module morphism froma(R) to R; a representation
of a signatureΣ in Rconsists of a representation inR for each arity inΣ.

Example5.3. The usualapp : Λ2−→Λ is a representation of the arityΘ2 into the monadΛ of λ-calculus
8.

Definition 5.4. Given a signatureΣ = (O,α), we build the category MonΣ of representations ofΣ as
follows. Its objects areω-cocontinuous monads equipped with a representation ofΣ. A morphismm
from (M, r) to (N, s) is a morphism of monads fromM to N compatible with the representations in the
sense that, for eacho in O, the following diagram ofM-modules commutes:

αo(M)
ro //

ao(m)
��

M

m

��
m∗(αo(N))

m∗so

// m∗N

where the horizontal arrows come from the representations and the left vertical arrow comes from the
functoriality of arities andm: M −→m∗N is the morphism of monad seen as morphism ofM-modules.

These morphisms, together with the obvious composition, turn MonΣ into a category which comes
equipped with a forgetful functor to the category of monads.

We are primarily interested in the existence of an initial object in this category MonΣ.

Definition 5.5. A signatureΣ is said representable if the category MonΣ has an initial object, which we
denoteΣ̂.

Theorem 5.6. Algebraic signatures are representable.

For more details we refer to our paper [13] (Theorems 1 and 2). We give below a more general result
(Theorem7.8).

6 Modularity and the big category of representations

It has been stressed in [12] that the standard approach (via algebras) to higher-ordersyntax lacks modu-
larity. In the present section we show in which sense our approach via modules enjoys modularity. The
key for this modularity is what we call the big category of representations.

Suppose that we have a signatureΣ = (O,a) and two subsignaturesΣ1 andΣ2 coveringΣ in the obvi-
ous sense, and letΣ0 be the intersection ofΣ1 andΣ2. Suppose that these four signatures are representable
(for instance becauseΣ is algebraic or strengthened in the sense defined below). Modularity would mean
that the corresponding diagram of monads

Σ̂0
//

��

Σ̂1

��
Σ̂2

// Σ̂

is a pushout. The observation of [12] is that this diagram of raw monads is, in general, not a pushout.
Since we do not want to change the monads, in order to claim formodularity, we will have to consider

A. Hirschowitz, M. Maggesi 35

a category of enhanced monads. Here by enriched monad, we mean a monad equipped with some
additional structure, namely a representation of some signature.

Our solution to this problem goes through the following “big” category of representations, which we
denote by RMon, whereRmay stand for representation or for rich:

• An object of RMon is a triple (R,Σ, r) whereR is a monad,Σ a signature, andr is a representation of
Σ in R.

• A morphism in RMon from (R1, (O1,a1), r1) to (R2, (O2,a2), r2) consists of an injective mapi :=O1−→
O2 compatible witha1 and a2 and a morphismm from (R1, r1) to (R2, i∗(r2)), wherei∗(r2) should
be understood as the restriction of the representationr2 to the subsignature (O1,a1) where we pose
i∗(r2)(o) := r2(i(o)).

• It is easily checked that the obvious composition turns RMoninto a category.

Now for each signatureΣ, we have an obvious functor from MonΣ to RMon, through which we may seeΣ̂
as an object in RMon. Furthermore, an injectioni : Σ1−→ Σ2 obviously yields a morphismi∗ := Σ̂1−→ Σ̂2

in RMon. Hence our ‘pushout’ square of signatures as described above yields a square in RMon. The
proof of the following statement is straightforward.

Modularity holds in RMon, in the sense that given a ‘pushout’square of representable signatures as
described above, the associated square in RMon is a pushout again.

As usual, we will denote by RMonω the full subcategory of RMon constituted byω-cocontinuous
functors. It is easy to check that the previous statement is equally valid in RMonω. Indeed, recall that,
by our definition, the initial representation of representable signatures lies in RMonω.

7 Strengthening signatures

Guided by the ideas of Matthes and Uustalu [16] we introduce in our framework the notion ofstrength-
ened arity. For a categoryC, let us denote by Endω∗ (C) the category ofω-cocontinuouspointed end-
ofunctors, i.e., the category of pairs (F, η) of an ω-cocontinuous endofunctorF of C and a natural
transformationη : I −→ F from the identity endofunctor toF. A morphism of pointed endofunctors
f : (F1, η1) −→ (F2, η2) is a natural transformationf : F1 −→ F2 satisfying f ◦η1 = η2.

Definition 7.1. A strengthened arityis a pair (H, θ) where H is anω-cocontinuous endofunctor of
Endω(Set) (i.e., H ∈ Endω(Endω(Set))) andθ is a natural transformationθ : H(−)· ∼−→ H(−· ∼) (where
H(−)· ∼ and H(−· ∼) have to be understood as functors from Endω(Set)×Endω∗ (Set) to Endω(Set))
satisfyingθX,(I ,1I) = 1HX and such that the following diagram is commutative

H(X) ·Z1 ·Z2

θX,(Z1·Z2,e1·e2)
//

θX,(Z1,e1)Z2 ((PPPPPPPPPPPP H(X ·Z1 ·Z2)

H(X ·Z1) ·Z2

θX·Z1,(Z2,e2)

66nnnnnnnnnnnn

(1)

for every endofunctorX and pointed endofunctors (Z1,e1), (Z2,e2). We refer toθ as thestrengthon H.

Our first task is to make clear that our wording is consistent in the sense that a strengthened arityH
somehow yields a genuine aritỹH. For this task, for each monadRwe poseH̃(R) := H(R) and we exhibit
on it a structure ofR-module. We do even slightly more by upgradingH into amodule transformerin
the following sense:

36 Initial Semantics for Strengthened Signatures

Definition 7.2. A module transformer is an endofunctor of the big module category BModω which
commutes with the structural forgetful functor BModω −→Monω.

Let (H, θ) be a strengthened arity. For everyω-cocontinuous monadRandω-cocontinuousR-module
M, we define the natural transformationρH(M) : H(M) ·R−→ H(M) as the compositionH(ρM) · θM,R.
Then (H(M),ρH(M)) is anR-module, and this construction upgradesH into a module transformer denoted
by Ĥ.

We call the restricionH̃ of the module transformer̂H to the category of monads the arity associated
to the strengthened arityH.

Our next task is to upgrade our favorite examples of arities into strengthened arities:

• The arityΘ comes from the strengthened arity (H, θ) whereH andθ are the relevant identities.

• The arity∗ comes from the strengthened arity (H, θ) whereH is the final endofunctor andθ is the
relevant identity. This is the final strengthened arity.

• The arityΘ ·Θ comes from the strengthened arity (H, θ) whereH := X 7→ X ·X andθX,Y : X ·X ·Y −→
X ·Y ·X ·Y := X · ηY ·X ·Y; here we have writtenηY for the morphism from the identity functor toY
(remember thatY is pointed).

• If an arity comes from a strengthened arity, so does its derivative (see Proposition7.4).

Then we show how our basic constructions in the category of arities carries over the category of
strengthened arities. First we describe this category. Itsobjects are strengthened arities and we take for
morphisms from (H1, θ1) to (H2, θ2) those natural transformationsm: H1 −→ H2 which are compatible
with θ1 andθ2, that is, the diagram

H1(X) ·Z θ1 //

mXZ ��

H1(X ·Z)
mX·Z��

H2(X) ·Z
θ2

// H2(X ·Z)

is commutative for every endofunctorX and every pointed endofunctorZ.

Theorem 7.3. The category of strengthened arities has finite limits and arbitrary colimits.

Next, we take care of the derivation. We denote byD the endofunctor ofSet given byA 7→ A+∗. For
any other pointed endofunctorX overSet we have a natural transformationwX : D ·X −→ X ·D given by

wX
A : X(A)+ ∗ −→ X(A+ ∗) wX

A := X(iA)+ηA+∗ · ∗
whereiA : A−→ A+ ∗ and∗ : ∗ −→ A+ ∗ are the inclusion maps.

Proposition 7.4. If (H, θ) is a strengthened arity, then the pair(H′, θ′), where H′ := X 7→ H(X)′ and
θ′X,Z := θX,ZD ·H(X)wZ, is a strengthened arity. We call it thederivativeof (H, θ).

Now we point out the possibility of composing strengthened arities.

Definition 7.5. If H := (H,ρ) andK := (K,σ) are two strengthened arities, their compositionH ·K is the
pair (H ·K, θ) whereθ is defined byθX,(Z,e) := H(σX,(Z,e)) ·ρK(X),(Z,e).

Proposition 7.6. This composition turns strengthened arities into a strict monoidal category.

Next, we turn to the main interest of strengthened arities (or signatures) which is that the fixed point
we are interested in inherits a structure of monad.

Lemma 7.7. Let (H, θ) be a strengthened arity. Then the fixed point T of the functor F:= I +H is ω-
cocontinuous and comes equipped with a structure ofH̃-representation which is the initial object in the
category of theH̃-representations.

A. Hirschowitz, M. Maggesi 37

We say that a signature is strengthened if it is a family of strengthened arities. The previous lemma
leads immediately to the following result.

Theorem 7.8. Strengthened signatures are representable.

8 Examples of strengthened syntax

Lambda-calculus moduloα-equivalence One paradigmatic example of syntax with binding is theλ-
calculus. We denote byΛ(X) the set of lambda-terms up toα-equivalence with free variables ‘indexed’
by the setX. It is well-known [6, 3, 13] thatΛ has a natural structure of cocontinuous monad where the
monad composition is given by variable substitution.

It can be easily verified that applicationapp : Λ2 −→ Λ and abstractionabs : Λ′ −→ Λ areΛ-linear
natural transformations, that is,Λ is a monad endowed with a representationρ of the signatureΣ =
{app : Θ2,abs : Θ′}. The monadΛ is initial in the category MonΣ of ω-cocontinuous monads equipped
with a representation of the signatureΣ.

This is an example of algebraic signature and thus already treated by other previous works [13, 14, 7].
Here we simply remark that our new theory covers such a classical case.

Explicit composition operator We now consider our first example of non-algebraic signature. On any
monadR, we have the composition operator (also calledjoin operator)µR: R·R−→ R which has arity
Θ ·Θ. We will refer to theµR operator as theimplicit composition operator. An interesting problem is to
see if this kind of operators admits a correspondingexplicit version, i.e., if they can be implemented as a
syntactic construction. As we have seen beforeΘ ·Θ is a strengthened arity hence we can build syntaxes
with explicit composition operator of kind

join : Θ ·Θ −→ Θ.
Of course, this is only asyntacticcomposition operator, in the sense that it does not enjoy several

desirable conversion rules like associativity, two-side identity and the obvious compatibility rules with
the other syntactic constructions present in the signature. In our next work we will show how to construct
such kind ofsemanticcomposition operator.

Let us mention that given a monadR, the unitηR: I −→ R is not anR-linear morphism (in fact,I is
not even anR-module in general). For this reason we cannot treat examples of syntax with explicit unit.

Syntax and semantics with explicit substitution On any monadR, we have a series of substitution
operatorsσn : R(n) ·Rn −→ R which simultaneously replacen formal arguments in a term withn given
terms. As observed by Ghani and Uustalu [12], these substitution morphisms satisfy a series of compati-
bility relations which mean that they come from a single morphismsubst : C −→Θ whereC is identified
as the coend

C =
∫ A:Fin

Θ(A)×ΘA.

HereFin stands for a skeleton of the category of finite sets,ΘA denotes the cartesian power andΘ(A)

is defined byΘ(A)(R,X) := R(X+A). Since coends are special colimits, and strengthened arities admit
colimits, we just have to check that the bifunctorial arity (A,B) 7→Θ(A)×ΘB factors through the category
of strengthened arities. As far as objects are concerned, this follows from our results in Section7. The
verification of the compatibility of the corresponding “renaming” and “projection” morphisms with the
strengthened structures is straightforward.

38 Initial Semantics for Strengthened Signatures

References

[1] Benedikt Ahrens (2011):Modules over relative monads for syntax and semantics. ArXiv e-prints .

[2] Benedikt Ahrens & Julianna Zsidó (2011):Initial Semantics for higher-order typed syntax in Coq. Journal
of Formalized Reasoning4(1), pp. 25–69.

[3] Thorsten Altenkirch & Bernhard Reus (1999):Monadic Presentations of Lambda Terms Using Generalized
Inductive Types. In: CSL, pp. 453–468.

[4] B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell, D. Vytiniotis, G. Washburn,
S. Weirich & S. Zdancewic (2005):Mechanized metatheory for the masses: The POPLmark Challenge.
In: Proceedings of the Eighteenth International Conference onTheorem Proving in Higher Order Logics
(TPHOLs 2005).

[5] Richard Bird & Ross Paterson (1999):Generalised Folds for Nested Datatypes. Formal Aspects of Comput-
ing 11(2), pp. 200–222.

[6] Richard S. Bird & Ross Paterson (1999):De Bruijn Notation as a Nested Datatype. Journal of Functional
Programming9(1), pp. 77–91.

[7] Marcelo Fiore, Gordon Plotkin & Daniele Turi (1999):Abstract Syntax and Variable Binding. In: LICS ’99:
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society,
Washington, DC, USA, p. 193.

[8] Marcelo P. Fiore (2008):Second-Order and Dependently-Sorted Abstract Syntax. In: LICS, IEEE Computer
Society, pp. 57–68, doi:10.1109/LICS.2008.38.

[9] Marcelo P. Fiore & Chung-Kil Hur (2010):Second-Order Equational Logic (Extended Abstract). In Anuj
Dawar & Helmut Veith, editors:CSL, Lecture Notes in Computer Science6247, Springer, pp. 320–335,
doi:10.1007/978-3-642-15205-4_26.

[10] Marcelo P. Fiore & Ola Mahmoud (2010):Second-Order Algebraic Theories - (Extended Abstract). In Petr
Hlinený & Antonı́n Kucera, editors:MFCS, Lecture Notes in Computer Science6281, Springer, pp. 368–
380, doi:10.1007/978-3-642-15155-2_33.

[11] Marcelo P. Fiore & Daniele Turi (2001):Semantics of Name and Value Passing. In: Logic in Computer
Science, pp. 93–104.

[12] Neil Ghani, Tarmo Uustalu & Makoto Hamana (2006):Explicit substitutions and higher-order syntax.
Higher-order and Symbolic Computation19(2–3), pp. 263–282.

[13] André Hirschowitz & Marco Maggesi (2007):Modules over Monads and Linearity. In Daniel Leivant &
Ruy J. G. B. de Queiroz, editors:WoLLIC, Lecture Notes in Computer Science4576, Springer, pp. 218–237,
doi:10.1007/978-3-540-73445-1_16.

[14] André Hirschowitz & Marco Maggesi (2010):Modules over monads and initial semantics. Information and
Computation208(5), pp. 545–564, doi:10.1016/j.ic.2009.07.003. Special Issue: 14th Workshop on
Logic, Language, Information and Computation (WoLLIC 2007).

[15] Martin Hyland & John Power (2007):The category theoretic understanding of universal algebra: Lawvere
theories and monads. Electronic Notes in Theoretical Computer Science172, pp. 437–458, doi:10.1016/
j.entcs.2007.02.019.

[16] Ralph Matthes & Tarmo Uustalu (2004):Substitution in non-wellfounded syntax with variable binding.
Theor. Comput. Sci.327(1-2), pp. 155–174, doi:10.1016/j.tcs.2004.07.025.

[17] Julianna Zsidó (2005/06): Le lambda calcul vu comme monade initiale. Master’s thesis, Université de Nice
– Laboratoire J. A. Dieudonné. Mémoire de Recherche – master 2.

[18] Julianna Zsidó (2010):Typed Abstract Syntax. Ph.D. thesis, University of Nice, France.http://tel.
archives-ouvertes.fr/tel-00535944/.

D. Miller and Z.Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 39–46, doi:10.4204/EPTCS.77.6

c© M. Lange, E. Lozes
This work is licensed under the
Creative Commons Attribution License.

Model-Checking the Higher-Dimensional Modal µ-calculus

Martin Lange Etienne Lozes
School of Electr. Eng. and Computer Science, University of Kassel, Germany

The higher-dimensional modalµ-calculus is an extension of theµ-calculus in which formulas are
interpreted in tuples of states of a labeled transition system. Every property that can be expressed
in this logic can be checked in polynomial time, and conversely every polynomial-time decidable
problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined
in the higher-dimensional modalµ-calculus. We exemplify the latter connection by giving several
examples of decision problems which reduce to model checking of the higher-dimensional modal
µ-calculus for some fixed formulas. This way generic model checking algorithms for the logic can
then be used via partial evaluation in order to obtain algorithms for theses problems which may
benefit from improvements that are well-established in the field of program verification, namely on-
the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as
well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and
games.

1 Introduction

The Modalµ-CalculusLµ [6] is mostly known as a backbone for temporal logics used in program
specification and verification. The most important decisionproblem in this domain is the model checking
problem which is used to automatically prove correctness ofprograms. The model checking problem for
Lµ is well-understood by now. There are several algorithms andimplementations for it. It is known
that model checkingLµ is equivalent under linear-time translations to the problem of solving a parity
game [8] for which there also is a multitude of algorithms available. From a purely theoretical point of
view, there is still the intriguing question of the exact computational complexity of model checkingLµ :
the best known upper bound for finite models is UP∩coUP [5], which is not entirely matched by the
P-hardness inherited from model checking modal logic.

Lµ can express exactly the bisimulation-invariant properties of tree or graph models which are de-
finable in Monadic Second-Order Logic [4], i.e. are regular.This means that for every such setL of trees
or graphs there is a fixedLµ formulaϕL s.t. a tree or graphG is a model ofϕL iff it belongs toL. Thus,
any decision problem that has an encoding into regular and bisimulation-invariant sets of trees or graphs
can in principle be solved using model checking technology.In detail, suppose there is a setM and a
function f from the domain ofM to graphs s.t.{ f (x) | x∈M} is regular and closed under bisimilarity.
By the result above there is anLµ formula ϕM which defines (the encoding of)M. Now any model
checking algorithm forLµ can be used in order to solveM.

Note that in theory this is just a reduction fromM to the model checking problem forLµ on a fixed
formula. Obviously reductions from any problemA to some problemB can be used to transfer algorithms
from B to A, and the algorithm obtained forA can in general be at most as good as the algorithm forB
unless it can be optimised for the fragment ofB resulting from embeddingA into it. However, there are
two aspects that are worth noting in this context.

• A reduction to model checking for a fixed formula can lead to much more efficient algorithms. A
model checking algorithm takes two inputs in general: a structure and a formula. If the formula is

40 Model-Checking the Higher-Dim.µ-Calculus

fixed then partial evaluation can be used in order to optimisethe general scheme, throw away data
structures, etc.

• Program verification is a very active research area which hasdeveloped many clever techniques
for evaluating formulas in certain structures including on-the-fly [8] and symbolic methods [2],
partial-order reductions, etc.

We refer to [1] for an example of this scheme of reductions to model checking for fixed formulas, there
being done for problems that are at least PSPACE-hard. It also shows how this can be used to solve com-
putation problems in this way. Since the data complexity (model checking with fixed formula) ofLµ is
in P, using this scheme forLµ is restricted to computationally simpler problems which can nevertheless
benefit from developments in program verification. Furthermore, it is the presence of fixpoint operators
in such a logic which makes it viable to this approach: fixpoint operators can be used to express induc-
tive concepts—e.g. the derivation relation in a context-free grammar—and at the same time provide the
foundation for algorithmic solutions via fixpoint iteration for instance.

Here we consider an extension ofLµ , the Higher-Dimensional Modalµ-CalculusL ω
µ , and in-

vestigate its usefulness regarding the possibility to obtain algorithmic solutions to various decision or
computation problems which may benefit from techniques originally developed for program verification
purposes only. It is known thatL ω

µ captures the bisimulation-invariant fragment of P. We willsketch how
theL ω

µ model checking problem can be reduced toLµ model checking via a simple product construction
on transition systems. Thus we can obtain—in principle—an algorithm for every problem that admits
a polynomial-time solution and a bisimulation-invariant encoding into graphs. The reduction fromL ω

µ
to Lµ is compatible with on-the-fly or BDD-based model checking techniques, thus transferring such
algorithms fromLµ first toL ω

µ and then on to such decision problems.

2 The Higher-Dimensional Modal µ-Calculus

Labeled Transition Systems. A labeled transition system (LTS) is a graph whose vertices and edges
are labeled with sets of propositional variables and labelsrespectively. Formally, an LTS over a set
Σ = {a,b, . . .} of edge labels and a setP= {p,q, . . .} of atomic propositions is a tupleM= (S,s0,∆,ρ)
such thats0 ∈ S, ∆ ⊆ S×Σ×Sandρ : S→P(P). Elements ofSare called states, and we writes

a−→ s′

when(s,a,s′) ∈ ∆. The states0 ∈ S is called the initial state ofM.
We will mainly considerfinite transition systems,i.e. transition systems(S,s0,∆,ρ) such thatS is a

finite set. Infinite-state transition systems arising from program verification are also of interest, but their
model checking techniques differ from the ones of finite LTS and cannot be handled by our approach
(see more comments on that point in the conclusion).

Syntax. We assume infinite setsVar= {x,y, . . .} andVar2 = {X,Y, . . .}, of first-order and second-order
variables respectively. For tuples of first-order variables x̄= (x1, . . . ,xn) andȳ= (y1, . . . ,yn), with all xi

distinct,x̄←ȳ, denotes the functionκ : Var→Var such thatκ(xi) = yi , andκ(z) = zotherwise. It is called
avariable replacement.

The syntax of the higher-dimensional modalµ-calculusL ω
µ is reminiscent of that of the ordinary

modalµ-calculus. However, modalities and propositions are relativized to a first-order variable, and it
also features thereplacementmodality{κ}. Formulas ofL ω

µ are defined by the grammar

ϕ ,ψ := p(x) | X | ¬ϕ | ϕ ∧ψ | 〈a〉xϕ | µX.ϕ | {x̄←ȳ}ϕ

M. Lange, E. Lozes 41

wherex,y ∈ Var, κ : Var→Var is a variable replacement with finite domain,a∈ Σ, andX ∈ Var2. We
require that every second-order variable gets bound by a fixpoint quantifierµ at most once in a formula.
Then for every formulaϕ there is a functionfpϕ which maps each second-order variableX occurring
in ϕ to its unique binding formulafpϕ(X) = µX.ψ . Finally, we allow occurrences of a second-order
variableX only under the scope of an even number of negation symbols underneathfpϕ(X).

A formula is of dimensionn if it contains at mostn distinct first-order variables; we writeL n
µ to

denote the set of formulas of dimensionn. Note thatL 1
µ is equivalent to the standard modalµ-calulus:

with a single first-order variablex, we havep(x) ≡ p, {x←x}ψ ≡ ψ and〈a〉xψ ≡ 〈a〉ψ for anyψ .
As usual, we writeϕ ∨ψ , [a]xϕ , andνX.ϕ to denote¬(¬ϕ ∧¬ψ), ¬〈a〉x¬ϕ , ¬µX.¬ϕ ′ respectively

whereϕ ′ is obtained fromϕ by replacing every occurrence ofX with ¬X. Other Boolean operators like
⇒ and⇔ are defined as usual.

Note that{κ} is an operator in the syntax of the logic; it does not describesyntactic replacement of
variables. Consider for instance the formula

νX.
∧

p∈P
p(x)⇒ p(y) ∧

∧

a∈Σ
[a]x〈a〉yX ∧ {(x,y)←(y,x)}X.

As we will later see, this formula characterizes bisimilar statesx andy. In this formula, the operational
meaning of{x,y←y,x}X can be thought as “swapping the players’ pebbles” in the bisimulation game.

We will sometimes require formulas to be inpositive normal form. Such formulas are built from
literals p(x), ¬p(x) and second-order variablesX using the operators∧, ∨, 〈a〉x, [a]x, µ , ν , and{κ}. A
formula isclosedif all second-order variables are bound by someµ .

With Sub(ϕ) we denote that set of allsubformulasof ϕ . It also serves as a good measure for the
sizeof a formula: |ϕ | := |Sub(ϕ)|. Another good measure of the complexity of the formulaϕ is its
alternation depth adϕ , i.e the maximal alternation ofµ andν quantifiers along any path in the syntactic
tree of its positive normal form.

Semantics. A first-order valuationv over a LTSM is a mapping from first-order variables to states,
and a second order valuation is a mapping from second order variables to sets of first-order valuations:

Val , Var → S
Val2 , Var2 → P(Val)

We write v[x̄ 7→ s̄] to denote the first-order valuation that coincides withv, except thatxi ∈ x̄ is
mapped to the correspondingsi ∈ s̄. We use the same notationV [X̄ 7→ P̄] for second-order valuations.
The semantics of a formulaϕ of L ω

µ for a LTSM and a second-order valuationV is defined as a set of
first-order valuations by induction on the formula:

Jp(x)KV
M , {v : p∈ ρ(v(x))}

J¬ϕKV
M , Val− JϕKV

M

Jϕ ∧ψKV
M , JϕKV

M∩ JψKV
M

J〈a〉xϕKV
M , {v : ∃s. v(x)

a−→ sandv[x 7→ s] ∈ JϕKV
M}

JXKV
M , V (X)

JµX.ϕKV
M , LFP λP∈P(Val). JϕKV [X 7→P]

M

J{x̄←ȳ}ϕKV
M , {v : v[x̄ 7→ v(ȳ)] ∈ JϕKV

M}

We simply writeJϕKM to denote the semantics of a closed formula. We writeM,v� ϕ if v∈ JϕKM,
andM � ϕ if M,v0 � ϕ , wherev0 is the constant function tos0. Two formulas are equivalent, written

42 Model-Checking the Higher-Dim.µ-Calculus

ϕ ≡ ψ , if JϕKM = JψKM for any LTSM. As with the normal modalµ-calculus, it is a simple exercise
to prove that every formula is equivalent to one in positive normal form.
Proposition 1. For everyϕ ∈L ω

µ there is aψ in positive normal form such thatϕ ≡ψ and|ψ | ≤ 2· |ϕ |.

Reduction to the Ordinary µ-Calculus. Here we considerL ω
µ as a formal language for defining

decision problems. Algorithms for these problems can be obtained from model checking algorithms for
Lµ on fixed formulas using partial evaluation. In order to lift all sorts of special techniques which have
been developed for model checking in the area of program verification we show how to reduce theL ω

µ
model checking problem to that ofL 1

µ , i.e. the ordinaryµ-calculus.
Let us assume a fixed non-empty finite subsetV of first-order variables. A formulaϕ of L ω

µ with
fv(ϕ)⊆V can be seen as a formulaϕ̂ of L 1

µ over the set of the atomic propositionsP×V and the action
labelsΣ×V∪ (V→V). We writepx instead of(p,x) for elements ofP×V, and equallyax for elements

from Σ×V. Thenϕ 7→ ϕ̂ can be defined as the homomorphism such thatp̂(x), px, 〈̂a〉xϕ , 〈ax〉ϕ̂ , and
̂{x̄←ȳ}ϕ , 〈x̄←ȳ〉ϕ̂.

We call an LTShigher-dimensionalwhen it interprets the extended propositionspx and modalities
〈ax〉 and〈κ〉 introduced by the formulaŝϕ, andgroundwhen it interprets the standard propositions and
modalities. For a ground LTSM and a formulaϕ , we thus need to define the higher-dimensional LTS
over whichϕ̂ should be interpreted: we call it theV-clone of M, and write itcloneV(M). Roughly
speaking,cloneV(M) is the asynchronous product of|V| copies ofM. More formally, assumeM =
(S,s0,∆,ρ); thencloneV(M) = (S′,s′0,∆′,ρ ′) is defined as follows.
• The states are valuations of the variables inV by states inS, e.g S′ =V → S, ands′0 is the constant

functionλx∈V.s0.

• The atomic propositionpx is true in those new states, which assignx to an original state that
satisfiesp, e.g.ρ ′(v) = {px : p∈ ρ(v(x))}.

• The transitions contain labels of two kinds. First, there isanax-edge between two valuationsv and
v′, if there is ana-edge betweenv(x) andv′(x) in the original LTSM:

v
ax−→ v′ iff ∃t.v(x) a−→ t andv′ = v[x 7→ t].

For the other kind of transitions we need to declare the effect of applying a replacement to a valu-
ation. Letv : V→Sbe a valuation of the first-order variables inV, andκ : V→V be a replacement
operator. Lettκ(v) be the valuation such thattκ(v)(x) = v(κ(x)). Then we add the following
transitions to∆′.

v
κ−→ v′ iff v′ = tκ(v)

Note that the relation with labelκ is functional for any suchκ , i.e. every state incloneV(M) has
exactly oneκ-successor. Hence, we have〈κ〉ψ ≡ [κ]ψ over cloned LTS.
Theorem 2. Let V be a finite set of first-order variables, letM = (S,s0,∆,ρ) be a ground LTS, and let
ϕ be aL ω

µ formula such that fv(ϕ)⊆V. Then

M |= ϕ iff cloneV(M) |= ϕ̂.

The proof goes by straightforward induction onϕ and is therefore ommitted – see also the chapter
on descriptive complexity in [3] for similar results. The importance of Thm. 2 is based on the fact that it
transfers many model checking algorithms for the modalµ-calculus toL 1

µ , for example on-the-fly model
checking [8], symbolic model checking [2] with BDDs or via SAT, strategy improvement schemes [9],
etc.

M. Lange, E. Lozes 43

3 Various Problems as Model Checking Problems

The model checking algorithms we mentioned can be exploitedto solve any polynomial-time problem
that can be encoded as a model checking problem inL ω

µ . By means of examples, we now intend to show
that these problems are quite numerous.

Process Equivalences. The first examples are process equivalences encountered in process algebras.
We only consider here strong simulation equivalence and bisimilarity, and let the interested reader think
about how to encode other process equivalences, like weak bisimilarity for instance.

Let us first recall some standard definitions. LetM = (S,s0,∆,ρ) be a fixed LTS. Asimulationis a
binary relationR⊆ S×Ssuch that for all(s1,s2) in R,

• for all p∈ P: p∈ ρ(s1) iff p∈ ρ(s2);

• for all a∈ Σ ands′1 ∈ S, if s1
a−→ s′1, then there iss′2 ∈ Ssuch thats2

a−→ s′2 and(s′1,s
′
2) ∈R.

Two statess,s′ aresimulation equivalent, s⋍ s′, if there are simulationsR,R′ such that(s,s′) ∈ R and
(s′,s) ∈ R′. A simulationR is abisimulationif R= R−1; we say thats,s′ arebisimilar, s∼ s′, if there
is a bisimulation that contains(s,s′). We say that two valuations are bisimilar,v∼ v′, if for all x∈ Var,
v(x) ∼ v′(x).

Proposition 3. [7] L ω
µ is closed under bisimulation: if v∈ JϕK and v∼ v′, then v′ ∈ JϕK.

Let us now explain how these process equivalences can be decided by the model checking algorithms:
the following formula captures valuationsv such thatv(x) ∼ v(y)

νX.
∧

p∈P
p(x)⇔ p(y) ∧

∧

a∈Σ
[a]x〈a〉yX ∧ {(x,y)←(y,x)}X

whereas the following formula captures valuationsv such thatv(x) ⋍ v(y)

νX
(
νY.

∧

p∈P
p(x)⇔ p(y) ∧

∧

a∈Σ
[a]x〈a〉yY

)
∧ {(x,y)←(y,x)}X.

Automata Theory. A second application ofL ω
µ is in the field of automata theory. To illustrate this

aspect, we pick some language inclusion problems that can besolved in polynomial-time.
A non-deterministic Büchi automaton can be viewed as a finite LTS A = (S,s0,∆,ρ) whereρ in-

terprets a predicatefinal. Remember that a run on an infinite wordw∈ Σω in A is accepting if it visits
infinitely often a final state. The set of wordsL(A)⊆ Σω that have an accepting run is called the language
accepted byA.

The language inclusion problemL(A) ⊆ L(B) is PSPACE-hard for arbitrary Büchi automata and
therefore unlikely to be definable inL ω

µ . In the restricted case ofB being deterministic, it becomes
solvable in polynomial time. Remember that a Büchi automaton is called deterministic if for alla∈ Σ,
for all s,s1,s2 ∈ S, if s

a−→ s1 ands
a−→ s2, thens1 = s2.

Let us now encode the language inclusion problemL(A)⊆ L(B) as aL ω
µ model checking problem.

To shorten a bit the formula, we assume thatB is moreovercomplete, i.e. for all s∈ S, for all a∈ Σ, there
is at least ones′ such thats

a−→ s′. Let us introduce the modality〈synch〉ϕ , ∨
a∈Σ〈a〉x〈a〉yϕ . Consider

the formula

ϕincl , 〈synch〉∗νZ1.
(
final(x)∧¬final(y)∧µZ2.〈synch〉

(
Z1∨ (¬final(y)∧Z2)

))

44 Model-Checking the Higher-Dim.µ-Calculus

Let MA,B be the LTS obtained as the disjoint union ofA andB with initial statessA of A andsB of B
respectively. ThenL(A) is included inL(B) if and only ifMA,B,v 6� ϕincl wherev(x) = sA andv(y) = sB.
Indeed, this formula is satisfied if there is a runrA of A and a runrB of B reading the same wordw∈ Σω

such thatrA visits a final state ofA infinitely often, whereasrB eventually stops visiting the final states of
B. SinceB is deterministic, no other runr ′B could readw, thusw∈ L(A)\L(B).

The same ideas can be applied to parity automata. A parity automaton is a finite automaton where
states are assigned priorities; it can be seen as an LTS(S,s0,∆,ρ) whereρ interpretspriority predicates
prtyk in such a way thatρ(s) is a singleton{prtyk} for all s∈ S. A word w∈ Σω is accepted by a parity
automaton if there is a run ofw such that the largest priority visited infinitely often is even. Consider the
formulasprty≤m(x) = prty0(x)∨ . . .∨prtym(x) and

ϕn,m = 〈synch〉∗νZ.〈synch′〉+
(
prtyn(x)∧〈synch′〉+(prtym(y)∧Z)

)

where〈synch′〉+ϕ is a shorthand forµZ.〈synch〉prty≤n(x)∧ prty≤m(y)∧ (ϕ ∨Z). Thenϕn,m asserts that
there are two runsrA andrB of two parity automataA andB recognizing the same wordw such that the
highest priorities visited infinitely often byrA andrB are respectivelyn andm. SinceL(A) 6⊆ L(B) if and
only there is an evenn and an oddmsuch thatMA,B |= ϕn,m, this gives us again a decision procedure for
the language inclusion problem of parity automata whenB is deterministic complete.

Parsing of Formal Languages. A third application ofL ω
µ is in the field of parsing for formal, namely

context-free languages. To each finite wordw, we may associate its linear LTSMw. For instance, for

w = aab, Mw is the LTS a a b . Let us now consider a context-free grammarG,

and define a formula that describes the language ofG. To ease the presentation, we assume thatG
is in Chomsky normal form, but a linear-size formula would bederivable for an arbitrary context-free
grammar as well. The production rules ofG are thus of the form eitherXi→XjXk or Xi→a, for X1, . . . ,Xn

the non-terminals ofG. Let us pick variablesx,y and z, intended to represent respectively the initial
the final, and an intermediate position in the (sub)word currently parsed. To every non-terminalXi, we
associate the recursive definition:

ϕi =µ
∨

Xi→a

〈a〉x x∼ y ∨
∨

Xi→Xj Xk

{z←x}〈−〉∗z
(
({y←z}ϕ j)∧ ({x←z}ϕk)

)

wherex∼ y is the formula characterizing bisimilarity and〈−〉∗zϕ is µZ.ϕ ∨∨a∈Σ〈a〉zZ. If v(x) andv(y)
are respectively the initial and final states ofMw, thenMw,v� ϕi is equivalent tow being derivable inG
starting with the symbolXi.

String Problems. Model Checking forL ∞
µ can even be useful for computation (as opposed to deci-

sion) problems. Consider for example the Longest Common Subword problem: given wordsw1, . . . ,wm

over some alphabetΣ, find a longestv that is a subword of allwi . This problem is NP-complete for
an unbounded number of input words. Thus, we consider the problem restricted to some fixedm, and
it is possible to define a formulaϕm

LCSW ∈ L m
µ such that model checking this formula on a suitable

representation of thewi essentially computes such a common subword.
For the LTS take the disjoint union of allMwi for i = 1, . . . ,m, and assume that each state inMwi

is labeled with a propositionpi which makes it possible to definem-tuples of states in which thei-th
component belongs toMwi . Now consider the formula

ϕm
LCSW := νX.

m∧

i=1

pi(xi)∧
∨

a∈Σ
〈a〉1 . . . 〈a〉mX

M. Lange, E. Lozes 45

Note thatϕm
LCSW is unsatisfiable for anym≥ 1. Thus, a symbolic model checking algorithm for instance

would always return the empty set of tuples when called on this formula and any LTS. However, on
an LTS representingw1, . . . ,wm as described above it consecutively computes in thej-th round of the
fixpoint iteration, all tuples of positionsh1, . . . ,hm such that the subwords inwi from positionhi− j to hi

are all the same for everyi = 1, . . . ,m. Thus, it computes, in its penultimate round the positions inside the
input words in which the longest common substrings end. Their starting points can easily be computed
by maintaining a counter for the number of fixpoint iterations done in the model checking run.

In the same way, it is possible to compute the longest common subsequence of input wordsw1, . . . ,wm.
A subsequence ofw is obtained by deleting arbitrary symbols, whereas a subword is obtained by delet-
ing an arbitrary prefix and suffix fromw. The Longest Common Subsequence problem is equally known
to be NP-complete for unboundedm. For any fixedm, however, the following formula can be used to
compute all longest common subsequences of such input wordsusing model checking technology in the
same way as it is done in the case of the Longest Common Subwordproblem.

ϕm
LCSS := νX.

m∧

i=1

pi(xi)∧
∨

a∈Σ
〈a〉x1〈−〉∗x1

. . . 〈a〉xm〈−〉∗xm
X

where〈−〉∗xi
ψ stands forµY.ψ ∨ ∨

a∈Σ
〈a〉xiY.

Games. The Cat and Mouse Game is played on a directed graph with threedistinct nodesc, mandt as
follows. Initially, the cat resides in nodec, the mouse in nodem. In each round, the mouse moves first.
He can move along an edge to a successor node of the current oneor stay on the current node, then the
cat can do the same. If the cat reaches the mouse, she wins; otherwise, if the mouse reaches the target
nodet, he wins; otherwise, the mouse runs forever without being caught nor reaching the target node: in
that case, the cat wins. The problem of solving the Cat and Mouse Game is to decide whether or not the
mouse has a winning strategy for a given graph.

Note that this problem is not bisimulation-invariant underthe straight-forward encoding of the di-
rected graph as an LTS with a single propositiont to mark the target node. Consider for example the
following two, bisimilar game arenas.

t t

Clearly, if the cat and mouse start on the two separate leftmost nodes then the mouse can reach the target
first. However, these nodes are bisimilar to the left node of the right graph, and if they both start on this
one then the cat has caught the mouse immediately.

Thus, winning strategies cannot necessarily be defined inL ∞
µ . However, it is possible to define them

when a new atomic formulaeq(x,y) expressing thatx andy evaluate to the same node, is being added to
the syntax ofL ∞

µ (standard model checking procedures can be extended to handle the equality predicate
eqas well).

ϕCMG := µX.(t(x)∧¬eq(x,y))∨〈−〉x(¬eq(x,y))∧ [−]yX)

We havev |= ϕCMG if and only if the mouse can win from positionv(x) when the cat is on positionv(y)
initially.

46 Model-Checking the Higher-Dim.µ-Calculus

4 Conclusion
We have considered the modal fixpoint logicL ω

µ for a potential use in algorithm design and given ex-
amples of problems which can be defined inL ω

µ . The combination of fixpoint quantifiers and modal
operators has been proved to be very fruitful for obtaining algorithmic solutions for problems in auto-
matic program verification. The examples boost the idea of using successful model checking technology
in other areas too.

The use of model checking algorithms on fixed formulas does not provide a generic recipe that
miraculously generates efficient algorithms, but it provides the potential to do so. The next step on this
route towards an efficient algorithm for some problemP requires partial evaluation on a model checking
algorithm and the formulaϕP definingP. This usually requires manual tweaking of the algorithm and
is highly dependent on the actualϕP. Thus, future work on this direction would consist of consequently
optimisingL ω

µ model checking algorithms for certain definable problems and testing their efficiency in
practice.

On a different note,L ω
µ is an interesting fixpoint calculus for which the model checking problem

over infinite-state transition systems has not been quite studied so far. The most prominent result in this
area is the decidability ofL 1

µ over pushdown LTS [10]. However, model checkingL ω
µ — or even just

L k
µ for somek≥ 2 — seems undecidable for pushdown LTS. It is questionable whether model checking

of L ω
µ is decidable for any popular class of infinite-state transition systems.

References

[1] R. Axelsson & M. Lange (2007):Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic.
In: Proc. 14th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’07, LNCS
4790, Springer, pp. 62–76, doi:10.1007/978-3-540-75560-9_7.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill & L. J. Hwang (1992): Symbolic Model
Checking: 1020 States and Beyond. Information and Computation98(2), pp. 142–170, doi:10.1016/
0890-5401(92)90017-A.

[3] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema & S. Weinstein (2007):
Finite Model Theory and its Applications. Springer-Verlag, doi:10.1007/3-540-68804-8.

[4] D. Janin & I. Walukiewicz (1996):On the Expressive Completeness of the Propositionalµ-Calculus with
Respect to Monadic Second Order Logic. In: CONCUR, pp. 263–277, doi:10.1007/3-540-61604-7_60.

[5] M. Jurdziński (1998):Deciding the winner in parity games is in UP∩co-UP. Inf. Process. Lett.68(3), pp.
119–124, doi:10.1016/S0020-0190(98)00150-1.

[6] D. Kozen (1983): Results on the Propositionalµ-calculus. TCS 27, pp. 333–354, doi:10.1007/
BFb0012782.

[7] M. Otto (1999): Bisimulation-invariant PTIME and higher-dimensionalµ-calculus. Theor. Comput. Sci.
224(1-2), pp. 237–265, doi:10.1016/S0304-3975(98)00314-4.

[8] C. Stirling (1995):Local Model Checking Games. In: Proc. 6th Conf. on Concurrency Theory, CONCUR’95,
LNCS 962, Springer, pp. 1–11, doi:10.1007/3-540-60218-6_1.

[9] J. Vöge & M. Jurdziński (2000):A Discrete Strategy Improvement Algorithm for Solving Parity Games. In:
CAV, pp. 202–215, doi:10.1007/10722167_18.

[10] Igor Walukiewicz (1996):Pushdown Processes: Games and Model Checking. In: CAV, pp. 62–74, doi:10.
1007/3-540-61474-5_58.

D. Miller and Z.Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 47–54, doi:10.4204/EPTCS.77.7

Cut-elimination for the mu-calculus with one variable

Grigori Mints
Dept. of Philosophy
Stanford University

USA

gmints@stanford.edu

Thomas Studer
Inst. of Computer Science and Appl. Math.

University of Bern
Switzerland

tstuder@iam.unibe.ch

We establish syntactic cut-elimination for the one-variable fragment of the modal mu-calculus. Our
method is based on a recent cut-elimination technique by Mints that makes use of Buchholz’Ω-rule.

1 Introduction

The propositional modalµ-calculus is a well-established modal fixed point logic thatincludes fixed
points for arbitrary positive formulae. Thus it subsumes many temporal logics (with an always operator),
epistemic logics (with a common knowledge operator), and program logics (with an iteration operator).

Making use of the finite model property, Kozen [10] introduces a sound and complete infinitary
system for the modalµ-calculus. In this system greatest fixed points are introduced by means of the
ω-rule that has a premise for each finite approximation of the greatest fixed point. Jäger et al. [8] show
by semanticmethods that the cut rule is admissible in this kind of infinitary systems. So far, however,
there is nosyntacticcut-elimination procedure available for the modalµ-calculus. It is our aim in this
paper to present an effective cut-elimination method for the one-variable fragment of theµ-calculus.

There are already a few results available on syntactic cut-elimination for modal fixed point logics.
Most of them make use of deep inference where rules may not only be applied to outermost connectives
but also deeply inside formulae. The first result of this kindhas been obtained by Pliuskevicius [12] who
presents a syntactic cut-elimination procedure for lineartime temporal logic. Brünnler and Studer [2]
employ nested sequents to develop a cut-elimination procedure for the logic of common knowledge. Hill
and Poggiolesi [7] use a similar approach to establish effective cut-elimination for propositional dynamic
logic. A generalization of this method is studied in [3] where it is also shown that it cannot be extended
to fixed points that have a2-operator in the scope of aµ-operator. Fixed points of this kind occur, for
instance, inCTL in the form of universal path quantifiers.

Thus we need a more general approach to obtain syntactic cut-elimination for the modalµ-calculus.
A standard proof-theoretic technique to deal with inductive definitions and fixed points is Buchholz’
Ω-rule [4, 6]. Jäger and Studer [9] present a formulation of the Ω-rule for non-iterated modal fixed
point logic and they obtain cut-elimination for positive formulae of this logic. In order to overcome this
restriction to positive formulae, Mints [11] introduces anΩ-rule that has a wider set of premises, which
enables him to obtain full cut-elimination for non-iterated modal fixed point logic.

Mints’ cut-elimination algorithm makes use of, in additionto ideas from [5], a new tool presented
in [11]. It is based on the distinction, see [13], between implicit and explicit occurrences of formulae in
a derivation with cut. If an occurrence of a formula is traceable to the endsequent of the derivation, then
it is called explicit. If it is traceable to a cut-formula, then it is an implicit occurrence.

Implicit and explicit occurrences of greatest fixed points are treated differently in the translation
of the induction rule to the infinitary system. An instance ofthe induction rule that derives a sequent

48 Cut-elimination for the mu-calculus with one variable

νX.A,B goes to an instance of theω-rule if νX.A is explicit. Otherwise, ifνX.A is traceable to a cut-
formula, the induction rule is translated to an instance of theΩ-rule that is preserved until the last stage
of cut-elimination. At that stage, called collapsing, theΩ-rule is eliminated completely.

In the present paper we show that this method can be extended to a µ-calculus with iterated fixed
points. Hence we obtain complete syntactic cut-elimination for the one-variable fragment of the modal
µ-calculus. Our infinitary system is completely cut-free in the sense that there are not only no cut rules
in the system but also no embedded cuts. Thus our cut-free system enjoys the subformula property. This
is in contrast to the recent cut-elimination results by Baelde [1] and by Tiu and Momigliano [14] for the
finitary systemsµMALL andLinc−, respectively, where theν-introduction rule and the co-induction rule
contain embedded cuts, which results in the loss of the subformula property.

2 Syntax and semantics

We first introduce the languageL . We start with a countable set PROP of atomic propositionspi and
their negationspi . We useP to denote an arbitrary element of PROP. Moreover, we will use a special
variableX.

Definition 1. Operator forms A,B, . . . are given by the following grammar:

A :== pi | pi | X | A∧A | A∨A | 2A | 3A | µX.A | νX.A.

Formulae Fare defined by:

F :== pi | pi | F ∧F | F ∨F | 2F | 3F | µX.A | νX.A.

The fixed point operatorsµ andν bind the variableX and, therefore, we will talk of free and bound
occurrences ofX. Hence a formula is an operator form without free occurrences of X.

The negation of an operator form is inductively defined as follows.

1. ¬pi := pi and¬pi := pi

2. ¬X := X

3. ¬(A∧B) := ¬A∨¬B and¬(A∨B) := ¬A∧¬B

4. ¬2A :=3¬A and¬3A :=2¬A

5. ¬µX.A := νX.¬A and¬νX.A := µX.¬A

Note that negation is well-defined: the negation of anX-positive operator form is againX-positive
since we have¬X := X. Thus, for example,

¬µX.2(pi ∧X) := νX.¬2(pi ∧X) := νX.3¬(pi ∧X) := νX.3(¬pi ∨¬X) := νX.3(pi ∨X).

For an arbitrary but fixed atomic propositionpi we set⊤ := pi ∨ pi . If A is an operator form, then we
write A(B) for the result of simultaneously substitutingB for every free occurrence ofX in A. We will
also use finite iterations of operator forms, given as follows

A0(B) := B andAk+1(B) := A(Ak(B)).

G. Mints & T. Studer 49

Γ,P,¬P Γ,µX.A,¬µX.A

Γ,A,B
Γ,A∨B

(∨) Γ,A Γ,B
Γ,A∧B

(∧) Γ,A
3Γ,2A,Σ

(2)

Γ,A(µX.A)
Γ,µX.A

(clo)
¬A(B),B
¬µX.A,B

(ind)
Γ,A Γ,¬A

Γ
(cut)

Figure 1: SystemM

3 System M

SystemM derives sequents, that are finite sets of formulae. We denotesequents byΓ,Σ and use the
following notation: ifΓ := {A1, . . . ,An}, then3Γ := {3A1, . . . ,3An}, SystemM consists of the axioms
and rules given in Figure 1.

4 System Mω

SystemMω is an infinitary cut-free system for the modalµ-calculus with one variable. It consists of the
axioms and rules given in Figure 2.

Γ,P,¬P

Γ,A,B
Γ,A∨B

(∨) Γ,A Γ,B
Γ,A∧B

(∧) Γ,A
3Γ,2A,Σ

(2)

Γ,A(µX.A)
Γ,µX.A

(clo)
Γ,Ai(⊤) for all natural numbersi

Γ,νX.A
(ω)

Figure 2: SystemMω

5 System Mω ,Ω
k

In order to embedM into Mω , we need a family of intermediate systemsMω ,Ω
k that include additional

rules to derive greatest fixed points that later will be cut away.
The languageLΩ extendsL by a new connectiveν ′ to denote those greatest fixed points. Formally,

LΩ is given as follows. Operator forms ofLΩ are defined like operator forms ofL with the additional
case

1. If A is an operator form, thenν ′X.A is also an operator form.

A formula of LΩ is anLΩ operator form without free occurrence ofX. A formula is agreatest fixed
point if it has the formνX.A or ν ′X.A.

50 Cut-elimination for the mu-calculus with one variable

Definition 2. The levellev(A) of an operator formA is the maximal nesting of fixed point operators in
A. Formally we set:

1. lev(P) := lev(X) := 0 for all P in PROP

2. lev(A∧B) := lev(A∨B) := max(lev(A), lev(B))

3. lev(2A) := lev(3A) := lev(A)

4. lev(µX.A) := lev(νX.A) := lev(ν ′X.A) := lev(A)+1

The level of a sequent is the maximum of the levels of its formulae. We say a formula (sequent) is
k-positiveif for all ν ′X.A occurring in it we havelev(ν ′X.A)< k.

When working inMω ,Ω
k , we will use the following notation: the formulaA′ is obtained fromA by

replacing all occurrences ofνX in A with ν ′X.
Let k ≥ 0. SystemMω ,Ω

k consists of the axioms and rules ofMω (formulated inLΩ) and the addi-
tional rules:cut, Ωh, andΩ̃h. Thecut rule is given as follows

Γ,A′ Γ,(¬A)′

Γ
(cut),

whereA is a formula withlev(A)≤ k. The rulesΩh andΩ̃h , where 1≤ h≤ k, are informally described
as follows:

· · ·
Mω ,Ω

k−1 0 ∆, (µX.A)′

∆, Γ · · ·
Ωh

Γ, (¬µX.A)′

and

Γ, (µX.A)′ · · ·
Mω ,Ω

k−1 0 ∆, (µX.A)′

∆, Γ · · ·
Ω̃hΓ

wherelev((¬µX.A)′) = h and∆ ranges overh-positive sequents such that there is a cut-free proof of the
sequent∆, (µX.A)′ in Mω ,Ω

k−1.

Definition 3. We useMω ,Ω
k 0 Γ to express that there is a cut-free derivation ofΓ in Mω ,Ω

k .

In a more formal notation we can state theΩh-rule as follows. If for everyh-positive sequent∆

Mω ,Ω
k−1 0 ∆, (µX.A)′ =⇒ Mω ,Ω

k ∆, Γ,

then
Mω ,Ω

k Γ, (¬µX.A)′,

and similarly forΩ̃h.
Note that SystemMω ,Ω

0 does not includeΩh- or Ω̃h-rules. Hence we immediately get the following
lemma.

Lemma 4. Let Γ be anL sequent. We have

Mω ,Ω
0 0 Γ =⇒ Mω Γ.

G. Mints & T. Studer 51

6 Embedding

In this section we present a translation fromM -proofs intoMω ,Ω
k -proofs. First we establish an auxiliary

lemma.

Lemma 5. For all natural numbers h≤ k we have the following.

1. If lev(µX.A) = h, thenMω ,Ω
k 0 µX.A, ¬µX.A.

2. If lev(A) = h, thenMω ,Ω
k 0 Γ, A′ =⇒ Mω ,Ω

k 0 Γ, A.

3. If lev(µX.A) = h, thenMω ,Ω
k 0 µX.A, (¬µX.A)′.

4. If lev(A) = h, thenMω ,Ω
k 0 B,C =⇒ Mω ,Ω

k 0 (¬A)(B), A(C).

5. If lev(A) = h, thenMω ,Ω
k 0 B,C′ =⇒ Mω ,Ω

k 0 (¬A)(B), A′(C′).

Proof. The five statements are shown simultaneously by induction onh. For space considerations we
show only one particular case of the second statement, whichis shown by induction on the derivation of
Γ, A′ and a case distinction on the last rule. Assume the last rule is an instance ofΩh with main formula
A′. We haveA′ = (νX.A0)

′ with lev(A0) < h. By the premise of theΩh-rule we have for allh-positive
sequents∆

Mω ,Ω
k−1 0 ∆,(µX.¬A0)

′ =⇒ Mω ,Ω
k 0 ∆,Γ. (1)

Trivially we have
Mω ,Ω

k 0 ⊤,Γ. (2)

We also have
Mω ,Ω

k−1 0 ⊤,(µX.¬A0)
′

from which we get by the induction hypothesis for the fifth claim of this lemma

Mω ,Ω
k−1 0 A0(⊤),(¬A0)

′((µX.¬A0)
′).

An application ofclo yields
Mω ,Ω

k−1 0 A0(⊤),(µX.¬A0)
′.

By (1) we get
Mω ,Ω

k 0 A0(⊤),Γ. (3)

Note that (2) and (3) are the first two premises of an instance of ω . By further iterating this we obtain
for all i

Mω ,Ω
k 0 Ai

0(⊤),Γ.

Hence an application ofω yields
Mω ,Ω

k 0 νX.A0,Γ.

We will need a certain form of the induction rule inMω ,Ω
k , which we are going to derive next. We

write Σ[(µX.A)′ := B] for the result of simultaneously replacing in every formulain Σ every occurrence
of (µX.A)′ with B.

52 Cut-elimination for the mu-calculus with one variable

Lemma 6. Let A be an operator form withlev(νX.A)≤ k. Let∆,Σ1,Σ2 be h-positive sequents and let B
be a formula withlev(B)≤ k. Assume that

Mω ,Ω
k (¬A(B))′, B and Mω ,Ω

k (¬A(B))′, B′.

Then we have, if
Mω ,Ω

k−1 0 ∆, Σ1, Σ2

then
Mω ,Ω

k ∆, Σ1[(µX.A)′ := B], Σ2[(µX.A)′ := B′].

Lemma 7. Let A be an operator form withlev(νX.A) ≤ k. Further let B be an arbitrary formula with
lev(B)≤ k. Assume that

Mω ,Ω
k (¬A(B))′, B and Mω ,Ω

k (¬A(B))′, B′.

Then we have
Mω ,Ω

k (¬µX.A)′, B and Mω ,Ω
k (¬µX.A)′, B′.

Proof. Let h = lev(νX.A). In view of our assumptions and the previous lemma we know that for all
h-positive sequents∆

Mω ,Ω
k−1 0 ∆, (µX.A)′ =⇒ Mω ,Ω

k ∆, B.

Hence by an application of theΩh-rule we concludeMω ,Ω
k (¬µX.A)′, B. Similarly, we can derive

Mω ,Ω
k (¬µX.A)′, B′.

Theorem 8. Let Γ be a sequent ofL . AssumeM Γ and assume further for any sequent∆ occurring

in that proof we havelev(∆)≤ k. Then we haveMω ,Ω
k Γ.

Proof. An operationσ on sequents is called ’-operation ifσ(Γ,A1, . . . ,An) = Γ,A′
1, . . . ,A

′
n. The result of

applyingσ to a sequentΓ is denotedΓσ .
To establish the theorem, we show by induction on the depth oftheM -proof that for all ’-operations

σ , we haveMω ,Ω
k Γσ . We distinguish the following cases for the last rule.

1. Γ is an axiom different fromΓ0,µX.A,¬µX.A. ThenΓσ is an axiom ofMω ,Ω
k , too.

2. Γ is Γ0,µX.A,¬µX.A. ThenΓσ follows either by the first or the third claim of Lemma 5 depending
on whether¬µX.A is replaced byσ or not.

3. The last rule is an instance of∧, ∨, 2 or clo. We can apply the same rule inMω ,Ω
k .

4. The last rule is a cut
Γ,A Γ,¬A

Γ
.

We extend the current ’-operationσ to a ’-operationτ such that(Γ,A)τ = Γσ ,A′ and(Γ,¬A)τ =
Γσ ,(¬A)′ By the induction hypothesis for the ’-operationτ we obtainMω ,Ω

k Γσ ,A′ as well as

Mω ,Ω
k Γσ ,(¬A)′. With an instance of cut we getMω ,Ω

k Γσ .

5. The last rule is an instance of the induction rule. Then theendsequent has the form¬µX.A, B
which isνX.¬A, B. There are two possible cases.

(a) The principal occurrence ofνX.¬A is not changed byσ . By the induction hypothesis we can
derive(¬A(B))′, Bσ and(¬A(B))′, B′. We obtain our claim by the following proof.

G. Mints & T. Studer 53

· · ·

I.H.
(¬A(B))′, Bσ

I.H.
(¬A(B))′, B′

⊤,B′
L. 5

(¬A)(⊤),(A(B))′
cut

(¬A)(⊤),B′

...

(¬A)i(⊤),B′
L. 5

(¬A)i+1(⊤),(A(B))′
cut

(¬A)i+1(⊤),Bσ · · ·
ω

νX.¬A, Bσ

(b) The principal occurrence ofνX.¬A is changed byσ . Let τ1,τ2 be ’-operations such that

(¬A(B),B)τ1 = (¬A(B))′,B

and
(¬A(B),B)τ2 = (¬A(B))′,B′.

By the induction hypothesis forτ1 andτ2 we obtain

Mω ,Ω
k (¬A(B))′, B and Mω ,Ω

k (¬A(B))′, B′.

We apply Lemma 7 and concludeMω ,Ω
k (¬µX.A)′, Bσ .

7 Cut elimination

We eliminate instances ofcut in the standard way, see for instance [5, 11], by pushing themup the
derivation. When an instance ofcut with cut formulae(µX.A)′ and(¬µX.A)′ meets the instance ofΩh

that introduces(¬µX.A)′, this pair of inferences is replaced byΩ̃h.

Lemma 9 (Cut-elimination). If Mω ,Ω
k Γ, thenMω ,Ω

k 0 Γ.

The cut-elimination process terminates in a formally cut-free derivation that may contain instances
of Ω̃h-rules. Now we show that these instances ofΩ̃h also can be eliminated.

Lemma 10(Collapsing). Let Γ be an(h+1)-positive sequent. IfMω ,Ω
k 0 Γ, thenMω ,Ω

h 0 Γ.

Proof. By transfinite induction on the derivation inMω ,Ω
k . The only interesting case is when the last rule

is an instance of̃Ωl for h< l ≤ k as follows

Γ, (µX.A)′ · · ·
Mω ,Ω

l−1 0 ∆, (µX.A)′

∆, Γ · · ·
Ω̃lΓ

Note thatΓ,(µX.A)′ is l -positive. Thus by the induction hypothesis we get

Mω ,Ω
l−1 0 Γ, (µX.A)′. (4)

54 Cut-elimination for the mu-calculus with one variable

Moreover, also by the induction hypothesis we get for all(h+1)-positive∆

Mω ,Ω
l−1 0 ∆, (µX.A)′ =⇒ Mω ,Ω

h 0 ∆, Γ. (5)

Now we plug (4) in (5) and obtainMω ,Ω
h 0 Γ as required.

We now have all ingredients ready for our main result.

Corollary 11. Let Γ be anL -sequent. We have

M Γ =⇒ Mω Γ.

Proof. AssumeM Γ. By Theorem 8 we getMω ,Ω
k Γ for somek. By cut-elimination we obtain

Mω ,Ω
k 0 Γ. Then collapsing yieldsMω ,Ω

0 0 Γ which finally gives usMω Γ by Lemma 4.

References

[1] David Baelde (2009):Least and greatest fixed points in linear logic. CoRRabs/0910.3383v4. Available at
http://arxiv.org/abs/0910.3383v4.

[2] Kai Brünnler & Thomas Studer (2009):Syntactic cut-elimination for common knowledge. Annals of Pure
and Applied Logic160(1), pp. 82–95, doi:10.1016/j.apal.2009.01.014.

[3] Kai Brünnler & Thomas Studer (preprint):Syntactic cut-elimination for a fragment of the modal mu-calculus.

[4] Wilfried Buchholz (1981):TheΩµ+1-rule. In Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers &
Wilfried Sieg, editors:Iterated Inductive Definitions and Subsystems of Analysis:Recent Proof Theoretic
Studies, Lecture Notes in Mathematics897, Springer, pp. 189–233, doi:10.1007/BFb0091898.

[5] Wilfried Buchholz (2001):Explaining the Gentzen-Takeuti reduction steps: a second-order system. Archive
for Mathematical Logic40(4), pp. 255–272, doi:10.1007/s001530000064.

[6] Wilfried Buchholz & Kurt Schütte (1988):Proof Theory of Impredicative Subsystems of Analysis. Bibliopo-
lis.

[7] Brian Hill & Francesca Poggiolesi (2010):A Contraction-free and Cut-free Sequent Calculus for Proposi-
tional Dynamic Logic. Studia Logica94(1), pp. 47–72, doi:10.1007/s11225-010-9224-z.

[8] Gerhard Jäger, Mathis Kretz & Thomas Studer (2008):Canonical completeness for infinitaryµ . Journal of
Logic and Algebraic Programming76(2), pp. 270–292, doi:10.1016/j.jlap.2008.02.005.

[9] Gerhard Jäger & Thomas Studer (2011):A Buchholz rule for modal fixed point logics. Logica Universalis5,
pp. 1–19, doi:10.1007/s11787-010-0022-1.

[10] Dexter Kozen (1988):A finite model theorem for the propositionalµ–calculus. Studia Logica47(3), pp.
233–241, doi:10.1007/BF00370554.

[11] Grigori Mints (to appear):Effective Cut-elimination for a fragment of Modal mu-calculus. Studia Logica.

[12] Regimantas Pliuskevicius (1991):Investigation of Finitary Calculus for a Discrete Linear Time Logic
by means of Infinitary Calculus. In: Baltic Computer Science, Selected Papers, Springer, pp. 504–528,
doi:10.1007/BFb0019366.

[13] Gaisi Takeuti (1987):Proof Theory. North-Holland.

[14] Alwen Tiu & Alberto Momigliano (2010):Cut Elimination for a Logic with Induction and Co-induction.
CoRRabs/1009.6171v1. Available athttp://arxiv.org/abs/1009.6171v1.

D. Miller and Z. Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 55–61, doi:10.4204/EPTCS.77.8

Structured general corecursion and coinductive graphs
[extended abstract]

Tarmo Uustalu
Institute of Cybernetics at Tallinn University of Technology, Estonia

tarmo@cs.ioc.ee

Bove and Capretta’s popular method for justifying function definitions by general recursive equations
is based on the observation that any structured general recursion equation defines an inductive subset
of the intended domain (the “domain of definedness”) for which the equation has a unique solution.
To accept the definition, it is hence enough to prove that this subset contains the whole intended
domain.

This approach works very well for “terminating” definitions. But it fails to account for “produc-
tive” definitions, such as typical definitions of stream-valued functions. We argue that such defini-
tions can be treated in a similar spirit, proceeding from a different unique solvability criterion. Any
structured recursive equation defines a coinductive relation between the intended domain and in-
tended codomain (the “coinductive graph”). This relation in turn determines a subset of the intended
domain and a quotient of the intended codomain with the property that the equation is uniquely
solved for the subset and quotient. The equation is therefore guaranteed to have a unique solution for
the intended domain and intended codomain whenever the subset is the full set and the quotient is by
equality.

Unique solutions to recursive equations General recursive definitions are commonplace in program-
ming practice.

In particular, it is highly desirable to be able to define functions by some forms of controlled general
recursion in type-theoretically motivated languages of total functional programming (in particular, proof
assistants) that come with a set-theoretic rather than a domain-theoretic semantics. For an overview of
this area, see Bove et al. [5].

In this paper, we are concerned with describing a function f : A→ B definitely by an equation of the
form:

FA

F f
��

A
αoo

f
��

FB
β

// B

(1)

where A, B are sets (the intended domain and codomain), F is a functor (the branching type of recursive
call [corecursive return] trees), α is an F-coalgebra structure on A (marshals arguments for recursive
calls) and β is an F-algebra structure on B (collects recursive call results). We are interested in condi-
tions under which the equation is guaranteed to have a unique solution (rather than a least solution in a
domain-theoretic setting or some solution that is canonical in some sense). There are several important
generalizations of this setting, but we will not treat them here.

There are some well-known good cases.

56 Structured general corecursion and coinductive graphs

Some good cases (1): Initial algebra The following equation has a unique solution for any B, β .

1+El×List

1+El× f
��

List
[nil,cons]−1

oo

f
��

1+El×B
β

// B

E.g., for B = List (lists over El), β = ins (insertion of an element into a list assumed to be sorted), we get
f = isort (insertion sort).

A unique f exists because (List, [nil,cons]) is the initial algebra for the functor FX = 1+El×X . It
is the fold (the unique algebra map) determined by the algebra (B,β).

Some good cases (2): Recursive coalgebras A unique solution exists for any B, β also for the equation

1+El×List×List

1+El× f× f
��

List
qsplitoo

f
��

1+El×B×B
β

// B

where qsplitnil = inl∗ and qsplit(cons(x,xs)) = inr (x,xs|≤x,xs|>x). E.g., for B = List, β = concat
(concatenation of the first list, the element and the second list), we get f = qsort (quicksort).

(List,qsplit) is not the inverse of the initial algebra of FX = 1+El×X ×X (which is the algebra of
binary node-labelled trees), but we still have a unique f for any (B,β).

For this property, (List,qsplit) is called a recursive coalgebra of F . Recursive F-coalgebras form
a full subcategory of the category of all F-coalgebras. The inverse of the initial F-algebra is the final
recursive F-coalgebra.

While recursiveness is a very useful property of a coalgebra, it is generally difficult to determine
whether a given coalgebra is recursive. For more information on recursive coalgebras, see Taylor [8],
Capretta et al. [6], Adámek et al. [1].

Some good cases (3): Final coalgebra This equation has a unique solution for any A, α .

El×A

1+El× f
��

A
αoo

f
��

El×Str
〈hd,tl〉−1

// Str

E.g., for A = Str (streams), α = 〈hd, tl◦ tl〉 (the analysis of a stream into its head and the tail of its tail),
we get f = dropeven (the function dropping every even-position element of a given stream).

A unique f exists for any (A,α) because (Str,〈hd, tl〉) is the final coalgebra of FX = El×X . It is
the unfold (the unique F-coalgebra map) given by the coalgebra (A,α).

T. Uustalu 57

Some good cases (4): Corecursive algebras This equation has a unique solution for any A, α:

El×A×A

El× f× f
��

A
αoo

f
��

El×Str×Str smerge
// Str

Here hd(smerge(x,xs0,xs1)) = x and tl(smerge(x,xs0,xs1)) = smerge(hdxs0,xs1, tlxs0).
(Str,smerge) is not the inverse of the final coalgebra of FX = El×X ×X , but a unique f still exists

for any (A,α). We say that (Str,smerge) is a corecursive algebra of F , cf. Capretta et al. [7]. [The
inverse of the final F-coalgebra is the initial corecursive F-algebra and thus a special case.] Similarly to
recursiveness of a coalgebra, corecursiveness of an algebra is a useful property, but generally difficult to
establish.

The equation 1 can of course have a unique solution also in other cases. In particular, it may well
happen that neither is (A,α) corecursive nor is (B,β) recursive, but the equation still has exactly one
solution.

General case (1): Inductive domain predicate Bove and Capretta [3, 4] put forward the following
approach to recursive definitions in type theory (the idea has occurred in different guises in multiple
places; it must go back to McCarthy): for a given recursive definition, work out its “domain of definition”
and see if it contains the intended domain.

For given (A,α), define a predicate dom on A inductively by

a : A (F̃ dom)(α a)
doma

(i.e., as the smallest/strongest predicate validating this rule), denoting by F̃ P the lifting of a predicate P
from A to F A.

Write A|dom for the subset of A determined by the predicate dom, the “domain of definedness”. It is
easily verified that, for any (B,β), there is f : A|dom→ B uniquely solving

F(A|dom)
F f

��

A|dom
α|domoo

f
��

FB
β

// B

If ∀a : A.doma, which is the same as A|dom ∼= A, then f is a unique solution of the original equation 1,
i.e., the coalgebra (A,α) is recursive.

For A = List, α = qsplit, dom is defined inductively by

domnil

x : El xs : List dom(xs|≤x) dom(xs|>x)

dom(cons(x,xs))

We can prove that ∀xs : List.domxs. Hence (List,qsplit) is recursive.

58 Structured general corecursion and coinductive graphs

If A|dom ∼= A, the coalgebra (A,α) is said to be wellfounded. Wellfoundedness gives an induction
principle on A: For any predicate P on A, we have

a : A

a′ : A (F̃ P)(α a′)....
Pa′

Pa

We have seen that wellfoundedness suffices for recursiveness. In fact, it is also necessary. While this
equivalence is easy for polynomial functors on the category of sets, it becomes remarkably involved in
more general settings, see Taylor [8].

For FX = 1+El×X×X , A = List, α = qsplit, we get this induction principle:

xs : List Pnil

x : El xs′ : List P(xs′|≤x) P(xs′|>x)....
P(cons(x,xs′))

Pxs

General case (2): Inductive graph relation The original Bove-Capretta method separates determin-
ing the domain of definition of a function from determining its values. Bove [2] showed that this separa-
tion can be avoided.

For given (A,α), (B,β), define a relation ↓ between A, B inductively by

a : A bs : FB α a (F̃ ↓) bs
a↓β bs

Further, define a predicate Dom on A by

Doma = ∃b : B.a↓b

It is straightforward to verify that ∀a : A,b,b∗ : B.a↓b∧a↓b∗→ b = b∗. Moreover, it is also the case
that ∀a : A.Doma↔ doma. So, Dom does not really depend on the given (B,β)!

From the last equivalence it is immediate that there is f : A|Dom→ B uniquely solving

F(A|Dom)

F f
��

A|Dom
α|Domoo

f
��

FB
β

// B

And, if ∀a : A.Doma, which is the same as A|Dom
∼= A, then f is a unique solution of the original

equation.
As a matter of fact, recursiveness and wellfoundedness are equivalent exactly because ∀a : A.Doma↔

doma.
For FX = 1+ El× X × X , A = List, α = qsplit, B = List, β = concat, the relation ↓ is defined

inductively by

nil↓nil
x : El xs : List xs|≤x ↓ ys0 xs|>x ↓ ys1

cons(x,xs)↓app(ys0,cons(x,ys1))

T. Uustalu 59

Inductive domain and graph do not work for non-terminating productive definitions Unfortu-
nately, for our dropeven example,

El×Str

1+El×dropeven
��

Str
〈hd,tl◦tl〉oo

dropeven

��
El×Str

〈hd,tl〉−1
// Str

we get ∀xs : Str.domxs ≡ ⊥! Now, surely there is a unique function from 0→ Str. But this is uninter-
esting! We would like to learn that there is a unique function Str→ Str.

Intuitively, the reason why this equation has a unique solution lies not in how a given argument is
consumed but in how the corresponding function value is produced. This is not a terminating but a
productive definition.

General case (3): Coinductive bisimilarity relation The concept of the domain of definedness can
be dualized [7]. Besides partial solutions that are defined only on a subset of the intended domain, it
makes sense to consider “fuzzy” solutions that are defined everywhere but return values in a quotient
of the intended codomain. But since the category of sets is not self-dual, the theory dualizes only to a
certain extent and various mismatches arise.

For given (B,β), define a relation ≈ on B coinductively by

b,b∗ : B b≈ b∗
∃bs,bs∗ : FB.b = β bs∧b∗ = β bs∗∧bs (F̃≈∗)bs∗

(i.e., we take ≈ to be the largest/coarsest relation validating this rule).
There need not necessarily be a function f solving the equation

FA

F f
��

A
αoo

f
��

F(B/≈∗) β/≈∗
// B/≈∗

but, if such a function exists, it can easily checked to be unique. (See Capretta et al. [7, Thm. 1].)
If ∀b,b∗ : B.b≈ b∗→ b = b∗, which is the same as B/≈∗ ∼= B (where B/≈∗ is the quotient of B by the

reflexive-transitive closure of ≈), we say that (B,β) is antifounded. If (B,β) is antifounded, solutions to
equation 1 are the same as solutions to the equation above, and thus unique.

For FX = El×X×X , B = Str, β = smerge, the relation ≈ is defined coinductively by

xs,xs∗ : Str xs ≈ xs∗
∃x : El,xs0,xs1,xs0∗,xs1∗ : Str.

xs = smerge(x,xs0,xs1)∧ xs∗ = smerge(x,xs0∗,xs1∗)∧ xs0 ≈ xs0∗∧ xs1 ≈ xs1∗

It turns out that ∀xs,xs′ : Str.xs ≈ xs′ → xs = xs′. Based on this knowledge, we may conclude that
solutions are unique. (They do in fact exist as well for this example, but this has to be verified separately.)

Solutions need not exist for antifounded algebras. E.g., for FX = X , B = Nat, β = succ, we have
that (B,β) is antifounded, but for A any set and α = idA, the equation has the form f a = succ(f a) and
has no solutions.

60 Structured general corecursion and coinductive graphs

We have thus seen that antifoundedness of (B,β) does not guarantee that it is corecursive. The
converse also fails: not every corecursive algebra (B,β) is antifounded [7, Prop. 5].

However, for an antifounded algebra (B,β), we do get an interesting coinduction principle on B: For
any relation R on B, we have

b,b∗ : B bRb∗

b′,b′∗ : B b′Rb′∗....
∃bs′,bs′∗ : FB.b′ = β bs′∧b′∗ = β bs′∗∧bs′ (F̃ R∗)bs′∗

b = b∗

For FX = El×X×X , B = Str, β = smerge, we get this coinduction principle:

xs,xs∗ : Str xsRxs∗

xs′,xs′∗ : Str xs′Rxs′∗....
∃x′ : El,xs′0,xs′1,xs′0∗,xs′1∗ : Str.

xs′ = smerge(x′,xs′0,xs′1)∧ xs′∗ = smerge(x′,xs′0∗,xs′1x∗)∧ xs′0 Rxs′0∗∧ xs′1 Rxs′1∗
xs = xs∗

General case (4): Coinductive graph relation Could one also dualize the notion of the inductive
graph? The answer is positive. Differently from the case of the coinductive concept of bisimilarity, this
yields a criterion of unique solvability.

For given (A,α), (B,β), define a relation ↓∞ between A, B coinductively by

a : A b : B a↓∞ b
∃bs : FB.b = β bs∧α a (F̃ ↓∞) bs

Define a predicate Dom∞ on A by

Dom∞a = ∃b : B.a↓∞ b

Now we can construct f : A|Dom∞ → B/≈∗ that we can prove to uniquely solve

F(A|Dom∞)

F f
��

A|Dom∞
α|Dom∞oo

f
��

F(B/≈∗) β/≈∗
// B/≈∗

If both ∀a : A.Dom∞ a and ∀b,b∗ : B.b ≈ b∗ → b = b∗, which are the same as A|Dom∞ ∼= A resp.
B/≈∗ ∼= B, then f uniquely solves also the equation 1. Notice, however, that in this situation we have
obtained a unique solution only for the given (A,α): we have not established that (B,β) is corecursive.

To formulate a further condition, we define a relation ≡ on B by

b≡ b∗ = ∃a : A.a↓∞ b∧a↓∞ b∗

A unique solution to equation 1 also exists if ∀a : A.Dom∞ a and ∀b,b∗ : B.b≡ b∗→ b = b∗.
This condition is weaker: while ∀b,b∗ : B.b≡ b∗→ b≈ b∗, the converse is generally not true.

T. Uustalu 61

For FX =El×X×X , B= Str, β = smerge and any fixed A, α , the relation ↓∞ is defined coinductively
by

a : A xs : Str a↓∞ xs
∃xs0,xs1 : Str.xs = smerge(fst(α a),xs0,xs1)∧ fst(snd(α a))↓∞ xs0∧ snd(snd(α a))↓∞ xs1

It turns out that ∀a : A.Dom∞ a no matter what A, α are. So in this case we do have a unique solution f
for any A,α , i.e., (Str,smerge) is corecursive.

Conclusion We have considered two flavors of partiality of a function: a function may be defined only
on a subset of the intended domain and the values it returns may be underdetermined.

The Bove-Capretta method in its graph-based version scales meaningfully to equations where unique
solvability is not due to termination, but productivity or a combination the two. But instead of one
condition to check by ad-hoc means, there are two in the general case.

The theory of corecursion/coinduction is not as clean as that of recursion/induction—in particular, to
admit coinduction is not the same as to admit corecursion. We would like like to study the coinductive
graph approach further and to find out to what extent it proves useful in actual programming practice.
The main pragmatic issue is the same as with Bove and Capretta’s method: how to prove the conditions.

Acknowledgments This research was supported by Estonian Science Foundation grant no. 6940 and
the ERDF funded Estonian Centre of Excellence in Computer Science, EXCS.

References
[1] A. Adámek, D. Lücke & S. Milius (2007): Recursive coalgebras of finitary functors. Theor. Inform. and

Appl. 41(4), 447–462. doi:10.1051/ita:2007028
[2] A. Bove (2009): Another look at function definitions. In S. Abramsky, M. Mislove & C. Palamidessi, editors:

Proc. of 25th Conf. on Mathematical Foundations of Programming Semantics, MFPS-XXV (Oxford, Apr.
2009), Electron. Notes in Theor. Comput. Sci. 249, Elsevier, 61–74. doi:10.1016/j.entcs.2009.07.084

[3] A. Bove & V. Capretta (2005): Modelling general recursion in type theory. Math. Struct. in Comput. Sci.
15(4), 671–708. doi:10.1017/s0960129505004822

[4] A. Bove & V. Capretta (2008): A type of partial recursive functions. In O. Aı̈t Mohamed, C. Muñoz &
S. Tahar, editors: Proc. of 21st Int. Conf. on Theorem Proving in Higher Order Logics TPHOLs 2008 (Mon-
treal, Aug. 2008, Lect. Notes in Comput. Sci. 5170, Springer, 102–117. doi:10.1007/978-3-540-71067-7 12

[5] A. Bove, A. Krauss & M. Sozeau (2011): Partiality and recursion in interactive theorem provers: an
overview. Manuscript, submitted to Math. Struct. in Comput. Sci..

[6] V. Capretta, T. Uustalu & V. Vene (2006): Recursive coalgebras from comonads. Inform. and Comput. 204(4),
437–468. doi:10.1016/j.ic.2005.08.005

[7] V. Capretta, T. Uustalu & V. Vene (2009): Corecursive algebras: a study of general structured corecursion.
In M. V. M. Oliveira & J. Woodcock, editors: Revised Selected Papers from 12th Brazilian Symp. on For-
mal Methods, SBMF 2009 (Gramado, Aug. 2009), Lect. Notes in Comput. Sci. 5902, Springer, 84–100.
doi:10.1007/978-3-642-10452-7 7

[8] P. Taylor (1999): Practical Foundations of Mathematics, chapter VI. Cambridge University Press.

