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Preface

This volume contains the proceedings of the Eighth Workshopixed Points in Computer Science
which took place on 24 March 2012 in Tallinn, Estonia as an ESAaffiliated workshop. Past workshops
have been held in Brno (1998, MFCS/CSL workshop), Parisq2DC workshop), Florence (2001, PLI
workshop), Copenhagen (2002, LICS (FLoC) workshop), War&903, ETAPS workshop), Coimbra
(2009, CSL workshop), and Brno (2010, MFCS-CSL workshop).

Fixed points play a fundamental role in several areas of cawengscience and logic by justifying in-
duction and recursive definitions. The construction ang@rties of fixed points have been investigated
in many different frameworks such as: design and implentiemt@f programming languages, program
logics, and databases. The aim of this workshop is to praaitteum for researchers to present their
results to those members of the computer science and logimmemities who study or apply the theory
of fixed points.

We wish to thank Andreas Abel (Ludwig-Maximilians-Univiéés) and Luke Ong (University of
Oxford) for accepting our invitation to speak at this worghand for their contributions to these pro-
ceedings. We also thank all those authors who have subneikieshded abstracts for evaluation to the
program committee. Thanks are also due to Keiko Nakata anddr&ustalu for their support of this
workshop, both organizational and financial, and to ZoltaNlémeth for his help with the workshop’s
web pages and with assembling these proceedings.

This workshop received support from the Estonian Centrexoélence in Computer Science (EXCS),
a project financed by the European Regional Development EERDF). We thank them for their sup-
port.

ZoltanEsik and Dale Miller

D. Miller and Z.Esik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. iii-iv, doi:10.4204/EPTCS.77.0
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Type-Based Termination, Inflationary Fixed-Points,
and Mixed Inductive-Coinductive Types

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich, Germany

andreas.abel@ifi.lmu.de

Type systems certify program properties in a compositioveal. From a bigger program one can
abstract out a part and certify the properties of the regykibstract program by just using the type
of the part that was abstracted awdgrminationand productivityare non-trivial yet desired pro-
gram properties, and several type systems have been puribthat guarantee termination, com-
positionally. These type systems are intimately connetitetthe definition of least and greatest
fixed-points by ordinal iteration. While most type systerss (conventional” iteration, we consider
inflationary iteration in this article. We demonstrate htwgieads to a more principled type system,
with recursion based on well-founded induction. The typstesyy has a prototypical implementa-
tion, MiniAgda, and we show in particular how it certifies grativity of corecursive and mixed
recursive-corecursive functions.

1 Introduction: Types, Compositionality, and Termination

While basic types likénteger, floating-point numberandmemory addresarise on the machine-level of
most current computers, higher types like function andetwpbes are abstractions that classify values.
Higher types serve to guarantee certain good program hmisavike the classic “don’t go wrong” ab-
sence of runtime error$/[il78]. Such properties are usually not compositional, i. e. levaifunction f
and its argumenrd might both be well-behaved on their own, their applicaticamight still go wrong.
This issue also pops up in termination proofs: tdke a = Ax.xx, then both are terminating, but their
application loops. To be compositional, the propeegminatingneeds to be strengthened to what is of-
ten calledreducible[Gir72] or strongly computabl¢Tai67], leading to a semantic notion of type. While
the bare properties are not compositionghingis.

Type polymorphism[Rey74 Gir72, Mil78] has been invented for compositionality in the opposite
direction: We want to decompose a larger program into smplets such that the well-typedness of
the parts imply the well-typedness of the whole program. siter (AX.X) (AX.X) true, a simply-typed
program which can be abstracteddoid = Ax.x in id id true. The two occurrences od have different
type, namelyBool — Bool and (Bool — Bool) — Bool — Bool, and the easiest way to type check
the new program is to just inline the definitionidf This trick does not scale, however, making type
checking infeasible and separate compilation of modulgmasible. The accepted solution is to gite
the polymorphic typ&X. X — X which can be instantiated to the two required typegl of

Termination checking, if it is to scale to software devel@mnwith powerful abstractions, needs
to be compositional. Just like for other non-standard a®eay e. g., strictness, resource consumption
and security, type-based termination promises to be a nafdaliccess. Current termination check-
ers, however, likefoetus [AA02, Wah0Q AD10], the one of Agdalfor07], and Coq's guardedness
check [Gim95, Bar10f are not type-based, but syntactic. Let us see how thistaffmampositionality.
Consider the following recursive program defined by patteatching. We use the syntax of MiniAgda

D. Miller and Z.Esik (Eds.): Fixed Points © Andreas Abel
in Computer Science 2012 (FICS 2012) This work is licensed under the
EPTCS 77, 2012, pp. 14, doi:10.4204/EPTCS.77.1 Creative Commons Attributiohicense.



2 Type-Based Termination, Inflationary Fixed-Points, andddiInductive-Coinductive Types

[Abeld, in this and all following examples.

fun everyOther : [A : Set] — List A — List A

{ everyOther A nil = nil

; everyOther A (cons a nil) =nil

; everyOther A (cons a (cons a’ as)) = cons a (everyOther A as)
}

The polymorphic functiorveryOther returns a list consisting of every second element of thetihgi
Since the only recursive call happens on sukdisbf the input listcons a (cons a’ as), termination

is evident. We say that the call argument decreases istthetural order, this order, plus lexicographic
extensions, is in essence the termination order acceptékebgroof assistants Agda, Coq, and Twelf
[Pie0].

The function distinguishes on the empty list, the singldigtand lists with at least 2 elements. Such
a case distinction is used in list sorting algorithms, t@owg may want to abstract it froeveryOther.

fun zeroOneMany : [A : Set] — List A — [C : Set] —
(zero : O —
(one : A —> QO —
(many : A - A — List A —» O —

C
{ zeroOneMany A nil C zero one many = zero
; zeroOneMany A (cons a nil) C zero one many = one a
; zeroOneMany A (cons a (cons a’ as)) C zero one many = many a a’ as

}

After abstracting away the case distinction, terminat®no longer evident; the program is rejected by
Agda’s termination checkebetus.

fun everyOther : [A : Set] — List A — List A
{ everyOther A 1 = zeroOneMany A 1 (List A)
nil
A a — nil)
(A a a’ as — cons a (everyOther A as))

}

Whether the recursive call argumertis structurally smaller than the inputdepends on the definition
of zeroOneMany. In such situations, Coq’s guardedness check may inlinelefiaition of zerooneMany
and succeed. Yet in general, as we have discussed in thexcohtgpe checking, inlining definitions is
expensive, and in case of recursive definitions, incomgatebrittle. Current CoglR10] may spend
minutes on checking a single definition, and fail nevertsele

Type-based termination can handle abstraction as in theeadd@mple, by assigning a more infor-
mative type tozeroOneMany that guarantees that the list passechday is structurally smaller than the
list analyzed byzeroOneMany. Using this restriction, termination efreryOther can be guaranteed. To
make this work, we introduce a purely administrative tgpee and let variables, j, andk range over
Size. The type of lists is refined asist A i, meaning lists of lengtk< i. We also add bounded size
quantification;; T(j), in concrete syntaxj < i] — T j, which letsj only be instantiated to sizes
strictly smaller thari. The refined type oferoOneMany thus becomes:
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fun zeroOneMany : [A : Set] — [i : Size] — List A i — [C : Set] —
(zero : Q) —

(one : A —- 0O —
(many : [j <i] - A —- A — List A j —» O —
C

The list passed taany is bounded by sizg, which is strictly smaller thaj. This is exactly the infor-
mation needed to mak&reryOther termination-check.

Barthe et. al. BGP0g study type-based termination as an automatic analysikifidethe curtain”,
with no change to the user syntax of types. Size quantificasicestricted to rank-1 quantifiers, known as
ML-style quantification Mil78]. This excludes the type aferooneMany, which has a rank-2 (bounded)
quantification. Higher-rank polymorphism is not inferablgtomatically, yet without it we fall short of
our aim: compositional termination. Anyway, the preredaisor inference is the availability of the
source code, which fails for abstract interfaces (such esnpetrized modules in Agda, Coq, or ML).
Thus, we advocate a type system with explicit size inforamabased on the structural order. It will be
presented in the remainder of this article.

2 Sizes, Iteration, and Fixed-Points

In the following, rather than syntactic we consider sentatyfpes such as sets of terminating terms. We
assume that types form a complete latticg, C, ", J) with least element. and greatest elemerit.
Further, let the usual type operatarqdisjoint sum),x (Cartesian product), ané (function type) have
a sensible definition.

Inductive typesuF, such ad.ist A, are conceived as least fixed points of monotone type canstsu
F, for lists this beingF X = T + A x X. Constructively CC79, least fixed points are obtained on a
U-semilattice by ordinal iteration up to a sufficiently largeinal y. Let u®F denote thexth iterate or
approximant which is defined by transfinite recursion an

uw F o= 1 zero ordinal: least element of the lattice
UettFE = F(u%F) successor ordinal: iteration step
u*  F = Uga M9F limit ordinal: upper limit

For monotoneF, iteration is monotone, i.eyF C uPF for a < B. At some ordinaly, which we
call closure ordinalof this inductive type, we hava®F = uYF for all a > y—the chain has become
stationary, the least fixed point has been reached. For palia F, i. e., those expressible without a
function space, the closure ordinakis The indexa to the approximanti?F is a strict upper bound on
the heightof the well-founded trees inhabiting this type; in the cakksts (which are linear trees) it is
a strict upper bound on the length.

Dually, coinductive types'F are constructed onra-semilattice by iteration from above.

vV O F =T zero ordinal: greatest element of the lattice
vAtlE = F(V9F)  successor ordinal: iteration step
VA F = Nga VOF  limit ordinal: lower limit

lteration from above is antitone, i.ez?F D VBF for a < B. The chain of approximants starts with
the all-typeT and descends towards the greatest fixed-paoint In case of the abovE this would be
Colist A, the type of possibly infinite lists over element tyfe The indexa in the approximanv®F
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could be called theéepthof the non-well-founded trees inhabiting this type. It ieér bound on how
deep we can descend into the tree before we hit undefinedibel(ay.

The central idea of type-based termination, going all thg teck to Mendler Ilen87, Hughes,
Pareto, and Sabr{HPS9§, Giménez {5im9¢], and Amadio and Coupet-Grimah{CG9§ is to introduce
syntax to speak about approximants in the type system. Contoniie more expressible systems, such
as Barthe et. al.LHGR083 and Blanqui Bla04] is syntax for ordinal variableg ordinal successaa
(MiniAgda: $a), closure ordinako (MiniAgda: #) and data type approximanB? (MiniAgda: e.qg.,
List A i). Hughes et. al. and the authagx{e08H have also quantifiergi. T over ordinals (MiniAgda:

[i : Size] — T).

How do we get a recursion principle from approximants? Giersihe simplest example: construct-
ing an infinite repetitiorr of a fixed element by corecursion. After assembling the colist-constructor
cons : A — ColList A i — ColList A (i + 1) on approximants, we give a recursive equatica cons a r
with the following typing of the r.h.s.

i :Size, r: ColList AiFconsar: Colist A(i+1)

The types certify that each unfolding of the recursive dedéniof r increases the number of produced
colist elements by one, hence, in the limit we obtain an itdisequence and, in particulais productive.
Our example is a special instance of the recursion princfigpe-based termination, expressible as type
assignment for the fixpoint combinator:

fVi.Ti—>T(i+1)
fix f @ Vi.Ti

(TakeT = CoList Aandf = Ar. cons ar to reconstruct the example.) The fixed-point rule can béfijedt

by transfinite induction on ordinal indéxWhile the successor case is covered by the premise of the rul
for zero and limit case the size-indexed typenust satisfy two conditionst 0= T (bottom checkand
Na<aTa C T A for limit ordinals A [HPS9§. The latter condition is non-compositional, but has a
compositional generalizatiompper semi-continuitfly .y Uq<g<x TB S T A [Abe08H.

The soundness of type-based termination in different mtgitor different type systems has been as-
sessed in at least 5 PhD theses: Bargas 99 (CIC), Pareto Par0(Q (lazy ML), Frade [Fra03 (STL), the
author Abe0q (F%), and Sacchini$ac1] (CIC). Recently, Barrasgar104 has completed a compre-
hensive formal verification in Coq, by implementing a seteitetical model of the CIC with type-based
termination.

However, type-based termination has not been integratedbigger systems like Agda and Coq.
There are a number of reasons:

1. Subtyping.
The inclusion relation between approximants gives riseutatyping, and for dependent types,
subtyping has not been fully explored. While there are btmory [AC01, Che97, substantial
work on coercive subtypingdhe03 LA08] and new results on Pure Subtype Systemist](],
no theory of higher-order polarized subtypirigf¢98 Abe084 has been formulated for dependent
types yet. In practice, the introduction of subtyping metirasg already complicated higher-order
unification has to be replaced by preunificati6yiN94].

2. Erasure.
Mixing sizes into types and expressions means that one aksrio erase them after type check-
ing, since they have no computational significance. The sys&em must be able to distinguish
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relevant from irrelevant parts. This is also work in progtesartial solutions have been given,
e.g., by Barras and Bernard®B08] and the author4bel1].

3. Semi-continuity.
A technical condition like semi-continuity can kill a systeas a candidate for the foundation of
logics and programming. It seems that it even deters theresxpdost systems for type-based ter-
mination replace semi-continuity by a rough approximatioading expressivity for simplicity—
Pareto and the author being notable exceptions.

4. Pattern matching.
The literature on type-based termination is a bit thin whHeromes to pattern matching. Pattern
matching on sized inductive types has only been treated gl Bla04]. Pattern matching on
coinductive types is known to violate subject reductioneépehdent type theory (detailed analysis
by McBride [McB09]). Deep matching on sized types can lead to a surprisingdparghbeld.

While items1 and2 require more work, item8 and4 can be addressed by switching to a different
style of type-based termination, which we study in the nextien.

3 Inflationary Iteration and Bounded Size Quantification

Sprenger and Dan8D03 note that for monoton€,

HF = |J F (WPF)

B<a

and base their system oircular proofs in theu-calculuson this observation. They introduce syntax
for unboundeddi and boundedj < i ordinal existentials and for approximanis (cf. Dam and Gurov
[DGO0Z and Schopp and Simpso®$03). Induction is well-founded induction on ordinals, and no
semi-continuity is required.

A first thing to note is that if we take above equation asdagénitionfor u“F, the chaina — u“F
is monotone regardless of monotonicity lof This style of iteration from below is calleidflationary
iteration and the dualdeflationary iteration

VIF = (| F (VFF)

B<a

always produces a descending chain. While inflationargtiten ofF becomes stationary at some closure
ordinaly, the limit u¥F is only a pre-fixed point ofF, i. e.,F (uYF) C uYF. This means we can construct
elements in a inflationary fixed-point as usual, but not nesrdy analyze them sensibly. UnleBsis
monotone, destructing an elementofF yields only an element of (uPF) for somep < y and not
one ofF (uYF). Dually, deflationary iteration reaches a post-fixed poifit C F (vYF) giving the usual
destructor, but the constructor has typ@ < y. F (VPF)) — v'F.

While we have not come across a useful application of negjatilationary fixed points in program-
ming, inflationary iteration leads to “cleaner” type-basermination. Inductive data constructors have
type (3j < i. F (uIF)) — u'F, meaning that when we pattern match at inductive tyffe, we get a
fresh size variablg < i and a rest of typé (u!F). This is the “good” way of matching that avoids
paradoxes/Abe1d; find it also in Barras Bar104. Coinductive data has typeF = Vj <i. F (VIF),
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akin to a dependent function type. We cannot match on it, apply it to a size, preventing subject re-
duction problems mentioned in the previous section. Rinedicursion becomes well-founded recursion
on ordinals,
fvii(Vj<i.T))—Ti
fix f:Vi.Ti

with no condition onl . Also, just like in PiSigmaADLO10], we can dispose of inductive and coinduc-
tive types in favor of recursion. We just define approximaetaursively using bounded quantifiers; for
instance, sized streams &®@eam Ai=V] <i. Ax Stream A j, and in MiniAgda:

cofun Stream : +(A : Set) -(i : Size) — Set
{ Stream A i = [j < i] — A & Stream A j
}

MiniAgda checks thabtream A i is monotone in element typ& and antitone in depth as specified
by the polarities+ and - in the type signature. If we erase sizes(}andSize to the non-informative
type T, we obtainStream A () = T — A x Stream A () which is a possible representation of streams in
call-by-value languages. Thus, size quantification candmsidered as typkfting, size application as
forcing and size abstraction aelaying

let tail [A : Set] [1i : Size] (s : Stream A $i) : Stream A 1
= case (s i) { (a, as) — as }

Taking the tail requires a stream of non-zero deptil. Sinces : Vj < (i+1). Ax Stream A j, we can
apply it toi (forceit) and then take its second component.

Zipping two streamssa= ap,ap,... andsb= bg,bs,... with a function f yields a streansc =
f(ao,bo), f(a1,b1),... whose depth is the minimum of the depthssafandsh Since depths are lower
bounds, we can equally state that all three streams have mcomepth.

cofun zipWith : [A, B, C : Set] (f : A - B — QO
[i : Size] (sa : Stream A i) (sb : Stream B i) — Stream C 1
{ zipWith AB C £ i sasb j-=
case (sa j, sb j) : (A & Stream A j) & (B & Stream B j)
{ ((a, as), (b, bs)) — (f a b, zipWith A B C £ j as bs)
}
}

Forcing the recursively defined streampWith A B C f i sa skby applying it toj < i yields a head-tail
pair (f a b, zipWith ABC f j as b$ which is computed from headgsandb and tailsas andbs of the
forced input streamsa jandsb j. The recursion is well-founded singe< i.

The famous Haskell one-line definitiofib = ® : 1 : zipWith (+)fib (tail fib) of the Fi-
bonaccistream : 1 : 1 : 2 : 3 : 5 : 8 : 13...can now be replayed in MiniAgda.

cofun fib : [i : Size] — |i| — Stream Nat i
{ fibi = A j — (zero,
Ak — (one,
zipWith Nat Nat Nat add k
(fib k)
(tail Nat k (£fib j))))
3

The |i| in the type explicitly states that ordinalshall serve as termination measure (syntax due to
Xi [Xi02]). Note the two delay3 j <i andAk < j and the two recursive calls, both at smaller depth
j,k < i. Such a definition is beyond the guardedness ch€ck3J of Agda and Coq, but here the type
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system communicates thapWith preserves the stream depth and, thus, productivity.

While our type system guarantees termination and prodtyct run-time,strongnormalization, in
particular when reducing undgrabstractions, is lost when coinductive types are just ddfiecursively.
Thus, equality testing of functions has to be very intersido-equality [ADLO10]), since testing}-
equality may loop. McBrideNIcB09] suggests an extensional propositional equalityl507] as cure.

Having explained away inductive and coinductive types,ingixhem does not pose a problem any-
more, as we will see in the next section.

4 Mixing Induction and Coinduction

A popular mixed coinductive-inductive type are stream pesors GHPOG given recursively by the
equationSP A B= (A — SP A B) + (B x SP A B). The intention is thabP A B represents continuous
functions fromStream A to Stream B, meaning that only finitely mang's are taken from the input
stream before & is emitted on the output stream. This property can be endoyedesting a least
fixed-point into a greatest on&P A B= vX.uY.(A —=Y)+ (B x X) [Abe07 GHP09. The greatest
fixed-point unfolds tquY.(A — Y) + (B x SP A B), hence, whenever we chose the second alternative,
the least fixed-point is “restarted”. Thus, we can conc8Re\ B by alexicographicordinal iteration

SPABapB= () |J(A—SPABaB)+(BxSPABQ )

a'<ap'<p

whereco represents the closure ordinal. The nesting is now definéodexicographic recursion pattern,
so we do not need to represent it in the order of quantifiersshiRg them in maximally yields an
alternative definition:

SPABaB=(A— | JSPABap)+(Bx (| SPABa )

B'<pB a'<a

This variant is close to the mixed data types of Agoa 0], where recursive occurrences are inductive
unless marked witke:

data SP (A B : Set) : Set where

get : (A —- SPAB) — SPAB

put : B — o (SPAB) — SPAB
In Agda, one cannot specify the nesting order, it always idens the greatest fixed-point to be on the
outside AD10Q].

Let us program with mixed types via bounded quantificatiorMimiAgda! The type of stream
processors is defined recursively, with lexicographic teation measurei, j|. The bounded existential
3j’ < j.T has concrete syntakj’ <j] & T, andEither X Y with constructorsleft: X — Either
X Yandright : Y — Either X Y is the (definable) disjoint sum type. We directly code thexal’
definition of SP:

cofun SP : -(A : Set) +(B : Set) -(i : Size) +(j : Size) — |i,j| — Set

{SPABij=Either (A — [j° < j]&SPABij")

(B & ([i” < i] — SP A B i’ #))

}

pattern get f

pattern put b sp

left £
right (b , sp)

We canrun a stream processor of depthnd heightj on anA-stream of unbounded deptk)(to yield a
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B-stream of depti(this is also called streasating[ GHP09). If the stream processor iszat f, we feed
the head of the stream tiy getting an new stream processor of smaller height (indeand continue
running on the stream tail. If the stream processor psitab sp we produce a i’ < i delayed stream
whose head i® and tail is computed by runningp, which has smaller depth (indéxbut unbounded
height (indexj).

cofun run : [A, B : Set] [i, j : Size] — |i,j| — SP AB i j — Stream A # —

Stream B i
{run AB i j (get f) as = case f (head A # as)
{ (3’, sp) - run A B i j’ sp (tail A # as) }
; run AB i j (put b sp) as = Ai’ — (b, run A B i’ # (sp i’) as)
}

A final note on quantifier placement: For monotdnhandii® = F (Up<a HB) we havel®F = pu9+1F. In
particulari®F = F L, thus for the list generatdt X = T +A x X the first approximarfi’F is not empty

but contains exactly the empty list. Typ& F contains the lists of maximal length. This encoding of
data type approximants is more suitable for size arithnatithas been advocated by Barthe, Grégoire,
and Riba BGRO081; in practice, it might be superior—time will tell.

5 Conclusions

We have given a short introduction into a type system for ilesition based on ordinal iteration. Bounded
size quantification, inspired by inflationary fixed pointsdaecursion with ordinal lexicographic termi-
nation measures are sufficient to encode inductive and gciive types and recursive and corecursive
definitions and all mixings thereof. The full power of clasdiordinals is not needed to justify our recur-
sion schemes: We only need a well-founded ordéhat is “long enough” and has a successor operation.
| conjecture that set induction or constructive ordinaleqd@& and RathjenAR08]) can play this role,
leading to a constructive justification of type-based teation.

While our prototype MiniAgda lacks type reconstruction dee for an enjoyable programming ex-
perience, it is evolving into a core language for dependgye theory with termination certificates. Our
long-term goal is to extend Agda with type-based termimeitioa way that most termination certificates
will be constructed automatically. MiniAgda could serveaasgntermediate language that double-checks
proofs constructed by Agda, erases static code, and feedsghinto a compiler back-end.

Acknowledgements.| am grateful for discussions with Cody Roux which exposetbdlem with Mini-
Agda’s pattern matching and set me on the track towards lsmligdantification as basic principle for
type-based termination. Thanks to Brigitte Pientka for yndiscussions on sized types and the invitation
to McGill, where some ideas of this paper prospered. Finaithank the MiniAgda users, especially Nils
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Recursion schemes are in essence the simply-typed lamhmldusawith recursion, generated from
uninterpreted first-order symbols. An old model of compataimuch studied in the Seventies, there
has been a revival of interest in recursion schemes as dgererd infinite structures (such as infinite
trees) with rich algorithmic propertiesligher-order model checkirgthe model checking of trees gen-
erated by higher-order recursion schemes—is a naturatgéation of finite-state and pushdown model
checking; it can serve as a basis for software model chedtefanctional languages such as ML and
Haskell.

After a quick survey of expressivity and decidability resuh higher-order model checking [6, 2, 5,
1], we present our recent application [7] to the model chegkif higher-order functional programs with
pattern-matching algebraic data types. We are concernédtia@ (undecidable) verification problem:
given a correctness propergy a functional progran®? and a regular input séf does every term that is
reachable fromh under rewriting by&? satisfy¢@? Our solution is a sound semi-algorithm (i.e. given a no-
instance of the verification problem, the method is guaehte terminate) which uses counterexample-
guided abstraction refinement, and is based on a backend oiwmiker.

Given a trivial automaton (i.e. Blichi tree automaton withieal acceptance condition) and a non-
deterministic higher-order recursion scheme with casstcoct over finite date-types, the model checker
decides if the language of trees generated by the schemeeigtad by the automaton. The model check-
ing problem is characterised by an intersection type sy$tferf] extended with a carefully restricted
form of union types; the decision procedure is based on tliemof traversal from game semantics
[3, 6]. We demonstrate the effectiveness of an implememntadf the algorithm on abstract models of
functional programs obtained from an abstraction-refingmpeocedure.

This talk is based on joint work with Steven Ramsay and Rol@atNerway.
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A general framework for the connection between charatiefiermulae and behavioral semantics
is described in [2]. This approach does not suitably coverasgics defined by nested fixed points,
such as the-nested simulation semantics fogreater than 2. In this study we address this deficiency
and give a description of nested fixed points that extendgpipeoach for single fixed points in an
intuitive and comprehensive way.

1 Introduction

In process theory it has become a standard practice to dedmhavioural semantics in terms of equiv-
alences or preorders. A wealth of such relations has beasifidal by van Glabbeek in his linear
time/branching time spectrum [4]. Branching-time behaxéd semantics are often defined as largest
fixed points of monotonic functions over the complete lattf binary relations over processes.

In [2] we give a general framework to reason about how thi® tgpbbehavioral semantics can be
characterized by a modal logic equipped with a greatest fio@ot operator, or more precisely by char-
acteristic formulae expressed in such a logic. In that egfee we show that a behavioural relation that
is derived as a greatest fixed point of a function of relatioves processes is given by the greatest fixed
point of the semantic interpretation of a logical declanatihat expresses the function in a formal sense
that is defined in present paper. Roughly speaking if a Ibgiealaration describes a monotonic func-
tion over a complete lattice then its fixed point describescty the fixed point of the function. In [2]
preorders and equivalences such as simulation preorddpisintulation equivalence are characterized
following this approach in a simple and constructive waywideer, when the definition of a behavioural
relation involves nested fixed points, i. e. when the moniothmction that defines the relation takes an-
other fixed point as an argument, things get more complicatbd framework offered in [2] only deals
with nesting on two levels and in a rather clumsy and uniivieiitvay. Furthermore it does not extend
naturally to deeper nesting, like for tmenested simulations fan > 2. In this study we address this
deficiency and define a logical framework in which relatiobtamed as a chain of nested fixed points
of monotonic functions can be characterized following gahgrinciples. This extends the approach for
single fixed points in an intuitive and comprehensive way.

As the applications we present in the paper only deal wittimgsf greatest fixed points, this study
only focuses on greatest fixed points. However it is strédgivard to extend it to deal with alternating
nesting of both least and greatest fixed points. We alsovgetteat our approach gives some idea about
how fixed point theories in different domains can be comparedstructured way.

*Supported by the project Processes and Modal Logics’ (praje 100048021) of the Icelandic Research Fund.
TSupported by the VELUX visiting professorship funded by thHeLUM FOUNDATION.

D. Miller and Z.Esik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 15-22, doi:10.4204/EPTCS.77.3



16 Fixed points

The remainder of the paper is organized as follows. Sectipre@ents some background on fixed
points of monotone functions. Section 3 briefly introdudes hodel of labelled transition systems and
some results on behavioural relations defined as greatedtgidints of monotonic functions over binary
relations. The logic we shall use to define characteristimédae in a uniform fashion is discussed in
Section 4. The key notion of a declaration expressing a nomeotunction is also given in that section.
Section 5 is devoted to an application of our framework toltigécal characterization of the family of
nested simulation semantics.

2 Posets, monotone functions and fixed points

In this section we introduce some basic concepts we nee ipaper.
Definition 2.1

e Anpartially ordered sebr poset (A, Ca) (usually referred to simply as A) consists of a set Aand a
partial order C over it.

e If Ais aposet and MC A, then ac A is anupper boundor M if mCa a for allme M. ais aleast
upper boundlub) for M if it is an upper bound for M and if whenever b is arpeap bound for M
then aCpx b.

e A poset A is @&omplete latticef the lub for M exists for all MC A.

e For posets A and B, a functiap: A — B is monotone if it is order preserving; it is aomorphism
if it is bijective and bothp and its inversep—! are monotone. We let A monoB denote the set of
monotone functions from A to B.

e If Ais a poset and £ A —monoA, then xe A is a fixed point of f if fx) = x. We writevf (or
vx.f(x)) for the greatest fixed point of f if it exists.

e If A and B are posets, € A —noncA and @ € A —nono B is an isomorphism then we define
@'f:B—Basg'f=@ofop.

Note that thdub of a subset of a posétis unique if it exists and the same holds for greatest fixedtpoi
of monotone functions over posets. It is well known, that EndB are posets/complete lattices dnid
some set, then the Cartesian prod#ct B and the function spade— A are a posets/complete lattices
under the pointwise ordering. The following theorem is du@drski.

Theorem 2.2 ([10]) If A is a complete lattice and &€ A —monoA, then f has a unique greatest fixed
point.

The theorem below is proved in [2] and is the key to the gertbesdry we present in this paper.

Theorem 2.3 Let A and B be posets,d A —monoA andg : A — B be an isomorphism. Thenf exists
iff v(¢*f) exists. If these fixed points exist thefv f) = v(¢*f).

3 Labelled transition systems and behavioural relations

It has become standard practice to describe behaviourarge® of processes by means dbabelled
transition systenas defined below.

Definition 3.1 ([7]) A labelled transition system (LT$ a triple P= (P,A,—) where
e Ais a finite set (of actions),
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e Pis afinite set (of processes), and
e —C P x A x Pis a transition relation.

As usual, we writgp — p’ for (p,a, p') €—. Throughout this paper we assume that theAsistfixed.

As LTSs are in general to concrete, processes are compangedrgers or equivalences. These are
often obtained as the greatest fixed points to monotone endidns on the complete lattic# (P x P).
We will show some example of such functions but first we statb@ove some properties.

Definition 3.2 If .7 € Z(P X P) = mono Z (P x P) and Ac (P x P), we define
o % :S— (Z(S1H) 1 and
o ZNA:S— F(SNA.
The following lemma will be applied below.
Lemma 3.3 Let.# € Z(P X P) —mono Z(P x P) and Ae Z(P x P). Then
o 7, FNAE P(PxP) —=mono?(PxP),
e V.7 = (v.Z) land
o« 7NA=FNAL
Proof The first two statements are proved in [2]. To prove the third we proceed follows:
(FOAS = (FnA)S ) L= (F(S ) InAat=(Fnas.
We will complete this section by giving some examples of éadction that define some standard be-
havioural preorders and equivalences [4, 1].
Definition 3.4 Let.# : Z(P x P) — & (P x P) be defined as follows:

(p,q) € Z(S iff vacA,p ePp-p =30 cP.qg-5dA(p,q) €S

It is easy to check tha# is monotonic and therefore it has a greatest fixed point.
Definition 3.5 We define:

o Zsim=Z andLCgm= V-%sim (Simulation preorder),

® Fopsim= Z and Copsin= V-Zopsim (inverse simulation preorder),

e ~sim=Lsim N Copsim (Simulation equivalence) and

® Fpisim = FsimN Fopsimand ~pisim= V-Zpisim (bisimulation equivalence).

4 Equational modal v-calculi with nested fixed-points

In this section we introduce variants of the standard eqnatimodali-calculus [8]. Like in [9] these

variants only allow for nested fixed points, i. e. where thgidal languages form a hierarchy where fixed
points in a language on one level are allowed as constante ilogic on the level above. Our approach,
however, differs from the original one in the sense that tkedfipoint operator is explicit in the syntax
and can therefore be used in logical expressions. In thdysite only focus on greatest fixed points
(which explains the title of this section) but the framewadn easily be extended to involve nesting
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of both greatest and least fixed points. The logical langsiage introduce depend on the implicitly
assumed fixed finite sét.

Our basic logic# is the standard Hennessy-Milner Logic (HML) [6] without dles. This logic
is generated by = (2o,%1,2,) whereXy = {tt, ff} are the constants or the operators of aritgD—=
{(a),[a],a € A} are the operators of arity 1, add = {A, vV} are the operators of arity 2.

The formulae in# are interpreted over an LT®, A, —) as the set of elements froRmthat satisfy
them. Satisfaction is determined by a semantic functionistdefined below. Fav C Pwe let(-a-)M =
{peP|3geM.p-2 q}, and[-a:]M = (-a-)M whereM is the complement of the sht.

Definition 4.1  The semantic function/| ] is defined as follows:

1. Z(t] =P, Z[ff] =0,

2. MFNB] = AF]NA[R], #[F1V ] = Z[R]U.Z]F],

3. A[(@)F] = (-a)#[F], #[[&aF] = [-a]#[F].

The logic? is the standard Hennessy-Milner logic with variables thas mtroduced in [9]. It assumes
a finite index set and anl-indexed set of variableg". In what remains of this paper we assume a fixed
pair of suchl and.Z", unless stated otherwise.

As the elements of” typically contain variables, they have to be interpretethwespect to a variable
interpretationo € 22(P)' that associates to each | the set of processes hthat are assumed to satisfy
the variableX;. The semantic functios[[ ]| in this case takes a formukaand ac ¢ #2(P)' and delivers
an element of”7(P).

Definition 4.2 The semantic functiott || | is defined as follows:

1. V[F]o=.Z[F]ifF € X,

2. V[XJlo=oa(i),iel,

8. V[RAR]o=7[R]onY[R]o, V[FVR]o=7[R]ou7[R]o,

4. V[(@FJo = (-a)7[Flo, 7[[&F]o = [-a]/[F]o.

In [9] the meaning of the variables in the logiC is defined by means of a declaration, or a function
D: I — 7. Intuitively the syntactic function generates a monotagnclofunction? [D] over 2 (P)'
defined by(#[D])(i) = #[D(i)] for alli € 1. By Theorem 2.2 '[D] has a unique largest fixed point
v7[D] € 2(P)' that can be used to give the semantics for the variables anfbtimulae that contain
those in the logic¥. We can then use this to extend the logi€ with {vD(i)|i € |} as constants
interpreted agv¥/[D](i)|i € 1}. By this we get a logic#’ that is generated by = (ZoU{vD(i)|i €
I},%2,23). Then this procedure can be repeated for another declartiéd possibly depends arD as

a constant and with#’ as the basic logic. The following example shows how this transon works.
Example Let | = {1}, 2" = {X;} andA = {a,b} and let the property “invariantlya)tt” be defined
as the greatest fixed point corresponding to the declar&tipdefined ao(1) = (a)tt A [a] Xy A [b]X;.

To interpret this we define# = .#, and ¥, = ¥ where.# and ¥ have the meaning described above.
The derived semantic functiorg[Do]) : 2 (P){! — 22(P){1} is easily shown to be monotonic and has
the greatest fixed point#[Do]] € #(P){1}. Now we define#; as the extension o# that is gener-
ated bys! = ({tt, ff,vDo(1)},21,2>), i.e. hasvDg(1) as a constant that is interpretedwag[[Do] (1),
L.e..#4[vDo(1)] = v45[Dol)(1).

Next let us assume that we have the declardiign {1} — #; where¥; is the variable logic gener-
ated by({tt, ff,vDo(1), X1 },22,23) andD; is defined a®1(1) = (b)vDo(1) A [b]X1 . As before the dec-
laration is interpreted ove#”(P){Y} but using.#1 [ | to interpret the constamDo(1). AgainDy is inter-
preted by using/[[ ] which leads to a monotonic endofunctigh[D1]] over 22(P){} with a fixed point



Aceto & Ingolfsdottir 19

v#1[D1]. The logic.#> is now defined as the one generatedBy= ({tt, ff,vD1(1),vD>(1)},%2,%3)
where.Z,][ ]| and.#1] || are used to define the meaningudd; (1) andvD,(1) respectively.

We will now generalize this procedure and define our hieramhnested fixed point logics, derived
from a sequence of nested declaratiysj = 1,2,...,N, i.e. where for each < N, D is allowed to
depend on the constaritsff andvDj(i) for j <nandi € I. In the definition we assume a finite index
setl and anl-indexed variable se#”. We use the notatiof (%) for the logic generated b, %1, %))
and¥ (%) for the logic generated b{goU 27,21, 25).

Definition 4.3
e Define
- 9= {tt, ff},
- My=%(53) and
~ Yo=%(39).

e Forn>1,ifD,: | — ¥, define
— 30 = 33U {vDy(i)]i €1},
- My =9(Z5™) and
~ Y1 =4 (5.
To define the semantic functions associated with thesedagicneed the following lemma.

Lemma4.4 Assume thatZ =% (C) and? = % (C) for some set of constants C whe#z&[[c] is well
defined for all c= C. Then for all D: | — ¥, the derived semantic functiofi[D] defined by

viel.(7[D]o)(i) =7[D()]o
isin 2(P)' —mono Z(P)' and hence, by Theorem 227'[[D] € 2 (P)" exists.
Now we are ready to define the semantic functions #gyand;, for all n > 0.
Definition 4.5

o My= ./ and ¥y =Y as defined in Definition 4.1 and 4.2 respectively.

e For n > 0the semantic functions fov7,,. 1 is defined as follows:

1. tnia[F] = #6[F] if F € ZG,

2. Mni1[(vDn)(i)] = v/[Dn](i) fori e,

3. nia[F N = i [F N ttna[Foll, Ao [FrV R = Atna[F]] U A0 [F])
[

4. Mo [(@)F] = (@) ttni1[F], Ania[[aF] = [-a] 01 [[F].
e For n > 0the semantic function fo¥;,, 1 is defined as follows:
1. Yaa[Fllo = «//n+1[[ JifF ez,

[F

2. Thul[X]o=o(i),iel,

3. Thual[FiA Fz]]U TilFlon7ualRlo, RV R]o = Yha[R]ou%aRlo,
[

4. Yl(@Fllo = (a)%[Flo, YaaflalF]o = [a]7ha[Flo.
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4.1 Characteristic Formulae by means of Declarations

The aim of this section is to show how each procpssP can be characterized up to a binary relation
D1 over processes (such as an equivalence or a preorder) byla irmula, the so called characteristic
formula for p up to.

To achieve this, we takle= P in the definitions in the previous section. A declaratidfor a variable
logic ¥ assigns exactly one formula(p) from 7 to each procesp € P. We have seen that each such
function induces an endofunctiofi[D]] € 22 (P)P —monoZ(P)” and therefore/ [ D] exists. This leads
to the following definition:

Definition 4.6 A declaration D for the logi¢/” characterizes<C P x P iff for each pg e P,

(p,q) ex iff g € (v/[D]))(p).

In what follows, we will describe how we can devise a chandteg declaration for a relation that is
obtained as a fixed point, or a sequence of nested fixed pdimsmotone endofunctions, which can be
expressed in the logic. In order to define this precisely veeths notation introduced in Definition 4.7
below.

Definition 4.7 If SC P x P we define the variable interpretatians € &7(P)P associated to S by

os(p) = {qeP| (p,q) € S}, for each pe P.

Thusos assigns t@ all those processeasthat are related to it vi&.
Definition 4.8 A declaration D for¥” expressea monotone endofunctio# on (P x P) when

(p,a) € (S iff g € V[D(p)]os = (¥ [D]as)(p),
for every relation S P x P and every pg € P.
We need the following to prove our main result.
Definition 4.9 Let®: 2(P x P) — 22(P)P be defined byp(S) = os.
Lemma 4.10
o ®: P (PxP)— 2(P)Pis anisomorphism.
o IfAL, Ay e Z(PxP)and.Z1, %5 € Z(P xP) —monoZ (P x P) then
— ®(A1NA) = P(A1) NDP(AL),
- (D*(yl ﬂAl) = P (ﬁl) N CD(Al) and
— O (F1NFo) = P*(F1) ND*(F2).
Proof The first part is proved in [2] whereas the second part folldikectly from the definition ofb.
Corollary 4.11 Assume that @ P — 7 and.# € Z(P x P) —=mono Z(P x P). Then

D expresses” iff ®*(.%#) = ¥/[D] iff D characterizes).%.

5 Applications

Following the approach in [2], we define declarati@handD that express the function& and.Z that
were defined in Section 3.

Definition 5.1 Let
e LetD: pr— Agea /\D’EP- pi)U<a>X,y and

e D:p— NacaldV yep p 2,y Xor
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From [2] we have:

Lemma5.2
e D expresses” and characterize®.#, and
e D expresses” and characterizes.% .

Now we recall from [2] the declarations that characterirawation equivalence and bisimulation equiv-
alence.

Lemma5.4  Dyisim Characterizes~pisim and DsimeqCharacterizesvsim.

Proof Dyisim does not contain nested fixed points and can therefore bptiated directly ovet/o = 7.
Now we proceed as follows:

o (ybisim) =" (c?sim) N (-D*(yopsim) = 7/[[Dsim]] N a//[[Dopsinﬂ = a//[[Dsim/\ Dopsinﬂ = 7/[[Dbisim]]-

To interpretDsimeqwe definex; = {tt, ff } U {vDsim(p)|p € P} and>> =31 U{vDopsin{ P)| p € P} and let
we get
cD*(aofsimeo) = ®(V.Fsim) N qJ(Vg\opsin) = V#1[Dsiml] N V7/1[[Dopsir11]] =

A>[[VDsim] N ///2[[VDopsin]] = M>[[VDsimN VDopsinﬂ = %[[Dsime(ﬂ-
The result now follows from Cor. 4.11.

Next we define the nested simulation preorders introducd8]iby using the function#. These
definition involve nesting of fixed points and are defined reigely on the depth of the nesting. The
1-nested simulatiof- y)siy is just the simulation preordetsim as defined in Section 3 and the function
Z(1)sim Is therefore the function”. As the preorde,1)sim depends on the inverse of the preorder
= (n)sim Which we callC ;)0 psim We simultaneously define the nested simulations and thearse in
our recursive definition. The functions that deflfg, sim andC n)opsimare called? nsim and.# n)opsim
respectively.

Definition 5.5 (Nested simulations)
1. Z(psim= F andC(psim= VF (1)sim»
2. F(1)opsim= 7 and C (1)opsin™= VZ(1)opsim
3. F(nr1sim = F(1simN V- njopsim@NAC (i 1)sim= V-F (nt-1)sim-
4. F(nr1)0psim= Z(1)opsim ) VF (n)sim ANA C (01 1)0psin= V-Z (n4-1)opsin

We complete this note by defining a sequence of nested dicteg@nd prove that they characterize the
sequence ofi-nested simulation preorders.

Theorem 5.6
1. Dyy)sim= D expresses(1)sim and characterizes_ y)sim,
2. D(1)opsim= D eXpressesZ(1)opsim and characterizes 1o psim
3. Dns-1)sim = D(1)simA VD (n)opsim EXPresses” ., 1)sim and characterizes— i, .1)sims
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4. D(nt1)0psim= D(1)0psim VD (n)sim EXPreSSes¥ (n,1)opsim @n d characterizes— ., 1)opsim

Proof We prove the statements simultaneously by inductiom.ofirst we note thaD4,D», ..., where
D2i—2 =Dj)simandDzi—1 = Dyj)opsimfor i > 1 is a sequence of nested declarations. For thercaskwe
get from Lemma 5.2 tha®* (F 1)sim) = %0[D(1)sim] and ®*(F(1)0psim) = ¥1[D2)0psin]- Next assume
that @ (.F(n)sim) = Y2n—2[[D(nysiml] @nd ®*(:F(nyopsim) = ¥2n-1[Dmjopsimi]- TO prove 3. we proceed as
follows:

o (y(nJrl)sim) =0 (y(l)sim) N qJ(Vtg(n)opsim) = %[[D(l)simﬂ N V7/2n72[[D(n)opsin']] =
%H—Z[[D(l)sim/\ VD(n)opsir‘rﬂ = 7/ZFI[[D(n+1)sim]]'

Finally, to prove 4. we have:

qy¥(=¢(n-&-l)opsim> = (D*(g(l)opsen) N cl)(Vg\(n)sim) = %[[D(l)opsinﬂ N V%n—l[[D(n)sinw]] =
%nfl[{D(l)opsim/\ VD(n)sim]] = 7/2n+1[[D(n+1)opsin‘H~
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IO vs OI in Higher-Order Recursion Schemes

Axel Haddad
LIAFA (Université Paris 7 & CNRS) & LIGM (Université Paris Est & CNRS)

We propose a study of the modes of derivation of higher-order recursion schemes, proving that
value trees obtained from schemes using innermost-outermost derivations (I0) are the same as those
obtained using unrestricted derivations.

Given that higher-order recursion schemes can be used as a model of functional programs,
innermost-outermost derivations policy represents a theoretical view point of call by value evaluation
strategy.

1 Introduction

Recursion schemes have been first considered as a model of computation, representing the syntactical
aspect of a recursive program [15, 2, 3, 4] . At first, (order-1) schemes were modelling simple recursive
programs whose functions only take values as input (and not functions). Since, higher-order versions of
recursion schemes [11, 5, 6, 7, 8, 9] have been studied.

More recently, recursion schemes were studied as generators of infinite ranked trees and the focus was
on deciding logical properties of those trees [12, 8, 10, 1, 13, 14].

As for programming languages, the question of the evaluation policy has been widely studied. Indeed,
different policies results in the different evaluation [8, 9, 7]. There are two main evaluations policy
for schemes: outermost-innermost derivations (OI) and inner-outermost IO derivations, respectively
corresponding to call by need and call by value in programming languages.

Standardization theorem for the lambda-calculus shows that for any scheme, outermost-innermost
derivations (OI) lead to the same tree as unrestricted derivation. However, this is not the case for 10
derivations. In this paper we prove that the situation is different for schemes. Indeed, we establish that
the trees produced using schemes with 1O policy are the same as those produced using schemes with OI
policy. For a given a scheme of order n, we can use a simplified continuation passing style transformation,
to get a new scheme of order n+ 1 in which 10 derivations will be the same as OI derivations in the
initial scheme (Section 3). Conversely, in order to turn a scheme into another one in which unrestricted
derivations lead to the same tree as IO derivations in the initial scheme, we adapt Kobayashi’s [13] recent
results on HORS model-checking, to compute some key properties over terms (Section 4.1). Then we
embed these properties into a scheme turning it into a self-correcting scheme of the same order of the
initial scheme, in which OI and IO derivations produce the same tree (Section 4.2).

2 Preliminaries

Types are defined by the grammar 7 ::= o0 | T — 7; o is called the ground type. Considering that — is
associative to the right (i.e. 7] — (7, — 73) can be written 7} — T, — 73), any type T can be written
uniquely as 7 — ... = Ty — o. The integer k is called the arity of 7. We define the order of a type by
order(o) = 0 and order(7; — 72) = max(order(7;) + 1,order(1;)). For instance 0 — 0 — 0 — o is a type

D. Miller and Z. Esik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012) © A. Haddad
EPTCS 77, 2012, pp. 23-30, doi:10.4204/EPTCS.77.4
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of order 1 and arity 3, (0 — 0) — (0 — 0), that can also be written (0 — 0) — 0 — o is a type of order 2.
Let 7/ — 7’ be a shortcut for 7 — ... — T — 7.
~—

{ times

Let I" be a finite set of symbols such that to each symbol is associated a type. Let I'* denote the set of
symbols of type 7. For all type 7, we define the set of terms of type .7 (I") as the smallest set satisfying:
I["C 7% M) and Up{ts|te T77%),se T7()} C.TYD). Ifaterm is in .7 7(I'), we say that ¢
has type 7. We shall write .7 (I') as the set of terms of any type, and ¢ : T if # has type 7. The arity of a
term ¢, arity(t), is the arity of its type. Remark that any term # can be uniquely written as t = @ #...t; with
o € I'. We say that o is the head of the term 7. For instance, letI'={F : (0 - 0) 20 —0,G:0—
o—o0,H:(0—0),a:o0}: FHandG aare terms of type 0o — 0; F(G a) (H (H a)) is a term of type
0; F ais not a term since F is expecting a first argument of type o — o while a has type o.

Let?: 7,1 : 7' be two terms, x : T’ be a symbol of type 7', then we write |, : T the term obtained
by substituting all occurences of x by 7’ in the term z. A t-context is a term C[e°] € T (T'W{e" : T})
containing exactly one occurrence of %; it can be seen as an application turning a term into another, such
that for all ¢ : 7, C[t] = C[e7] (o7~ 1N general we will only talk about ground type context where 7 = o
and we will omit to specify the type when it is clear. For instance, if C[e] = Fe (H (H a)) and¢' =G a
then C[f'| = F (G a) (H (H a)).

Let X be a set of symbols of order at most 1 (i.e. each symbols has typeooro — ... +0)and L : 0
be a fresh symbol. A tree t over LW | is a mapping 7 : dom' — X |, where dom' is a prefix-closed
subset of {1,...,m}* such that if u € dom" and t(u) = a then {j | uj € dom'} = {1,...,arity(a)}. Note
that there is a direct bijection between ground terms of .7°(X W L) and finite trees . Hence we will freely
allow ourselves to treat ground terms over X | as trees. We define the partial order C over trees as
the smallest relation satisfying 1. C ¢ and ¢ C ¢ for any tree t, and a 1.ty T a t]...t; iff t; C #]. Given a
(possibly infinite) sequence of trees ty,#;,7,... such that ¢; C ¢, for all i, one can prove that the set of all
t; has a supremum that is called the limit tree of the sequence.

A higher order recursion scheme (HORS) G = (V X, A4, %,S) is a tuple such that: ¥ is a finite
set of typed symbols called variables; ¥ is a finite set of typed symbols of order at most 1, called
the set of terminals; ./ is a finite set of typed symbols called set of non-terminals; % is a set of
rewrite rules, one per non terminal F : 7y — ... = T, = 0 € ./, of the form F x| ... xy — e with
e:0€ T (XEWANW{x1,....x¢}); S € A is the initial non-terminal.

We define the rewriting relation —¢ € 7 (XW.4")? (or just — when G is clear) as t —¢ ¢’ iff there
exists a context C[e], a rewrite rule F xj...x; — e, and a term F 1, ... fy : o such that t = C[F t,...t;] and
/=C [e[x1 Htl]“_[ka,k]]. We call F t; ... t : 0 aredex. Finally we define —; as the reflexive and transitive
closure of —¢.

We define inductively the | -transformation (-)* : T°(N WX) — To(XwW{Ll:0}): (Ft;...tr)* =
LVFeNand (aty..t)" = ati..t} forall a € £. We define a derivation, as a possibly infinite
sequence of terms linked by the rewrite relation. Let ty =S —g t; — Gt —¢ ... be a derivation, then one
can check that (19)* C (t1)* C ()" C ..., hence it admits a limit. One can prove that the set of all such
limit trees has a greatest element that we denote ||G|| and refer to as the value tree of G. Note that ||G|| is
the supremum of {t* | S —* t}. Given a term ¢ : 0, we denote by G, the scheme obtained by transforming
G such that it starts derivations with the term ¢, formally, G, = (¥, X,/ W{S'}, ZW{S —},5'). One
can prove that if  — ¢ then ||G,|| = ||Gy||.

Example. Let G = (¥, X, 4, Z%,S) be the scheme such that: ¥ ={x:0,¢0:0— 0,y : (0 —0) —0— o0},
Y={a:0>—>o0b:0o>0—0,c:0}, /={F:((0—>0)—0—0)—(0—0)—>0—0H:(0—
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0) »0—0,0,J,K:0—0,S:0}, and Z contains the following rewrite rules:

Fyox — yox Ix — «x Hox — a(Jx)(Kx)(¢x)
Jx — b ((Jx) (Jx) Kx — K(Kx) S — FHIc

Here is an example of finite derivation:

S — FHIc — HIlc — a(Jc)(Kc)(c)
— a(c)(K(Kc))(Ic) — a(Jc)(K(K(Kc)))(c)

If one extends it by always rewriting a redex of head K, its limit is the tree a 1. | L, but this is not the
value tree of G. The value tree ||G|| is depicted below.

b/a*c
b/ \b

b b b b
FARNARNANNAY

Evaluation Policies

We now put constraints on the derivations we allow. If there are no constraints, then we say that the
derivations are unrestricted and we let Acc® = {r: 0 | S —* t} be the set of accessible terms using
unrestricted derivations. Given a rewriting # — ¢’ such that t = C[F s ... 5] and t' = Cley; ;] With
Fxi..xx—ecX.

e We say that t — ' is an outermost-innermost (OI) rewriting (written 1 — ¢y t') there is no redex
containing the occurrence of e as a subterm of Cle].

e We say that 7 — ¢’ is an innermost-outermost (10) rewriting (written 1 —;0 t'), if for all j there is
no redex as a subterm of s;.

Let Accg; = {t 10 | S =%, t} be the set of accessible terms using OI derivations and Accl, = {t :
o | S =]t} be the set of accessible terms using IO derivations. There exists a supremum of Accg, (resp.
Acc$)) which is the maximum of the limit trees of OI derivations(resp. 10 derivations). We write it
|G|l o1 (tesp. ||Gl|10). For all recursive scheme G, (Acc®)* = (Acc$,;)*, in particular ||G||o; = ||G||. But
|G|l70 C ||G|| and in general, the equality does not hold (see the example is the next section).

3 From OI to 10

Fix a recursion scheme G = (¥ ,X, .4, %,S). Our goal is to define another scheme G = (¥, X, N, %,1I)
such that ||G||;0 = ||G||. The idea is to add an extra argument (A) to each non terminal, that will be
required to rewrite it (hence the types are changed). We feed this argument to the outermost non terminal,
and duplicate it to subterms only if the head of the term is a terminal. Hence all derivations will be
10O-derivations.

We define the 6 transformation over types by o = 0 — 0, and 7| — T, = T| — T,. In particular, if
T=1T —..—=> T —othenT=7 — ... - T — 0 — o. Note that for all 7, order(7) = order(7) + 1.
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For all x: T € ¥ we define X : T as a fresh variable. Let ary,,, be the maximum arity of terminals, we
define 11, ..., Nariry,,, : © — 0 and & : o as fresh variables, and we let ¥ = {¥: T | x € ¥ JW{N1, ..., Nar,.. } &
{0 : 0}. Note that 6 is the only variable of type 0. Forall a: T € ¥ define @ : T as a fresh non-terminal and
forall F : T € .4 define F : T as a fresh non-terminal. Let 4" = {a@: T |a € Z}W{F:T|F € #/}W{A:
0,1:0}. Note that / and A are the only symbols in .4/ of type o.

Lett: 1€ .7 (VWELW. ), we define inductively the term7: T € .7 (¥ WA ): If t =x € ¥ (resp.
t=acXt=Fc. ), welett=xc ¥ (tesp.i=acX,i=Fc. V) ift=tt,: Tthenf =1 b.

Let F x; ... x; — e be a rewrite rule of %Z. We define the (valid) rule F ¥ ... X 8 — e A in Z.
Let a € ¥ of arity k, we define therule@any ... e & — a (M A) ... (Nx A) in Z. We also add the rule
I — SAtoZ. Finally let G = (¥ X, N, Z,I).

Example. Let G = (¥ X, .4, %,S) be the order-1 recursion scheme with X = {a,c: 0}, /" ={S:0,F:
0—0—0,H:0— 0}, 7 ={x,y:0}, and the following rewrite rules:
S — F(Ha)c Fxy — y Hx — H(Hx)

Then we have ||G|lo; = ¢ while ||G][;o = L (indeed, the only IO derivation is the following S —
F (Ha) c - F (H (H a)) c— F (H (H (H a))) ¢ — ...). The order-2 recursion scheme G =
(V 2, N, R,I) is given by N ={[,A:0,5,3,c:0—0,F:(0—0)— (0—=0)—0—0H:(0—
0) = o0—0},V ={8:0,%y:0— o} and the following rewrite rules:
1 — SA S8 — F(Ha)cA F
Hxé6 — H(HXA cd — ¢ a

yo A

p o<l

—
_>

>

Note that in the term F (H a) € A, the subterm H a is no longer a redex since it lacks its last argument,
hence it cannot be rewritten, then the only 10 derivation, which is the only unrestricted derivation is
I —SA—F (H3a)cA—cA— c. Therefore |Gl;0 = ||G|| = c = ||G].

Lemma 1. Any derivation of G is in fact an Ol and an 10 derivation. Hence that ||G||10 = |G|

Proof (Sketch). The main idea is that the only redexes will be those that have A as last argument of the
head non-terminal. The scheme is constructed so that A remains only on the outermost non-terminals, that
is why any derivation is an OI derivation. Furthermore, we have that if r = F #,...t;A is a redex, then none
of the #; contains A, therefore they do not contain any redex, hence ¢ is an innermost redex. U

Note that OI derivations in G acts like OI derivations in G, hence ||G|| = ||G||.

Theorem 2 (OI vs 10). Let G be an order-n scheme. Then one can construct an order-(n+ 1) scheme G
such that ||G|| = ||G||;0.

4 From IO to OI

The goal of this section is to transform the scheme G into a scheme G” such that ||G”|| = ||G||;0. The
main difference between 10 and OI derivations is that some redex would lead to L in IO derivation
while OI derivations could be more productive. For example take F : 0 — o such that F x — ¢, and H : o
such that H — a H, with a : 0 — 0 and c : o0 being terminal symbols. The term F H has a unique OI
derivation, F H — ¢y c, it is finite and it leads to the value tree assiocated. On the other hand, the (unique)
IO derivation is the following F H — F(a H) — F (a (a H)) — ... which leads to the tree L.

The idea of the transformation is to compute a tool (based on a type system) that decides if a redex
would produce 1 with /0 derivations (Section 4.1); then we embed it into G and force any such redex to
produce L even with unrestricted derivations (Section 4.2).
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4.1 The Type System

Givenaterm?: 7 € .7 (XW.4"), we define the two following properties on 7: &2, (t) ="The term ¢ has
type o and its associated IO valuation tree is 17, and . (r) ="“the term 7 has not necessarily ground type,
it contains a redex r such that any IO derivation from r producing it’s IO valuation tree is infinite”. Note
that Z..(t) is equivalent to “the term ¢ contains a redex r such that |G, ||;o is either infinite or contains L”.
In this section we describe a type system, inspired from the work of Kobayashi [13], that characterises if a
term verifies these properties.

Let Q be the set {g,g-}. Given a type 7, we define inductively the sets ()%™ and ()" called
respectively set of atomic mappings and set of conjunctive mappings:

(O)atom =0, (O)A = {/\{617"'7 61'} | 61,...,6; € Q} , (m— ,52)amm = {qw} © {(Tl)/\ - (Tz)atom}
(11 = )" ={A\{61,....,6} | 01,...,6; € (1) — 7)™}

We will usually use the letter 6 to represents atomic mappings, and the letter ¢ to represent conjunctive
mappings. Given a conjunctive mapping ¢ (resp. an atomic mapping 6) and a type T, we write 0 :: T
(resp. 0 ::, T) the relation 6 € (7)" (resp. 6 € (7)¥°™). For the sake of simplicity, we identify the atomic
mapping 6 with the conjunctive mapping A{6}.

Given a term ¢ and a conjunctive mapping o, we define a judgment as a tuple ® I ¢ > G, pronounce
“from the environment @, one can prove that # matches the conjunctive mapping ¢, where the environment
O is a partial mapping from ¥ W .4 to conjunctive mapping. Given an environment @, @ € ¥ & .4 and
a conjunctive mapping o, we define the environment ® = @, > 6 as Dom(0®") = Dom(®) U {a} and
Q' (a) =o if o & Dom(®), O (o) = 6 A O(a) otherwise, and @' () = O(B) if B # «.

We define the following judgement rules:

OFt>0, .. OFt>6,
OF 1o A{61,.... 0.}

(At) (for all i)

Set
(Set) ®,ab A {61,...6,1 F av 6;

Y)(foracXand3j 0; = oo
@l—ab()'l—>...—>G,-§a”~,y(a)—>qoo( ) (f J 0j =)

OFHro—60 OFn>o
OFt >0

OFt>ge
OFn D> (g

(App) ™))

m(qm =g 1) (ift: 71 — 1)

Remark that there is no rules that directly involves ¢ , but it does not mean that no term matches ¢q | ,
since it can appear in @. Rules like (A7) or (App) may be used to state that a term matches g, .

We say that (G, ) matches the conjunctive mapping ¢ written - (G, ) >0 if there exists an environment
O, called a witness environment of - (G,#) >0, such that (1) Dom(®) = A, 2Q)VF : 1€ A O(F) :: 1T,
Q) if F x1..xx — e€ #Z and ® - F> 061 — ... — O;<x — g then either there exists j such that g., € 6}, or
i=kand O,x;>0y,...,x,>OrFe>qg,(4) OFt>o.

The following two results state that this type system matches the properties &7, and 4. and further-
more we can construct a universal environment, ®*, that can correctly judge any term.

Theorem 3 (Soundness and Completeness). Let G be an HORS, and t be term (of any type), & (G,1) > geo
(resp. & (G,t)>q. ) if and only if P(t) (resp. P2, (t)) holds.

Proposition 4 (Universal Witness). There exists an environment ®* such that for all term t, the judgment
F (G,t)> 0o holds if and only if ®* Ft> 0.
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Proof (Sketch). To compute ®*, we start with an environment @, satisfying Properties (1) and (2)
(Dom(®y) = A and VF : T € A Oy(F) :: T ) that is able to judge any term 7 : T with any conjunctive
mapping o :: T.

Then let .# be the mapping from the set of environments to itself, such that for all F : 7y — ... —
T —oe N, it F x1..x; — e€ Z then,

FO)F)={01 = ... 0 —q| g€ QAViC;i :: T AO,x;>O,...,.x,>Ok e q}
U{o] = ... = Oi<k = ¢ | AVi0; i T;ATj g € O}
U{o1—..—=0r—q. |Vio;:5ATjq. € O}

We iterate .% until we reach a fixpoint. The environment we get is @, it verifies properties (1) (2)
and (3). Furthermore we can show that this is the maximum of all environment satisfying these properties,
ie. if - (G,t)>0 then @ F1>0. O

4.2 Self-Correcting Scheme

Forall term7: 7€ 7 (XW.4"), we define [t] € (7)", called the semantics of ¢, as the conjunction of all
atomic mappings 6 such that ®* - ¢> 0 (recall that ®* is the environment of Proposition 4). In particular
P (1) (resp. Pw(t)) holds if and only if g € [t] (resp. g € [t]). Given two terms #; : T, — T and t; : Tp
the only rules we can apply to judge ®* 1) t,1>0 are (App), (¢ — g I) and (g.. I). We see that 6 only
depends on which atomic mappings are matched by #; and f,. In other words [#; ;] only depends on [#;]
and [1,]], we write [t,] [2] = [t1 2]

In this section, given a scheme G = (¥, X, 4", %,S), we transform it into G’ = (V" L, N %' ,S)
which is basically the same scheme except that while it is producing an IO derivation, it evaluates [¢'] for
any subterm ¢’ of the current term and label ¢ with [']. Note that if ¢ —;¢ ¢', then [¢t] = [¢']. Since we
cannot syntactically label terms, we will label all symbols by the semantics of their arguments, e.g. if we
want to label F 1;...ty, we will label F with the k-tuple ([#1], ..., [#])-

A problem may appear if some of the arguments are not fully applied, for example imagine we want
to label F H with H : 0 — 0. We will label F with [H], but since H has no argument we do not know
how to label it. The problem is that we cannot wait to label it because once a non-terminal is created, the
derivation does not deal explicitly with it. The solution is to create one copy of H per possible semantics
for its argument (here there are four of them: A{}, A{g.}, A{ge}, A{q1,g}). This means that FI#]
would not have the same type as F: F has type (0 — 0) — o, but FI! will have type (0 — 0)* — o.
Hence, F H will be labelled the following way: FIHT gAN gMat gMa- gMaia-} Note that even if F
has 4 arguments, it only has to be labelled with one semantics since all four arguments represent different
labelling of the same term. We now formalize these notions.

Let us generalize the notion of semantics to deals with terms containing some variables. Given an
environment on the variables ®” such that Dom(®”") C # and if x : T then ®” (x) :: 7, and given a term
t:1€ 7 (ZW. AN wDom(®")), we define [t]gr € (7)", as the conjunction of all atomic mappings 6 such
that @*,@” Ft>6. Given two terms #; : T» — T and 15 : To we still have that [t1 t2]@» only depends on

[[l‘l]]@V and [[1‘2]]@)’%’.

To a type T=T; — ... — T — o we associate the integer [7] = Card({(01,...,0%) | Vi 6; € (1,)"})
and a complete ordering of {(o1,...,0x) | Vi 0; € (7;)"} denoted G, 67, ..., Gfﬂ. We define inductively
the type 7+ = (‘Lf)[m - .= (f,j)(fd —o.
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To a non terminal F : 7y — ... — Ty — o (resp. a variable x: T, — ... = Ty — 0) and a tuple
oy :: T1,...,0; :: Ty, we associate the non-terminal F°1% : ‘L'lh'] — .= Tk“ﬂ — o€ N (resp. a
variable xC!%% : 't:][le — = Tkm] —oc V).

Givenatermz:T=1T — .. = T — 0 € J (¥ WIW.4) and an environment on the variables ®”

such that Dom(®”") C ¥ contains all variables in ¢, we define inductively the term tg,f]""’c" Tt e

T V'WrwW A ) forall oy :: 1y, ...,0p Ty ft =F € A (resp. t =x € V), t(;f""”c" = F %% (resp.

tar % =xO10) if t = a € ¥, 1) 7% = a. Finally consider the case where t =1 t with #; : T/ — 1

and 7, : 7. Let 0 = []g». Remark that tlgi*"““""k (7)1 = T+, We define (1 zg)g;’“"""k =

40,61,...00 , +67 +6(i’1 . . .. . . .
hgr' BBk hgr - lgy - Note that since this transformation is only duplicating and anotating, given a

term ¢+91% we can uniquely find the unique term ¢ associated to it.
LetF:1p—...—> T —0€N,01::T],...,0 5 Ty, and e =x1001, ... x>0y . If F x1..x, — e€ X,

—o‘Ek
we define in #’ the rule FO!-%

- ~ - T
R AR A +
G =V LN RS

ov- Finally, recall that

X & - X — e

The following theorem states that G’ is just a labeling version of G and that it acts the same.

Theorem 5 (Equivalence between G and G'). Given atermt : o, |G, |10 = ||G:l|i0-

We transform G’ into the scheme G” that will directly turn into L a redex ¢ such that g, € [z].
For technical reason, instead of adding | we add a non terminal Void : o and a rule Void — Void.
G = (V" 2, /" w{Void : 0},%",S) such that Z” contains the rule Void — Void and for all F € ./, if
R UL

q1 € [F] oy ... ox then F 1% X, X, * 5 Void otherwise we keep the rule of

X'
The following theorem concludes Section 4.

Theorem 6 (10 vs OI). Let G be a higher-order recursion scheme. Then one can construct a scheme G”
having the same order of G such that ||G" || = ||G||10-

Proof (Sketch). First, given a term ¢ : o, one can prove that |G/ |10 = |G/~ |10-
Then take a redex ¢ such that ||G/||;0 = L, i.e. ¢, € [G;]. There is only one OI derivation from
t: t — Void — Void — ..., then ||G/'|| = L. We can extend this result saying that if there is the symbol
L at node u in ||G/||;0, then there is L at node u in ||G}||. Hence, since ||G}||;0 C ||G/||, we have
IG" || = IG"[l:0- Then [|G"|| = [|G" |10 = IG"ll10 = |Gll10-
O

5 Conclusion

We have shown that value trees obtained from schemes using innermost-outermost derivations (I0) are
the same as those obtained using unrestricted derivations. More precisely, given an order-n scheme G
we create an order-(n+ 1) scheme G such that ||G||;0 = ||G||. However, the increase of the order seems
unavoidable. We also create an order-n scheme G” such that |G’ || = ||G||;0. In this case the order does
not increase, however the size of the scheme deeply increases while it remains almost the same in G.
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We give a new general definition of arity, yielding the comipamotions of signature and associated
syntax. This setting is modular in the sense requested Bly fnerging two extensions of syntax
corresponds to building an amalgamated sum. These sig@sate too general in the sense that we
are not able to prove the existence of an associated synti#msigeneral context. So we have to
select arities and signatures for which there exists theatesitial monad. For this, we follow a
track opened by Matthes and Uustal@] we introduce a notion of strengthened arity and prove that
the corresponding signatures have initial semanticsgggociated syntax). Our strengthened arities
admit colimits, which allows the treatment of thecalculus with explicit substitution in the spirit of

[12.

1 Introduction

Many programming or logical languages allow constructiséch bind variables and this higher-order
feature causes much trouble in the formulation, the unaled&tg and the formalization of the theory of
these languages. For instance, there is no universallypseteliscipline for such formalizations: that
is precisely why the POPLmark Challengg pffers benchmarks for testing old and new approaches.
Although this problem may ultimately concern typed langesagnd their operational semantics, it al-
ready concerns untyped languages. In this work, we extendwokinds of constructions our treatment
of higher-order abstract syntaxd], based on modules and linearity.

First of all, we give a new general definition of arity, yieldithe companion notion of signature.
The notion is coined in such a way to induce a companion naifaepresentation of an arity (or of a
signature) in a monad: such a representation is a morphissn@modules over the given monad, so that
an arity simply assigns two modules to each monad. Thereasuai category of such representations of
a signature and whenever it exists, the initial represiemateserves the name of syntax associated with
the given signature. This approach enjoys modularity irsthese introduced byLP]: in our category of
representations, merging two extensions of a syntax quorets to building an amalgamated sum.

Our notion of arity (or signature) is too general in the sethse we are not able to build, for each
signature, a corresponding initial representation. kotig a track opened in Matthes-Uustallg], we
define a fairly general notion aftrengthenedrity, yielding the corresponding notion of strengthened
signature. Our main result (TheorefnB) says that any strengthened signature yields the desiitél in
representation. As usual, this initial object is built asiaimal fixpoint.

Understanding the syntax of the lambda-calculus with ekiubstitution was already done ibZ],
where the arity for this construction was identified as a dpéence a colimit, of elementary arities (see
Section8). Our main motivation for the present work (and for our nemépwas to propose a general
approach to syntax (and ultimately to semantics) accogrfitinthis example in the spirit of our previous
work [14]. This is achieved thanks to our second main result (Thect&nwhich states the existence
of colimits in the category of (strengthened) arities.

D. Miller and Z.Esik (Eds.): Fixed Points © A. Hirschowitz, M. Maggesi
in Computer Science 2012 (FICS 2012) This work is licensed under the
EPTCS 77, 2012, pp. 388, doi:10.4204EPTCS.77.5 Creative Commons Attributiohicense.
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In this extended abstract, we do not discuss proofs. A campkasion is available on-link.

2 Related and future work

The idea that the notion of monad is suited for modeling stultisin concerning syntax (and semantics)
has been retained by many recent contributions on the suspee.g.9, 12, 16]) although some other
settings have been considered. For instancels the authors argue in favor of a setting based on
Lawvere theories, while in7] the authors work within a setting roughly based on operatlsqugh they
do not write this word down). The latter approach has beeadiyoextended, notably by M. Fior&,[

9, 10]. Our main specificity here is the systematic use of the olagien that the natural transformations
we deal with are linear with respect to natural structuremodiule (a form of linearity had already been
observed, in the operadic setting, s&&][ Section 4).

The signatures we consider here are much more general thagighatures in7], and cover the
signatures appearing ii, 12]. Note however that the latter works treat also non-welified syntax,
an aspect which we do not consider at all.

In our next wark, we will propose a treatment of equationahasetics for the present syntaxes. This
approach should also be accommodated to deal with typeddaeg as done for elementary signatures
in [17, 18, 2], or to model operational semantics as done for elementgnatures in 1].

3 The big category of modules

Modules over monads and the associated notion of linearalatansformation intend to capture the
notion of “algebraic structure which is well-behaved widspect to substitution”. An introduction on
this subject can be found in our papet8,[14]. Let us recall here the very basic idea.

Let R be a monad over a base categ@ryA module overR with range in a categor® is a functor
M: C — D endowed with an action dR, i.e., a natural “substitution” transformatign M-R — M
compatible with the substitution d® in the obvious sense. Given two modulesN over the same
monad and with the same range, a linear natural transfasmeati M — N is a natural transformation
of functors which is compatible with the actions in the olm§isense. This gives a category Mg) of
modules with fixed basB and ranged.

It is useful for the present paper to consider a larger cayegbich collects modules over fiierent
monads. For the following definition, we fix a range category

Definition 3.1 (The big module category\We define the big module category BMbes follows:

e its objects are pairdRi M) of a monadR on C and anR-moduleM with range inD.

e a morphism fromR, M) to (S,N) is a pair f,m) where f: R— S is a morphism of monads, and
m: M — f*N is a morphism oR-modules (heref*N is the functorN equipped with the obvious
structure ofR-module).

4 The category of arities

In this section, we give our new notion of arity. The destifiyan arity is to have representations in
monads. A representation of an ardyin a monadR should be a morphism between two modules

httpy/web.math.unifi.jlusergmaggegstrengthened
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dom@,R) and codonm4,R). For instance, in the case of the ariyof a binary operation, we have
dom@,R) := R? and codomg,R) := R. Hence an arity should consist of two halves, each of which
assigns to each mondgia module oveR in a functorial way. However, in all our natural examples, we
have codomd, R) = R as above. Although this will no longer be the case in the tyqasd (which we do
not consider here), we choose to restrict our attentionitesuof this kind, where codora(R) is R.

From now on we will consider only monads over the categgyand modules with rang8et. For
technical reasons, see Sectinve restrict our attention to the categoryueicocontinuous endofunctors
that we will denote Entl(Set). Analogously we will write Mof (resp. BMod) for the full subcategory
of monads (resp. of modules over these monads) which-ar@continuous.

We recall that finite limits commute with filtered colimits 8et. It follows that End’(Set) has finite
limits and arbitrary (small) colimits. This is the key ingient in the proofs ofu-cocontinuity for most
of our functors.

Definition 4.1 (Arities). An arity is a right-inverse functor to the forgetful functor from tbategory
BMod® to the category Mah.

Now we give our basic examples of arities:
e Every monadRis itself aR-module. The assignmeR— R gives an arity which we denote 6.
e The assignmerR — =g, wherexg denotes the final module ovBris an arity which we denote by,

e Given two aritiesa andb, the assignmeriR — a(R) x b(R) is an arity which we denote byxb . In
particular®? = © x @ is the arity of any (first-order) binary operation and, in ge@®" is the arity
of n-ary operations.

e Given an endofunctoF of Set, we consider thelerivedfunctor given byF’: X — F(X+x). It can
be checked how wheh is a module so i§’. Given an aritya, the assignmerR— a(R)’ is an arity
which we denot&’ and is calledderivativeof a.

« Derivation can be iterated. We denote &9 the n-th derivative ofa. Hence, in particular, we have
a9 =3 al=a,a@=a".

e For each sequence of non-negative integetsss,. .., s,), the assignmerR — R x ... x R is an
arity which we denote b®(9. Arities of the form®(® are saidalgebraic These algebraic arities are
those which appear irv].

e Given two aritiesa, b their compositiora- b := R+ a(R) - b(R) is an arity.
Definition 4.2. A morphism among two aritiea;,a,: Mon” — BMod” is a natural transformation
m: a; — ap which, post-composed with the projection BMbd— Mon®, becomes the identity. We
easily check that arities form a subcategory Ar of the categbfunctors from Mort to BMod”.

Now we give two examples of morphisms of arities:

e The natural transformatiop: ® - ® — 0 induced by the structural composition of monads is a
morphism of arities.

e The two natural transformatior®- n andn - ® from © to ® - ® are morphisms of arities.

Theorem 4.3. The category of arities has finite limits and arbitrary (sipablimits.

5 Categories of representations

Definition 5.1 (Signatures) We define a signaturg = (O, ) to be a family of aritiesy: O — Ar. A
signature is said to be algebraic if it consists of algebaaiies.
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Definition 5.2 (Representation of an arity, of a signatur§iven anw-cocontinuous monag over Set,
we define a representation of the adtyn Rto be a module morphism froa(R) to R; a representation
of a signaturez in R consists of a representationi®for each arity inx.

Example5.3. The usuabpp: A2 — A is a representation of the ari®? into the monad of A-calculus
8.

Definition 5.4. Given a signatur& = (O,«), we build the category Mdnof representations dt as
follows. Its objects arevs-cocontinuous monads equipped with a representatici. gk morphismm
from (M,r) to (N, s) is a morphism of monads fromal to N compatible with the representations in the
sense that, for eaahin O, the following diagram oM-modules commutes:

fo

(M) M
ao(m)l lm

m (ao(N)) = 7N

where the horizontal arrows come from the representatiodstize left vertical arrow comes from the
functoriality of arities andn: M — m*N is the morphism of monad seen as morphisnMemodules.

These morphisms, together with the obvious compositiom, Ko™ into a category which comes
equipped with a forgetful functor to the category of monads.
We are primarily interested in the existence of an initigkabin this category Mon

Definition 5.5. A signatureX is said representable if the category Mdras an initial object, which we
denotex.

Theorem 5.6. Algebraic signatures are representable.

For more details we refer to our papé&8[ (Theorems 1 and 2). We give below a more general result
(Theorem?.9).

6 Modularity and the big category of representations

It has been stressed ihJ] that the standard approach (via algebras) to higher-aylaiax lacks modu-
larity. In the present section we show in which sense ouraambr via modules enjoys modularity. The
key for this modularity is what we call the big category of negentations.

Suppose that we have a signatBire (O, a) and two subsignaturés andX, coveringZ in the obvi-
ous sense, and IBp be the intersection &1 andX,. Suppose that these four signatures are representable
(for instance becauseis algebraic or strengthened in the sense defined below)uMoty would mean
that the corresponding diagram of monads

is a pushout. The observation df7 is that this diagram of raw monads is, in general, not a pusho
Since we do not want to change the monads, in order to clairméatularity, we will have to consider
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a category of enhanced monads. Here by enriched monad, we angenad equipped with some
additional structure, namely a representation of someatige.

Our solution to this problem goes through the following “bigitegory of representations, which we
denote by RMon, wherR may stand for representation or for rich:

e An object of RMon is a tripleR, Z,r) whereR is a monady a signature, andis a representation of
ZinR
e A morphism in RMon fromRy, (O1,a1),r1) to (Rz, (O2,ay),r2) consists of an injective map= 0; —
O, compatible witha; anda, and a morphismm from (Ry,r1) to (Rp,i*(r2)), wherei*(r2) should
be understood as the restriction of the representatidn the subsignatureQ,a;) where we pose
i*(r2)(0) == ra(i(0)).
e It is easily checked that the obvious composition turns Rihom a category.
Now for each signaturg, we have an obvious functor from Mdto RMon, through which we may s&e
as an object in RMon. Furthermore, an injectioit; — X, obviously yields a morphisi := £, — £,
in RMon. Hence our ‘pushout’ square of signatures as demtritbhove yields a square in RMon. The
proof of the following statement is straightforward.
Modularity holds in RMon, in the sense that given a ‘pusheqgtiare of representable signatures as
described above, the associated square in RMon is a pushaiat a
As usual, we will denote by RMdhthe full subcategory of RMon constituted lhycocontinuous
functors. It is easy to check that the previous statemerqusley valid in RMor?’. Indeed, recall that,
by our definition, the initial representation of represbidaignatures lies in RMéh

7 Strengthening signatures

Guided by the ideas of Matthes and Uustdl@][we introduce in our framework the notion sfrength-
ened arity For a categonC, let us denote by Er{C) the category ofv-cocontinuougpointed end-
ofunctors i.e., the category of paird=() of an w-cocontinuous endofunctdf of C and a natural
transformation: | — F from the identity endofunctor t&. A morphism of pointed endofunctors
f: (F1,m) — (F2,72) is a natural transformatioh: F; — F5 satisfyingf oni = n».

Definition 7.1. A strengthened aritys a pair {,0) whereH is an w-cocontinuous endofunctor of
End’(Set) (i.e.,H € End’(End”(Set))) and@ is a natural transformatiof. H(-)- ~— H(-- ~) (where
H(-)- ~ and H(— ~) have to be understood as functors from E{R®kt) x End’(Set) to End’(Set))
satisfyingfx i 1,) = 1nx and such that the following diagram is commutative

0x(2122.01)

H(X)-Z1- 2, H(X-Z;-2Z7) 1)
H(X-Z1) - Z»

for every endofunctoX and pointed endofunctor@{,ey), (Z2,e>). We refer to as thestrengthon H.

Ouir first task is to make clear that our wording is consisterihé sense that a strengthened aity
somehow yields a genuine arifj. For this task, for each monaiwve poseH(R) := H(R) and we exhibit
on it a structure oR-module. We do even slightly more by upgradidginto amodule transformeim
the following sense:
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Definition 7.2. A module transformer is an endofunctor of the big module gate BMod” which
commutes with the structural forgetful functor BMod— Mon®.
Let (H,0) be a strengthened arity. For evesycocontinuous monal andw-cocontinuousk-module

M, we define the natural transformatip™) : H(M)-R — H(M) as the compositionH (o™) - Oy r.
TheAn H(M),p"HM) is anR-module, and this construction upgradéinto a module transformer denoted
by H.

We call the restriciorH of the module transformeH to the category of monads the arity associated
to the strengthened arity.

Our next task is to upgrade our favorite examples of arities $trengthened arities:
e The arity® comes from the strengthened arity, ) whereH andd are the relevant identities.
e The arity« comes from the strengthened arity,§) whereH is the final endofunctor and is the

relevant identity. This is the final strengthened arity.

e The arity® - ® comes from the strengthened arity, §) whereH := X +— X- X andfxy : X- X-Y —
X-Y-X-Y:=X-n¥-X-Y; here we have written” for the morphism from the identity functor %
(remember thaY is pointed).

e If an arity comes from a strengthened arity, so does its diviey (see Propositio.4).

Then we show how our basic constructions in the category itésrcarries over the category of
strengthened arities. First we describe this categorphijscts are strengthened arities and we take for
morphisms from I, ;) to (H»,6,) those natural transformatioms: H; — Hy which are compatible
with 61 and#,, that is, the diagram

Hi(X)-Z = Hy(X - 2)
me¢ imxz
Ha(X)-Z —— Ha(X-2)

is commutative for every endofunctirand every pointed endofunctdr
Theorem 7.3. The category of strengthened arities has finite limits arteary colimits.

Next, we take care of the derivation. We denoteboyne endofunctor ofet given byA — A+ . For
any other pointed endofunctdtover Set we have a natural transformatiert : D-X — X- D given by

WX X(A) + % — X(A+%) W= X(ia) + as - *

whereia: A— A+ andx: « — A+ = are the inclusion maps.

Proposition 7.4. If (H,6) is a strengthened arity, then the pdid’,0’), where H := X — H(X)’ and
0y 7 = 0xzD- H(X)wW?, is a strengthened arity. We call it tiierivativeof (H, 6).

Now we point out the possibility of composing strengthengties.
Definition 7.5. If H := (H,p) andK := (K, o) are two strengthened arities, their compositidrK is the
pair (H - K,6) whered is defined bydx ze = H(ox,ze) - PK(X).z.0)-
Proposition 7.6. This composition turns strengthened arities into a strichawidal category.

Next, we turn to the main interest of strengthened aritiesignatures) which is that the fixed point
we are interested in inherits a structure of monad.

Lemma 7.7. Let (H,0) be a strengthened arity. Then the fixed point T of the functot F+ H is w-
cocontinuous and comes equipped with a structurd-eépresentation which is the initial object in the
category of theH-representations.
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We say that a signature is strengthened if it is a family adfrgthened arities. The previous lemma
leads immediately to the following result.

Theorem 7.8. Strengthened signatures are representable.

8 Examples of strengthened syntax

Lambda-calculus moduloa-equivalence One paradigmatic example of syntax with binding is ihe
calculus. We denote b (X) the set of lambda-terms up éeequivalence with free variables ‘indexed’
by the setX. It is well-known [6, 3, 13] that A has a natural structure of cocontinuous monad where the
monad composition is given by variable substitution.

It can be easily verified that applicati@pp: A2 — A and abstractiombs: A’ — A areA-linear
natural transformations, that ig, is a monad endowed with a representationf the signaturex =
{app: ®2,abs: ®’}. The monadA is initial in the category Moh of w-cocontinuous monads equipped
with a representation of the signatize

This is an example of algebraic signature and thus alreadyeld by other previous worksd, 14, 7].

Here we simply remark that our new theory covers such a clalssase.

Explicit composition operator We now consider our first example of non-algebraic signatOreany
monadR, we have the composition operator (also cajid operator)uR: R-R — R which has arity

- 0. We will refer to theuR operator as thamplicit composition operator. An interesting problem is to
see if this kind of operators admits a correspondirglicit version, i.e., if they can be implemented as a
syntactic construction. As we have seen befdr@® is a strengthened arity hence we can build syntaxes
with explicit composition operator of kind

join: -0 — 6.

Of course, this is only ayntacticcomposition operator, in the sense that it does not enjograkv
desirable conversion rules like associativity, two-sidientity and the obvious compatibility rules with
the other syntactic constructions present in the signatareur next work we will show how to construct
such kind ofsemanticcomposition operator.

Let us mention that given a mon&j the unityr: | — Ris not anR-linear morphism (in fact| is
not even arR-module in general). For this reason we cannot treat exagslsyntax with explicit unit.

Syntax and semantics with explicit substitution On any monadR, we have a series of substitution
operatorsr,: R™ . R" — R which simultaneously replaaeformal arguments in a term with given
terms. As observed by Ghani and Uustdld][ these substitution morphisms satisfy a series of compati
bility relations which mean that they come from a single nmismsubst: C — ® whereC is identified

as the coend ,
A:Fin
C= f oW x A,

Here Fin stands for a skeleton of the category of finite s€t8,denotes the cartesian power apéf

is defined by@™(R, X) := R(X + A). Since coends are special colimits, and strengthenedsaetimit
colimits, we just have to check that the bifunctorial aridyB) — ©® x ®8 factors through the category
of strengthened arities. As far as objects are concernedfaifows from our results in Section. The
verification of the compatibility of the corresponding “eeming” and “projection” morphisms with the
strengthened structures is straightforward.
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M odel-Checking the Higher-Dimensional Modal u-calculus

Martin Lange Etienne Lozes
School of Electr. Eng. and Computer Science, University a§sel, Germany

The higher-dimensional modai-calculus is an extension of the-calculus in which formulas are
interpreted in tuples of states of a labeled transitionesystEvery property that can be expressed
in this logic can be checked in polynomial time, and conJgreeery polynomial-time decidable
problem that has a bisimulation-invariant encoding inbelad transition systems can also be defined
in the higher-dimensional modgal-calculus. We exemplify the latter connection by giving exay
examples of decision problems which reduce to model chgaidrthe higher-dimensional modal
u-calculus for some fixed formulas. This way generic modetkhey algorithms for the logic can
then be used via partial evaluation in order to obtain atgors for theses problems which may
benefit from improvements that are well-established in thle fof program verification, namely on-
the-fly and symbolic technigues. The aim of this work is teeext such techniques to other fields as
well, here exemplarily done for process equivalencesnaata theory, parsing, string problems, and
games.

1 Introduction

The Modal u-Calculus.Z), [6] is mostly known as a backbone for temporal logics usedrogmm
specification and verification. The most important decigimblem in this domain is the model checking
problem which is used to automatically prove correctnegga@jrams. The model checking problem for
%, is well-understood by now. There are several algorithmsiapementations for it. It is known
that model checkingZ), is equivalent under linear-time translations to the pnobtf solving a parity
game [8] for which there also is a multitude of algorithmsikmade. From a purely theoretical point of
view, there is still the intriguing question of the exact qrtational complexity of model checking);:
the best known upper bound for finite models isrtdéBUP [5], which is not entirely matched by the
P-hardness inherited from model checking modal logic.

%, can express exactly the bisimulation-invariant propsrtitree or graph models which are de-
finable in Monadic Second-Order Logic [4], i.e. are reguldris means that for every such $eof trees
or graphs there is a fixe@, formula¢, s.t. a tree or grapts is a model ofg,_ iff it belongs toL. Thus,
any decision problem that has an encoding into regular aichbiation-invariant sets of trees or graphs
can in principle be solved using model checking technoldgydetail, suppose there is a ddtand a
function f from the domain oM to graphs s.t{ f(x) | x € M} is regular and closed under bisimilarity.
By the result above there is a#,, formula ¢y which defines (the encoding ofi. Now any model
checking algorithm forZ), can be used in order to solixé.

Note that in theory this is just a reduction frdvhto the model checking problem fd¥), on a fixed
formula. Obviously reductions from any problekio some problenB can be used to transfer algorithms
from B to A, and the algorithm obtained f@ can in general be at most as good as the algorithnBfor
unless it can be optimised for the fragmenBofesulting from embedding into it. However, there are
two aspects that are worth noting in this context.

e A reduction to model checking for a fixed formula can lead tacmmore efficient algorithms. A
model checking algorithm takes two inputs in general: acétine and a formula. If the formula is

D. Miller and Z.Esik (Eds.): Fixed Points © M. Lange, E. Lozes
in Computer Science 2012 (FICS 2012) This work is licensed under the
EPTCS 77, 2012, pp. 39-46, doi:10.4204/EPTCS.77.6 Creative Commons Attribution License.
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fixed then partial evaluation can be used in order to optirtieegeneral scheme, throw away data
structures, etc.

e Program verification is a very active research area whichdeasloped many clever techniques
for evaluating formulas in certain structures includingtba-fly [8] and symbolic methods [2],
partial-order reductions, etc.

We refer to [1] for an example of this scheme of reductions ¢aleh checking for fixed formulas, there
being done for problems that are at least PSPACE-hard.dtshisws how this can be used to solve com-
putation problems in this way. Since the data complexitydet@hecking with fixed formula) of), is

in P, using this scheme fag), is restricted to computationally simpler problems which oavertheless
benefit from developments in program verification. Furth@menit is the presence of fixpoint operators
in such a logic which makes it viable to this approach: fixpojperators can be used to express induc-
tive concepts—e.g. the derivation relation in a contegefgrammar—and at the same time provide the
foundation for algorithmic solutions via fixpoint iteratidor instance.

Here we consider an extension &, the Higher-Dimensional Modgl-Calculus.%,, and in-
vestigate its usefulness regarding the possibility to iaba#ggorithmic solutions to various decision or
computation problems which may benefit from techniquesimaity developed for program verification
purposes only. Itis known that?’ captures the bisimulation-invariant fragment of P. We skittch how
the Z” model checking problem can be reduced4pmodel checking via a simple product construction
on transition systems. Thus we can obtain—in principle—goréghm for every problem that admits
a polynomial-time solution and a bisimulation-invarianceding into graphs. The reduction frogfy’
to £}, is compatible with on-the-fly or BDD-based model checkinchteéques, thus transferring such
algorithms from%, first to £’ and then on to such decision problems.

2 TheHigher-Dimensional Modal u-Calculus

Labeled Transition Systems. A labeled transition system (LTS) is a graph whose verticesealges
are labeled with sets of propositional variables and labedpectively. Formally, an LTS over a set
> ={a,b,...} of edge labels and a sBt= {p,q,...} of atomic propositions is a tupit = (S 5,4, p)
such thasg € S, A C Sx X x Sandp : S—+Z(P). Elements oS are called states, and we write" s
when(s,a,s) € A. The statesy € Sis called the initial state dbt.

We will mainly consideffinite transition systemd,e. transition systemsS ,A, p) such thatSis a
finite set. Infinite-state transition systems arising frammgpam verification are also of interest, but their
model checking techniques differ from the ones of finite LT aannot be handled by our approach
(see more comments on that point in the conclusion).

Syntax. We assume infinite se¥ar = {x,y,... } andVar, = {X,Y, ...}, of first-order and second-order
variables respectively. For tuples of first-order variable= (xq,...,X,) andy = (yi,...,¥n), with all x;
distinct,x«y, denotes the functior : Var—Var such thak (x) = y;, andk (z) = zotherwise. Itis called
avariable replacement

The syntax of the higher-dimensional mogaktalculus.Z’ is reminiscent of that of the ordinary
modal p-calculus. However, modalities and propositions are ixétatd to a first-order variable, and it
also features theeplacementodality {« }. Formulas ofZ’ are defined by the grammar

¢, = pX) [ X[ =g [dAY](@)xd | uX.¢ | {xy}¢
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wherex,y € Var, kK : Var—Var is a variable replacement with finite domamg %, andX € Var,. We
require that every second-order variable gets bound by aifikguantifieru at most once in a formula.
Then for every formulap there is a functiorfp, which maps each second-order varial@ccurring

in ¢ to its unique binding formuldp, (X) = pX.¢. Finally, we allow occurrences of a second-order
variableX only under the scope of an even number of negation symboksroedthfp, (X).

A formula is of dimensiom if it contains at mosh distinct first-order variables; we writ&}; to
denote the set of formulas of dimensionNote that.,iﬁ} is equivalent to the standard modaicalulus:
with a single first-order variabbe we havep(x) = p, {x<x} ¢ = @ and(a)x = (a) Y for any .

As usual, we writep \V @, [alx¢, andvX.¢ to denote-(—¢ A=), =(a)x—¢, ~uX.—¢’ respectively
where¢’ is obtained fromp by replacing every occurrence ¥fwith —X. Other Boolean operators like
= and< are defined as usual.

Note that{k } is an operator in the syntax of the logic; it does not descsipeactic replacement of
variables. Consider for instance the formula

VXA P = py) A A @x(@yX A {(xY) (X)X
peP acx

As we will later see, this formula characterizes bisimil@tasx andy. In this formula, the operational
meaning of{x, y«y, X} X can be thought as “swapping the players’ pebbles” in therhikition game.

We will sometimes require formulas to be positive nhormal form Such formulas are built from
literals p(x), =p(x) and second-order variabl&susing the operators, V, (a)x, [ax, U, v, and{k}. A
formula isclosedif all second-order variables are bound by sqme

With Suli¢) we denote that set of alubformulasof ¢. It also serves as a good measure for the
sizeof a formula: |¢| := [Sulf¢)|. Another good measure of the complexity of the formglas its
alternation depth agl, i.e the maximal alternation g andv quantifiers along any path in the syntactic
tree of its positive normal form.

Semantics. A first-order valuationv over a LTSt is a mapping from first-order variables to states,
and a second order valuation is a mapping from second ordabies to sets of first-order valuations:

Var — S
Var, —  Z(Val)

Val
Val;

1> 1>

We write v[x — § to denote the first-order valuation that coincides withexcept thatx € x is
mapped to the correspondigge s. We use the same notatiofi|X — P] for second-order valuations.
The semantics of a formulp of .,le*’ for a LTS91 and a second-order valuationis defined as a set of
first-order valuations by induction on the formula:

[P(X)] 3 £ {vipe P(V(x))}

[—0]% £ Val—[¢]3

o AWl 2 [¢lmN Wiy

[(@xd]n 2 {v:3sv(x) = sandvx— s € [¢]];)
XI5 = Y(X)

[uX.0]% 2 LFP AP e 2(Val). [¢]5 7"
[{(xy}olym = {v:vixe>v(Y)] € [o]}

We simply write[¢]on to denote the semantics of a closed formula. We vibite/ = ¢ if v e [¢]on,
and9 E ¢ if M, vp E ¢, wherevy is the constant function tgy. Two formulas are equivalent, written
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¢ =, if [@]on = [Y]on for any LTSON. As with the normal modafi-calculus, it is a simple exercise
to prove that every formula is equivalent to one in positisenmal form.

Proposition 1. For everyg € .7 there is ay in positive normal form such that= ¢ and || < 2-[¢|.

Reduction to the Ordinary p-Calculus. Here we consider?)’ as a formal language for defining
decision problems. Algorithms for these problems can bainetl from model checking algorithms for
£, on fixed formulas using partial evaluation. In order to liftsorts of special techniques which have
been developed for model checking in the area of progranficegion we show how to reduce tb@lj*’
model checking problem to that dﬁ}, i.e. the ordinaryu-calculus.

Let us assume a fixed non-empty finite subsaetdf first-order variables. A formula of glj*’ with
fv(¢) CV can be seen as a formugeof Zul over the set of the atomic propositioRs< V and the action
labelsZ x V U (V — V). We write py instead of{ p, x) for elements oP x V, and equallya, for elements

from = x V. Theng $ can be defined as the homomorphism such pat2 py, m 2 (a) ¢, and
{x¥}¢ = (x-)9.

We call an LTShigher-dimensionaivhen it interprets the extended propositignsand modalities
(ax) and(k) introduced by the formula$, andgroundwhen it interprets the standard propositions and
modalities. For a ground LT3t and a formulap, we thus need to define the higher-dimensional LTS
over which@ should be interpreted: we call it thé-clone of 91, and write itcloney (971). Roughly
speaking,cloney (91) is the asynchronous product M| copies of)t. More formally, assuméi =
(S, 0,4, p); thencloney (M) = (S, 5,4, p’) is defined as follows.

e The states are valuations of the variable¥ iby states ir§, e.g $=V — S, ands, is the constant

functionAx e V..

e The atomic propositiorpy is true in those new states, which assigto an original state that
satisfiesp, e.9.p"(V) = {px : p€ p(v(x))}.

e The transitions contain labels of two kinds. First, theraris,-edge between two valuationsand
Vv, if there is ara-edge betweeni(x) andV/(x) in the original LTSM:

vV iff 3tv(x) = tandV = vix e t].

For the other kind of transitions we need to declare the effeapplying a replacement to a valu-
ation. Letv:V—Shbe a valuation of the first-order variablesMhandk : V—V be a replacement
operator. Letk(v) be the valuation such thak (v)(x) = v(k(x)). Then we add the following
transitions ta\'.

vVt VvV =tk(v)

Note that the relation with labe{ is functional for any suclk, i.e. every state irloney (97) has
exactly onex-successor. Hence, we hayee) ¢ = [K] over cloned LTS.
Theorem 2. LetV be a finite set of first-order variables, Bt = (S 5,4, p) be a ground LTS, and let
¢ be a7 formula such that figp) CV. Then

ME¢ iff cloney(M) = .

The proof goes by straightforward induction ¢rand is therefore ommitted — see also the chapter
on descriptive complexity in [3] for similar results. Theportance of Thm. 2 is based on the fact that it
transfers many model checking algorithms for the medahlculus taZ2, for example on-the-fly model
checking [8], symbolic model checking [2] with BDDs or via BAstrategy improvement schemes [9],
etc.
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3 Various ProblemsasModel Checking Problems

The model checking algorithms we mentioned can be explademblve any polynomial-time problem
that can be encoded as a model checking proble&fh By means of examples, we now intend to show
that these problems are quite numerous.

Process Equivalences. The first examples are process equivalences encountereddess algebras.
We only consider here strong simulation equivalence arichbéity, and let the interested reader think
about how to encode other process equivalences, like weakilarity for instance.

Let us first recall some standard definitions. D8t= (S 9,4, p) be a fixed LTS. Asimulationis a
binary relationR C Sx Ssuch that for al(s;,s) in R,

e forall pe P: pep(s) iff pe p(s);
e forallac s ands, €S if s — s, then there is, € Ssuch thas, —~ s, and(s;,s,) € R

Two statess, s aresimulation equivalents = s, if there are simulation® R such that(s,s') € Rand
(¢,s) € R. A simulationR is abisimulationif R= R™%; we say thats § arebisimilar, s~ ¢, if there
is a bisimulation that contains,s'). We say that two valuations are bisimilar, V, if for all x € Var,
V(X) ~ V(X).

Proposition 3. [7] .Z, is closed under bisimulation: if  [¢] and v~ V', then V € [¢].

Let us now explain how these process equivalences can teddry the model checking algorithms:
the following formula captures valuationsuch thaw(x) ~ v(y)

vX. A P = py) A Alalk@yX A {6Y)+1x)}X

peP acz

whereas the following formula captures valuatiorsich that/(x) « v(y)

UX(WY. A\ PO & py) A Aldk(@yY) A {(xy)¥x)X.

peP acx

Automata Theory. A second application oﬂﬁ’ is in the field of automata theory. To illustrate this
aspect, we pick some language inclusion problems that canled in polynomial-time.

A non-deterministic Buchi automaton can be viewed as aefibitS A = (S 5,4, p) wherep in-
terprets a predicaténal. Remember that a run on an infinite worde 2% in A is accepting if it visits
infinitely often a final state. The set of worbd§A) C 2% that have an accepting run is called the language
accepted by,

The language inclusion probletn(A) C L(B) is PSPACE-hard for arbitrary Biichi automata and
therefore unlikely to be definable i&’. In the restricted case @ being deterministic, it becomes
solvable in polynomial time. Remember that a Biichi aut@mas called deterministic if for ath € Z,
foralls,s;,5 € S, if s— s ands — s, thens; = S,.

Let us now encode the language inclusion problgi) C L(B) as a.#> model checking problem.
To shorten a bit the formula, we assume tBa moreoveicompletei.e. for all s S, for alla € Z, there
is at least ona' such thas — s Let us introduce the modalitfsynch ¢ = Vs (a)x(a)y¢. Consider
the formula

iy 2 <synch*le.(finaI(x)/\—|final(y)/\u22.(syncl')(Zlv(ﬁfinal(y)/\Zz)))
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Let Map be the LTS obtained as the disjoint unionfAfnd B with initial statessa of A andsg of B
respectively. Thel(A) is included inL(B) if and only if Mta g,V @inct Wherev(x) = sa andv(y) = sg.
Indeed, this formula is satisfied if there is a myof A and a rurrg of B reading the same wond € 2%
such thara visits a final state of infinitely often, whereasg eventually stops visiting the final states of
B. SinceB is deterministic, no other rur; could readw, thusw € L(A)\L(B).

The same ideas can be applied to parity automata. A parignaaibn is a finite automaton where
states are assigned priorities; it can be seen as af&Eg A, p) wherep interpretspriority predicates
prty, in such a way thap(s) is a singletor{ prty, } for all se S’ Awordw € 2% is accepted by a parity
automaton if there is a run @f such that the largest priority visited infinitely often issev Consider the
formulasprty . (X) = prtyg(X) V...V prtym(x) and

$nm = (synch vZ.(synch)™ (prtyn(x) A (synch) ™ (prtym(y) A Z))

where(synch) " ¢ is a shorthand fopZ.(synchprty .(X) A prty<m(y) A (¢ V Z). Then¢,m asserts that
there are two runsy andrg of two parity automata andB recognizing the same womd such that the
highest priorities visited infinitely often by, andrg are respectivelyyandm. SinceL(A) Z L(B) if and
only there is an even and an oddn such thatlia g |= ¢nm, this gives us again a decision procedure for
the language inclusion problem of parity automata wBeés deterministic complete.

Parsing of Formal Languages. A third application otZ’ is in the field of parsing for formal, namely
context-free languages. To each finite wardwe may associate its linear LT®,,. For instance, for

w = aab, My, is the LTS O a O a O b O - Let us now consider a context-free gramnigr

and define a formula that describes the languag&.ofTo ease the presentation, we assume hat
is in Chomsky normal form, but a linear-size formula woulddsgivable for an arbitrary context-free
grammar as well. The production rules@fare thus of the form eithet;—X; X, or Xi—a, for Xy,..., X,
the non-terminals of5. Let us pick variables,y and z, intended to represent respectively the initial
the final, and an intermediate position in the (sub)wordentty parsed. To every non-terming|l, we
associate the recursive definition:

o =u \V @xx~y Vo {zexH () (({ye2h ) A (X2 i)
Xi—a Xi—Xj Xk
wherex ~ y is the formula characterizing bisimilarity arde-);¢ is HZ.¢ VV \/ o5 (@)-Z. If V(X) andv(y)
are respectively the initial and final states§,, then9iy, v E ¢; is equivalent tav being derivable irG
starting with the symba;.

String Problems.  Model Checking forZ? can even be useful for computation (as opposed to deci-
sion) problems. Consider for example the Longest CommonvSiproblem: given worder, . .., Wm
over some alphabéi, find a longestv that is a subword of alv;. This problem is NP-complete for
an unbounded number of input words. Thus, we consider thelgorestricted to some fixed, and
it is possible to define a formul@tg, € .Z[}‘ such that model checking this formula on a suitable
representation of the; essentially computes such a common subword.

For the LTS take the disjoint union of d@h,, fori =1,...,m, and assume that each statedity,
is labeled with a propositiom;, which makes it possible to defima-tuples of states in which thieth
component belongs ®1t,,. Now consider the formula

¢tsw = VX. /\ Pi(%) A \/ (@1... (@mX

i=1 acx
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Note thatdt.s,y is unsatisfiable for angn> 1. Thus, a symbolic model checking algorithm for instance
would always return the empty set of tuples when called os filmimula and any LTS. However, on
an LTS representingvy, ..., Wn, as described above it consecutively computes injttieround of the
fixpoint iteration, all tuples of positions,, . .., hy such that the subwords w from positionh; — j to hy
are all the same for eveiy=1,...,m. Thus, it computes, in its penultimate round the positimside the
input words in which the longest common substrings end. rT$taiting points can easily be computed
by maintaining a counter for the number of fixpoint iterasiaione in the model checking run.

In the same way, itis possible to compute the longest commiosegjuence of input wordg, . . ., W,
A subsequence afr is obtained by deleting arbitrary symbols, whereas a suthigoobtained by delet-
ing an arbitrary prefix and suffix fromv. The Longest Common Subsequence problem is equally known
to be NP-complete for unbounded For any fixedm, however, the following formula can be used to
compute all longest common subsequences of such input wendg model checking technology in the
same way as it is done in the case of the Longest Common Sulpraintem.

Pless= VX A pi(x) AV (@ (=) - (@xn{—)i X

i=1 acx

where(—)% ¢ stands fouY.¢ v V (a)Y.

acx

Games. The Cat and Mouse Game is played on a directed graph with disgect nodes, mandt as
follows. Initially, the cat resides in node the mouse in hodm. In each round, the mouse moves first.
He can move along an edge to a successor node of the curreat stag/ on the current node, then the
cat can do the same. If the cat reaches the mouse, she wiasyisdb, if the mouse reaches the target
nodet, he wins; otherwise, the mouse runs forever without beingyloanor reaching the target node: in
that case, the cat wins. The problem of solving the Cat anddgl@ame is to decide whether or not the
mouse has a winning strategy for a given graph.

Note that this problem is not bisimulation-invariant undlee straight-forward encoding of the di-
rected graph as an LTS with a single propositici mark the target node. Consider for example the
following two, bisimilar game arenas.

t t
:>o o o

Clearly, if the cat and mouse start on the two separate |sttmades then the mouse can reach the target
first. However, these nodes are bisimilar to the left noddefright graph, and if they both start on this
one then the cat has caught the mouse immediately.

Thus, winning strategies cannot necessarily be definedin However, it is possible to define them
when a new atomic formuleq(x,y) expressing that andy evaluate to the same node, is being added to
the syntax of¢}7’ (standard model checking procedures can be extended téetthedequality predicate
egas well).

$cme ‘= UX. (1) A=edx,y)) V (—)x(—edxy)) A[=]yX)

We havev = ¢cme if and only if the mouse can win from positiarix) when the cat is on positiov(y)
initially.
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4 Conclusion

We have considered the modal fixpoint logit’ for a potential use in algorithm design and given ex-
amples of problems which can be defined4ff’. The combination of fixpoint quantifiers and modal
operators has been proved to be very fruitful for obtainilgp@hmic solutions for problems in auto-
matic program verification. The examples boost the ideaiofjusuccessful model checking technology
in other areas too.

The use of model checking algorithms on fixed formulas dodsprnavide a generic recipe that
miraculously generates efficient algorithms, but it pregidhe potential to do so. The next step on this
route towards an efficient algorithm for some problBmequires partial evaluation on a model checking
algorithm and the formulgp definingP. This usually requires manual tweaking of the algorithm and
is highly dependent on the actugb. Thus, future work on this direction would consist of consemly
optimising £’ model checking algorithms for certain definable problentstasting their efficiency in
practice.

On a different note,Z,?’ is an interesting fixpoint calculus for which the model chiegkproblem
over infinite-state transition systems has not been quitdied so far. The most prominent result in this
area is the decidability ojf,} over pushdown LTS [10]. However, model checkiﬁ@*’ — or even just
.Z[j for somek > 2 — seems undecidable for pushdown LTS. It is questionabktiveln model checking
of £ is decidable for any popular class of infinite-state tramsisystems.
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We establish syntactic cut-elimination for the one-vaedlbagment of the modal mu-calculus. Our
method is based on a recent cut-elimination technique bydMlivat makes use of Buchhol-rule.

1 Introduction

The propositional modaji-calculus is a well-established modal fixed point logic timudes fixed
points for arbitrary positive formulae. Thus it subsumesiynemporal logics (with an always operator),
epistemic logics (with a common knowledge operator), amdj@m logics (with an iteration operator).

Making use of the finite model property, Kozen [10] introdsicGe sound and complete infinitary
system for the modagli-calculus. In this system greatest fixed points are intreduzy means of the
w-rule that has a premise for each finite approximation of tieatgst fixed point. Jager et al. [8] show
by semantiomethods that the cut rule is admissible in this kind of infinitsystems. So far, however,
there is nosyntacticcut-elimination procedure available for the mogatalculus. It is our aim in this
paper to present an effective cut-elimination method ferdhe-variable fragment of the-calculus.

There are already a few results available on syntactic louirgtion for modal fixed point logics.
Most of them make use of deep inference where rules may nptoenhpplied to outermost connectives
but also deeply inside formulae. The first result of this Kiag been obtained by Pliuskevicius [12] who
presents a syntactic cut-elimination procedure for liteae temporal logic. Brinnler and Studer [2]
employ nested sequents to develop a cut-elimination proeddr the logic of common knowledge. Hill
and Poggiolesi [7] use a similar approach to establish &ffecut-elimination for propositional dynamic
logic. A generalization of this method is studied in [3] whdris also shown that it cannot be extended
to fixed points that have @-operator in the scope of ja-operator. Fixed points of this kind occur, for
instance, iNCTL in the form of universal path quantifiers.

Thus we need a more general approach to obtain syntactaimitiation for the modal:-calculus.

A standard proof-theoretic technique to deal with indwetilefinitions and fixed points is Buchholz’
Q-rule [4, 6]. Jager and Studer [9] present a formulationhef @-rule for non-iterated modal fixed
point logic and they obtain cut-elimination for positiveritulae of this logic. In order to overcome this
restriction to positive formulae, Mints [11] introduces @rrule that has a wider set of premises, which
enables him to obtain full cut-elimination for non-iterdtaodal fixed point logic.

Mints’ cut-elimination algorithm makes use of, in additimideas from [5], a hew tool presented
in [11]. It is based on the distinction, see [13], betweenliaitpand explicit occurrences of formulae in
a derivation with cut. If an occurrence of a formula is trddedo the endsequent of the derivation, then
it is called explicit. If it is traceable to a cut-formula.ethit is an implicit occurrence.

Implicit and explicit occurrences of greatest fixed points @eated differently in the translation
of the induction rule to the infinitary system. An instancetfed induction rule that derives a sequent

D. Miller and Z.Esik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 47-54, doi:10.4204/EPTCS.77.7
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vX.A,B goes to an instance of the-rule if vX.Ais explicit. Otherwise, ifvX.Ais traceable to a cut-
formula, the induction rule is translated to an instancéhefQ-rule that is preserved until the last stage
of cut-elimination. At that stage, called collapsing, fRgule is eliminated completely.

In the present paper we show that this method can be extendeg-talculus with iterated fixed
points. Hence we obtain complete syntactic cut-elimimafar the one-variable fragment of the modal
U-calculus. Our infinitary system is completely cut-freefie sense that there are not only no cut rules
in the system but also no embedded cuts. Thus our cut-fréensyenjoys the subformula property. This
iS in contrast to the recent cut-elimination results by Badl] and by Tiu and Momigliano [14] for the
finitary systemsuMALL andLinc™, respectively, where the-introduction rule and the co-induction rule
contain embedded cuts, which results in the loss of the suiofi@ property.

2 Syntax and semantics

We first introduce the languag®’. We start with a countable sekRBP of atomic propositiongy; and
their negationgs;. We useP to denote an arbitrary element oREBP. Moreover, we will use a special
variableX.

Definition 1. Operator forms AB,... are given by the following grammar:
A==0p D | X|AANA|AVA|DOA| CA| uX.A| vX.A
Formulae Fare defined by:
F==p |B|FAF|FVF|OF | OF | uX.A| vX.A

The fixed point operatorg andv bind the variableX and, therefore, we will talk of free and bound
occurrences oK. Hence a formula is an operator form without free occurrerufeX.
The negation of an operator form is inductively defined alova.

—pii=Pand-p = p

X=X
-(AAB):=-Av-Band—-(AVB):=-AA-B
—0A:=C-Aand—-CA = 0-A

o M 0w b oE

—uX.A:=vX.—mAand—-vX.A:= uX.-A

Note that negation is well-defined: the negation ofapositive operator form is aga-positive
since we have-X := X. Thus, for example,

—puX.O0(pi AX) = vX.—~O(p AX) == vX.Oa(pi AX) = vX.O(=p VvV =X) 1= vX.O(P vV X).

For an arbitrary but fixed atomic propositignwe setT := p; V5. If Ais an operator form, then we
write A(B) for the result of simultaneously substitutilgfor every free occurrence of in A. We will
also use finite iterations of operator forms, given as faow

A%(B) := B andA*"1(B) := A(A¥(B)).
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r,P,-P M uX.A-uX.A
rAB rA r.B rA

) ) ) ) ) ‘:‘

AV V) rAAB ) Or,0A X (@)

rAUX.A) -A(B),B . rA r,-A
FuxA (o) —uxAB ) r (cut)

Figure 1: SystenM
3 SystemM

SystemM derives sequents, that are finite sets of formulae. We dessmjeents by ,2 and use the
following notation: ifl" := {Aq,...,An}, thenOl ;= {OAy, ..., OAy}, SystemM consists of the axioms
and rules given in Figure 1.

4 System MP

SystemM @ is an infinitary cut-free system for the modalcalculus with one variable. It consists of the
axioms and rules given in Figure 2.

r,p-P

MAB A B A

) il ) ) ) D
FAve ) ras oF oAz ()
MA(UX.A) (clo) I, Al(T) for all natural numbers (©)

M UX.A FUXA

Figure 2: SystenM ®
5 System M

In order to embedV into M, we need a family of intermediate systeh?li”Q that include additional
rules to derive greatest fixed points that later will be cuagaw

The language?, extends? by a new connective’ to denote those greatest fixed points. Formally,
%o is given as follows. Operator forms of, are defined like operator forms ¢f with the additional
case

1. If Ais an operator form, thew' X.A is also an operator form.

A formula of %, is an_%g operator form without free occurrence Xf A formula is agreatest fixed
pointif it has the formvX.Aor v'X.A.
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Definition 2. The levellev(A) of an operator fornA is the maximal nesting of fixed point operators in
A. Formally we set:

1. lev(P) :=lev(X) := 0 for all P in PROP

2. lev(AAB) :=lev(AV B) := max(lev(A),lev(B))

3. lev(OA) :=lev(OA) :=lev(A)

4. lev(uX.A) :=lev(vX.A) :=lev(V'X.A) :i=lev(A) + 1

The level of a sequent is the maximum of the levels of its fdamuWe say a formula (sequent) is
k-positiveif for all v/X.A occurring in it we havéev(v'X.A) < k.

When working ian‘(‘”Q, we will use the following notation: the formul& is obtained fromA by
replacing all occurrences o in A with v'X.

Letk > 0. SystemvV ‘ki”Q consists of the axioms and rulesMf® (formulated in.%,) and the addi-
tional rules:cut, Qp, andQy. Thecut rule is given as follows

rA I, (—A)
r

(cut),

whereA is a formula withlev(A) < k. The rulesQy, andQy, , where 1< h <k, are informally described
as follows:

Qn

and

I, (UX.A) AT

wherelev((—uX.A)) = h andA ranges oveh-positive sequents such that there is a cut-free proof of the
sequenty, (LX.A) in M.

Definition 3. We useM ‘k*”Q Ig [ to express that there is a cut-free derivatiori af M ‘k*”Q.

In a more formal notation we can state @g-rule as follows. If for evenh-positive sequenh
MPShs A, (UXA) = MPPEAT,

then
MPOLT, (~uX.AY,

and similarly forQy,.
Note that Systenvi g*Q does not includ&y- or Qn-rules. Hence we immediately get the following
lemma.

Lemma 4. Letl be an.Z sequent. We have

MEPy T = M@FT.
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6 Embedding

In this section we present a translation frivinproofs intoM ‘k‘)’Q-proofs. First we establish an auxiliary
lemma.

Lemma 5. For all natural numbers K k we have the following.

1. If lev(uX.A) = h, thenM 2 [ XA, ~uX.A.

2. If lev(A) =h, thenMP? 5 T A = MP2 T, A

3. Iflev(uX.A) = h, thenM > L5 XA, (—pX.A)'.

4. If lev(A) =h, thenMP® 5 B,C = MP%L; (-A)(B), A(C).

5. If lev(A) = h, thenM*? 15 B,C' = M I5 (-A)(B), A'(C).
Proof. The five statements are shown simultaneously by inductioh. dror space considerations we
show only one particular case of the second statement, vidhathown by induction on the derivation of
I, A’ and a case distinction on the last rule. Assume the lastswda instance dy, with main formula
A'. We haveA' = (vX.Ap)" with lev(Ag) < h. By the premise of th€p-rule we have for alh-positive

sequentd
MP S A, (uX.—A)) = MP2 AT, )

Trivially we have
MPC s T,T. )
We also have
ML T, (X ~Ag)
from which we get by the induction hypothesis for the fifthiclaf this lemma
MG b Ao(T), (=A0) ((UX.~Ao)).
An application ofclo yields
M2 b Ao(T), (X =Ao)'.

By (1) we get

My Ao(T),T. 3)

Note that (2) and (3) are the first two premises of an instafiae. By further iterating this we obtain
for all i

Mk AG(T),T.
Hence an application ab yields
MP€ L vX. Ao, T

O
We will need a certain form of the induction rule Ml‘k*’Q which we are going to derive next. We

write Z[(uX.A)" := B for the result of simultaneously replacing in every forminl& every occurrence
of (uX.A)" with B.
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Lemma 6. Let A be an operator form witlev(vX.A) < k. LetA, 34,3, be h-positive sequents and let B
be a formula witHev(B) < k. Assume that

M>? L (-AB)),B and MP?| (-A(B)),B'.

Then we have, if
Q
Mﬁil }F A7 Zla ZZ

then
ML A, Z1[(UX.A) = B], Zo[(UX.A) = B].

Lemma 7. Let A be an operator form witlev(vX.A) < k. Further let B be an arbitrary formula with
lev(B) < k. Assume that

MZ?H (-AB)), B and M| (-A(B)), B

Then we have
M2 (-uX.A),B and M (-uX.A),B.

Proof. Let h = lev(vX.A). In view of our assumptions and the previous lemma we know ftraall
h-positive sequenta
MESHs A, (XA = MP?LA,B.

Hence by an application of th@,-rule we concludeM ‘k*”Q ~ (-uX.A), B. Similarly, we can derive
MP2 L (-uX.AY, B. O

Theorem 8. Letl be a sequent off. AssumeM | I and assume further for any sequénbccurring
in that proof we havéev(A) < k. Then we havil ‘Q*Q -T.

Proof. An operationo on sequents is called -operationafl", Ay, ..., An) =T, A},...,A,. The result of
applyingo to a sequenk is denoted °.

To establish the theorem, we show by induction on the depthed¥l -proof that for all -operations
o, we haveM ? |- T'9. We distinguish the following cases for the last rule.

1. I is an axiom different fronf o, uX.A, ~uX.A. Thenl'? is an axiom of\ ‘k"Q too.

2. TisTo, uX.A,—~uX.A. Thenl @ follows either by the first or the third claim of Lemma 5 depieigd
on whether-uX.Alis replaced by or not.

3. The lastrule is an instance of Vv, O or clo. We can apply the same rule mﬁ’Q

4. The last rule is a cut
rA r,-A

r
We extend the current '-operatian to a "-operationt such thatl",A)* =T? A’ and(I',-A)" =
r?,(—-A)" By the induction hypothesis for the ’-operatianwe obtainM‘l;”Q -T9,A as well as
M2 19 (-A). With an instance of cut we g > |- 7.

5. The last rule is an instance of the induction rule. Thenethésequent has the formuX.A, B
which isvX.—A B. There are two possible cases.

(a) The principal occurrence oX.—Ais not changed byg. By the induction hypothesis we can
derive(—A(B))’, B¢ and(—A(B))’, B'. We obtain our claim by the following proof.
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T,B
—F—FF |.H. L.5
(-A(B))’, B’ (=A)(T),(AB)) ut
(=A)(T),B’
-A)(T),B
———  |.H. (. 1)( )
(=A(B)), B? (=A)H(T), (A(B))' ut
(=A)H(T),B?
vX.—A, B? @

(b) The principal occurrence ®fX.—Ais changed by. Let 11, T2 be -operations such that
(—A(B),B)™ = (-A(B))',B

and
(-A(B),B)" = (-A(B))',B".

By the induction hypothesis fan and1, we obtain
M2 L (-AB)),B and M?L (-A(B)),B.

We apply Lemma 7 and conclutlma‘k*”Q ~ (-uX.A), BC. O

7 Cut elimination

We eliminate instances afut in the standard way, see for instance [5, 11], by pushing thpnthe
derivation. When an instance ofit with cut formulag(uX.A)" and (—uX.A)" meets the instance 61,
that introduceg—uX.A)', this pair of inferences is replaced by.

Lemma 9 (Cut-elimination) If M*? L I, thenM > |5 T,

The cut-elimination process terminates in a formally caefderivation that may contain instances
of Qn-rules. Now we show that these instance€gfalso can be eliminated.

Lemma 10(Collapsing) Letl™ be an(h+ 1)-positive sequent. IMP? 5 T, thenM > |5 T

Proof. By transfinite induction on the derivation ME”Q. The only interesting case is when the last rule
is an instance of2| for h < | < k as follows

I, (UX.AY AT

Note thatl", (uX.A)" is |-positive. Thus by the induction hypothesis we get

M T, (UX.A). (4)
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Moreover, also by the induction hypothesis we get foflal- 1)-positiveA
MPQ s A, (UXA)Y = MPPLAT. (5)

Now we plug (4) in (5) and obtaill h"”Q o I as required. O

We now have all ingredients ready for our main result.
Corollary 11. Letl be an.Z-sequent. We have

MET = M@LT.

Proof. AssumeM | I'. By Theorem 8 we gem ‘k*”Q I I for somek. By cut-elimination we obtain
M 20 Ig T. Then collapsing yield wo 5 T which finally gives uM®}- I by Lemma 4. O
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Structured general corecursion and coinductive graphs
[extended abstract]
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Bove and Capretta’s popular method for justifying function definitions by general recursive equations
is based on the observation that any structured general recursion equation defines an inductive subset
of the intended domain (the “domain of definedness”) for which the equation has a unique solution.
To accept the definition, it is hence enough to prove that this subset contains the whole intended
domain.

This approach works very well for “terminating” definitions. But it fails to account for “produc-
tive” definitions, such as typical definitions of stream-valued functions. We argue that such defini-
tions can be treated in a similar spirit, proceeding from a different unique solvability criterion. Any
structured recursive equation defines a coinductive relation between the intended domain and in-
tended codomain (the “coinductive graph”). This relation in turn determines a subset of the intended
domain and a quotient of the intended codomain with the property that the equation is uniquely
solved for the subset and quotient. The equation is therefore guaranteed to have a unique solution for
the intended domain and intended codomain whenever the subset is the full set and the quotient is by
equality.

Unique solutions to recursive equations General recursive definitions are commonplace in program-
ming practice.

In particular, it is highly desirable to be able to define functions by some forms of controlled general
recursion in type-theoretically motivated languages of total functional programming (in particular, proof
assistants) that come with a set-theoretic rather than a domain-theoretic semantics. For an overview of
this area, see Bove et al. [5].

In this paper, we are concerned with describing a function f : A — B definitely by an equation of the
form:

FA<2—A (1)

o

FB——B
B
where A, B are sets (the intended domain and codomain), F is a functor (the branching type of recursive
call [corecursive return] trees), ¢ is an F-coalgebra structure on A (marshals arguments for recursive
calls) and B is an F-algebra structure on B (collects recursive call results). We are interested in condi-
tions under which the equation is guaranteed to have a unique solution (rather than a least solution in a
domain-theoretic setting or some solution that is canonical in some sense). There are several important
generalizations of this setting, but we will not treat them here.
There are some well-known good cases.

D. Miller and Z. Esik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 5561, doi:10.4204/EPTCS.77.8



56 Structured general corecursion and coinductive graphs

Some good cases (1): Initial algebra The following equation has a unique solution for any B, 3.

nil,cons] !
1+ El x List A List

1+EI><fl lf

1+ElxB B

E.g., for B = List (lists over El), B = ins (insertion of an element into a list assumed to be sorted), we get
f = isort (insertion sort).

A unique f exists because (List, [nil,cons]) is the initial algebra for the functor FX = 1+ El x X. It
is the fold (the unique algebra map) determined by the algebra (B, f3).

Some good cases (2): Recursive coalgebras A unique solution exists for any B, 8 also for the equation

gsplit

1+ El x List x List <———— List
1+EI><f><fl lf
1+EIXxBXxB 5 B
where gsplitnil = inlx and gsplit (cons(x,xs)) = inr (x,xs|<y,xs|>x). E.g., for B = List, B = concat

(concatenation of the first list, the element and the second list), we get f = gsort (quicksort).

(List, gsplit) is not the inverse of the initial algebra of FX = 1+ El x X x X (which is the algebra of
binary node-labelled trees), but we still have a unique f for any (B, ).

For this property, (List,qgsplit) is called a recursive coalgebra of F. Recursive F-coalgebras form
a full subcategory of the category of all F-coalgebras. The inverse of the initial F-algebra is the final
recursive F-coalgebra.

While recursiveness is a very useful property of a coalgebra, it is generally difficult to determine
whether a given coalgebra is recursive. For more information on recursive coalgebras, see Taylor [8],
Capretta et al. [6], Adamek et al. [1].

Some good cases (3): Final coalgebra This equation has a unique solution for any A, o.

El x A A

1+EI><fl lf

El x Str ——— = Str

(hd,tl)~!

E.g., for A = Str (streams), @ = (hd,tlotl) (the analysis of a stream into its head and the tail of its tail),
we get f = dropeven (the function dropping every even-position element of a given stream).

A unique f exists for any (A, &¢) because (Str, (hd,tl)) is the final coalgebra of FX = El x X. It is
the unfold (the unique F-coalgebra map) given by the coalgebra (A, &t).
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Some good cases (4): Corecursive algebras This equation has a unique solution for any A, o:

[0

ElIxAxA A
EleXfl J{f
El x Str x Str T@) Str

Here hd (smerge(x,xso,xs1)) = x and tl (smerge(x,xso,xs1)) = smerge(hd xso,xs;, tlxsp).

(Str,smerge) is not the inverse of the final coalgebra of FX = El x X x X, but a unique f still exists
for any (A, ). We say that (Str,smerge) is a corecursive algebra of F, cf. Capretta et al. [7]. [The
inverse of the final F-coalgebra is the initial corecursive F-algebra and thus a special case.] Similarly to
recursiveness of a coalgebra, corecursiveness of an algebra is a useful property, but generally difficult to
establish.

The equation 1 can of course have a unique solution also in other cases. In particular, it may well
happen that neither is (A, ) corecursive nor is (B, f3) recursive, but the equation still has exactly one
solution.

General case (1): Inductive domain predicate Bove and Capretta [3, 4] put forward the following
approach to recursive definitions in type theory (the idea has occurred in different guises in multiple
places; it must go back to McCarthy): for a given recursive definition, work out its “domain of definition”
and see if it contains the intended domain.

For given (A, a), define a predicate dom on A inductively by

a:A (Fdom)(aa)
doma

(i.e., as the smallest/strongest predicate validating this rule), denoting by £ P the lifting of a predicate P
from A to F A.

Write A|gom for the subset of A determined by the predicate dom, the “domain of definedness”. It is
easily verified that, for any (B, ), there is f : A|gom — B uniquely solving

a‘dom

F(A‘dom) < A|dom

Ffl lf

FB B

If Va : A.doma, which is the same as A|4om = A, then f is a unique solution of the original equation 1,
i.e., the coalgebra (A, @) is recursive.
For A = List, o = gsplit, dom is defined inductively by

x:El xs:List dom (xs|<y) dom (xs|-y)

domnil dom (cons (x,xs))

We can prove that Vxs : List. domxs. Hence (List, gsplit) is recursive.
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If Algom = A, the coalgebra (A, @) is said to be wellfounded. Wellfoundedness gives an induction
principle on A: For any predicate P on A, we have

ad:A (I?P)(Oca’)

a:A Pd
Pa

We have seen that wellfoundedness suffices for recursiveness. In fact, it is also necessary. While this
equivalence is easy for polynomial functors on the category of sets, it becomes remarkably involved in
more general settings, see Taylor [8].

For FX =1+ El x X x X, A = List, @ = gsplit, we get this induction principle:

x:El xs':List P(xs'|<y) P(xs'|>y)

xs : List  Pnil P(cons.(x,xs’))
Pxs

General case (2): Inductive graph relation The original Bove-Capretta method separates determin-
ing the domain of definition of a function from determining its values. Bove [2] showed that this separa-
tion can be avoided.

For given (A, @), (B, ), define a relation | between A, B inductively by

a:A bs:FB oa(F|)bs
alpPbs

Further, define a predicate Dom on A by
Doma=3db:B.alb

It is straightforward to verify that Va : A, b, b, : B.albNal b, — b= b,. Moreover, it is also the case
that Va : A.Doma +> doma. So, Dom does not really depend on the given (B, 3)!
From the last equivalence it is immediate that there is f : A|pom — B uniquely solving

a‘Dom

F(A|D0m) A|Dom

o

FB——8B

B

And, if Va : A.Doma, which is the same as A|pom = A, then f is a unique solution of the original
equation.
As amatter of fact, recursiveness and wellfoundedness are equivalent exactly because Va : A. Doma <>
doma.
For FX =1+ Elx X x X, A = List, a = gsplit, B = List, B = concat, the relation | is defined
inductively by
x:El xs:List xs|<ylyso xs|sx)ysi

nil | nil cons (x,xs) J. app (¥so,cons(x,ys;))
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Inductive domain and graph do not work for non-terminating productive definitions Unfortu-
nately, for our dropeven example,

(hd,tlotl)
El x Str =<——— Str

1+E|xdropevenl ldropeven

El x Str ———— Str
(hd,tl)~!
we get Vs : Str.domxs = ! Now, surely there is a unique function from 0 — Str. But this is uninter-
esting! We would like to learn that there is a unique function Str — Str.
Intuitively, the reason why this equation has a unique solution lies not in how a given argument is
consumed but in how the corresponding function value is produced. This is not a terminating but a
productive definition.

General case (3): Coinductive bisimilarity relation The concept of the domain of definedness can
be dualized [7]. Besides partial solutions that are defined only on a subset of the intended domain, it
makes sense to consider “fuzzy” solutions that are defined everywhere but return values in a quotient
of the intended codomain. But since the category of sets is not self-dual, the theory dualizes only to a
certain extent and various mismatches arise.

For given (B, ), define a relation ~ on B coinductively by

bb.:B bb,
3bs,bs. : FB.b = B bs Ab, = B bs. \Nbs (F~*)bs,

(i.e., we take ~ to be the largest/coarsest relation validating this rule).
There need not necessarily be a function f solving the equation

FA<—2— 4

o

F(B/z*) WB/Z*

but, if such a function exists, it can easily checked to be unique. (See Capretta et al. [7, Thm. 1].)

If Vb,b, : B.b ~ b, — b = b, which is the same as B/~ = B (where B/~ is the quotient of B by the
reflexive-transitive closure of /), we say that (B, ) is antifounded. If (B, 3) is antifounded, solutions to
equation 1 are the same as solutions to the equation above, and thus unique.

For FX = El x X x X, B = Str, B = smerge, the relation = is defined coinductively by

XS, XSy 1 Str - xs /2 x5,

dx : El, xs0,Xx51, X804, X514 : Str.
xs = smerge(x, x5, xs1) A XS, = smerge(X, x50, X515) AXS) R X505 AXS] R XS]

It turns out that Vxs,xs' : Str.xs ~ x5’ — xs = xs’. Based on this knowledge, we may conclude that
solutions are unique. (They do in fact exist as well for this example, but this has to be verified separately.)

Solutions need not exist for antifounded algebras. E.g., for FX = X, B = Nat, B = succ, we have
that (B, B) is antifounded, but for A any set and o = idy4, the equation has the form fa = succ(f a) and
has no solutions.
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We have thus seen that antifoundedness of (B, f3) does not guarantee that it is corecursive. The
converse also fails: not every corecursive algebra (B, ) is antifounded [7, Prop. 5].

However, for an antifounded algebra (B, 3), we do get an interesting coinduction principle on B: For
any relation R on B, we have

Vb :B bR

b,b.:B bRb, 3bs bs.:FB.b =Bbs Ab. = Bbs. Abs (FR*)bs.
b=b,

For FX = El x X x X, B = Str, B = smerge, we get this coinduction principle:
xs',xs!, : Str - xs'Rxs’,
3x" : Elxsg), x5, x5, x57, @ Str.

xs' = smerge(x’,xs(), xs}) Axs), = smerge(x’, xs(,, x5 ..) A xsyRxsp, Axs| Rxs’,
XS = X5,

XS,XS4 : Str xsRxs,

General case (4): Coinductive graph relation Could one also dualize the notion of the inductive
graph? The answer is positive. Differently from the case of the coinductive concept of bisimilarity, this
yields a criterion of unique solvability.

For given (A, @), (B, B), define a relation | between A, B coinductively by

a:A b:B al”b
Jbs: FB.b=BbsANaa (F|™) bs

Define a predicate Dom™ on A by
Dom®a=3b:B.al™b
Now we can construct f : A|pom= — B/~+ that we can prove to uniquely solve

O“ om®
F(A‘Dom“’) ED A|Dom°°

| K

F(B/~+) 5 B/~
If both Va : A.Dom™a and Vb,b, : B.b ~ b, — b = b,, which are the same as A|pom= = A resp.
B/~ = B, then f uniquely solves also the equation 1. Notice, however, that in this situation we have
obtained a unique solution only for the given (A, o): we have not established that (B, ) is corecursive.
To formulate a further condition, we define a relation = on B by

b=b,=3a:A.al”bNal”b,

A unique solution to equation 1 also exists if Va : A.Dom™a and Vb, b, : B.b = b, — b = b,.
This condition is weaker: while Vb, b, : B.b = b, — b = b,, the converse is generally not true.
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For FX =Elx X x X, B=Str, B =smerge and any fixed A, a,, the relation |* is defined coinductively
by

a:A xs:Str al”xs
Txso, xs1 : Str.xs = smerge (fst (o a),xso,xs1) Afst (snd (aa)) 1= xso Asnd (snd (axa)) |~ xs

It turns out that Va : A. Dom™ a no matter what A, ¢ are. So in this case we do have a unique solution f
for any A, a,, i.e., (Str,smerge) is corecursive.

Conclusion We have considered two flavors of partiality of a function: a function may be defined only
on a subset of the intended domain and the values it returns may be underdetermined.

The Bove-Capretta method in its graph-based version scales meaningfully to equations where unique
solvability is not due to termination, but productivity or a combination the two. But instead of one
condition to check by ad-hoc means, there are two in the general case.

The theory of corecursion/coinduction is not as clean as that of recursion/induction—in particular, to
admit coinduction is not the same as to admit corecursion. We would like like to study the coinductive
graph approach further and to find out to what extent it proves useful in actual programming practice.
The main pragmatic issue is the same as with Bove and Capretta’s method: how to prove the conditions.
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