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Preface

Thao Dang and Carla Piazza

This volume contains the proceedings of the Second International Workshop Hybrid Systems and
Biology (HSB 2013) held in Taormina (Italy), on September 2th, 2013. The workshop is affiliated to the
12th European Conference on Artificial Life (ECAL 2013).

Systems biology aims at providing a system-level understanding of biological systems by unveiling
their structure, dynamics and control methods. Due to the intrinsic multi-scale nature of these systems
in space, in organization levels and in time, it is extremely difficult to model them in a uniform way,
e.g., by means of differential equations or discrete stochastic processes. Furthermore, such models are
often not easily amenable to formal analysis, and their simulations at the organ or even at the cell lev-
els are frequently impractical. Indeed, an important open problem is finding appropriate computational
models that scale well for both simulation and formal analysis of biological processes. Hybrid mod-
eling techniques, combining discrete and continuous processes, are gaining more and more attention
in such a context, and they have been successfully applied to capture the behavior of many biological
complex systems, ranging from genetic networks, biochemical reactions, signaling pathways, cardiac
tissues electro-physiology, and tumor genesis. This workshop aims at bringing together researchers in
computer science, mathematics, and life sciences, interested in the opportunities and the challenges of
hybrid modeling applied to systems biology.

The workshop programme included the keynote presentation of Alessandro Astolfi (Imperial College
of London, UK) on Immune response enhancement via hybrid control. Furthermore, 8 papers were se-
lected out of 13 submissions by the Program Committee of HSB 2013. The papers in this volume address
the hybrid modeling of a number important biological processes (iron homeostasis network, mammalian
cell cycle, vascular endothelial growth factor (VEGF), genetic regulatory network in mammalian sclera)
and, the formalisms and techniques for specifying and validating properties of biological systems (such
as, robustness, oscillations).
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Stochastic models such as Continuous-Time Markov Chains (CTMC) and Stochastic Hybrid Au-
tomata (SHA) are powerful formalisms to model and to reason about the dynamics of biological
systems, due to their ability to capture the stochasticity inherent in biological processes. A classi-
cal question in formal modelling with clear relevance to biological modelling is the model checking
problem, i.e. calculate the probability that a behaviour, expressed for instance in terms of a certain
temporal logic formula, may occur in a given stochastic process. However, one may not only be
interested in the notion of satisfiability, but also in the capacity of a system to mantain a particular
emergent behaviour unaffected by the perturbations, caused e.g. from extrinsic noise, or by possible
small changes in the model parameters. To address this issue, researchers from the verification com-
munity have recently proposed several notions of robustness for temporal logic providing suitable
definitions of distance between a trajectory of a (deterministic) dynamical system and the bound-
aries of the set of trajectories satisfying the property of interest. The contributions of this paper are
twofold. First, we extend the notion of robustness to stochastic systems, showing that this naturally
leads to a distribution of robustness scores. By discussing two examples, we show how to approxi-
mate the distribution of the robustness score and its key indicators: the average robustness and the
conditional average robustness. Secondly, we show how to combine these indicators with the satis-
faction probability to address the system design problem, where the goal is to optimize some control
parameters of a stochastic model in order to best maximize robustness of the desired specifications.

1 Introduction

Biological systems at the single cell level are inherently stochastic. Molecules inside the cells perform
random movements (random walk) and the reactions among them may occur when the probability of
collision is high enough. The number of molecules of each species at each time point is therefore a
random process: assuming instantaneous reactions, this process can be modelled as a Markovian (i.e.
memoriless) discrete state, continuous time process. When the number of molecules of each species
involved is large, so that many reactions happen in any small interval of time, stochastic effects can
be neglected. However, if the concentration of the molecules (of at least some of the species) is low
the stochasticity plays an important role and must be taken into account. For this reason, stochastic
models such as Continuous-Time Markov Chains (CTMC) [24] and Stochastic Hybrid Automata [14] are
particularly powerful and suitable formalisms to model and to reason about biological systems defined
as stochastic systems over time.
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A classical question in formal modelling is to calculate the probability that a behaviour, expressed
in terms of a certain temporal logic formula, may occur in a given stochastic process, with specified
parameters. Probabilistic Model Checking [3, 4] (PMC) is a well-established verification technique that
provides a quantitative answer to such a question. The algorithm used to calculate this probability [34]
produces the exact solution, as it operates directly on the structure of the Markov chain. Despite the
success and the importance of PMC, this technique suffers some computational limitations, either due
to state space explosion or to the difficulty (impossibility) in checking analytically formulae in specific
logics, like Metric Temporal Logic (MTL) [4, 16]. Furthermore, PMC provides only a quantitative
measure of the satisfability (yes/no answer) of a temporal logic specification (i.e., the probability of the
property being true).

However, especially when we deal with stochastic models, the notion of satisfability may be not
enough to determine the capacity of a system to mantain a particular emergent behaviour unaffected by
the uncertainty of the perturbations due to its stochastic nature or by possible small changes in the model
parameters. A similar issue also arises when considering the satisfability of a property by deterministic
dynamical systems which may be subject to extrinsic noise or uncertainty in the parameter. To address
this question in the deterministic case, researchers from the verification community have proposed sev-
eral notions of temporal logic based robustness [23, 27, 41], providing suitable definitions of distance
between a trajectory of a system and the behavioural property of interest, expressed in terms of a tem-
poral logic formula. These effectively endow the logic of interest with quantitative semantics, allowing
us to capture not only whether a property is satisfied but also how much it is satisfied. A similar no-
tion of robustness for stochastic models would clearly be desirable but, to our knowledge, has not been
formalised yet.

The contributions of this paper are twofold. First,we provide a simulation-based method to define a
notion of robust satisfability in stochastic models. Simulation-based approaches, such as statistical model
checking [43], can be be used to estimate for a stochastic model the robust satisfability distribution for a
given temporal logic formula, with a guarantee of asymptotic correctness. This distribution is the key to
understand how the behaviour specified by the logic temporal formula is unaffected by the stochasticity
of the system. In particular, in this paper we consider two important indicators of this distribution:
the robustness average and the conditional robustness average on a formula being true or false. We
discuss how to compute the robust satisfability distribution and its indicators on two biological examples.
Second, we show how to combine these indicators with the satisfaction probability to address the system
design problem, where the goal is to optimize (few) control parameters of a stochastic model in order
to best maximize these three indicators. The proposed approach takes advantage of Gaussian Process
Upper Confidence Bound (GP-UCB) algorithm introduced in [42].

The paper is structured as follows: in Section 2 we introduce the background material. In Section 3
we discuss the robustness of stochastic models using the quantitative semantics of the Signal Temporal
Logic (STL). In Section 4 we present some experimental results for the robustness of STL formulae for
two stochastic models that we have chosen as our case studies: the Schlögl system and the Reprissilator.
In Section 5 we show an application of the robust semantics to the system design problem. The related
works and the final discussion are in Section 6.

2 Background

Markov Population Models. The simplest class of stochastic processes we will consider are Contin-
uous Time Markov Chains (CTMC) [24] that describe population processes (PCTMC). A population
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process intuitively is a system in which agents or objects of different kinds, and with different internal
states, interact together. The classical example are biochemical and genetic networks, but other popula-
tion processes include ecological systems, computer networks, and social systems.

We will describe PCTMC by the simple formalism of biochemical reaction networks. The state of
the system is described by a vector X = (X1, . . . ,Xn) of n integer-valued variables Xi, each counting the
number of entities of a given class or species. The dynamics of this system is specified by a set of m
reactions R = {η1, . . . ,ηm}, which can be seen as description of events changing the state of the system.
Each reaction ηl is of the form

r1Xi1 + . . .+ rkXik → s1X j1 + . . .+ shX jh ,

where Xia is a reactant and X jb is a product (they are both variables of X), and ri, s j are the stoichiometric
coefficients, i.e. the amount of agents/ entities consumed or produced by the reaction. Stoichiometric in-
formation of a reaction ηl can be condensed into an update vector vl , giving the net change in population
variables due to ηl: vl = ∑b≤h sb1 jb −∑a≤k ra1ia , where 1 j equals one in position j and zero elsewhere.
Additionally, each reaction η j has an associated rate function f j(X) giving the rate of the transition as a
function of the global state of the system.

From a set of reactions R and species X, we can easily derive the formal representation of a CTMC
in terms of its infinitesimal generator matrix, see for instance [9]. Here we just recall that the state space
of the CTMC is Nn (or a proper subset, if any conservation law is in force). Such CTMC can be simulated
with standard algorithms, like SSA [29].

Fluid Approximation From a Markov population model, we can easily construct an alternative se-
mantics in terms of Ordinary Differential Equations (ODE), assuming variables X to be continuous and
interpreting each rate as a flow, thus obtaining the vector field

F(X) = ∑
ηl∈R

vl fl(X),

defining the ODE d/dtX = F(X). This equation, known as fluid approximation, can be shown to be a
first order approximation of the average of the CTMC, and, under a suitable rescaling of the variables
(dividing by the system size, which for biochemical reactions is just the volume), one can prove conver-
gence of the CTMC to the solution of the ODE (see [9]) as populations and system size go to infinity.
Intuitively, this ODE is a good description of the system behaviour when populations are large.

Stochastic Hybrid Automata In many situations, it is not the case that all entities/ species in the model
are present in large quantities. In such scenarios, fluid approximation can give poor results, yet dealing
with CTMCs can be computationally unfeasible. An example are genetic regulatory networks, in which
genes are modelled explicitly as a finite state machine [12]. In these cases, a better strategy is that of ap-
proximating continuously only some variables, keeping discrete the others. This reflects in the dynamics:
some reactions will be converted into flows (generally those modifying only continuous variables), while
the others will remain stochastic discrete events. This gives rise to a model that can be expressed in terms
of a class of Stochastic Hybrid Automata (SHA, [12]) known as Piecewise-Deterministic Markov Pro-
cesses [17]. Alternatives assuming a stochastic continuous dynamics have also been considered [37, 38].
More specifically, the SHA so obtained have discrete modes identified by the value of discrete variables.
In between discrete transitions, the system evolves following the solution of the differential equation,
whose vector field is mode-dependent (via the value of discrete variables). Discrete jumps happen at
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exponentially random distributed times, at a non-constant rate that can depend on the continuous vari-
ables. After each jump, the value of discrete variables can change. Also continuous variables can be
updated, even if we do not consider this possibility in this paper, see [12] for further details. Similarly to
the fluid approximation case, we can see SHA models as the limit of CTMC, taking to the limit only the
populations corresponding to continuous variables (under a suitable scaling of rates, see [8] for further
details).

Signal Temporal Logic. Temporal logic [39] provides a very elegant framework to specify in a com-
pact and formal way an emergent behaviour in terms of time-dependent events. Among the myriads of
temporal logic extensions available, Signal Temporal Logic [36] (STL) is very suitable to characterize
behavioural patterns in time series of real values generated during the simulation of a dynamical sys-
tem. STL extends the dense-time semantics of Metric Interval Temporal Logic [1] (MITL), with a set of
parametrized numerical predicates playing the role of atomic propositions. STL provides two different
semantics: a boolean semantics that returns yes/no depending if the observed trace satisfies or not the
STL specification and a quantitative semantics that also returns measure of robustness of the specifica-
tion. Recently, Donzé et. al [22] proposed a very efficient monitoring algorithm for STL robustness,
now implemented in the Breach [19] tool. The combination of robustness and sensitivity-based analysis
of STL formulae have been successfully applied in several domains ranging from analog circuits [31] to
systems biology [20, 21], to study the parameter space and also to refine the uncertainty of the parameter
sets. In the following we recall [23] the syntax and the quantitative semantics of STL that will be used
in the rest of the paper. The boolean semantics can be inferred using the sign of the quantitative result
(positive for true and negative for false).

Definition 1 (STL syntax) The syntax of the STL is given by

ϕ :=>|µ |¬ϕ |ϕ1∧ϕ2 |ϕ1 U[a,b] ϕ2,

where > is a true formula, conjunction and negation are the standard boolean connectives, [a,b] is a
dense-time interval with a < b and U[a,b] is the until operator.

The atomic predicate µ : Rn → B is defined as µ(x) := (y(x) > 0), where x[t] = (x1[t], ...,xn[t]),
t ∈ R>0, xi ∈ R, is the primary signal, and y : Rn→ R is a real-valued function known as the secondary
signal.

The (bounded) until operator ϕ1 U[a,b] ϕ2 requires ϕ1 to hold from now until, in a time between a and b
time units, ϕ2 becomes true. The eventually operator F[a,b] and the always operator G[a,b] can be defined
as usual: F[a,b]ϕ :=>U[a,b)ϕ , G[a,b]ϕ := ¬F[a,b]¬ϕ.

Definition 2 (STL Quantitative Semantics for space robustness)

ρ(µ,x, t) = y(x[t]) where µ ≡ y(x[t])> 0

ρ(¬ϕ,x, t) = −ρ(ϕ,x, t)
ρ(ϕ1∧ϕ2,x, t) = min(ρ(ϕ1,x, t),ρ(ϕ2,x, t))
ρ(ϕ1 U[a,b)ϕ2,x, t) = max

t ′∈t+[a,b]
(min(ρ(ϕ2,x, t ′), min

t ′′∈[t,t ′]
(ρ(ϕ1,x, t ′′))))

where ρ is the quantitative satisfaction function, returning a real number ρ(ϕ,x, t) quantifying the degree
of satisfaction of the property ϕ by the signal x at time t. Moreover, ρ(ϕ,x) := ρ(ϕ,x,0).
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We stress here that the choice of the secondary signals y : Rn→R is an integral part of the definition
of the STL formula expressing the behaviour of interest. Different choices of secondary signals result in
different formulae, hence in different robustness measures. We also remark that the robustness score of
Definition 2 has to be interpreted as a weight of how much a given model (with fixed initial conditions and
parameters) satisfies an STL behaviour. More precisely, its absolute value can be seen as a distance of the
signal x under consideration from the set of trajectories satisfying/ dissatisfying the formula [27], in STL
trajectory are projected with respect to secondary signals y [23]. In this sense, this measure is different
from the more common sensitivity-based notions of robustness, like those discussed in [33], measuring
the size of a region in the parameter space in which the system behaviour is roughly constant. However,
sensitivity analysis and its related techniques can be applied to the robustness score of Definition 2.

3 Robustness of Stochastic Models

Consider a STL formula ϕ , with predicates interpreted over state variables of a PCTMC model X(t).
The boolean semantics of ϕ is readily extended to stochastic models as customary, by measuring the
probability of the set of trajectories of the CTMC that satisfy the formula:

P(ϕ) = P{x | x |= ϕ}.

The rationale behind such definition is that a PCTMC model defines a probability distribution on the
space of trajectories, which is usually obtained by applying the cylindric construction [4]. Furthermore,
the set of trajectories that satisfy/ falsify a formula is a measurable set, so that we can safely talk about
its probability. In the following, we will refer to the space of trajectories as D , and interpret the PCTMC
model X(t) as a random variable X over D . In order to extend this definition to the robustness score, it is
convenient to think of the set of trajectories that satisfy ϕ as a measurable function Iϕ : D→{0,1}, such
that Iϕ(x) = 1 if and only if x |= ϕ . Then, we can define the random variable Iϕ(X) on {0,1} induced
by the PCTMC X via Iϕ as the Bernoulli random variable which is equal to 1 with probability P(ϕ). We
can equivalently write:

P(Iϕ(X) = 1) = P({x ∈D | Iϕ(x) = 1}) = P(I−1
ϕ (1))

We can extend the robustness score to PCTMC models in the same way: given a trajectory x(t),
we can compute its robustness score according to Def. 2 and interpret ρ(ϕ,x,0) as a function from
the trajectories in D to R. This function is easily seen to be measurable (with respect to the σ -algebra
induced from the Skorokhod topology in D), and so it induces a real-valued random variable Rϕ(X) with
probability distribution given by

P
(
Rϕ(X) ∈ [a,b]

)
= P(X ∈ {x ∈D | ρ(ϕ,x,0) ∈ [a,b]})

Staten otherwise, if we apply the definition of robustness to a stochastic model, we obtain a distribu-
tion of robustness degrees. This distribution tells us much more than the standard probabilistic semantics,
because it tells us “how much” a formula is true.

In particular, in this paper we will be interested in some statistics of this distribution, specifically
the average robustness degree, and the average robustness conditional on a formula being true or false.
The first quantity gives a measure of how strongly a formula is satisfied on average. The larger this
number, the more robust is satisfaction. Most of the times, this number will be correlated with the
satisfaction probability, yet we can have a large average satisfaction score even for a small probability
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Reaction rate constant init pop
A+2X → 3X k1 = 3 ·10−7 X(0) = 247
3X → A+2X k2 = 1 ·10−4 A(0) = 105

B→ X k3 = 1 ·10−3 B(0) = 2 ·105

X → B k4 = 3.5

Table 1: Biochemical reactions of the Schlögl model. Parameters are taken from [18].
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Figure 1: Simulation of the Schlogl model (100 runs), for parameters as in Table 1. The blue straight line
is the value X = 300 (left). The robustness distribution of the STL formula 4.1 with T1 = 10 and T2 = 15
time units. It has average robustness -53.15 (vertical red line), conditional robustness 169.89 and -239.52
(vertical green lines), and satisfaction probability 0.4552 (right).

of satisfaction. Better indicators of the intensity of satisfaction and dissatisfaction are the conditional
averages, E(Rϕ | Rϕ > 0) and E(Rϕ | Rϕ < 0). These are related to the average by the equation

E(Rϕ) = P(ϕ)E(Rϕ | Rϕ > 0)+(1−P(ϕ))E(Rϕ | Rϕ < 0)

which holds provided P(Rϕ = 0) is zero.
One goal of this paper is to investigate to what extent these three synthetic indices are good descrip-

tors of the robustness distribution, and how they can be exploited to do parameter synthesis for PCTMC
models.

4 Case Studies

In this section, we investigate experimentally the notion of robust semantics of STL formulae for stochas-
tic models. We will consider two systems: the Schlögl system [30], a simple network of biochemical
reactions exhibiting a bistable behaviour, and the Repressilator [25], a synthetic biological clock imple-
mented as a network of gene regulations. More specifically, we consider a CTMC model of the Schlög
system and a hybrid model of the Repressilator [10, 11], in order to illustrate the general applicability of
the stochastic robust semantics introduced in Section 3.
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4.1 Schlögl system

The Schlögl model is a simple biochemical network with four reactions, listed in Table 1. The rates of
the reactions are computed according to the mass action principle for stochastic models [29]. Species A
and B are considered to be present in large quantities, hence assumed constant. The characteristic of this
system is to have, for certain parameter values, like the one shown in Table 1, a bistable behaviour. More
specifically, the reaction rate ODE system has two stable steady states, and for this model the trajectories
of the stochastic system starting from a fixed initial state x0 can end up in one attractor or the other.
The probability of choosing one stable state or the other depends on the position of x0 relatively to the
basin of attraction of the two equilibria. If we start close to its boundary, the bistable behaviour becomes
evident, see Figure 1(a).

We now consider the property of eventually ending up in one basin of attraction, and express it with
the STL formula

ϕ : F[0,T1]G[0,T2](X ≥ kt) kt = 300 (4.1)

stating that the system, after at most T1 units of time, stabilises to a value which remains above kt = 300
for as long as T2 units of time. In this formula, the predicate µ(X) = X ≥ kt corresponds to the linear
secondary signal y(X) = X−kt . As can be seen from Figure 1(a), if the model is in the large equilibrium,
then this property will be true, and false in the other case.

If we estimate the probability of the formula statistically, then we obtain the value p = 0.4583 (10000
runs, error ±0.02 at 95% confidence level). However, this raw number does not tell us anything specific
about bistability. A system stabilising just above the threshold 300, such that roughly 55% of its trajecto-
ries cross it “frequently”, may satisfy the same formula with the same probability. However, the bimodal
behaviour becomes evident if we look at the distribution of the robustness degree of the formula, see
Figure 1(b) . Hence, the robustness score carries an additional amount of information with respect to the
satisfaction probability of a STL formula. We stress that we are not comparing the robustness degree with
the probability distribution of the CTMC X [t]: both the satisfaction probability of ϕ and its robustness
are (unidimensional) quantities derived from X [t], which are easier to compute and visualise.

In Figure 2, we investigate the behaviour of the average robustness degree, and its relationship with
the satisfaction probability. In order to do this, we varied the threshold level kt in the formula (Figure
2(a)), and the rate constant k3 (Figure 2(b)), and estimated statistically the average robustness degree and
the satisfaction probability from 10000 runs for each parameter combination. As we can see these two
quantities are correlated. When we vary the threshold, the correlation between satisfaction probability
and robustness score is around 0.8386, while the dependency seems to follow a sigmoid shaped curve. In
the second case, instead, the correlation between satisfaction probability and average robustness degree
is 0.9718, with an evident linear trend.

Finally, we consider the conditional robustness degrees. For model parameters as in Table 1, the
average robustness conditional on Formula (4.1) being true is 169.89, while the robustness conditional
on the formula being false is -239.52 (see also Figure 1(b)). These two indicators estimate how robustly
the system remains in the basin of attraction of each steady state.

4.2 Repressilator

The second case study is a genuine stochastic hybrid model of the Repressilator [25], a synthetic genetic
clock composed of three genes expressing three transcription factors repressing each other in a cyclical
fashion (see Figure 3). The stochastic hybrid model we consider is taken from [10, 11]. In the model,
we lump the transcription and translation in a single event, and model production and degradation of the
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Figure 2: Satisfaction probability versus average robustness degree for varying (left) threshold kt in the
STL formula (4.1) and (right) parameter k3. k3 was varied between 100 and 300 in steps of 10 units,
while the threshold was varied between 50 and 600 in steps of 10.

protein as continuous flows. The binding and unbinding of transcription factors from gene promoters,
instead, are modelled as discrete and stochastic events. As we can see in Figure 3(b), the model ex-
hibit sustained oscillations, albeit with an irregular period. This happens for parameters giving a strong
repression via a low unbinding rate.
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Figure 3: The repressilator (left) is a cyclic negative-feedback loop composed of three repressor genes:
TetR, λcl, Lacl. Oscillatory behaviour of the model (right), for model parameters: protein production
rate kp = 1, protein degradation rate kd = 0.01, repressor binding rate kb = 0.1, repressor unbinding rate
ku = 0.001.

In order to check for the presence of oscillations, we use the STL formula

G[0,T ](((Xi < klow)→ F[T1,T2](Xi > khigh))∧ ((Xi > ρhigh)→ F[T1,T2](Xi < klow))∧F[0,T2](Xi > khigh)), (4.2)

expressing the fact that low values of Xi alternate to high values, with a period between T1 and T2. The
secondary signals are klow−Xi, Xi− khigh, and so on. Here Xi can be one of the three proteins of the
Repressilator. In the next discussion, we focus on X1.

Again, the robustness score gives us a measure of the satisfaction/dissatisfaction of the formula. As
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we can see from Figure 4(a), the robustness degree shows a bimodal behaviour also in this case. In par-
ticular, in case the formula is false, it gives some degree of information on the amplitude of oscillations,
and on the stability of the period (relatively to the formula parameters). In fact, a robustness value of, say,
-50 can be obtained for instance if from a point in which Xi < klow, the system remains below khigh−50
for a whole (half) period of the oscillation (which is constrained to be in [T1,T2]). This can happen due
to low amplitude or irregular period. In Figure 4(b), we plot the average robustness degree against the
satisfaction probability, varying the property parameter T2, showing once again the correlation between
the two quantities.
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Figure 4: Robustness distribution for Formula 4.2 parameters klow = 20, khigh = 60, T1 = 100, T2 = 4000,
T = 7000. Average robustness is -25.888 and estimated satisfaction probability is 0.35 (left). Satisfaction
probability versus average robustness degree. T2 was varied between 1000 and 7000 in steps of 100 units
(right).

5 System Design

We now discuss an application of the robust semantics to the system design problem. The problem we
want to tackle is the following:
given a population (hybrid) model, depending on a set of parameters θ ∈ K, and a specification ϕ given
by a STL formula, find the parameter combination θ ∗ such that system satisfied ϕ with probability at
least p ∈ [0,1] as robustly as possible.
We will tackle this problem by:

• rephrasing it as an unconstrained optimisation problem, where we seek to optimise the average
robustness, using penalty terms to encode for probability constraints. More specifically, assuming
we want to enforce the satisfaction probability to be at least q, we add a penalty term of the form
α‖p−q‖, if p < q, and 0 otherwise, where α < 0 controls the penalty intensity.

• evaluating the function to optimise using statistical model checking with a fixed number of runs,
usually set to 100;

• solving the optimisation problem using an optimisation strategy for reinforcement learning, based
on statistical emulation and Gaussian processes regression (Gaussian Process - Upper Confidence
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Bound optimisation, GP-UCB [42]).

5.1 Gaussian Processes - Upper Confidence Bound Optimisation

Gaussian Processes. The key ingredient for the design problem is an efficient estimation of the un-
known objective function, i.e. the average robustness as a function of the process kinetic parameters.
Function approximation is a central task in machine learning and statistics. The general regression task
can be formulated as follows [7]: given a set of input-output pairs (xi,yi), i = 1, ..,N (training data),
with xi ∈ Rd and yi ∈ R, determine a function f : Rd → R s.t. f (xi) is optimally close to the target
values yi (usually in terms of minimising a suitable loss function). Several methods exist for addressing
this task; in this paper we consider Gaussian Process (GP) regression, a popular Bayesian methodology
[40]. GPs are flexible non-parametric distributions over spaces of functions which can be used as prior
distributions in a Bayesian framework, where the input-output pairs represent noisy observations of the
unknown function. This enables a natural quantification of the uncertainty of the estimated function at
every new input value; this uncertainty will play a central role in the optimal design strategy we propose
in Section 5. We now give a semi-formal definition of GP [40]:

Definition 3 A Gaussian Process over a (portion of) Rd is a collection of random variables indexed by
x ∈ Rd such that every finite dimensional marginal distribution is multivariate normal. Furthermore,
there exist two functions µ : Rd → R (mean function) and K : Rd×Rd → R (covariance function) such
that the mean and covariance of the finite dimensional normal marginals is given by evaluating the mean
and covariance functions at each point and each pair of points respectively.

We denote a sample from a GP with mean function µ and covariance function K as

f ∼ G P(µ,K).

In practice, the input-output pairs in a regression task are often different features of experimentally
observed data points. In this paper, the output points correspond to true functional evaluations of an un-
known (and analytically intractable) function of the inputs. In this case, the regression task is often given
the special name of emulation in the statistics literature: the true (but unknown) function is assumed to be
a draw from a GP, and the functional evaluations are used as observations to obtain a posterior estimate
of the unknown function. This approach was initially introduced in order to perform sensitivity analysis
for deterministic computer models in [32]; in that case, the function evaluations could be assumed to be
noiseless (apart from numerical errors that were considered negligible in that paper). In our case, the
function linking model parameters to average robustness cannot be computed, and we can only obtain a
sampling approximation through a Statistical Model Checking procedure. This means that our function
evaluations will be noisy; by virtue of the Central limit theorem we can assume that, provided sufficient
samples were used for the SMC estimates, the noise in the observed robustness estimates will be approxi-
mately Gaussian.1 This therefore enables us to obtain an analytical estimate of the posterior process [40].
Furthermore, the SMC samples also allow us to estimate the (sample) variance in the average robustness
at every sampled parameter value; this information can also be included leading us to a heteroscedastic
(i.e. with non identical noise) regression problem (which is however still analytically tractable).

1Note that here we approximate as a GP the average robustness score (or any other fitness score) as a function of parameters.
We are not imposing any (Gaussian) approximation of the process itself.
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Gaussian Processes Optimization: the GP-UCB algorithm As we have seen, GP emulation provides
a convenient way to explore approximately the average robustness of a stochastic process for different
values of the model parameters. One could then be tempted to also use the emulated robustness profile
for model design, i.e. find the optimum of the emulated function. This strategy, while appealing in its
simplicity, is vulnerable to local optima: the emulated function is estimated based on relatively few func-
tion evaluation, so that, while the emulator typically provides a good approximation of the true function
near the sampled points, regions of parameter space far from the sampled points may contain the true
maximum undetected. Using the language of reinforcement learning, maximising the emulated function
would privilege exploitation (i.e. using currently available information) at the expense of exploration.
Obviously, given sufficient computational power, one may consider sampling many parameter points so
as to have sufficient coverage of the whole region of interest; this strategy is however bound to fail in
even moderate dimensions due to the curse of dimensionality.

An elegant solution to the above conundrum can be obtained by also considering the uncertainty of
the emulated function (which is also computed analytically in GP regression): intuitively, one should
explore regions where the maximum could plausibly be, i.e. regions in parameter space where there is
substantial posterior probability mass for the function to take a high value. We formalise these ideas in
a recursive search rule, the so called Gaussian Process Upper Confidence Bound (GP-UCB) algorithm:
assume we have computed the average robustness at N parameter values (so that we have N input output
pairs). Let µN(θ) and νN(θ) be the mean and variance of the GP emulator at a given point in input space
θ (recall that the marginal at any point will be Gaussian)2. We select the parameter value θ N+1 for the
next function evaluation according to the following rule

θ N+1 = argmaxθ (µN(θ)+βN+1νN(θ)) (5.3)

where βN+1 is a parameter. Thus, the next point for exploration does not maximise the emulated func-
tion, but an upper confidence bound at a certain confidence level specified by the parameter βN+1 (the
quantile can be obtained by applying the inverse probit transform to the parameter). [42] proved that this
algorithm converges to the global maximum of the unknown function with high probability (which can
be adjusted by varying the algorithm’s parameters).

The primary difficulty in applying GP-UCB is that, in order to be able to apply the rule, the emulated
function must be computed at a large number of points; while this is obviously not as onerous as evalu-
ating the true unknown function (as the emulator is known analytically), it may still be problematic for
high dimensional parameter spaces. Nevertheless, the algorithm can be applied effectively for moderate
sized parameter spaces (of the order of 10 parameters), and modular construction may be used to extend
to higher dimensional systems [28, 5].

5.2 Experimental Results

Schlögl system. We set up the experiment as follows. We combine the robustness degree of the formula
of Section 4.1 and the satisfaction probability in the systems design problem asking, at the same time,
to maximize the robustness degree constraining the probability value to remain above 0.75. We varied
k3 uniformly in [50,1000], fixing all other parameters to the values of Table 1. We ran the GP-UCB
optimisation algorithm by first estimating the robustness degree and the satisfaction probability, using
statistical model checking, for 30 points sampled randomly and uniformly from the parameter space, and
then using the GP-UCB strategy to estimate the maximum of the upper bound function in a grid of 200

2We now denote the input as θ to emphasize that they are the parameters of a stochastic process
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Parameter mean Parameter range Mean probability
k3 = 997.78 [979.31 999.99] 1

Average Robustness Number of function evaluations Number of simulation runs
348.97 34.4 3440

Table 2: Statistics of the results of ten experiments to optimize the parameter k3 in the range [50,1000].
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Figure 5: The emulated robustness function in the optimisation of k3 (left). The distribution of the
robustness score for k3 = 999.99 (right).

points. If in this grid a point is found with a larger value than those of the observation points, we compute
the robustness and satisfaction probability also for this new point, and add it to the observations (thus
changing the GP approximation). Termination happens when no improvement can be made after three
grid resamplings. Further integration of local maximisation can further improve the method.
In the experiment, repeated 10 times, we used a GP with radial basis kernel [7], with length scale fixed to
0.5 (after standardisation of the parameter range to [−1,1]). The amplitude of the kernel was adaptively
set to 60% of the difference between the maximum and the mean value of the robustness for the initial
observations. The observation noise was experimentally fixed to 1, by monitoring the average standard
deviation at different random parameter combinations.
Results are shown in table 2. As we can see, the result of the optimisation suggests that the more robust
system satisfying the specification (i.e. remaining as much as possible above the threshold 300 for a
sufficiently long amount of time) is the one obtained for k3 = 1000. We can see that this is the case in
Figure 5(b): the system becomes monostable, and X stably remains above 550 units (corresponding to a
robustness score above 250 with very high probability).

Repressilator. We consider a different optimisation problem, in which we keep model parameters
constant and we try to optimise the parameters of the formula to make the robustness score as large
as possible. This can be seen as a sort of dual problem, in which the goal is to learn the emergent
behaviour of the model in terms of the most robustly satisfied formula (of fixed structure). Furthermore,
the parametrisation of a formula is usually an underestimated problem, as the satisfaction/robustness
heavily depends on these parameters. This problem has been partially tacked e.g. in [41] for deterministic
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Parameter mean Parameter range Mean probability
T1 = 231.5 T2 = 6993 [0, 500] [6963, 7000] 0.900
Average Robustness Number of function evaluations Number of simulation runs

17.20 35 3500

Table 3: Statistics of the results of 10 experiments to optimize the parameter T1 in the range [0,500] and
the parameter T2 in the range [1000,7000].

models, but never for stochastic ones, to authors’ knowledge. In particular, we consider Formula (4.2)
and optimise the temporal delays T1 in the range [0,500] and T2 in the range [1000,7000]. This can be
seen as an attempt to learn the best bounds on the oscillatory period, through the filter of the logical
specification of oscillations of equation (4.2).

In this experiment, we used the same settings of the optimisation algorithms as for the Schlóg system,
save for the number of initial observations, set to 25 and constrained to lie in an equi-spaced grid. The
parameters of the model are fixed to those shown in the caption of Figure 3.

In this case, due to the highly random duration of each oscillation cycle of the SHA model of the
Repressilator, we expect to obtain a low value for T1 and a large value for T2. This is indeed the case (see
Table 3) confirming the intrinsic instability of the oscillatory pattern of the model. Moreover, the large
variability in the value of T1 can indicate a scarce contribution of the parameter in the determination of
the robustness. We confirmed this intuition by emulating the average robustness score as a function of
T1 alone in the range [0,500] for T2 fixed to 6963 (data not shown), obtaining an essentially flat function:
the average robustness varies between 15.01 (near T1 = 0) and 6.89 (near T1 = 500). We expect that an
heteroschedastic treatment of noise could improve this estimate of T1.

6 Conclusion

Discussion. In this paper we investigate a notion of robustness of behaviours of stochastic models,
extending the robustness degree of STL formulae in a probabilistic setting. Discussing two case studies,
a bistable model and the Repressilator, we showed that the distribution of the robustness degree of a
formula provides more information than the satisfaction probability alone, and its average can be used
to enforce robust behaviours by optimising it. Such optimisation is carried out using state-of-the-art
optimisation algorithms coming from reinforcement learning, which emulate the true function from just
few samples, and perform very well in a simulation based scenario. Remarkably, the proposed approach
to evaluate robustness and to system design can be applied both to CTMC and to SHA models. We
also briefly considered the problem of learning the most effective parameters of a given formula, in the
sense of finding the parameter combination maximising the robustness score. This hints towards a more
ambitious goal, that of finding machine learning procedures to learn the emergent behaviours (described
as temporal logic formulae) from models and from experimental data. Many problems need to be faced
to achieve this goal, like how to learn formula structure, how to avoid overfitting (with respect to both
formula structure and parameters), how to deal with the curse of dimensionality afflicting GP-UCB and
other optimisaton algorithms.

Related Work. Temporal Logic (TL) is a very intuitive specification language to express formally the
behavioural property emerging in a complex biological system. Several important extensions of TL, such
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as Metric Interval Temporal Logic (MITL) and Signal Temporal Logic (STL) [36], have been introduced
to deal with dense-time and real-valued signals, respectively.

In the last years there was a great scientific effort to enrich the classic qualitative semantics of TL or
satisfiability (yes/no answer for the formula satisfaction of a trajectory) with more powerful and useful
notions of quantitave semantics[26, 27, 23, 41, 2] (or robustness degree), providing a real value measur-
ing the level of satisfaction or violation for a trajectory of the property of interest.

Several tools, such as BIOCHAM [15], S-TaLiRo [2] Breach [19], are now available to perform ro-
bustness analysis on the time series collected in wet-lab experiments or produced by simulation-based
techniques. The robustness degree have been successfully employed in the analysis of ODE-based bio-
logical models, to tune the parameters that discriminates the behaviours observed experimentally (the so
called design problem).

Donze et al. in [21] proposed a multi-step analysis, where they adopt STL to express dynamical prop-
erties and they use robustness and sensitivity analysis to sample efficiently the parameter space, searching
for feasible regions in which the model exhibit a particular behavior. A similar method appeared also in
a previous paper [20] of one of the co-authors.

In [5] the authors proposed a new approach, based on robustness degree, for the design of a synthetic
biological circuit whose behaviour is specified in terms of signal temporal logic (STL) formulae. Also
in this case stocasticity was not taken into account.

For what concern the stochastic models, while the satisfiability analysis has been considered as a dis-
criminating criterion to tune the parameters in the design process using both simulation-based statistical
approximated methods [13] and probabilistic exact methods [6], to the best of our knowledge, we are
not aware of approaches using the robustness degree. Another related work in this sense is that of [35],
where authors compute exactly upper and lower bounds on the satisfaction probability within a given
region of the parameter space.

Future work. The present work uses advanced machine learning concepts to address core problems
in formal modelling; this is a relatively new line of work [13] which opens significant new avenues for
further research. From the practical point of view, more extensive testing and an efficient and robust
implementation (exploiting some of the possible parallelisms e.g. in SMC) will be important for the
tool to be adopted. From the theoretical perspective, we plan to use multi-objective optimisation to find
good parametrisation for conflicting objectives. Another interesting direction is to combine the design
problem with the inference problem, which has recently been addressed for a number of continuous
time stochastic systems [37]; this would open the possibility of addressing the control problem for such
systems, simultaneously inferring the state of the system and designing the optimal input to lead it to a
desired state.

Acknowledgements. Work partially supported by the EU-FET project QUANTICOL (nr. 600708) and
by FRA-UniTS.

References

[1] R. Alur, T. Feder & T.A. Henzinger (1996): The benefits of relaxing punctuality. J. ACM. Available at
http://doi.acm.org/10.1145/227595.227602.

[2] Y. Annapureddy, C. Liu, G. Fainekos & S. Sankaranarayanan (2011): S-TaLiRo: A Tool for Temporal Logic
Falsification for Hybrid Systems. In: Proceedings of TACAS, doi:10.1007/978-3-642-19835-9 21.



E. Bartocci, L. Bortolussi, L. Nenzi & G. Sanguinetti 17

[3] C. Baier, E.M. Clarke, V. Hartonas-Garmhausen, M.Z. Kwiatkowska & M. Ryan (1997): Symbolic Model
Checking for Probabilistic Processes. In: Proc. of ICALP ’97, the 24th International Colloquium on Au-
tomata, Languages and Programming, Bologna, Italy, July 7-11, Lecture Notes in Computer Science 1256,
Springer Berlin Heidelberg, pp. 430–440, doi:10.1007/3-540-63165-8 199.

[4] C. Baier, B. Haverkort, H. Hermanns & J.-P. Katoen (2003): Model-Checking Algorithms for Continuous-
Time Markov Chains. IEEE Trans. Softw. Eng. 29(6), pp. 524–541, doi:10.1109/TSE.2003.1205180.

[5] E. Bartocci, L. Bortolussi & L. Nenzi (2013): A temporal logic approach to modular design of synthetic bio-
logical circuits. In: In Proc. of CMSB 2013, the 11th International Conference on Computational Methods in
Systems Biology, IST Austria, Klosterneuburg, Austria, September 23-25, 2013, Lecture Notes in Computer
Science 8130, Springer-Verlag, pp. 164–178, doi:10.1007/978-3-642-39176-7.

[6] E. Bartocci, R. Grosu, P. Katsaros, C. Ramakrishnan & S. A. Smolka (2011): Model Repair for Probabilistic
Systems. In: Proceedings of TACAS 2011, the 17th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer Science 6605, Springer Berlin /
Heidelberg, pp. 326–340, doi:10.1007/978-3-642-19835-9 30.

[7] C. M. Bishop (2006): Pattern Recognition and Machine Learning. Springer.

[8] L. Bortolussi (2010): Limit behavior of the hybrid approximation of Stochastic Process Algebras. In: Pro-
ceedings of ASMTA 2010, doi:10.1007/978-3-642-13568-2 26.

[9] L. Bortolussi, J. Hillston, D. Latella & M. Massink (2013): Continuous Approximation of Collective Systems
Behaviour: a Tutorial. Performance Evaluation 70(5), pp. 317–349, doi:10.1016/j.peva.2013.01.001.

[10] L. Bortolussi & A. Policriti (2008): Hybrid approximation of stochastic process algebras for systems biology.
In: Proceedings of IFAC WC, doi:10.3182/20080706-5-KR-1001.02132.

[11] L. Bortolussi & A. Policriti (2010): Hybrid Dynamics of Stochastic Programs. Theoretical Computer Science
411(20), pp. 2052–2077, doi:10.1016/j.tcs.2010.02.008.

[12] L. Bortolussi & A. Policriti (in print): (Hybrid) Automata and (Stochastic) Programs. The hybrid automata
lattice of a stochastic program. Journal of Logic and Computation.

[13] L. Bortolussi & G. Sanguinetti (2013): Learning and Designing Stochastic Processes from Logical Con-
straints. In: Proc. of QEST 2013, 10th International Conference on Quantitative Evaluation of Systems,
Buenos Aires, Argentina, August 27-30, 2013, 8054, pp. 89–105, doi:10.1007/978-3-642-40196-1.

[14] M. L. Bujorianu, J. Lygeros & M. C. Bujorianu (2005): Bisimulation for General Stochastic Hybrid Systems.
In: Proceedings of HSCCl, pp. 198–214, doi:10.1007/978-3-540-31954-2 13.

[15] L. Calzone, F. Fages & S. Soliman (2006): BIOCHAM: an environment for modeling biological systems and
formalizing experimental knowledge. Bioinformatics 22, pp. 1805–1807, doi:10.1093/bioinformatics/btl172.

[16] T. Chen, M. Diciolla, M. Kwiatkowska & A. Mereacre (2011): Time-bounded verification of CTMCs against
real-time specifications. In: Proc. of FORMATS 2011, the 9th International Conference on Formal Modeling
and Analysis of Timed Systems, Aalborg, Denmark, September 21–23, Lecture Notes in Computer Science
6919, Berlin, Heidelberg, pp. 26–42, doi:10.1007/978-3-642-24310-3 4.

[17] M.H.A. Davis (1993): Markov Models and Optimization. Chapman & Hall.

[18] Andrea Degasperi & Stephen Gilmore (2008): Sensitivity analysis of stochastic models of bistable biochemi-
cal reactions. In: Formal Methods for Computational Systems Biology, Lecture Notes in Computer Science
5016, Springer, pp. 1–20, doi:10.1007/978-3-540-68894-5 1.

[19] A. Donzé (2010): Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems. In: Pro-
ceedings of CAV. Available at http://dx.doi.org/10.1007/978-3-642-14295-6_17.
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In our previous work we have introduced the logic STL*, an extension of Signal Temporal Logic
(STL) that allows value freezing. In this paper, we define robustness measures for STL* by adapting
the robustness measures previously introduced for Metric Temporal Logic (MTL). Furthermore, we
present an algorithm for STL* robustness computation, which is implemented in the tool Parasim.
Application of STL* robustness analysis is demonstrated on case studies.

1 Introduction

A particular place among formalisms adopted by systems biology is occupied by temporal logics, which
serve as a language for description of biological systems behaviour. Resulting temporal formulae can
be used during computer-aided system analysis, such as model checking [5], which automatically ver-
ifies whether a model satisfies given temporal formula. Methods based on temporal logics have been
successfully employed to study biological phenomena [28, 25, 16] (see [3] for review).

Since most of current models developed in computational systems biology have the form of ordinary
differential equations, model checking cannot be directly employed and is typically replaced with a non-
exhaustive procedure of monitoring [24]. In this setting, a (finite) set of signals representing individual
time-courses of the model is monitored wrt a given temporal specification. In particular, the respec-
tive temporal logics are interpreted over individual signals that are most typically simplified to discrete
timed state sequences (time series) approximating the continuous trajectories by means of numerical
simulation. Temporal logics fitting this interpretation are Metric Temporal Logic (MTL) [21] and Signal
Temporal Logic (STL) [24], which allow quantifying modalities with the time frame represented by a
closed time interval. MTL possesses both discrete and continuous semantics, as it can be interpreted over
both infinite timed state sequences and continuous signals. STL is practically focused and is defined for
piece-wise linear approximations of continuous signals.

Temporal logics are satisfactorily used in systems biology to express statements about a single in-
stance of system behaviour such as in five minutes, concentration of glucose will be greater than 0.8.
However, many biological hypotheses contain relative temporal references, e.g., after protein P reaches
the maximum concentration, a steady concentration of P is reached which is less than half of the max-
imum. Such a scenario can be found, e.g., in feed-forward genetic regulatory circuits generating pulses
in expression signals [18]. In common temporal logics, such a general query cannot be expressed. This
is because the values in different time points cannot be compared, i.e., the property in five minutes, con-
centration of glucose will rise by 0.2, which relates glucose concentration at current time and in the
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future, cannot be specified. Of specific interest is oscillatory behaviour, e.g., a sequence of gradually in-
creasing peaks followed by a limit cycle with a stable amplitude [15]. In order to express the increasing
amplitude, it is necessary to detect local extremes in signals and compare respective signal values. This
cannot be achieved using common temporal logics. Signals with a series of increasing local maxima have
been observed, e.g., in response of FGF signalling pathways transferring stimuli from mutated FGFR3
receptors to target effectors affecting bone cells growth [22]. Since the mentioned behaviour correlates
with the phenotype of dysplasia, it is necessary to develop models that mechanistically capture the re-
spective signalling pathways and to analyse circumstances under which the undesired behaviour occurs.
This makes a necessary step before designing a targeted medical treatment. To this end, temporal logics
and verification procedures which allow to capture and analyse such complex phenotypes have to be
developed.

In [7], we have introduced a new temporal logic STL* which alleviates limitations mentioned above.
Expressiveness of STL* is enhanced by signal-value freeze operator which stores values at certain time,
which may be referred to in the future. This allows STL* to specify and distinguish various dynamic
aspects which occur in biological systems, in addition to the phenomena mentioned above, these can be,
e.g., damped oscillations [17] or local extremes in species concentration. It is worth noting that some
more complex queries can be expressed in traditional temporal logic by including signal derivatives into
atomic propositions. However, this does not directly apply to queries mentioned above. One can express
the presence and shape of a local extreme by using the first and second derivative, but still the values in
particular time points have to be compared in order to express the complex queries.

An important concept associated with biological systems and temporal logics is robustness, the abil-
ity of a system to maintain its function against perturbations [20]. Since system function can be expressed
in the terms of temporal logic, we speak of robustness with respect to a temporal logic formula, which
can be quantified and computed [14, 26]. Robustness significantly enhances model analysis and gives an
optimization goal for model parameter estimation/synthesis [11, 9, 27].

This paper introduces the notion of robustness in the value-freezing logic STL* setting. In particular,
we extend the continuous and discrete measure defined for MTL by Fainekos et al. [14] to the semantic
domain of STL*. Robustness of the input signal with respect to STL* formula delineates the robust
neighbourhood of the signal (the maximal “tube” around the signal where the formula is satisfied). The
robustness measure we propose (Section 3) is defined inductively wrt the formula structure and is based
on a distance metrics employed on the signal domain extended with (multiple) dimensions representing
the frozen time points. The theoretical framework is computationally supported with an algorithm based
on solving the optimization problem (Section 4) provided that the logic is restricted to linear predicates.
Special consideration is given to optimization of the formula to overcome unnecessary computational
overhead.

Implementation of our algorithm is included as a part of Parasim [12], a tool aimed as a modular
environment for monitoring and robustness analysis of kinetic models. To demonstrate the usage and
evaluate the performance, we present case studies of two simple kinetic models (Section 5).

1.1 Related Work

Robustness measures have been defined for three temporal logics targeting deterministic continuous
systems: STL [11], MTL [14] and QFLTL [26]. We adopt the concept of behaviour-based robustness
introduced on a fragment of MTL by Fainekos et al. [14], who define robustness measure for MTL
formulae with discrete [13] and continuous [14] semantics. In [14], Fainekos et. al prove a theorem
connecting discrete and continuous robustness, which is valuable for robustness computation. A recent
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tool [2] implements the method. Donzé et al. [24] use STL to define a distinct robustness measure, albeit
constructed from [14], and propose its application for space exploration [11, 9], which was implemented
in the Breach Toolbox [8]. The work is further improved from the computational point of view in [10].
Our implementation (Parasim) is based on a simplified version of the robustness analysis algorithm for
STL where the sensitivity-based computation of local robustness is replaced with direct computation of
trajectories distance. The extension for STL* as presented in Section 4 is implemented in this setting.

Fages et al. [26] introduced property-based approach to robustness that fixes input behaviour and
examines the formula. Basically, it measures the extent to which the formula can be modified while pre-
serving its satisfaction. The tool BioCham implements this idea [4]. Extended LTL logic with constraints
over real numbers (quantifier-free LTL) is employed being defined for finite discrete time-series.

It is worth noting that the problem of formula satisfiability is undecidable for MTL [21]. To achieve
decidability, Alur and Henzinger specified further conditions on intervals associated with temporal op-
erators [1]. The result, metric interval temporal logic, requires all intervals to be non-singular and is
interpreted over timed state-sequences where time points are replaced with consecutive time intervals.
STL was introduced by Maler and Nickovic in [24] as a basis for their monitoring procedure. Techni-
cally, it comprises a variant of MITL interpreted over real signals. Because of its practical purpose, in [7]
we selected STL as a good candidate for extension with value-freezing.

2 Background

STL* is evaluated over finite time continuous signals (finite signals for short).

Definition 2.1 Let n ∈ N and T = [0,r] where r ∈ R+. Then s : T → Rn is a bounded continuous-time
signal and T its time domain. We denote l(s) = r the length of signal s.

Signal value freezing is facilitated by the following structure which is used to store time values at
various time points which then can be referred to in predicates.

Definition 2.2 Let I be a finite index set. Frozen time vector is a function:

t∗ : I → R+
0

The symbol t∗i = t∗(i) is referred to as i-th frozen time. For convenience reasons and without loss of
generality, we will henceforth assume that an index set I = {1, . . . ,m} is given, where m ∈ N.

Predicates comprise Boolean expressions over values of a signal s at time t and each frozen time t∗i ,
where x j denotes the j-the component of the signal at time t, i.e. s(t) = (x1, . . . ,x j, . . . ,xn), and x∗i

j the
j-th component at time t∗i . When |I |= 1, we usually omit the index of asterisk, e.g. x∗i = x∗1

i .
We consider only predicates given by linear inequalities, so that analytic expressions of predicate

robustness is possible.

Definition 2.3 Let n ∈ N, b ∈ R and ai j ∈ R where i ∈ {0}∪I , j ∈ {1, . . . ,n} and not all ai j are zero.
A predicate is defined as a subset of Rn× (Rn)I such that:

n

∑
j=1

a0 jx j +
|I |
∑
i=1

n

∑
j=1

ai jx
∗i
j +b≥ 0
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Predicates are specified by the set of associated coefficients ai j,b (where coefficients a0 j are con-
nected with the current time t). Therefore, for convenience reasons, we will use these coefficients to
represent predicates. Predicates with all coefficients ai j zero were omitted since they are of the form
b≥ 0 and, therefore, trivially true or false.

Predicates with equality (i.e. having = in place of ≥), although theoretically possible, lack practical
value, as they are not robust (small perturbation may invalidate the property). This has been already
argued in [7], albeit without defining the concept of robustness. Since robustness of predicates with strict
and non-strict inequalities does not differ, we consider only non-strict inequalities.

Freeze operator is used to store the time point into frozen time vector, thus facilitating signal value
freezing. The following definition introduces an auxiliary concept of storing the current time t as the ith
component of the frozen time vector.

Definition 2.4 Let t∗ be frozen time vector, i, j ∈ I and t ∈ R+
0 . Freezing ith component of t∗ in t is

denoted as t∗[i← t] and defined:

t∗[i← t]( j) =

{
t i = j
t∗j i 6= j

Definition 2.5 Syntax of STL* is defined by the following grammar:

ϕ ::= µ | > | ¬ϕ | ϕ1∨ϕ2 | ϕ1 UI ϕ2 | ∗i ϕ

where i ∈ I , > denotes the true constant, µ is a predicate as of Definition 2.3 and I ⊆ R+
0 a closed

non-singular interval.

Note that all Boolean connectives and temporal operators F and G can be defined using the basic opera-
tors defined above. Similarly to predicates, when |I |= 1, we usually omit the index of freeze operator,
as in ∗GI(x > x∗) = ∗1 GI(x > x∗1). Henceforth, let i,µ,ϕ,ϕ1,ϕ2 be the same as in Definition 2.5.

Definition 2.6 Let s ∈ (Rn)T be a signal, t ∈ T a time point and t∗ ∈ T I a frozen time vector. Formula
satisfaction is defined inductively:

(s, t, t∗) |=>
(s, t, t∗) |= µ ⇐⇒ (s(t),s◦ t∗) ∈ µ
(s, t, t∗) |= ¬ϕ ⇐⇒ (s, t, t∗) 6|= ϕ
(s, t, t∗) |= ϕ1∨ϕ2 ⇐⇒ (s, t, t∗) |= ϕ1∨ (s, t, t∗) |= ϕ2
(s, t, t∗) |= ϕ1 UI ϕ2 ⇐⇒ ∃ t ′ ∈ t⊕ I : (s, t ′, t∗) |= ϕ2∧

∀ t ′′ ∈ [t, t ′] : (s, t ′′, t∗) |= ϕ1
(s, t, t∗) |= ∗i ϕ ⇐⇒ (s, t, t∗[i← t]) |= ϕ

Operator ◦ is used to denote function composition, i.e. (s◦ t∗) ∈ (Rn)I and (s◦ t∗)(i) = s(t∗i ) and t⊕ I
stands for {t +u | u ∈ I}.

Definition 2.7 Let s ∈ (Rn)T be signal and ϕ formula. Formula satisfaction by signal is given:

s |= ϕ ⇐⇒ (s,0,0) |= ϕ

where 0 denotes the zero frozen time vector, i.e. {(i,0)|i ∈I }.
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Intuitively, interpretation of ∗i ϕ is the following: freeze operator stores signal values at the time of
∗i ϕ evaluation, which can then be referred to using index i in predicates of ϕ . An example property, “in
the next five time units, x increases by 8” can be specified as:

∗F[0,5](x≥ x∗+8)

where x∗ refers to value of x at time 0.
When intervals associated with until operators are bounded, satisfaction of a given formula can be

decided on any finite signal of sufficient length. This length can be determined from the formula structure
in a way similar to [24] and corresponds to the furthest time point (among all possible signals) which has
to be examined in order to determine formula satisfaction. This clearly also holds for frozen time values.

Definition 2.8 Let ϕ be a formula. The necessary input length for ϕ , l(ϕ) is defined inductively:

l(>) = l(µ) = 0

l(¬ϕ) = l(∗i ϕ) = l(ϕ)
l(ϕ1∨ϕ2) = max(l(ϕ1), l(ϕ2))

l(ϕ1 UI ϕ2) = max(l(ϕ1), l(ϕ2))+ sup I

When l(s)< l(ϕ) we state that s 6|= ϕ .
Frozen time indices and freeze operators share some similarities with variables and quantifiers of

predicate logic. We may distinguish free and bound indices, where index i is free if it is used in a predicate
(i.e. coefficient ai j is not zero for some j) and is not in the scope of operator ∗i.

Naturally, whenever i is free in ϕ , then s |= ϕ iff s |= ∗i ϕ, since t∗i is zero in both cases.
Additionally, we may substitute for free indices of a formula in a manner similar to variable substi-

tution. However, it only makes sense to substitute one index for another, which we will denote index
renaming and express as ϕ[π] where π is a total function on I (but not necessarily a permutation –
two indices can be renamed to one) or ϕ[k/l], where k is renamed to l. To preserve formula semantics,
renaming is only safe when no free index becomes bound after renaming in any subformula.

3 Robustness Measures for STL*

Following from STL* semantics, robustness of signal s with respect to formula ϕ is given for each time
point t and frozen time vector t∗ and denoted by ρ(ϕ,s, t, t∗). We also define ρ(ϕ,s) = ρ(ϕ,s,0,0).
Robustness of signal s with respect to formula ϕ is a value, which under-approximates the distance of s
from the set of signals where ϕ has different truth value [14]. To express this formally, we first need to
define certain basic concepts (where S is a set of signals):

• Distance of signals is given by their maximum pointwise distance: d(s,s′) = maxt∈R+
0

d(s(t),s′(t))

• Set distance is given by minimum distance to the set: dist(s,S) = min{d(s,s′) | s′ ∈ S}
• Set depth is given by set distance to the complement: depth(s,S) = dist

(
s,S
)

• Signed distance is given: Dist(s,S) =

{
−dist(s,S) s /∈ S
depth(s,S) s ∈ S
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Figure 1: Signal s (blue, thick) and borders of its robust neighbourhood (blue, dashed) with an example
of a signal (red) contained in the robust neighbourhood (adapted from [14]).

The value ρ(ϕ,s) underapproximates the signed distance of s from the set of all signals satisfying ϕ ,
L (ϕ), i.e. |ρ(ϕ,s)| ≤ |Dist(s,L (ϕ))| holds while their signs are identical. The absolute value of
ρ(ϕ,s) thus delineates an equidistant tube where all signals satisfy ϕ if and only if s does – the robust
neighbourhood of s (see Figure 1).

It would be desirable to define the robustness equal to the signed distance; however, by [14], the
robustness computation would not be feasible then. In order to be sound, the robustness definition has to
satisfy the following property (for any ϕ , s, t and t∗):

−dist(s,Lt,t∗(ϕ))≤ ρ(ϕ,s, t, t∗)≤ depth(s,Lt,t∗(ϕ)) , (1)

where Lt,t∗(ϕ) = {s | (s, t, t∗) |= ϕ}. Since depth(s,Lt,t∗(ϕ)) = 0 when (s, t, t∗) 6|= ϕ (and analogously
for dist), this actually requires that:

1. s |= ϕ =⇒ 0≤ ρ(ϕ,s, t, t∗)≤ depth(s,Lt,t∗(ϕ)),

2. s 6|= ϕ =⇒ −dist(s,Lt,t∗(ϕ))≤ ρ(ϕ,s, t, t∗)≤ 0.

Robustness is defined inductively for each logical connective from its semantics in such manner that
Boolean functions ∧ and ∨ are replaced by real functions min and max (respectively). Quantifiers in the
semantics of operator U can then be expressed by infinite disjunction or conjunction. Robustness wrt
predicate µ is defined as Dist(s,Lt,t∗(µ)), i.e. the ideal value without underapproximation. If ρ(µ,s)
was lower, it would diminish resulting robustness value, for robustness wrt formula cannot be greater
than robustness wrt any of its predicates. Soundness of this definition (property (1)) is, naturally, proved
inductively wrt formula structure.

This has already been established by Fainekos et al. in [14], albeit for MTL which does not allow
signal value freezing. Nevertheless, their definition can be directly extended for STL*. Intuitively, this is
due to frozen time values being only stored by freeze operators and retrieved in predicates, which does
not affect other logical connectives. The full proof can be found in [29] (page 83).

Consequently, we have to define robustness for the freeze operator. It follows from its semantics:

Lt,t∗(∗i ϕ) = {s | (s, t, t∗) |= ∗i ϕ}= {s | (s, t, t∗[i← t]) |= ϕ}= Lt,t∗[i←t](ϕ)
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Thus, robustness of freeze operator can be defined in the following manner:

ρ(∗i ϕ,s, t, t∗) = ρ(ϕ,s, t, t∗[i← t])

Assume −dist(s,Lt,t∗(ϕ))≤ ρ(ϕ,s, t, t∗)≤ depth(s,Lt,t∗(ϕ)) for any t, t∗. Therefore, it also holds for
t and t∗[i← t] and thus:

−dist(s,Lt,t∗[i←t](ϕ))≤ ρ(ϕ,s, t, t∗[i← t])≤ depth(s,Lt,t∗[i←t](ϕ))

From which follows the validity of (1) for ρ(∗i ϕ,s, t, t∗). STL* robustness for logical connectives is
presented in Figure 2.

ρ(>,s, t, t∗) = +∞
ρ(¬ϕ,s, t, t∗) = −ρ(ϕ,s, t, t∗)
ρ(ϕ1∨ϕ2,s, t, t∗) = max(ρ(ϕ1,s, t, t∗),ρ(ϕ2,s, t, t∗))

ρ(ϕ1 UI ϕ2,s, t, t∗) = max
t ′∈t⊕I

min
(

ρ(ϕ2,s, t ′, t∗), min
t ′′∈[t,t ′]

ρ(ϕ1,s, t ′′, t∗)
)

ρ(∗i ϕ,s, t, t∗) = ρ(ϕ,s, t, t∗[i← t])

Figure 2: Robustness of STL* logical connectives.

3.1 Robustness of Predicates

Finding Dist(s,Lt,t∗(µ)) generally constitutes a convex analysis problem [14]. Thus, it could be solved
using convex programming for each t and t∗, which would, however, greatly increase computation time,
and therefore, analytic solution is preferable. To this end, we have restricted STL* predicates to be linear.

For predicate µ with coefficients ai j,b, the problem of finding Dist(s,Lt,t∗(µ)) can be reduced to
optimization of f (d) = maxi ∑ j d2

i j (where i ∈I and j ∈ {1, . . . ,n}) under the constraint ∑i ∑ j ai jdi j +
ε = 0 for some positive ε . This is a non-trivial problem, since f is not differentiable at point d where
f (d) = ∑ j d2

k j = ∑ j d2
l j for some k 6= l. To solve it, generalized method of Lagrange multipliers from [6]

was used, resulting in the following definition of the robustness ρ (detailed derivation can be found in
[29] (page 47)).

Definition 3.1 Let µ be a predicate with coefficients ai j,b. Then

ρ(µ,s, t, t∗) =
∑ j a0 js j(t)+∑i ∑ j ai js j (t∗i )+b

∑i

√
∑ j a2

i j

for arbitrary s, t, t∗, i ranging over I , j ranging over {1, . . . ,n}.

The numerator corresponds to the left-hand side value of the predicate.
It holds that ρ(µ,s, t, t∗)=Dist(s,Lt,t∗(µ)), unless some time points given by t and t∗ are equal. This

originates from the optimization problem, where t∗k = t∗l (or t = t∗k ) would constitute another constraint,
which might change the solution.

Suppose that t∗k = t∗l (reasoning for t = t∗k is similar). We can merge (sum) coefficients ak j and
al j for any given j, which effectively reduces the number of considered frozen times. Robustness of
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predicates with merged coefficients is greater, since the denominator of definition 3.1 becomes smaller

as
√

∑ j
(
ak j +al j

)2 ≤
√

∑ j a2
k j +

√
∑ j a2

l j due to triangle inequality. Therefore, even if we disregard

possible time point equality, property (1) still holds. However, the greater the value of ρ(µ,s, t, t∗) is, the
better approximation of Dist(s,Lt,t∗(ϕ)) is obtained. Therefore, we will investigate two distinct cases
when time points can be equal:

1. It happens consistently for given formula ϕ and predicate µ , i.e. ϕ is built in such way that the
same time value is stored by freeze operator associated with both indices, such as:

ψ = GI1(∗i¬∗ j FI2(x
∗i + x∗ j ≥ x))

2. It is a result of ϕ ≡ ∗i (ϕ1 UI ϕ2) (or similar formula) evaluation:

(s, t, t∗) |= ϕ ⇐⇒ (s, t, t∗[i← t]) |= ϕ1 U[a,b] ϕ2 ⇐⇒
∃t ′ ∈ [a+ t,b+ t] : (s, t ′, t∗[i← t]) |= ϕ2∧∀t ′′ ∈ [t, t ′] : (s, t ′′, t∗[i← t]) |= ϕ1

When a = 0, it may occur that t ′ = t. Additionally, t ′′ ∈ [t, t ′], therefore, satisfaction of ϕ1 by
(s, t, t∗[i← t]) has to be evaluated. The equality of t and i-th frozen time may be propagated to
predicates. We have decided to omit this case in order to simplify robustness computation.

3.2 Improving Approximation

The formula ψ (see above) is obviously badly written, since it can be reformulated with only one frozen
time index: GI1(¬∗FI2(2x∗ ≥ x)). This eliminates time point equality and thus improves robustness
approximation. We have formulated three rules which can be used to automatically rewrite formula so
that it does not induce consistent time point equality (while preserving its meaning):

1. Freeze operator is distributive over Boolean connectives. Consequently, freeze operators can be
moved down along the formula syntax tree until they reach a temporal operator, predicate or an-
other freeze operator.

2. Freeze operator preceding predicate can be merged with the predicate (associated coefficients be-
ing merged with coefficients for unfrozen time).

3. Two consecutive freeze operators and their associated indices can be merged. However, in order to
preserve the formula meaning, a completely new index has to be chosen as the result of merging.

Subsequently, all STL* formulae can be written in such manner that each freeze operator is followed
by until operator, which also ensures that all frozen time indices generally refer to distinct time points.
Indeed, all meaningful formulae (i.e. not serving to illustrate semantic peculiarities) in [7] are specified
in this manner.

This reinforces the connection between temporal operators and freeze operators expressiveness. Sub-
sequently, it may be practical to define an alternate STL* syntax, where signal value freezing is directly
tied to the until operator, such as ϕ1 U∗i

I ϕ2 ≡ ∗i (ϕ1 UI ϕ2). However, we do not deem it necessary, seeing
that it entails no expressiveness gain. Moreover, the current syntax of STL* may permit shorter and more
transparent formulae.

It should be noted that although application of previous rules may increase number of indices used
in a formula (due to the rule (3) which introduces one new index), it does not increase the number of free
indices in each subformula. On the contrary, the number of free indices may decrease.
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4 Computation

To compute (or monitor) robustness of continuous signal, we use the approach of Fainekos et al. [14],
which is based on discrete robustness semantics. The following procedure is used:

1. Sample input signal s : T → Rm into a timed state sequence (τ,σ) : N→ T ×Rm.

2. Compute robustness over points of the resulting timed state sequence (i.e. the discrete robustness).

This only approximates continuous robustness of s. When MTL robustness is concerned, Fainekos et al.
give bound for error introduced by this approximation under certain conditions, which can be summa-
rized as signal sampling being sufficiently dense with respect to given formula. We assume this strong
theorem translates to STL* (as STL* robustness extends MTL robustness) and deem the previous proce-
dure good approximation for an input signal with large enough sampling rate.

Before the robustness monitoring algorithm is described, we should note that it can also be used
to decide formula satisfaction, since positive robustness implies formula satisfaction (and negative its
invalidity). However, when ρ(ϕ,s) = 0 no information about formula satisfaction can be derived. Ad-
ditionally, robustness measure only underapproximates the robust neighbourhood, and so the robustness
value may be zero even if clearly s satisfies ϕ . Consequently, classical monitoring may produce more
precise results.

Algorithm 1 computes robustness for a STL* formula and sufficiently long timed state sequence
(which may constitute a sampled signal). It copies inductive definition of robustness with recursive calls
of procedure MONITOR (line 4), which computes robustness only in the points of given state sequence.
Therefore, instead of frozen time vector t∗ :

(
R+

0

)I , frozen state vector ι∗ : NI is used. The computation
starts at zero index and zero frozen state vector (line 3), which ensures only robustness values needed for
resulting robustness evaluation are computed.

Robustness values with respect to subformulae of input formula are not stored. Instead, they are
computed every time procedure MONITOR is called on a given subformula. The reasoning behind this
practise is the following: For the majority of formulae, the value of robustness for given ι and ι∗ is
obtained by a simple – constant-time – operation on just a single value of robustness (or two in the case
of ∨). Additionally, the robustness with respect to predicates can be computed in constant time.

The only operator where robustness depends on robustness values over an interval is the until op-
erator (and by extension all derived temporal operators). Consequently, robustness values associated
with until operators are stored. Furthermore, when MONITOR(ϕ1 UI ϕ2, ι , ι∗) is called for the first time,
robustness values with respect to ϕ1 UI ϕ2 for ι∗ and all ι ′ are precomputed (see lines 10–17) by the pro-
cedure PRECOMPUTEUNTIL, which constitutes an algorithmic version of robustness definition for until
operator. These precomputed values are expected to be referred to later, since robustness computation is
restricted to time interval [0, l(ϕ)] which comprises all input values necessary to evaluate ρ(ϕ,(τ,σ)).

4.1 Complexity

Apparently, the most time-consuming task of Algorithm 1 is the PRECOMPUTEUNTIL procedure, which
is quadratic to the number of states in the input timed state sequence. In the worst case it is called for
each ι∗. Therefore, the complexity of Algorithm 1 is in O

(
|ϕ| ·n2|I |) where n is the size of input timed

state sequence. For sampled signals, it may be expressed using necessary length, resulting in alternate
complexity formulation: O

(
|ϕ| · l(ϕ)2|I | · f 2|I |) where f is the sampling rate of input signal, which

correlates with the precision of robustness computation. Space complexity can be bounded by the same
function.



L. Brim et al. 29

Algorithm 1 Robustness Monitoring for STL*

Input: STL* formula ϕ and timed state sequence (τ,σ) of length greater than l(ϕ) (see Definition 2.8).
Output: The value of ρ(ϕ,(τ,σ)).

1: For any i free in ϕ , ϕ ←∗i ϕ .

2: P← /0 . Precomupted robustness values.
3: return MONITOR(ϕ,0,0)

4: procedure MONITOR(ϕ, ι , ι∗)
5: if ϕ ≡> then return +∞
6: else if ϕ ≡ µ then return ρ(µ,(τ,σ), ι , ι∗) . According to Definition 3.1.
7: else if ϕ ≡ ¬ϕ1 then return −MONITOR(ϕ1, ι , ι∗)
8: else if ϕ ≡ ϕ1∨ϕ2 then return max(MONITOR(ϕ1, ι , ι∗),MONITOR(ϕ2, ι , ι∗))
9: else if ϕ ≡ ∗i ϕ1 then return MONITOR(ϕ1, ι , ι∗[i← ι ])

10: else if ϕ ≡ ϕ1 U[a,b] ϕ2 then
11: if (ϕ, ι∗) ∈ dom(P) then
12: return P(ϕ, ι∗)(ι)
13: else
14: ρ ← PRECOMPUTEUNTIL(ϕ1,ϕ2,a,b, ι∗)
15: P← P∪ ((ϕ, ι∗),ρ)
16: return ρι
17: end if
18: end if
19: end procedure

20: procedure PRECOMPUTEUNTIL(ϕ1,ϕ2,a,b, ι∗)
21: i← 0
22: l←max(l(ϕ1), l(ϕ2))
23: ρ ← /0 . Sequence of robutness values.
24: while τi +b+ l ≤ l(τ) do
25: j← 0
26: r1←MONITOR(ϕ1, i, ι∗)
27: while τi+ j < τi +a do . Before [τi +a,τi +b].
28: r1←min(r1,MONITOR(ϕ1, i+ j, ι∗))
29: j← j+1
30: end while
31: r← r1
32: while τi+ j ≤ τi +b do . Inside [τi +a,τi +b].
33: r1←min(r1,MONITOR(ϕ1, i+ j, ι∗))
34: r2←MONITOR(ϕ2, i+ j, ι∗)
35: r←max(r,min(r1,r2))
36: j← j+1
37: end while
38: ρ ← ρ ∪{(i,r)} . Set the value of ρi.
39: i← i+1
40: end while
41: end procedure
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The parameter most adversely affecting the algorithm complexity is the size of frozen time index
set |I |. Naturally, I can be restricted to indices used in input formula. In most practical cases, their
number will be small. This is supported by the following result:

Theorem 4.1 Any formula ϕ can be rewritten into a semantically equivalent formula which uses only
so many indices as is the maximum number of free indices in subformulae of ϕ .

Note that the number of free indices may increase as we descend into subformulae.
This statement derives from the fact that an index only serves to associate one freeze operator with

a set of coefficients in one or more predicates and it is free on all paths between this freeze operator and
all associated predicates. Therefore, indices which are never simultaneously free need not be different.

The result of this theorem can be realized by an automatic procedure which renames frozen time
indices in a formula while traversing its syntax tree (using DFS). This procedure stores pairs of indices
[k/l] corresponding to the renaming of source index k in the original formula ϕ to destination index l in
its optimized version ϕ ′. When the procedure encounters freeze operator ∗i, new pair [i/m] is introduced
where m is the smallest unused destination index and the operator is changed to ∗m. Whenever k becomes
free in ϕ , the pair [k/l] is removed and l can be reused. Upon reaching a predicate, all stored pairs are
applied as a renaming.

This procedure is described in greater detail in [29] (page 44) where additional justification of its
correctness can also be found.

Together with freeze operator merging described in Section 3.2 (which does not increase number of
free indices), this can considerably decrease the number of indices used in a formula and thus the time
complexity of robustness monitoring. Although intelligent formula specification may result in already
optimal formula, the existence of automatic optimization procedures reduces demands on writers of
formulae.

4.2 Implementation

The algorithm has been implemented as an extension of the tool Parasim [12]. Parasim is a highly
modular Java-based open-source tool with graphical user interface for computing robustness of a model
with respect to perturbations. Integrating the algorithm presented in this paper into an already existing
tool has an additional advantage of facilitating the use of STL* robustness in practise.

Given a model, STL* formula and perturbation set, Parasim samples the perturbation set into points
and for each point simulates the model and computes robustness of the resulting signal with respect to
STL* robustness measure. In the neighbourhood of signals with low robustness, additional points are
sampled. Formula optimizing algorithms are implemented to maximize efficiency.

5 Case Study

By employing the Parasim tool we have conducted several experiments on two simple population dy-
namics models. The experiments have also served us to briefly evaluate the algorithm performance (in
the setting of the Parasim tool).

5.1 SIR Model

First, we demonstrate the robustness analysis on the model simulating an outbreak of an infectious dis-
ease in a population [19]. The simulated population is divided into three categories: susceptible (S),
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infected (I) and recovered (R). A susceptible individual can become infected by contact with another
infected individual and an infected individual may recover. The ODE model is the following:

dS
dt

=−αSI
dI
dt

= αSI−β I
dR
dt

= β I

Where α is the contact rate which correlates to probability of disease transmission, while β , the recovery
rate, takes into account the standard length of recovery. A typical simulation of this model (see Figure 3a)
includes a rapid increase in infected individuals, which is then followed by their gradual recovery.
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Figure 3: (a) Typical development of SIR model, showing the number of susceptible (green), infected
(red) and recovered (blue) individuals. (b) Typical development of populations in predator-prey model,
showing number of prey (green) and predator (red).

In this case study, we compare robustness analysis based on a formula containing value-freezing
with respect to a freezing-free formula analysis exploiting a similar behavioural pattern. In particular,
we consider the following formulae:

STL : ϕ1 = F[1,5](I ≥ 50) STL* : ϕ2 = F[1,5]
(
I ≥ 50∧∗G[0.25,5](I

∗ ≥ I)
)

Both formulae require the number of infected individuals to be greater than 50 at some time in the interval
[1,5], while ϕ2 also requires this number to be the local maximum (the number of infected individuals is
required to decrease after reaching this maximum).

The robustness with respect to both properties was analysed on perturbations of both contact rate and
recovery rate. Results are presented in Figure 4.

While the satisfaction sets of ϕ1 and ϕ2 (delineated by positive robustness) are essentially identical,
the actual robustness values show a significant difference. Generally, when they are positive, the value
of robustness with respect to ϕ1 at given point is considerably greater than the corresponding value of
robustness with respect to ϕ2. In Figure 4, this can be seen as lighter shade of green points in 4b. Also,
lower robustness causes the apparent increase in the number of points.

The reason for the rapid change in robustness comes from evaluation of the subformula ∗G[0.25,5](I∗≥
I) that describes the local extreme. When evaluated in time t, robustness is proportional to the difference
(I[t]− I[t + 0.25]) (by Definition 3.1). In practise, the difference is small provided that the descent of I
is not extremely steep. This causes such formulae to have typically low robustness values on common
signals.
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(a) Robustness wrt ϕ1.
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Figure 4: Robustness of SIR model with respect to ϕ1 and ϕ2 for variable contact and recovery rates.
Robustness was positive in green points and negative in orange points. Darker colour represents greater
absolute value of robustness.

5.2 Predator-Prey Model

In the second case study we analyse the predator-prey model [23, 30], which attains oscillating behaviour
for a wide variety of parameters. We use a variant of the Lotka-Volterra model represented by the
following ordinary differential equations:

dX
dt

= νX−αXY
dY
dt

= αXY −µY

The model simulates a situation where a prey species X is hunted by a predator species Y with the
simplifying assumption that predator birth rate and prey death rate are equal and proportional to the
probability of prey and predator contact, and thus to the product of both species populations. We use the
following coefficients: prey natality (ν), predator mortality (µ) and predation rate (α). Typical behaviour
of this models constitutes periodic oscillations (see Figure 3b).

We consider perturbation of two aforementioned coefficients, ν and α , and compute robustness with
respect to two properties specified by the following formulae:

ψ1 = G[0,300] ∗F[0,100] (X ≥ Y ∗)

ψ2 = G[0,300]
(
X ≥ 1∧Y ≥ 1∧F[0,50] ∗

(
F[0,75] (X

∗−X ≥ 25)∧F[0,75] (X−X∗ ≥ 25)
))

The property ψ1 requires that for each time point t ∈ [0,300], there is a subsequent time point t ′ ∈
[t, t + 100] such that population of prey in t ′ is greater than population of predators in t. According to
Definition 3.1 its corresponding robustness can be expressed as follows:

ρ(ϕ,s) = min
t∈[0,300]

max
t ′∈[t,t+100]

X [t ′]−Y [t]
2
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where X [t ′] and Y [t] denote values of s associated with given species at given time. The robustness value
is maximized with respect to t ′ and minimized with respect to t, therefore, it uses maximal values of both
X and Y . Consequently, this property can be interpreted as maximum population of prey being greater
then maximum population of predators (restricted to given intervals).

Formula ψ2 is based on the similar principle. While rejecting aberrant behaviour where population
of one of the species drops below one individual, intuitively, it requires that there always is time in
the future when population of prey can increase or decrease by 25 individuals, which is stated by the
subformula F[0,50] ∗

(
F[0,75] (X∗−X ≥ 25)∧F[0,75] (X−X∗ ≥ 25)

)
. Therefore, ψ is satisfied when the

difference between maximal and minimal prey population is greater than 50 and the associated robustness
is proportional to this difference. Again, we have avoided use of the extreme property, which would
adversely affect robustness value.
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Figure 5: Robustness of predator-prey model with respect to ψ1 (left) and ψ2 (right) for variable prey
natality and predation rate. Robustness was positive in green points and negative in orange points. Darker
colour represents greater absolute value of robustness.

Results of this analysis are presented in Figure 5. Here, we should point out that small prey natality
produced behaviour where predator population approached zero and period of oscillations was greatly
increased. For such behaviour, intervals used in ψ1 and ψ2 were shorter than one period.

Apparently, satisfaction of ψ1 is not affected by predation rate. More interestingly, when prey natality
increases, predator population exceeds that of prey (see Figure 5 (left)). Figure 5 (right) shows that
amplitude of prey population oscillation is affected by both prey natality and predation rate.

The above results have been confirmed by simulation.

5.3 Performance

Performance of robustness analysis is summarized in Table 1. All results have been obtained by executing
the algorithm implementation on a 4 core 2 GHz CPU with 4 GB RAM. Each computation has been
arranged into 8 threads. For each analysis we have set an optimal resolution of the trajectories (number
of simulated points). The number of simulated trajectories has been bounded by the number of refinement
iterations in the Parasim parameter space sampling procedure.
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It is worth noting that all analysed properties consist only of F and G operators for which the proce-
dure is optimized by employing Lemire queues in the same way as proposed in [10]. This is based on an
optimal streaming algorithm for computing maxima (resp. minima) of a numerical sequence and allows
to reduce the quadratic complexity wrt formula size to linear.

Property (model) formula size # trajectories # points per a trajectory time
ϕ1 (SIR) 2 250 500 8.6 s
ϕ2 (SIR) 6 1365 1000 15.2 s

ψ1 (Predator-Prey) 4 831 400 85.4 s
ψ2 (Predator-Prey) 12 1293 423 309.4 s

Table 1: Performance of the robustness computation measured on the prototype implementation.

The increase in computation time in the case of ψ1 is caused by longer time intervals quantifying the
temporal operators. Computation of the property ψ2 has been slowed down due to insufficient memory.

6 Conclusion

In this paper we have set up a robustness measure for a value-freezing extension of STL. The robustness
of a signal with respect to a given STL* property is based on the distance of the signal from signals
violating the property. We have introduced a measure that is proved to fulfil requirements imposed on
robustness measures as defined in [14]. This guarantees that the robustness measure is defined correctly.
We have derived the algorithm for STL* robustness computation from the discrete robustness and imple-
mented it as an extension of the tool Parasim [12].

Some of the properties from case studies required comparison of signal values at near frozen time
points. Robustness of such properties is typically small. This is only natural as such properties represent
stricter requirements on signals. However, this feature may also constitute a detriment for tools such as
Parasim, which use robustness to direct perturbation set sampling. This is the exact case of analysed SIR
model and property ϕ2. It must be noted, though, that this problem is encompassed by the much broader
issue of meaningful property design.

In [14] the authors quantify error in robustness value caused by the approximate computation. We
have not yet explored this possibility for STL* robustness measures and leave this for future work.
However, results in [14] imply this error is inversely proportional to the rate of input signal sampling.
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Vascular endothelial growth factor (VEGF) signaling is involved in the process of blood vessel de-
velopment and maintenance. Signaling is initiated by binding of the bivalent VEGF ligand to the
membrane-bound receptors (VEGFR), which in turn stimulates receptor dimerization. Herein, we
discuss experimental evidence that VEGF receptors localize in caveloae and other regions of the
plasma membrane, and for other receptors, it has been shown that receptor clustering has an im-
pact on dimerization and thus also on signaling. Overall, receptor clustering is part of a complex
ecosystem of interactions and how receptor clustering impacts dimerization is not well understood.
To address these questions, we have formulated the simplest possible model. We have postulated
the existence of a single high affinity region in the cell membrane, which acts as a transient trap for
receptors. We have defined an ODE model by introducing high- and low-density receptor variables
and introduce the corresponding reactions from a realistic model of VEGF signal initiation. Finally,
we use the model to investigate the relation between the degree of VEGFR concentration, ligand
availability, and signaling. In conclusion, our simulation results provide a deeper understanding of
the role of receptor clustering in cell signaling.

1 Introduction

The topic of the spatial organization of the cell membrane and its impact on receptor clustering and sig-
nal initiation are part of a complex and very active field, illustrating the challenges faced by quantitative
systems biology. There are ultimately two different levels of spatial and mathematical detail involved.
Signaling in response to the presence of VEGF occurs on the level of the entire cell. Factors that enhance
or inhibit signaling are of crucial importance in the quest to understand and control the progression of
various types of cancer. At the other end of the spectrum, the detailed topography of the cell membrane,
the mobility and binding characteristics of individual receptors, occur at scales of a few tens of nanome-
ters, literally thousands of times smaller than the size of the cell. These aspects are actively investigated
by various microscopy modalities, which provide a wealth of extremely detailed data.

One of the tasks of meaningful modeling is to bridge the gap between these scales, and to identify
rational approaches to abstractions and approximations that can connect data and insights from different
scales. Hybrid systems result naturally when continuous degrees of freedom are abstracted into discrete
states or regimes. Here we discuss a continuous model that results as the ultimate abstraction of the

∗This work was supported by NIH grants R01 GM104973 (to JSE and ÁMH) and K25 CA131558 (ÁMH).
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complex biological system mentioned above. Our starting point is the microscopic observation that
receptors tend to concentrate in small patches. The distribution, size, and physical characteristics of these
patches can be inferred from microscopic observations. In other work [9, 17], we performed detailed,
spatial simulations of receptors in a network of high- and low- density membrane patches. These models
are naturally abstracted to a network of patches that act as well-mixed, communicating containers. The
final abstraction is one where all high density patches are treated as a single, well mixed compartment,
in contact with another one, that represents the rest of the membrane.

In this paper we focus on the final, ”top level” abstraction, which becomes quite complex when one
combines it with a realistic, kinetic model of signal initiation. We use a recently developed approach [7]
to identify and investigate the steady states of the model, and discuss the implications of high density
patches on the phenomenology of signaling.

This rest of this paper is organized as follows. We first provide some background on the role of VEGF,
its signaling mechanism, and the potential modulation of VEGF signaling by the spatial structure of the
cell membrane. The following subsection is devoted to the phenomenology of receptor clustering and the
available experimental data. We conclude the introduction by sketching the sequence of abstractions and
approximations required to extract high, cell level behaviors from the detailed microscopic observations.
Sec. 2 is devoted to the definition of the model, and to the derivation of analytical expressions for the
steady states, that require solving a one dimensional algebraic equation. Section 3 discusses results
obtained by numerically solving the steady state expressions.

Background

Angiogenesis, the growth of new blood vessels from preexisting vessels, is switched on or off by the
dynamic balance among numerous angiogenic stimulators and inhibitors (the ’angiogenesis switch’ hy-
pothesis) [2, 8]. Among the various growth factors, vascular endothelial growth factor (VEGF) and its
receptors (VEGFR) have received much attention, because of their fundamental role in tumorigenesis and
other pathologies [2,10,19]. Initially identified as a vascular permeability factor that increased leakiness
of blood vessels [25], the role of VEGF in regulating angiogenesis was discovered later [4, 21].

Signaling by VEGFR is initiated by binding of the ligand dimer to the extracellular domain of the
receptor, which stimulates receptor homo- and hetero-dimerization [14, 23, 27]. Receptor dimerization
is followed by protein kinase activation, trans-autophosphorylation, recruitment of signaling molecules,
and activation of distinct pathways. Due to its bivalence, VEGF binding may precede and induce the
dimerization of its receptors, by the binding of a second receptor to the free binding site of the ligand
(see Figure 1 for the explicit process). Ligand-induced or -enhanced receptor dimerization is a feature
present in several other receptor-ligand families including EGF and immune receptors.

Mathematical models of VEGF binding [5] generally represent the cell membrane as a single, homo-
geneous entity, equivalent to a ”well-mixed compartment” whose state is sufficiently characterized by a
single concentration value for each of the substances of interest. This is justified if there are no significant
inhomogeneities and all molecules can diffuse and mix freely over the entire membrane surface, as in
the classic Singer-Nicholson fluid mosaic model [26]. However, our understanding of the cell membrane
has evolved significantly since 1972. The current picture [28] is more structured, with microdomains
of lipids and proteins [6, 13, 24]. Modern microscopy techniques [22, 29] provide direct evidence of the
effect of these structures on membrane receptor localization and movement [1,18,20], revealing receptor
clusters in static images, and intervals of confinement in small areas separated by jumps or ”hops” in
single particle tracking.

Spatial organization in the membrane can potentially have a major impact on signaling pathways
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Figure 1: The dimerization and ligand binding reactions form a network of 7 reactions in the VEGF signal initiation model of [5]. Receptors
(R) may bind one of the two poles of a VEGF ligand (V ), and may form a direct bond with another receptor. In the ligand-induced dimerization
(LID) sequence, receptors can not form a direct bond outside a pre-existing complex; signal initiation progresses through reactions (7,6,5). In
the dynamic pre-dimerization (DPD) sequence, receptors may dimerize before binding ligand (adding reactions 1 and 2).

that rely on interaction between membrane-bound molecules. Receptor dimerization, either through
(ligand-dependent or independent) direct receptor-receptor binding, or by crosslinking through ligand[s],
requires the collision of two membrane-bound receptors, and is thus influenced by the mobility and
possible confinement of receptors. In turn, receptor dimerization is a necessary step in signal initiation,
and therefore the mobility and spatial organization of membrane receptors must be part of the quantitative
understanding of many cell signaling pathways.

The microscopic picture

VEGF receptors share many properties of other receptor tyrosine kinases. Similarly to EGF receptors,
they form ligand-bound dimers in order to activate their intracellular tyrosine kinase domains [12]. Ex-
perimental and theoretical investigation of EGF binding [3, 9, 17] emphasized the importance of spatial
distribution of receptors. Ample experimental evidence indicates that EGF receptors can have a highly in-
homogeneous distribution characterized by small areas of high density [30], and exhibit anomalous diffu-
sion [20]. There are other examples of receptors that exhibit clustering and anomalous diffusion [1]. Re-
ceptor accumulation in high density patches has an impact on dimerization and on signaling [3,9,15–17].

The data analysis pipeline in this case begins with detailed microscopic observations, that provide
either static images of a large fraction of the receptors of interest, or, in the case of single particle
tracking (SPT), time histories of the positions of a small fraction of the receptors. In the first case
(Fig. 2) the imaging modality is transmission electron microscopy (TEM); receptors are tagged with
small (6-10 nanometer) sized gold particles, and one image covers a few µm2 capturing up to a few
hundred receptors. In the second case (SPT), tracking is typically performed using fluorescent tags, but
the technique can only identify the position of well separated molecules; this modality provides up to
several hundred snapshots covering a few seconds, yielding a few tens of trajectories.

Static images of receptors (even in the absence of ligand) typically reveal a clustering pattern, where
receptors tend to accumulate in groups ranging from a few to a few tens of receptors. This occurs for
VEGFR and also other receptor types, for which there is no evidence of a collective binding mechanism.
The generally accepted explanation is that receptors accumulate in microdomains: small, physically
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Figure 2: (L) Transmission electron microscopy (TEM) images of nano-gold labelled VEGF receptors on the membrane of PAE-KDR cells,
courtesy of the Wilson lab at UNM. The second image is a detail of the first one. Gold particles appear as dark spots, whose coordinates are
extracted in a semi-automatic procedure. (R) The result of a distance based cluster identification algorithm applied to the second image.

delimited areas of the cell membrane that result from partitioning by actin filaments (elements of the
cytoskeleton) or are formed by local aggregations of specific types of lipids and / or membrane proteins.
However, there is no clear understanding of the mechanism of receptor accumulation. One hypothesis is
that some microdomains have a specific molecular composition that results in an affinity for the receptors;
receptors may diffuse in and out of them, but the crossing probability is asymmetric. This hypothesis
of confining [micro]domains is supported by time resolved tracking data, that reveals anomalous (non-
Brownian) diffusion and under some circumstances, spatial confinement.

From microscopic details to global behavior

Our model building program relies on a sequence of models, with three different levels of detail. Ab-
stractions and/or average behaviors obtained from one level serve as inputs to the next, higher level. We
use the idea of high affinity patches as a working hypothesis.

1. At the microscopic level, we investigate the localization, motion and interactions of individual
receptors. Static distributions (Fig. 2), exhibit clusters that are not consistent with a random distribution.
The identification of clusters can be done by a hierarchic clustering algorithm. The distribution of nearest
neighbor distances, as well as other statistical measures, point toward a structure of high density patches,
essentially identified with the observed clusters. Receptors are distributed randomly within the patches,
and the patches themselves also appear to be distributed randomly.

The observed receptor trajectories exhibit anomalous diffusion. We model this with random walks
in the presence of various geometries of semi-permeable barriers. Comparisons of simulated and ex-
perimental step size distributions also support the high density patch hypothesis. In summary, the mi-
croscopic data combined with a Brownian motion model can provide estimations of the individual and
combined size, as well as the attractiveness of the high density patches. In addition, direct measurements
based on SPT can provide exit and entrance rates as well as dimerization and dissociation rates for
molecular species of interest.

2. The information on the size and properties of high affinity patches is used at the intermediate,
mesoscopic level, to simulate the reactions and interchange of receptors and receptor-ligand complexes.
At this level, each high density patch is abstracted into a single, well mixed compartment. Since recep-
tors tend to diffuse quickly through the non-attractive region until they are [re]trapped by an attractive
patch, the entire non-attractive region is represented as a single compartment. The mesoscopic model
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Figure 3: (a,b) Attractive microdomains occupy a small fraction of the cell membrane, and their measurements may be extracted from ex-
perimental images. (c) Although the receptors can move through the non-attractive regions, they tend to remain in the smaller clusters. (d)
In the mesoscopic approach each microdomain, as well as the rest of the membrane (the “normal” region), are represented as well-mixed
compartments that may exchange particles.

is an abstraction of the microscopic models, where spatial degrees of freedom have been discretized.
Mobility information is encapsulated in the particle exchange rates between domains, the capacity of the
corresponding compartments, as well as the effective dimerization rates with the compartments. In terms
of implementation, this level requires the composition of a spatial network of domains, defined by an
oriented, weighted adjacency graph, and a chemical reaction network.

3. The third, highest level of abstraction is obtained by (1) merging all attractive patches into a
single one and (2) making the continuum approximation. The resulting ODE system is discussed in the
remainder of this paper.

2 Model

Consistent with the emerging experimental picture, we make two assumptions. First, we assume that
a fraction f ≤ 1 of the membrane is covered by domains that have a physical affinity for receptors. As
receptors diffuse throughout the membrane, the probability of crossing the boundary of such an attractive
domain is asymmetric - all else being equal, inbound crossing is α ≥ 1 times more likely than outbound.
We will consider the aggregate of the high affinity patches as a single high density domain, and refer
to the rest as the low density domain or sector. Second, we will set the mobility of receptor dimers
lower than that of monomers. These two ingredients result in the preferential accumulation of receptors
in the high density patches. We investigate the effect of this accumulation (clustering) on dimerization
and signal initiation. We are especially interested in establishing whether there is a postive feed-back
between dimerization and receptor clustering.

2.1 Reactions and Equations

We follow the mathematical modeling framework of MacGabhann, Popel and coworkers [5] to describe
free (R) and ligand-bound (VR) receptors, receptor dimers (RR), and three ligand-bound dimer com-
plexes (VRR, RVR, ∆); the ligand is considered constant. Their structure and reactions among them are
illustrated in Figure 1. For simplification, we assume that there is a region in the membrane with high
affinity for VEGF receptors, and describe the rest as a second,“normal” or low affinity one. Each of the
six species is presented in both domains; similary, each of the 7 reactions has a copy in each domain, see
Figure 4. Assuming the free VEGF concentration is kept constant at V0, we have a 12-dimensional state
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Figure 4: Reactions in the two-compartment model. Each horizontal sheet contains the reactions in one of the domains; transport reactions are
”vertical”. Here we omitted the added monomer receptors in reactions C1x and C2x, as well as the added VEGF (V ) in reactions C3x and C7x.

vector,

X = ([R1], [R2], [RR1], [RR2], [VR1], [VR2], [VRR1], [VRR2], [RVR1], [RVR2], [∆1], [∆2])
T . (1)

In addition to the 28 (irreversible) reactions that represent molecular transformations, we describe the
transfer of every molecular species between domains as a separate reaction, bringing the total to 40
(irreversible) reactions. It is convenient to group pairs of opposing reactions into single reversible re-
actions [11], leaving us with 20 reversible reactions, as illustrated in Figure 4. The arrows represent
the conventional direction for the corresponding fluxes. The 20 reactions with reaction rates assuming
mass-action are denoted as follows (where x = 1,2):

C1x : Rx +Rx
b−⇀↽−
d
RRx C2x : VRx +Rx

b−⇀↽−
d
VRRx; C3x : RRx +V0

2a−⇀↽−
c
VRRx;

C4x : VRRx
ai−⇀↽−
ci

∆x; C5x : RVRx
bi−⇀↽−
di

∆x; C6x : VRx +Rx
as−⇀↽−
c
RVRx;

C7x : Rx +V0
a−⇀↽−
c
VRx;

D1 : R1
k1−⇀↽−
k2

R2; D2 : RR1
βk1−−⇀↽−−
βk2

RR2; D3 : VR1
k1−⇀↽−
k2

VR2;

D4 : VRR1
βk1−−⇀↽−−
βk2

VRR2; D5 : RVR1
βk1−−⇀↽−−
βk2

RVR2; D6 : ∆1
βk1−−⇀↽−−
βk2

∆2.

(2)

The corresponding stoichiometry matrix is

Γ =




−2 0 −1 0 0 0 0 0 0 0 −1 0 −1 0 −1 0 0 0 0 0
0 −2 0 −1 0 0 0 0 0 0 0 −1 0 −1 1 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 1 0 0 0
0 0 1 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 1 0 1 0 −1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1




.

Effective concentrations: We will use effective concentrations to describe the amounts of each species
found in the two domains; [Sx]

eff is defined as the ratio of the amount (number of mols) of substance S
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Figure 5: Schematic and notations for the high- and low-density areas on the cell surface. We assume that a fraction of the membrane (area A1)
has a higher affinity for VEGF receptors than the rest of the membrane. This translates into asymmetric rate ’constants’ for the Φin, and Φout
fluxes.

in domain x (x = 1,2), divided by the total area of the cell membrane Acell. We will refer to the usual
concentrations as physical, [Sx]

phys. Generally, the meaning of the concentrations and rate constants is
similar to the standard approach in [5], with some important differences as discussed below.

Consider first the exchange reactions (D1 . . .D6 in eq.(2) ), exemplified by reaction D1 : R1 −⇀↽− R2.
Let the fraction of the area that has high affinity to VEGF receptors be f . The size of the high (VEGF)
density area is A1 = f ·Acell, and the remaining area is A2 = (1− f ) ·Acell (see Figure 5). Let us derive the
flux of unbound receptors R between A1 and A2, represented by the reaction R1 −⇀↽− R2. Let [R1]

phys and
[R2]

phys be the physical concentrations of R in A1 and A2, respectively, defined as the amount (in fmol)
of R in A1 (respectively A2), divided by the area A1 (resp. A2). The effective concentrations, denoted as
[R1]

eff ([R2]
eff resp.), are the amounts of R in A1 (A2 resp.), but divided by the total area Acell. Therefore,

[R1]
phys =

[R1]
eff

f
and [R2]

phys =
[R2]

eff

(1− f )
, (3)

with units of fmol/cm2 for all concentrations.
We assume that the flux of receptors, Φout (amount of substance per unit time and boundary length, in

fmol/(cm · s) in our case), from A1 to A2 is proportional to the physical concentration, Φout = γout[R1]
phys;

similarly, the receptor flux into A1 is Φin = γin[R2]
phys. The factors γin and γout reflect the physical

permeability of the boundary and have units of cm/s. We define the attractiveness, α ≡ γin/γout, to reflect
the asymmetry of the permeabilities; so we have Φin = γin[R2]

phys = αγout[R2]
phys, and α ≥ 1 means

that a receptor or a dimer is more easily transferred into the high concentration area A1 than into A2.
Consequently, the exchange fluxes between the two domains will balance when the ratio of the respective
physical concentrations is α , i.e. Φin = Φout ⇔ αγout[R2]

phys = γout[R1]
phys ⇔ α[R2]

phys = [R1]
phys.

Consider the net rate of change of concentrations [R1]
phys and [R2]

phys, due to the exchange of recep-
tor monomers between the two compartments, we have

(
d[R1]

phys

dt

)

Φ
=

(Φin−Φout) ·L0

A1
;
(

d[R2]
phys

dt

)

Φ
=

(Φout−Φin) ·L0

A2
, (4)

where L0 is the length of the boundary between A1 and A2. Substitute A1, A2, Φ1 and Φ2 into (4):

(
d[R1]

phys

dt

)

Φ
= (α[R2]

phys− [R1]
phys)

L0γout

f Acell
,

(
d[R2]

phys

dt

)

Φ
= ([R1]

phys−α[R2]
phys)

L0γout

(1− f )Acell
. (5)
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Defining a common time constant δ ≡ Acell/(L0γout) in (5), we have
(

d[R1]
phys

dt

)

Φ
= (α[R2]

phys− [R1]
phys)

1
f δ

,

(
d[R2]

phys

dt

)

Φ
= ([R1]

phys−α[R2]
phys)

1
(1− f )δ

. (6)

Finally, substituting the effective concentrations from (3) yields
(

d[R1]
eff

dt

)

Φ
=

α
δ (1− f )

[R2]
eff− 1

δ f
[R1]

eff,

(
d[R2]

eff

dt

)

Φ
= − α

δ (1− f )
[R2]

eff +
1

δ f
[R1]

eff.

The above result implies the identity d[R1]
eff

dt + d[R2]
eff

dt = 0, which reflects particle number conservation.
This is the main advantage of using effective concentrations.

We follow the same line of reasoning for the other transfer reactions. The exit rate constants also
reflect the generic mobility of particles; in a more detailed simulation, one could relate them to the
diffusion constants and the permeability of the membranes. Here we will assume that exit rate constants
are the same as above for ligand-bound monomer species V Rx. For dimer species, RRx, V RRx, RV Rx and
∆x, we will use reduced exit rate constants, proportional to γin and γout, and denote the coefficient as β .
In summary, the six exchange fluxes are

φ1 = k1[R1]
eff− k2[R2]

eff, φ2 = β (k1[RR1]
eff− k2[RR2]

eff),
φ3 = k1[VR1]

eff− k2[VR2]
eff, φ4 = β (k1[VRR1]

eff− k2[VRR2]
eff),

φ5 = β (k1[RVR1]
eff− k2[RVR2]

eff), φ6 = β (k1[∆1]
eff− k2[∆2]

eff),

where k1 =
1

δ f and k2 =
α

δ (1− f ) .
Next, we consider the rates of chemical reactions, molecular transformations that take place within

each area. As an example, consider a reaction in the high density area. For C21 : VR1 +R1
b−⇀↽−
d
VRR1, we

have

d[R1]
phys

dt
=

[dVR1]
phys

dt
= −b[R1]

phys[VR1]
phys +d[VRR1]

phys,

d[VRR1]
phys

dt
= b[R1]

phys[VR1]
phys−d[VRR1]

phys. (7)

Substituting [R1]
phys = [R1]

eff/ f , [VR1]
phys = [VR1]

eff/ f and [RVR1]
phys = [RVR1]

eff/ f , we have

d[VRR1]
eff

dt
=−d[R1]

eff

dt
=−d[VR1]

eff

dt
=

b
f
[R1]

eff[VR1]
eff−d[VRR1]

eff , (8)

therefore the flux for reaction r21 is

φ21 =
b
f
[R1]

eff[VR1]
eff−d[VRR1]

eff .

The only difference between the above rate law and the one in terms of physical concentrations (7), is
that the dimerization rate constant is scaled by the relative size of the domain, b→ b/ f . This reflects
the effect of clustering on dimerization; if the same number of reacting molecules are forced into a
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smaller space, their collision rate and implicitly, the absolute dimerization rate, will increase. Similar
considerations give the following for the 14 reversible reactions:

φ11 =
2b
f [R1]

eff2−d1[RR1]
eff, φ12 =

2b
1− f [R2]

eff2−d[RR2]
eff

φ21 =
b
f [R1]

eff[VR1]
eff−d[VRR1]

eff, φ22 =
b

1− f [R2]
eff[VR2]

eff−d2[VRR2]
eff

φ31 = 2aV0[RR1]
eff− c[VRR1]

eff, φ32 = 2aV0[RR2]
eff− c[VRR2]

eff

φ41 = ai[VRR1]
eff−2ci[∆1]

eff, φ42 = ai[VRR2]
eff−2ci[∆2]

eff

φ51 = bi[RVR1]
eff−di[∆1]

eff, φ52 = bi[RVR2]
eff−di[∆2]

eff

φ61 =
as
f [R1]

eff[VR1]
eff− c[RVR1]

eff, φ62 =
as

1− f [R2]
eff[VR2]

eff− c[RVR2]
eff

φ71 = aV0[R1]
eff− c[VR1]

eff, φ72 = aV0[R2]
eff− c[VR2]

eff .

(9)

We denote by Φ(X) = (φ11,φ12,φ21, · · · ,φ71,φ72,φ1, · · · ,φ6)
T , then the system of differential equa-

tion assuming mass-action is
dX
dt

= Γ ·Φ(X). (10)

2.2 Parameter values

Receptor Diffusivity and Boundaries: For the diffusivity of VEGFR, we used the exit rate of γout =
8.23 · 10−6 cm/s based on the expression given in [5]. The cells are assumed to have a surface area
of 1000µm2 [5]; assuming a spherical shape, the radius of a cell works out to approximately rcell =

8.9 µm, and the length of the high density area boundary is L0 = 2π
√

r2
cell−

(
rcell− 1000 f

2π·rcell

)2
µm, where

f ≡ A1/Acell is the relative fraction of the HD area. The L0 and γout can be readily substituted into the
definition δ = Acell/(L0γout). The graph of δ as a function of f is shown in Figure 6. We can see that δ
decreases faster in the beginning as f is increasing from 0 to 0.5.
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Figure 6: Graph of δ as a function in f (0≤ f ≤ 0.5).
Following [5], we assume that there are 40,000 receptor monomers on one cell membrane, corresponding
to Rtotal ≈ 6.6 fmol · cm−2.

Reaction Rates: We use the model of [5], with base units as follows: volume concentration (of VEGF
only, V0), in nM; all surface concentrations in fmol/cm2; time in s. Except for VEGF, whose concentra-
tion is not a variable, all molecular species in the model are surface bound. Consequently, the units of
mass-action rate constants are s−1 for unimolecular reactions, (nM · s)−1 for reactions involving VEGF,
and cm2/(fmol · s) for on-surface dimerizations. The rate constants are summarized in the table below.
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Reaction Direction Notation Value Unit Reaction Direction Notation Value Unit
Rx +Rx −⇀↽− RRx → b 0.1 cm2/(fmol · s) R1 −⇀↽− R2 → k1 0.0277 s−1

← d 0.01 s−1 ← k2 0.0154 s−1

VRx +Rx −⇀↽− VRRx → b 0.1 cm2/(fmol · s) RR1 −⇀↽− RR2 → βk1 0.01385 s−1

← d 0.01 s−1 ← βk2 0.0077 s−1

RRx +V0 −⇀↽− VRRx → 2a 0.0044 (nM · s)−1 VR1 −⇀↽− VR2 → k1 0.0277 s−1

← c 0.026 s−1 ← k2 0.0154 s−1

VRRx −⇀↽− ∆x → ai 0.949 s−1 VRR1 −⇀↽− VRR2 → βk1 0.01385 s−1

← ci 0.026 s−1 ← βk2 0.0077 s−1

RVRx −⇀↽− ∆x → bi 0.446 s−1 RVR1 −⇀↽− RVR2 → βk1 0.01385 s−1

← di 0.02 s−1 ← βk2 0.0077 s−1

VRx +Rx −⇀↽− RVRx → as 0.21 cm2/(fmol · s) ∆1 −⇀↽− ∆2 → βk1 0.01385 s−1

← c 0.026 s−1 ← βk2 0.0077 s−1

Rx +V0 −⇀↽− VRx → a 0.0044 (nM · s)−1 NOTE: the values for k1 and k2 given here correspond to
← c 0.026 s−1 f = 0.1, α = 5, β = 0.5.

2.3 Steady States

To solve for the closed form steady-state of the differential equation system (10), we use the method in-
troduced in [7]. The steady states of this system are sets of concentration values {[R1], [R2], [RR1], [RR2]
[VR1], [VR2], [VRR1], [VRR2], [RVR1], [RVR2], [∆1], [∆2]} for which the expression on the right-hand side
of (10) is identically zero. Define an expanded vector XE that consists of the original variables of X plus
the binomials [R1]

2, [R2]
2, [R1] · [VR1] and [R2] · [VR2] as

XE ≡ ([R1], [R2], [RR1], [RR2][VR1], [VR2], [VRR1], [VRR2], [RVR1], [RVR2],

[∆1], [∆2], [R1]
2, [R2]

2, [R1] · [VR1], [R2] · [VR2]
)T

. (11)

As the rate law vector Φ(X) = (φ11,φ12,φ21, · · · ,φ71,φ72,φ1, · · · ,φ6)
T is a linear combination of XE , it

can be interpreted as a linear expression: Φ(X) = AE ·XE . So we have

dX
dt

= Γ ·Φ(X) = Γ ·AE ·XE = ĀE ·XE ,

where ĀE = Γ ·AE (the 12×16 dimensional expanded system matrix ĀE is too large to reproduce within
normal text). We substitute X1 ≡ [R1]

2, X2 ≡ [R2]
2, Y1 ≡ [R1] · [VR1] and Y2 ≡ [R2] · [VR2] into XE , and

denote the new vector as X̄E . Then all elements in X̄E are linear variables, and the steady state problem
is equivalent to that for a linear system dX

dt = Γ ·Φ(X) = ĀE · X̄E , find the set of X̄E such that

dX
dt

= 0 ⇔ ĀE · X̄E = 0. (12)

By Theorem 1 in [7], ĀE has the same rank as the original system, i.e. rank(ĀE) = rank(Γ) = 11.
For the linear equation system ĀE · X̄E = 0, as rank(ĀE) = 11, and there are 16 variables in X̄E , we can
solve 11 variables (dependent variables) as a function of the other 5 (free variables). To achieve that, we
first discard a row of ĀE , whose loss would not reduce the rank of ĀE . In this case, we select row 1.

Next, we select the 11 dependent variables. The set of dependent variables has to be determined care-
fully to make the method given in [7] work. We select X̄D =([RR1], [RR2], [VR1], [VR2], [VRR1], [VRR2],
[RVR1], [RVR2], [∆1], [∆2],Y2)

T as the set of dependent variables, and X̄F = ([R1], [R2],X1,X2,Y1)
T as the

set of free variables. We use Cramer’s Rule to solve for X̄D in terms of X̄F . Denote the solution as

yi = ai1[R1]+ai2[R2]+ai3X1 +ai4X2 +ai5Y1,
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where i = 1,2, · · · ,11, yi ∈ XD and ai j are algebraic combinations of reaction rate constants. Substitute
the bilinears X1 = [R1]

2, X2 = [R2]
2, Y1 = [R1][VR1] and Y2 = [R2][VR2] back to X̄D and X̄F , then the

solution can be rewritten as

yi = ai1[R1]+ai2[R2]+ai3[R1]
2 +ai4[R2]

2 +ai5[R1][VR1], (13)

where i = 1,2, · · · ,11. We carefully select two solutions

[VR1] = a31[R1]+a32[R2]+a33[R1]
2 +a34[R2]

2 +a35[R1][VR1] (14)

[VR2] = a41[R1]+a42[R2]+a43[R1]
2 +a44[R2]

2 +a45[R1][VR1]. (15)

It is easy to solve (14) for [VR1]. Denote the solution as [VR1] = ϕ1([R1], [R2]). We then substitute the
solution of [VR1] to (15) and let [VR2] = ϕ2([R1], [R2]). As

y2 = [R2][VR2] = a11,1[R1]+a11,2[R2]+a11,3[R1]
2 +a11,4[R2]

2 +a11,5[R1][VR1], (16)

we substitute [VR1] = ϕ1([R1], [R2]) and [VR2] = ϕ2([R1], [R2]) into (16), and this will reduce the vari-
ables of (16) to [R1] and [R2]. The resulting identity is a cubic function that only has [R1] and [R2] as
variables. By Cardano’s method, we solve the cubic function symbolically for [R2], and denote the only
positive real root by [R2] = ψ([R1]). Substituting [R2] = ψ([R1]) to [VR1] solution, we then have

[VR1] = ϕ1([R1], [R2]) = ϕ1([R1],ψ([R1])).

As [R2] and [VR1] are expressed as algebraic functions with variable [R1], all the variables in XF =
{[R1], [R2], [R1]

2, [R2]
2, [R1][VR1]} can be represented as an explicit function of [R1], and consequently

all the solutions of (13) can be rewritten as functions of [R1]. We expressed all 12 variables as functions
of [R1]. With the conservation law

Rtotal = [R1]+ [R2]+2[RR1]+2[RR2]+ [VR1]+ [VR2]+2[VRR1]+2[VRR2]

+2[RVR1]+2[RVR2]+2[∆1]+2[∆2] , (17)

we can solve the equation for [R1] numerically for any given value of Rtotal. For all parameter values used
in this paper, the dependence on [R] was consistent with a single real root, leading us to the conclusion
that the system had a unique steady state. This does not exclude the possibility of multiple steady states
for other parameter sets.

3 Results and Discussion

We obtained steady states for the differential equations (10) by numerically solving the steady state equa-
tions as outlined above, for various values of the relative size of the high density area ( f = 5% . . .30%),
the attractiveness parameter (α = 1 . . .10), and for VEGF concentrations ranging from 0.01 nM to 5 nM.
We considered three situations for the relative mobility of dimers β = 0.5,0.25,0 (note that the β = 0.5
case corresponds to equivalent monomer and dimer mobilities).

We first performed calculations using the full model of [5]. The equilibrium values for the total
number of receptors and signaling complexes in the two domains, as a function of the three parameters
(α , f , V0), are shown in Figures 7 and 8. Not surprisingly, increasing the attractiveness parameter α ,
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relative size f of the HD area results in an increasing fraction of receptors and signaling complexes in
the high density area. Increasing the concentration of VEGF leads to overall increased singaling but no
significant shifts between the domains.

In Figure 7, the total amount of signaling complexes increases only weakly as a function of the attrac-
tiveness parameter α . This set calculations was performed including both the ligand-induced dimeriza-
tion as well as the pre-dimerization (DPD) mechanism of the Mac Gabhann-Popel model. The DPD rate
constant b = 0.1 results in a high degree of dimerization (more than 90% dimers), even in the absence of
ligand or a high affinity domain.
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Figure 7: Signaling complexes (RV R and ∆) in the high-affinity (red) and normal (blue) domains, as well as total signal (black) as a function of
the attractiveness factor α , the relative size of the HD domain f , and the concentration of VEGF ligand V0. The values for the fixed parameters
were α = 5, f = 0.1,V0 = 0.1 nM. Solid lines correspond to the case when dimers are not allowed to cross domain boundaries, and dashed
lines correspond to fully mobile dimers. The total signal (black lines) depends weakly on the affinity and size of the attractive domain due to
the combined effects of the relatively high (V0 = 0.1 nM) VEGF concentration value used in the calculations, as well as due to the presence of
strong ligand-independent dimerization (DPD) in the model.

We were especially interested in the effect of dimerization on the preferential accumulation of recep-
tors. While the results in Fig. 7 and 8 indicate that the accumulation effect is stronger when dimers are
not allowed to cross domain boundaries, the ligand dose response curves (rightmost panels) show only a
marginal effect due to the presence of ligand.

The explanation for the weakness of these effects is the presence of ligand-independent dimerization
(or pre-dimerization) in the Mac Gabhann-Popel model, as well as the high value of the on-surface
VEGF-receptor binding constant aS. The effect of dimerization on clustering is revealed when pre-
dimerization is turned off (by setting b = 0.0001 in the rate laws) and the on-surface ligand binding
rate as is reduced. These results are shown in Fig. 9 and 10. The signal is clearly increased as the
affinity of the HD domain increases. There is an optimum in the size of the HD area (middle panel,
Fig. 9). The effect on the signal persists when dimers are allowed to move. While the dependence of
localization on attractiveness and domain size are similar to the previous set, the depedendence on V0 is
dramatically different in Fig. 10, showing a significant increase in the number of receptors in the HD
area as V0 is increased. This effect is completely absent when dimers are allowed to move at the same
rate as monomers and is very significantly weakened at the intermediate mobility value we used (those
results not shown).
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Figure 8: Total number of receptors in the high-affinity (red) and normal (blue) domains, in the same set of calculations as in Figure 7. The
affinity and size of the HD domain strongly influence clustering (represented by the accumulation of receptors in the HD domain), however,
the effect of VEGF is marginal, because the model includes ligand-independent dimerization (DPD).
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Figure 9: Signaling complexes (RV R and ∆) in the high-affinity (red) and normal (blue) domains, as well as total signal (black) as a function of
the attractiveness factor α , the relative size of the HD domain f , and the concentration of VEGF ligand V0. The values for the fixed parameters
were α = 5, f = 0.1,V0 = 0.1 nM. Solid lines correspond to the case when dimers are not allowed to cross domain boundaries, and dashed
lines correspond to fully mobile dimers. This calculation used significantly reduced on-surface dimeriztion rates, namely as = 0.0021 and
b = 0.0001 (essentially eliminating DPD). By contrast with Figure 7, the affinity of the HD domain strongly enhances the signal, as dimers are
formed at a higher rate in the HD domain.

In summary, our simple model shows a positive feedback between dimerization / signaling and recep-
tor clustering. Accumulation of receptors in a high affinity patch enhances dimerization and signaling.
On the other hand, increased dimerization, in the presence of ligand, inceased the accumulatin of re-
ceptors in the high affinity patch. The latter effect also requires a dramatic reduction in the mobility of
dimers. Finally, we should point out that the empirically obtained model parameters lead to dimerization
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Figure 10: Total number of receptors in the high-affinity (red) and normal (blue) domains, in the same set of calculations as in Figure 9. By
contrast with Figure 8, the presence of VEGF strongly promotes the accumulation of receptors in the HD domain. Dimers are formed at a
higher rate in the HD domain, and become trapped, causing the HD domain to act as a receptor sink.

rates that are so high that the effects we described here would be marginal; however, the empirically
determined parameters are what one would observe as a result of affinity-induced clustering. In other
words, in the presence of high density domains, significanly lower dimerization rate constants may be
sufficient to achieve the observed signaling.
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We propose an approach to falsification of oscillation properties of parametric biological models,
based on the recently developed techniques for testing continuous and hybrid systems. In this ap-
proach, an oscillation property can be specified using a hybrid automaton, which is then used to guide
the exploration in the state and input spaces to search for the behaviors that do not satisfy the prop-
erty. We illustrate the approach with the Laub-Loomis model for spontaneous oscillations during the
aggregation stage of Dictyostelium.

1 Introduction

Understanding periodic responses in living organisms is an important problem since such oscillations
are a common phenomenon in biology. To reveal possible molecular mechanisms underlying this phe-
nomenon, mathematical models have been developed. These models require validation before they can
be used to make predictions. Such validation is often based on a comparison between the model behavior
and experimental data obtained by temporal measurements. One major difficulty in biological model val-
idation is that biological models often require many parameters, and most parameter values are neither
measurable nor available in literature. Since there are often many sets of parameter values that can match
the data, parameter identification is based not only on the error between the model simulation output and
the data, but also on model robustness with respect to parameter variation. From a modelling point of
view, robust parameters allow the model to fit new data without compromising the fit to the previous
data. From a biological point of view, with robust parameters the system is resilient to perturbations.

The focus of this work is twofold. On one hand, we are interested in studying biological oscillating
behaviors. On the other hand, we want to study the influence of parameters on the system behavior,
that is how much the parameters can be varied without violating a given property. Typical behavioral
changes include self-oscillations (that is the developments of periodical orbits from an equilibrium) and
the occurence of a bifurcation. To illustrate this, we consider a dynamical system described by the
following differential equations:

ẋ = f (x,k)
where x ∈ Rn is the state variables, and k ∈ R is a real-valued parameter. In a more general context, the
dynamics of the system can be hybrid and contain more than one parameter. To characterize the impact of
parameter variation, we want to know under which condition the two systems ẋ = f (x,k) and ẋ = f (x,k′)
(under two different parameter values k and k′) are qualitatively similar, that is there exists an inversible
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and continuous homeomorphism that maps a trajectory of one system to a trajectory of the other. In this
case, an oscillating trajectory and a steady state equilibrium of one system correspond respectively to
an oscillating trajectory and a steady state equilibrium of the other. When the parameter changes and
reaches a value at which the behaviors are no longer qualitatively similar, such a behavioral change is
often called a bifurcation and this value is called a critical value or a value of bifurcation. This can be
illustrated with a linear dynamical system when the real parts of its eigenvalues change their sign under
a parameter variation.

A set of parameter values is called robust if the system does not undergo a bifurcation under any
variation of the parameter within that set. In this paper we propose to use a testing approach to analyze
the robustness of biological models with respect to preservation of oscillation properties under admis-
sible parameter variations. When applied to a model, this testing approach can be seen as systematic
simulation that can check whether the model can replicate some essential behaviors observed during
experiments. However, in general it can also be applied to a biological system (viewed as a black-box
system). The key steps of the approach we propose are the following:

1. Specifying the property. A hybrid automaton A is used to describe the expected oscillating behav-
iors. We call A a property automaton. This automaton also encodes the satisfaction/violation of
the property and incorporates realistic variations of the parameter values.

2. Generating test cases for property falsification. The generation of test cases from the automatonA
is randomized but guided by the property, that is it favors the exploration of the trajectories leading
to a violation of the property of interest.

We choose hybrid automata as specification formalism for two reasons. First, numerous phenom-
ena in biology exhibit switching behaviors. Second, hybrid automata can naturally describe transitions
between different qualitative behaviors, as we will show later. In the hybrid systems research, formal
specification of oscillation properties of biological systems are considered in [3, 6].

Concerning bifurcation detection, the theory of bifurcation in smooth systems is well developed. The
existing methods (such as using analysis of the eigenvalues of the Jacobian matrix [10], Routh-Hurwitz
stability criteria [8, 9], the Floquet multipliers [14]) are developed for continuous systems and it is not
easy to extend them to hybrid systems with discontinuities in the dynamics. Another approach (such as
[7]) involves first generating the model outputs by simulation and then finding the parameters by fitting
the simulation outputs to the experimental data, based on a grid over the parameter space. Our testing-
based approach with a property guided search enables a quick detection without exploring a large number
of parameter values. In addition, the approach has the potential to be more scalable than analytical and
grid-based methods.

The rest of the paper is organized as follows. We first describe how to use hybrid automata to specify
oscillation properties. This specification formalism can be applied to a large class of temporal properties
due to the expressiveness of hybrid automata. We then show how to generate test cases from a property
automaton for falsification purposes. The approach is applied to analyze the robustness of the Laub-
Loomis model under parameter variation. This model has been proposed for describing the dynamical
behavior of the molecular network underlying adenosine 3’5’-cyclic monophosphate (cAMP) [11].
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2 Using Hybrid Automata to Specify Oscillation Properties

We first present a commonly used definition of hybrid automata and then show how they can be used to
for oscillating property specifications.

2.1 Hybrid Automata

In the development of formal models for designing engineering systems, hybrid automata [1] emerged
as an extension of timed automata [2] with more general dynamics. Unlike in a timed automaton where
a clock c is a continuous variable with time derivative equal to 1, that is ċ = 1, in a hybrid automaton its
continuous variables x can evolve according to some differential equations, for example ẋ = f (x). This
allows hybrid automata to capture the evolution of a wide range of physical entities.

Definition 1 (Hybrid automaton). A hybrid automaton is a tuple A = (X ,Q,E,F,I,G, (q0,x0)) where

• X ⊆Rn is the continuous state space;

• Q is a finite set of locations (or discrete states);

• E ⊆Q×Q is a set of discrete transitions;

• F = {Fq ∣ q ∈ Q} specifies for each location a continuous vector field. In each location q ∈ Q the
evolution of the continuous variables x are governed by a differential equation ẋ(t)= fq(x(t),u(t))
where u(⋅) ∈ Uq is an input function of the form u ∶ R+ →Uq ⊂ Rm. The set Uq is the set admissi-
ble inputs and consists of piecewise continuous functions. We assume that all fq are Lipschitz
continuous;

• I = {Iq ⊆X ∣ q ∈Q} is a set of invariants. The invariant of a location q is defined as a subset Iq ofX . The system can evolve inside q if x ∈ Iq;

• G = {Ge ∣ e ∈ E} is a set of guards specifying the conditions for switching between locations. For
each discrete transition e = (q,q′) ∈ E, Ge ⊆ Iq;

• R = {Re ∣ e ∈ E} is a set of reset maps. Each transition e = (q,q′) ∈ E is associated with a reset
mapRe ∶ Ge→ 2Iq′ that defines how x may change when the automaton A switches from q to q′;

• The initial state of the automaton is denoted by (q0,x0).

A state (q,x) of A can change in the following two ways:

1. by a continuous evolution, where the continuous state x evolves according to the dynamics fq while
the location q remains constant;

2. by a discrete evolution, where x satisfies the guard of an outgoing transition and the system changes
location by taking this transition and updating the values of x accordingly to the associated reset
map.

It is important to note that hybrid automata allow modelling non-determinism in both continuous and
discrete evolutions. This non-determinism is useful for describing disturbance from the environment or
under-specified control, as well as for taking into account imprecision in modeling.
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ẋ= f (x,k)
k̇=u
ċ=1
ṗ=0
ẋp=0

ẋ= f (x,k)
k̇=u
ċ=1
ṗ=0
ẋp=0

start

ẋ= f (x,k)
k̇=u
ċ=1
ṗ=0
ẋp=0

ẋ= f (x,k)
k̇=u
ċ=1
ṗ=0
ẋp=0

(x≈εxp∧c=p)?
c∶=0(x/≈εxp∧c=p)?

c∶=0

(0<c≤Ti)?

c∶=0
xp∶=x

(x≈εxp∧0<c≤δ)?
p∶=c
c∶=0
xp∶=x

(x≈εxp∧c>δ)?
p∶=c
c∶=0
xp∶=x

(x≈εxp∧c=p)?
xp∶=x
c∶=0

(x/≈εxp∧c=p)?

qST D

qINIT qLRN qOSC

Figure 1: An oscillation property automaton.

2.2 Property Automata

We now show how to formalize some common temporal properties of particular interest for biological
systems using hybrid automata. We will call them property automata.

A dynamical system starting from a given initial state can evolve to a steady state or to an irregular
behavior. The steady state may be stationary (that is, the system remains in the same state as time passes),
which is also called an equilibrium. The system can also evolve to a periodic state (or a limit cycle).
Stationary states and periodic states can be stable (that is, attracting neighboring trajectories), unstable
(that is, repelling neighboring trajectories), or non-stable (saddle). The stationary and periodical states
are important since they help determine the long-term behavior of the system. It is often of great interest,
in particular for biological systems, to know how the stationary and periodic states change when the
parameters of the system change.

Suppose that we are interested in checking whether a given dynamical system exhibits the following
behavioral pattern: the system from a given initial state evolves to a limit cycle and then under a some
admissible parameter perturbation it evolves only from one limit cycle to another one. In other words,
this parameter perturbation does not make the system undergo a structural behavior change (or a bifurca-
tion). Another question is to know under which parameter changes the system moves from an oscillating
behavior to a steady state.
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The hybrid automaton depicted in Figure 1 can be used to specify the above-described oscillating
behaviors. In this property automaton, the parameters k ∈ Rm form part of the continuous state of the
automaton. In the remainder of this paper, we assume that the evolution of x can be described by:

ẋ = f (x,k)
k̇ = u

where u is the input. This can be thought of as an abstract view of the dynamics of x, which can be
described using complex concrete models, such as a hybrid automaton. Additionally, as we will show
later, for test generation purposes, the continuous dynamics in the property automaton is abstracted
away, which results in a discrete abstraction. This abstraction retains only important information about
the expected temporal behavioral patterns of the variables under study.

In this example, we restrict the derivatives of the parameters to be constant and they can take values
in some set U . Therefore, this allows capturing piecewise linear evolution of the parameters. It is also
worth noting that one can use other classes of functions to describe the parameter change.

In addition, to describe the desired temporal behavioral pattern, we augment the continuous state of
the property automaton with three special variables: c, p and xp, where c is a clock used to measure time
lapses, p is used to store the oscillation period, and xp is used to memorize a point to which the system
should return after a period.

The discrete structure of the property automaton consists of four locations qINIT , qLRN , qOSC and
qST D. The location qINIT corresponds to transient behaviors (between different qualitative behaviors)
that can have a maximal duration Ti. After this amount Ti of transient time, the automaton jumps to qLRN

and while doing so, as specified by the associated reset map, it stores the current value of x in the variable
xp which is used as an expected periodic point.

The role of the location qLRN is to “learn” the period of a limit cycle that the system is expected to
enter. At location qLRN , if after a strictly positive time δ the system returns to the point xp, then the
automaton resets the clock c after storing its value in the variable p. We use a strictly positive amount of
time lapse here to exclude Zeno behaviors. Therefore, if the system has entered a limit cycle, the value of
the variable p is exactly the period of that limit cycle (see Figure 2). In case the system reaches xp after
exactly δ time, the automaton switches to the location qST D which is used to model a steady state (see
Figure 3). Note that the test generation algorithm interacts with the system under test in discrete time,
and the value of δ represents the smallest clock period that the test generation algorithm can handle.

After the learning phase at the location qLRN the variable p contains the value of the expected period.
When the automaton switches from the location qLRN to the location qOSC, the variable xp is updated with
the current value of x. At the location qOSC, the automaton checks after every p time whether x returns
to the periodic point xp. There are two cases:

• If x is in the ε-neighborhood of the periodic point xp, the system is considered oscillating and the
clock is reset and the self-loop transition is traversed in order to check the next oscillation cycle.

• Otherwise, the automaton jumps back to the initial location qINIT . This models the scenario where
the system leaves the current limit cycle and may then evolve to another limit cycle.

To allow measurement imprecision, in the guard conditions x is not required to return exactly to xp

but to some ε-neighborhood of xp. This is denoted by x ≈ε xp.
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p p Ti
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ẋ = 0
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x /≈ε xp

Figure 2: Detection of an oscillation using a periodic point xp.
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Figure 3: Detection of a steady state.
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ẋ= f (x,k)
ẋ∗= f ∗(x∗)

k̇=u
ċ=1
ω̇=0

start (x>x∗∧c=δ∧ω<x−x∗)?
ω ∶=x−x∗

qOS

Figure 4: Overshoot detection.

Another property that can be easily expressed using hybrid automata is the maximal overshoot, that
is the maximum peak value of x measured from a desired response of the system. The automaton has
only one location qOS and is equipped with an auxiliary variable ω which stores the maximum distance
from the desired response x∗ (see Figure 4).

3 Guided Exploration to Falsify a Property

Given a property automaton, our problem now is to explore the parameter space to detect behaviors that
do not satisfy the property expressed by this automaton. To do so, we make use of the test generation
algorithm gRRT [5]. This algorithm is based on the star discrepancy coverage notion and allows achiev-
ing good coverage of the reachable state space. When the objective is not to cover the whole reachable
space but to quickly detect some specific behavioral patterns, we can use on top of the gRRT algorithm a
property-based guiding tool. The goal of this tool is to specify some critical regions to visit and then the
algorithm gRRT can be used to cover those regions. Before continuing, let us briefly recall the algorithm
gRRT.

Given a hybrid automaton A, the algorithm gRRT generates a test case represented by a tree where
each node is associated with a state of A and each arc is associated with a control input action, which is
either a continuous input value or a discrete control action (that is, the action of traversing a transition).
Note that in the context of this work, both continuous inputs (described by u in the definition of hybrid
automata) and transitions are controllable by the tester. To execute such a test case, the tester applies a
control input sequence to the system, measures the variables of interest and decides whether the system
under test satisfy the property. The algorithm thus can be thought as a procedure to find input signals that
correspond to the beahviors we want to observe. The main steps of the coverage-guided test generation
algorithm gRRT [5] are the following:

• Step 1: a goal state (qgoal,xgoal) is sampled from the state space;

• Step 2: a neighbor state (qnear,xnear) of the goal state is determined;

• Step 3: from the neighbor state, an appropriate continuous input u is applied for a time step h, or a
transition is taken, in order to steer the system towards the goal state.

Step 2 can be done using a notion of distance between two hybrid states that capture the effects of
discrete transitions. The choice of continuous input u in Step 3 can be done by a random selection from
a discretization of the input set U . Indeed, more sophisticated methods based on trajectory sensitivity
to input variation can be used but they cost more computation effort. It is important to note that a good
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selection of goal states is key to a good coverage result, because the success of randomized algorithms
depends on finding good starting states. For a more thorough description of the algorithm gRTT and its
properties, the reader is referred to [5]. For the example in Section 4 a uniform randomized selection of
u is used, which already allows an efficient exploration.

To bias the goal state sampling while taking into account the property to falsify, we first construct
a discrete abstraction of the property automaton A that reflects the expected behavioral patterns. This
abstraction is then used to biased the goal state samplings, so that it favors the exploration of the be-
havioral patterns of interest. As an example, to falsify the oscillation property presented in the previous
section, that is to show that after a given initial transient time there exists a parameter change that leads
the system out of an expected limit cycle, the trajectories that lead to the transition from qOSC to qINIT

are favored. In other words, the exploration is biased in a way to increase the probability of sampling the
goal states in the guard set of this transition.

To define a discrete abstraction, we need some additional definitions. A n-dimensional predicate is
defined as π(x) ∶= g(x) ∼ 0 where g ∶ Rn → R is a function of n variables, and ∼∈ {≥,>}. Let λ be a
function that specifies for each location q ∈Q a vector of mq predicates, that is λ(q) = (π1, . . . ,πmq).

We define for each location q an abstraction function αq ∶X →Bmq such that

αq(x) = (π1(x), . . . ,πmq(x)).
We say that the Boolean abstraction vector of x with respect to αq is the Boolean vector (π1(x), . . . ,πmq(x)).
The abstraction function αq associated with a location q ∈ Q partitions the set of continuous states at lo-
cation q into at most 2mq subsets of continuous states such that all the continuous states in each subset
have the same Boolean abstraction vector with respect to the abstraction function αq.

In the other direction, for each location q we define the concretization function γq ∶ Bmq → 2X such
that for a given Boolean vector b ∈Bmq , γq(b) = {x ∈X ∣ αq(x) = b}.

The discrete abstraction of A with respect to λ is a transition system D = {S,↝,s0}.

• Each location q of the hybrid automaton corresponds to a set Sq of abstract states, each of which
corresponds to a pair (q,b) where b ∈Bmq is a value of the Boolean abstraction vector. For conve-
nience, we call them q-abstract states. Two q-abstract states s = (q,b) and s′ = (q,b′) are adjacent
if their corresponding sets of concrete states, that is γq(b) and γq(b′), have non-empty intersection
and they intersect only their boundaries. The whole abstract state space S is the union

S = ⋃
q∈QSq.

• The transition relation↝⊂ S×S between the abstract states is defined as the union of the following
two relations↝d and↝c. Let s= (q,b) and s′ = (q′,b′) be two abstract states; the transition relation
between them is defined as follows:

– s↝c s′ if q = q′ and s1 and s2 are adjacent.
– s↝d s′ if q ≠ q′ and γq(s)∩Gqq′ ≠∅ andR(γq(s)∩Gqq′) ⊆ Iq′ .

The relation↝d represents the transitions in the abstract state space due to discrete switches in the
original hybrid automaton A, the relation↝c represents the continuous evolution in A.

• The initial abstract state s0 = (q0,b0) where b0 = αq0(x0).
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The abstraction D can be thought of as an over-approximation of A since it is easy to see that any
execution ofA corresponds to an execution ofD. Moreover, it can be refined based on the exploration re-
sults in order to distinguish different qualitative behaviors that are important with respect to the property
to validate.

In order for such a discrete abstraction to reflect the behavioral patterns we want to explore, we
should choose for each location a set of predicates that can capture the discrete transitions of A and
separate critical regions from the rest; therefore the set should include the predicates defining the guard
and invariant conditions. This will be illustrated by the example in Section 4.

To biased the search, we use the Metropolis-Hastings method to perform a random walk [12] on D
starting at the abstract state s0. We first specify a target probability distribution over the abstract states

π = {πs ∣ s ∈ S}.
We then construct the following transition matrix P(D). Between two abstract states s and s′, we assign
a probability to the transition from s to s′:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pss′ = 1
deg(s)min{deg(s)πs′

deg(s′)πs
,1} if s↝ s′

pss′ = 1−∑
w≠s

psw if s = s′
pss′ = 0 otherwise

The above transition matrix P(D) guarantees that the stationary distribution of the resulting random walk
on the abstraction D is the target distribution π [13]. Therefore the abstract states corresponding to the
region we want to visit are assigned with high target probabilities.

The Metropolis-Hastings method was proved to have good hitting times, which allows quickly reach-
ing a desired abstract state, indeed the hitting time from s to s′ of this random walk is of O(rN2

v ) where

Nv is the number of abstract states and r =max{ πs

πs′
∣ s,s′ ∈↝}.

4 Application

4.1 Laub-Loomis Model

In this section we apply on the Laub-Loomis model [11] the techniques previously exposed. The model
consists of a parametrized ODE system extracted from a molecular network that describes the aggrega-
tion stage of Dictyostelium. Our main intent is to show that for some parameter variation with bounded
derivatives, the spontaneous oscillations of the system do not occur any more. Roughly speaking, we
want to falsify the oscillation robustness of the system.

To this end, we derive a discrete abstraction from the property automaton in Figure 1 and guide the
simulation of the ODE system towards the areas in the state space of the property automaton where the
oscillation disappears. The derivatives u of the parameter variables are the inputs that we use to guide
the exploration.

A revisited model that slightly differs from the original one presented by Laub and Loomis [11] is
the following [8]:
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ẋ = f (x,k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1x7−k2x1x2
k3x5−k4x2

k5x7−k6x2x3
k7−k8x3x4

k9x1−k10x4x5
k11x1−k12x6
k13x6−k14x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Par. Val. Par. Val.
k1 2.0 min−1 k8 1.3 min−1

k2 0.9 min−1 k9 0.3 min−1

k3 2.5 min−1 k10 0.8 min−1µM−1

k4 1.5 min−1 k11 0.7 min−1

k5 0.6 min−1 k12 4.9 min−1

k6 0.8 min−1µM−1 k13 23.0 min−1

k7 1.0 min−1µM−1 k14 4.5 min−1µM−1

Table 1: Oscillations parameter values.

The variables x correspond to seven protein concentrations: x1 = [ACA], x2 = [PKA], x3 = [ERK2],
x4 = [REGA], x5 = [Internal cAMP], x6 = [External cAMP] and x7 = [CAR1]. The coefficient vector k =[k1, . . . ,k14] contains the system parameters. Table 1 shows the parameter values for which spontaneous
oscillations occur [11].

4.2 Constructing a Discrete Abstraction

In the property automaton in Figure 1, the transition from qOSC to the location qINIT is critical since
it takes the system from an oscillation phase to a non-oscillation phase. We thus want to control the
system’s behavior in order to satisfy the condition (x /≈ε xp)?.

In addition, we modify the property automaton so that it results in an abstraction with predicates
involving only one state variable, which is more suitable for the algorithm gRRT. Indeed the star dis-
crepancy is defined for states inside some rectangular sets; for more general sets, box approximations
are required. To do so, we modify the condition (x ≈ε xp)? by introducing a new variable z = x− xp,
the derivative of which is ż = ẋ− ẋp = ẋ (recall that by definition ẋp = 0). The guard on the self-loop
transition over qOSC becomes (x ≈ε xp)? ≡ (∣x− (x− z)∣ < ε)? ≡ (∣z∣ ≤ ε)?, while the reset is rewritten as(xp ∶= x) ≡ (x− z ∶= x) ≡ (z ∶= 0). Similarly the guard condition of the transition from qOSC to qINIT be-
comes (∣z∣ > ε)? and z ∶= 0, respectively (see Figure 5a). The guard conditions and resets concerning the
clock c remain unchanged. The same reasoning can be easily applied to the location qST D (see Figure 5b).

We now proceed with the definition of the function λ which is the basis of the abstraction. Let
λ ∶Q→ 2Π be defined as follows:

λ(q) = ⎧⎪⎪⎨⎪⎪⎩
(z ≥ ε,ε > z,z > −ε,−ε ≥ z) if q = qOSC,(⊺) otherwise.

Note that abstraction function partitions the space of z in qOSC into the sets (+∞;+ε], (+ε,−ε) and[−ε,−∞) with the respective Boolean abstraction vectors (1,0,0,0), (0,1,1,0) and (0,0, 0,1). From λ
we obtain the transition system D = {S,↝,s0}, with abstract states

S = {si = (qi,⊺) ∣ qi ∈Q.qi ≠ qOSC}∪{s′OSC = (qOSC,(1,0,0,0));s′′OSC = (qOSC,(0,1,1,0));s′′′OSC = (qOSC,(0,0,0,1))},
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ẋ= f (x,k)
ż= f (x,k)

k̇=u
ċ=1

ṗ=ẋp=0

(∣z∣≤ε∧c=p)?
z∶=0
c∶=0

(∣z∣>ε∧c=p)?

(a) qOSC modified.

ẋ= f (x,k)
ż= f (x,k)

k̇=u
ċ=1

ṗ=ẋp=0

(∣z∣≤ε∧c=p)?
c∶=0

(∣z∣>ε∧c=p)?
c∶=0

(b) qST D modified.

Figure 5: Modified property automaton.

transition relation

↝= ↝C ∪↝D={(s′OSC,s
′′
OSC);(s′′OSC,s

′
OSC);(s′′OSC,s

′′′
OSC);(s′′′OSC,s

′′
OSC)}∪{((q,b),(q′,b′)) ∣ (q,q′) ∈ E.q,q′ ≠ qOSC}∪{(s′OSC,sINIT );(s′′OSC,s

′′
OSC);(s′′′OSC,sINIT )},

and the initial abstract state s0 = sINIT = (qINIT ,⊺).

Before specifying the target probabilities over the abstract states, it is necessary to make another
modification to the abstract transition system, in order to be able to distinguish the self-loop transitions
originated from the abstraction process from those introduced by the transition probability definition.
This modification consists in duplicating the locations that with self-loop transitions and replacing these
self-loop transitions with the transitions connecting the original location to its copy, and vice versa.
Hence, for this example we add two locations sST DL and s′′OSCL to S and we replace in ↝ the transitions(sST D,sST D) and (s′′OSC,s

′′
OSC) with (sST D,sST DL), (sST DL ,sST D), (s′′OSC,s

′′
OSCL) and (s′′OSCL ,s′′OSC). Figure 6

shows the resulting actraction without such self-loop transitions.

We now define the target probabilities over the abstract states. Since we are interested in detecting
that the system stops oscillating, it makes sense to attribute higher probabilities to those abstract states
which bring the system from an oscillation phase to a non-oscillation one, i.e., the states s′OSC and s′′′OSC.
Thus, defining the target probabilities as πsINIT = πsLRN = πsST D = πsST DL = πs′′OSC

= πs′′
OSCL

= 0.1 and πs′OSC
=

πs′′′OSC
= 0.25, we obtain the following probability transition matrix:
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Figure 6: Abstract transition system of the property automaton. Dashed states and transitions are intro-
duced to eliminate self-loop transitions in the property automaton.
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sINIT sLRN sST D sST DL s′OSC s′′OSC s′′OSCL s′′′OSC
sINIT 0.50 0.50 0 0 0 0 0 0
sLRN 0 0.16 0.50 0 0 0.34 0 0
sST D 0.50 0 0 0.50 0 0 0 0
sST DL 0 0 0.50 0.50 0 0 0 0
s′OSC 0.40 0 0 0 0.47 0.13 0 0
s′′OSC 0 0 0 0 0.34 0 0.32 0.34
s′′OSCL 0 0 0 0 0 0.34 0.66 0
s′′′OSC 0.40 0 0 0 0 0.13 0 0.47

that leads to the system shown in Figure 6.

4.3 Experimental Results

We have implemented the above described method and incorporated it in the HTG tool [4], which is our
previous C++ implementation of the gRRT algorithm. In particular, we extended HTG with the following
new functions: defining a discrete abstraction over the considered hybrid automaton, specifying the target
probabilities for each abstract state and performing a random walk on the abstract transition system in
order to identify the areas that need to be explored.

In our experiments, we focused on the parameter k1 and on its derivative modelled by the input
variable u1. Moreover, we monitor the two variables x1 and z1 since k1 is involved in both of their
dynamics. The values of the other parameters of the automaton in Figure 1 are fixed as follows: Ti =
7.3781, δ = 0.05 and ε = 0.2. As an initial value of k1 we choose its oscillating nominal value 2.0 (see
Table 1).

We performed three experiments with different ranges of the input u1. In the first case u1 can be
sampled within the interval [−0.01,0.01] (see Figure 7), in the second within [−0.1,0.1] (see Figure 8),
while in the third within [-1.0,1.0]. In all the experiments the state space of k1 is [1.8,2.2]. In the
first case, even if at the end of each period the value of z1 is not exactly equal to zero, it is always
included in the interval defined by ε = 0.2 and thus, for all the simulation runs, the system is considered
oscillating. Differently, in the case where k1 can evolve faster, the variable z1 ends an oscillation phase at
a value smaller than −ε . This means that already for values of k1 ∈ [1.8,2.2] and k̇1 = u1 ∈ [−0.1,0.1] the
system leaves the current limit cycle. We can interpret such a behavioral change under a small variation
of the nominal parameter values as weak robustness of the Laub-Loomis model. Finally, for values
of u1 ∈ [−1.0,1.0] we found that, not very surprisingly, the variable z1 drifts very far away from zero,
showing that the system has stopped oscillating.

All the experiments were performed on a MacBook 3,1 having 2GB RAM. Each experiment involved
the computation of 30000 points, with integration time step equal to 0.05. In the first experiment, the
tool required 6.23s, in the second 5.94s and in the third 6.53s. To give an idea of the scalability of the
technique, a simulation with 10000 points requires 1.22s, with 25000 points 4.93s, while with 50000
points 17.42s.

5 Conclusion
In this paper, we described a framework for falsifying oscillation properties and study the robustness of
biological models. The experimental results are encouraging and we intend to pursue this work in two
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Figure 7: Evolutions of x1 (blue) and z1 (red) for u1 ∈ [−0.01,0.01]

Figure 8: Evolutions of x1 (blue) and z1 (red) for u1 ∈ [−0.1,0.1]
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directions. One is a more efficient parameter sampling, which can be guided by local analysis using
Floquet theory. The other direction concerns the application of this approach to analyze other types of
bifurcation in biological systems.
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Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems
biology. Among the applications of this method, one of the most important is the cell cycle regulation.
The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth,
spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations
induced by post-translational modifications. The advancement through the cell cycle comprises a
well defined sequence of stages, separated by checkpoint transitions. The combination of continuous
and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a
piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth
biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and
binary event location functions, is based on learning from a training set of trajectories of the smooth
model. We discuss several learning strategies for the parameters of the hybrid model.

1 Introduction

Systems biology employs a large number of formalisms to represent the dynamics of biochemically
interacting molecules in signal transduction, metabolic and gene regulatory networks. Some of these
formalisms, such as the systems of ordinary differential equations (ODE), are based on continuous rep-
resentations of the phase space, whereas others, such as boolean networks, employ discrete dynamical
variables. New approaches, based on hybrid models and using both continuous and discrete variables,
are emerging as alternative descriptions of biochemical networks.

Hybrid modelling allows a good compromise between realistic description of mechanisms of regu-
lation and the possibility of testing the model in terms of state reachability and temporal logics [12, 13].
Threshold dynamics of gene regulatory networks [2, 21] or of excitable signaling systems [24] has been
modelled by piecewise-linear and piecewise-affine models. These models have relatively simple structure
and can, in certain cases, be identified from data [19, 8]. Some methods were proposed for computing
the set of reachable states of piecewise affine models [3].

The use of hybrid models in systems biology is justified when some events, such as rapid protein
modifications occur on very short time scales and produce significant changes of the systems dynamics.
The regulatory machinery of the cell cycle of eukaryotic organisms provides a remarkable example of
such a situation. Indeed, the advancement through the cell cycle consists of a well defined sequence of
stages, separated by checkpoint transitions. During each one of this stages, different sets of dynamical
variables and biochemical reactions are specifically active, and change from one stage to another. A
hybrid model of mammalian cell cycle has been previously proposed by Tyson’s group [23]. This model
is based on a Boolean automaton whose discrete transitions trigger changes of kinetic parameters in a
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set of ODEs. The construction method is ad hoc and therefore difficult to generalize. Similar hybrid cell
cycle models can be found elsewhere [1].

Recently, we have proposed a hybridization method for systematically deriving hybrid models from
smooth ODE models [16, 17]. In this method, non-linear reaction rate functions of biochemical reactions
are approximated by simpler, piecewise linear functions. The hybrid model contain new parameters that
can be estimated by a combination of linear programming and least squares optimization. In this paper
we discuss an application of the method to a medium size cell cycle model. Our method has some
similarities to the method proposed in [10] to learn hybrid models from action potentials, but there are
also differences, such as the definition of the modes and of the mode switching, and the optimization
scheme.

2 Piecewise smooth hybrid models

We consider piecewise smooth hybrid dynamical systems (HDS) for which the continuous variables, u,
satisfy the equations

dui

dt
=

Ni

∑
k=1

skPik(u)+P0
i (u)−

Mi

∑
l=1

s̃lQil(u)−Q0
i (u),

s j = H( ∑
k∈C j

w jkuk−h j), s̃l = H( ∑
k∈C̃l

w̃lkuk− h̃l), (1)

where H is the unit step function H(y) = 1, y ≥ 0, and H(y) = 0, y < 0, Pik,P0
i ,Qil,Q0

i are positive,
smooth functions of u representing production, basal production, consumption, and basal consumption,
respectively. Here w, w̃ are matrices describing the interactions between the u variables, i= 1,2, ...,n, j =
1,2, ...,N, l = 1, ...,M and h, h̃ are thresholds, and C j, C̃l are indices subsets corresponding to continuous
variables controlling the discrete variables.

One will usually look for solutions of the piecewise-smooth dynamics (1) such that trajectories of
u are continuous. However, we can easily extend the above definitions in order to cope with jumps
of the continuous variables. Similarly to impact systems occurring in mechanics [7], the jumps of the
continuous variables can be commanded by the following rule: u instantly changes to p±j (u) whenever
a discrete variable ŝ j = H(∑k∈Ĉ j

ŵ jkuk− ĥ j) changes. The ± superscripts correspond to changes of ŝ j

from 0 to 1 and from 1 to 0, respectively. We can consider reversible jumps in which case the functions
p±j (u) satisfy p+ ◦p− = Id. The typical example in molecular biology is the cell cycle. In this case, the
command to divide at the end of mitosis is irreversible and corresponds to p+

j (u) = u/2. No return is
possible, p−j (u) = u.

The class of models (1) is too general. We will restrict ourselves to a subclass of piecewise smooth
systems where smooth production and degradation terms are assumed multivariate monomials in u, plus
some basal terms that we try to make as simple as possible. A system with constant basal production and
linear basal consumption is the following:

Pik(u) = aikuα ik
1

1 . . .uα ik
n

n ,

P0
i (u) = a0

i ,

Qil(u) = ãilu
α̃ il

1
1 . . .uα̃ il

n
n ,

Q0
i (u) = ã0

i ui. (2)
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Multivariate monomial rates represent good approximations for nonlinear networks of biochemical
reactions with multiple separated timescales [20, 9]. Such examples are abundant in chemical kinetics.
For instance, Michaelis Menten, Hill, or Goldbeter-Koshland reactions switch from a saturated regime
where rates are constant to a small concentration regime where rates follow power laws. The definition of
the rates reminds that of S-systems, introduced by Savageau [22]. Finally, as discussed in [14] monomial
approximations occur naturally in “tropically-truncated” polynomial systems, ie in systems where poly-
nomial or rational rate functions are replaced by a few dominating monomials. As compared with our
previous work [14, 18], in this paper we use the tropicalization only heuristically to obtain simpler reac-
tion kinetic laws, whose parameters are then fitted. The switching of the monomial terms is not given by
the max-plus rule as in [14, 18], but is commanded by thresholding functions depending on parameters
to be fitted. This allows for more flexibility and corrects the errors introduced by the tropicalization.

3 Hybridization of the generic mammalian cell cycle model

This model has been proposed by the group of Tyson [5] and is designed to be a generic model of the
cell cycle for eukaryotes. The cell cycle being an old, but important system that evolved, there have to
be homologies, i.e. common mechanisms shared by the cell cycle regulation of all eukaryotes. The goal
of this model is to bring to light these mechanisms, while producing models that reproduce experimental
results. Four different eukaryotic organisms were modelled : budding yeast, fission yeast, Xenopus
embryos, and mammalian cells. For each of theses organisms, a set of parameters is provided. By
changing parameter sets, one can activate or deactivate some modules, fine tune some mechanisms, in
order to reproduce the behaviour of the cell cycle in the chosen organism.

We analyse here only the model describing mammalian cells. This model uses twelve variables
(eleven of them being concentrations of proteins, and one being the mass of the cell) and forty reactions.
We briefly discuss the steps of the algorithm applied to this model.

Choice of the hybrid scheme. Five of these reactions are typically switch-like, following Goldbeter-
Koshland kinetics, defined as follows:

GK(v1,v2,J1,J2) =
2v1J2

B+
√

B2−4(v2− v1)v1J2
, (3)

with B = v2− v1 + J1v2 + J2v1.
These kinetics describe a steady-state solution for a 2-state biological system, meaning that this

reaction will have two basics modes : active or inactive. These reactions are replaced by switched
reactions whose rates are simplified monomial rates multiplied by a boolean variable.

For instance the reaction that produces Cyclin-B, induced by the cell mass, has the following kinetic
rate:

R = ksbpp [Mass]GK(kafb [CycB],kifb,Jafb,Jifb) (4)

In this case we replace the Goldbeter-Koshland (GK) function by a step function and obtain the
following simpler rate:

R′ = k′ [Mass]s, (5)

where s is a boolean variable.
We apply the same method for all the five GK reactions of the model. The original and hybridized

reaction rates can be find in the Table 2.1.
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Figure 1: Flux and derivative of the flux for the Goldbeter-Koshland reaction R4. The shaded areas
correspond to value where the inequation v1 > v2 is true.

Another set of reactions reactions we want to modify in this model are Michaelis-Menten (MM)
reactions. We want to reproduce the two functioning modes of Michaelis-Menten kinetics, namely the
linear and the saturated behaviour. The linear behaviour is observed when the substrate is in low supply.
In this case, the flux of the MM reaction will be linear with respect to the substrate supply. The saturated
behaviour is observed when the substrate supply is in excess, and produce a constant flux. Our goal is to
obtain a hybrid reaction which switches between these two modes, controlled by boolean variables.

There are ten such reactions within this model. A classic MM reaction rate would be the following :

MM(X) =
k.X

X + km
, (6)

and we propose to replace it by the following reaction :

MM(X) = s.k′+ s̃.k′′.X , (7)

where s is a boolean variable, and s̃ is the complementary of s.
We apply this transformation to all the Michaelis-Menten reactions. The original and hybridized

reaction rates can be found in the Table 2.1.
Detection of the transitions. Static event locations follow from the positions of sharp local maxima

and minima of the derivatives of the reactions rates with respect to time (these correspond to sharp local
maxima and minima of the second derivatives of the species concentrations, with respect to time). We
have checked numerically that in the case of GK functions, these positions are close to the solutions of
the equation v1 = v2. This property follows from the sigmoidal shape of the GK regulation functions.
It is indeed well known that GK sigmoidal functions have an inflexion point defined by the condition
v1 = v2, when the activation and inhibition input rates are equal. If the case of MM functions, these
positions are close to the solutions of the equation X = km.
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Figure 2: Flux and derivative of the flux for the Michaelis-Menten reaction R10. The shaded areas
correspond to value where the inequation X > km is true.

These findings are illustrated in Figs. 1,2. We can deduce the value of the boolean variables by
checking the inequation v1 > v2 in the GK case, and X > km in the MM case. We can observe that the
change of the result of these inequations corresponds to the maxima and minima of the derivative (Fig.
1 and Fig. 2).

The structure of the model can be used to reduce the number of boolean control variables. In the
case of reactions R11,12 or R13,14,15, we can see looking at reaction rates in the Table 2.1 that the
inequations controlling their behavior should be the same. Thus, we can use the same boolean variable
to control these reactions. Furthermore, we found out while looking for these transitions that for some
MM reactions these transitions do not occur along the limit cycle trajectories. In the case of reactions R7
and R9, the behaviour is always saturated. We chose not to represent these reactions as hybrid (switched)
reactions, and represented only their saturated behaviour.

We can use these inequalities and hybrid model description to fit parameters of the hybrid model in
one of three ways :

i) Statically, meaning that the discrete variables times series s(t) will be calculated at the detection step of
the algorithm and will not change during the fit. In this case one fits only the parameters describing
the modes. This has the benefit of simplicity, but comes with problems. The simplification in the
representation of the reactions will introduce a difference between the original and the hybrid
model, and such a difference should impact on the position of transitions.

ii) Statically, but allow for modifications of the discrete variables time series s(t). We could try to include
the positions of these transitions in the fitting parameters, but it would increase the complexity of
the cost function. It would notably be a problem to modify all transitions occurring in a single
reaction accordingly, which is important for the computation of mode control parameters.

iii) Dynamically. We could use the inequations defining the positions of the transitions dynamically, by
evaluating them during the optimization. The transitions positions will be determined according
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to the original model conditions applied to the hybrid model trajectories. This solves the problem
of adapting transitions positions of one reaction with respect to the others. The problem is that the
transition conditions from the original model are imported to the hybrid model with new parame-
ters (thresholds) that have also to be fitted. As thresholds parameters are generally more sensitive,
this choice increases the optimization difficulty.

Fitting the hybrid model parameters.
Once defining the model structure and the parameters to be fitted we can define a cost function

representing the distance between the trajectories of the hybrid and smooth model. We use a parallel
version of Lam’s simulated annealing algorithm [11, 4] to minimize this cost function with respect to the
parameters of the hybrid model. We limit the parameters search space to those involved in the hybridized
reactions (a more extensive search is nevertheless possible). For the cost function, we have decided to
test both species trajectories and reaction fluxes. When we limit ourselves to species trajectories, since
some reactions have transitions that are close in time, there is a risk that some hybridized reaction will
compensate for others. We wanted each hybridized reaction to be as much as possible a replica of the
original reaction.

When using the definition with static discrete variables s(t) and fitting only the mode parameters
(cases i) above), we were not able to obtain even an imperfect fit of the model (in this case the trajectories
of the hybrid model are very different from the ones of the original model and even become instable).
We chose to include transition positions to the parameters of the fitting (case ii)), and were able to obtain
a reasonable fit. However, the imperfections in the localisation of these new transition positions made
difficult to find good control parameters (see next step) for all the hybridized reactions. The trajectories
of the hybrid model fitted using this method are shown in Fig. 3. One can notice important differences
between the trajectories of the hybrid and original model, although these differences remain bounded
and the stability of the limit cycle oscillations is preserved.

When using the definition with the original model conditions for transitions (case iii)), we were
able to obtain a working hybrid model, but the fit can still be improved by modifying slightly the mode
control parameters. We can observe on Fig. 4 that while the dynamics of the model is preserved, there
are differences in the transition positions.

Thus, when we included the parameters of transitions conditions, we obtained a model which fits
better the original one. As a control we can see the results of the fitting on both the trajectories of the
four main variables (Fig.5) and the fluxes of some hybridized reactions (Fig.6).
An interesting result of this optimization is that some hybridized reactions stopped having transitions,
suggesting that the best fit would be obtained without these transitions. The reaction R6 (Fig. 7) is one of
these reactions. This could be the result of the sensitivity of transition control parameters and a selection
of a more robust solution.

Computing the mode control parameters. If we chose the static method of representing transitions
during the fit, we now have to determine a regulation matrix, which will allow a dynamic definition of
the events location.

Let sm = H(∑ j∈Cm wm ju j−h j) be the discrete variables and sm
k the constant values of sm piecewisely,

on time intervals Ik identified at the detection step. Consider now the optimal trajectories u∗i (tl), calcu-
lated piecewisely with fitted mode parameters.

Then, one should have

( ∑
j∈Cm

wm ju∗j(tl)−h j)sm
k > 0, for all tl ∈ Ik. (8)

This is a problem of linear programming, and is solved using the simplex algorithm [6].
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Figure 3: Comparison of the trajectories of the four main variables. (blue: Cyclin-A, green: Cyclin-B,
red: Cyclin-C, aqua: cell size) (Plain lines) Original model (Dashed lines) Hybrid model without mode
control parameters fitting (case ii)).

Figure 4: Comparison of the trajectories of the four main variables. (blue: Cyclin-A, green: Cyclin-B,
red: Cyclin-C, aqua: cell size) (Plain lines) Original model (Dashed lines) Hybrid model without mode
control parameters fitting (case iii)).

At this step, it is interesting to note that we have some choice on which variable can control a given
reaction, i.e. on the subsets Cm. This potentially leads to multiple solutions of the inequations. The
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Figure 5: Comparison of the trajectories of the four main variables. (blue: Cyclin-A, green: Cyclin-
B, red: Cyclin-C, aqua: cell size) (Plain lines) Original model (Dashed lines) Hybrid model with mode
control parameters fitting (case iii))W.

Figure 6: Comparison of original and hybridized reaction fluxes. Top : GK Reaction R4. Bottom : MM
Reaction R10. Blue : flux of original reaction, Green : flux of hybridised reaction

best choice would be here to use the biological knowledge to choose the species actually involved in the
reaction.

The problem with this step is that its success depends on the conservation of the transition positions
between the simulations with static and dynamic mode control. Or, this property is valid only to some
extent and the dynamic transitions can shift with respect to their static positions. As a consequence,
solving all the inequations (8) may sometimes be impossible.

To cope with this issue, we introduced a variable ε so that the inequalities (8) are modified to :

( ∑
j∈Cm

wm ju∗j(tl)−h j)sm
k + ε > 0, for all tl ∈ Ik, (9)

This modification enables us to solve all the inequations, and gives us a good metric to asses the
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Figure 7: Comparison of reaction R6 results without and with the fitting of transition control parameters.
Top : Fit without control parameters. Bottom : Fit with control parameters. Blue : flux of original
reaction, Green : flux of hybridized reaction

quality of the resolution. Furthermore, the parameter ε can be minimized within the simplex algorithm.
The ideal case is when ε is negative or zero. When simulating the hybrid model, we found out that with
a positive epsilon, the model is most of the time unstable.

Periodicity is not the only difficulty for this step. In our formalism, the threshold to modify the
boolean variables controlling a given reaction is the same for an activation or an inactivation. This could
also be a problem, as we can not always enforce such a condition during the fitting. There are different
solutions to this problem. The first one would be to have different thresholds for reaction activation
and inactivation, but this choice misses the simplicity of the previous method of control. More precisely,
even activation and inactivation thresholds correspond geometrically to control of the modes by manifold
crossing (activation when crossing takes place in one direction, inactivation for crossing in the opposite
direction), whereas different thresholds do not allow for such a simple picture.
The other solution would be not to limit ourselves to the biologically relevant variables to control these
transitions. As we increase the number of variables, the probability to find a combination which satisfies
the inequations increases. The problem with this choice is the large number of possible combinations.
We used a genetic algorithm which selects the variables which had the lowest ε value and were able to
find combinations which satisfy the inequations for some reactions. But for others reaction, especially
Michaelis-Menten reactions, even with all variables, we were not able to obtain low enough ε . We were
able to use this method to build a hybrid model which only hybridized the Goldbeter-Koshland reactions.
The result can be seen in Fig. 8 and the corresponding model is given in Table 2.3.

4 Conclusion

We have presented a hybridization scheme, allowing to transform a biochemical network model, con-
taining reactions with complex non-linear rate functions, into a hybrid model with piece-wise linear
rate functions. This scheme can be applied to any model containing Goldbeter-Koshland or Michaelis-
Menten kinetic laws. More generally, extensions of this method can be applied to biochemical net-
work models whose kinetic laws are rational functions of the species concentrations. These include
the Goldbeter-Koshland case, as this mechanism is obtained by model reduction from two coupled
Michaelis-Menten reactions. The resulting hybrid model in the general case is piecewise smooth, but
not necessarily linearly smooth. This generalization is based on tropicalization [15, 14] and consists
in approximating rational rate functions by tropical polynomials, that are represented piecewisely by
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Figure 8: Comparison of the trajectories of the four main variables. (blue: Cyclin-A, green: Cyclin-
B, red: Cyclin-C, aqua: cell size) (Plain lines) Original model (Dashed lines) Hybrid model with mode
control parameters fitting.

multivariate monomials.
The identification algorithm proposed in the paper combines the static or dynamic location of the

events, the identification of the mode parameters by simulated annealing, and the identification of the
mode control parameters by linear programming. The hardest step of this algorithm is the simulated
annealing. We have discussed three optimization strategies to reduce the number of the parameters to
be determined by simulated annealing, while keeping the flexibility of the optimization scheme. In
this paper, the hybrid cell cycle model has been obtained from artificial trajectories generated with a
smooth model. That allowed us to include both concentration and rates trajectories in the cost function,
which is a strong constraint. In the future, this constraint could be released and cost functions based on
concentration trajectories only, could be used to learn hybrid cell cycle models directly from experimental
data.
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Tables

Table 2.1 - Definition of reactions in the original and hybridized mammalian cell cycle
model. The inequalities controlling the mode switching result directly from the definition
of the reaction rates in the original model.
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reaction smooth variables reaction hybrid control

R1 = ksapp.[Mass]. v1 = kat fp + kat f app.[CycA]+ R1h = ksapp.[Mass].s1 s1 = v1 > v2
.GK(v1,v2,Jat f ,Jit f ) +kat f dpp.CycD0.[Mass]

v2 = kit fp + kit f app.
.[CycA]+ kit f bpp.[CycB]

R2 = k25pp.[pB] v1 = ka25p + ka25pp.[CycE] R2h = k25pp.[pB].s2 s2 = v1 > v2
.GK(v1,v2,Ja25,Ji25) v2 = ki25p + ki25pp.[Cdc20A]
R3 = kweepp.[CycB] v1 = kaweep + kaweepp.[Cdc20A] R3h = kweepp.[CycB].s3 s3 = v1 > v2
.GK(v1,v2,Jawee,Jiwee)v2 = kiweep + kiweepp.[CycB]
R4 = ksbpp.[Mass] v1 = ka f b.[CycB] R4h = ksbpp.[Mass].s4 s4 = v1 > v2
.GK(v1,v2,Ja f b,Ji f b) v2 = ki f b
R5 = ksepp.[Mass] v1 = kat fp + kat f app.[CycA]+ R5h = ksepp.[Mass].s1 s1 = v1 > v2
.GK(v1,v2,Jat f ,Jit f ) +kat f dpp.CycD0.[Mass]

v2 = kit fp + kit f app.
.[CycA]+ kit f bpp.[CycB]

R6 = ks20pp X = [CycB] R6h = ks20pp.s5 s5 = X > Km
.X/(Km +X) Km = J20 +ks20pp2.s̃5.X
R7 = kaie.[CycB] X = (APCT − [APCP]) R7h = ks20pp.[CycB]
.X/(Km +X) Km = Jaie
R8 = kiie X = [APCP] R8h = kiie.s6 s6 = X > Km
.X/(Km +X) Km = Jiie +kiie2∗ s̃6.X
R9 = ka20.[APCP] X = [Cdc20i] R9h = ka20.[APCP]
.X/(Km +X) Km = Ja20
R10 = ki20 X = [Cdc20A] R10h = ki20.s7 s7 = X > Km
.X/(Km +X) Km = Ji20 +ki202.s̃7.X
R11 = kah1p X = (Cdh1T − [Cdh1]) R11h = kah1p.s8 s8 = X > Km
.X/(Km +X) Km = Jah1 +kah1p2.s̃8.X
R12 =
kah1pp.[Cdc20A]

X = (Cdh1T − [Cdh1]) R12h = kah1pp.[Cdc20A].s8 s8 = X > Km

.X/(Km +X) Km = Jah1 +kah1pp2.[Cdc20A].s̃8.X
R13 = kih1app.[CycA] X = [Cdh1] R13h = kih1app.[CycA].s9 s9 = X > Km
.X/(Km +X) Km = Jih1 +kih1app2.[CycA].s̃9.X
R14 = kih1bpp.[CycB] X = [Cdh1] R14h = kih1bpp.[CycB].s9 s9 = X > Km
.X/(Km +X) Km = Jih1 +kih1bpp.[CycB].s̃9.X
R15 = kih1epp.[CycE] X = [Cdh1] R15h = kih1epp.[CycE].s9 s9 = X > Km
.X/(Km +X) Km = Jih1 +kih1epp.[CycE].s̃9.X

Table 2.2.1 - Parameters of the original mammalian cell cycle model described in the ta-
ble 2.1.

constant value

ksepp 0.18
kat f app 0.2
kat f dpp 3.0
kat f epp 0.5
kit fp 0.25
kit f app 0.1
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kit f bpp 0.1
ksbpp 0.03
kweepp 0.2
k25pp 5
ka f b 1.0
ki f b 0.1
ksapp 0.025
kaie 0.07
kiie 0.18
Jaie 0.01
Jiie 0.01
ks20pp 0.15
J20 1
ka20 0.5
ki20 0.25
Ji20 0.0050
kah1p 0.18
kah1pp 3.5
kih1app 0.2
kih1bpp 1.0
kih1epp 0.1
Jah1 0.01
Jih1 0.01
kaweep 0.3
kiweepp 1.0
ka25pp 1
ki25p 0.3

Table 2.2.2 - Parameters of the hybridized mammalian cell cycle model described in the
table 2.1.

constant value

ksapp 0.024635
kat fp 0
kat f app 0.00090318
kat f dpp 2.6897
kat f epp 2.1407
kit fp 0.22282
kit f app 0
kit f bpp 0.14253
k25pp 3.559
ka25p 0
ka25pp 21.93
ki25p 5.425
ki25pp 0
kweepp 0.096009
kaweep 3.5714
kaweepp 0
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kiweep 0
kiweepp 9.003
ksbpp 0.033299
ka f b 0.15998
ki f b 0.0056319
ksepp 0.14842
ks20pp 0
ks20pp2 0.048074
J20 3
kaie 0.076693
kiie 0.1685
kiie2 17.568
Jiie 0.0096156
ka20 0.4815
ki20 0.24271
ki202 5.3118
Ji20 0.045084
kah1p 0
kah1p2 0.15387
kah1pp 0
kah1pp2 3.9768
Jah1 1
kih1app 0.099851
kih1app2 2.5689
kih1bpp 0
kih1bpp2 14.966
kih1epp 0.10502
kih1epp2 1.7755
Jih1 0.12035

Table 2.3 - Definition of reactions in the original and hybridized mammalian cell cycle
model. The inequalities controlling the mode switching result from the computation of
mode control parameters post-fitting.

reaction smooth variables reaction hybrid

R1 = ksapp.[Mass]. v1 = kat fp + kat f app.[CycA]+ R1h = ksapp.[Mass].s1
.GK(v1,v2,Jat f ,Jit f ) +kat f dpp.CycD0.[Mass]

v2 = kit fp + kit f app.
.[CycA]+ kit f bpp.[CycB]

R2 = k25pp.[pB] v1 = ka25p + ka25pp.[CycE] R2h = k25pp.[pB].s2
.GK(v1,v2,Ja25,Ji25) v2 = ki25p + ki25pp.[Cdc20A]
R3 = kweepp.[CycB] v1 = kaweep + kaweepp.[Cdc20A] R3h = kweepp.[CycB].s3
.GK(v1,v2,Jawee,Jiwee) v2 = kiweep + kiweepp.[CycB]
R4 = ksbpp.[Mass] v1 = ka f b.[CycB] R4h = ksbpp.[Mass].s4
.GK(v1,v2,Ja f b,Ji f b) v2 = ki f b
R5 = ksepp.[Mass] v1 = kat fp + kat f app.[CycA]+ R5h = ksepp.[Mass].s1
.GK(v1,v2,Jat f ,Jit f ) +kat f dpp.CycD0.[Mass]
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v2 = kit fp + kit f app.
.[CycA]+ kit f bpp.[CycB]

control value

s1 w1,1.[CycA]+w1,2.[CycB]+w1,4.[APCP]+w1,6.[Cdc20i]+w1,7.[Cdh1]+w1,8.[CKI]+
w1,9.[Mass]−1 > 0

s2 w2,3.[CycE]+w2,9.[Mass]+w2,12.[TriE]−1 > 0
s3 w3,3.[CycE]+w3,9.[Mass]+w3,12.[TriE]−1 > 0
s4 w2,2.[CycB]+w2,9.[Mass]+w2,10.[pB]−1 > 0

Table 2.4 - Parameters of the hybridized mammalian cell cycle model described in the
table 2.3.

constant value

ksapp 0.024064
ksepp 0.18569
kweep p 0.17326
k25pp 3.5168
ksbpp 0.030148
w1,1 1.e+9
w1,2 0.4352e+9
w1,4 -1.5677e+9
w1,6 -4.0592e+9
w1,7 1.e+9
w1,8 -0.7937e+9
w1,9 0.1138e+9
w2,3 -2.218e+9
w2,9 1.e+9
w2,12 -10.027e+9
w3,3 0.2278e+9
w3,9 -0.1015e+9
w3,12 1.e+9
w4,2 0.2294e+9
w4,9 -0.0294e+9
w4,10 1e+9
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1 Introduction

Mass action is a fundamental notion in many situations in Chemistry, Biochemistry, Population Dy-
namics and Social Systems [1]. In this class of phenomena, one has a large population of individuals
partitioned into several types of “species”, whose dynamics is specified by a set of reaction rules. Each
reaction indicates the transformation that is likely to take place when individuals of specific types come
into contact. For example, a rule of the form A+B → A+C says that each time an instance of A
meets an instance of B, the latter is transformed into a C. Denoting by nA and nB the number of instances
of A and B existing at a certain moment, the likelihood of an (A,B)-encounter is proportional to nA ·nB.
Hence the rate of change of nB will have a negative contribution proportional to nA · nB and that of nC

will have the same magnitude of positive contribution. Combining for each of the species the negative
contributions due to reactions in which it is transformed into something else with the positive contri-
butions due to reactions that yield new instances of it, one typically obtains a system of polynomial1

differential/difference equations.
The goal of the research program sketched in this paper (initially inspired by [3]) is to build a class

of synthetic mathematical models for such systems, admitting some nice and clean properties which will
reflect essential and fundamental aspects of mass action behavior while at the same time abstract away
from accidental real-life details due to Chemistry, Physics and even some Geometry. Introducing such
details at this preliminary stage would obscure the essence and render the analysis more complex. These
models will then be subject to various investigations by analytical, simulation-based and other methods
to explore their dynamics and discover the principles that govern their behavior. Such investigations may
eventually lead to novel ways to control mass action systems with potential applications, among others,
in drug design and social engineering. These issues have been studied, of course, for many years in
various contexts and diverse disciplines, [7, 2] to mention a few, but we hope, nevertheless, to provide a
fresh look on the subject.

The rest of this paper is organized as follows. In Section 2 we present the basic model of the in-
dividual agent (particle) as a probabilistic automaton capable of being in one out of several states, and
where transition labels refer to the state of the agent it encounters at a given moment. We then discuss
several ways to embed these individual agents in a model depicting the evolution of a large ensemble

∗Supported by the ANR projects Syne2Arti, Eqinocs and Cadmidia.
†Supported by NIHGrant K25 CA131558. Work done while the author was visiting CNRS-VERIMAG.
1Actually bilinear if one assumes the probability of triple encounters to be zero, as is often done in Chemistry.
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of their instances. In Section 3 we describe three such aggregate models. We start with a rather stan-
dard model where state variables correspond to the relative concentrations of agent types. Such models
depict the dynamics of the average over all behaviors and they are traditionally ODEs but we prefer to
work in discrete time to simplify the notation. The second model is based on stochastic simulation under
the well-stirred assumption with no modeling of space, which is introduced in the third model where
particles wander in space in some kind of random motion and a reaction takes place when the distance
between two particles becomes sufficiently small. The model thus obtained is essentially a kind of a
reaction-diffusion model. In Section 4 we briefly describe the Populus tool kit that we developed for ex-
ploring the dynamics of such models and illustrate its functionality by demonstrating some effects of the
initial spatial distributions of some particles that lead to deviation from the predictions of a well-stirred
model.

2 Individual Models and Aggregation Styles

We consider mass action systems where new individuals are not born and existing ones neither die nor
aggregate into compound entities: they only change their state.

2.1 Individuals

A particle can be in one of finitely-many states and its (probabilistic) dynamics depicts what happens to
it (every time instant) either spontaneously or upon encountering another particle. The object specifying
a particle is a probabilistic automaton:2

Definition 1 (Probabilistic Automaton) A probabilistic automaton is a triple A = (Q,Σ,δ ) where Q
is a finite set of states, Σ is a finite input alphabet and δ : Q×Σ×Q→ R is a probabilistic transition
function such that for every q ∈ Q and a ∈ Σ,

∑
q′∈Q

δ (q,a,q′) = 1.

In our model Q = {q1, . . . ,qn} is the set of particle types and each instance of the automaton is always in
one of those. The input alphabet is Q∪{⊥} intended to denote the type of another particle encountered
by the automaton and with the special symbol ⊥ indicating a non-encounter. Intuitively, δ (q1,q2,q3)
represents the probability that an agent of type q1 converts to type q3 when it encounters an agent of type
q2. Likewise δ (q1,⊥,q3) is the probability of becoming q3 spontaneously without meeting anybody. Ta-
ble 1 depicts a 3-species probabilistic automaton. We use the notation q1

q2−→ q3 for an actual invocation
of the rule, that is, drawing an element of Q according to probability δ (q1,q2, .) and obtaining q3 as an
outcome.

In general our models are synchronous with respect to time: time evolves in fixed-size steps and at
every step each particle detects whether it encounters another (and of what type) and takes the appropriate
transition. The interpretation of when an agent meets another depends, as we shall see, on additional
assumptions on the global aggregate model. It is worth noting that we restrict ourselves here to reaction
rules which are “causal” in the following sense: when an (A,B)-encounter takes place, the influence of

2A probabilistic automaton [8] is a Markov chain with an input alphabet where each input symbol induces a different
transition matrix. It is called sometimes a Markov Decision Process (MDP) but we prefer to reserve this term for a strategy
synthesis problem in a game where the alphabet denotes the controller’s action against a stochastic adversary. In the present
model there is no “decision” associated with the input as it is an external (to the particle) influence on the dynamics.
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A on B and the influence of B on A are independent. Hence not all types of probabilistic rewrite rules
of the form A+B→ A1 +B1 (p1) | A2 +B2 (p2) | · · · | Ak +Bk (pk) can be realized, only those
that are products of simple rules. This restriction is not crucial for our approach but it simplifies some
calculations.

δ ⊥ q1 q2 q3

q1 0.9 0.1 0.0 1.0 0.0 0.0 0.7 0.2 0.1 0.7 0.0 0.3
q2 0.1 0.8 0.1 0.0 0.6 0.4 0.0 1.0 0.0 0.1 0.9 0.0
q3 0.0 0.0 1.0 0.7 0.0 0.3 0.3 0.4 0.3 0.0 0.0 1.0

x′1 = x1−0.09x1 +0.09x2−0.06x1x2 +0.08x1x3 +0.08x2x3
x′2 = x2 +0.09x1−0.18x2−0.04x1x2 +0.06x2x3
x′3 = x3 +0.09x2 +0.1x1x2−0.08x1x3−0.14x2x3

x′1 = x1−0.01x1 +0.01x2−0.54x1x2 +0.72x1x3 +0.72x2x3
x′2 = x2 +0.01x1−0.02x2−0.36x1x2 +0.54x2x3
x′3 = x3 +0.01x2 +0.9x1x2−0.72x1x3−1.26x2x3

Table 1: A 3-species probabilistic automaton, and the average dynamical system derived for the sparse
situation α = 0.1 and for the dense situation α = 0.9. Starting from initial state x = (0.4,0.3,0.3) the first
system converges to the state (0.366,0.195,0.437) while the second converges to (0.939,0.027,0.033).

2.2 Aggregation Styles

Consider now a set S consisting of m individuals put together, each being modeled as an automaton.
A global configuration of such a system should specify, at least, the state of each particle, resulting
in the enormous state space QS consisting of nm states (micro-states in Physpeak). A very useful and
commonly-used abstraction is the counting abstraction obtained by considering two micro-state equiv-
alent if they agree on the number of particles of each type, regardless of their particular identity. The
equivalence classes of this relation form an abstract state-space of macro-states (also known as particle
count representation) P⊆ SQ consisting of n-dimensional vectors:

P = {(X1, . . . ,Xn) : ∀i 0≤ Xi ≤ m∧
n

∑
i=1

Xi = m}.

The formulation of a model that tracks the evolution of an ensemble of particles can be done in different
styles. For our purposes we classify models according to two features: 1) Individual vs. average dynamics
and 2) Spatially-extended vs. well-stirred dynamics. These two features are related but not identical.

For the first point, let us recall the trivial but important fact that we have a non-deterministic system
where being in a given micro-state, each particle tosses one or more coins, properly biased according
to the states of the other particles, so as to determine its next state. To illustrate, consider a rule which
transforms a particle type A into B with probability p. Starting with m instances of A, there will be m coin
tosses each with probability p leading to some number close to m · p indicating how many A’s convert into
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B′s. Each individual run will yield a different number (and a different sequence of subsequent numbers)
but on the average (over all runs) the number of A’s will be reduced in the first step from m to m · (1− p).

Individualistic models, that is, stochastic simulation algorithms (SSA), generate such runs, one at
the time. On the other hand, “deterministic” ODE models compute et every step the average number of
particles for each type where this average is taken (in parallel) over all runs . For well-behaving systems,
the relationship between this averaged trajectory and individual runs is of great similarity: the evolution
in actual runs will appear as fluctuating around the evolution of the average. On the other hand, when we
deal with more complex systems where, for example, trajectories can switch into two or more distinct
and well-separated equilibria, the behavior of the average is not so informative. There is a whole research
thread, starting with [4], that feeds on this important distinction (see [9, 6] for further discussions).

The other issue is whether and how one models the distribution of particles in space. Ignoring
the spatial coordinates of particles, the probability of a particular transition being taken depends only
on the total numbers of particles of each type, which is equivalent to the well-stirred assumption: all
instances of each particle type are distributed uniformly in space and hence all particles will see the same
proportion of other particles in their neighborhood. On the other hand, in spatially extended models each
particle is endowed with a location which changes quasi-randomly and what it encounters in its moving
neighborhood determines the interactions it is likely to participate in.

3 Implemented Aggregate Models

In the sequel we describe in some detail the derivation of three models: average dynamics, individual
well-stirred dynamics and spatially-extended dynamics. All our models are in discrete time which will
hopefully make them more accessible to those for whom the language of integrals is not native. For the
others, note that our model corresponds to a fixed time-step simulation of ODEs.

3.1 Average Well-Stirred Dynamics

To develop the average dynamics under the well-stirred assumption.3 we normalize the global macro-
state of the system, a vector X = (X1, . . . ,Xn), into x = (x1, . . . ,xn) with xi = Xi/m and hence ∑xi = 1
(relative concentration). Let α , 0 ≤ α ≤ 1 be a density parameter which determines the probability of
bumping into another particle in one time step. The evolution in this state space over time is the outcome
of playing the following protocol at every time step. First, αS of the particles bump into others and hence
follow a binary reaction rule while the remaining (1−α)S particles do not interact and hence follow the
solitary transition function. We will derive the dynamics, which is of the general form4 x′ = x+∆(x).
For each variable, the additive change can be written as

∆(xk) = (1−α)∆1(xk)+α∆2(xk)

∆1(xk) =
n

∑
i=1

(xi ·δ (xi,⊥,xk)− xk ·δ (xk,⊥,xi))

∆2(xk) =
n

∑
i=1

n

∑
j=1

(xix j ·δ (xi,x j,xk)− xkxi ·δ (xk,xi,x j))

3Using PDEs one can sometimes derive average models under non-uniform distributions of particles in space but most
chemical reaction models employ the well-stirred assumption.

4We use the primed notation where x stands for x[t] and x′ denotes x[t +1].
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Here, ∆1 and ∆2 are the expected contributions to xk by the solitary (resp. binary) reactions, each sum-
ming up the transformations of other agents into type k minus the transformation of type k into other
types. Thus, we obtain a discrete-time bilinear dynamical system, which is linear when α = 0, see ex-
ample in Table 1. As already mentioned, this deterministic dynamics tracks the evolution of the average
concentration of particles over all individual runs.

3.2 Individual Well-Stirred Dynamics

The second model, whose average behavior is captured by the previous one, generates individual behav-
iors without spatial information. A micro-state of the systems is represented as a set L of particles, each
denoted as (g,q) where g is the particle identifier and q is its current state.

Algorithm 1 (Individual Well-Stirred Dynamics)
Input: A list L of particles and states
Output A list L′ representing the next micro-state

L′ := /0
repeat

draw a random particle (g,q) ∈ L; L := L−{(g,q)}
draw binary/solitary with probability α
if solitary then

apply solitary rule q ⊥−→ q′

L′ := L′∪{(g,q′)}
else

draw a random particle (g′,q′) ∈ L; L := L−{(g′,q′)}
apply binary rules q

q′−→ q′′ and q′
q−→ q′′′

L′ := L′∪{(g,q′′),(g′,q′′′)}
endif

until L = /0

After each update round, particle types are counted to create macro-states. The algorithm can most likely
be made more efficient by working directly on macro-states and drawing the increments of each particle
type using a kind of binomial distribution that sums up the multiple coin tosses. Similar ideas underlie
the τ-leaping algorithm of [5].

3.3 Individual Spatial Dynamics

Our third model does take space into account by representing each particle as (g,q,y) with y being it spa-
tial coordinates, currently ranging over a bounded rectangle. The next state is computed in two phases
that correspond to diffusion and reaction. First, each particle is displaced by a vector of random direction
and magnitude (bounded by a constant s). For mathematical convenience reasons we use periodic bound-
ary conditions so that when a particle crosses the boundary of the rectangle it reappears on the other side
as if it was a torus. Then for each particle we compute its set of neighbors N, those residing in a ball
of a pre-specified interaction radius r, typically in the same order of magnitude as s. If the particle has
several neighbors5 we compute the outcome of all those possible interactions and choose among them

5Which turns out not to be negligible with the parameters we have chosen so far which are unlike commonly-used models
where the average distance between particles is orders of magnitude larger than the interaction radius r.
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randomly.

Algorithm 2 (Individual Spatial Dynamics)
Input: A list L of particles and states including planar coordinates
Output A list L′ representing the next micro-state

L′ := /0
foreach particle (g,q,y) ∈ L

draw randomly h ∈ [0,s] and θ ∈ [0,2π]
y := y+(h,θ)

endfor
foreach (g,q,y) ∈ L

N := {(g′,q′,y′) : d(y,y′)< r}
if N = /0 then

apply solitary rule q ⊥−→ q′

L′ := L′∪{(g,q′,y)}
else

M := /0
foreach (g′,q′,y′) ∈ N

apply binary rule q
q′−→ q′′

M := M∪{q′′}
endfor
draw q′ ∈M
L′ := L′∪{(g,q′,y)}

endif
endfor

The connection between this model, embedded in a rectangle of area W , and the non-spatial ones is made
via the computation of the density factor α . The probability of a particle not interacting with another
particle is its probability to be outside its interaction ball, that is, 1− πr2

W , and the odds of not interacting
with any of the other m−1 particles is (1− πr2

W )m−1 and hence α = 1− (1− πr2

W )m−1.

4 The Populus Toolkit: Preliminary Experiments

We developed a prototype tool called Populus, written in Java and Swing, for exploring such dynamics.
The input to the tool is a particle automaton along with additional parameters such as the dimensions of
the rectangle where particles live, the geometric step size s, the interaction radius r and the initial number
of each particle type, possibly restricted to some sub rectangles. The tool simulates the three models,
plotting the evolution of particle counts over time as well as animating the spatial evolution.

To demonstrate the difference between spatial and non-spatial models we simulated a system with 5
species, A, B, C, D and E to E. A and B are initially present in small quantities, 50 each, while D has
1000 instances. When A and B meet, A is transformed into an active and stable agent C which converts
D’s to E’s . Since E is also rather stable, the emergence of C will eventually convert a large number
of D’s to E’s. However, B is very unstable and each step it may change with probability 0.5. Hence
the initial spatial distribution of A and B may influence the evolution significantly. We simulated the
corresponding spatial model on a 20× 20 square, starting from three different initial micro-states in all
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(a) (b) (c)

Figure 1: The evolution of the 5-species system where A’s and B’s are initially (a) distributed uniformly
in space; (b) close to each other and (c) remote from each other. The plot depict the spatial and non-
spatial models with the black curve indicating the growth of E.

of which D is distributed uniformly over all the square: (a) A and B are distributed uniformly all over
space; (b) Both A and B are concentrated in a unit square in the middle; (c) A and B are concentrated
inside distinct unit squares far apart from each other. The results are plotted in Figure 1. As a first
observation, in scenario (a) the spatial model converts D to E slower than the well-stirred one, despite
the well-stirred initial condition. It is too early to speculate about the reasons but it might be that with our
parameters where reaction is not slower than diffusion, a C particle converts the D’s in its neighborhood
and hence meets less of them than what their global concentration would imply. In scenario (b), due to
the proximity of A and B there is a burst of C’s at the beginning and the spatial model progresses faster
than the well-stirred. Finally, when A and B are initially far apart, no C and hence no E are produced,
unlike the prediction of the well-stirred model. In all those experiments the behavior of the well-stirred
model was close to that of the average model.
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1 Introduction

The continuous parts of complex biological systems are often modeled by use of Ordinary Differential
Equations (ODE). When experimental data are available, they usually have large variability, for example
due to variability in cell cultures. Since data on a given system are scarce, one generally uses data from
different cell types, different organisms, or different conditions. All this translates into large parameter
uncertainty. To cope with this situation and try to integrate all available data in a consistent model, we
represent such data by intervals rather than single numerical values. The ranges of the intervals vary
depending on the type of experiment and the nature of the experimental system. Some parameters or
concentrations are not known at all and are initially defined to belong to the physiological domain. This
set of intervals define the search space. Other experimental data are expressed in terms of inequalities
involving derived quantities. Our goal is to build a set of models that satisfy all the constraints deduced
from experiments, and to analyze the salient features of the dynamics of this set of models.

We present a method for modeling biological systems which combines formal techniques on inter-
vals, numerical simulations and formal verification of STL (Signal Temporal Logic) formula. This allows
us to consider intervals for each parameter and to describe the expected behavior of the model. We apply
this method to the modeling of the cellular iron homeostasis network in precursors of erythroid cells.
A core model [5] has been presented previously. Herein, we describe a more evolved model in which
the regulation mechanism acting at the translational level is explicitly considered. This leads to a larger
model with more parameters and the integration of newly obtained experimental data. This new model
provides a more detailed description of the regulatory mechanism, including quantitative considerations
pertaining to the involved species, and it should allow us to more precisely address pending biologi-
cal questions. The higher level of complexity of this model, compared to the core model, required the
development of a method to characterize efficiently steady states.

In Section 2, we describe the iron homeostasis network, and, in Section 3, the corresponding model.
Then, in the Section 4, we describe the method used. We finally explain the work that remains to be done
and conclude.
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2 Biological system

Iron is an essential element for mammalian cells (eg. hemoglobin contains iron), but if present in too high
quantity iron has a deleterious effect. The level of available iron is thus finely tuned in mammalian cells.
Our goal is to describe and understand this regulatory mechanism. The regulatory network, described in
Figure 1, is composed of fifteen species. The species Fe (pool of available iron), IRP (Iron Regulatory
Protein), Ft (ferritin), FPN1a (ferroportin) and T f R1 (transferrin receptor) were present in the previous
model [5]. The other ones are the mRNA of these proteins either in a free form or in a form complexed
with an IRP. The central regulatory mechanism, based on the IRP is described in Mobilia & al [5].

In a nutshell, the available data belong to several categories. A qualitative description of the dy-
namics, obtained from a large body of biological experiments is the following: if the amount of iron
is sufficient, the cell is in a steady state. From this state, if an iron input cut-off occurs, the amount of
iron in cells decreases and the IRP are activated, leading to increased binding of IRP to IRE-containing
mRNAs. New kinetic parameters have been measured, as well as absolute mRNA concentrations in the
iron-replete regime. Our aim is to build models which simulate the behavior of the biological system.
From the iron-replete steady state, the evolution of the concentrations of the different species must be
qualitatively reproduced upon cutting off the iron supply.

3 Model

We model this system with fifteen differential equations. These equations contain 28 parameters. In the
following sub-section, we exhibit the equations related to the ferritin, the transferrin receptor and the
IRP. The conventions for the parameter names are the following: a parameter named p−X represents the
transcription speed of the mRNA of X (units: mol/(L·s)); t−X represents the reaction rate constant for
X mRNA translation (units: s−1) ; d p−X represents the degradation rate of the protein X (units: s−1);
dr−X represents the degradation rate of the mRNA of X (units: s−1); drs−X represents the degradation
rate of the mRNA of X , when this mRNA contains an IRE in the 3’-UTR region and is bound to an IRP
(units: s−1). The species ending with the subscript −p represent proteins, while the ones ending with the
subscript − f (resp. −b) represent free (resp. bound) mRNA concentration (units: mol/L).

3.1 Ferritin equations

The ferritin mRNAs contain an IRE in the 5’-UTR region, so the translation speed is proportional to
the free mRNA concentration. This is described by the first term in Equation (1). Moreover, as a
ferritin is constituted by 24 sub-units, a factor 1/24 appears in this term. The second term represents
the spontaneous degradation of the ferritin.

dFt−p

d t
= (t−Ft/24) ·Ft− f −d p−Ft ·Ft−p (1)

The free ferritin mRNA concentration, described in Equation (2), depends on four terms. The first
one is the transcription speed p−Ft . The second one represents the complexation of this mRNA with an
IRP (the parameter ka is the complexation second-order reaction rate parameter), while the third one rep-
resents the decomplexation of mRNA:IRP complex. The parameter Kd is equal to the ratio kd/ka, where
kd is the decomplexation first-order reaction rate parameter. The last term represents the spontaneous
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Figure 1: Schematic representation of the main biological processes involved in the cellular control of
iron concentration. This diagram was drawn with the software CellDesigner [2]. The dashed arrows
represent translation of mRNA into proteins. The lines ending with a combined perpendicular stroke
and arrow represent iron transport through membranes. The regular arrows leading to an empty set
symbol which indicate either degradation (for IRP) or internal consumption (for iron). Moreover, the
multi-arrows containing a black dot represent complexation while the ones with two empty circles mean
decomplexation. Finally, the two regular arrows represent the loading/unloading of iron into/from the
ferritins. The rounded rectangles represent proteins, the parallelograms represent mRNA, and the circle
labeled Fe represents the pool of available iron. The concave hexagon represents the transferrin receptor.
The species IRE5− f (resp. IRE3− f ) and IRE5−b (resp. IRE3−b) represent all the mRNA having an IRP
binding site (called IRE) in the 5’-UTR (resp. 3’-UTR) excepted the ones explicitly drawn.

degradation of the mRNA.

dFt− f

d t
= p−Ft − ka ·Ft− f · IRP+ ka ·Kd ·Ft−b−dr−Ft ·Ft− f (2)

Finally, the bound ferritin mRNA concentration is described in Equation (3). This equation is com-
posed of three terms. The first two, describing the complexation and the decomplexation, have the same
meaning as in the equation of the free ferritin mRNA. The last term describes the spontaneous degrada-
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tion of the mRNA.
dFt−b

d t
= ka ·Ft− f · IRP− ka ·Kd ·Ft−b−dr−Ft ·Ft−b (3)

3.2 Transferrin receptor equation

The transferrin receptor mRNA contains five IREs in its 3’-UTR region. Here, we make a simplification
and consider that TfR1 mRNA contains only one IRE. Equation (4) describes the transferrin receptor
concentration. It contains a translation term and a spontaneous degradation term. As the IRE is located
in the 3’-UTR region, both free and bound mRNA are translated into proteins. Moreover, because the
receptor is a dimer, a factor 1/2 appears in the first term.

dT f R1−p

d t
= (t−T f R1/2) · (T f R1− f +T f R1−b)−d p−T f R1 ·T f R1−p (4)

The equation of the free transferrin receptor mRNA is very similar to the free ferritin mRNA. This
equation is shown in Equation (5) and is composed of a translation term, a complexation term, a decom-
plexation term and a spontaneous degradation term.

dT f R1− f

d t
= p−T f R1− ka ·T f R1− f · IRP+ ka ·Kd ·T f R1−b−dr−T f R1 ·T f R1− f (5)

Equation (6) describes the concentration of the transferrin receptor mRNA complexed with an IRP.
This equation is similar to the bound ferritin mRNA, except that the binding of an IRP on this mRNA
leads to the mRNA stabilization. To model this mechanism, a specific degradation rate parameter
(drs−T f R1) is considered. This parameter is lower than the free mRNA degradation rate parameter
(dr−T f R1).

dT f R1−b

d t
= ka ·T f R1− f · IRP− ka ·Kd ·T f R1−b−drs−T f R1 ·T f R1−b (6)

3.3 IRP equation

The IRP equation is described in Equation (7).

d IRP
d t

= −
(
Ft− f +FPN1a−f +T f R1− f + IRE3− f + IRE5− f

)
· ka · IRP (7)

+
(
Ft−b +FPN1a−b +T f R1−b + IRE3−b + IRE5−b

)
· ka ·Kd

− kFe→IRP · sig+(Fe,θFe→IRP) · IRP−d p−IRP · IRP

The first line of this equation describes the complexation of free mRNAs and IRP for all mRNAs, while
the second line describes the decomplexation of the bound mRNAs. The last line describes IRP inac-
tivation. This inactivation is described by a constant basal term for degradation (d p−IRP · IRP) and the
iron-triggered regulation (kFe→IRP · sig+ (Fe,θFe→IRP) · IRP). Then, if the iron level is significantly be-
low the threshold θFe→IRP, the degradation rate is d p−IRP · IRP. Otherwise, if the iron concentration is
significantly above this threshold, the degradation rate is (kFe→IRP +d p−IRP) · IRP, where kFe→IRP is the
parameter describing the inhibition of IRP by iron.

3.4 Other equations

The iron equation is the same than in the previous model [5]. The eight remaining equations are very
similar to those shown above. The equations for ferroportin and IRE5 are similar to that of ferritin, and
the equations for the IRE3 species are similar to that of the transferrin receptor.
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3.5 Data

For each parameter, we consider an interval deduced from biological data or incorporating meaningful
values. For example, in K562 cells, the ferritin half-life is 11 hours [4]. We deduce that the parameter
d p−Ft is included in the interval [3.8e-6, 3.8e-5] s−1.

Moreover, some data are expressed as relations between parameters. To give an example, our recent
data indicate the ferritin mRNA concentration largely exceed that of the other IRP targets in proliferating
cells. The total ferritin (resp. IRE5) mRNA concentration at steady state being equal to p−Ft/dr−Ft (resp.
p−IRE5/dr−IRE5), it follows the relation described in Equation (8).

p−Ft

dr−Ft
>

p−IRE5

dr−IRE5
(8)

We can also note that the lower degradation rate due to the binding of IRP on IRE in 3’-UTR mRNA
region translates into Equation (9) and Equation (10).

drs−T f R1 < dr−T f R1 (9)

drs−IRE3 < dr−IRE3 (10)

In addition, some relations describe data related to the stationary state. For example, the degradation
rate of total TfR1 mRNA belong to the interval [7.0×10−6, 7.0×10−5] s−1 [7][6]. This describe the
sum of the degradation of both free and complexed mRNA and translates into the equation (11). The
superscript eq indicates that we consider the steady state concentration.

dr−T f R1 ·T f R1eq
− f +drs−T f R1 ·T f R1eq

−b

T f R1eq
−b +T f R1eq

− f
∈ [7.0×10−6, 7.0×10−5] s−1 (11)

The last kind of data is related to the dynamic of the system when an iron cut-off happens. The
modeling of these data using STL formula is described in Mobilia & al [5].

4 Method

The set of intervals and constraints can be divided in two: those pertaining to the iron-replete steady
state, and those pertaining to the cell response to iron shortage. In our previous work [5], we first
reduced the search space by using the interval solver Realpaver [3]. Then, we represented formally the
whole set of constraints as an STL formula and devised a search algorithm to satisfy it, based on the tool
Breach [1]. Basically, a point is randomly drawn in the search space, a simulation is performed and the
STL formula is evaluated. In the present more complete model, no iron-replete steady state was initially
found following the same procedure. In addition, this failure did not instruct us on the origin of the
problem.

To cope with this limitation, we improved the method in two ways. (i) In the first step, the interval
solver Realpaver allowed to reduce the intervals by propagating the constraints. Instead of being solely
a hyper-rectangle as previously, the search space was allowed to be a union of hyper-rectangles thus
reducing it more efficiently. In case the interval solver found an inconsistency, we improved the method
by looking for the smallest sets of constraints that have to be lifted to release the inconsistency. This
information gives insight when one wants to revisit the model and the data used. (ii) We decomposed the
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search algorithm in two parts. We had developed an algorithm to generate efficiently a large number of
explicit solutions (steady states concentrations and model parameters) satisfying the constraints of a sta-
ble steady state (the set of constraint contains algebraic equations and inequalities involving polynomial
expressions). These explicit solutions, that were prerequisite to perform simulation of the dynamics of
the system, were then fed into our Breach-based procedure in order to search models satisfying the STL
formula specifying the cell response to iron deprivation.

The unknowns of the problem are the model parameters and the concentrations in the iron-replete
steady state. The methodology proceeds basically as follows:

1. perform interval reduction with Realpaver;

2. select a subset of unknowns to be sampled (we start with unknowns within a narrow interval, then
other criteria are used to decouple the equations and to optimize the following step);

3. for each sample of this subset of unknowns:

4. replace the instantiated unknowns in the algebraic equations and perform deductions (new un-
knowns can get instantiated);

5. check domain of newly instantiated unknowns;

6. check the validity of inequality constraints as soon as possible;

7. for each sub-problem (i.e.: set of decoupled constraints), apply this algorithm;

8. loop to step 3. until all samples are tried;

9. loop to step 2.

The basic principles underlying this search are to decouple the constraints in order to solve subproblems,
and to identify the hardest sub-problems (most constrained) and try to solve them in priority. The aim is
of course to trim the branches of the search tree as soon as possible.

The interval solver Realpaver, used during the first step, allows to reduce the intervals by propagat-
ing the constraints. The result is an hyper-rectangle (or an union of hyper-rectangles) containing the
solutions, if they exist. The existence of solutions is not guaranteed, but it is certain that there are no
solutions outside of the volume given by Realpaver. Consequently, this step is important to reduce the
search space. Nevertheless, the remaining space may be very large with regard to the solution space.
A simple example to illustrate this aspect is the following: consider two unknowns x1 and x2, within
the [0, 1] interval, and the constraint abs(x1− x2) < eps, with eps small compared to x1 and x2. If the
solution space is defined by one box, Realpaver cannot reduce the search space. Considering a union of
boxes allows a reduction of the search space. As it is hard to find explicit solutions, we say informally
that the constraint is hard to satisfy (the smaller eps, the harder it is).

The constraint system is constituted of algebraic equations and inequalities. For the majority of them,
the algebraic equations are used to deduce the values of unknowns, and are thus automatically satisfied.
Inequalities are checked a posteriori. To be efficient, it is important to check an inequality as soon as all
the unknowns in it have been instantiated. For efficiency reasons, redundant constraints are also added.
The aim is to add constraints simpler than the initial ones , which can be checked early in the search
process. Typically, from the constraints described by Equation (11), we straightforwardly deduce that
t−T f R1 ·T f R1eq

− f < 5.5×10−13 and that t−T f R1 ·T f R1eq
−b < 5.5×10−13. Even if T f R1− f or T f R1−b is

not instantiated, one of these two constraints can be checked and may invalidate this partial instantiation.
When applying this algorithm, we store the result of each verification of domain and check of con-

straints (whether the constraint or domain is verified or not). When no solution is found, this may be due
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to different constraints. This information thus provide the level of difficulty to satisfy each constraint.
This may help to manually found inconsistencies between constraints that were not automatically found
by Realpaver.

This methodology either provides us valid sets of values, or indicates the hardest subset of constraints
to satisfy. We applied it on the iron homeostasis network. No solutions could be found, which is not a
proof of nonexistence, but the subset of hard constraints identified allowed us to prove that there was
indeed a contradiction. After revision of this part of the model (namely: removing one non-reliable
constraint and extending some intervals), the procedure then generated thousands of valid steady states
in a short execution time.

5 Conclusion

This evolved model describes in a more realistic way the action of IRP and takes into account the fact
that their effect depends on the location of the binding site on mRNA. Moreover, it easily incorporates
new information obtained on the system.

Nevertheless, some work still remains to be done in order to completely automate this search, and to
interface the steady state search with the part dealing with dynamical behavior (specified with an STL
formula).

Here we described our approach to nicely integrate different kinds of biological data, combining an
interval solver, simulations, and temporal STL formula verification. We are applying it on a new model
of iron homeostasis in mammalian cells.
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Myopia in human and animals is caused by the axial elongationof the eye and is closely linked
to the thinning of the sclera which supports the eye tissue. This thinning has been correlated with
the overproduction of matrix metalloproteinase (MMP-2), an enzyme that degrades the collagen
structure of the sclera. In this short paper, we propose a descriptive model of a regulatory network
with hysteresis, which seems necessary for creating oscillatory behavior in the hybrid model between
MMP-2, MT1-MMP and TIMP-2. Numerical results provide insight on the type of equilibria present
in the system.

1 Introduction

This short paper presents a descriptive model of a genetic regulatory network in the mammalian sclera us-
ing the formalism of hybrid dynamical systems. This model isdeduced from experimental observations
of enzyme interactions that govern the remodeling of the collagen tissue in the sclera. A number of re-
search publications indicate that myopia is closely related to an unbalanced remodeling in sclera [12, 22].
Myopia is an optical condition in which the eye grows abnormally in the axial direction, causing images
to form in front of the retina compared to on the retina, as it normally occurs [9, 12, 13, 18]. The exces-
sive length of the eye is driven by the remodeling of the scleral extra cellular matrix (ECM) (e.g., loss of
Type I collagen, COL1A1), leading the progressive thinningof this tissue [1, 11, 12]. Scleral remodeling
is regulated by a large number of growth factors, membrane receptors, proteases, and protease inhibitors,
which work in concert to optimize the dynamic synthesis and degradation of COL1A1[3, 11, 27]. One of
the most studied actors in sclera remodeling is the Type II matrix metalloproteinase (MMP-2), because
of its role in the degradation of COL1A1 [6, 12, 16]. MMP-2 is regulated by the Type II tissue inhibitor
of the matrix metalloproteinases (TIMP-2), and when the twoenzymes are properly balanced, the sclera
develops normally. MMP-2 regulation by TIMP-2 shows a particular mechanism in which TIMP-2 not
only inhibits the proteolytic activity of MMP-2, but is alsonecessary for the production of this metallo-
proteinase in its active form [12, 24, 26]. Such a mechanism is very important for the balance between
COL1A1 production and degradation in sclera, and hence, should play a key role in a model of a genetic
regulatory network in this tissue.

The remainder of the paper is organized as follows. Section 2introduces the mechanisms govern-
ing the regulatory network of interest and proposes a hybridsystem model. Section 3 presents results
from simulations of the proposed model, which, for a particular set of parameters, identify both isolated
equilibria and limit cycles. Final remarks and a discussionof the current efforts appear in Section 4.
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2 Modeling

We develop a model of a regulatory network in mammalian sclera from the following experimental obser-
vations. Sufficient high levels of MMP-2 protein cause the expression of TIMP-2 [12, 21] (considering
expression as the result of transcription, translation andactivation of the protein latent form). When
the concentration of TIMP-2 exceeds a minimum threshold, this protein indirectly modulates the incre-
ment of MMP-2: TIMP-2 triggers the expression of active membrane-type I matrix metalloproteinase
(MT1-MMP) [12, 21, 24], which is necessary for the activation of latent MMP-2 [12, 24, 26]. When the
concentration of TIMP-2 protein is sufficiently high, TIMP-2 inhibits the proteolytic activity of MMP-2
and MT1-MMP [12, 19, 21, 24, 26]. As we mentioned above, MT1-MMP triggers the activation of latent
MMP-2 when sufficiently high [5, 15]; therefore, by blockingMT1-MMP, TIMP-2 is also inhibiting the
activation of latent MMP-2 [12, 24, 26]. In fact, [12, 26] argue that the increased TIMP-2 mRNA and
protein levels are significant as TIMP-2 is not only a proteininhibitor of both the active and latent form
of MMP-2 but also paradoxically essential for the MT1-MMP dependent activation of MMP-2. The
genetic network capturing these mechanisms is depicted in Figure 1.

mmp-2 timp-2 mt1-mmp

MMP-2 TIMP-2 MT1-MMP

Figure 1:Proposed genetic regulatory network for sclera. Lowercasenames refer to genes, uppercase
names refer to proteins. Lines ending in arrows represent expression triggers and lines ending in flat-
heads refer to inhibition triggers.

The mechanisms described above can be encoded in a piecewise-linear differential equation follow-
ing the modeling technique in [6, 14]. However, the resulting model of the genetic network in sclera
would not incorporate hysteresis, which is a key player in genetic regulatory networks [2, 7, 10, 20].
To incorporate hysteresis, we follow the approach in [23] and propose a hybrid system model in the
framework of [4]. To this end, we define the state of the hybridsystem as

z= [x1,x2,x3,q1,q2,q3,q4]
⊤ (1)

wherez∈Z :=R3
≥0×{0,1}4. The continuous statesx1,x2,x3 represent the protein concentrations, where

x1 represents the protein concentration of TIMP-2,x2 the concentration of MT1-MMP, andx3 the con-
centration of MMP-2. Positive constantsγ1,γ2,γ3 define the decay rates andk1,k2,k3 define the growth
rates, respectively, for each of the concentrations. The discrete states (logic variables)q1,q2,q3,q4 define
the boolean value (1 or 0) of the hysteresis functions associated with each of the thresholdsθ1,θ2,θ3,θ4

and the hysteresis half-width constantsh1,h2,h3,h4 associated with each of the thresholds, respectively.

Threshold Definition
θ1 TIMP-2 level for MT1-MMP expression
θ2 MT1-MMP level for MMP-2 expression
θ3 TIMP-2 level for MT1-MMP/MMP-2 inhibition
θ4 MMP-2 level for TIMP-2 expression

Table 1: Definition of protein thresholds in the genetic regulatory network for sclera.
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Following the definitions in Table 1, the thresholds and hysteresis half-width constants are used to
determine when, for current values of the protein concentrations and of the logic variables, changes of
the logic variables should occur. For instance, according to the mechanisms described above, ifq4 = 0
andx3 is small, thenx1 should decay according to its decay rateγ1. However, ifq4 = 0 andx3 becomes
large (i.e., the concentration of MMP-2 is large) thenq4 should change to 1 andx1 should be expressed
according to its own growth ratek1. The continuous evolution ofx3 can be captured mathematically by
the differential equation

ẋ1 = k1q4− γ1x1

while the discrete change ofq4 can be captured by the difference equation

q+4 = 1−q4 when q4 = 0 andx3 ≥ θ4+h4, or q4 = 1 andx3 ≤ θ4−h4

In this way, theflow mapof the hybrid system defining the continuous dynamics ofz is given by

F(z) :=




k1q4− γ1x1
k2q1(1−q3)− γ2x2
k3q2(1−q3)− γ3x3

04×1


 (2)

Changes of the variables occur whenz is in thejump set, which is conveniently written as

D :=
4⋃

i=1

Di

where
D1 := {z : q1 = 1,x1 ≤ θ1−h1}∪{z : q1 = 0,x1 ≥ θ1+h1}
D2 := {z : q2 = 1,x2 ≤ θ2−h2}∪{z : q2 = 0,x2 ≥ θ2+h2}
D3 := {z : q3 = 1,x1 ≤ θ3−h3}∪{z : q3 = 0,x1 ≥ θ3+h3}
D4 := {z : q4 = 1,x3 ≤ θ4−h4}∪{z : q4 = 0,x3 ≥ θ4+h4}

The right-hand side of the difference equation discretely updating the logic variables is given by the
jump map

G(z) =





g1(z) z∈ D1\ (D2∪D3∪D4)

g2(z) z∈ D2\ (D1∪D3∪D4)

g3(z) z∈ D3\ (D1∪D2∪D4)

g4(z) z∈ D4\ (D1∪D2∪D3)

ĝ(z) z∈ D1∩D2∩D3∩D4

(3)

where

g1(z) =




x1
x2
x3
1−q1

q2
q3
q4



, g2(z) =




x1
x2
x3
q1

1−q2
q3
q4



, g3(z) =




x1
x2
x3
q1

q2
1−q3
q4



, g4(z) =




x1
x2
x3
q1

q2
q3
1−q4
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and ĝ(z) = {g1(z),g2(z),g3(z),g4(z)}. Note thatx1 and its associated logic variablesq1 andq3 are the
only “inputs” to the dynamics ofx2, which suggests thatθ1 + h1 < θ3 − h3 should hold forx2 to ever
grow. Moreover,x1 and its associated logic variableq3 are “inputs” to the dynamics ofx3, while x3 and
q4 are “inputs” to the dynamics ofx1, in what resembles to a feedback interconnection.

With the definitions mentioned before, a hybrid systemH = (F,C,G,D) in the framework of [4]
capturing the mechanism in the genetic network of sclera with hysteresis is given as

H : z∈ Z

{
ż= F(z) z∈C := Z\D

z+ ∈ G(z) z∈ D
(4)

3 Simulation Results

We simulate the hybrid model of the scleral genetic network within a Matlab/Simulink toolbox [20]. Un-
less otherwise stated, the growth rateki and decay ratesγi , i = 1,2,3 for the three proteins are identically
set to 1 and the hysteresishi , i = 1,2,3,4 are set to 0.01.

3.1 Isolated Equilibrium Points

Figure 2(a) and Figure 2(b) present simulation results in which the hybrid system evolves to the equilib-
rium point atx∗ = (0,0,0). Under these initial conditions and protein thresholds, the concentration of
TIMP-2 (x1) is not sufficiently high to permit continued expression of the MT1-MMP (x2) and MMP-2
(x3) genes. The protein concentration associated with the MMP-2 gene continues to grow, but when the
MT1-MMP gene is inhibited, MMP-2 will become inhibited withtime.

Figure 2(c) and Figure 2(d) show that the solution of the hybrid system goes toward the equilibrium

point atx∗ =
(

k1
γ1
, k2

γ2
, k3

γ3

)
. With the given initial conditions and parameters, the concentration of TIMP-2

(x1) is not high enough to inhibit the expression of the MT1-MMP (x2) and MMP-2 (x3) genes. This
situation can be a cause of high myopia [12, 17].

3.2 Limit cycles

Figure 3(a) and Figure 3(b) illustrates the oscillatory behavior in the hybrid system when the concentra-
tion of TIMP-2 exceedsθ1 and the concentration of MMP-2 exceedsθ4 recurrently. In this scenario, the
discrete state behavior stabilizes to a periodic orbit. It is apparent that the TIMP-2 protein as modeled
here has a stabilizing effect on the other two protein concentrations when it is at a sufficiently high level.
In this scenario, the sclera develops normally. To illustrate that such normal development of the sclera
is only possible when hysteresis is present, the previous simulation is repeated for half-width hysteresis
constants equal to zero. Figure 3(c) and Figure 3(d) show thecorresponding system response. The
solution to the hybrid system converges to an isolated equilibrium point.

4 Conclusion

A mathematical model of a regulatory network with hysteresis to describe the mechanisms in the mam-
malian sclera was introduced. The model captures the interaction between MMP-2, MT1-MMP, and
TIMP-2. Numerical results indicate that the system can haveboth isolated equilibria and limit cycles
in the 3-dimensional space of protein concentrations. For the arbitrarily chosen parameters, numerical
results seem to suggest that hysteresis is needed for normaldevelopment of sclera. Current efforts in-
clude characterizing the type of equilibria in terms of the values of the systems constants using the hybrid
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(a) θ1 = 0.4,θ2 = 0.5,θ3 = 0.6,θ4 = 0.7,x1(0) =
0.15,x2(0) = 0.45,x3(0) = 0.8,q1(0) = 1,q2(0) =
1,q3(0) = 0,q4(0) = 1, ∗ is the initial point.
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(b) θ1 = 0.4,θ2 = 0.5,θ3 = 0.6,θ4 = 0.7,x1(0) =
0.15,x2(0) = 0.45,x3(0) = 0.8,q1(0) = 1,q2(0) =
1,q3(0) = 0,q4(0) = 1, ∗ is the initial point.
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(c) k1 = 0.55,k3 = 0.9,θ1 = 0.4,θ2 = 0.5,θ3 = 0.6,θ4 =
0.7,x1(0) = 0.45,x2(0) = 0.6,x3(0) = 0.8,q1(0) =
1,q2(0) = 1,q3(0) = 0,q4(0) = 1, ∗ is the initial point.
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(d) k1 = 0.55,k3 = 0.9,θ1 = 0.4,θ2 = 0.5,θ3 = 0.6,θ4 =
0.7,x1(0) = 0.45,x2(0) = 0.6,x3(0) = 0.8,q1(0) =
1,q2(0) = 1,q3(0) = 0,q4(0) = 1, ∗ is the initial point.

Figure 2: Solutions toH for different parameters and initial conditions. For the chosen values, solutions
converge to isolated equilibrium points.

systems techniques employed in [23] and the design of in-vivo experiments to identify the parameters of
the genetic model.
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