
EPTCS 342

Proceedings of the
9th International Symposium on

Symbolic Computation in Software
Science

Hagenberg, Austria, September 8-10, 2021

Edited by: Temur Kutsia

Published: 6th September 2021
DOI: 10.4204/EPTCS.342
ISSN: 2075-2180
Open Publishing Association

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. i–ii, doi:10.4204/EPTCS.342.0

Preface

Symbolic Computation is the science of computing with symbolic objects (terms, formulae, pro-
grams, representations of algebraic objects etc.). Powerful algorithms have been developed during the
past decades for the major subareas of symbolic computation: computer algebra and computational logic.
These algorithms and methods are successfully applied in various fields, including software science,
which covers a broad range of topics about software construction and analysis.

Meanwhile, artificial intelligence methods and machine learning algorithms are widely used nowa-
days in various domains and, in particular, combined with symbolic computation. Several approaches
mix artificial intelligence and symbolic methods and tools deployed over large corpora to create what
is known as cognitive systems. Cognitive computing focuses on building systems which interact with
humans naturally by reasoning, aiming at learning at scale.

The purpose of the International Symposium on Symbolic Computation in Software Science – SCSS
is to promote research on theoretical and practical aspects of symbolic computation in software science,
combined with modern artificial intelligence techniques. SCSS 2021 is the ninth edition in the SCSS
symposium series. It was organized at the Research Institute for Symbolic Computation (RISC) of the
Johannes Kepler University Linz. Due to the COVID-19 pandemic, the symposium was held completely
online.

The SCSS program featured a keynote talk by Bruno Buchberger (Johannes Kepler University Linz)
and three invited talks given by Tateaki Sasaki (University of Tsukuba), Martina Seidl (Johannes Kepler
University Linz), and Stephen M. Watt (University of Waterloo). The symposium received 25 submis-
sions with contributing authors from 17 countries. These submissions have been divided into two tracks:
16 in the category of regular papers and tool/dataset descriptions, and nine in the category of short and
work-in-progress papers. Twenty PC members and 15 external reviewers took part in the refereeing
process, after which 10 regular / dataset papers and 9 short contributions have been accepted for the
presentation at the symposium. The accepted regular and tool papers are included in these proceedings.
The short papers appeared in a collection published as a RISC technical report. In addition to the main
program, a special session on Computer Algebra and Computational Logic has been held.

On behalf of the Program Committee, I thank the authors of the submitted papers for considering
SCSS as a venue for their work and the keynote and invited speakers for their inspiring talks. The
PC members and external reviewers deserve thanks for their careful reviews. The EasyChair conference
management system has been a very useful tool for PC work. The technical support team at RISC greatly
contributed to running the conference smoothly. Finally, I thank all the participants for contributing to
the success of the symposium and EPTCS and arXiv for hosting the proceedings.

Temur Kutsia
Program Chair of SCSS 2021

ii

Conference Information

General Chairs

Adel Bouhoula (Arabian Gulf University, Bahrain)
Tetsuo Ida (University of Tsukuba, Japan)

Program Chair

Temur Kutsia (RISC, Johannes Kepler University Linz, Austria)

Program Committee

David Cerna (Czech Academy of Sciences, Czechia, and Johannes Kepler University Linz, Austria)
Changbo Chen (Chinese Academy of Sciences, China)
Rachid Echahed (CNRS, Grenoble, France)
Seyed Hossein Haeri (UC Louvain, Belgium)
Mohamed-Bécha Kaâniche (Sup’Com, Carthage University, Tunisia)
Cezary Kaliszyk (University of Innsbruck, Austria)
Yukiyoshi Kameyama (University of Tsukuba, Japan)
Michael Kohlhase (University of Erlangen-Nuremberg, Germany)
Laura Kovács (Vienna University of Technology, Austria)
Zied Lachiri (ENIT, University of Tunis El Manar, Tunisia)
Christopher Lynch (Clarkson University, USA)
Mircea Marin (West University of Timisoara, Romania)
Yasuhiko Minamide (Tokyo Institute of Technology, Japan)
Yoshihiro Mizoguchi (Kyushu University, Japan)
Julien Narboux (Strasbourg University, France)
Michaël Rusinowitch (INRIA, France)
Wolfgang Schreiner (Johannes Kepler University Linz, Austria)
Sofiane Tahar (Concordia University, Canada)
Dongming Wang (CNRS, Paris, France)

External Reviewers

Behzad Akbarpour, Deena Awny, Xiaoyu Chen, Zecheng He, Dongchen Jiang, Hai Lin, Chenqi Mou, Hi-
roshi Ohtsuka, Florian Rabe, Adnan Rashid, Stefan Ratschan, Takafumi Saikawa, Jan Frederik Schaefer,
Ionut Tutu, Laurent Vigneron

Organization

Temur Kutsia
Cleopatra Pau
Werner Danielczyk-Landerl
Ralf Wahner

iii

Table of Contents

Preface . i
Temur Kutsia

Table of Contents . iii

Keynote paper: Symbolic Computation in Software Science: My Personal View 1
Bruno Buchberger

ArGoT: A Glossary of Terms extracted from the arXiv . 14
Luis Berlioz

Implementing Security Protocol Monitors . 22
Yannick Chevalier and Michaël Rusinowitch

Sensitive Samples Revisited: Detecting Neural Network Attacks Using Constraint Solvers. 35
Amel Nestor Docena, Thomas Wahl, Trevor Pearce and Yunsi Fei

Querying RDF Databases with Sub-CONSTRUCTs . 49
Dominique Duval, Rachid Echahed and Frédéric Prost

Statistical Model Checking of Common Attack Scenarios on Blockchain . 65
Ivan Fedotov and Anton Khritankov

Learned Provability Likelihood for Tactical Search . 78
Thibault Gauthier

Congruence Closure Modulo Permutation Equations . 86
Dohan Kim and Christopher Lynch

First-Order Logic in Finite Domains: Where Semantic Evaluation Competes with SMT Solving . . . 99
Wolfgang Schreiner and Franz-Xaver Reichl

Failure Analysis of Hadoop Schedulers using an Integration of Model Checking and Simulation . . . 114
Mbarka Soualhia, Foutse Khomh and Sofiene Tahar

E-Cyclist: Implementation of an Efficient Validation of FOLID Cyclic Induction Reasoning 129
Sorin Stratulat

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 1–13, doi:10.4204/EPTCS.342.1

c© B. Buchberger
This work is licensed under the
Creative Commons Attribution License.

Symbolic Computation in Software Science:
My Personal View

Bruno Buchberger
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University
Linz / Schloss Hagenberg, Austria
Bruno.Buchberger@risc.jku.at

In this note, I develop my personal view on the scope and relevance of symbolic computation in
software science. For this, I discuss the interaction and differences between symbolic computation,
software science, automatic programming, mathematical knowledge management, artificial intelli-
gence, algorithmic intelligence, numerical computation, and machine learning. In the discussion of
these notions, I allow myself to refer also to papers (1982, 1985, 2001, 2003, 2013) of mine in which
I expressed my views on these areas at early stages of some of these fields.

The Intention of This Note

It is a great joy to see that the SCSS (Symbolic Computation in Software Science) conference series,
this year, experiences its 9th edition. A big Thank You to the organizers, referees, and contributors who
kept the series going over the years! The series emerged from a couple of meetings of research groups
in Austria, Japan, and Tunisia, including my Theorema Group at RISC, see the home pages of the SCSS
series since 2006. In 2012, we decided to define “Symbolic Computation in Software Science” as the
scope for our meetings and to establish them as an open conference series with this title.

As always, when one puts two terms like “symbolic computation” and “software science” together,
one is tempted to read the preposition in between - in our case “in” - as just a set-theoretic union.
Pragmatically, this is reasonable if one does not want to embark on scrutinizing discussions. However,
since I was one of the initiators of the SCSS series, let me take the opportunity to explain the intention
behind SC in SS in this note. Also, this note, for me, is a kind of revision and summary of thoughts I
had over the years on the subject of SCSS and related subjects. Hence, allow me to refer to a couple
of my papers with basic considerations on the subject. I do not discuss, however, any of my technical
contributions to the subject of SCSS (which would be, mainly, Gröbner bases and the Theorema system).
In some way, this note continues, updates, and specializes the note on mathematics in the 21st century I
gave at the beginning of SCSS 2013, see [3], from which I quote:

In my view, mathematics of the 21st century will evolve as a unified body of mathemat-
ical logic, abstract structural mathematics, and computer mathematics with no boundaries
between the three aspects. Working mathematicians will have to master the three aspects
equally well and integrate them into their daily work. More specifically, working in math-
ematics will proceed on the object level of developing new mathematical content (abstract
knowledge and computational methods) and, at the same time, on the meta-level of develop-
ing automated reasoning methods for supporting research on the object level. This massage
of the mathematical brain by jumping back and forth between the object and the meta-level
will guide mathematics onto a new level of sophistication. Symbolic computation is just a

2 Symbolic Computation in Software Science: My Personal View

way of expressing this general view of mathematics of the 21 st century and it also should
be clear that software science is just another way of expressing the algorithmic aspect of this
view.

Continuing the discussion on the intended meaning of “Symbolic Computation in Software Science”
in this note will hopefully help to advocate the central importance of this topic for the future of mathe-
matics, logic, and computer science. This should also motivate more and more people to submit papers
to the conferences in the SCSS series.

What is Symbolic Computation?

In 1984, Academic Press London issued a call for designing a new journal for a new field that had
emerged approximately since 1960. Various names were in use for this field: computer algebra, symbolic
and algebraic manipulation, analytic computation, formula manipulation, computation in finite terms,
symbolic computation, and others. As a response to this call, I submitted a proposal to Academic Press
for a “Journal of Symbolic Computation”. My proposal was selected and my clarification of the scope
of “symbolic computation” formed also the Editorial of the journal, see [2].

I defined “symbolic computation” as the area that deals with algorithms on symbolic objects, and I
proposed “symbolic objects” to be defined as finitary representations of infinite mathematical entities.
Here, “finitary” means “storable in a computer memory”. For example, finitely many generators with
finitely many relations between words formed from the generators form a finitary object that may repre-
sent an infinite group (or, at least, a “large” group, i.e. a group whose number of elements is much much
larger than the size of the finitary representation). Algorithms can only work on finitary objects and the
flavor of “symbolic” is exactly the point that we want to solve problems on infinite (or “large”) mathe-
matical entities by finding algorithms that work on finitary (small), “symbolic”, representations of these
entities. Also, numerical computation works on finitary representations (for example, lists of rational
numbers that represent a function consisting of infinitely many pairs of real numbers). In this sense, nu-
merical computation is a subfield of symbolic computation. However, usually, for algorithms to be called
“symbolic” we request that the representation of the abstract mathematical domains by finitary domains
must be an isomorphism w.r.t. to the operations on the objects we study. In numerical computation, for
the sake of efficiency, this request has to be given up. Instead, we are satisfied with “approximations”.

Pragmatically, in the editorial of the Journal of Symbolic Computation, I named three main areas
for symbolic computation: computer algebra, automated reasoning, and “automatic programming”.
I also emphasized that all aspects of these areas should be in the scope of the Journal of Symbolic
Computation: mathematical theory on which symbolic algorithms can be based, the algorithms with
their correctness proofs and complexity analysis, the details of the implementation of the algorithms,
languages and software systems for symbolic computation, and applications. Indeed, the three main
branches of symbolic computation consider three important classes of “symbolic objects”:

– computer algebra: symbolic objects that represent algebraic entities like terms that represent func-
tions, differential operators, etc. or finite relations that represent residue class structures;

– automated reasoning: symbolic objects containing (quantified) variables that are considered as
statements on (infinite) domains;

– automatic programming: symbolic objects containing variables that are considered as programs
that define processes on potentially infinitely many inputs.

B. Buchberger 3

(Of course, these three sub-areas of symbolic computation are intimately connected and, in some
precise way, even embedded in each other. The distinction between the three areas is more or less only a
matter of “flavor”.)

In other words, symbolic objects are finitary objects that have “semantics” attached to them where,
typically, the semantics is “large”, even infinite, not tangible by computers whereas the symbolic ob-
jects are “small”, finitary, tangible by algorithms. Any field of mathematics can be studied under the
“symbolic” view and, actually, in any field of mathematics, if we want to solve problems by algorithms,
we have to find finitary representations for the objects in the field. Finding suitable finitary represen-
tations, by itself, may be a difficult - sometimes provably impossible - mathematical problem: Before
embarking on deeper questions, deciding whether or not two symbolic objects represent the same ab-
stract mathematical object and finding “canonical” representatives for symbolic objects may already be
very difficult (sometimes provably impossible). By finding representations of mathematical objects in
any field of mathematics, the field becomes “algebraic”, and problems in the algebraic disguise of the
field, essentially, become combinatorial problems. Thus, very sketchy, one may say: symbolic computa-
tion, ultimately, is the “combinatorization” of all of mathematics via finitary representations of infinite
mathematical entities.

It is a common misunderstanding that symbolic computation is the trivial side of mathematics, i.e.
some people believe that, whereas “pure” mathematics lives in difficult spaces needing deep and difficult
thinking, algorithmic mathematics (which must be “symbolic” in the above sense) “just” puts every-
thing to the computer and presses the start button. The truth is, that the “just” needs more and deeper
mathematics than a mathematics that allows non-algorithmic constructions for problem-solving like the
unlimited set quantifier, infinite summation, infinite unions, transition to residua class domains etc. (A
trivial example: In “pure” mathematics, a Gröbner basis for given ideal generators can be “easily” found
by just taking the ideal generated by the generators. However, the definition of the ideal generated by
generators involves an infinite set construction!) Hence, with some provocation, in my view, mathematics
only starts at the moment when it tries to solve problems by “symbolic computation”.

Recently, in 2020, we issued a call for running for the editor-in-chief position of the Journal of
Symbolic Computation (JSC). At that occasion, we asked the candidates to submit also their views on
the scope of “symbolic computation” and of the JSC. Interestingly, the view of symbolic computation in
the editorial of the JSC (and summarized above) was backed by all candidates and, basically, no dramatic
changes or extensions were proposed except that “artificial intelligence” was mentioned a couple of
times.

Mentioning artificial intelligence, for me, raises some nostalgia because, when I founded the Re-
search Institute for Symbolic Computation (also in 1985), for some time I was torn between using “sym-
bolic computation” or “artificial intelligence” as the main notion in the name of the new institute. At that
time, bringing symbolic computation under the umbrella of artificial intelligence was quite tempting and
also quite common: For example, finding symbolic integrals was considered an “artificial intelligence”
task like playing chess, with lots of heuristics. Correspondingly, the most comprehensive symbolic com-
putation software system at that time, MACSYMA, had “MAC” (= Machine Aided Cognition) in its
name! And, of course, implementing heuristics is still a very important approach for improving the
practical efficiency of methods for symbolic computation problems. However, in 1985, I deliberately de-
cided against having “artificial intelligence” in the name of my institute since I wanted to emphasize the
logical, mathematical, formal approach to problem-solving over the psychological, experimental aspect,
which some people (then and now) believe that goes “beyond mathematics”. I will go deeper into the
analysis of the relationship between symbolic computation and artificial intelligence later in this note.

Anyway, although symbolic computation (in the sense of the editorial of the JSC) seems to be a quite

4 Symbolic Computation in Software Science: My Personal View

established and stable notion, as a matter of fact, in the JSC over the years one can observe that

– the majority of papers in the JSC is on computer algebra,

– more and more, but still much fewer, papers are in automated reasoning,

– only a few papers came in on automatic programming.

Symbolic Computation in Software Science

Software science is the science of the process of developing software. This process starts from problems
in some “reality” (part of the real world) and creates software that solves the problems in an appropriate
finitary model of this reality. Since the beginning of the software age, the software development process
has matured from being a kind of “magic” and being an “art” to a decent engineering discipline called
“software engineering”. In parallel, since the very beginning, people have also tried to establish a “sci-
ence” of software and the software development process to make the process more reliable, provably
correct, faster, more flexible, more economic, and ultimately automatic or semi-automatic. Research in
this direction is mostly summarized under the heading “theoretical computer science”. Interestingly, the
term “software science”, which seems quite natural to me, in comparison to “theoretical computer sci-
ence”, is only used quite rarely. (This can easily be verified by googling the two notions and comparing
the number of relevant results.)

Anyway, I think that “software science” is a quite useful notion that focuses on the actual devel-
opment process of software and on its automation and, hence, has a high impact on one of the central
technologies - if not the central technology - of our age.

Since the objects of software science are formal models (domains with finitary objects and algorith-
mic operators on the objects), automation or semi-automation of the software design process is essentially
a “symbolic computation” process according to the definition of symbolic computation we considered
above. In other words, it should be clear that symbolic computation is the area that naturally should
include also the (semi-)automation of the software development process. Unfortunately, this logical
analysis did not really create a big stream of papers on automating software development to the JSC (and
neither to conferences in the area of symbolic computation like ISSAC, ACA, SYNASC, etc.). There-
fore, in 2012, I argued that the topic “Symbolic Computation in Software Science” could and should get
special attention by turning our group meetings into a conference series with this name.

Still, the idea that symbolic computation should have a major application in software science - in par-
ticular in the automation of the software development process - did not create a big echo in the symbolic
computation community. Neither do many people who work in software engineering realize that the
automation of the software development process is essentially a symbolic computation task. One reason
for this is, surely, that there are strong conference series and journals in the area of automated reasoning
and related subjects. (A side-remark: As some readers may know, when I built up RISC starting from
1985, I also devoted much of my time to building up the “Softwarepark Hagenberg”. With this, I wanted
to demonstrate that the mathematically deep field of symbolic computation has also the power to create
something with a strong practical impact: I started the Softwarepark with 25 people. When I stepped
back as the director of the Softwarepark Hagenberg in 2013, 2500 people working and/or studying in the
Softwarepark. I hoped that the government and the administration of my university would have noticed
and recognized the unique power that RISC / symbolic computation had created and had turned into in-
novation in the software foundations, into software development, and into software business. Therefore,

B. Buchberger 5

in 2013, I asked the government and university administration to establish an extra professorship “Soft-
ware Science” in the frame of RISC with the task of continuing my work for directing and expanding the
Softwarepark based on solid research on symbolic computation in software science. Indeed, in response
to my request and argumentation, a professor position for “Software Science” was created but then, much
to my displeasure, giving in to the pressure of the informatics department, the position was finally used
for something “more useful” for the education of the informatics undergraduates.)

Now, what I called “automatic programming” in the preface of the JSC, could also be called “sym-
bolic computation in software science”. In more detail, I want to make this clear in this note. If seen in
the right way, I think that symbolic computation in software science is / could be / should be the most /
one of the most fascinating topics of the next stage of mathematics / logic / computer science. (I like to
call mathematics, logic, and computer science together “thinking technologies” or just “full-stack math-
ematics”. Unfortunately, “mathematics” sounds old-fashioned to some people, sounds “non-creative”
to others, boring to others, intimidating to again others. However, one may bend and turn this as one
likes, finally, at the top of the creative hierarchy of problem-solving and gaining knowledge by thinking,
there is mathematics at higher and higher levels - whether certain people in politics, science, economy,
philosophy, culture, media or the people at the beer table like it or not.)

A Stream of Problems on the Way

On the way from a problem description / a collection of problem descriptions to an algorithm / program
/ software system that solves the problem there are many creative steps each of which can be handled
ad hoc for the particular problem at hand by a mathematician, computer scientist, developer. Each of
these steps, however, can also be considered as a problem on the meta-level with some symbolic objects
(like software requirements, programs, algorithm schemata, verification conditions, etc.) as input and
symbolic objects as output for which we would like to have a general algorithmic solution.

In this section, we assume that all the symbolic objects on the way from a problem specifica-
tion/requirements to an algorithm / piece of software are expressions that describe or at least try to
describe something “in general terms”. In particular, we assume that the problem specification (even a
vague attempt of a specification that may need much clarification and reformulation) tries to describe the
problem in general and not only by examples.

The important case that a problem specification, for certain reasons, can only be given by examples
and cannot be explained in general terms, is analyzed in detail in the next section in the paragraph on
machine learning.

In the majority of cases, problem specifications are explicit in the sense that they are specified by
an expression P[x,y] with input variable(s) x and output variables(s) y, and a solution algorithm A has to
satisfy P[x,A[x]], for all x. (However, there are important classes of algorithmic problems that cannot be
described in explicit form. For example, a canonical simplifier A for an equivalence relation P cannot be
described in this form. More generally, for example, the specification of operations on data structures by
axioms or the construction of algorithmic isomorphic representations of mathematical domains is not an
explicit specification. We cannot go into more details about this here.)

Depending on the situation, the initial (often vague) problem descriptions may be given in natural
language, maybe mixed with drawings and diagrams, or in some formal language.

Also, it is important to distinguish between two extremes:

• Finding algorithms for fundamental, non-trivial, stand-alone algorithmic problems: In this case,
the problem specification and the solution algorithm are completely formal, symbolic objects and

6 Symbolic Computation in Software Science: My Personal View

everything that happens between problem and solution should be amenable to algorithmic treat-
ment on the meta-level, i.e. to symbolic computation. For such problems, typically, time and
memory complexity is an issue. Examples: the problem of finding shortest paths in graphs; the
problem of finding symbolic integrals; the problem of finding Gröbner bases; etc.

• Developing software for an entire application: In this case, the individual parts of the system
(called “units”) should implement a (big) number of functionalities, most of which are not really
difficult. Only some of the functionalities may involve the algorithmic solution of fundamental
problems. The algorithms for these functionalities, typically, are known and taken from reliable
sources. The complexity of such systems originates from the huge number of units and the various
(desired and undesired) interactions of the units. Also tuning of the known algorithms to the
application at hand is an issue.

This distinction is important for the following reason: The application of formal methods for estab-
lishing the correctness of software only makes sense if we consider non-trivial algorithmic problems. In
contrast, for most of the millions of units to be developed in large software systems a formal specification
of the problem to be solved by the unit would be essentially identical to the code to be developed. In
other words, a proposal for the code of a unit, in the case of “easy” problems, is a way for describing the
problem to be solved. This is the reason why rapid prototyping and agile software development, in such
situations, is so useful. It is also the reason why formal algorithm verification methods are rarely used in
the practice of developing large software systems.

Example. In a calendar software system, probably, we want one unit that should check whether a
proposed new calendar entry collides with one of the existing entries. Let us assume that a calendar
entry is characterized by its start time and end time. The input to the unit will then consist of four time
moments s1,e1,s2,e2 for the start time and the end time of the first and the second entry, respectively,
with input condition s1 < e1 and s2 < e2. “After some thinking”, the problem will then be described by
most developers by a sentence like this: “The two calendar entries characterized by s1,e1,s2,e2 collide
iff s2 ≤ s1 ≤ e2 or s1 ≤ s2 ≤ e1.” Now it is clear that this “specification” of the problem is, basically,
already the solution algorithm. Only some transformation into the syntax of the programming language
used is necessary. No powerful algorithm verification method or algorithm synthesis method is necessary
in such a case.

As simple as the example is, it is not too simple to guarantee the avoidance of severe flaws in the
development. I tested the example out by presenting it to various (reasonably experienced) developers.
Amazingly, a few came up with the following specification / code: “The two calendar entries charac-
terized by s1,e1,s2,e2 collide iff either s2 ≤ s1 ≤ e2 or s2 ≤ e1 ≤ e2.” This specification is “incorrect”
because it does not include the case s1 < s2 < e2 < e1, which of course “everybody” would also consider
as a collision, even a “particularly heavy one”. (I put “incorrect” in quotation marks because, at the very
first stage of uttering a request, the “customer is always right”. Maybe, he really wants what he tells!
Either one just implements what he tells or one may consider the subsequent discussion as a way to find
out what he “really wants” or to change his mind about what he wants.) This shows that already in the
“thinking” between a vague indication of a problem and its specification (by a general statement, not
only by examples), severe mistakes may be made (or, considered differently, the request of the customer
may undergo serious changes). In our example, we also could start a little “earlier” and just say: “The
two calendar entries characterized by s1,e1,s2,e2 collide iff the time interval [s1,e1] intersects with the
time interval [s2,e2].” Now we could question the notion “intersects” and might agree on the following:
“The two calendar entries characterized by s1,e1,s2,e2 collide iff there is a time moment x such that

B. Buchberger 7

s1 ≤ x ≤ e1 and s2 ≤ x ≤ e2.” In this form, we can send the condition into a quantifier elimination algo-
rithm and we will get an answer which will be equivalent to “s2 ≤ s1 ≤ e2 or s1 ≤ s2 ≤ e1.” (Please try
it out, it is worthwhile!) Hence, this simple example shows that, actually, already in the very early stage
of discussing and clarifying even seemingly simple requirements a lot of systematic/formal thinking is
involved, which in principle should be amenable to automating and, hence, symbolic computation!

Thus, we start at the very early stage of having a vague desire of achieving something by software
and go through all the stages of developing a piece of software that fulfills the desire and, further, through
all the stages of maintaining, updating, improving, and integrating pieces of software to fulfill more and
more sophisticated desires. Through all these stages, we ask ourselves how much of this process can
be (semi-)automated. This gives a rich list of R&D topics, which make up the important topics in the
scope of “symbolic computation in software science” as described in the calls for the SCSS series, see
the latest version in the call for SCSS 2021. This call contains, roughly, 20 important and quite diverse
but strongly interconnected topics on the way from requirements to software.

I do not list these topics and comment on all these topics here. Rather, let me give some personal
remarks that emphasize, and maybe expand, some of the subjects, themes, and objectives of the topics in
the SCSS calls.

• My feeling is that relatively little research is available on (semi-)automating the development of
large software systems consisting of tons of simple “units” of the type we have seen above in
the example. Research has focused more on symbolic methods for algorithm verification and
synthesis for non-trivial algorithms. In some way, this is unfortunate because the construction of
tons of software is necessary today, semi-automation of this process is needed and could be a big
business. Our research results are too much oriented on automating the invention of “important”,
“difficult” algorithms. However, the (semi-) automation of the development of huge amounts of
simple programs and their interaction, in some way, is quite challenging, much needed, and asks
for formal methods to guarantee the quality of the process.

• As a variant of developing big software systems consisting of many simple units we also should
consider the task of re-engineering big software systems that were written years ago in program-
ming languages that are antiquated now. Often, the documentation of such systems is lost or
fragmentary, and finding out what the units should do, i.e. getting a problem specification from
code, is a major task.

• In most cases, software development starts from vague requirements in natural language (maybe
with diagrams or drawings). The task is to come up, maybe in an interactive dialogue, with a bunch
of formal requirements. Here, we should allow natural language or, maybe, a simplified version
of natural language as a symbolic language: The sentences that formulate requirements are “fini-
tary” with infinite semantics since, normally, requirements have hidden universal quantifiers in it.
(See the simple example above: The requirement is formulated for arbitrary calendar entries. In
our first step towards formalization, the hidden universal quantifier goes over s1,e1,s2,e2.) We
also should allow diagrams or drawings as symbolic objects: They are surely “finitary” and, usu-
ally, have infinite semantics, since a drawing normally tries to convey the important features of
infinitely many possible individual situations. Specifying requirements by natural language text
or drawings is very different from the specification of requirements by finitely many input/output
pairs, see the analysis of “machine learning” in the next section. Allowing natural language or
drawings in requirements is of course a big challenge but I think we should take this deliberately
under the umbrella of SCSS because it will need much more than just ordinary NLP (natural lan-
guage processing) and graphics. Rather, a systematic connection to logic is necessary. (In fact,

8 Symbolic Computation in Software Science: My Personal View

in dynamic geometry systems a lot of work in this direction is already done when graphical input
explaining geometrical situations “in general positions” is allowed.)

• As we have seen in the simple example above, we also would like to go a step further and go
from requirements in natural language and/or drawings right away to algorithms/programs that
satisfy the requirements. As we have argued in the example, in the majority of “units” in appli-
cation software systems this will not be significantly more difficult than coming up with formal
requirements.

• The individual algorithms/programs in software systems do not live in empty air but inside a whole
hierarchy of data structures and domains which, depending on the context, are called (algorithmic)
“models” of reality. Such models consist of problem specifications, definitions of notions, knowl-
edge, algorithms, and - in the ideal case - arguments/proofs why the operations/algorithms in the
system meet their specifications. Hence, seen in this way, software systems can also be considered
mathematical knowledge systems. Hence, (semi-)automation of building and maintaining such
systems can also be seen under the umbrella of Mathematical Knowledge Management (MKM).
We introduced this term a couple of years ago in a slightly different context, see the preface of the
proceedings [4], which were expanded as the special issue [5]. We propose that SCSS and MKM
should be considered together and, maybe, SCSS and MKM should be collocated in the future.

• In practice, the correctness of software is established by testing rather than by formal verification.
Testing is a highly developed “technology” in software engineering: There is an arsenal of “au-
tomated software testing” systems available. They are well integrated into the various software
development environments and they are quite helpful for managing large test suites for the consec-
utive versions of software systems. However, I think that much more could be done by applying
formal methods for coming up with complete systems of test data from a given problem specifi-
cation and program. Here, completeness means that we would get one test input/output for each
equivalence class of inputs that generate the same program path during execution. Of course, in
general, the set of these equivalence classes is not finite. However, in the practical case of large
software systems consisting of a huge number of relatively simple units, the set of equivalence
may well be finite, see the example above. As can be seen in the example, generating a complete
system of equivalence classes for inputs might be essentially the same task as coming up with the
code for the program. In fact, this automated generation of equivalence classes should start from
the problem specification and not from a program code - as most of the commercial “white box”
test generation programs do.

How Does Artificial Intelligence Fit into the Picture?

Undoubtedly, in the past two decades, artificial intelligence has gained enormous attention. This is due
to the fact that, by the drastically increased computational power of current computer systems and the
availability of huge databases of “labeled” data, a couple of difficult and urgent problems have received
impressive solutions by artificial intelligence methods, as for example machine translation of natural
languages.

Amazingly, there is still a lot of mystery, nebulosity, and misunderstanding around what artificial
intelligence (AI) actually is and why it is / may be / is believed to be essentially different from all com-
putational approaches so far. This nebulosity is all over the place: in politics, in the media, even in
science, and, of course, with the man on the street. At times, I have the impression that even quite some

B. Buchberger 9

researchers in the AI area do not have a very clear picture of the distinctive characteristics of AI when
compared with other computational approaches. Also, labeling a project with AI, may have a beneficial
effect when it comes to funding, societal respect, political influence etc. Thus, it is tempting to keep the
notion ambiguous. What amazes me, even more, is that the nebulosity about the essence of AI did not
disappear since the field started in the middle of the fifties. I remember talks of AI evangelists around
1980, i.e. in the “first wave of AI research”, who believed and spread that “AI can solve hard problems
that cannot be solved by mathematics”. And still, when I participate in political discussions about the im-
portance of mathematical education (in the sense of training mathematical thinking), I hear the argument
that, actually, the ability to do mathematics will be less and less important because “tedious” mathemati-
cal thinking, in the presence of “artificial intelligences” (plural!), will not be necessary anymore and that
we should teach the youngsters more “creative” things than mathematics.

Now all such statements may be true or false according to which notion of artificial intelligence one
has in mind. For clarifying this notion, I want to distinguish three possible characterizations of AI:

Hard Problems: Artificial Intelligence may be described as the field that tries to solve problems that, at a
certain historic moment, are considered to be “hard” in the sense that they apparently need a decent
amount of (human) “intelligence” to solve them. For example, playing chess or finding symbolic
integrals, at some historic moment, were considered as needing human intelligence. Algorithms
(invented by humans!) that finally were able to solve these problems were then (and still are)
considered to be the result of “AI research”.

Now, in my opinion, this definition of the notion of AI is quite shallow. It is the natural flow of
science and technology that we can solve harder and harder problems automatically, i.e. by algorithms.
However, from some point on, people think that now “algorithms are taking over”, “artificial intelligence
is replacing humans” etc. forgetting that this happened and happens already since centuries and that this
is the very goal of science and technology. And, of course, whatever the methods behind automation were
and are, we humans should stay in control and decide how far we let problems be solved and decisions
be taken by algorithms. Anyway, the notion of a “hard” problem is relative and “hard” problems for
which an algorithmic solution was finally found very soon are considered to be “easy” by the consumer.
For example, car drivers nowadays take the functionality of a navigation system for granted. Some thirty
years ago, the current functionality of navigation systems would have been considered unbelievably
intelligent. In fact, the stack of scientific findings and algorithmic techniques involved in a navigation
system for guiding a driver from A to B is quite deep.

In my opinion, one should not use the notion of “artificial intelligence” for “finding algorithms for
hard problems” but rather continue to call this just “mathematical, algorithmic solution of hard prob-
lems”. Attaching the label “AI” to algorithms depending on whether they solve hard or easy problems is
more a question of marketing rather than a logically sound distinction.

Simulate the Brain: A completely different view (and branch) of artificial intelligence is artificial intelli-
gence as the science of understanding and simulating biological structures that show “intelligence”,
notably the human brain. This type of AI research, historically, was one of the origins of the field
of AI that started, maybe, 1943 with the investigations of W. McCulloch and W. Pitts who intro-
duced a simple mathematical model of the functionality of a neuron. Of course, understanding
and simulating the most complex biological systems, which are commonly considered to display
“intelligence”, is a highly fascinating and relevant undertaking. Well, why not call this type of
research “artificial intelligence” in the same way as a technical realization of the phenomenon of
flying could be called “artificial flying”.

10 Symbolic Computation in Software Science: My Personal View

“Artificial intelligence” in the sense of brain simulation has little overlap with symbolic computation
in software science except that, of course, there may be applications of symbolic computation in devel-
oping models of the brain. Also, studying biological structures (like the brain, like swarms of animals,
or like the evolution of life on earth) motivated some of the algorithmic methods that today are called
“AI methods”, see next paragraphs.

“Intelligent” Methods: The third approach of characterizing artificial intelligence is by specifying cer-
tain algorithmic methods as “intelligent”. These algorithms would constitute the area of “artificial
intelligence”. I hope I do not overlook something important but my impression is that, essentially,
“machine learning” is the only such method or, better, class of methods that has not already been
around before the term “artificial intelligence” was coined. The many other algorithmic methods
that are often labeled as “AI methods”, like automated reasoning, semantic networks, graph search,
expert systems, regression, etc., in my view, are algorithmic methods that are not specific to AI.
They are, so to say, usual algorithmic methods and were applied also to problems that, for some
reason, got the label “AI”, see the remarks about hard problems above.

In my view, machine learning methods cannot actually be specified by the way how they work but,
rather, by the way the problems these methods should solve are specified. As we have seen in the
previous section, the fundamental part of algorithm and software development is the transition from
a given problem specification P to an algorithm (program, system) A that solves the problem for any
admissible input. As long as the steps for going from a problem specification to a solution algorithm are
done by a human this is just the “usual” business of mathematics/informatics. If finding these steps is
(partially) supported by algorithms (invented by humans) this is what we can call “symbolic computation
in software science”. How and when does “machine learning” come in and why, if at all, is this different
from “usual” mathematics and “usual” (maybe quite sophisticated) symbolic computation in software
science?

The point is that, in many situations, when we want to specify a problem, we do not have a specifica-
tion “in general terms” available. For example, let’s consider the seemingly simple problem of deciding
whether a given English sentence contains information of the type “somebody cooperates with some-
body else”. An algorithm for this problem should produce the answer “NO” in case no such information
is in the input sentence and should produce “YES” and the two “somebodies” if such information is in
the sentence. Now, of course, before trying to invent such an algorithm, we will ask: What exactly do
you mean by “cooperate”? Among the English speaking community, under the natural assumption of
a long experience of using English in thousands of different situations, it would be natural the start to
explain “cooperate” in terms of a couple of other notions like “working together”, “having a common
goal”, . . . Oh, “having a common goal” may not always be sufficient for speaking about “cooperation”.
One may have a common goal but fight against each other. Thus, “supporting each other” etc. should
be added. Some more subtle details should be explained, some other things excluded etc. A long list of
sentences explaining the meaning of “cooperate” would be necessary. Then one could, in the attempt of
finding an algorithm for this little problem, try to put these numerous explanations into algorithmic rules
(assuming that we already have access to a powerful grammar parsing algorithm for all of English). As
a result, we would hope that this rule system would be able to do the job. For example, if we now would
input “Peter and Ann found a way to help each other for passing the exam”, the algorithm should answer
“YES”, “Peter”, “Ann”. If we would input “Peter and Ann passed the exam on the same day”, it should
answer “NO”. Should it really answer “NO”? Shouldn’t it rather answer “DON’T KNOW” or “COULD

BE” or “COULD BE BUT NOT EXPLICITLY MENTIONED”.
I now want to explain what, in my view, is the essence of the machine learning approach. For this,

B. Buchberger 11

we need not at all bother about what “learning” is. I just consider those methods that, over the years,
have been named “machine learning” methods. The common feature of these methods is not how they
proceed but the type of specification of the problems to which they are applied: Namely, they all are
applied to problems of the kind above where a spelled-out complete specification is not possible or, at
least, not feasible. Now, the fundamental idea of machine learning for solving such problems is:

• Instead of spending time trying to specify the problem by a huge number of general definitions,
cases, rules, etc., one spends the time giving a huge number of examples of input instances together
with the answers. (In this paper, we consider only “supervised learning”.) In this context, the
answers are called “labels”.

• One sets up an algorithm from a certain class of relatively simply structured algorithms (like the
class of neural networks, the class of hyperplanes in a high-dimensional space, the class of nested
if-then-else expressions, etc.) with some constants c1, . . . ,cn (for example the weights at the inputs
of neurons in neural networks) in the algorithm left unspecified. For each choice of numerical
values for the c1, . . . ,cn, the algorithm would produce an answer for each admissible input for the
problem.

• One uses techniques of mathematical optimization (or other, experimental techniques, for example
techniques that mimic biological evolution) to change the initial values for c1, . . . ,cn iteratively
until the answer of the algorithm to more and more inputs from the set of labeled data would give
the answer specified by the label. In the jargon of machine learning, this iteration is called “training
a model”.

• One stops the iteration on the c1, . . . ,cn when sufficiently many answers are identical to the labels.
Practically, at the beginning of the whole operation, one partitions the set of labeled input into a
“training set” that is used for the iterations and a “test set” on which the algorithm with the current
values for the c1, . . . ,cn - which in the jargon of machine learning is called the “trained model” - is
tested.

The impressive success of this approach in the past two decades hinges on three ingredients:

• a huge amount of mathematical research on good and, partly provably convergent, techniques
for improving the algorithm parameters c1, . . . ,cn; such research was partly already available in
the first phase of AI between 1960 and 1980, but it did not convince because of the next two
ingredients were not available,

• huge corpora of labeled data; for example, in the spectacular application of machine translation, a
huge amount of “labeled data” is now available in the form of files that contain an original book
and its translation - by humans - to some other language,

• high-performance computing; the number of iterations of the machine learning steps for determin-
ing suitable c1, . . . ,cn and the computational effort in each step is huge and is only manageable by
computers in recent years.

In principle, the approach is not radically new. Examples of historical “learning from examples”
problems are: Given points in the plane, find the coefficients c1, . . . ,cn of a polynomial that goes through
the given points (the interpolation problem). Given a function with some properties on differentiability,
an interval, and a distance, find the coefficients c1, . . . ,cn of a polynomial that is closer to the function
than the given distance everywhere on the interval (approximation problem). Given points in the plane,
find the coefficients of a straight line such that the distance to all points is minimal (regression problem).

12 Symbolic Computation in Software Science: My Personal View

Given a function with certain differentiability properties, find the coefficients c1, . . . ,cn of a finite Fourier
approximates of the function. Etc.

Artificial Intelligence in the form of machine learning falls neatly into the “automatic programming”
view: It is the method of choice in cases where the problem is not specified by general (formal or natural
language) statements but, rather, is specified only by a (huge) number of examples of admissible input
and desired output. In the case of general specifications of problems, the transition from the problem to
a solving algorithm, in principle, is a reasoning process that is executed by humans or, in the symbolic
computation approach advocated in this paper, is a reasoning process (partly) executed by symbolic
computation methods. In the case of problems that are specified only by examples, this process can still
be automated by the machine learning approach.

From the simple summary of the machine learning approach I gave above, one important deficiency
of the machine learning approach should be clear: The algorithm which we get for a given problem just
does the job of delivering (in sufficiently many cases) desired answers. However, in general, no reason
can be given why, for example, the particular neural network that translates one natural language to the
other mimics certain fundamental insights about the environment both languages share as their semantics.
This is, in fact, similar to the situation in the historical predecessors of “learning from examples”: The
Fourier analysis just does the job of finding an optimal Fourier sum. In the example, where the function
to be represented is the frequency spectrum of a musical tone, the representation by a finite Fourier
sum has a reasonable “explanatory” power: The tone is composed of tones and overtones that occur in
the physical “music” world (for example, when picking the strings of a guitar). However, if a Fourier
representation of some arbitrary other function is executed, there will be some outcome but there may not
be any reasonable interpretation of what this representation means in the reality from which the function
is taken.

The problem of weak explanatory power in the models (algorithms) created in machine learning is
well known. Lots of research was recently started to extract “meaning” from such models. This research
area is called “explainable AI”.

In the frame of the analysis of this paper, I summarize: The machine learning approach can be well
subsumed under the general target of (semi-)automating the process of software development (“auto-
matic programming”). It can be viewed as a numerical, rather than a symbolic, approach to automatic
programming. Thus, it is probably a very good idea to integrate machine learning into the scope of the
SCSS series because, of course, the interaction of symbolic and numerical computation as the two pos-
sible approaches to compute on finitary representations of abstract mathematical domains is of utmost
importance. The integration of machine learning into the scope of SCSS can generate a stream of new
ideas in both directions: Applying symbolic methods to mathematical sub-problems of machine learning
(e.g. the determination of weights in neural networks) and applying machine learning to symbolic al-
gorithms (e.g. “learning” a priori complexity estimates for computation-intensive methods like Gröbner
bases etc.).

However, there is no reason to establish a flavor of “intelligence beyond mathematics” when speaking
about machine learning: I hope I have been able to show the machine learning is just another mathemat-
ical method. As in the past, of course, we can hope and expect also for the future that more and more
powerful algorithmic problem-solving methods will be invented.

Personally, when speaking to people who do not (want to) understand the timeless, universal, al-
ways new, creative power of mathematics, I like to use the term algorithmic intelligence for what we are
doing: Algorithmic intelligence is the human intelligence that produces algorithms for more and more
challenging problems in all areas of human activity. By an algorithm, an infinite class of individual
problem instances can then be treated by a completely unintelligent machine. People who do not really

B. Buchberger 13

understand what is going on may believe that these machines display “intelligence”. The algorithmic
intelligence - by reflection, i.e. jumps to higher and higher meta-levels - also provides more and more so-
phisticated algorithms for producing algorithms. The incompleteness theorem of Kurt Gödel (1931), in
a somewhat liberal interpretation, shows that this tour through higher and higher levels of algorithmiza-
tion has no upper bound. In comparison to “artificial intelligence”, the term “algorithmic intelligence”
is used quite rarely, which can be verified by Googling. However, my impression is that “algorithmic
intelligence” appears in more serious discussions about the essence of AI. Therefore, I like to expand the
abbreviation “AI” as “algorithmic intelligence”.

Implicitly, I expressed this view already in the early days of AI, see [1]. At the “Spring School of AI”
in Teisendorf, 1982, I contributed a long article summarizing the most important “symbolic” methods
for automating the algorithm/software development process that were known at that time. And we had
long, intensive, and quite controversial discussions at this conference on the question of whether AI is
something that goes beyond mathematics. As you may guess, my answer then was “no” with essentially
the arguments which I expanded above. In my hectic years of research on methods for “algorithmic
intelligence” and research management, I never found the time and occasion to spell out these arguments
in a paper. Thus, I am grateful that I am given the opportunity here.

References
[1] Bruno Buchberger (1982): Computer-unterstützter Algorithmenentwurf (Computer-Aided Algorithm De-

sign). In Wolfgang Bibel & Jörg H. Siekmann, editors: Proceedings of the Frühjahrsschule Künstliche
Intelligenz (Spring School in Artificial Intelligence), Teisendorf, Germany, 15.-24. März 1982, Informatik-
Fachberichte 59, Springer, pp. 141–201, doi:10.1007/978-3-642-68828-7_4.

[2] Bruno Buchberger (1985): Symbolic Computation (An Editorial). Journal of Symbolic Computation 1(1), pp.
1–6, doi:10.1016/S0747-7171(85)80025-0.

[3] Bruno Buchberger (2013): Mathematics of the 21st Century: A Personal View. In Laura Kovács & Temur
Kutsia, editors: Proceedings of the Fifth International Symposium on Symbolic Computation in Software
Science (SCSS 2013), RISC Report Series 13-06, Johannes Kepler University, Linz/Hagenberg, Austria, p. 1.
Available at https://www.risc.jku.at/publications/download/risc_4737/TR_13_06_SCSS2013.
pdf. (See also the link to the slides of this talk on the website of SCSS 2013 at https://www.risc.jku.
at/conferences/scss2013/program.html.).

[4] Bruno Buchberger & Olga Caprotti, editors (2001): Electronic Proceedings of the First Interna-
tional Workshop on Mathematical Knowledge Management (MKM 2001). RISC, Johannes Kepler Uni-
versity, Linz/Hagenberg, Austria. Available at https://www.risc.jku.at/conferences/MKM2001/

Proceedings/.
[5] Bruno Buchberger, Gaston H. Gonnet & Michiel Hazewinkel (2003): Mathematical Knowledge Management.

Special issue of the Annals of Mathematics and Artificial Intelligence 38(1-3), pp. 1–2, doi:10.1023/A:
1022900528196.

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 14–21, doi:10.4204/EPTCS.342.2

© Luis Berlioz
This work is licensed under the
Creative Commons Attribution License.

ArGoT: A Glossary of Terms extracted from the arXiv

Luis Berlioz
University of Pittsburgh

Pennsylvania, USA
lab232@pitt.edu

We introduce ArGoT, a data set of mathematical terms extracted from the articles hosted on the arXiv
website. A term is any mathematical concept defined in an article. Using labels in the article’s source
code and examples from other popular math websites, we mine all the terms in the arXiv data and
compile a comprehensive vocabulary of mathematical terms. Each term can be then organized in a
dependency graph by using the term’s definitions and the arXiv’s metadata. Using both hyperbolic
and standard word embeddings, we demonstrate how this structure is reflected in the text’s vector
representation and how they capture relations of entailment in mathematical concepts. This data
set is part of an ongoing effort to align natural mathematical text with existing Interactive Theorem
Prover Libraries (ITPs) of formally verified statements.

1 Introduction and Motivation

Mathematical writing usually adheres to strict conventions of rigor and consistent usage of terminology.
New concepts are usually introduced in characteristically worded definitions (with patterns like if and
only if or we say a group is abelian...). This feature can be used to train language models to detect
if a term is defined in a text. Using this, we have created ArGoT (arXiv Glossary of Terms), a silver
standard data set of terms defined in the Mathematical articles of the arXiv website. We showcase several
interesting applications of this data. The data set includes the articles and paragraph number in which
each term appears. By using article metadata, we show that this can be an effective way of assigning
an arXiv mathematical category1 to each term. Another application is to join the terms with more than
one word into a single token. These phrases usually represent important mathematical concepts with a
specific meaning. We show how standard word embedding models like word2vec [13] and GloVe [16]
capture this by embedding phrases instead of individual words. Even more, the word-vector can be used
to predict which mathematical field the term belongs to, and hypernimity relations.

All these properties makes ArGoT a data set that will be of interest to the broader NLP research com-
munity by providing abundant examples for automated reasoning and NLU systems. Our main objective
is to organize a comprehensive dependency graph of mathematical concepts that can be aligned with ex-
isting libraries of formalized mathematics like mathlib.2 The data is downloadable from https://
sigmathling.kwarc.info/resources/argot-dataset-2021/ and the all the code that
went into producing it is in: https://github.com/lab156/arxivDownload

This data set was created as part of the Formal Abstracts project. Our group has benefited from a
grant from the Sloan Foundation (G-2018-10067) and from the computing resources startup allocation
#TG-DMS190028 and #TG-DMS200030 on the Bridges-2 supercomputer at the Pittsburgh Supercom-
puting Center (PSC).

1arXiv’s categories within mathematics: https://arxiv.org/archive/math
2https://github.com/leanprover-community/mathlib

Luis Berlioz 15

Term Count
lie algebra 20524
hilbert space 16881
function 14920
banach space 14461
metric space 12882
inline math -module 12731

topological space 12518
disjoint union 11436
vector space 11337
simplicial complex 10943

Table 1: Most common multiword entries in
the data base.

Classification Task
Method Precision Recall F1
SGD-SVM 0.88 0.87 0.87
Conv1D 0.92 0.92 0.92
BiLSTM 0.93 0.93 0.93

NER Task
ChunkParse 0.32 0.68 0.43
LSTM-CRF 0.69 0.65 0.67

Table 2: Training metrics on the classification
and NER tasks.

2 Description of the Term-Definition Extraction Method

In [2, 9], the authors describe the method used to obtain the training data for a text classification model
that identifies definitions and the Named Entity Recognition (NER) model that identifies the term being
defined.

The classification task consists of training a binary classifier to determine whether a paragraph is
a definition or not. We use the \begin{definition}...\end{definition} in the article’s
LATEX source to identify true examples. To gather non-definitions, we randomly sample paragraphs out
of the same articles. The source of the training data is the LATEX source code of the articles available
from the arXiv website. A total of 1,552,268 paragraphs labeled as definitions or non-definitions were
produced for training. It was split as follows: 80% training 10% testing and 10% validation. This data
was used to train three different and common classification models:

• The Stochastic Gradient Descent with Support Vector Machines (SGD-SVM).

• The one-dimensional convolutions (Conv1D) neural network.

• And Bidirectional LSTM (BiLSTM).

For the first method, we used the implementation distributed with scikit-learn library [15]. The last two
were implemented in Tensorflow. Table 2 shows the most common metrics of performance for each
method.

The definitions are then fed into a NER model to identify the term being defined in them. The
data used to train the NER model comes from the Wikipedia English dump3 and several mathematical
websites like PlanetMath4 and The Stacks Project.5

We tested two different implementations of the NER system, the first is the ChunkParse algorithm
available from the NLTK library [3]. The second is a time-distributed LSTM (LSTM-CRF) [11]. Both
architectures use a similar set of features that in addition to the words that form the text, detect if the
word is capitalized, its part-of-speech (POS) and parses punctuation e.g. to tell if a period is part of an
abbreviation or an end of line. To compare the two implementations, we used the ChunkScore method
in the NLTK library [3]. The results appear in Table 2.

3https://dumps.wikimedia.org/
4https://planetmath.org/
5https://stacks.math.columbia.edu/

16 ArGoT: A Glossary Terms extracted from the arXiv

0

2

4

6

8

10

×106

1

To
ta

la
pp

ea
ra

nc
es

NN - SGD
NN ∩ SGD
SGD - NN

442,391
(32%)

347,505
(25%)

595,501
(43%)

Figure 1: Comparison of the two glossaries. The bar graph on top counts the total appearances of a term
in both the NN and SGD glossaries. The bottom compares the relative sizes of the NN-only, intersection,
and SGD-only distinct terms.

We have compiled two different and independent glossaries by running the algorithm through all of
the arXiv’s mathematical content. The first one is based on neural networks (NN), it uses LSTM for
both the classification and NER tasks. In contrast, the second one combines the SGD and ChunkParser
method to provide a completely independent approach to the previous model.

It is interesting to compare the results obtained using the two models. For the classification task, we
have observed Cohen’s kappa (κ) inter-rater agreement of 93% between the results produced by the two
methods. This corresponds to a high degree of agreement between the two classifiers [4].

As for the final results, Figure 1 compares the two glossaries by counting the number of times a term
appears in either glossary, and the number of distinct terms. The results point to a high consistency of
the two systems on a relatively small set of 350,000 terms.

Table 1 lists some of the most frequently found terms in the data set.

2.1 Format and Design of the Data Set

The ArGoT data set is distributed in the form of compressed XML files that follow the same naming
convention the arXiv’s bulk download distribution.6 For instance, Table 3 shows a sample entry in the
fifth file corresponding to July, 2014. The definition’s statement and terms (definiendum) are specified
in the stmnt and dfndum tags respectively and the paragraph index is specified as an attribute of the
definition tag.

6arXiv Bulk Data Access: https://arxiv.org/help/bulk_data

Luis Berlioz 17

<article name="1407_005/1407.2218/1407.2218.xml" num="89">
<definition index="51">

<stmnt> Assume _inline_math_. We define the following space-time
norm if _inline_math_ is a time interval _display_math_ </stmnt>
<dfndum>space-time norm</dfndum>

</definition>
</article>

Table 3: Example of an entry in the term’s data set. The statement of the definition is contained in
the <stmnt> tag. The terms (definiendum) are listed as <dfndum> tags. Each entry contains all the
information to recover, article’s name and paragraph’s position.

Category: Count
math.FA 5922
math.AP 2045
math.PR 1022
math.DS 833
math.OA 595
math.CA 535
math.DG 483
math-ph 466
math.OC 398
math.CV 304
math.NA 275
math.GR 226
math.MG 173
math.LO 168
math.SP 163
math.NT 131

Category: Count
math.GN 108
math.RT 85
math.SG 77
math.GT 76
math.CO 61
math.ST 61
math.KT 50
math.GM 48
math.AG 35
math.RA 33
math.HO 32
math.CT 23
math.AT 15
math.QA 10
math.AC 8

Table 4: Category profile for the term:
Banach Space. The codes are part of the
metadata for each arXiv article.

Figure 2: Comparison between the term’s category dis-
tribution and baseline distribution. Only categories with
the highest values for the term are shown.

3 Augmenting Terms with arXiv’s Metadata

Each mathematical article in the arXiv is classified in one or more categories by the author at the time of
submission. Categories include math.FA and math.PRwhich stand for Functional Analysis and Prob-
ability respectively. The full list is available at https://arxiv.org/archive/math. This is part
of the arXiv’s metadata and also records information like the list of authors, math subject classification
(MSC) codes, date of submission, etc.

By counting the categories in which a certain term is used, we get an idea of the subjects that it
belongs to. In Table 4, we see the category profile of a very common term. Since the number of articles
in each category varies significantly, we also take into account the baseline distribution, that is, the ratio
of articles in each category to the total number of articles. Hence, it is possible to give an empirical
score of a term’s pertinence to a certain category by comparing its category profile with the baseline
distribution. In order to measure how much of an outlier a term is to the baseline distribution, we use the
KL-divergence:

DKL(P‖Q) = ∑
x∈X

P(x) log(P(x)/Q(x)),

18 ArGoT: A Glossary Terms extracted from the arXiv

Figure 3: t-SNE visualization of the word vectors of selected terms in the data set. The terms are selected
to be specific to the four categories in the picture. Points with a label are selected at random.

where P and Q are the probability distributions of the term and the baseline respectively. And, X is the
set of all the categories.

The next step is to generate word embeddings. To prepare for this, we modify the text by joining
multiword terms in ArGoT to produce individuals tokens. After normalizing the text, i.e. converting to
lowercase and removing punctuation and special characters; the result is a large amount of text that is
ready to be consumed by either the word2vec or GloVe algorithms. In Figure 3, we observe a t-SNE
(t-distributed stochastic neighbor embedding) visualization of a word2vec model produced this way. In
this image, each term is assigned its most frequent category. Notice that even though the ArGoT data set
has no access to the arXiv categories, the vectors in the same category cluster together. We consider this
as a strong indication of alignment between clusters and categories.

4 Using Hyperbolic Word Embeddings to Extract Hypernymy Relations

It is natural to want to organize mathematical concepts into taxonomies of various sorts. For instance,
the SMGloM project [8] introduced a rich standard for mathematical ontologies. Another approach aims

Luis Berlioz 19

to create a semantic hierarchy of concepts such that for a given term we can enumerate all its hypernyms
[18].

This can be achieved by counting the co-occurrence [10] of terms in definitions. This approach has
certain drawbacks, for instance, it relies on co-occurrence examples for each pair of terms, this ends up
producing an abundance of disconnected (i.e. not co-occurring) terms [1].

Another possibility, involves the use of hyperbolic word embeddings, in this setting the hypernimity
relation becomes a geometric vector in hyperbolic space. This implies that every two terms in the em-
bedding can be compared by using the hyperbolic metric. This type of word embeddings is known to
outperform euclidean models in the representation of hierarchical structures [14].

We used PoincareGlove [17] to create hyperbolic word embeddings. This algorithm modifies the
GloVe euclidean objective function to use a hyperbolic metric instead. In addition to the same text input
as word2vec and GloVe, this model requires a small set of examples in order to interpret the embedding.
For general purpose English text, WordNet [6] is the standard choice. In WordNet, every entry is assigned
an integer level in a hypernymy hierarchy (this is the max_depth attribute of the NLTK’s WordNet
API).7

To generate something analogous to WordNet levels for mathematical content, we opted for the Plan-
etMath data set. This is due to its relatively small size, broad coverage of mathematical knowledge and
independence of the arXiv data. Given two term-definition pairs (t1,D1) and (t2,D2), we say that term t2
depends on the term t1 if D2 contains t1. For small sets of term-definition pairs with no interdependence,
this simple criterion is enough to create a directed graph (V,E) where V is the set of all the terms and E
is the set of all the dependency relations. To assign a level λ (v) to every vertex v∈V , solve the following
integer linear program:

min ∑
(v,w)∈E

λ (w)−λ (v), such that λ (w)−λ (v)≥ 1 ∀(v,w) ∈ E.

This linear model appears in [7] as a subtask of a directed graph drawing algorithm. There, it is used
to estimate the ideal number of levels to draw a directed graph.

Table 5 shows the nearest neighbors of four different terms. The neighbors are found using the
Euclidean distance. The terms are sorted in order of the average value of their y-coordinates (which
in the upper-half plane model represents the variance of the underlying Gaussian distribution). This is
referred to as the IS-A rating.

5 Conclusions and Further Work

We introduced ArGoT, an comprehensive glossary of mathematics automatically collected from the
mathematical content on the arXiv website. Essentially, it is set of term-definition pairs, where each pair
can be contextualized in a large semantic network of mathematical knowledge, i.e., dependency graph.
We also showed how this network is reflected in the latent space of its vector embeddings. This has great
potential for use in experimentation of natural language algorithms, by providing a source of logically
consistent data.

This project is an ongoing effort to align mathematical concepts in natural language with online
repositories of formalized mathematics like mathlib.8 As described in [12], this type of alignment is
called automatically found aligment.

7https://www.nltk.org/howto/wordnet.html
8https://github.com/leanprover-community/mathlib

20 ArGoT: A Glossary Terms extracted from the arXiv

Term IS-A Term IS-A
hyperbolic metric -1.11
euclidean metric -0.59 digraph -0.51
metrics -0.58 undirected graph -0.35
riemannian metric -0.46 undirected -0.20
riemannian -0.42 directed graph 0.0
riemannian manif -0.40 graph 1.24
curvature -0.27
metric 0.0
banach algebra -1.11 probability distr -0.24
normed space -0.98 random variable 0.0
banach spaces -0.38 expectation 0.23
banach -0.29 distribution 0.46
closed subspace -0.25 probability 0.67
banach space 0.0
norm 0.79

Table 5: Query results sorted by IS-A score (terms in upper lines tend to depend semantically on lower
lines). Cosine similar words were sorted by the IS-A rating of the term in bold font.

In the near future we plan to further improve on the classification and NER tasks by creating a data set
using solely the neural version of the classifier and NER model. Also, by using state-of-the-art methods
like the masked transformer language model [5] to further improve the results. We also plan to compile
the complete dependency graph in one large graph database.

References

[1] Rami Aly, Shantanu Acharya, Alexander Ossa, Arne Köhn, Chris Biemann & Alexander Panchenko (2019):
Every Child Should Have Parents: A Taxonomy Refinement Algorithm Based on Hyperbolic Term Embed-
dings. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Asso-
ciation for Computational Linguistics, Florence, Italy, pp. 4811–4817, doi:10.18653/v1/P19-1474.

[2] Luis Berlioz (2019): Creating a Database of Definitions From Large Mathematical Corpora. In Edwin C.
Brady, James H. Davenport, William M. Farmer, Cezary Kaliszyk, Andrea Kohlhase, Michael Kohlhase,
Dennis Müller, Karol Pak & Claudio Sacerdoti Coen, editors: Joint Proceedings of the FMM and LML
Workshops, Doctoral Program and Work in Progress at the Conference on Intelligent Computer Math-
ematics 2019 co-located with the 12th Conference on Intelligent Computer Mathematics (CICM 2019),
Prague, Czech Republic, July 8-12, 2019, CEUR Workshop Proceedings 2634, CEUR-WS.org. Available at
http://ceur-ws.org/Vol-2634/WiP2.pdf.

[3] Steven Bird, Ewan Klein & Edward Loper (2009): Natural Language Processing with Python. O’Reilly.
Available at http://www.oreilly.de/catalog/9780596516499/index.html.

[4] Jacob Cohen (1960): A Coefficient of Agreement for Nominal Scales. Educational and Psychological Mea-
surement 20(1), pp. 37–46, doi:10.1177/001316446002000104.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee & Kristina Toutanova (2019): BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Jill Burstein, Christy Doran & Thamar Solorio,
editors: Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), Association for Computational Linguistics, pp. 4171–4186,
doi:10.18653/v1/n19-1423.

Luis Berlioz 21

[6] Christiane Fellbaum (2010): WordNet. In: Theory and applications of ontology: computer applications,
Springer, pp. 231–243, doi:10.1093/ijl/17.2.161.

[7] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North & Kiem-Phong Vo (1993): A Technique for
Drawing Directed Graphs. IEEE Trans. Software Eng. 19(3), pp. 214–230, doi:10.1109/32.221135.

[8] Deyan Ginev, Mihnea Iancu, Constantin Jucovschi, Andrea Kohlhase, Michael Kohlhase, Akbar Oripov,
Jürgen Schefter, Wolfram Sperber, Olaf Teschke & Tom Wiesing (2016): The SMGloM Project and System:
Towards a Terminology and Ontology for Mathematics. In Gert-Martin Greuel, Thorsten Koch, Peter Paule
& Andrew J. Sommese, editors: Mathematical Software - ICMS 2016 - 5th International Conference, Berlin,
Germany, July 11-14, 2016, Proceedings, Lecture Notes in Computer Science 9725, Springer, pp. 451–457,
doi:10.1007/978-3-319-42432-3 58.

[9] Deyan Ginev & Bruce R. Miller (2019): Scientific Statement Classification over arXiv.org. CoRR
abs/1908.10993. Available at http://arxiv.org/abs/1908.10993.

[10] Marti A. Hearst (1992): Automatic Acquisition of Hyponyms from Large Text Corpora. In: COLING 1992
Volume 2: The 14th International Conference on Computational Linguistics, doi:10.3115/992133.992154.

[11] Zhiheng Huang, Wei Xu & Kai Yu (2015): Bidirectional LSTM-CRF Models for Sequence Tagging. CoRR
abs/1508.01991. Available at http://arxiv.org/abs/1508.01991.

[12] Cezary Kaliszyk, Michael Kohlhase, Dennis Müller & Florian Rabe (2016): A Standard for Aligning Mathe-
matical Concepts. In Andrea Kohlhase, Paul Libbrecht, Bruce R. Miller, Adam Naumowicz, Walther Neuper,
Pedro Quaresma, Frank Wm. Tompa & Martin Suda, editors: Joint Proceedings of the FM4M, MathUI, and
ThEdu Workshops, Doctoral Program, and Work in Progress at the Conference on Intelligent Computer
Mathematics 2016 co-located with the 9th Conference on Intelligent Computer Mathematics (CICM 2016),
Bialystok, Poland, July 25-29, 2016, CEUR Workshop Proceedings 1785, CEUR-WS.org, pp. 229–244.
Available at http://ceur-ws.org/Vol-1785/W24.pdf.

[13] Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado & Jeffrey Dean (2013): Distributed Representations
of Words and Phrases and their Compositionality. CoRR abs/1310.4546, doi:10.5555/2999792.2999959.

[14] Maximilian Nickel & Douwe Kiela (2017): Poincaré Embeddings for Learning Hierarchical Representa-
tions. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan & Roman Garnett, editors: Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pp. 6338–6347. Available at https://proceedings.neurips.cc/paper/2017/hash/
59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html.

[15] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot & Edouard Duchesnay (2011): Scikit-learn: Ma-
chine Learning in Python. J. Mach. Learn. Res. 12, pp. 2825–2830. Available at http://dl.acm.org/
citation.cfm?id=2078195.

[16] Jeffrey Pennington, Richard Socher & Christopher D. Manning (2014): Glove: Global Vectors for Word
Representation. In Alessandro Moschitti, Bo Pang & Walter Daelemans, editors: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, ACL, pp. 1532–1543,
doi:10.3115/v1/d14-1162.

[17] Alexandru Tifrea, Gary Bécigneul & Octavian-Eugen Ganea (2019): Poincare Glove: Hyperbolic Word
Embeddings. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, OpenReview.net. Available at https://openreview.net/forum?id=
Ske5r3AqK7.

[18] Chengyu Wang, Xiaofeng He & Aoying Zhou (2017): A Short Survey on Taxonomy Learning from Text
Corpora: Issues, Resources and Recent Advances. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, Association for Computational Linguistics, Copenhagen, Den-
mark, pp. 1190–1203, doi:10.18653/v1/D17-1123.

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 22–34, doi:10.4204/EPTCS.342.3

c© Yannick Chevalier and Michaël Rusinowitch
This work is licensed under the
Creative Commons Attribution License.

Implementing Security Protocol Monitors

Yannick Chevalier
Irit, Université Paul Sabatier

Toulouse
France

ychevali@irit.fr

Michaël Rusinowitch
Lorraine University, Cnrs, Inria

Nancy
France

michael.rusinowitch@loria.fr

Cryptographic protocols are often specified by narrations, i.e., finite sequences of message exchanges
that show the intended execution of the protocol. Another use of narrations is to describe attacks.
We propose in this paper to compile, when possible, attack describing narrations into a set of tests
that honest participants can perform to exclude these executions. These tests can be implemented in
monitors to protect existing implementations from rogue behaviour.

1 Introduction

Cryptographic protocols are designed to prescribe message exchanges between agents in a hostile envi-
ronment in order to guarantee some security properties. In particular security properties such as confi-
dentiality or authentication are violated when there exists an execution of the protocol in which they do
not hold. However it has often been found that under certain circumstances, and after its deployment,
a protocol failed to adequatly protect its participants. These circumstances usually involve one or more
sessions, and the participation of a dishonest agent hereafter called the intruder. When the attack is on a
specific implementation of a protocol, its mitigation usually amounts to fixing this implementation.

However, some attacks are related to the exchanges of messages prescribed by the protocol, and
not in the actual handling of these messages by participants. In that case, the only recourse is—when
available—to alter the sequence of acceptable messages. This can be implemented by changing the for-
mat of the messages exchanged or by stopping an execution once it has been detected that the attack may
be under way. We consider in this paper only the second approach, in which the participants behaviour
is altered in order to reject some possible executions of the protocol.

Let us consider for example the Needham-Schroder Public Key (NSPK) mutual authentication pro-
tocol [11] described by the following sequence of messages between roles A and B:

A knows A,B,KA,KB,K−1
A

B knows A,B,KA,KB,K−1
B

A → B : enc(A,NA,KB)
B → A : enc(NA,NB,KA)
A → B : enc(NB,KB)

The attack on this protocol discovered by Lowe [10] is described as follows, where I(A) denotes the

Yannick Chevalier and Michaël Rusinowitch 23

intruder impersonating the agent A:

A → I : enc(A,NA,KI)
I(A) → B : enc(A,NA,KB)
B → I(A) : enc(NA,NB,KA)

I → A : enc(NA,NB,KA)
A → I : enc(NB,KI)

I(A) → B : enc(NB,KB)

This execution is an attack because B believes he has participated in a session with A whereas A never
exchanged a message with B. As is the case in this attack narration, we assume from now on and without
loss of generality [8] that in an attack, every message is sent to or received from the intruder. A fix,
proposed in [10], consisting in altering the second message to include the name of the sender. The
only drawback to such fixes is that implementations of the amended protocol are not interoperable with
implementations of the original protocol. For widely deployed real-life protocols, interoperability must
be maintained and thus the amended version coexists with the original one for years, leaving open an
attack vector for attackers.

Our proposal aims at keeping the original version, but extended with additional tests. This extension
involves the creation of a monitor for the actions of honest participants that furthermore may have access
to some secret pieces of information held by these participants. In the case of Lowe’s attack, this access
is unnecessary, as it suffices for B to check that the message he receives at the third step is equal to the
message sent by A.

We present in this paper an algorithm to implement a security protocol monitor. Given the input
messages that participants are willing to share with the monitor, it basically amounts to computing the
conditions to be checked in order to exclude a given narration from the possible executions of the proto-
col.

Related works This article is based on the refinement relation between traces introduced in [4]. An
extension to the case where an attack can be excluded based on the information in only one session of a
participant has been proposed in [9].

By contrast our approach stems from the line of work initiated in [3, 2] where the authors advocate
for the prevention of attacks through detection and eventually retaliation against the attacker. Also, [7]
presents in more details an architecture in which the analysis we present in this paper can be conducted
with a better control on the messages, and also introduce the idea of applicative firewalls for security
protocols.

Outline We recall in Sec. 2 how to represent protocols and roles and how to implement them as active
frames. In Sec. 3 we formally introduce protocol monitors to control messages and manage knowledge
shared by collaborating agents, in order to detect and block attacks. In Sec. 4 we show how to synthesize
monitors from tests that can be derived automatically. We conclude in Sec. 6.

2 Role-based Protocol Specifications

2.1 Messages and basic operations

We consider an infinite set of free constants C and an infinite set of variables X . For each signature
F (i.e. a set of function symbols with arities), we denote by T(F) (resp. T(F ,X)) the set of terms

24 Implementing Security Protocol Monitors

over F ∪C (resp. F ∪C ∪X). The former is called the set of ground terms over F , while the latter
is simply called the set of terms over F . Variables are denoted by x and decorations thereof, but for a
distinguished subset (vi)i∈N employed to denote positions in a sequence. Terms are denoted by s, t, and
finite sets of terms are written E,F, . . ., and decorations thereof, respectively. In a signature F a constant
is either a free constant or a function symbol of arity 0 in F . Given a term t we denote by Var(t) the set
of variables occurring in t and Cons(t) the set of free constants occurring in t. A (ground) substitution σ
is an idempotent mapping from X to T(F ,X) (T(F)) and its support Supp(σ) = {x |σ(x) 6= x} is a
finite set. The application of a substitution σ on a term t (resp. a set of terms E) is denoted tσ (resp. Eσ)
and is equal to the term t (resp. the set of terms E) where all variables x ∈ Supp(σ) have been replaced
by the term xσ .

Terms are manipulated by applying operations on them. These operations are defined by a sub-
set of the signature F called the set of public constructors. A context C[v1, . . . ,vn] is a term in which
Var(C[v1, . . . ,vn]) ⊆ {v1, . . . ,vn}, Const(C[v1, . . . ,vn]) = /0, and all non-variable symbols are public con-
structors, including possibly non-free constant. We will specify the effects of operations on the messages
and the properties of messages by equations. When the index n is clear, we omit the possible variables list
and denote contexts C. An equational presentation E = (F ,E) is defined by a set E of equations u = v
with u,v ∈ T(F ,X). The equational theory generated by (F ,E) on T(F ,X) is the smallest congru-
ence containing all instances of axioms in E (free constants can also be used for building instances) [6].
We write s =E t as the congruence relation between two terms s and t. By abuse of terminology we also
call E the equational theory generated by the presentation E when there is no ambiguity.

A deduction system is defined by a triple (E ,F ,Fp) where E is an equational presentation on a
signature F and Fp a subset of public constructors in F .
Example 1. Public key cryptography. For instance the following deduction system models public key
cryptography:

(
{

dec(enc(x,y),y−1) = x
}
,{

dec(_,_),enc(_,_),_−1
}
,

{dec(_,_),enc(_,_)})

The equational theory is reduced here to a single equation that expresses that one can decrypt a ciphertext
when the inverse key is available. The inverse function _−1 is not public, as it cannot be computed in
reasonable time by participants.
Example 2. Nonce generation. Nonces are random values that are critical to the analysis of cryptog-
raphy and cryptographic protocols. To give an agent the capacity to generate new values, we assume
the existence of an infinite set of constants CN away from C such that each value in this set can be
generated:

N = (/0,CN ,CN)

Note this model makes sense only in the case where the attacker is only one agent, or a set of information
sharing agents [13], as an agent cannot otherwise construct nonces generated by another, independent,
agent.

Test systems. In order to express verifications performed by an agent on received messages we
introduce test systems:
Definition 1. (Test systems) Let D be a deduction system with an equational theory E . A D-
test system S[v1, . . . ,vn] is a finite set of equations denoted by (Ci

?
= C′

i)i∈{1,...,n} with D-contexts
Ci[v1, . . . ,vn],C′

i [v1, . . . ,vn]. It is satisfied by a substitution σ , and we denote by σ |= S[v1, . . . ,vn], if
for all i ∈ {1, . . . ,n} the equality C[v1, . . . ,vn]iσ =E C′

i[v1, . . . ,vn]σ holds.
As usual we simply denote a test system S if the maximal indice n is clear from the context.

Yannick Chevalier and Michaël Rusinowitch 25

2.2 Traces and active frames

We model messages with terms. The sequence of messages received and sent by a principal is a trace,
and is thus a finite sequence of labeled messages:
Definition 2. (Trace) A trace is a finite sequence of messages each with label (or polarity) ! or ?.

Messages with label ! (resp. ?) are said to be “sent” (resp.“received”). Given a trace Λ = !/?t1, . . . , !/?tn
we write ?Λ (resp. !Λ) as a short-hand for ?m1, . . . ,?mn, (resp. !m1, . . . , !mn). Given a trace Λ =
!/?m1, . . . , !/?mn we denote by σΛ = {v1 7→ m1,vn 7→ mn} the substitution mapping each variable vi to
the ith message occurring in Λ. To simplify notation we also denote by C[v1, . . . ,vn] ·Λ, or more simply
C ·Λ, the application of the substitution σΛ on the context C[v1, . . . ,vn]. Accordingly, we say that a trace
Λ satisfies an equality C1 = C2, and denote it by Λ |= C1

?
= C2, whenever C1 ·Λ =E C2 ·Λ.

Operations on traces Let Λ be a trace. We say that a Λ is positive (resp. negative) if all its labels are
! (resp. ?). We denote Λ? (resp. Λ!) the subsequence of Λ of terms labeled with ? (resp. !). We denote
−Λ the trace in which all the labels in Λ are inverted. Finally, we denote input(Λ) (resp. output(Λ)) the
trace −Λ? (resp. −Λ!).

Active frames An active frame represents the actions of a principal participating in a protocol. It is
a sequence of steps, and at step i the principal either sends a message, constructed from the messages
received at steps j < i, or receives and message, and accepts it if it satisfies some tests constructed from it
and messages received at steps j < i. To simplify exposition, at a step i, we call these messages received
at steps j < i the messages already known at step i, or just already known if the step is clear from context.
As in the case of traces, messages sent are labeled !vi (and vi is an output variable) and those received are
labeled ?vi (and vi is an input variable). Since the available contexts depend upon the deduction system,
the notion of active frame is also parameterised by a deduction system.
Definition 3. Given a deduction system D , a D-active frame is a sequence (Ti)1≤i≤k where

Ti =

!vi with vi
?
= Ci[v1, . . . ,vi−1] (send)

or
?vi with Si[v1, . . . ,vi] (receive)

Without loss of generality and reusing the above notations, a simple recursion shows that we can
assume that all variables in Ci[v1, . . . ,vi−1] are labeled with ? at a step j < i, and that all variables in
Si[v1, . . . ,vi] are labeled with ? at a step j ≤ i. Without loss of generality, from now on we assume that
this is the case for all the active frames we consider.
Example 3. The principal A in the description of the NSPK protocol can be modeled by an active frame
as follows, with the caveat that we have renamed the vi variables for more clarity:

(?xNA with /0,?xA with /0,?xB with /0,?xKA with /0,?xKB with /0,?xK−1
A

with /0,

!xmsg1 with xmsg1

?
= enc(〈xA,xNA〉 ,xKB),

?xr with /0

!xmsg2 with xmsg2

?
= enc(π2(dec(xr,xK−1

A
)),xKB))

Algebraically, by describing a principal’s actions, active frames are partial operations on the set of
traces and map a sequence of messages sent by someone else and accepted to the sequence of received
and sent messages by a principal. We formalize these notions as follows:

26 Implementing Security Protocol Monitors

Definition 4. Let D be a deduction system with equational theory E . Let ϕ = (Ti)1≤i≤n be an active
frame, where the Ti’s are as in Definition 3, and where the input variables are ?vα1 , . . . ,?vαk . Let Λ be a
positive trace of length k, θ be the renaming of variables

{
vα j 7→ v j

}
1≤ j≤k, and S be the union of the test

systems in ϕ . The evaluation of ϕ on Λ is denoted ϕ ·Λ. It is defined, and we say that ϕ accepts s, if S · s
is satisfiable. In that case, it is the trace (m1, . . . ,mn) where:

mi =

{
!Ci ·θσΛ If vi has label ! in Ti
?vi ·θσΛ If vi has label ? in Ti

Example 4. Let ΛA be the trace of the principal A in the the specification of the NSPK proto-
col in the introduction, r = tr(A), and φA be the active frame of Ex. 3. Let M be the message
msg(B,enc(〈NA,Nb〉 ,KA)). We have:

input(ΛA) = (!NA, !A, !B, !KA, !KB, !K−1
A , !M)

and φA · input(ΛA) is the trace:

(?NA,?A,?B,?KA,?KB,?K−1
A ,

!msg(B,enc(〈A,NA〉 ,KB)),

?M, !msg(B,enc(π2(dec(payload(M),K−1
A)),KB))

Modulo the equational theory, this trace is equal to:

(?NA,?A,?B,?KA,?KB,?K−1
A ,

!msg(B,enc(〈A,NA〉 ,KB)),?M, !msg(B,enc(Nb,KB))

It is not coincidental that in Ex. 4 the traces ϕA · input(ΛA) and ΛA are equal as it means that within
the active frame, the sent messages are composed from received ones in such a way that when someone
sends the messages expected in ΛA, the execution of A is described by ΛA. This relation gives us a
criterion to define what an implementation of a trace is.
Definition 5. An active frame ϕ is an implementation of a trace Λ if ϕ accepts input(Λ) and
ϕ · input(Λ) =E Λ.

If a trace admits an implementation we say this trace is executable. Conversely we say that a trace t
is an execution of an active frame ϕ whenever ϕ is an implementation of t.

2.3 Computation of an implementation

We present in this section a method, parameterised by the deduction system D , to compute an active
frame implementing an executable trace. To build such an implementation we need to compute, given
a message t sent at step i, a D-context Ci that evaluates to t when applied to the previously received
messages. This reachability problem is unsolvable in general. Hence we have to consider systems that
admit a reachability algorithm, formally defined below:
Definition 6. Given a deduction system D with equational theory E , a D-reachability algorithm AD

computes, given a positive trace Λ of length n and a term t, a D-context AD (s, t) = C[v1, . . . ,vn] such
that C ·Λ =E t iff there exists such a context and ⊥ otherwise.

For the many theories that admit a reachability algorithm, it can be employed as an oracle to compute
the contexts in sent messages and therefore to derive an implementation of a trace s. We thus have the
following theorem (see a proof in [4]).
Theorem 1. If a D-reachability algorithm exists then it can be decided whether a trace s is executable
and if so one can compute an implementation of s.

Yannick Chevalier and Michaël Rusinowitch 27

2.4 Computation of a prudent implementation

An implementation does not necessarily checks the conformity of the messages with the intended pat-
terns, e.g., the active frame in Ex. 4 neither checks that xr is really an encryption with the public key xKA

of a pair, nor that the first argument of the encrypted pair has the same value as the nonce xNA .
Any of the algorithms proposed so far in the literature for the compilation of cryptographic protocols

would require at least these tests. We now present an algorithm that computes these kinds of checks for
an arbitrary deduction system. It formalizes a check as an equation between D-contexts over messages
received so far, including the initial knowledge. For example, and reusing the notations of Ex. 3 it
computes that upon reception of the message the initiator must, among other tests, check the validity of
the equation:

π1(dec(xr,xK−1
A

))
?
= xNA

We formalize in the definition below which traces Λ′ are acceptable by an agent expecting a trace Λ. We
define the acceptable traces as the refinements of Λ, that is traces Λ′ such that every test system accepting
Λ also accepts Λ′.

Definition 7. Let Λ,Λ′ be two positive traces of identical length. We say that Λ′ refines Λ if, for any pair
of D-contexts (C1,C2) one has C1 ·Λ = C2 ·Λ implies C1 ·Λ′ = C2 ·Λ′.

Consider for example the following traces Λ and Λ′:
{

Λ′=(!enc(a,k), !enc(a,k′), !k, !k′′, !a)
Λ=(!enc(a,k), !enc(a,k′), !k, !k′, !a)

since all equalities that can be checked on σ can be checked on σ ′. Two traces s,s′ that refine one another
are equivalent. This definition is an adaptation to our setting of the classic notion of static equivalence [1].

When the behaviour of a principal is defined by a trace Λ, we expect that any implementation of
that principal accepts the trace input(Λ). Thus, and as long as only equality tests are considered, we
expect any implementation of the trace Λ to also accept any refinement of input(Λ). We define a prudent
implementation of Λ as an implementation that only accepts inputs that refine the inputs in Λ.

Definition 8. An active frame ϕ is a prudent implementation of a trace Λ if ϕ is an implementation of Λ
and any trace Λ′ accepted by ϕ is a refinement of input(Λ).

As already noted in [4], most deduction systems considered in the context of cryptographic protocols
analysis have the property that it is possible to compute, given a positive trace, a finite set of context
pairs that summarizes all possible equalities. Given a positive trace Λ we denote PΛ the (infinite) set of
context pairs (C1,C2) such that C1 · s = C2 · s.

Definition 9. A deduction system D has the finite basis property if for each positive trace Λ one can
compute a finite set P f

Λ of pairs of D-contexts such that, for each positive trace Λ′:

PΛ ⊆ PΛ′ iff P f
Λ ⊆ Ps′

Let us now assume that a deduction system D has the finite basis property. There thus exists an
algorithm A ′

D that takes a positive trace Λ as input, computes a finite set P f
Λ of context pairs (C,C′) and

returns as a result the test system SΛ :
{

C ?
= C′ | (C,C′) ∈ P f

Λ

}
. For any positive trace Λ′ of length n, by

definition of SΛ we have that SΛ ·Λ′ is satisfiable if and only if s′ is a refinement of s. We are now ready
to present our algorithm for the compilation of strands into active frames.

28 Implementing Security Protocol Monitors

Algorithm Given a trace Λ and assuming that the deduction system D has a reachability algorithm and
the finite basis property, and let Λ be a trace of length n, and let us denote Λi for 1 ≤ i ≤ n the prefix of
length i of Λ, and Λ(i) the ith element of Λ. We construct a prudent implementation ϕΛ = (Ti)i=1,...,n of
Λ as follows:

Ti =

{
!vi with vi

?
= AD (Λi−1, ti) If Λ(i) =!ti

?vi with A ′
D (Λi) If Λ(i) =?ti

By construction we have the following theorem[4]:

Theorem 2. Let D be a deduction system that has a D-ground reachability algorithm and has the finite
basis property. Then for any executable trace Λ one can compute a prudent implementation ϕΛ of Λ.

2.5 Protocol implementation and execution

It is customary to describe a protocol by giving its intended execution, either using a message sequence
chart or an Alice&Bob notation. We note that the same notation is also employed to described e.g.
attacks on that protocol. Beyond their syntax, the characteristic of such description is to associate to
a generic principal (a rôle, in the case of a protocol specification, a participant in the case of an attack
description) a trace describing its actions, and how these actions interact with the other principal actions.
This association of a participant with a trace is formalised by a function mapping strands [14], i.e.
principals, rôles, etc., to traces. We define a protocol to be just one such mapping.

Definition 10. (Protocol) A protocol is a couple P = (ΞP, trP) where ΞP is a finite set of strands and trP
maps ΞP to the set of traces.

When a protocol is intended to be a protocol specification, we refer to strands as the rôles of that
protocol (e.g. the rôles A and B in the NSPK protocol. A strand ξ is positive in a protocol P if trP(ξ) is
a positive trace.

In the preceding definition the function trP prescribes for each role ξ ∈ ΞP the sequence of actions to
be performed by an agent playing this role in any protocol instance. In the following, when there is no
ambiguity in the considered protocol, we identify a strand ξ with its trace tr(ξ).

We have worked so far on the implementation of the trace of a role in a protocol, but the definitions
lift to the level of an implementation of a protocol as follows.

Definition 11. (Protocol implementation) An implementation of a protocol P = (ΞP, trP) is a couple
(ΞP,ΦP) where Φ maps each role ξ ∈ ΞP to an active frame such that Φ(ξ) is an implementation of
trP(ξ). It is prudent if moreover for each ξ ∈ ΞP, Φ(ξ) is a prudent implementation of trP(ξ).

From now on we consider only prudent implementations of protocols, i.e. implementations whose
execution is a refinement of the protocol specification.

Definition 12. (Protocol execution) Let P = (ΞP,ΦP) be a protocol implementation. A triple E =
(ΞE , trE ,RE) where:

1. ΞE is a set of strands away from ΞP;

2. (ΞE , trE) is a protocol;

3. RE : ΞE → ΞP ∪{I}.

is a protocol execution of P if, for each ξ ∈ ΞE , if RE(ξ) 6= I then trE(ξ) is an execution of ΦP(RE(ξ)).

The strand I denotes an Intruder who does not necessarily follows the directions prescribed by the
protocol. A protocol execution is honest if RE(ΞE) ⊆ ΞP. Strands in ΞE are called the participants of the
protocol execution E . The function RE maps each (honest) participant to its rôle in the protocol.

Yannick Chevalier and Michaël Rusinowitch 29

3 Protocol monitor

To mitigate an attack on a protocol, a monitor has to coordinate the participants to detect and stop an
instance of a known flaw. This coordination is built according to data the participants are willing to
share to prevent the attack. Our monitor construction relies on the description of the data the participants
are willing to share, a description of the attack, and a description of the expected behaviour of the
participants, and we compute tests (when possible) to distinguish an instance of the attack from the
normal execution.

In Def. 13, for each participant A, trM(A) contains the same inputs as trP(A), and the messages sent
in trM(A), are the pieces of data shared by A with the monitor.

Definition 13. (Protocol Monitor) Let P = (ΞP, trP) and M = (ΞM, trM) be two protocols. We say
that M is a monitor for P if 1. ΞM = ΞP; 2. M is executable; and 3. For each ξ ∈ ΞM we have
input(trM(ξ)) = input(trP(ξ)).

Proposition 1. Let P = (ΞP, trP) be a protocol, M = (ΞP, trM) be a monitor of P, IX = (ΞP,ΦX) be any
implementation of X ∈ {P,M}, and E = (ΞE ,ΦE ,RE) be an honest execution of IP.

If IP is prudent and ΦM(RE(ξ)) accepts input(trE(ξ)), then ΦM(RE(ξ)) · input(trE(ξ)) is a refine-
ment of trM(RE(ξ)).

Proof. Assume there exists ξR ∈ ΞM and ξe ∈ ΞE with RE(ξe) = ξR such that ΦM(ξR) · input(trE(ξe)) is
not a refinement of trM(ξR). That is, there exists pairs of contexts C1,C2 such that trM(ξr) |= C1 = C2
but ΦM(ξR) · input(trE(ξe)) 6|= C1 = C2. Without loss of generality we can assume that C1,C2 are built
upon the input variables of ΦM(RE(ξ)), that is, with θ :

{
vi j 7→ v j

}
1≤ j≤k, where i j is the jth input step

of trM(ξR): {
input(trM(ξR)) |= C1θ = C2θ
input(ΦM(ξR) · input(trE(ξe))) 6|= C1θ = C2θ

Since IM is an implementation of M, by definition the second assertion is equal to input(trE(ξe)) 6|=C1θ =
C2θ . By definition of a monitor, we have input(trM(ξR)) = input(trP(ξR)). Thus, we have:

{
input(trP(ξR)) |= C1θ = C2θ
input(trE(ξR)) 6|= C1θ = C2θ

Hence input(trE(ξR)) is not a refinement of input(trP(ξR)), and thus ΦP(ξR) cannot be a prudent imple-
mentation of trP(ξR).

Definition 14. (Execution Log) Let P = (ΞP, trP) be a protocol, IP = (ΞP,ΦP) be an implementation
of P, E = (ΞE , trE ,RE) be an execution of IP, <E be an arbitrary total order on the participants, and
IM = (ΣP,φM) be an implementation of a monitor M of P. The execution log of E for monitor M is the
concatenation of the traces:

output(φM(RE(ξe)) · input(trE(ξe)))

for ξe ∈ ΞE such that RE(ξe) 6= I in the increasing order with respect to <E .

Proposition 2. Let P = (ΞP, trP) be a protocol, IP = (ΞP,ΦP) be an implementation of P, E =
(ΞE , trE ,RE) be an execution of IP, <E be an arbitrary total order on the participants, and IM = (ΞP,ΦM)
be an implementation of a monitor M of P. Then there exists a unique execution log of E for M.

30 Implementing Security Protocol Monitors

Proof. For each ξe ∈ ΣE let ϕe = ΦM(RE(ξe) be the active frame executed by ξe, and let ine =
input(trE(ξe)) denote the messages received by ξe. Since sent messages are built by a context over pre-
ceding messages an easy recurrence shows that the value of each message in ϕe · ine is uniquely defined
by the values in input(trE(ξe)). Thus output(ϕe · ine) is uniquely defined for each participant ξe ∈ ΞE .
Since the order <E is total the concatenation of these traces is unique.

Since the ordering <E is arbitrary, we usually omit any reference to it. By Prop. 2 the execution log
depends only on the monitor, not on its implementation. Accordingly we denote it logIP,M(E). Assuming
there exists a D-reachability algorithm, it is possible to compute an implementation of M whenever M is
executable. Thus given a monitor M the function logIP,M(E) can be effectively computed.

4 Generating an attack-preventing monitor

4.1 Attack presentation

In our setting attacks are simply specified as protocol executions without reference to any violated secu-
rity property. The flexibility entailed by this choice however implies that, in order to prevent the given
execution, one also has to provide what should have been the correct execution for the subset of partici-
pants involved in the attack. This setting leads to the definition of an attack presentation sharing the same
set of participants playing the same roles, but having different traces.

Definition 15. (Attack definition) Let IP = (ΞP,ΦP) be a protocol implementation. An attack definition
on IP is a tuple (ΞE , trA, trN ,RE) such that (ΞE , trA,RE) is an execution of IP and (ΞE \R−1

E (I), trN ,RE) is
an honest execution of IP.

Given an attack definition (ΣE , trA, trN ,RE), (ΣE , trA,RE) refers to the attack execution while
(ΣE , trN ,RE) refers to the normal execution of the protocol expected for the honest participants involved.
Though this is not enforced by the definition and not needed in the rest of this paper, it is expected that
the initial segments of the traces corresponding to the initial knowledge and the generation of nonces
should be the same for each participant in the two executions.

Definition 16. (Attack presentation) Let P = (ΞP, trP) be a protocol, IP = (ΞP,ΦP) be an implementation
of P, M = (ΞP, trM) be a monitor of P, and A = (ΞE , trA, trN ,RE) be an attack definition on IP. Then the
presentation of A to M is the couple (logIP,M((ΞE \R−1

E (I), trA,RE)), logIP,M((ΞE \R−1
E (I), trN ,RE)))

Detectable attacks. We note that the two traces in an attack presentation may be equivalent. In this
case, no test performed by the monitor could enable it to distinguish between the normal and the attack
execution, and the latter would not be preventable. We say that an attack A is detectable by the monitor
M if its presentation (Λ,Λ′) to M is such that Λ and Λ′ are not equivalent.

This definition leads to the problem of deciding whether an attack is detectable by a monitor.

Decision Problem 1. AttackDetectabilityD (s,s′)

Input: The presentation (Λ,Λ′) of an attack A on the protocol implementation IP with a monitor M;

Output: YES if A is detectable by M

This problem is related to the classic static equivalence problem by the following theorem, proved in
the appendix.

Yannick Chevalier and Michaël Rusinowitch 31

Theorem 3. Let D be a deduction system, and N be the deduction system of Ex. 2. Then
AttackDetectabilityD∪N on strands that do not contain symbols of CN is polynomial-time reducible
to StaticEquivalenceD .

The latter StaticEquivalenceD decision problem is well-studied and in most cases of deduction sys-
tems of interest was found to be decidable, which implies that the AttackDetectabilityD∪N problem is
also decidable for most deduction systems of interest.

4.2 Monitor Synthesis

In our setting an attack definition relies on humans to specify also the intended execution, but this execu-
tion is not present when searching whether a concrete execution is an attack. Thus we need to synthesize
tests that will detect whether an execution is an attack by relying solely on the contents of the actual
execution.

Let (Λ,Λ′) be a detectable attack presentation. By definition there exists at least one equation C1
?
=C2

either in P f
Λ or in P f

Λ′ that is not satisfied by the other trace. We add it to the tests of the monitor. If the
equation is in P f

s the monitor interrupts the protocol if it is not satisfied, whereas if it is in P f
s′ the monitor

interrupts the protocol if it is satisfied.

5 Attack detection in practice

We present in this section a simple example, the ISO/IEC 9797-1 protocol, especially its manual authen-
tication mecanism 7a described in [12]. The normal run of the protocol is, after a human user sent D and
R to the two devices A and B:

A knows A,B,D,R
B knows A,B,D,R
A → B : h(A,D,kA,R)
B → A : h(B,D,kB,R)
A → B : kA
B → A : kB

A dishonest participant i can sent back the first message directly to a honest participant a willing to play
the rôle A, and completely impersonate B during the session:

a → I : h(A,D,kA,R)
I → a : h(A,D,kA,R)
a → I : kA
I → a : kA

We let P = ({A,B}, trP) be the definition of the protocol, E = ({a, i}, trE ,{a 7→ A, i 7→ I}) be the execu-
tion of the protocol P describing the attack, and M = ({A,B}, trM) with:

{
trM(A) = (?A,?B,?D,?R,?kA, !h(A,D,kA,R),?h(A,D,kB,R), !h(A,D,kB,R),?kB)
trM(B) = input(trP(B))

The implementation of this monitor would be:

ΦM(A) = (?v1;?v2;?v3;?v4; !v6 with
{

x6
?
= h(x1,x3,x5,x4)

}
;?v7, !v8 with

{
x8

?
= x7

}
)

32 Implementing Security Protocol Monitors

The two logs for the regular execution and the attack are respectively, with this implementation:
{

(!h(A,D,kA,R); !h(B,D,kB,R)) (normal)
(!h(A,D,kA,R); !h(B,D,kA,R)) (attack)

and the test x1
?
= x2 is satisfied by the log of attack trace but not by the log of the normal execution. Thus

the monitor can reject the attack from the log when this equality is satisfied. A more robust monitor
would send the last two messages kA and kB as in that case we know of no other attack even when keys
are guessable or the hash function is weak [5].

6 Conclusion

In future work we plan to generate monitor implementations from several roles, and to study test simpli-
fication techniques for efficiency. We also need to extend the monitor construction in order to protect a
protocol from all the refinements of an attack.

References
[1] Martín Abadi & Véronique Cortier (2006): Deciding knowledge in security protocols under equational the-

ories. Theor. Comput. Sci. 367(1-2), pp. 2–32, doi:10.1016/j.tcs.2006.08.032.
[2] Wihem Arsac, Giampaolo Bella, Xavier Chantry & Luca Compagna (2009): Validating Security Protocols

under the General Attacker. In Pierpaolo Degano & Luca Viganò, editors: Foundations and Applications
of Security Analysis, ARSPA-WITS 2009, York, UK, March 28-29, 2009, Revised Selected Papers, Lecture
Notes in Computer Science 5511, Springer, pp. 34–51, doi:10.1007/978-3-642-03459-6_3.

[3] Giampaolo Bella, Stefano Bistarelli & Fabio Massacci (2003): A Protocol’s Life After Attacks... In Bruce
Christianson, Bruno Crispo, James A. Malcolm & Michael Roe, editors: Security Protocols, 11th Interna-
tional Workshop, Cambridge, UK, April 2-4, 2003, Revised Selected Papers, Lecture Notes in Computer
Science 3364, Springer, pp. 3–10, doi:10.1007/11542322_2.

[4] Yannick Chevalier & Michaël Rusinowitch (2010): Compiling and securing cryptographic protocols. Inf.
Proc. Lett. 110(3), pp. 116–122, doi:10.1016/j.ipl.2009.11.004.

[5] Stéphanie Delaune, Steve Kremer & Ludovic Robin (2017): Formal Verification of Protocols Based on Short
Authenticated Strings. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara,
CA, USA, August 21-25, 2017, pp. 130–143, doi:10.1109/CSF.2017.26.

[6] Nachum Dershowitz & David A. Plaisted (2001): Rewriting. In: Handbook of Automated Reasoning, Else-
vier and MIT Press, pp. 535–610, doi:10.1016/B978-044450813-3/50011-4.

[7] Maria-Camilla Fiazza, Michele Peroli & Luca Viganò (2015): Defending Vulnerable Security Protocols by
Means of Attack Interference in Non-Collaborative Scenarios. Front. ICT 2015, doi:10.3389/fict.2015.
00011.

[8] Mei Lin Hui & Gavin Lowe (1999): Safe Simplifying Transformations for Security Protocols. In: Proceedings
of the 12th IEEE Computer Security Foundations Workshop, CSFW 1999, Mordano, Italy, June 28-30, 1999,
IEEE Computer Society, pp. 32–43, doi:10.1109/CSFW.1999.779760.

[9] Zhiwei Li & Weichao Wang (2012): Towards the attacker’s view of protocol narrations (or, how to compile
security protocols). In Heung Youl Youm & Yoojae Won, editors: 7th ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012, ACM, pp. 44–45,
doi:10.1145/2414456.2414481.

[10] Gavin Lowe (1996): Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. Software
- Concepts and Tools 17(3), pp. 93–102, doi:10.1007/3-540-61042-1_43.

Yannick Chevalier and Michaël Rusinowitch 33

[11] Roger M. Needham & Michael D. Schroeder (1978): Using Encryption for Authentication in Large Networks
of Computers. Commun. ACM 21(12), pp. 993–999, doi:10.1145/359340.359342.

[12] Ludovic Robin (2018): Vérification formelle de protocoles basés sur de courtes chaines authentifiées. (For-
mal verification of protocols based on short authenticated strings). Ph.D. thesis, University of Lorraine,
Nancy, France. Available at https://tel.archives-ouvertes.fr/tel-01767989.

[13] Paul F. Syverson & Catherine A. Meadows (2000): Dolev-Yao is no better than Machiavelli. In: Proceedings
of the first Workshop on Issues in the Theory of Security (WITS’00), doi:10.21236/ADA464936.

[14] F. Javier Thayer, Jonathan C. Herzog & Joshua D. Guttman (1998): Strand Spaces: Why is a Security
Protocol Correct? In: Security and Privacy - 1998 IEEE Symposium on Security and Privacy, Oakland, CA,
USA, May 3-6, 1998, Proceedings, IEEE Computer Society, pp. 160–171, doi:10.1109/SECPRI.1998.
674832.

A Relation with the notion of static equivalence

The notions of equivalence wrt the refinement relation and static equivalence are strongly related. The
different setting is justified by the different handling of nonces: in [1] contexts can contain any constant,
so the secret constants in a trace have to be protected using π-calculus’ ν operator, while we disallow
non-public constants in contexts, which means that no constants can be used but the ones in the deduction
system or those published (explicitly or implicitly) in the sequence of messages. We prove in Theo. 3
that the two notions are identical modulo the generation of new constants with the deduction system N
of Ex. 2.

The AttackDetectability problem defined in this paper is new, but it is strongly related to the static
equivalence problem. In order to show this relation, let us introduce frames, which are strands with a
hidden set of constants.

Definition 17. (Frames, [1]) A frame is a couple (ñ,s) where ñ is a set of constants and s is a positive
trace, and is usually denoted ν ñ.s.

Technically the definition in [1] replaces positive trace s by a substitution of domain x1, . . . ,xn that
we have noted σs. The application of a context C on a frame ν ñ.s is equal to the application of C on s.
We are now ready to define the static equivalence problem for a deduction system D .

Decision Problem 2. StaticEquivalenceD(ϕ1,ϕ2)

Input: Two frames ϕi = ν ñi.si for i = 1,2

Output: YES if the frames have an equal length and for all pair C1,C2 of public contexts and all function
θ : Var(C1)∪ Var(C2) → {x1, . . . ,xn}∪ (C \ (ñ1 ∪ ñ2)) we have C1θσs1 = C2θσs1 if, and only if,
C1θσs2 =E C2θσs2 .

Attack detectability is related to static equivalence with the following theorem:

Theorem 3. Let D be a deduction system, and N be the deduction system of Ex. 2. Then
AttackDetectabilityD∪N on strands that do not contain symbols of CN is polynomial-time reducible
to StaticEquivalenceD .

Proof. Given a trace s we let ϕs = νConst(s).[s1, . . . ,sn]. This construction is clearly polynomial time.
Let t1, t2 be the two traces in the presentation of the attack A on IP to M.

First, if t1 and t2 are of different length or have different label sequence, one can respond to the
AttackDetectability in polynomial time. So let us assume the two strands have the same length and the
same label sequence. Also, we assume that t1, t2 do not contain the symbols of the N deduction system.

34 Implementing Security Protocol Monitors

Let us prove that t1 and t2 are discernable wrt the deduction system D ∪N if, and only if, the frames
ϕs1 ,ϕs2 are not statically equivalent wrt the deduction system D .

First let us assume that the attack presentation (t1, t2) is detectable, and wlog assume that t1 does not
refine t1 for the deduction system D ∪N . Thus there exists two D ∪N -contexts such that C1t1 =E C2t1
but C1t2 6=E C2t2. Since we assume that constants occurring in s1,s2 are away from CN , we construct
C′

1,C
′
2 and θ ′ as follows. For each constant c ∈ CN occurring in C1 or C2:

• replace in the contexts c with a new variable xc;

• define θ as follows:

θ(x) =

{
xi if x ∈ Var(C1)∪ Var(C2)
c if x = xc

By construction C′
1,C

′
2 are D-public contexts and θ maps each variable of these contexts to either a

variable or to a constant away from s1,s2. Thus C′
1,C

′
2 and θ ′ are witnesses that the frames ϕs and ϕs′ are

not D-statically equivalent.
Conversely assume that the two frames ϕs1 ,ϕs2 are not statically equivalent. Then there exist D

contexts C1,C2 and θ : Var(C1) ∪ Var(C2) → C \ (Const(s1) ∪ Const(s2)) such that wlog C1θϕs1 =E

C2θϕs1 . Replacing each free constant c by a constant in CN yields appropriate contexts for the D ∪N
attack detectability.

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 35–48, doi:10.4204/EPTCS.342.4

c© A. Docena, Th. Wahl, T. Pearce, Y. Fei
This work is licensed under the
Creative Commons Attribution License.

Sensitive Samples Revisited: Detecting Neural
Network Attacks Using Constraint Solvers∗

Amel Nestor Docena Thomas Wahl Trevor Pearce Yunsi Fei
Khoury College of Computer Sciences, Northeastern University, Boston, USA

{docena.a|t.wahl|pearce.tr|y.fei}@northeastern.edu

Neural Networks are used today in numerous security- and safety-relevant domains and are, as such,
a popular target of attacks that subvert their classification capabilities, by manipulating the net-
work parameters. Prior work has introduced sensitive samples—inputs highly sensitive to parameter
changes—to detect such manipulations, and proposed a gradient ascent-based approach to compute
them. In this paper we offer an alternative, using symbolic constraint solvers. We model the network
and a formal specification of a sensitive sample in the language of the solver and ask for a solution.
This approach supports a rich class of queries, corresponding, for instance, to the presence of certain
types of attacks. Unlike earlier techniques, our approach does not depend on convex search domains,
or on the suitability of a starting point for the search. We address the performance limitations of con-
straint solvers by partitioning the search space for the solver, and exploring the partitions according
to a balanced schedule that still retains completeness of the search. We demonstrate the impact of
the use of solvers in terms of functionality and search efficiency, using a case study for the detection
of Trojan attacks on Neural Networks.

1 Introduction

Given recent advances in the field of Deep Learning, Neural Networks (DNN)—the preferred data struc-
ture for many learning tasks—are used today in numerous application areas, including security- and
safety-relevant domains. Their use by unsuspecting end users increasingly makes them the target of
attacks that manipulate (a small fraction of) the network parameters, attempting to override the decision-
making functionality of the network, at least for some inputs. Examples include the hijacking of image
recognition software for access control, and the misguidance of autonomous vehicles. Society has a vital
interest in detecting these kind of attacks, in order to mitigate or prevent them.

Inspired by recent work by He et al. [7], we consider in this paper the “cloud scenario”: the defender
is the designer of the network, with full access to all parameters and the training data. To facilitate wide-
spread use, after training they deploy the network using some DNN inference cloud service, which can,
however, ultimately not be trusted. They therefore wish to determine inputs, called sensitive samples [7],
that are sensitive to parameter manipulations and thus able to distinguish the original, trusted network,
N, from a manipulated one, N′.

In the aforementioned recent work, a sensitive sample X∗ is defined as an input that maximizes the
difference between N and N′, resulting in an optimization problem. Provided the sample space is convex,
X∗ can be found using (projected) gradient ascent (PGA). PGA is an efficient technique, but it is also—
from a user perspective—somewhat demanding: in addition to the convexity of the sample space, we
must compute the differential of the objective function, as well as the projection into the sample space,
both of which can be numerically hard problems.

∗Partially supported by the US National Science Foundation under grant # SaTC-1929300.

36 Detecting Neural Network Attacks Using Constraint Solvers

The goal of this paper is to cast the task of finding sensitive samples as a Boolean satisfiability modulo
real arithmetic problem, and use an SMT solver to crack it. Such solvers do not require convex search
spaces, and they are black boxes: finding a solution for the specified satisfiability (“sat”) problem is left
entirely to the solver.

The flexibility of SMT solving does not come for free. Our sat problem locks as follows: given the
network N, find a sensitive sample Xs such that for all networks N′ s.t. N′ 6= N, we have N(Xs) 6= N′(Xs).
This is in fact a sat problem in a quantified logic. We approximate it by restricting the domain of
adversarial networks N′ to come from some type of attack commonly applied to N, such as a Trojan
attack [10]. We build a representative Trojan-attack model N′ and obtain a sat problem over quantifier-
free Boolean logic modulo real arithmetic. Input Xs has qualities resembling a test case for detecting the
attack: if positive, the attack is present; if negative, we cannot fully guarantee the integrity of the cloud
model N′.

The second challenge with using SMT solvers is that, given their symbolic nature, they cannot com-
pete in efficiency with “concrete” evaluation-based solvers like PGA-based search engines. The bottle-
neck in the SMT solving process is the presence of RELU (“rectified linear unit”; see Sec. A.1) activation
functions, which introduce non-linear, non-differentiable arithmetic into the mathematical model of the
neural network (see also [8, 2]). We therefore propose in this paper a (generic) greedy algorithm to im-
prove the performance of sat-solving formulas over many RELU instances. Our technique factors the
RELU functions out of the formula (reducing its complexity substantially), and examines the many cases
that the combination of RELU functions present in a schedule that is determined a priori using a very
fast profiling step.

To evaluate our technique, we consider Trojan attacks, which turn the trusted model N into the
manipulated cloud model N′ [10]. We demonstrate that (i) our technique can determine sensitive samples
fairly efficiently if used in conjunction with the greedy algorithm mentioned above, that (ii) these samples
effectively label Trojanned models as such, thus detecting the attack, and that (iii) benign models N′

are not flagged by our technique, which would constitute a false positive. A benign model N′ is one
that suffers only harmless inference deviations from N, not to be blamed on an attack, such as due to
differences in floating-point arithmetic implementations.

2 Defender Model and Problem Definition

In this work we assume there is a party called defender that has access to a trusted trained machine
learning model N. The defender seeks to deploy N to some publicly available DNN query service, which
we refer to here simply as the cloud, to be accessed by end users via a narrow DNN query API. The
cloud provider has full access to the deployed model (“white-box”); the end user submits inputs to the
service and retrieves a classification result in the form of probabilities for each class.

Further, there is a party known as attacker (often identical to the cloud provider) set to manipulating
the numeric model parameters, i.e., the weights and biases, resulting in a new model N′. The precise
goals for such manipulation vary and include altering the network’s functionality, for some inputs, e.g.,
using a Trojan attack [9]. As in prior work [7], we assume that the attacker does not manipulate N’s
hyper-parameters, e.g., by adding extra layers, or adding neurons to a layer.

We note that, once the defender has deployed the model N, they can access it only via the same
narrow interface that is available to standard end users (“black-box”). That is, the details of N′ are
unknown to them.

A. Docena, Th. Wahl, T. Pearce, Y. Fei 37

Problem definition. We address in this paper the following idealized problem for the defender. Given
the network N and a type T of network attacks (such as Trojan attacks), determine a detection threshold
β̄ and an input Xs called sensitive sample [7], such that the following holds for any potential cloud model
N′: if N and N′ disagree in their response to input Xs by at most β̄ , then N′ is not the result of an attack
of type T against N. In addition, we typically want sample Xs to be “similar” to the inputs given in the
training set, so that the use of the sample by the defender to probe N′ does not trigger a “spy alarm” by
the cloud provider, which could lead to non-uniform treatment of the defender, compared to other end
users.

The idea is: if input Xs gives rise to a difference of more than β̄ , networks N and N′ disagree non-
trivially, which must be reported, using witness Xs. (For this to make sense, we cannot simply choose
β̄ = 0; see Sec. 3.2.) Otherwise, we consider the cloud model uncompromised, as far as attacks of type
T .

The above problem description is idealistic since it contains an implicit universal quantification over
all models N′ compromised via a type-T attack. This results in a formula in the expensive (although
in principle decidable) SMT theory of quantified non-linear real arithmetic (NRA). In this paper we
approximate this problem, by determining an input Xs that is a sensitive sample for a typical instantiation
N′ of a type T -attacked network. This results in a more manageable formula in quantifier-free real
arithmetic (QF-NRA). We then check the effectiveness of the sample thus obtained against other network
instances. In general, however, we cannot guarantee the integrity of the cloud model in the “otherwise”
case in the previous paragraph.

3 Symbolic Specifications of NNs and Sensitive Samples

Our method of choice to tackle the problem defined in the previous section is via logical constraint
solvers. This requires formalizing the neural network (NN), the attack type, and the notion of sensitivity
in the language of the solver. In the Technical Appendix, we give a background of NNs, plus the inner
workings of a Trojan attack.

3.1 Fully-Connected Neural Networks

Consider an L-layer fully-connected NN, (see Technical Appendix, Sec. A.1). We formulate the linear
function and subsequent non-linear activation function in each hidden layer l < L as

linear combination: Z[l] =W [l]ᵀA[l−1]

hidden layer activation: A[l] = f (Z[l]),

where W [l], Z[l], A[l] represent the parameters (weights and bias), the linear (pre-activation) output vector,
and the activated output vector, respectively. To encode the linear-combination intermediate result Z in
the SMT-Lib language [1], we declare it to be an uninterpreted real-valued constant, and then constrain
it to be equal to a linear expression over the components of weights wi and previous-layer activation ai :

(declare-const z_h Real)

(assert (= z_h (+ (* w_1 a_1) (* w_2 a_2)...(* w_n a_n) bias)))

For the activation in hidden layers, RELU is a typical choice. We define it in the SMT-Lib language
relationally, as a function relu : R×R→{0,1}:
(define-fun relu ((z Real) (a Real)) Bool

(= a (ite (<= z 0.0) 0.0 z))) ; intuitively, a = relu(z)

38 Detecting Neural Network Attacks Using Constraint Solvers

For the purpose of adding queries to the encoded neural network, e.g., to retrieve a sensitive sample,
we define the output of the network to be the logit computed by the pre-activation output function F ,
rather than the result of the output activation function σ , which can give rise to complex symbolic en-
codings. This is feasible because conditions over the final activated value σ(F(X ,W)) can be translated
“backwards” to conditions over the logit vector, Z[L]. For instance, if σ = sigmoid and we wish to con-
strain our sample to be classified as label t = 1 with probability at least 80%, we translate the condition
σ(Z[L])≥ 0.8 to the constraint Z[L] ≥ σ−1(0.8) = 1.386 (σ−1 is called the logit function).

3.2 Sensitive Sample Queries

The sensitivity of a sample X , notated β , is measured by the deviation of its prediction when run on a
tweaked model from its original prediction. Selecting some parameters of interest w ∈W for study, Lee
et al. define sensitivity as β = ‖σ(X ,w)−σ(X ,w+δ)‖, for some suitable norm ‖·‖. A sensitive sample
then is an input X∗ that maximizes this sensitivity assuming that the w have been tweaked by some δ :
X∗ = argmaxI ‖σ(I,w)−σ(I,w+δ)‖ [7]. For this X∗, its corresponding sensitivity β ∗ is optimal.

In this paper, instead of solving an optimization problem, we determine input samples that give rise
to a suitable “target sensitivity”. Requiring this sensitivity to be positive is not enough: differences in
the compiler, the computation environment, the available hardware and other unknowns (which impact
the precise semantics of floating-point arithmetic [6]) will typically cause some deviations in the output
between the client’s platform and the cloud. In the absence of an attack, these deviations would show up
as false positives. We therefore model floating-point vagaries using an application-dependent detection
threshold β̄ beyond which any observed sensitivity is blamed on the presence of an attack, while sensi-
tivities below it are assumed to be harmless. We show later in our experiments that such deviations tend
to be far smaller than differences due to an attack, making the two quite easily separable via a suitable
detection threshold. Thus, an input Xs witnesses the presence of an attack iff its sensitivity βs ≥ β̄ .

In contrast to PGA where the sensitivity of a sample is determined when a SS is retrieved, (if the
model fails to converge, however, then no optimal SS is retrieved); in our approach, we set a threshold
for the sensitivity first and determine whether we can find a satisfying assignment for our prescribed SS.
In the following subsection we spell out an attack symbolically to determine a desired Xs, displaying
flexible specifications, leading to a case where we detect a Trojan attack.

3.2.1 Symbolically Encoding Sensitive Sample Conditions

Consider an attack on weight parameters whose goal is to manipulate the original value of some target
logit Z[L]

t ∈ Z[L] to a desired value Z[L]′
t and, consequently, to belie the prediction. In detecting this attack,

we select w ∈W on which we assume weight changes, δ . These w are referred to as the parameters of
interest (POI) [7], selected based on knowledge about an attack, which are representative of the actual
parameters that have been perturbed for detection. We specify the conditions for the sensitive sample as
follows:

Xs = X0 + γ̂ ∧ Xs ∈ S ∧ Xs |=C ∧ Z[L] = F(Xs,W)∧
Z[L]′ = F(Xs,W +δ) ∧ ∀δi : δi ∈ [a,b]i ∧

∣∣∣Z[L]′
t −Z[L]

t

∣∣∣≥ ε̄ .
(1)

The sensitive sample Xs takes the form Xs = X0 + γ̂ , where X0 is a training sample modified by some
suitable transform variables γ̂ . We distinguish the variable we seek for satisfiability from the rest of the
parameters that the defender defines to bound the search with a hat; in the case of Eq. (1), these are the

A. Docena, Th. Wahl, T. Pearce, Y. Fei 39

γ̂ . While, the variables that are given or defined by the defender are: the training sample, X0; the sample
space S and additional constraints C; the DNN architecture, F(·); the trained weights, W ; the weight
change vector δ applied to the POI and its assumed range of values; and the logit detection threshold
ε̄ , which sets the sensitivity of the sample that satisfies the detection threshold. We expound on these
conditions further.

By constraining γ̂ to within a small radius around 0, we force the SS to be close to the training sample
X0; thereby, appear “natural”, not artificial, to an input analyzer that may be used by the service provider
to detect whether their inference is being monitored or tested. Prior work has used similar mechanisms
to enforce similarity of the sensitive sample to the training data [7]. Moreover, the sample space S,
which the SS is an element of, can be convex or non-convex, as can be the additional constraints C. Such
constraints might state that the sample should be classified into a particular label by the network. Further,
when Xs is forward-propagated through the network, the output, expressed as a formula over the logit
vector Z[L], must of course agree with the network formula F(Xs,W), a function of Xs and W .

For our assumed tweaked model—F(Xs,W +δ), a function of Xs, the W and corresponding weight-
change vector δ—we are assuming a reasonable range for the weight perturbations δi (components of
δ) applied to the POI. The choice of POI and range of weight-change is attack-dependent. The actual
weight deltas are not known to us, but we know the range of the trained weights. We can therefore get
a sense of a plausible range of the deltas based on the nature of the attack (later we present suitable
choices for the case of a Trojan attack). Note that we are expressing sensitivity in terms of the logits.
We refer to ε̄ as the satisfying logit threshold, whose equivalent sensitivity (measured in terms of the
output probability, by applying σ to the logits) satisfies the detection threshold β̄ . In Sec. 5, we present
an example to configure this metric that models sensitivity given a detection threshold.

So in a nutshell, we wish to solve for γ̂ such that the sensitive sample Xs captures a bandwidth ε̄
when the POI have been tweaked by δ . In the next specification where we take on a Trojan attack, the
parameters assumed as placeholders take shape.

3.2.2 Detecting a Trojan Attack

After a Trojan attack, [9] observed that some weights from the target layer through the output layer will be
inflated, causing a jump in the output towards the target masquerade t; while, the rest will be re-adjusted
to compensate for the inflation, making the Trojanned model to behave like the original model when the
trigger is absent. To devise sensitivity conditions to detect this attack, we translate these observations as
a special configuration of Eq. (1), as explained in the following.

We detect whether our model has been Trojanned towards some label t, which we select for scrutiny.
As POI for this attack, we choose the weights connected to the output layer (a similar strategy was
employed in [7]); the weights from the target layer (which only the attacker knows) all the way up to just
before the output layer are assumed unchanged. Among the POI, we let wL

e be the weights expected to
be inflated; while, the rest of the weights potentially deflated as wL

d . That is: we assume positive weight
deltas δe > 0 applied to the former weights, and non-positive weight deltas δd ≤ 0 applied to the latter.
The corresponding activated neurons connected by these weights are A[L−1]

e and A[L−1]
d , respectively. We

formulate the original logit for label t as Z[L]
t = w[L]ᵀ

e A[L−1]
e +w[L]ᵀ

d A[L−1]
d . The perturbed logit, with the

corresponding weight deltas, is given by

Z[L]′
t = (w[L]

e +δe)
ᵀA[L−1]

e +(w[L]
d +δd)

ᵀA[L−1]
d .

Since a Trojan attack raises the prediction towards the target masquerade t in the presence of a trigger,
we set the difference between the perturbed logit and the original logit to be positive and non-trivial,

40 Detecting Neural Network Attacks Using Constraint Solvers

ε̄ > 0. Upon subtraction, we get Z[L]′
t −Z[L]

t = δ ᵀ
e A[L−1]

e + δ ᵀ
d A[L−1]

d = δ ᵀA[L−1] ≥ ε̄ . This suggests that
we model our sensitive sample to have a non-trivial net sensitivity on the possible weight perturbations
that can occur among the POI in a Trojan attack. With this as sensitivity condition, the sensitive-sample
specification from Eq. (1) becomes:

Xs = X0 + γ̂ ∧ Xs ∈ S ∧ Xs |=C ∧ Z[L] = F(Xs,W) ∧
Z[L]′ = F(Xs,W +δ) ∧ δd ≤ 0 < δe ∧ δ ᵀA[L−1] ≥ ε̄ .

(2)

In Sec. 5, we determine suitable values for these parameters that bound γ̂ by detecting a real-world
Trojan attack. But before that, we devise an algorithm to tackle scalability of this approach in the next
section.

4 Improving Scalability using RELU Profiling

For non-trivial networks, the SMT models designed in Sec. 3 represent hard decision problems. In this
section we get to the bottom of the complexity, and design an algorithm to improve the scalability.

4.1 Root-Cause Analysis: Scalability Bottleneck

We analyze the root cause of the scalability problems. As also observed in other work [8], the main
culprit is the “branches” that each application of a RELU activation function represents: they cause the
network model to be a piece-wise linear, rather than linear, mathematical function of the inputs. We
can (vastly) underapproximate the SMT model for the sample query, by replacing each RELU activation
function by either the identity or the constant-zero function—we say the RELU node is fixed as identity
or fixed as zero— and simultaneously forcing the inputs to the function to be respectively non-negative
or negative:

; id: R x R -> Boolean

(define-fun id ((z Real) (a Real)) Bool

(and (>= z 0) (= a z))) ; z >= 0 and a = z

; zero: R x R -> Boolean

(define-fun zero ((z Real) (a Real)) Bool

(and (< z 0) (= a 0)) ; z < 0 and a = 0

Performing this replacement on one RELU node roughly cuts the solution space for the solver to explore
in half. We now design an algorithm for more efficient sensitive-sample search exploiting these insights,
and demonstrate its impact in Sec. 5.

4.2 Greedy ReLU Branch Exploration using Decision Profiling

Solving a query for a sample input intuitively requires exhaustively exploring all combinations of branch
decisions that the RELU nodes might make—RELU combinations for short—for a given input. The
number of such combinations is, of course, exponential in the number of RELU nodes, resulting in poor
scalability. A key idea, however, is that we are free to choose the order in which the combinations are
examined. An optimistic approach might try first RELU combinations that are deemed “more likely” to
permit a satisfying assignment, easier to solve for short. Completeness of this approach can be guaran-
teed by exploring harder to solve combinations later, rather than discarding them.

A. Docena, Th. Wahl, T. Pearce, Y. Fei 41

But what makes one RELU combination easier than
others? We borrow here the idea of branch prediction
done by runtime-optimizing compilers: As the owner of
the network model and the training data used to obtain
it, we can perform an inexpensive decision profiling step,
which determines, for each RELU node, how often it acts
as the identity function, and how often as the zero func-
tion, measured over the training data. We call the larger
of these two

numbers, as a percentage of the training data size, the decision bias, d-bias for short, of a RELU node: a
large d-bias towards “identity” suggests the node acts more often as the identity function than as the zero
function. The table above illustrates, for a toy network of two hidden layers with 5 neurons each and a
dataset of 1000 inputs, the number if times a RELU node acted as identity or as zero, the direction of the
bias, and the d-bias value (formally defined in (3) below).

Since the sensitive samples are designed to be (slight) perturbations of the training data, we expect
it to be beneficial to assume that the RELU nodes exhibit a branching behavior similar to that over the
training data. We say a RELU node has been fixed if it has been fixed according to its d-bias (ties resolved
in some arbitrary but deterministic way). To unfix a (fixed) RELU node means to reinstate the RELU
function, in place of the identity or zero function that it had been replaced with.

Equipped with these definitions, we deem a RELU combination easier to solve than another if the
RELU nodes that have been fixed in the former form a superset of those fixed in the latter. Additionally,
we sort the RELU nodes according to their d-bias and use this ordering to make RELU combinations
easier to solve. The motivation is that fixing a RELU node with a large d-bias is more likely to preserve
many satisfying solutions than fixing a RELU node with a small d-bias (near 50%).

To formalize these ideas, let (X1, . . . ,Xk) be an input to the network. Consider a neuron j, and let Z j

be the function that computes the pre-activation value of the neuron, i.e., the input to the RELU function
at j. (The output computed at j is therefore A j = RELU(Z j(X1, . . . ,Xk)).) We say j acts as identity on
(X1, . . . ,Xk) if Z j(X1, . . . ,Xk) ≥ 0; otherwise j acts as zero on this input. For a set X of network inputs
(such as a training set), the d-bias of neuron j (a number in [0.5,1]) is defined as

d-bias(j) = max

{
|{(X1, . . . ,Xk) ∈ X : Z j(X1, . . . ,Xk)≥ 0}|,
|{(X1, . . . ,Xk) ∈ X : Z j(X1, . . . ,Xk)< 0}|

}
/ |X| . (3)

Alg. 1 implements the RELU-aware search strategy we sketched above. It takes as input a NN model
F(Xs,W) along with a training data set X, and a formula φ over the model inputs X1, . . . ,Xk. Formula
φ typically encodes some kind of condition for an input that we are trying to find, e.g., the condition of
X1, . . . ,Xk being a sensitive sample for F(Xs,W). The algorithm begins by computing the d-biases of all
RELU nodes over the training set. It then fixes each RELU node according to its d-bias, i.e., it replaces,
in φ , each RELU activation function by the identity or the zero function, depending on the direction of
the bias.

If the modified formula φ , which represents an underapproximation of the original φ , permits a so-
lution, this solution is genuine, and we return it. Otherwise, we have to weaken the formula, by unfixing
one of the fixed RELU nodes. Here we unfix nodes with small d-bias first: a small bias means the pre-
dictive power of the decision profiling is weak, so unfixing this node may re-enable many solutions. This
order heuristic is implemented via the sorting step in Line 3; ties are resolved arbitrarily.

42 Detecting Neural Network Attacks Using Constraint Solvers

Algorithm 1 Greedy RELU branch exploration using decision profiling
Input: network model F(Xs,W), training data X, formula φ
Output: a model input X1, . . . ,Xk satisfying φ , if one exists; otherwise “unsat”

1: compute the d-biases of all RELU nodes in F(Xs,W) w.r.t. data set X
2: in φ , fix each RELU node according to its d-bias
3: sort the RELU nodes in F(Xs,W) in order of increasing d-bias: A1, . . . ,Al
4: for j := 1 to l do
5: if there exists X1, . . . ,Xk: (X1, . . . ,Xk) |= φ then
6: return “solution: X1, . . . ,Xk”
7: unfix RELU node A j

8: return “unsat”

We emphasize that we have merely used heuristics to determine the order in which different RELU
combinations are searched. Theoretical completeness of the algorithm is not affected, since all combina-
tions are, in the worst case, examined. If we were to pass φ directly to the SMT solver, we would leave
it to the solver to examine these combinations, oblivious to the information offered by the profiling data.

5 Evaluation

We conducted experiments to retrieve samples sensitive against a Trojan attack, as motivated in Sec. 3.2.2,
and checked their effectiveness in detecting the attack. We then assessed the scalability of the technique
to larger networks, both without and with Alg. 1. We used Microsoft’s Z3 as SMT solver. The experi-
ments were run on an Intel Core i7-10750H CPU at 2.60GHz and 16GB of RAM.

5.1 Victim Network

Our benchmarks for detecting a Trojan attack come from the Belgium Traffic Signs dataset [11, https:
//btsd.ethz.ch/shareddata]. We re-sized the images to 14x14 pixels and turned them grayscale.
We trained a fully-connected NN of dimensions 30x20x10x1 to identify whether a traffic sign indicates
a speed limit (label 0) or STOP (label 1). For this mini-image classification task, this NN—despite being
small—has 100% validation accuracy, precision, and recall.

5.2 Configuring the parameter space

We partition the sensitive-sample parameter space into attack parameters and sample parameters. Our
configuration was defined independently of the attack simulation.

Attack parameters. They model the Trojan attack and include the following:

Assumed target masquerade, t: STOP-sign label.

POI, w ∈W : weights attached to the output layer.

Weight deltas, δ : We assume the top weights, in terms of value, to be inflated and few, since the attack
is supposedly stealthy; the rest are assumed potentially deflated, (i.e., non-positive delta). For this
experiment where the trained weights are within [0,1], we assumed 30% are inflated by [0.05,0.25]
units; (we are not setting a larger sub-range since we are modelling an attack that is stealthy).

A. Docena, Th. Wahl, T. Pearce, Y. Fei 43

Sample parameters. They include the sample space and the detection threshold. We further added as
constraint the predicted label of the sample on the original model.

Sample space: In order to make the sensitive sample appear like a regular input, we randomly picked a
speed limit sign X0 from the test data (see Fig. 1 (left)) and added transform variables, γ̂ , over the
entire region of the pixel dimensions. The SS is the pointwise sum of the pixel values of X0 and
the assignment to the transform variables.

Predicted output label: We explicitly required that the originally predicted output label remain as a speed
limit sign even after the SS transformation.

Detection threshold, β̄ , and the satisfying logit threshold, ε̄: We first stipulated a detection threshold that
is significant to warrant weight perturbations: we set β̄ = 0.01; that is, a sensitivity of 1 percent-
age point in probability output or more is attributed to an attack in model parameters. Based on
this requirement, we determined ε̄ by computing the initial logit and then setting a satisfying logit
threshold. By forward propagation on the original network, we computed the logit of the random
sample X0 to be Z[4] = −4.8510. In this experiment, we set ε̄ = 1, which models a tweaked logit
Z[4]′ ≥ −3.8510. The corresponding modeled sensitivity under this setting is β ≥ 0.0131, which
satisfies the detection threshold.

5.3 Effectiveness of SS

After solving for the transform values, we tested the obtained sensitive sample in detecting the Trojanned
model. We deem the sample effective if the observed sensitivity is at least the detection threshold. If
it is below, this would be a false negative. Furthermore, to assess the possibility of false positives,
we subjected the original model to minor perturbations as they may occur “innocently” on the cloud.
Concretely, we compared the prediction of the sensitive samples on a version where model parameters are
originally stored in float16 precision to one where the parameters are stored in float32. If the sensitivity
to such innocent perturbations (SIP) remains below the detection threshold, then the sample does not
represent a false positive.

5.4 Results

Naive approach: This approach passes Eq. (2) to the SMT solver (w/o Alg. 1). After solving for the
transform variables (which took about one minute), we obtained the sample shown in Fig. 1 (right): it
has a sensitivity of β = 0.0744 (summarized in the first row of Table 2 in the Appendix). This sensitiv-
ity means that the prediction of the Trojanned model is 7.44 percentage points away from the original
prediction. Moreover, given SIP = 7.41E-06, the sample does not exhibit a false positive.

Figure 1: Randomly taken test sample (left) and transformed, sensitive sample (right)

Scaling of (2) to larger networks: Sec. B of the Technical Appendix shows results of attempting to
scale the naive approach to larger networks. Sec. C shows raw size data for various SMT encodings.

44 Detecting Neural Network Attacks Using Constraint Solvers

Employing Alg. 1: We allotted 20/60/120sec as the increasing time per iteration of the for loop in
Line 4, before the algorithm moves on to the next RELU combination. This reflects the greedy character
of the algorithm: we want to first try many instantiations of RELU nodes as “identity” or “zero”, believ-
ing that one of them will give us a solution. If this approach fails, we increase the time allotment per
iteration. This serves the goal of delaying advancing to later iterations, with fewer fixed RELU nodes,
as much as possible, which eventually degenerates the algorithm to one that simply has the solver ex-
plore the many RELU combinations. In Table 1, the iteration number where a satisfying assignment
was finally found is given in column “iter. #”. Small numbers here indicate success of the philosophy
purported by Alg. 1. Column “runtime” shows the total time it took to find a satisfying assignment, i.e.,
the sum across all iterations, for a respective iteration timeout of 20/60/120sec. If a solution is found for
an iteration timeout of 20sec, one would normally stop the algorithm. In order to evaluate scalability,
we include results for larger time allotments. But despite the extension, the solver wounded up with the
same result as with the initial allocation.

Network size iter. # sensitivity SIP total runtime (s)
30x20x10x1 6 0.1234 1.08E-05 111/312/ 612
40x20x20x1 4 0.8342 2.99E-05 65/185/ 365
50x30x10x1 14 0.3520 1.33E-05 264/784/1564
50x30x20x1 12 0.0249 4.00E-05 230/670/1330
60x40x20x1 2 0.9859 5.04E-06 36/ 75/ 135
90x60x30x1 — — — (out of resources)

Table 1: Search with ReLU profiling algorithm

Comparison naive approach/Alg. 1: Consider the case of the 30x20x10x1 NN model. Alg. 1 found
a satisfying assignment in iteration #6. This means that the activation functions of five neurons—those
with the smallest d-bias—were freed from their fixed instantiation to the identity or zero functions, and
reverted to exact RELU semantics. This combination yielded a sensitivity of 12.34 percentage points, a
higher sensitivity than the solution found by the naive approach. The time reported for Alg. 1’s 20s/iter.
run (111s) is larger though. This is not surprising, since Alg. 1 “wastes” five SMT runs. In fact, the
motivation for using this algorithm is not to find solutions in “easy” cases faster. It is, instead, to increase
scalability to larger models. Indeed, Alg. 1 was able to solve all models except the 90x60x30x1 case,
while the naive approach timed out for most.

Presently, the method is not able to handle deeper and larger networks, such as state-of-the-art con-
volutional neural networks. Nevertheless, the DNN models that we presented are valid networks; we
showed that SMT solvers can be used for such NN queries, e.g., sensitive-sample generation, when
appropriately formalized. To deal with the complexity of DNNs, research has been conducted into ded-
icated theories for NN queries, e.g., Reluplex [8]. Using a dedicated solver may potentially address the
scalability issue further: we first use Alg. 1 to eliminate some ReLU nodes, (e.g. the ones with high bias),
while others are left in. For those left in, Reluplex can be applied. The investigation of this possibility
can be picked up in future work.

A. Docena, Th. Wahl, T. Pearce, Y. Fei 45

6 Related Work

This work was inspired by the sensitive-sample fingerprinting technique proposed by He et al. [7], which
uses classic machine learning techniques based on (projected) gradient ascent to determine sensitive
samples. This is very efficient, but requires a starting point for the search and a convex solution space.
Lack of convexity can lead to sub-optimality or, worse, failure to converge. The goal here was to solve
a similar problem, but bring the flexibility of symbolic constraint solvers to bear: we can specify any
search space and sample conditions, as long as they are definable in the underlying logic. However, de-
finability does not imply efficient processibility, which is why Sec. 4 presents an algorithm for improved
satisfiability checking.

Solving an optimization problem, the gradient-based technique returns samples that maximize the
sensitivity. The authors conclude that any output discrepancy confirms the presence of an attack (“guar-
antee[s] zero false positives” [7]). As discussed in Sec. 3.2, this is not quite true: due to platform-
dependencies of floating-point computations [6], DNN model inference is not deterministic. We address
this problem using an empirical non-zero sensitivity detection threshold (Sec. 2).

Using symbolic techniques in deep learning is still a relatively young area; examples include [5, 12].
The Reluplex SMT solver [8] introduces a theory of real arithmetic extended by the RELU function as a
primitive operation. We can view our greedy Alg. 1 as an alternative dedicated way of handling RELU
nodes. A stand-alone comparison of both methods is left for future work.

Our method needs to be instantiated for different attack types (to avoid an unrealistic universal quan-
tification over “all” adversarial models). We have focused on Trojan attacks, a survey can be found
in [10]. Strategies for formalizing other types of DNN attacks are left as future work. “Fingerprinting”,
using inputs characteristic of model manipulations, is one way of detecting such attacks; there are others.
For instance, we can conclude the model has been compromised if, for some class, the minimal trigger
that causes a misclassification is substantially smaller than for other classes and thus is likely supported
by a Trojan [13]. In that approach, the defender does not need access to the trusted model or the training
data. The approach is designed specifically for backdoor-style attacks relying on a trigger. Other meth-
ods perform statistical analyses, e.g., determining the probability distribution of potential triggers [3] or
of prediction results under perturbations [4]. Such analyses may not be realistic in a cloud environment.

7 Summary

We revisited the technique of retrieving sensitive samples in detecting NN attacks. A previous approach
solves an optimization problem, using an efficient projected gradient-based search, in order to find the
optimal sensitivity [7], which faces, however, various technical preconditions and is somewhat rigid. Our
approach performs the search via a symbolic constraint solver. This permits a flexible specification of
desirable features of the sample. We argue that a sample need not be optimal to be effective, as long
as its sensitivity is above a threshold that delineates it from innocent perturbations that can occur upon
upload of the NN model to the cloud. This alternative comes with the price of efficiency, however. To
address scalability, we devised a greedy algorithm that searches through all possible combinations of
the ReLU node behaviors in an “easiest-first” order. This algorithm has applications in symbolic NN
analysis beyond sensitive-sample search. Future work includes investigating the performance impact of
using dedicated solvers for NN queries, such as Reluplex [8].

46 Detecting Neural Network Attacks Using Constraint Solvers

References

[1] Clark Barrett, Pascal Fontaine & Cesare Tinelli (2016): The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org.

[2] James Bornholt: Can you train a neural network using an SMT solver? https://www.cs.utexas.edu/

~bornholt/post/nnsmt.html (access May 2021).

[3] Huili Chen, Cheng Fu, Jishen Zhao & Farinaz Koushanfar (2019): DeepInspect: A Black-box Trojan Detec-
tion and Mitigation Framework for Deep Neural Networks. In: International Joint Conference on Artificial
Intelligence (IJCAI), doi:10.24963/ijcai.2019/647.

[4] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith Chinthana Ranasinghe & Surya Nepal (2019):
STRIP: a defence against trojan attacks on deep neural networks. In: Annual Computer Security Applications
Conference (ACSAC), doi:10.1145/3359789.3359790.

[5] Mirco Giacobbe, Thomas A. Henzinger & Mathias Lechner (2020): How Many Bits Does it Take to Quantize
Your Neural Network? In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
doi:10.1007/978-3-030-45237-7 5.

[6] Yijia Gu, Thomas Wahl, Mahsa Bayati & Miriam Leeser (2015): Behavioral Non-portability in Scien-
tific Numeric Computing. In: International Conference on Parallel and Distributed Computing (Euro-Par),
doi:10.1007/978-3-662-48096-0 43.

[7] Zecheng He, Tianwei Zhang & Ruby B. Lee (2019): Sensitive-Sample Fingerprinting of Deep
Neural Networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
doi:10.1109/CVPR.2019.00486.

[8] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian & Mykel J. Kochenderfer (2017): Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In: Computer Aided Verification (CAV),
doi:10.1007/978-3-319-63387-9 5.

[9] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang & Xiangyu Zhang (2018):
Trojaning Attack on Neural Networks. In: Network and Distributed System Security (NDSS), The Internet
Society, doi:10.14722/ndss.2018.23291.

[10] Yuntao Liu, Ankit Mondal, Abhishek Chakraborty, Michael Zuzak, Nina Jacobsen, Daniel Xing & Ankur
Srivastava (2020): A Survey on Neural Trojans. In: 21st International Symposium on Quality Electronic
Design (ISQED), doi:10.1109/ISQED48828.2020.9137011.

[11] Markus Mathias, Radu Timofte, Rodrigo Benenson & Luc Van Gool (2013): Traffic sign recognition –
How far are we from the solution? In: International Joint Conference on Neural Networks (IJCNN),
doi:10.1109/IJCNN.2013.6707049.

[12] Luca Pulina & Armando Tacchella (2012): Challenging SMT solvers to verify neural networks. AI Commun.,
doi:10.3233/AIC-2012-0525.

[13] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng & Ben Y. Zhao
(2019): Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. In: 2019 IEEE
Symposium on Security and Privacy (S&P), doi:10.1109/SP.2019.00031.

Technical Appendix

A Background

A.1 Neural Networks

A Neural Network (NN) is a parameterized, layered function that maps a vector X of features from some
n-dimensional input space to an output y, which may be discrete if the task is classification, or real if

A. Docena, Th. Wahl, T. Pearce, Y. Fei 47

regression. Given parameters W (a matrix of weights and biases), each layer consists of a linear function
li over the layer’s inputs and its weight parameters, and a subsequent non-linear activation function fi.
Function li is a simple dot product, translated by the bias, for a fully-connected layer. The activation
for inner layers is typically implemented via the rectified linear unit, defined as RELU(b) = max{b,0}.
The activated values become the inputs of the next layer. The result of the final linear function, known
as logit, i.e., computed at the output layer, is passed to a special activation function σ . For a binary
classification task, the output activation is typically a sigmoid function; for a multi-label classification, it
is a softmax function. Output y is then a set of probabilities indicating which among the labels the input
X most likely belongs to. For a regression task, the output activation is a linear function, which yields an
output over the real numbers. Thus given a network of L layers, we summarize the function computed
by the NN as

y = σ(lL(fL−1(. . . f1(l1(X ,W)) . . .))) = σ(F(X ,W)),

where F denotes the pre-activation output, i.e., the logit value computed for input X .

A.2 Trojan Attack on Neural Networks

A Trojan attack on NN perturbs model parameters in order to cause a misclassification towards a target
label on inputs with an embedded trigger; the modified network is said to be Trojanned. But, when the
Trojanned model is presented with inputs without the trigger, the prediction is unchanged. This makes
the attack hard to detect by unsuspecting users.

There are three steps to Trojan a neural network (see
figure on the right, taken from [9]). The attacker is as-
sumed to be able to modify the model parameters. First,
the attacker generates a Trojan trigger, which is a snippet
embedded to a test input that excites certain neurons so
that the prediction is skewed towards a target masquer-
ade. This trigger is initialized with a mask or shape. [9]
suggests that the target layer from which to establish a
link with the trigger is somewhere near the middle layer,
wherein the neurons that are

most connected are selected.
The authors define weight connection of a neuron as the L1-norm of the weights connected to the

neuron from the previous layer. The values of the initialized trigger are set by optimizing the activation
values of the select neurons to intended values, supposedly large. This establishes a strong connection
between the trigger and the select neurons, so that in the presence of the former the latter have strong
activations, which would influence the model prediction.

After generating the trigger, the attacker stamps it to some training samples for each of the output
labels, wherein the label for all these stamped samples is the target masquerade. If the attacker does not
have access to the training data, they can generate the latter by model inversion. The batch of samples
to be used for retraining the NN would consist of both unstamped and stamped samples. This last step
of retraining the original NN Trojans the network, such that the weights are re-adjusted so that the new
model predicts the target masquerade whenever the trigger is present in a test input, but predicts normally
when absent, making the attack stealthy.

48 Detecting Neural Network Attacks Using Constraint Solvers

B Scalability of naive sample search via SMT

Using the same training data and basic network architecture, we trained larger networks, by expanding
the layer sizes. We then simulated a Trojan attack on each of these. In order to assess scalability, we
kept all SS parameters as set earlier. (In practice, one might determine individual SS parameters for each
network.) Although we were able to transform sensitive samples in some networks, Table 2 shows the
poor scaling of the naive approach to larger networks, especially where the size of the layers close to the
output increases.

Network size sensitivity SIP runtime
30x20x10x1 0.0744 7.41E-06 71s
40x20x20x1 — — (out of resources)
50x30x10x1 0.0595 8.85E-07 4
50x30x20x1 — — (out of resources)
60x40x20x1 — — (out of resources)
90x60x30x1 — — (out of resources)

Table 2: Sensitivities and running time for sample search without RELU profiling

C Raw size data for encodings of various networks

To convey an idea of the raw complexity of the SMT approach, Table 3 shows various size data of the
network models and the SMT encoding (2) of the SS search.

NN dimensions # NN param. # RELU nodes SMT: LOC SMT: file size
30x20x10x1 6,751 60 7,853 354kB
40x20x20x1 9,141 80 10,363 468kB
50x30x10x1 11,701 90 12,943 592kB
50x30x20x1 12,021 100 13,333 613kB
60x40x20x1 15,101 120 16,503 770kB
90x60x30x1 25,051 180 26,753 1,284kB

Table 3: Complexity of SMT approach: NN dimensions, number of weights and biases, number of ReLU
nodes, lines of code of the SMT encoding, and file size

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 49–64, doi:10.4204/EPTCS.342.5

Querying RDF Databases with Sub-CONSTRUCTs

Dominique Duval
LJK - Univ. Grenoble Alpes

dominique.duval@univ-grenoble-alpes.fr

Rachid Echahed
LIG - Univ. Grenoble Alpes

rachid.echahed@imag.fr

Frédéric Prost
LIG - Univ. Grenoble Alpes

frederic.prost@univ-grenoble-alpes.fr

Graph query languages feature mainly two kinds of queries when applied to a graph database: those
inspired by relational databases which return tables such as SELECT queries and those which return
graphs such as CONSTRUCT queries in SPARQL. The latter are object of study in the present pa-
per. For this purpose, a core graph query language GrAL is defined with focus on CONSTRUCT
queries. Queries in GrAL form the final step of a recursive process involving so-called GrAL pat-
terns. By evaluating a query over a graph one gets a graph, while by evaluating a pattern over a
graph one gets a set of matches which involves both a graph and a table. CONSTRUCT queries are
based on CONSTRUCT patterns, and sub-CONSTRUCT patterns come for free from the recursive
definition of patterns. The semantics of GrAL is based on RDF graphs with a slight modification
which consists in accepting isolated nodes. Such an extension of RDF graphs eases the definition
of the evaluation semantics, which is mainly captured by a unique operation called Merge. Besides,
we define aggregations as part of GrAL expressions, which leads to an original local processing of
aggregations.

1 Introduction

Graph database query languages are becoming ubiquitous. In contrast to classical relational databases
where SQL language is a standard, different languages [1] have been proposed for querying graph
databases, like SPARQL [9] or Cypher [5]. Among the most popular models for representing graph
databases, one may quote for instance the sets of triples (or RDF graphs [10]) used by SPARQL or the
property graphs used by Cypher. In addition to the lack of a standard model to represent graph databases,
there are different kinds of queries in the context of graph query languages. One may essentially distin-
guish two classes of queries: those inspired by relational databases which return tables such as SELECT
queries and those which return graphs such as CONSTRUCT queries in SPARQL. Such CONSTRUCT
queries are graph-to-graph queries specific to graph databases.
The graph-to-graph queries received less attention than the graph-to-table queries. For instance, for
the SPARQL language, a semantics of SELECT queries and subqueries is proposed in [6], a semantics
of CONSTRUCT queries in [7] and a semantics of CONSTRUCT queries with nested CONSTRUCT
queries in FROM clauses in [2, 8], where the outcome of a subCONSTRUCT is a graph. All these works
consider graphs as sets of triples. Unfortunately, such a definition of graphs prevents having a uniform
semantics of all patterns and in particular for BIND patterns.
In this paper, we focus on graph-to-graph queries and subqueries for RDF graphs and we propose a
new semantics for CONSTRUCT subqueries which departs from the one in [2, 8]. First, we propose to
change slightly the definition of graphs by allowing isolated nodes. Indeed, this new definition of graphs
allows us to have a uniform semantics of all patterns. In fact, we define CONSTRUCT subpatterns rather

50 Querying RDF Databases with Sub-CONSTRUCTs

than CONSTRUCT subqueries. For this purpose, we introduce a core query language GrAL based on
RDF graphs. The syntactic categories of GrAL include both queries and patterns. When evaluating a
CONSTRUCT query over a graph one gets a graph, whereas when evaluating a CONSTRUCT pattern
over a graph one gets a set of matches which involves both variable assignments and a graph. In fact, a
CONSTRUCT query first acts as a CONSTRUCT pattern and then returns only the constructed graph.
As the definition of patterns is recursive, CONSTRUCT subpatterns are obtained for free.
In order to define the semantics of GrAL, we introduce an algebra of operations over sets of matches,
where a match is a morphism between graphs. We propose to base the semantics of GrAL upon an
algebra on sets of matches, like the semantics of SQL is based upon relational algebra. All operations
in our algebra essentially derive from a unique operation called Merge, which generalizes the well-
known Join operation. As stated earlier, we consider graphs consisting of classical RDF triples possibly
augmented with some additional isolated nodes. This slight extension helps formulating the semantics
of patterns and queries without using some cumbersome notations to handle, for instance, environments
defined by variable bindings. The proposed algebra is used to define an evaluation semantics for GrAL.
As for aggregations, they are handled locally inside expressions. The semantics of the various patterns
and queries is uniform, as it is based on instances of the Merge operation.
The paper is organized as follows. Section 2 introduces the algebra designed to express the semantics
of the query language GrAL. In Section 3, the language GrAL is defined by its syntax and semantics.
Concluding remarks are given in Section 4.

2 The Graph Query Algebra

The Graph Query Algebra is a family of operations which are used in Section 3 for defining the evalu-
ation of queries in the Graph Algebraic Query Language GrAL. Graphs and matches are introduced in
Section 2.1, then operations on sets of matches are defined in Section 2.2.

2.1 Graphs and matches

In this paper, graphs are kinds of generalised RDF graphs that may contain isolated nodes. Let L be a
set, called the set of labels, union of two disjoint sets C and V , called respectively the set of constants
and the set of variables.

Definition 2.1 (graph). Every element t = (s, p,o) of L 3 is called a triple and its members s, p and o
are called respectively the subject, predicate and object of t. A graph X is made of a subset XN of L
called the set of nodes of X and a subset XT of L 3 called the set of triples of X , such that the subject
and the object of each triple of X are nodes of X . The nodes of X which are neither a subject nor an
object are called the isolated nodes of X . The set of labels of a graph X is the subset L (X) of L made
of the nodes and predicates of X , then C (X) = C ∩L (X) and V (X) = V ∩L (X). Given two graphs
X1 and X2, the graph X1 is a subgraph of X2, written X1 ⊆ X2, if (X1)N ⊆ (X2)N and (X1)T ⊆ (X2)T , then
obviously L (X1) ⊆ L (X2). The union X1 ∪ X2 is the graph defined by (X1 ∪ X2)N = (X1)N ∪ (X2)N and
(X1 ∪ X2)T = (X1)T ∪ (X2)T , then L (X1 ∪ X2) = L (X1)∪L (X2).

We will not use the intersection X1 ∩ X2, which could be defined by (X1 ∩ X2)N = (X1)N ∩ (X2)N and
(X1 ∩ X2)T = (X1)T ∩ (X2)T : then the intersection of two graphs without isolated nodes might have
isolated nodes and L (X1 ∩ X2) might be strictly smaller than L (X1) ∩ L (X2), as for instance when
X1 = {(x,y,z)} and X2 = {(y,z,x)} so that X1 ∩ X2 = {x}.

D. Duval, R. Echahed & F. Prost 51

Example 2.2. We introduce here a toy database representing a simplified view of a social media network.
We will use it as a running example to illustrate various definitions. The network consists in authors
publishing messages. Each message is timestamped at a certain date (a day). A message can refer to
other messages and an author may like a message. An instance of such a network is described by the
following graph G0 (written “à la” RDF):

G0 =

auth1 publishes mes1 . auth1 publishes mes2 .

auth2 publishes mes3 . auth3 publishes mes4 . auth3 publishes mes5 .

mes1 stampedAt date1 . mes2 stampedAt date2 .

mes3 stampedAt date1 . mes4 stampedAt date4 . mes5 stampedAt date4 .

mes3 refersTo mes1 . mes4 refersTo mes1 . mes4 refersTo mes2 .

auth1 likes mes3 . auth1 likes mes4 . auth1 likes mes5 .

auth2 likes mes1 . auth2 likes mes4

The meaning of G0 is that author auth1 has published messages mes1 and mes2, which have been
stamped respectively at dates date1 and date2, etc.

Definition 2.3 (match). A match m from a graph X to a graph G, denoted m : X → G, is a function
from L (X) to L (G) which preserves nodes and preserves triples and which fixes C , in the sense that
m(XN) ⊆ GN , m3(XT) ⊆ GT and m(x) = x for each x in C (X). The set of all matches from X to G is
denoted Match(X ,G). An isomorphism of graphs is an invertible match.

When n is an isolated node of X then the node m(n) does not have to be isolated in G. A match m : X → G
determines two functions mN : XN → GN and mT : XT → GT , restrictions of m and m3 respectively. A
match m : X → G is an isomorphism if and only if both functions mN : XN → GN and mT : XT → GT are
bijections. This means that a function m from L (X) to L (G) is an isomorphism of graphs if and only
if C (X) = C (G) with m(x) = x for each x ∈ C (X) and m is a bijection from V (X) to V (G): thus, X is
the same as G up to variable renaming. It follows that the symbol used for naming a variable does not
matter as long as graphs are considered only up to isomorphism.

Definition 2.4 (image of a graph by a function). Let X be a graph. Every function f : V (X) → L can
be extended in a unique way as a function f ′ : L (X) → L that fixes C . The image f (X) of X by f is
the graph made of the nodes f ′(n) for n ∈ XN and the triples (f ′)3(t) for t ∈ XT . The function f can be
extended in a unique way as a match f ♯ : X → f (X).

Definition 2.5 (compatible matches). Two matches m1 : X1 → G1 and m2 : X2 → G2 are compatible,
written as m1 ∼ m2, if m1(x) = m2(x) for each x ∈ V (X1) ∩ V (X2). Given two compatible matches
m1 : X1 → G1 and m2 : X2 → G2, let m1 ⊲⊳ m2 : X1 ∪ X2 → G1 ∪ G2 denote the unique match such that
m1 ⊲⊳ m2 ∼ m1 and m1 ⊲⊳ m2 ∼ m2 (which means that m1 ⊲⊳ m2 coincides with m1 on X1 and with m2 on
X2).

We will see in Section 3 that the execution of a query in GrAL is a graph-to-graph transformation, which
main part is a graph-to-set-of-matches transformation.

Definition 2.6 (set of matches, assignment table). Let X and G be graphs. A set m of matches, all of
them from X to G, is denoted m : X ⇒ G. The assignment table Tab(m) of m is the two-dimensional
table with the elements of V (X) in its first row, then one row for each m in m, and the entry in row m and
column x equals to m(x).

Thus, the assignment table Tab(m) describes the set of functions m|V (X) : V (X) ⇒ L , made of the
functions m|V (X) : V (X) → L for all m ∈ m. The set of matches m : X ⇒ G is determined by the graphs
X and G and the assignment table Tab(m). This property is used hereafter to describe some examples.

52 Querying RDF Databases with Sub-CONSTRUCTs

Example 2.7. Here are some examples of matches in the graph G0 (defined in Example 2.2).

• Let Pps be the following graph (written “à la” SPARQL: variable names begin with “?”):

Pps = ?a publishes ?m . ?m stampedAt ?d

The set mps of all matches from Pps to G0 is:

mps : Pps ⇒ G0 with Tab(mps) =

?a ?m ?d
auth1 mes1 date1

auth1 mes2 date2

auth2 mes3 date1

auth3 mes4 date4

auth3 mes5 date4

• Let Ppl be the graph:

Ppl = ?a1 publishes ?m . ?a2 likes ?m

The set mpl of all matches from Ppl to G0 is:

mpl : Ppl ⇒ G0 with Tab(mpl) =

?a1 ?m ?a2
auth1 mes1 auth2

auth2 mes3 auth1

auth3 mes4 auth1

auth3 mes4 auth2

auth3 mes5 auth1

• Let P′
pl be the following subgraph of Ppl, made of two isolated nodes:

P′
pl = ?a1 . ?a2

The subset m′
pl of mpl made of the restrictions to P′

pl of the matches in mpl is:

m′
pl : P′

pl ⇒ G0 with Tab(m′
pl) =

?a1 ?a2
auth1 auth2

auth2 auth1

auth3 auth1

auth3 auth2

• Let Pprp be the graph:

Pprp = ?a1 publishes ?m1 . ?m1 refersTo ?m2 . ?a2 publishes ?m2

The set mprp of all matches from Pprp to G0 is:

mprp : Pprp ⇒ G0 with Tab(mprp) =

?a1 ?m1 ?m2 ?a2
auth2 mes3 mes1 auth1

auth3 mes4 mes1 auth1

auth3 mes4 mes2 auth1

D. Duval, R. Echahed & F. Prost 53

Definition 2.8 (image of a graph by a set of functions). The image of a graph X by a set of functions f
from V (X) to L , denoted f (X), is the graph union of the graphs f (X) for every f in f . Every set of
functions f : V (X) ⇒ L can be extended in a unique way as a set of matches f ♯ : X ⇒ f (X).

Remark 2.9 (about RDF graphs). RDF graphs [10] are graphs (as in Definition 2.1) without isolated
nodes, where constants are either IRIs (Internationalized Resource Identifiers) or literals and where all
predicates are IRIs and only objects can be literals. Blank nodes in RDF graphs are the same as variable
nodes in our graphs. Thus an isomorphism of RDF graphs, as defined in [10], is an isomorphism of
graphs as in Definition 2.3.

2.2 Operations on sets of matches

In this Section we introduce some operations on sets of matches which are used in Section 3 for defining
the semantics of GrAL. The prominent one is the merging operation (Definition 2.10), which is a kind of
generalized joining operation (see Definition 2.14). Other basic operations are the simple restriction and
extension operations (Definitions 2.12 and 2.13). Then, these basic operations are combined in order to
get some derived operations (Definition 2.14).

Definition 2.10 (Merge). Let m : X ⇒ G be a set of matches and p
m

: Y ⇒ Hm a family of sets of
matches indexed by m ∈ m, and let H = ∪m∈mHm. The merging of m along the family (p

m
)m∈m is the set

of matches m ⊲⊳ p for every m ∈ m and every p ∈ p
m

compatible with m:
Merge(m,(p

m
)m∈m) = {m ⊲⊳ p | m ∈ m ∧ p ∈ p

m
∧ m ∼ p} : X ∪Y ⇒ G ∪ H .

Let q = Merge(m,(p
m
)m∈m), then q is made of a match m ⊲⊳ p for each pair (m, p) with m ∈ m and p ∈ p

m
compatible with m (so that for each m in m the number of m ⊲⊳ p in q is between 0 and Card(p

m
)). The

match m ⊲⊳ p : X ∪Y → G ∪ H is such that m ⊲⊳ p(x) = m(x) when x ∈ X and m ⊲⊳ p(y) = p(y) when
y ∈ Y , which is unambiguous because of the compatibility condition.

Example 2.11. Here are some examples of merging, based on the sets of matches in Example 2.7.

• Let p′
pl

be similar to m′
pl, up to renaming the variables ?a1 and ?a2 as ?a2 and ?a1, respectively,

so that p′
pl

is:

p′
pl

: P′
pl ⇒ G0 with Tab(p′

pl
) =

?a1 ?a2
auth2 auth1

auth1 auth2

auth1 auth3

auth2 auth3

For each match m in m′
pl let p

m
= p′

pl
, which does not depend on m. Then Merge(m′

pl,(p
m
)m∈m′

pl
)

is denoted simply Join(m′
pl, p′

pl
) (as in Definition 2.14 and Remark 2.15) and:

q′
pl

= Join(m′
pl, p′

pl
) : P′

pl ⇒ G0 with Tab(q′
pl
) =

?a1 ?a2
auth1 auth2

auth2 auth1

• Assume that there is some operation concat that builds a string from any given date and string. For
each match m in mps let p

m
= {pm} : {?dm} ⇒ Hps where pm(?dm) = concat(m(?d),m(?m)) and

54 Querying RDF Databases with Sub-CONSTRUCTs

Hps is any graph that contains all strings concat(?d,?m) as nodes. Then:

q
ps

= Merge(mps,(p
m
)m∈mps

) : Pps ∪{?dm} ⇒ G0 ∪ Hps

with Tab(q
ps

) =

?a ?m ?d ?dm
auth1 mes1 date1 date1mes1

auth1 mes2 date2 date2mes2

auth2 mes3 date1 date1mes3

auth3 mes4 date4 date4mes4

auth3 mes5 date4 date4mes5

• For each match m in mps let p
m

= {pm} : {?r} ⇒ Hvar where pm(?r) is some fresh variable ?rm
and Hvar is any graph that contains all variables ?rm as nodes. Then:

q
var

= Merge(mps,(p
m
)m∈mps

) : Pps ∪{?r} ⇒ G0 ∪ Hvar

with Tab(q
var

) =

?a ?m ?d ?r
auth1 mes1 date1 ?r1
auth1 mes2 date2 ?r2
auth2 mes3 date1 ?r3
auth3 mes4 date4 ?r4
auth3 mes5 date4 ?r5

Definition 2.12 (Restrict). Let m : X ⇒ G be a set of matches. For every graph Y contained in X and
every graph H contained in G such that m(Y) ⊆ H , the restriction Restrict(m,Y,H) : Y ⇒ H is made of
the restrictions of the matches in m as matches from Y to H . When H = G the notation may be simplified:
Restrict(m,Y) = Restrict(m,Y,G) : Y ⇒ G.
Definition 2.13 (Extend). Let m : X ⇒ G be a set of matches. For every graph H containing G, the
extension Extend(m,H) : X ⇒ H is made of the extensions of the matches in m as matches from X to H .
New operations are obtained by combining the previous ones (assuming that true is a constant). Com-
ments on Definition 2.14 are given in Remark 2.15. We will see in Section 3.2 that these derived opera-
tions provide the semantics of the operators of the language GrAL.
Definition 2.14 (derived operations).

• For every sets of matches m : X ⇒ G and p : Y ⇒ H , let p
m

= p for each m ∈ m, then:
Join(m, p) = Merge(m,(p

m
)m∈m) : X ∪Y ⇒ G ∪ H .

• For every set of matches m : X ⇒ G, every family of constants c = (cm)m∈m and every variable x,
let p

m
= {pm} and pm(x) = cm for each m ∈ m, then:

Bind(m,c,x) = Merge(m,(p
m
)m∈m) : X ∪{x} ⇒ G ∪ c.

• For every set of matches m : X ⇒ G and every family of constants c = (cm)m∈m, for some fresh
variable x, let true = (true)m∈m:

Filter(m,c) = Restrict(Bind(Bind(m,c,x), true,x),X ,G) : X ⇒ G.

• For every set of matches m : X ⇒ G and every graph R, for every m ∈ m let pm : R → pm(R) be the
match such that:

pm(x) = m(x) if x ∈ V (R)∩V (X)
and pm(x) = var(x,m) is a fresh variable if x ∈ V (R)\V (X)

and let p
m

= {pm} and p(R) = ∪m∈m(pm(R)), then:
Construct(m,R) = Restrict(Merge(m,(p

m
)m∈m),R) : R ⇒ G ∪ p(R).

D. Duval, R. Echahed & F. Prost 55

• For every sets of matches m : X ⇒ G and p : X ⇒ H:
Union(m, p) = Extend(m,G ∪ H) ∪ Extend(p,G ∪ H) : X ⇒ G ∪ H .

Remark 2.15. Let us analyse these definitions. Note that the definition of Bind and Filter rely on the
fact that isolated nodes are allowed in graphs.

• Operation Join is Merge when the set of matches p
m

does not depend on m, so that:
Join(m, p) = {m ⊲⊳ p | m ∈ m ∧ p ∈ p ∧ m ∼ p} : X ∪Y ⇒ G ∪ H .

It follows that Join is commutative.

• Operation Bind is Merge when p
m

has exactly one element pm for each m, which is such that
pm(x) = cm. There are two cases:

– If x ∈ V (X) then this operation selects the matches m in m such that m(x) = cm:
Bind(m,c,x) = {m | m ∈ m ∧ m(x) = cm} : X ⇒ G.

– If x 6∈ V (X) then this operation extends each match m in m by assigning the value cm to the
variable x. Let us denote the resulting match as m ⊎ (x 7→ cm), so that:

Bind(m,c,x) = {m ⊎ (x 7→ cm) | m ∈ m} : X ∪{x} ⇒ G ∪{c}.

• Operation Filter applies Bind twice, first when x 6∈ V (X) for extending each m ∈ m by assigning
cm to x, then since x ∈ V (X ∪{x}) for selecting the matches m in m such that cm = true. Now the
value of the auxiliary variable x is always true, so that x can be dropped: this is the role of the last
step which restricts the domain of the matches from X ∪{x} to X and its range from G∪{c} to G.

• The first step in operation Construct is Merge when p
m

has exactly one element pm for each m (as
for Bind), which is determined by pm(x) = var(x,m) for each variable x in R that does not occur
in X . Each var(x,m) is a fresh variable, which means that it is distinct from the variables in G, X
and R, and that the variables var(x,m) are pairwise distinct. Note that the precise symbol used for
denoting var(x,m) does not matter. The second step in operation Construct restricts the domain of
the matches from X ∪ R to R. Thus:

Construct(m,R) is the set of matches from R to G ∪ p(R)
determined by the functions fm : V (R) → L (for each m ∈ m) such that
fm(x) = m(x) if x ∈ V (R)∩V (X) and fm(x) = var(x,m) if x ∈ V (R)\V (X).

Thus, the graph G ∪ p(R) is obtained by “gluing” one copy of G with Card(m) copies of R in the
right way. Note that the functions fm are pairwise distinct when V (R) is not included in V (X), but
it needs not be the case in general. Also, note that the domain R of Construct(m,R) may be quite
different from the domain X of m, whereas every other operation in Definition 2.14 either keeps or
extends the domain of m.

• Operation Union is simply the set-theoretic union of sets of matches which share the same domain
(by assumption) and the same range (by extending the range if necessary). This operation differs
from the previous ones in the sense that it is not defined by examining the matches in its arguments.
Note that Union is commutative.

Proposition 2.16. The sets of matches obtained by the operations previously defined in this Section have
bounded cardinals, as follows.

56 Querying RDF Databases with Sub-CONSTRUCTs

Card(Merge(m,(p
m
)m∈m)) ≤ ∑m∈m(Card(p

m
))

Card(Restrict(m,X ,G)) ≤ Card(m)
Card(Extend(m,H)) = Card(m)
Card(Join(m, p)) ≤ Card(m)× Card(p)

Card(Bind(m,c,x)) = Card(m)
Card(Filter(m,c)) ≤ Card(m)
Card(Construct(m,R)) ≤ Card(m)
Card(Union(m, p)) ≤ Card(m)+ Card(p)

The proof of Proposition 2.16 follows easily from the definitions.

3 The Graph Algebraic Query Language

In this Section we introduce the syntax and semantics of the Graph Algebraic Query Language GrAL.
There are three syntactic categories in GrAL: expressions, patterns and queries. Expressions are con-
sidered in Section 3.1. Patterns are defined in Section 3.2, their semantics is presented as an evaluation
function which maps every pattern P and graph G to a set of matches [[P]]G. Queries are defined in
Section 3.3, they are essentially specific kinds of patterns and their semantics is easily derived from the
semantics of patterns, the main difference is that the execution of a query on a graph returns simply a
graph instead of a set of matches.
To each expression e or pattern P is associated a set of variables called its in-scope variables and denoted
V (e) or V (P), respectively. An expression e is over a pattern P if V (e) ⊆ V (P). In this Section, as
in Section 2, the set of labels L is the union of the disjoint sets C and V , of constants and variables
respectively. We assume that the set C of constants contains the numbers and strings and the boolean
values true and false, as well as a symbol ⊥ for errors.

3.1 Expressions

The expressions of GrAL are built from the labels using operators, which are classified as either basic
operators (unary or binary) and aggregation operators (always unary). Remember that typing constraints
are not considered in this paper. Typically, and not exclusively, the sets Op1, Op2 and Agg of basic unary
operators, basic binary operators and aggregation operators can be:

Op1 = {−,NOT} ,
Op2 = {+,−,×,/,=,>,<,AND,OR} ,
Agg = Aggelem ∪{agg DISTINCT | agg ∈ Aggelem} .

where Aggelem = {MAX,MIN,SUM,AVG,COUNT}
A group of expressions is a non-empty finite list of expressions.

Definition 3.1 (syntax of expressions). The expressions e of GrAL and their set of in-scope variables
V (e) are defined recursively as follows:

• A constant c ∈ C is an expression with V (c) = /0.

• A variable x ∈ V is an expression with V (x) = {x}.

• If e1 is an expression and op ∈ Op1 then op e1 is an expression with V (op e1) = V (e1).

• If e1 and e2 are expressions and op ∈ Op2 then e1 op e2 is an expression with V (e1 op e2) =
V (e1)∪V (e2).

D. Duval, R. Echahed & F. Prost 57

• If e1 is an expression and agg ∈ Agg then agg(e1) is an expression with V (agg(e1)) = V (e1).

• If e1 is an expression, agg ∈ Agg and gp a group of expressions with all its variables distinct from
the variables in e1, then agg(e1 BY gp) is an expression with V (agg(e1 BY gp)) = V (e1).

The value of an expression with respect to a set of matches m (Definition 3.2) is a family of constants
ev(m,e) = (ev(m,e)m)m∈m indexed by the set m. Each constant ev(m,e)m depends on e and m and it
may also depend on other matches in m when e involves aggregation operators. The value of a group
of expressions gp = (e1, ...,ek) with respect to m is the list ev(m,gp)m = (ev(m,e1), ...,ev(m,ek)). To
each basic operator op is associated a function [[op]] (or simply op) from constants to constants if op is
unary and from pairs of constants to constants if op is binary. To each aggregation operator agg in Agg
is associated a function [[agg]] (or simply agg) from multisets of constants to constants. Note that each
family of constants determines a multiset of constants: for instance a family c = (cm)m∈m of constants
indexed by the elements of a set of matches m determines the multiset of constants {|cm | m ∈ m|}, which
is also denoted c when there is no ambiguity. Some aggregation operators agg in Aggelem are such that
[[agg]](c) depends only on the set underlying the multiset c, which means that [[agg]](c) does not depend
on the multiplicities in the multiset c: for instance this is the case for MAX and MIN but not for SUM,
AVG, COUNT. When agg = aggelem DISTINCT with aggelem in Aggelem then [[agg]](c) is [[aggelem]]
applied to the underlying set of c. For instance, COUNT (c) counts the number of elements of the
multiset c with their multiplicies, while COUNT DISTINCT (c) counts the number of distinct elements
in c.

Definition 3.2 (evaluation of expressions). Let X be a graph, e an expression over X and m : X ⇒ Y a
set of matches. The value of e with respect to m is the family of constants ev(m,e) = (ev(m,e)m)m∈m
defined recursively as follows (with notations as in Definition 3.1):

• ev(m,c)m = c.

• ev(m,x)m = m(x).

• ev(m,op e1)m = [[op]]ev(m,e1)m .

• ev(m,e1 op e2)m = ev(m,e1)m [[op]]ev(m,e2)m .

• ev(m,agg(e1))m = [[agg]](ev(m,e1)) (which is the same for every m in m).

• ev(m,agg(e1 BY gp))m = [[agg]](ev(m|gp,m,e1)) where m|gp,m is the subset of m made of the
matches m′ in m such that ev(m,gp)m′ = ev(m,gp)m (which is the same for every m and m′ in
m such that ev(m,gp)m = ev(m,gp)m′).

Example 3.3. Let mpl be as in Example 2.7. For every m in mpl we have:

ev(mpl,COUNT (likes))m = 5

whereas ev(mpl,COUNT (likes BY ?a1))m depends on the match m in mpl:

ev(mpl,COUNT (likes BY ?a1))m =

1 when m(?a1) = auth1

1 when m(?a1) = auth2

3 when m(?a1) = auth3

Definition 3.4 (equivalence of expressions). Two expressions over a graph X are equivalent if they have
the same value with respect to every set of matches m : X ⇒ Y .

58 Querying RDF Databases with Sub-CONSTRUCTs

3.2 Patterns

In Definition 3.5 the patterns of GrAL are built from graphs by using five operators: JOIN, BIND,
FILTER, CONSTRUCT and UNION. In Definition 3.6 the semantics of patterns is given by an evaluation
function. Some patterns have an associated graph called a template, such a pattern P may give rise to a
query Q as explained in Section 3.3, then the result of query Q is built from the template of P.

Definition 3.5 (syntax of patterns). The patterns P of GrAL, their set of in-scope variables V (P) and
their template graph T (P) when it exists are defined recursively as follows.

• A graph is a pattern, called a basic pattern, and V (P) is the set of variables of the graph P.

• If P1 and P2 are patterns then P1 JOIN P2 is a pattern and V (P1 JOIN P2) = V (P1)∪V (P2).

• If P1 is a pattern, e an expression over P1 and x a variable then P1 BIND e AS x is a pattern and
V (P1 BIND e AS x) = V (P1)∪{x}.

• If P1 is a pattern and e an expression over P1 then P1 FILTER e is a pattern and V (P1 FILTER e) =
V (P1).

• If P1 is a pattern and R a graph then P1 CONSTRUCT R,
also written CONSTRUCT R WHERE P1, is a pattern and V (P1 CONSTRUCT R) = V (R).
In addition this pattern has a template T (P1 CONSTRUCT R) = R.

• If P1 and P2 are patterns with template and if T (P1) = T (P2) = R then
P1 UNION P2 is a pattern and V (P1 UNION P2) = V (R).
In addition this pattern has a template T (P1 UNION P2) = T (P1) = T (P2).

The value of a pattern over a graph is a set of matches, as defined now.

Definition 3.6 (evaluation of patterns). The value of a pattern P of GrAL over a graph G is a set of
matches [[P]]G : [P] ⇒ G(P) from a graph [P] that depends only on P to a graph G(P) that contains G. This
value [[P]]G : [P] ⇒ G(P) is defined inductively as follows (with notations as in Definition 3.1):

• If P is a basic pattern then [[P]]G = Match(P,G) : P ⇒ G.

• [[P1 JOIN P2]]G = Join([[P1]]G, [[P2]]G(P1)) : [P1]∪ [P2] ⇒ G(P1)
(P2).

• [[P1 BIND e AS x]]G = Bind([[P1]]G,ev([[P1]]G,e),x) : [P1]∪{x} ⇒ G(P1) ∪ [[P1]]G(e).

• [[P1 FILTER e]]G = Filter([[P1]]G,ev([[P1]]G,e)) : [P1] ⇒ G(P1).

• [[P1 CONSTRUCT R]]G = Construct([[P1]]G,R) : R ⇒ G(P1) ∪ [[P1]]G(R).

• [[P1 UNION P2]]G = Union([[P1]]G, [[P2]]G(P1)) : R ⇒ G(P1)
(P2) where R = T (P1) = T (P2).

Remark 3.7. Note that, syntactically, each operator OP builds a pattern P from a pattern P1 and a
parameter param, which is either a pattern P2 (for JOIN and UNION), a pair (e,x) made of an expression
and a variable (for BIND), an expression e (for FILTER) or a graph R (for CONSTRUCT). Semantically,
for every non-basic pattern P = P1 OP param, we denote m1 : X1 ⇒ G1 for [[P1]]G : [P1] ⇒ G(P1) and
m : X ⇒ G′ for [[P]]G : [P] ⇒ G(P). In every case it is necessay to evaluate m1 before evaluating m:
for JOIN and UNION this is because pattern P2 is evaluated on G1, for BIND and FILTER because
expression e is evaluated with respect to m1, and for CONSTRUCT because of the definition of Construct.
According to Definition 3.6 given a pattern P and a graph G, the value m : X ⇒ G′ of P is determined as
follows:

• When P is a basic pattern then X = P, G′ = G and m is made of all matches from P to G.

D. Duval, R. Echahed & F. Prost 59

• P = P1 OP param then the semantics of P is easily derived from Definition 2.14 (see also Re-
mark 2.15). However, note that the semantics of P1 JOIN P2 and P1 UNION P2 is not symmetric
in P1 and P2 in general, unless G(P1) = G and G(P2) = G, which occurs when P1 and P2 are basic
patterns.

• The graph G(P) is built by adding to G “whatever is required” for the evaluation, in examples we
often avoid its precise description.

Given a non-basic pattern P = P1 OP param, the pattern P1 is a subpattern of P, as well as P2 when
P = P1 JOIN P2 or P = P1 UNION P2. The semantics of patterns is defined in terms of the semantics
of its subpatterns (and the semantics of its other arguments, if any). Thus, for instance, CONSTRUCT
patterns can be nested at any depth.

Proposition 3.8. For every pattern P, the set V (P) of in-scope variables of P is the same as the set
V ([P]) of variables of the graph [P].

Example 3.9. In each item below we consider first some pattern Pi and some template Ri, then the pattern

Ci = Pi CONSTRUCT Ri also written as Ci = CONSTRUCT Ri WHERE Pi .

We refer to Examples 2.7 and 3.3.

• C1 = CONSTRUCT { ?a1 cites ?a2 }

WHERE { ?a1 publishes ?m1 . ?m1 refersTo ?m2 . ?a2 publishes ?m2 }

Here, C1 = P1 CONSTRUCT R1 where P1 = Pprp, so that the value of P1 over G0 is mprp : P1 ⇒ G.
Note that V (R1) ⊆ V (P1). Let G1 = G0 ∪{auth2 cites auth1 . auth3 cites auth1}, the value
of C1 over G0 is:

[[C1]]G0 : R1 ⇒ G1 with Tab([[C1]]G0) =

?a1 ?a2
auth2 auth1

auth3 auth1

• C2 = CONSTRUCT { ?n }

WHERE {

?a likes ?m

BIND COUNT(likes) AS ?n }

Here, C2 = P2 CONSTRUCT R2 where the template R2 is the graph made of only one isolated
node which is the variable ?n. The graph [P2] is {?a likes ?m . ?n}. Let G2 = G0 ∪{5}, the value
of C2 over G0 is:

[[P2]]G0 : [P2] ⇒ G2 with Tab([[P2]]G0) =

?a ?m ?n
auth1 mes3 5

auth1 mes4 5

auth1 mes5 5

auth2 mes1 5

auth2 mes4 5

Then the graph [C2] is {?n} and the value of C2 over G0 is:

[[C2]]G0 : [C2] ⇒ G2 with Tab([[C2]]G0) =
?n
5

60 Querying RDF Databases with Sub-CONSTRUCTs

• C3 = CONSTRUCT { ?a1 nbOfLikes ?n }

WHERE { ?a1 publishes ?m . ?a2 likes ?m

FILTER (NOT(?a1=?a2))

BIND COUNT(likes BY ?a1) AS ?n }

Here, C3 = P3 CONSTRUCT R3 where R3 = {?a1 nbOfLikes ?n} is made of one triple and [P3] =
{?a1 publishes ?m . ?a2 likes ?m . ?n}. The evaluation of C3 over G0 starts from mpl. Let
G3 = G0 ∪ {auth1 nbOfLikes 1 . auth2 nbOfLikes 1 . auth3 nbOfLikes 3}, the value of C3
over G0 is:

[[P3]]G0 : [P3] ⇒ G3 with Tab([[P3]]G0) =

?a1 ?m ?a2 ?n
auth1 mes1 auth2 1

auth2 mes3 auth1 1

auth3 mes4 auth1 3

auth3 mes4 auth2 3

auth3 mes5 auth1 3

Then the graph [C3] is R3 = {?a1 nbOfLikes ?n} and the value of C3 over G0 is:

[[C3]]G0 : [C3] ⇒ G3 with Tab([[C3]]G0) =

?a1 ?n
auth1 1

auth2 1

auth3 3

• C4 = CONSTRUCT { ?a1 nbOfFriends ?n }

WHERE

{

CONSTRUCT { ?a1 friend ?a2 }

WHERE {

?a1 publishes ?m1 . ?a2 likes ?m1 .

?a2 publishes ?m2 . ?a1 likes ?m2

}

BIND COUNT (friend BY ?a1) AS ?n

}

Here C4 = P4 CONSTRUCT R4 where P4 itself contains a subpattern C′
4 = P′

4 CONSTRUCT R′
4.

The evaluation of the basic pattern P′
4 over G0 gives

[[P′
4]]G0 : P′

4 ⇒ G0 with Tab([[P′
4]]G0) =

?a1 ?m1 ?a2 ?m2
auth1 mes1 auth2 mes3

auth2 mes3 auth1 mes1

Then we get [C′
4] = {?a1 friend ?a2} and:

[[C′
4]]G0 : [C′

4] ⇒ G0
(C′

4) with Tab([[C′
4]]G0) =

?a1 ?a2
auth1 auth2

auth2 auth1

Finally [C4] = {?a1 NbOfFriends ?n} and:

[[C4]]G0 : [C4] ⇒ G0
(C4) with Tab([[C4]]G0) =

?a1 ?n
auth1 1

auth2 1

D. Duval, R. Echahed & F. Prost 61

• C5 = CONSTRUCT { ?r author ?a . ?r date ?d }

WHERE { ?a publishes ?m . ?m stampedAt ?d }

Here C5 = P5 CONSTRUCT R5 with a variable ?r in R5 that does not occur in P5. The value of the
basic pattern P5 over G0 is:

[[P5]]G0 : P5 ⇒ G0 with Tab([[P5]]G0) =

?a ?m ?d
auth1 mes1 date1

auth1 mes2 date2

auth2 mes3 date1

auth3 mes4 date4

auth3 mes5 date4

Then [C5] = R5 and, since [[P5]]G0 is made of 5 matches, the value [[C5]]G0 is obtained by gluing 5
copies of R5, with 5 fresh variables corresponding to different renamings of variable ?r. Indeed,
the variable ?r in R5, which is not a variable of P5, gives rise to one fresh variable for each match
of P5 in G0. Thus:

[[C5]]G0 : R5 ⇒ G0
(C5) with Tab([[C5]]G0) =

?r ?a ?d
?r1 auth1 date1

?r2 auth1 date2

?r3 auth2 date1

?r4 auth3 date4

?r5 auth3 date4

Definition 3.10 (equivalence of patterns). Two patterns are equivalent if they have the same value over
G for every graph G.
Proposition 3.11. For every basic patterns P1 and P2, the basic pattern P1∪P2 is equivalent to P1 JOIN P2
and to P2 JOIN P1.

3.3 Queries

A query in GrAL is essentially a pattern which has a template. The main difference between patterns
and queries is that, while a pattern is interpreted as a function from graphs to sets of matches, a query
is interpreted as a function from graphs to graphs. The operator for building queries from patterns is
denoted GRAPH. According to Definition 3.6, the value of a pattern P with template R over a graph G is
a set of matches [[P]]G : R ⇒ G(P), and the semantics of patterns is defined recursively in terms of their
values. Thus, patterns have a graph-to-set-of-matches semantics, while queries have a graph-to-graph
semantics, as defined below, based on Definition 2.8 of the image of a graph by a set of functions.
Definition 3.12 (syntax of queries). A query Q of GrAL is written GRAPH (P) where P is either a
CONSTRUCT or a UNION pattern. Then the pattern of Q is P and the template T (Q) of Q is the
template of P.
Definition 3.13 (result of queries). The result of a query Q with pattern P and template R over a graph
G is the subgraph of G(P) image of R by [[P]]G, it is denoted Result(Q,G).
Thus, when Q = GRAPH (P1 CONSTRUCT R), the result of Q over G is the graph Result(Q,G) =
[[P1]]G(R) built by “gluing” the graphs m(R) for m ∈ [[P1]]G, where m(R) is a copy of R with each variable
x ∈ V (R) \V (X) replaced by a fresh variable var(x,m). And when Q = GRAPH (P1 UNION P2), the
result of Q over G is the graph Result(Q,G) = H1 ∪H2 where Hi = Result(GRAPH (Pi),G) and the fresh
variables occuring in H1 are distinct from the ones in H2.

62 Querying RDF Databases with Sub-CONSTRUCTs

Example 3.14. It is now easy to compute the result of the GrAL queries:

Qi = GRAPH (Ci)

over G0 when Ci is a pattern from Example 3.9. We know that the result of Qi applied to G0 is an instance
of Ri when V (Ri) ⊆ V (Ci), and that in general it is built by “gluing” together several instances of Ri (as
for query Q5 below).

• Author citations. Let us say that an author a1 cites an author a2 when a1 has published a message
that refers to a message published by a2. In order to build the graph of author citations we use the
query:

Q1 = GRAPH (C1).
From [[C1]]G0 we get the graph:

Result(Q1,G0) = { auth2 cites auth1 . auth3 cites auth1 } .

• Number of likes. Let us count the number of likes in the database. We can get this result by
counting the number of triples with predicate likes, or equivalently the number of predicates
likes. We use the query:

Q2 = GRAPH (C2).
From [[C2]]G0 we get the graph:

Result(Q2,G0) = { 5 }
This result is the number 5, which is considered in GrAL as a graph made of only one isolated
node. Note that we would get a query equivalent to Q2 by counting either the number of authors
?a who like a message (with multiplicity the number of messages liked by ?a), or by counting
the number of messages ?m which are liked by someone (with multiplicity the number of authors
who like ?m). This means that the line BIND COUNT(likes) AS ?n could be replaced either by
BIND COUNT(?a) AS ?n or by BIND COUNT(?m) AS ?n .

• Number of likes per author. Let us now count the number of likes per author in the database,
which means, for each author count the number of likes of messages published by this author,
except for self-likes. We display the result as the graph made of the triples ?a1 nbOfLikes ?n
where ?n is the number of likes of author ?a1, by using the query:

Q3 = GRAPH (C3).
From [[C3]]G0 we get the graph:

Result(Q3,G0) = { auth1 nbOfLikes 1 . auth2 nbOfLikes 1 . auth3 nbOfLikes 3 } .

• Number of friends per author. Let us count the number of friends of each author, where friend-
ship is the symmetric relation between authors defined as follows: two authors are friends when
each one likes a publication by the other (here self-friends are allowed). We use the query:

Q4 = GRAPH (C4).
From [[C4]]G0 we get the graph:

Result(Q4,G0) = { auth1 nbOfFriends 1 . auth2 nbOfFriends 1 } .

• Generation of fresh variables. Now let us build, for each author ?a and each message ?m pub-
lished by ?a and stamped at date ?d, a tree with a fresh variable as root and with two branches, one

D. Duval, R. Echahed & F. Prost 63

named author towards ?a and the other one named date towards ?d. We use the query:
Q5 = GRAPH (C5).

From [[C5]]G0 we get the graph:

Result(Q5,G0) = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5

where each Ti is the copy of R5 corresponding to the i-th row in Tab([[C5]]G0), so that:

T1 = { ?r1 author auth1 . ?r1 date date1 }
T2 = { ?r2 author auth1 . ?r2 date date2 }
T3 = { ?r3 author auth2 . ?r3 date date1 }
T4 = { ?r4 author auth3 . ?r4 date date4 }
T5 = { ?r5 author auth3 . ?r5 date date4 }

In fact, query Q5 “mimicks” the following SELECT query Q′
5:

SELECT ?a ?d

WHERE { ?a publishes ?m . ?m stampedAt ?d }

As explained in [4], the various copies of the variable ?r in the result of Q5 act as identifiers for the
rows in the table result of Q′

5 over G0 (as for instance in SPARQL), which is obtained by dropping
the column ?r from Tab([[P5]]G0). Note that the table Tab([[P5]]G0) has all its rows distinct by
definition, whereas this becomes false when the column ?r is dropped.

Definition 3.15 (equivalence of queries). Two queries are equivalent if they have the same template and
the same result over every graph.

It follows that queries with equivalent patterns are equivalent, but this condition is not necessary.

Remark 3.16 (about SPARQL queries). CONSTRUCT queries in SPARQL are similar to CONSTRUCT
queries in GrAL: the variables in V (R) \ V (X) in GrAL play the same role as the blank nodes in
SPARQL. However the subCONSTRUCT patterns are specific to GrAL. There is no SELECT query
in this core version of GrAL, however following [4] we may consider SELECT queries as kinds of
CONSTRUCT queries.

4 Conclusion

We considered the problem of the evaluation of graph-to-graph queries, namely CONSTRUCT queries,
possibly involving nested sub-queries. We proposed a new uniform evaluation semantics of such queries
which rests on a recursive definition of the notion of patterns and a new definition of the considered
graphs which are allowed to have isolated nodes. Hence, the evaluation of a pattern always yields a
pair consisting of a graph and a set of matches (variable assignments). Notice that we did not tackle
explicitly graph-to-table queries such as the well-known SELECT queries. We have shown recently in
[4] that SELECT queries are particular case of CONSTRUCT queries. This stems from an easy encoding
of tables as graphs. Thus, the proposed semantics can be extended immediately to SELECT queries
involving Sub-SELECT queries.
The present work opens several perspectives including a generalization of the proposed semantics to
other models of graphs such as property graphs. Such an extension needs to ensure the existence of the
main operations of the proposed algebra such as the Merge operation. An operational semantics, based

64 Querying RDF Databases with Sub-CONSTRUCTs

on rewriting systems, which is faithful with the evaluation semantics proposed in this paper is under
progress. Its underlying rewrite rules are inspired by the algebraic approach in [3].
Furthermore, the core language GrAL contains only simple patterns needed to illustrate our uniform se-
mantics. Comparison with other expressions such as EXISTS(pattern) or patterns such as FROM(query)
[2, 8] remains to be investigated.

References
[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter & Domagoj Vrgoc (2017):

Foundations of Modern Query Languages for Graph Databases. ACM Comput. Surv. 50(5), pp. 68:1–68:40,
doi:10.1145/3104031.

[2] Renzo Angles & Claudio Gutiérrez (2011): Subqueries in SPARQL. In Pablo Barceló & Val Tannen, editors:
Proceedings of the 5th Alberto Mendelzon International Workshop on Foundations of Data Management,
Santiago, Chile, May 9-12, 2011, CEUR Workshop Proceedings 749, CEUR-WS.org. Available at http://
ceur-ws.org/Vol-749/paper19.pdf.

[3] Dominique Duval, Rachid Echahed & Frédéric Prost (2020): An Algebraic Graph Transformation Approach
for RDF and SPARQL. In Berthold Hoffmann & Mark Minas, editors: Proceedings of the Eleventh Inter-
national Workshop on Graph Computation Models, GCM@STAF 2020, Online-Workshop, 24th June 2020,
EPTCS 330, pp. 55–70, doi:10.4204/EPTCS.330.4.

[4] Dominique Duval, Rachid Echahed & Frédéric Prost (2020): All You Need Is CONSTRUCT. CoRR
abs/2010.00843. Available at https://arxiv.org/abs/2010.00843.

[5] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan
Plantikow, Mats Rydberg, Petra Selmer & Andrés Taylor (2018): Cypher: An Evolving Query Language for
Property Graphs. In Gautam Das, Christopher M. Jermaine & Philip A. Bernstein, editors: Proceedings of
the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, ACM, pp. 1433–1445, doi:10.1145/3183713.3190657.

[6] Mark Kaminski, Egor V. Kostylev & Bernardo Cuenca Grau (2017): Query Nesting, Assignment, and Aggre-
gation in SPARQL 1.1. ACM Trans. Database Syst. 42(3), pp. 17:1–17:46, doi:10.1145/3083898.

[7] Egor V. Kostylev, Juan L. Reutter & Martı́n Ugarte (2015): CONSTRUCT Queries in SPARQL. In Marcelo
Arenas & Martı́n Ugarte, editors: 18th International Conference on Database Theory, ICDT 2015, March 23-
27, 2015, Brussels, Belgium, LIPIcs 31, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 212–229,
doi:10.4230/LIPIcs.ICDT.2015.212.

[8] Axel Polleres, Juan L. Reutter & Egor V. Kostylev (2016): Nested Constructs vs. Sub-Selects in SPARQL.
In Reinhard Pichler & Altigran Soares da Silva, editors: Proceedings of the 10th Alberto Mendelzon Inter-
national Workshop on Foundations of Data Management, Panama City, Panama, May 8-10, 2016, CEUR
Workshop Proceedings 1644, CEUR-WS.org. Available at http://ceur-ws.org/Vol-1644/paper10.
pdf.

[9] (2013): SPARQL 1.1 Query Language. W3C Recommendation. Available at https://www.w3.org/TR/
sparql11-query/.

[10] (2014): RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation. Available at https://www.w3.
org/TR/rdf11-concepts/.

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 65–77, doi:10.4204/EPTCS.342.6

© Ivan Fedotov, Anton Khritankov
This work is licensed under the
Creative Commons Attribution License.

Statistical Model Checking of Common Attack Scenarios on
Blockchain

Ivan Fedotov Anton Khritankov
Moscow Institute of Physics and Technology

Moscow, Russia
ivan.fedotov@phystech.edu anton.khritankov@phystech.edu

Blockchain technology has developed significantly over the last decade. One of the reasons for
this is its sustainability architecture, which does not allow modification of the history of committed
transactions. That means that developers should consider blockchain vulnerabilities and eliminate
them before the deployment of the system. In this paper, we demonstrate a statistical model checking
approach for the verification of blockchain systems on three real-world attack scenarios. We build
and verify models of DNS attack, double-spending with memory pool flooding, and consensus delay
scenario. After that, we analyze experimental results and propose solutions to avoid these kinds of
attacks.

1 Introduction

Satoshi Nakamoto proposed blockchain technology as a distributed ledger of connected records that are
linked using cryptography measures [19]. The development of blockchain systems can be challenging
even for experts because of the distributed execution environment and the persistence of records. Known
consensus vulnerabilities increase the cost of errors. For example, the popular cryptocurrency exchange
and wallet Coincheck got a security incident in January 2018 and more than 500 million USD were stolen
[12].

The model checking verification approach introduces methods to construct models that describe the
possible system behavior in a mathematically precise way. The accurate modeling of systems often leads
to the discovery of incompleteness in informal system specifications. One can write specifications in
different formalisms: linear-temporal logic, computational tree logic, and extensions of them. Finite-
state automata are the most expressed way to model systems. The model checking process consists of
three parts [6]:

• Modeling phase: model the system; formalize the property to be checked.

• Running phase: run the model checker engine to check the validity of the specifications.

• Analysis phase: if the system satisfies the property, then check the next properties; otherwise,
generate and analyze the counterexample, refine the model and repeat the entire procedure.

In this paper, we apply a statistical model checking approach to blockchain systems. We model three
types of attacks that affect the major parties in blockchain systems. In the DNS attack, an adversary
changes the DNS address for the connection to the network. The probability distribution function defines
the address spoofing success. Memory pool flooding and consensus delay attack models implement the
scenario of double-spending of the same asset. Size of the memory pool and delay time one can take from
the historical data of the Bitcoin network. Based on the experimental analysis, we consider approaches
to reduce the probability of success of these attacks. The results of such analysis one can use in the
planning of industrial product development.

66 SMC Blockchain Verification

The rest of the paper is organized as follows. In section 2 we describe tools and approaches that will
be used in model checking. Section 3 explains attack scenarios and their models and provides restrictions
on them. We carry out experiments in section 4. In section 5 we evaluate experimental results and suggest
solutions for the prevention of successful attacks. In section 6 we provide related studies on the modeling
of smart contracts. Section 7 provides a discussion and the concluding remarks.

2 Background

In this section, we describe a tool and techniques that we use to construct models. We also illustrate
the work of tools with a simple example. We use BIP (Behavior, Interaction, Priority) framework and
a statistical model checker SBIP 2.0 [18] to model adversary’s scenario on Blockchain. The stochastic
real-time BIP formalism provides an ability to build models assembled from components presented as
stochastic timed automata. Timed automaton is an extension of ordinary automaton by a finite set of
clocks and clock constraints. One can think about stochastic timed automaton as a combination of timed
automaton and Markov chain. Probability density functions can describe uncertainty in the model. A
designer of the system can provide a specification of properties as a Metric Temporal Logic (MTL)
formula [15]. BIP framework uses a statistical model checking approach [18] that answers two types of
questions:

• Qualitative: is the probability for the stochastic system S to satisfy φ greater or equal to a certain
threshold Θ? The approach to answering the qualitative question is based on hypothesis testing.

• Quantitative: what is the probability for S to satisfy φ? Given a precision δ and a risk parameter
α: P(|p′− p|< δ)≥ 1−α the algorithm computes a value for p′.

In BIP, systems consist of three parts: atomic components, component interaction, and priority of
interactions. Below we describe each of these parts.

2.1 Atomic Components

Timed automaton specifies the behavior of atomic components. One can define an atomic component as
the following elements:

• set of ports for synchronization with other components

• set of states of the component

• set of variables for local data

• set of transitions between states; the transition executes under certain boolean conditions.

Fig. 1 illustrates a simplified purchasing model [7], adapted for the BIP framework. The atomic
component Customer has 3 states c0, c1, and c2, variables balance, transfer, price and id. Also, the
Customer component has two ports process and receive, and three transitions: process, receive and done.
Interaction process executes only when the local variable balance > price. The other atomic component
explains the behavior of the seller with 2 states, s0, s1, internal variable balance and list of goods, and
three transitions. The transition process executes only when the number of goods is greater than zero.

Ivan Fedotov, Anton Khritankov 67

Figure 1: BIP model example

2.2 Connectors and Interactions

Atomic components can communicate with each other according to the logic in connectors. One can
describe a connector as a sequence of ports that connect atomic components. SBIP 2.0 supports two
types of interactions, timed and stochastic. Timed interactions take place only with time constraints that
represent a lower and upper bound over clock valuations, as in timed automata. Stochastic interactions
take place with a specific stochastic constraint, for example, a probability function.

Interaction I1 at Fig. 1 connects atomic component Customer through the port process. This port
implements the money transfer from the Customer to the Seller atomic component. Variable balance on
interaction I1 of the customer is reduced on the amount price, and the variable balance of the seller is
incremented on the same amount. In interaction I2 the asset assigns to the customer. Thus, the connector
from example at Fig. 1 is a set of ports: p1|p2, where p1 - port of atomic component Customer and p2 -
port of external atomic component Seller.

2.3 Priorities

Execution of priorities can proceed under certain conditions. If the condition holds, the priority of the
considered connector is higher than another one. In the purchasing example from Fig. 1 a conflict can be
between interactions I2 and I3 when the amount of good is non-zero. The interaction process executes
first, as it has a higher priority.

2.4 Compound Components

Compound components are used for assembling a new component from the defined atomic components.
Compound components include instances of atomic components and specify connectors between them.
Fig. 1 illustrates a compound component that consists of two atomic components and two interactions.

3 Models Description

In this section, we describe models and attack scenarios. We study attacks from the recent survey [21]
that possesses the most meaningful properties for blockchain systems:

• Affect peer-to-peer system or blockchain application.

• Led to the significant funds leak in the past.

• Involve several parts of the blockchain systems.

• Include non-deterministic interactions.

68 SMC Blockchain Verification

We present models for the DNS spoofing attack, double spending through the mempool flooding
attack, and consensus delay attack. Each model describes a particular attack scenario. We focused on
one probabilistic parameter in each model. It is either a probability distribution or a historical data set.
Particular transition in the model depends on this probabilistic parameter. The code of the SBIP models
is available in the repository [8].

3.1 DNS Attack

Blockchain applications use peer-to-peer network architecture for communication between the network
nodes. When a new client joins a blockchain for the first time, she discovers active peers using Domain
Name System (DNS) for IP address resolution. This is a DNS bootstrapping process.

The DNS mechanism is susceptible to cache poisoning, hijacking, tunneling, man-in-the-middle, and
other types of attack [23]. A vulnerability in DNS led to the famous 2016 cyberattack [4].

We consider a DNS cache poisoning attack performed with a co-called birthday attack [23] on Berke-
ley Internet Name Domain (BIND) software. A BIND server can send multiple simultaneous recursive
queries for the same IP address so an adversary can predict the next transaction id. After guessing the
next transaction id, the adversary provides extra information in a DNS reply packet. Thus, by simul-
taneously generating a flow of queries to the server and an equal number of forged replies one can get
a collision of transaction id and change the proper domain address to the fake one. The probability of
collision is P = 1− (1− 1

t)
n∗(n−1)

2 [23], where t is the total number of possible values in the master set,
and n is the number of spoofed queries. The default number of possible values in the master set is 65535.

We took a birthday attack because the probability of collision is much higher than in conventional
spoofing. The collision probability quickly increases up to 1.0 along for less than 1000 requests [23].

Let us describe an SBIP model of the DNS cache poisoning birthday attack. Fig. 2 illustrates the
model. Here and on the other models, transitions with the prefix l present local interactions. The blue
line indicates a connection between two atomic components. Connectors apply to interactions with
the same name. For example, the adversary’s atomic component can communicate with cache through
external ports requests, reply, and daemon. The behavior of the atomic components is the following:

• Adversary. Provides a set of requests and replies. After each request, he tries to guess a transaction
ID. A random event here is the guess transition, described by a collision probability function [23].
If the guess is successful, the adversary runs a daemon through the external interaction and goes
to the final state a2.

• Cache. The cache server replies to DNS queries. In the case of collision, the interaction daemon
works. The address in the DNS cache changes, and the user gets a spoofed address.

• User. Requests the DNS address from the cache server, connects to the network, and transfers
funds. In case of a spoofed address, the transfer proceeds to the wrong recipient.

• Blockchain network. Awaits until the user connects to it and accomplishes transfer funds.

• Spoofed network. The same functionality as a blockchain network, but with the spoofed address.

The scenario of the attack is the following. The adversary makes requests to change the DNS address.
At the same time, the user makes a query to the server. The request from the user and the adversary are
temporary interactions that accomplish in the time period [0, 1000]. The upper bound of the period is
a parameter, and one can change it. With the received address the user connects to the network and
transfers the money.

Ivan Fedotov, Anton Khritankov 69

Figure 2: DNS spoofing model

One can bound the probability of the birthday attack by a negligible function µ by using crypto-
graphic encryption techniques, for example, DNSSEC with NSEC5 records bounds [10]. NSEC5 is a
resource record that can be used to detect certain attacks on secure DNS requests. We restricted the
probability of violation by the function µ = R ∗ qs ∗ 2−n [10], where R - the set of domain names, that
equals 65535, qs - the number of adversary’s queries, n - the length of the output of the hash function.
Restriction applies on the transition daemon of the Cache atomic component.

3.2 Double Spending and Mempool Flooding

In a blockchain network, double-spending means applying the same transaction and its asset multiple
times. Fig. 3 illustrates the process of double-spending. User A signs the transaction with a private key
and sends it to user B. During the validation process, the recipient looks up the unspent transactions of
the sender, verifies the sender’s signature, and waits for the transaction to be mined into a valid block.
Releasing the transaction to the network takes a certain time, which depends on the network throughput,
the size of the memory pool of unconfirmed transactions (mempool), the consensus protocol, and the
priority factor of the transaction.

In the case of fast transactions, the receiver can release the asset to the sender before the transaction
gets committed into the blockchain network. In a while, user A can send the same transaction to user C.
In this case, only those transaction is valid which gets into the blockchain first, but the asset might have
been released twice. Double spending is one of the most widespread attacks on the blockchain platforms
[20]. We performed a model checking for different types of double-spending attacks.

An adversary can cause a delay for successful double-spending with a mempool flooding attack.
Mempool flooding is a kind of DDoS attack carried out at the memory pools of the cryptocurrencies
[20]. Mempool has substantial properties such as timeout for transactions and default size limit. Relying
on these configurations, users can estimate it to prioritize transactions. A potential adversary can estimate
a delay in the mempool queue and increase this delay by a DDoS attack.

The survey [14] proposes two approaches to avoid double-spending. First, to set up the listening
period before delivering the asset to the adversary. That gives time to double-check the spoofed transac-

70 SMC Blockchain Verification

Figure 3: Double spending scenario

tion if the adversary already sends it to another user. But this does not consider the worst-case scenario
when the adversary sends the second transaction just before accepting the first one to the blockchain.
The second approach implies insertion to the network additional ”observers” - nodes that would relay to
the user all transactions that it receives. But observers entail additional upload to the network. Instead,
we propose to set the time interval in which the blockchain participant can send one transaction to the
network.

Model on Fig. 4 represents a simplified version of the mempool flooding scenario. We neglect the
probability that one can send two transactions to the same miner by assuming that the blockchain network
consists of a significant amount of participants. Also, in our model, there is no explicit mining fee for
transactions. The historical data set considers the notion of the different fees for transactions implicitly.
Below we explain atomic components.

• Adversary. Sends a transaction from the same parent’s block to the different recipients. After that,
the adversary waits for the release of the transaction’s assets.

• Users A, B. Get the transaction from the sender, validate and locally verify it. Validation implies
consistency with the blockchain’s history and verification examines the sender’s signature. After
the verification phase, the user sends the transaction to the mempool and immediately releases the
asset. The double-spending is successful if both assets were released to the sender.

• Miners C, D. Take transactions from users and allocate them in the local mempool until the block
will be mined. Mining time is a random variable with distribution from the historical dataset [1].

• Proof-of-Work (PoW) Blockchain. We presented all other nodes as a PoW Blockchain atomic
component. It takes the block from the miner, checks that the block does not contradict the history
of committed transactions, and based on this either accepts or rejects the block.

The adversary sends a transaction to user A. After some time, the model defines a lower bound as a t ′

parameter, the adversary generates a transaction with the same history as the first one and sends it to user
B. When the user receives the transaction, she validates its consistency with the blockchain’s history. If
the transaction is consistent, the user verifies the sender’s signature and sends it to the mempool. The
user releases a product to the sender before transaction confirmation.

3.3 Double Spending and Consensus Delay

Another way to enlarge the accepting time of the transaction is a consensus delay attack [5]. While the
memory pool increases the delay of a block because of the transactions queue, consensus delay appears

Ivan Fedotov, Anton Khritankov 71

Figure 4: Mempool flooding model

because of the propagation time among the majority of users. When a new block is ready, the majority
of blockchain’s participants should confirm it. From the example in Fig. 3, only one transaction gets
acceptance which is the first to propagate among more the half of the whole nodes.

Fig. 5 illustrates the consensus delay model with the Proof-of-Work consensus protocol. The be-
havior of the adversary and users are the same as in the mempool flooding model. When a node gets
transactions from the user, it builds them into the block and propagates this block among other nodes.
Propagation takes some time and causes the delay. Ledger atomic component represents other nodes of
the network.

Figure 5: Consesus delay model

In the consensus delay model, the adversary sends two transactions at a time interval t ′. Users
validate and verify transactions and send them to other nodes to propagate them. If the first transaction
already got commitment by the network, the second benign user rejected the transaction on the validate
transition. We fixed the time interval t ′, in which the adversary can send the spoofed transaction.

4 Experimental Evaluation

We implemented three models with SBIP 2.0 framework and estimated the probability of satisfying the
specification. In each model, we introduced a probabilistic parameter. In a DNS attack, it is a probability

72 SMC Blockchain Verification

of collision, in mempool flooding, it is the size of the memory pool. In the consensus delay model,
the probabilistic parameter is a block propagation time. Each run can be either successful or not for
an adversary, based on the probability distribution. The final ratio of successful attacks defines the
probability of a successful adversary’s scenario.

In the current section, we provide probability success estimated with the SBIP tool. The goal of
experiments is to get the rate of the adversary’s success and analyze the result to reduce the success
probability of the adversary. We take time as a parameter of each experiment, as it is the most important
factor that affects the result. Further, for each model, we propose a way to decrease the probability
of adversary success. SBIP tool runs the model a certain number of times, the experiment parameters
define this number. Parameters for the tool are the following: δ = 0.1,α = 0.1. If we take them less
than 0.1, then the precision of the quantitative result of the experiment does not change significantly, but
the evaluation time grows. In experiments we use statistical model checking algorithm [18], based on
probability estimation method [9]. The code of models one can find in the repository [8].

Experiments imply the following assumptions. Adversary makes a DNS attack on BIND software
with the corresponding probability distribution of the collision [23]. In the double-spending model, we
consider a fast-transactions network. We also emphasize the reliability of measurements. If statistical
data is not objective, i.e. there is a gap or multiple null values, then measurements are not reliable. If the
experiment violates these assumptions, then the result is not correct.

The experiments were run on a 2,3 GHz Dual-Core Intel Core i5 CPU. The time and memory limits
are 90 minutes and 4 GB, respectively.

4.1 DNS Attack

In this subsection, we provide the estimation of the adversary’s success probability for the DNS model.
We calculated a discrete set of values of the probability collision function. According to the MTL spec-
ification, the balance of the spoofed network eventually becomes nonzero: F [0,x]spoo f ed.amount > 0,
where x is a parameter of the time in the range [100, 1000].

Fig. 6 depicts a probability versus time plot. Time denotes the number of milliseconds from the start
of the scenario. If we add the probabilistic interaction, that restricts the collision success, the probability
of transfer to the wrong network decreases significantly. We checked the violation probability with the
different hash functions with different lengths: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 [22].
The success of the daemon interaction depends on the probability function µ = R∗qs ∗2−n [10], which
we over-approximated by the uniform distribution.

Figure 6: Dependence of the probability on the time for the DNS attack model

Ivan Fedotov, Anton Khritankov 73

4.2 Double Spending and Mempool Flooding

Based on the Bitcoin data from 01/01/2016 till 01/05/2021 we provide the mining time [1] as a stochastic
variable in our SBIP model. The stochastic variable th is assigned to the value from the dataset uniformly
and randomly.

The experiment aims to get a minimum time interval t ′ in which the same user can send two trans-
actions with the negligible probability of double-spending. The specification here represents the success
of getting assets from both users: F [0,1012]adversary.asset == 2. We took such an upper bound for the
specification to over-approximate the mining time from the historical data set.

Fig. 7 illustrates the dependency of the double-spending probability on the time interval t ′. We
estimated the double-spending success probability with the time step in 10 seconds for t ′ between 500
and 650. Between 0 and 500, we measured with the time step in 50 seconds, as the probability changes
more slowly. For the time interval, t ′ between 0 and 500 milliseconds, the probability of the double-
spending is around 0.8. The following characteristics of the experiment explain this value. First, the
value of the precision and risk parameters in the experiment is 0.1. Second, the adversary can send a
transaction later than in t ′ seconds, as we provided the lower bound for the time interval.

Figure 7: Dependence of the probability on the time interval t ′ for the mempool flooding model

4.3 Double Spending and Consensus Delay

Similar to the mempool double-spending scenario, we used the data [2] of the block propagation time
to get a stochastic variable value. The goal of the experiment is to get the time interval t ′ between the
adversary’s transactions with which the double-spending probability is negligible. We took the historical
data of propagation delay from 01/29/2016 till 01/05/2021 and assigned this data set to the random
variable t’ of the atomic component Node.

The specification checks that the adversary got the double-spending of the same transaction:
F [0,1012] adversary.asset == 2. We accomplished measurements with the time step equals to 2 seconds.
We over-approximated the propagation time in the specification to include all possible delays. Fig. 8
illustrates the dependency of the time interval t ′ from the double-spending probability.

5 Analysis of Experimental Results

In this section, we estimate the results of experiments and evaluate proposed solutions to decrease the
probability of a successful attack. A user can refine models with additional elements that specify her

74 SMC Blockchain Verification

Figure 8: Dependence of the probability on the time interval t ′ for the consensus delay model

network. These elements can be a connection delay, network topology, bots for tracking DDoS attacks,
and others. It is worth mentioning that a historical data set can include these elements implicitly. In this
case, there is no need to change the model. Thus, one can use our models in their blockchain network.

5.1 DNS Attack

As we have seen from the experiment, the probability of the connection to the wrong network grows
with the number of requests from the adversary. The probability function illustrated in Fig. 6 is similar to
the collision rate function [23]. That means that the experimental evaluation corresponds to the theory.
One can see from the experiment that for hash functions with an output length of more than 20 bits,
the collision probability equals zero. Thus, using any listed hash functions [22] prevents the adversary’s
scenario.

5.2 Double Spending and Mempool Flooding

For the mempool flooding model, we analyzed the impact of the time interval between two transactions
on the double-spending success. The increment of the time interval t ′, in which the adversary can send a
transaction, decreases the double-spending probability. After 570 seconds, the probability of successful
double-spending becomes less than 0.5. After 610 seconds, the probability becomes around 0.1 and
remains in this value asymptotically. That follows from the setting of experimental parameters δ and α
to 0.1 value. Also, the average time in the mempool, which is around 600 seconds, corresponds to the
measured time interval, with which the double-spending probability becomes negligible. The double-
spending probability should decrease significantly around average mining time, as after this point the
first transaction most probably releases from the mempool. According to the dependency illustrated in
Fig. 7, by setting the restriction for sending one transaction from the same user in 650 seconds one can
reduce the probability of the double-spending success significantly.

Justification of the time restriction on transactions from the same user depends on the application
area. That makes sense in the networks, for which confirmation and release asset of the first transaction
is more crucial than the second transaction processing.

5.3 Double Spending and Consensus Delay

Changing of probability versus time function in the consensus delay scenario, is smoother than in the
mempool case, as there is a higher deviation in the data set. Fig. 5 illustrates this dependency. Taking

Ivan Fedotov, Anton Khritankov 75

into consideration the result of the mempool flooding experiment, we conclude that by restricting the
time interval t ′ between two transactions from the same user in 650 seconds one can avoid both mempool
flooding and consensus delay double-spending scenarios. To cover all factors that increase the double-
spending success, one needs to make transaction fees and the mempool timeout as constants for all
blockchain participants. The fixed transaction fee is possible to implement for the blockchain network
[11]. One can fix the mempool timeout by assigning the same value for a timeout in memory pool
configuration files for all blockchain participants and making these files immutable.

To sum up the experiment analysis, we specify security properties, that should hold for each system.
In the case of a DNS attack, the system is safe if one uses any of the hash functions [22]. In the case of
double-spending, one can put a time restriction for sending a transaction from one node. That bounds
the successful attack probability by a negligible value and makes the system safe.

6 Related Work

The problem of the statistical model is fundamental and well-studied [16]. One can use the statistical
model checking approach to verify blockchain systems [13]. To the best of our knowledge, only two
studies [17] [3] provide a statistical model checking evaluation of blockchain systems. But these studies
do not present experiments on real attack scenarios and discussion of model restrictions. In our setting,
real attacks with probability conditions and restrictions of the models have been considered.

7 Conclusion

We modeled blockchain systems with historical data and probabilistic parameters. By running experi-
ments on the historical data, one can predict the behavior of blockchain networks. We analyzed exper-
imental results and proposed solutions to avoid the adversary’s success and loss of money. Our models
rely on real-world attack scenarios and cover all sides of the blockchain systems: miners, mining pools,
exchanges, applications, users. Though we used open-source data from the Bitcoin network, one can
adjust models for the private blockchain networks. Unlike in existing studies, our technique takes into
account both temporal and stochastic interactions in blockchain systems.

As future work, we plan to expand the technique to automatically generate the SBIP models from
the code of smart-contract. For some components of the blockchain system, such as memory pool or
DNS cache it’s difficult to build models automatically. But atomic components, that are responsible for
the business logic in smart contracts, can be constructed in automatic mode. That extension reduces the
manual work.

References

[1] (2021): Average time to mine a block in minutes. Available at https://data.bitcoinity.org/bitcoin/
block_time/5y?f=m10&t=l.

[2] (2021): Bitcoin Monitoring. Available at https://dsn.tm.kit.edu/bitcoin/.

[3] Tesnim Abdellatif & Kei-Leo Brousmiche (2018): Formal verification of smart contracts based on users and
blockchain behaviors models. In: 2018 9th IFIP International Conference on New Technologies, Mobility
and Security (NTMS), IEEE, pp. 1–5, doi:10.1109/NTMS.2018.8328737.

76 SMC Blockchain Verification

[4] Abhishta Abhishta, Roland van Rijswijk-Deij & Lambert JM Nieuwenhuis (2019): Measuring the impact of
a successful DDoS attack on the customer behaviour of managed DNS service providers. ACM SIGCOMM
Computer Communication Review 48(5), pp. 70–76, doi:10.1145/3310165.3310175.

[5] Gervais Arthur, Hubert Ritzdorf, Ghassan Karame & Srdjan Capkun (2015): Tampering with the delivery of
blocks and transactions in bitcoin. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 692–705, doi:10.1145/2810103.2813655.

[6] Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. MIT press.

[7] Hsing-Chung Chen, Bambang Irawan, Chieh-Yang Shih, Cahya Damarjati, Zon-Yin Shae & Fengming
Chang (2019): A Smart Contract to Facilitate Goods Purchasing Based on Online Haggle. In: International
Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Springer, pp. 618–628,
doi:10.1007/978-3-030-22263-5 58.

[8] Ivan Fedotov & Anton Khritankov (2021): SBIP models. https://github.com/1vanan/SBIP_models.

[9] Thomas Hérault, Richard Lassaigne, Frédéric Magniette & Sylvain Peyronnet (2004): Approximate proba-
bilistic model checking. In: International Workshop on Verification, Model Checking, and Abstract Interpre-
tation, Springer, pp. 73–84, doi:10.1007/978-3-319-06880-0 2.

[10] Amir Herzberg & Haya Shulman (2013): DNSSEC: Security and availability challenges. In:
2013 IEEE Conference on Communications and Network Security (CNS), IEEE, pp. 365–366,
doi:10.1109/CNS.2013.6682730.

[11] Nicolas Houy (2014): The economics of Bitcoin transaction fees. GATE WP 1407,
doi:10.2139/ssrn.2400519.

[12] Marie Huillet (2019): Report: Record-Breaking Coincheck Hack Perpetrated by
Virus Tied to Russian Hackers. Available at https://cointelegraph.com/news/

report-record-breaking-coincheck-hack-perpetrated-by-virus-tied-to-russian-hackers.

[13] Adnan Imeri, Nazim Agoulmine & Djamel Khadraoui (2020): Smart Contract modeling and verification
techniques: A survey. In: 8th International Workshop on ADVANCEs in ICT Infrastructures and Services
(ADVANCE 2020), pp. 1–8.

[14] Ghassan O Karame, Elli Androulaki & Srdjan Capkun (2012): Double-spending fast payments in bitcoin.
In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 906–917,
doi:10.1145/2382196.2382292.

[15] Ron Koymans (1990): Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4),
pp. 255–299, doi:10.1007/BF01995674.

[16] Axel Legay, Benoı̂t Delahaye & Saddek Bensalem (2010): Statistical model checking: An overview. In:
International Conference on Runtime Verification, Springer, pp. 122–135, doi:10.1007/978-3-642-16612-
9 11.

[17] D.B. Maksimov, I.A. Yakimov & Kuznetsov A.S. (2020): Statistical model checking for blockchain-based ap-
plications. In: IOP Conference Series: Materials Science and Engineering, 734, IOP Publishing, p. 012152,
doi:10.1088/1757-899X/734/1/012152.

[18] Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Mahieddine Dellabani, Axel Legay & Saddek Ben-
salem (2018): SBIP 2.0: Statistical Model Checking Stochastic Real-Time Systems. In: International Sym-
posium on Automated Technology for Verification and Analysis, Springer, pp. 536–542, doi:10.1007/978-3-
030-01090-4 33.

[19] Satoshi Nakamoto (2008): Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review,
p. 21260.

[20] Muhammad Saad, Laurent Njilla, Charles A. Kamhoua, Kevin Kwiat & Aziz Mohaisen (2019): Shock-
ing Blockchain’s Memory with Unconfirmed Transactions: New DDoS Attacks and Countermeasures.
Blockchain for Distributed Systems Security, p. 205, doi:10.1002/9781119519621.ch10.

Ivan Fedotov, Anton Khritankov 77

[21] Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles Kamhoua, Sachin Shetty, DaeHun Nyang &
Aziz Mohaisen (2019): Exploring the attack surface of blockchain: A systematic overview. arXiv preprint
arXiv:1904.03487, doi:10.1109/COMST.2020.2975999.

[22] Rajeev Sobti & Ganesan Geetha (2012): Cryptographic hash functions: a review. International Journal of
Computer Science Issues (IJCSI) 9(2), p. 461.

[23] Joe Stewart (2005): DNS Cache Poisoning – The Next Generation. Technical Report, Portland State Univer-
sity. Available at https://www.ida.liu.se/~TDDD17/literature/dnscache.pdf.

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 78–85, doi:10.4204/EPTCS.342.7

c© T. Gauthier
This work is licensed under the
Creative Commons Attribution License.

Learned Provability Likelihood
for Tactical Search∗

Thibault Gauthier
Czech Technical University in Prague, Prague, Czech Republic

email@thibaultgauthier.fr

We present a method to estimate the provability of a mathematical formula. We adapt the tactical
theorem prover TacticToe to factor in these estimations. Experiments over the HOL4 library show
an increase in the number of theorems re-proven by TacticToe thanks to this additional guidance.
This amelioration in performance together with concurrent updates to the TacticToe framework lead
to an improved user experience.

1 Introduction

We take inspiration from the instinct shown by mathematicians when attempting to prove a theorem. An
important choice to make in their situation is whether to continue exploring a certain line of work or to
switch to another approach entirely. The quality of this decision is influenced greatly by one’s experience
with other proof attempts. Our aim is to integrate such feedback to improve automation in interactive
theorem provers (ITPs). In the majority of ITPs, most proofs are build using tactics in a goal-oriented
manner. A tactic is a procedure that takes as input a goal g (a sequent in HOL4) and returns a list of
goals whose conjunction implies g. We can classify HOL4 tactics into four categories. Solvers attempts
to prove the goal using general or domain-specific knowledge (e.g. metis_tac [10] for first-order logic).
Rewrite tactics modify subterms of a goal by applying rewrite rules constructed from proven equalities,
Induction tactics (e.g. Induct) split the goal into multiple cases (typically a base case and an inductive
case). Kernel-level tactics (e.g. exist_tac) allow for more refined control of the proof state. Given
these tactics, it is possible to create an automated prover that searches for the proof of a starting goal
by predicting suitable tactics for each intermediate goal. In the following, we refer to such automation
as a tactic-based automated theorem prover (ATP). Multiple tactic-based ATPs have been developed in
the course of the last five years and are now one of the most effective [8, 4] general proof automation
available in an ITP. However, none of the tactic-based ATP so far take into account the provability of
the goals produced by each tactic. Therefore, in this project, a tree neural network (TNN) is taught a
function estimating the provabilty of goals in HOL4 [14]. This value function produces feedback signals
called rewards that further guide the search algorithm of the tactic-based ATP TacticToe [8].

Related Works The most successful related tactic-based ATPs are Tactician [4] for Coq [3], Pam-
per [12] for Isabelle/HOL [15], and HOList [2] for HOL Light [9]. The Tactician is very user-friendly. In
particular, it is the only one that can record tactic calls on the fly. It uses the k-nearest neighbor algorithm
for tactic selection as TacticToe does. However, it does not predict argument theorems independently of
tactics. In Pamper, the policy predictors are decision trees trained on top of human-engineered features.
In HOList, the prediction effort is concentrated on learning the policy for a few selected tactics and their
arguments (theorems) using deep reinforcement learning. A related field of research is machine learning

∗Supported by the Czech Science Foundation project 20-06390Y

T. Gauthier 79

for first-order ATPs. The ENIGMA [5] system for E prover gathers positive and negative clauses from
successful proof attempts. We use a similar technique to collect our training examples. The ATP Lean-
CoP [11] has been trained via a reinforcement learning loop using boosted random forest predictors. Its
proof search relies on the same variant of Monte Carlo Tree Search (MCTS) [13] as TacticToe. Nev-
ertheless, it ignores the goal selection issue and thus could benefit directly from the MCTS adaptions
proposed in this paper.

2 Monte Carlo Tree Search with Tactics

We integrate the learned provability estimator into the proof search of TacticToe. Here is a brief summary
of how the MCTS algorithm operates in the context of tactic-based theorem proving. The algorithm starts
with a list of goals (typically a singleton) to be proven in a root node. In the selection phase, it chooses
a goal branch in the current output node and a tactic branch (and possibly an argument branch) leading
to the selection of an output node containing the list of goals produced by the tactic. This process is
repeated until a leaf is reached. In the extension phase, the tactic t selected in the leaf is applied to
its parent goal. In the case of a successful tactic application, an output leaf is created containing the
list of goals produced by t. During the backup phase, a feedback signal is propagated from the newly
created leaf to the root. The gathered node rewards influence the next selection phase. The three phases
are repeated until the algorithm finds a proof for each of the root goals, times out, or saturates. In the
following, we present the existing MCTS algorithm for TacticToe and describe ways to improve the
quality of the feedback mechanism. Figure 1 illustrates the effect of one iteration of the improved MCTS
loop on the search tree for our running example.

Selection Phase Given a list of tactic (tr)1≤r≤n with parent node g, we can compute their PUCT [1]
(Polynomial Upper Confidence Trees) score as follows:

PUCT (tr) = AverageRewards(tr)+ c×Policy(tr)×
√

Visits(tr)
Visits(g)

The tactic with the highest PUCT score is selected. The policy Policy is given by a nearest neighbor
predictor trained from supervised data consisting of goal-tactic pairs [8]. The value of Policy(t j) is
experimentally chosen to be 0.5n+1 where n is the number of open tactic branches with parent node
g and higher nearest neighbor score. At the start, the search is principally guided towards nodes with
higher policy. As the number of iterations increases, the search tends to explore goals with higher reward
averages more often. The exploration coefficient c decides how fast this transition happens. We choose
c to be 2.0 since this is a suitable value for guiding a goal-oriented first-order ATP [11].

In this version of TacticToe, the theorems predicted by its nearest neighbor algorithm are split.
Given a list of predicted arguments x1, . . . ,xn and a tactic t (except metis_tac) that expects a list of
theorems as argument, the tactic calls t[x1], . . . , t[xn] are constructed instead of t[x1, . . . ,xn]. This adds
another branching layer to the tree that functions exactly like the tactic selection layer. To simplify our
explanations in the rest of this paper, the branching occurring during argument selection is considered to
be part of tactic selection.

In previous developments of TacticToe and in other tactic-based ATPs, the selected goal is always
the first unproven goal of the output node. One issue is that the rewards of an output node are exactly
the rewards of its first goal until it is proven. To factor the influence of other goals in the output node
rewards, each unproven goal branch now receives almost the same number of visits. This is achieved by
choosing at each iteration one of the least visited unproven goal branches.

80 Learned Provability Likelihood for Tactical Search

` ∀n. 2×SUM (n+1) I = n× (n+1)
22→ 23, 0.045→ 0.043

srw_tac [] X
3, 0, 0.25

Induct
12→ 13, 8.7×10−7→ 3.0×10−6, 0.5

tactic selection

asm_simp_tac arith_ss X
2, 0, 0.125

` 2×SUM (0+1) I = 0× (0+1)
6→ 7, 0.049→ 0.18

goal selection

2×SUM (n+1) I = n× (n+1)
` 2×SUM (SUC n+1) I = SUC n× (SUC n+1)

6, 3.0×10−5

rewrite_tac X
3→ 4, 0.00021→ 0.23, 0.5

tactic selection

srw_tac [arith_ss] [SUM_def , . . .]
2, 0.15, 0.25

[numeral_distrib]
3, 2.1×10−4, 0.5

[MULT_CLAUSES]
1→ 2, 0→ 0.48, 0.25

argument selection
SUM 1 I = 0

1, 0.29

2×SUM 1 I = 0
2, 3.1×10−4 2×SUM (0+1) I = 0

1, 0.95

node extension

Figure 1: Iteration 22 of the value-guided MCTS loop on the goal ` ∀n. 2×SUM (n+1) I = n×(n+1).
The term SUM n f stands for ∑x<n

x=0 f (x) and I is the identity function. Each node contains in the following
order: the number of visits with a possible update, the average of the rewards and the prior policy for
tactics (and arguments). The presence of an arrow after these numbers indicates a backup update. The
selection path is made bold and created nodes are dotted. Saturated tactic (and argument) nodes and the
subtree of the inductive case are omitted. Tactics may contain the placeholder X [8] to indicate that an
argument has to be provided. To avoid dividing by 0 in the PUCT formula, all tactic (and argument)
nodes are initialized with one visit and a reward of 0. A proof is found after 427 iterations.

T. Gauthier 81

Backup Phase There are three possible outcomes of the extension phase. If the tactic t applied proves
the parent goal g, t receives a reward of 1. If t fails or induces a loop then t receives a reward of 0.
Otherwise, a new output node is created and the value network is called on each of the goals. The reward
of the newly created leaf is computed by multiplying the inferred values and backed up unchanged to
t. Each tactic selection layer propagates the reward of the selected tactic unchanged to its parent goal.
To capture the influence of multiple explored goal branches in the goal selection layer, we back up the
rewards through this layer in the following manner. Given a list of goals (gr)1≤r≤n composing an output
node p and a selected goal gi, the reward for p is given by:

Rewardk(p) = Rewardk(gi)× ∏
1≤r≤n ∧ r 6=i

AverageRewards(gr)

If a goal gr is proven, the value of AverageRewards(gr) in the formula is overridden and set to 1.
This formula multiplies the reward of the goal gi at iteration k of the search loop with the existing reward
average AverageRewards for the other goals in p. Thus the feedback of different branches is merged
although only one branch is explored at each iteration of the loop. Overall, p receives a reward that is a
lower bound estimation for its provability as it assumes independence of its goals.

3 Learning Provability
We explain here how a TNN can be trained to estimate the provability of a goal. These estimates are to

be used as rewards in our improved MCTS algorithm. We choose a TNN as our machine learning model
because it performs well on arithmetic and propositional formulas [7] as well as on Diophantine equations
and combinators [6]. In our TNN, each HOL4 operator of arity a has a neural network associated with
it modeling a function from Ra×d to Rd , where d is a globally fixed embedding size. When a = 0, the
associated neural network is a trainable embedding (vector in Rd). Networks are composed in a manner
that reflects the tree structure of a given goal g. They gradually construct embeddings for sub-trees of
g. A head network models a function from Rd to R targeting a provability estimation for g from an
embedding for g. Figure 2 shows part of the computation graph produced by a TNN on the running
example.

Until now, the value function of TacticToe was uniform. It gave a reward of 1 independently of the
provability of the goal produced. Thus, the search was guided solely by a policy trained from human-
written proof scripts. The lack of negative examples in these proofs makes this dataset unsuitable for
training the value function. That is why we extract training examples from TacticToe searches instead.
To do so, we collect search trees from the successful proof attempts. The goal nodes extracted from
these trees create our training examples with proven goals labeled positively and other goals negatively.
In order to speed up the training process, we keep at most one example for each goal with a preference
for the positive ones. We also remove examples with large goals (≥ 80 operators) and select the 600
most visited negative examples per proof attempt. From this dataset, we train a TNN with embedding
size (d = 16) and one layer per operator. The training is scheduled to take 100 epochs at a learning rate
of 0.08 and the batch size is increased regularly according to the sequence [16,24,32,48,64]. These
parameters were optimized by experimenting with a fifth of the HOL4 library. There, the parameters
used in [7] were gradually mutated to yield higher accuracy on HOL4 goals.

4 Results
We experiment on the HOL4 library included in the HOL4 repository 1. This library contains 168 the-

ories about mathematical and computer science concepts such as lists, trees, probabilities, measures and
1https://github.com/HOL-Theorem-Prover/HOL

82 Learned Provability Likelihood for Tactical Search

n+1 I

SUM

SUM (n+1) I2

×

2×SUM (n+1) I n× (n+1)

=

2×SUM (n+1) I = n× (n+1)

Figure 2: Computation of the embedding of 2× SUM (n+ 1) I = n× (n+ 1) by a TNN. To simplify
the diagram, the computation of the embeddings of 1, 2, n+ 1, n× (n+ 1) are not shown. Rectangles
represent embeddings and squares represent neural networks.

.

integration. During the development of HOL4 library, the proof of a theorem is usually found as an ar-
gument of one of the following functions: store_thm,maybe_thm, Store_thm,asm_store_thm,prove
or TAC_PROOF. We introduce a hook in these functions in order to evaluate TacticToe on their argument
goal as the library is built. In this way, only tactics, theorems and simplification sets created before a
goal g is proven are available to TacticToe when attempting to prove g. The code for this experiment is
available at this commit2. Replication instructions are given in the file src/tactictoe/EVALUATION.

After an evaluation of TacticToe with a 30 seconds timeout over 15948 theorems of the library
resulting in 8812 successful searches, 188409 examples (34021 positives and 154388 negatives) are
collected. Correcting for the imbalance between the positive and negative examples by oversampling
positive examples did not seem to improve the overall performance when experimenting with a small part
of the library. Therefore, no balancing method is applied in this full-scale experiment. The efficiency
of the learning phase is then assessed by splitting the examples into a training set (90%) and a test set
(10%). Following the training of the TNN, we measure an accuracy of 97.5% on the training set and
84.7% on the test set. For the final evaluation, the TNN is retrained on all examples.

The performance of value-guided TacticToe is compared with its default version in Table 1. All
changes to the proof search algorithm proposed in this paper are included in both versions. The only
difference between the two versions is whether a uniform or trained value function gives the reward
signal. Overall, the results show a small increase in the number of theorems re-proven. Calls to the TNN
increase the node creation time from 3.7% to 13.3% of the total search time. Such a small footprint could
not have been achieved without a Standard ML implementation of TNNs [7]. Thus, the positive impact
of learning is not severely dampened by the neural network overhead.

4.1 Proofs

Among the 239 theorems solely proven by TacticToeTNN , 30 of them belong to the theory real_topology.
Two such theorems with their tactical proof are analyzed here. Compared to the previous version of

213fbff7b94bb1a5b51881a5aeee63ffc44d3be1

T. Gauthier 83

TacticToe TacticToeTNN Combined

Standard library (15948 theorems) 8812 (138) 8913 (239) 9051

Table 1: Number of theorems in the HOL4 standard library re-proven within 30 seconds. The number
of theorems re-proven by one strategy but not by the other is shown in parentheses.

TacticToe, the proofs are now automatically printed with the preferred style of many HOL4 users. Tactics
are written in lowercase when possible and the tacticals >> (one goal), >| (multiple goals) compose
tactics in the final proof script.

The theorem ` ∀a. diameter {a}= 0 is re-proven in 28.2 seconds. It states that the diameter of any
singleton is equal to 0. The diameter of a set of reals s is by definition 0 if s is empty and otherwise
is the supremum {abs(x− y) | x ∈ s∧ y ∈ s}. The proof starts by rewriting the goal with the definition
of diameter, continues by distinguishing whether s is empty or not and proves each case by calling a
first-order solver and a simplification tactic with an appropriate lemma.

rewrite_tac [diameter] >> REPEAT strip_tac >>
COND_CASES_TAC >| [metis_tac [], srw_tac [] [REAL_SUP_UNIQUE]]

The theorem ` ∀ f s. (linear f ∧ subspace s)⇒ subspace (IMAGE f s) is re-proven in 16.7 seconds.
It states that the image of a subspace by a linear function is a subspace. A subspace s is a subset of
R that satisfies three conditions 0 ∈ s, (x ∈ s∧ y ∈ s)⇒ x+ y ∈ s, and ∀c ∈ R. x ∈ s⇒ c× x ∈ s . The
proof consists of rewriting the goal with this definition and then solving each of the three cases by calling
metis_tac with suitable premises.

srw_tac [] [subspace] >|
[metis_tac [REAL_MUL_LZERO,linear],
first_assum (X_CHOOSE_TAC ‘‘B‘‘ o MATCH_MP (LINEAR_BOUNDED)) >>
pop_assum (mp_tac o Q.SPEC ‘x‘) >> metis_tac [LINEAR_ADD],

metis_tac [LINEAR_CMUL]]

5 Usage

To make TacticToe more attractive to new users, tactic-goal pairs from the HOL4 library are prerecorded.
Therefore, the users can now use TacticToe right after building HOL4 without spending multiple hours
recording the data themselves (see HOL/src/tactictoe/README). Multiple new functions relying on the
TNN trained in this paper are implemented and available at the commit mentioned in Section 4 . To
run these functions, one first need to download the file tnn_for_tactictoe from http://grid01.
ciirc.cvut.cz/~thibault/ to a desired location path_to_foo. The function ttt_tnn runs Tactic-
Toe TNN on a chosen goal with the advice of a TNN imported by mlTreeNeuralNetwork.read_tnn.
The following commands demonstrate how to execute ttt_tnn in an interactive session:

load "tacticToe"; open tacticToe;
val tnn = mlTreeNeuralNetwork.read_tnn "path_to_foo";
load "sum_numTheory"; open sum_numTheory; open arithmeticTheory;
set_timeout 60.0;
ttt_tnn tnn ([],``!n. 2 * SUM (n+1) I = n * (n+1) ``);

84 Learned Provability Likelihood for Tactical Search

The function confidence_tnn returns the provability estimate of a goal as computed by the TNN
in 1 to 10 milliseconds. This might encourage the user to call TacticToe TNN if this value becomes high
on an open goal during a manual proof attempt.

The function suggest creates partial proofs from failed proof attempts. By limiting the numbers
of iterations of the MCTS loop to 22 (tttSearch.looplimit := SOME 22;), a call to ttt_tnn now
fails on the running example but the search tree is stored in the reference searchtree_glob. Executing
suggest (); at this point returns the most promising partial proof tree in searchtree_glob. To construct
the tree, this function traverses down the tree and selects the first proved tactic branch or the most visited
open tactic branch if no branch has been proved. A tactic built from this proof tree can then be applied to
the original goal and the user might continue working on the produced open goals. The resulting partial
proof suggested from our failed attempt is:

Induct >| [rewrite_tac [numeralTheory.numeral_distrib] >> all_tac,
srw_tac [ARITH_ss] [MULT_CLAUSES,LEFT_ADD_DISTRIB] >> all_tac]

The depth of this advice may be controlled by updating the reference tttSearch.suggest_depth.
The function suggest can also be used in combination with the original ttt function but the advice will
be of lesser value as the most promising proof branches are fixed by the policy and therefore the most
promising proof tree is gradually extended as the search tree grows. In contrast, the decision on which
path is most promising might be revised when running ttt_tnn with higher timeouts.

6 Conclusion

Training a TNN on intermediate goals generated by TacticToe leads to the creation of a goal provability
estimator with good accuracy. Since a goal can be split into multiple goals during tactic-based searches,
we propose improvements to the selection and backup phases of the underlying MCTS algorithm in
order to get more accurate feedback from the learned estimator. Experiments on the full HOL4 library
measure an increase in the success rate of TacticToe and demonstrate the scalability of our approach.
This resulted in the creation of new tools for HOL4 users that leverage the advice given by the estimator.
In particular, TacticToe is now able to suggest how to start a proof even when it fails to find one.

References
[1] David Auger, Adrien Couëtoux & Olivier Teytaud (2013): Continuous Upper Confidence Trees with Polyno-

mial Exploration - Consistency. In: Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I, pp.
194–209, doi:10.1007/978-3-642-40988-2_13.

[2] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy & Stewart Wilcox (2019): HOList:
An Environment for Machine Learning of Higher Order Logic Theorem Proving. In Kamalika Chaudhuri
& Ruslan Salakhutdinov, editors: Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, Proceedings of Machine Learning Research 97,
PMLR, pp. 454–463. Available at http://proceedings.mlr.press/v97/bansal19a.html.

[3] Yves Bertot (2008): A Short Presentation of Coq. In Otmane Ait Mohamed, César Muñoz & Sofiène Tahar,
editors: Conference on Theorem Proving in Higher Order Logics (TPHOLs), LNCS 5170, Springer, pp.
12–16, doi:10.1007/978-3-540-71067-7_3.

[4] Lasse Blaauwbroek, Josef Urban & Herman Geuvers (2020): The Tactician - A Seamless, Interactive Tactic
Learner and Prover for Coq. In Christoph Benzmüller & Bruce R. Miller, editors: Intelligent Computer
Mathematics - 13th International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings,
LNCS 12236, Springer, pp. 271–277, doi:10.1007/978-3-030-53518-6_17.

T. Gauthier 85

[5] Karel Chvalovský, Jan Jakubuv, Martin Suda & Josef Urban (2019): ENIGMA-NG: Efficient Neural
and Gradient-Boosted Inference Guidance for E. In: Automated Deduction - CADE 27 - 27th Interna-
tional Conference on Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, pp. 197–215,
doi:10.1007/978-3-030-29436-6_12.

[6] Thibault Gauthier (2020): Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic.
In Elvira Albert & Laura Kovács, editors: LPAR 2020: 23rd International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020, EPiC Series in Computing 73,
EasyChair, pp. 230–248, doi:10.29007/7jmg.

[7] Thibault Gauthier (2020): Tree Neural Networks in HOL4. In Christoph Benzmüller & Bruce R. Miller,
editors: Intelligent Computer Mathematics - 13th International Conference, CICM 2020, Bertinoro, Italy,
July 26-31, 2020, Proceedings, LNCS 12236, Springer, pp. 278–283, doi:10.1007/978-3-030-53518-6_18.

[8] Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar & Michael Norrish (2021): TacticToe:
Learning to Prove with Tactics. J. Autom. Reason. 65(2), pp. 257–286, doi:10.1007/s10817-020-09580-x.

[9] John Harrison (2009): HOL Light: An Overview. In Stefan Berghofer, Tobias Nipkow, Christian Urban &
Makarius Wenzel, editors: Conference on Theorem Proving in Higher Order Logics (TPHOLs), LNCS 5674,
Springer, pp. 60–66, doi:10.1007/978-3-642-03359-9_4.

[10] Joe Hurd (2005): System Description: The Metis Proof Tactic. In Carsten Schuermann Christoph Benz-
mueller, John Harrison, editor: Workshop on Empirically Successful Automated Reasoning in Higher-Order
Logic (ESHOL), pp. 103–104. Available at https://arxiv.org/pdf/cs/0601042.

[11] Cezary Kaliszyk, Josef Urban, Henryk Michalewski & Miroslav Olsák (2018): Reinforcement Learning
of Theorem Proving. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi & Roman Garnett, editors: Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Mon-
tréal, Canada, pp. 8836–8847. Available at https://proceedings.neurips.cc/paper/2018/hash/
55acf8539596d25624059980986aaa78-Abstract.html.

[12] Yutaka Nagashima & Yilun He (2018): PaMpeR: proof method recommendation system for Isabelle/HOL.
In Marianne Huchard, Christian Kästner & Gordon Fraser, editors: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Montpellier, France, September
3-7, 2018, ACM, pp. 362–372, doi:10.1145/3238147.3238210.

[13] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,
George van den Driessche, Thore Graepel & Demis Hassabis (2017): Mastering the game of Go without
human knowledge. Nature 550, pp. 354–359, doi:10.1038/nature24270.

[14] Konrad Slind & Michael Norrish (2008): A Brief Overview of HOL4. In Otmane Aït Mohamed, César A.
Muñoz & Sofiène Tahar, editors: Conference on Theorem Proving in Higher Order Logics (TPHOLs), LNCS
5170, Springer, pp. 28–32, doi:10.1007/978-3-540-71067-7_6.

[15] Makarius Wenzel, Lawrence C. Paulson & Tobias Nipkow (2008): The Isabelle Framework. In Otmane Aït
Mohamed, César A. Muñoz & Sofiène Tahar, editors: Conference on Theorem Proving in Higher Order
Logics (TPHOLs), LNCS 5170, Springer, pp. 33–38, doi:10.1007/978-3-540-71067-7_7.

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 86–98, doi:10.4204/EPTCS.342.8

c© D. Kim and C. Lynch
This work is licensed under the
Creative Commons Attribution License.

Congruence Closure Modulo Permutation Equations

Dohan Kim and Christopher Lynch
Clarkson University, Potsdam, NY, USA

{dohkim,clynch}@clarkson.edu

We present a framework for constructing congruence closure modulo permutation equations, which
extends the abstract congruence closure [7] framework for handling permutation function symbols.
Our framework also handles certain interpreted function symbols satisfying each of the following
properties: idempotency (I), nilpotency (N), unit (U), I∪U , or N∪U . Moreover, it yields convergent
rewrite systems corresponding to ground equations containing permutation function symbols. We
show that congruence closure modulo a given finite set of permutation equations can be constructed in
polynomial time using equational inference rules, allowing us to provide a polynomial time decision
procedure for the word problem for a finite set of ground equations with a fixed set of permutation
function symbols.

1 Introduction

Congruence closure procedures [12, 18, 19] have been researched for several decades, and play impor-
tant roles in software/hardware verification (see [9, 19, 20]) and satisfiability modulo theories (SMT)
solvers [8, 10]. They provide fast decision procedures for determining whether a ground equation is an
(equational) consequence of a given set of ground equations. (The fastest known congruence closure
algorithm runs in O(n log n) [15].)

In [7, 14], some approaches to constructing the congruence closure of ground equations using com-
pletion methods were considered. These approaches capture the efficient techniques from standard term
rewriting for congruence closure procedures. In particular, the abstract congruence closure approach
in [7] (cf. Kapur’s approach in [14]) constructs a reduced convergent ground rewrite system RS for a fi-
nite set of ground equations S, which consists of either rewrite rules of the form a→ c or f (c1, . . . ,cn)→ c
or c→ d for fresh constants c1, . . . ,cn,c,d. Furthermore, RS is a conservative extension of the equational
theory induced by S (i.e. the congruence closure CC(S)) on ground terms, and two ground terms are con-
gruent in CC(S) iff they have the same normal form w.r.t. RS. Note that this approach does not require a
total termination ordering on ground terms.

Congruence closure procedures were extended to congruence closure procedures modulo theories in
order to handle interpreted function symbols in the signature [3,6,15]. The notion of congruence closure
modulo associative and commutative (AC) theories was discussed in [6,16], and the notion of conditional
congruence closure with uninterpreted and some interpreted function symbols was considered in [15].

Meanwhile, an equation is a permutation equation [1] if it is of the form f (x1, . . . ,xn)≈ f (xπ(1), . . . ,
xπ(n)), where π is a permutation on the set {1, . . . ,n}. Commutativity is the simplest case of permuta-
tion equations. Permutation equations are difficult to handle in equational reasoning without using the
modulo approach. For example, an ordered completion procedure for ordered rewriting [5] produces ev-
ery equation of the form f (x1,x2, . . . ,xn) ≈ f (xρ(1),xρ(2), . . . ,xρ(n)) (up to variable renaming) from two
permutation equations f (x1,x2, . . . ,xn) ≈ f (x2,x1,x3, . . . ,xn) and f (x1,x2, . . . ,xn) ≈ f (x2,x3, . . . ,xn,x1),
where ρ is a permutation in the symmetric group Sn of cardinality n!. (Recall that the symmetric group
Sn can be generated by two cycles (12) and (12 · · · n).) Therefore, it is natural to view permutation

D. Kim and C. Lynch 87

equations as “structural axioms” (defining a congruence relation on terms) rather than viewing them as
“simplifiers” (defining a reduction relation on terms) [5].

In this paper, we present a framework for generating congruence closure modulo a finite set of per-
mutation equations. To our knowledge, it has not been discussed in the literature, and a polynomial time
decision procedure for the word problem for a finite set of ground equations with a fixed set of permuta-
tion function symbols has not yet been known.

Our framework is based on the notion of abstract congruence closure that is particularly useful for
term representation and checking E-equality between two flat terms for a given set of permutation equa-
tions E , which does not require an E-compatible ordering (cf. [17]). In addition, it also handles function
symbols satisfying each of the following properties: idempotency (I), nilpotency (N), unit (U), I∪U , or
N ∪U . (If a function symbol is a permutation function symbol satisfying one of the above properties,
then it should be a commutative function symbol.)

We show that congruence closure modulo a given finite set of permutation equations (with or with-
out the function symbols satisfying the above properties) can be constructed in polynomial time, which
provides a polynomial time decision procedure for the word problem for a finite set of ground equations
with a fixed set of permutation function symbols (appearing in E).

2 Preliminaries

We use the standard terminology and definitions of term rewriting [4,11], congruence closure [7,12,19],
and permutation groups [13]. We also use some terminology and the results of permutation equations
found in [1, 2].

We denote by T (F ,X) the set of terms over a finite set of function symbols F and a denumerable
set of variables X . We denote by T (F) the set of ground terms over F . We assume that each function
symbol in F has a fixed arity.

An equation is an expression s ≈ t, where s and t are (first-order) terms built from F and X . A
ground equation (resp. ground term) is an equation (resp. a term) which does not contain any variable.

We write s[u] if u is a subterm of s and denote by s[t]p the term that is obtained from s by replacing
the subterm at position p of s by t.

An equivalence is a reflexive, transitive, and symmetric binary relation. An equivalence ∼ on terms
is a congruence if s∼ t implies u[s]p ∼ u[t]p for all terms s, t, u and positions p.

An equational theory is a set of equations. We denote by ≈E (called the equational theory induced
by E) the least congruence on T (F ,X) that is stable under substitutions and contains a set of equations
E . If s≈E t for two terms s and t, then s and t are E-equivalent.

Given a finite set S = {ai ≈ bi |1≤ i≤m} of ground equations where ai,bi ∈ T (F), the congruence
closure CC(S) [3, 15] is the smallest subset of T (F)× T (F) that contains S and is closed under the
following rules: (i) S⊆CC(S), (ii) for every a∈ T (F), a≈ a∈CC(S) (reflexivity), (iii) if a≈ b∈CC(S),
then b≈ a ∈CC(S) (symmetry), (iv) if a≈ b and b≈ c ∈CC(S), then a ≈ c ∈CC(S) (transitivity), and
(v) if f ∈F is an n-ary function symbol (n > 0) and a1 ≈ b1, . . . ,an ≈ bn ∈CC(S), then f (a1, . . . ,an)≈
f (b1, . . . ,bn) ∈CC(S) (monotonicity). Note that CC(S) is also the equational theory induced by S.

A (strict) ordering ≻ on terms is an irreflexive and transitive relation on T (F ,X).
Given a rewrite system R and a set of equations E , the rewrite relation→R,E on T (F ,X) is defined

by s→R,E t if there is a non-variable position p in s, a rewrite rule l→ r ∈ R, and a substitution σ such
that s|p≈E lσ and t = s[rσ]p. The transitive and reflexive closure of→R,E is denoted by ∗−→R,E . We say
that a term t is an R,E-normal form if there is no term t ′ such that t→R,E t ′.

88 Congruence Closure Modulo Permutation Equations

The rewrite relation →R/E on T (F ,X) is defined by s→R/E t if there are terms u and v such that
s ≈E u, u→R v, and v ≈E t. We simply say the rewrite relation →R/E (resp.→R,E) on T (F ,X) as the
rewrite relation R/E (resp. R,E).

The rewrite relation R,E is Church-Rosser modulo E if for all terms s and t with s ∗←→R∪E t, there are
terms u and v such that s ∗−→R,E u ∗←→E v ∗←−R,E t. The rewrite relation R,E is convergent modulo E if R,E
is Church-Rosser modulo E and R/E is well-founded.

The depth of a term t is defined as depth(t) = 0 if t is a variable or a constant and depth(f (s1, . . . ,sn))
= 1+ max{depth(si) |1≤ i≤ n}. A term t is flat if its depth is 0 or 1.

An equation of the form f (x1, . . . ,xn) = f (xρ(1), . . . ,xρ(n)) is a permutation equation [1] if ρ is a
permutation on {1, . . . ,n}. We use variable naming in such a way that the left-hand side of each equation
in a set of permutation equations with the same function symbol has the same name of variables x1, . . . ,xk
from left to right. (In this paper, we assume that the set of function symbols F in T (F ,X) is finite and
each function symbol in F has a fixed arity.)

We denote by FE the set of all function symbols occurring in a finite set of permutation equations E .
If e := f (x1, . . . ,xn)≈ f (xρ(1), . . . ,xρ(n)) is a permutation equation, then ρ is the permutation of this

equation. We denote by π[e] the permutation of e. For example, ρ is the permutation of the permutation
equation e′ := f (x1,x2,x3,x4) ≈ f (x1,x3,x2,x4) (i.e. π[e′] = ρ) with ρ(1) = 1,ρ(2) = 3, ρ(3) = 2, and
ρ(4) = 4. Let E be a set of permutation equations with the same top function symbol. Then Π[E] is
defined as Π[E] := {π[e] |e ∈ E}. The permutation group generated by Π[E] is denoted by <Π[E]>.

Theorem 1. (see Theorem 1.4 in [2]) Let E be a set of permutation equations and let e be a permutation
equation such that every equation in E ∪{e} has the same (top) function symbol. Then E |= e if and only
if π[e] ∈<Π[E]>.

Let i1, i2, . . . , ir (r ≤ n) be distinct elements of In = {1,2, . . . ,n}. Then (i1 i2 · · · ir), called a cycle of
length r, is defined as the permutation that maps i1 7→ i2, i2 7→ i3,. . . , ir−1 7→ ir and ir 7→ i1, and every
other element of In maps onto itself. The symmetric group Sn of cardinality n! can be generated by two
cycles (12) and (12 · · · n).

Example 1. Let E = { f (x1,x2,x3,x4,x5)≈ f (x2,x1,x3,x4,x5), f (x1,x2,x3,x4,x5)≈ f (x2,x3,x4,x5,x1)}.
Then Π[E] consists of two cycles {(12),(12345)}. Since two cycles (12) and (12345) generate the
symmetric group S5, we see that <Π[E]> is S5. Therefore, f (x1, . . . ,x5) ≈E f (xτ(1), . . . ,xτ(5)) for any
permutation τ ∈ S5 by Theorem 1.

Let E be a finite set of permutation equations. Then E can be uniquely decomposed as
⋃n

i=1 Ei such
that (i) each Ei is a finite set of permutation equations, and (ii) E j and Ek with j 6= k are disjoint such that
if s j ≈ t j ∈ E j and sk ≈ tk ∈ Ek, then s j and sk do not have the same top symbol (and are not variants of
each other). Since we assume that each function symbol has a fixed arity, each distinct function symbol
occurring in E corresponds to a distinct Ei in E . We denote by Eq(f) the corresponding equational
theory with terms headed by such a function symbol f . Now, we may apply Theorem 1 for each Eq(f)
in E with f ∈FE .

3 Congruence closure modulo permutation equations

Definition 2. Let K be a set of constants disjoint from F .

(i) A D-rule (w.r.t. F and K) is a rewrite rule of the form f (c1, . . . ,cn)→ c, where c1, . . . ,cn,c are
constants in K and f ∈F is an n-ary function symbol.

(ii) A C-rule (w.r.t. K) is a rule c→ d, where c and d are constants in K.

D. Kim and C. Lynch 89

In Definition 2(i), note that f ∈F can also be a 0-ary function symbol (i.e. a constant).

Example 2. Let E = { f (x1,x2) ≈ f (x2,x1),g(x1,x2,x3) ≈ g(x2,x1,x3)}. If F = {a,b,h, f ,g} with
FE = { f ,g} and P = { f (b,g(b,a,a))≈ h(a)}, then D0 = {a→ c0,b→ c1,g(c1,c0,c0)→ c2, f (c1,c2)→
c3,h(c0)→ c4} is a possible set of D-rules over F , and we have K = {c0,c1,c2,c3,c4}. Using D0, we
can simplify the original equations in P, which gives the set of C rules, i.e., C0 = {c3 → c4} where
c3 ≻ c4.

Definition 3. Let E be a finite set of permutation equations and K be a set of constants disjoint from F .
A ground rewrite system R = D∪C is a congruence closure modulo E (w.r.t. F and K) if the following
conditions are met:

(i) D is a set of D-rules and C is a set of C-rules, and for each constant c ∈ K, there exists at least one
ground term t ∈T (F) such that t ∗←→R,E c.

(ii) R,E is a ground convergent (modulo E) rewrite system over T (F ∪K).

In addition, given a set of ground equations P over T (F ∪K), R is said to be a congruence closure
modulo E (w.r.t. F and K) for P if for all ground terms s and t over T (F), s ∗←→P∪E t iff there are ground
terms u and v over T (F ∪K) such that s ∗−→R,E u ∗←→E v ∗←−R,E t.

In the following, by B-rules with the interpreted function symbol g ∈F , we mean either the idem-
potency rule (I): {g(x,x)→ x} or the nilpotency rule (N): {g(x,x)→ 0} or the unit rule (U): {g(x,0)→
x,g(0,x)→ x} or I∪U or N∪U .

Definition 4. Let E be a finite set of permutation equations and K be a set of constants disjoint from
F . A ground rewrite system R = D∪C is a congruence closure modulo E ∪B (w.r.t. F and K) if the
following conditions are met:

(i) B is a set of B-rules with the interpreted function symbol g ∈F .1

(ii) D is a set of D-rules and C is a set of C-rules, and for each constant c ∈ K, there exists at least one
ground term t ∈T (F) such that t ∗←→R,E c.

(iii) R∪B,E is a convergent (modulo E) rewrite system over T (F ∪K,X).2

In addition, given a set of ground equations P over T (F ∪K), R is said to be a congruence closure
modulo E ∪B (w.r.t. F and K) for P if for all ground terms s and t over T (F), s ∗←→P∪B∪E t iff there are
ground terms u and v over T (F ∪K) such that s ∗−→R∪B,E u ∗←→E v ∗←−R∪B,E t.

Note that B or E can be empty in Definition 4. If B is empty, then it is the same as Definition 3. Also,
condition (ii) in Definition 4 states that each constant c in K represents some term in T (F) w.r.t. R,E ,
meaning that K contains no superfluous constants (cf. [7]).

Definition 5. We denote by W the infinite set of constants {c0,c1, . . .} such that W is disjoint from F ,
and denote by K a finite subset chosen from W . We define orderings ≻K on K, and ≻ and ≻lpo on
T (F ∪K) as follows:

(i) ci ≻K c j if i < j for all ci,c j ∈ K.

(ii) c≻ d if c≻K d, and t ≻ c if t→ c is a D-rule.

1If g ∈FE , then g is a commutative function symbol, i.e., g(x1,x2)≈ g(x2,x1) ∈ E.
2In this paper, R∪B,E (resp. R∪B/E) denotes (R∪B),E (resp. (R∪B)/E).

90 Congruence Closure Modulo Permutation Equations

(iii) ≻lpo is a lexicographic path ordering on T (F ∪K), which can be defined from the following
assumptions:
(iii.1) c≻lpo d if c≻K d,
(iii.2) t ≻lpo c if t is any term headed by a function symbol f in F and c is any constant in K, and
(iii.3) there is a total precedence on symbols in F .

Observe that ≻lpo extends ≻, and is total on T (F ∪K). (If the precedence on F ∪K is total, then
the associated lexicographic path ordering ≻lpo is total on T (F ∪K) (see [11]).) We emphasize that a
partial ordering ≻ on T (F ∪K) suffices for inference rules in Figure 1.

Figure 1 shows the inference rules for congruence closure modulo permutation equations, which
extends the inference rules for the abstract congruence closure framework in [7]. We have the additional
inference rule called the REWRITE rule in Figure 1. Also, we use the E-equality ≈E instead of the
equality ≈ for the DEDUCE and DELETE inference rules. We write (K,P,R) ⊢ (K′,P′,R′) to indicate
that (K′,P′,R′) can be obtained from (K,P,R) by application of an inference rule in Figure 1, where
K denotes a set of new constants (see Definition 5), P a set of equations, and R a set of rewrite rules
consisting of C-rules and D-rules. Also, in Figure 1, B denotes a set of B-rules. A derivation is a
sequence of states (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · .
Lemma 6. If (K,P,R) ⊢ (K′,P′,R′), then for all u and v in T (F ∪K), we have u ∗←→E∪B∪P′∪R′ v if and
only if u ∗←→E∪B∪P∪R v.

Proof. We consider each application of an inference rule τ for (K,P,R) ⊢ (K′,P′,R′). If τ is EXTEND,
SIMPLIFY, ORIENT, DELETE, COLLAPSE, or COMPOSE, then the conclusion can be verified simi-
larly to [5, 7].

If τ is REWRITE, then we let P = P̄, R = R̄∪{l′→ r′}, R′= R̄, P′= P̄∪{rσ ≈ r′}, and K = K′. Since
(K∪P∪R)−(K′∪P′∪R′) = {l′→ r′}, we need to show that l′ ∗←→E∪B∪P′∪R′ r′. As l′= lσ→B rσ ↔P′ r′,
we have l′ ∗←→E∪B∪P′∪R′ r′. Conversely, since (K′∪P′∪R′)− (K ∪P∪R) = {rσ ≈ r′}, we need to show
that rσ ∗←→E∪B∪P∪R r′. As rσ ←B lσ = l′→R r′, we have rσ ∗←→E∪B∪P∪R r′.

If τ is DEDUCE, then let R = R̄∪{s→ c, t → d}, P′ = P∪{c≈ d}, R′ = R̄∪{t→ d}, and K = K′,
where s ≈E t. Since (K ∪P∪R)− (K′∪P′∪R′) = {s→ c}, we need to show that s ∗←→E∪B∪P′∪R′ c. As
s ∗←→E t→R′ d↔P′ c, we have s ∗←→E∪B∪P′∪R′ c. Conversely, since (K′∪P′∪R′)− (K∪P∪R) = {c≈ d},
we need to show that c ∗←→E∪B∪P∪R d. As c←R s ∗←→E t→R d, we have c ∗←→E∪B∪P∪R d.

Definition 7. (i) A derivation is said to be fair if any inference rule that is continuously enabled is applied
eventually.
(ii) By a fair µ-derivation, we mean that the EXTEND and SIMPLIFY rule are applied eagerly in a fair
derivation.

Theorem 8. Let (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · be a fair µ-derivation such that P0 is a finite set of
ground equations with K0 = /0 and R0 = /0.
(i) Each fair µ-derivation starting from the initial state (K0,P0,R0) is finite.
(ii) If (Kn,Pn,Rn) is a final state (i.e. no inference rule can be applied to (Kn,Pn,Rn)) of a fair µ-
derivation starting from the initial state (K0,P0,R0), then Rn ∪ B,E is convergent modulo E, and Rn
is a congruence closure modulo E ∪B for P0.

Proof. Since (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · is a fair µ-derivation, this derivation can be written as
(K0,P0,R0)⊢∗ (Km,Pm,Rm)⊢ (Km+1,Em+1,Rm+1)⊢ ·· · , where the derivation (Km,Pm,Rm)⊢ (Km+1,Em+1,
Rm+1) ⊢ ·· · does not involve any application of the EXTEND rule, so we have the set Km = Km+1 = · · · .

D. Kim and C. Lynch 91

(K,P[t],R)
EXTEND:

(K ∪{c},P[c],R∪{t→ c})

if t→ c is a D-rule, c ∈W −K, and t occurs in some
equation in P.

(K,P[t],R∪{t→ c})
SIMPLIFY:

(K,P[c],R∪{t→ c})

if t occurs in some equation in P.3

(K,P,R∪{l′→ r′})
REWRITE:

(K,P∪{rσ ≈ r′},R)

if l′ = lσ , where l→ r ∈ B.

(K,P∪{s≈ t},R)
ORIENT:

(K,P,R∪{s→ t})

if s≻ t, and s→ t is a D-rule or a C-rule.

(K,P,R∪{s→ c , t→ d})
DEDUCE:

(K,P∪{c≈ d},R∪{t→ d})

if s≈E t.

(K,P∪{s≈ t},R)
DELETE:

(K,P,R)

if s≈E t.

(K,P,R∪{t→ c , c→ d})
COMPOSE:

(K,P,R∪{t→ d , c→ d})

(K,P,R∪{t[c]→ c′ , c→ d})
COLLAPSE:

(K,P,R∪{t[d]→ c′ , c→ d})

if c is a proper subterm of t and c→ d is a C-rule.

Figure 1: Inference rules for congruence closure modulo permutation equations

92 Congruence Closure Modulo Permutation Equations

For (i), we provide a more concrete result in the following Lemma 9.
For (ii), let (Kn,Pn,Rn) be a final state of a fair µ-derivation starting from the state (K0,P0,R0). (Note

that each fair µ-derivation starting from the initial state (K0,P0,R0) is finite by (i), so we have some final
state.) Observe that Pm,Pm+1, . . . either contains only C-equations or is empty, and ≻ can orient those C
equations, so Pn = /0. Since l ≻lpo r for all rules l→ r ∈ Rn∪B, we see that Rn∪B/E is terminating.

Also, since Rn∪B is non-overlapping w.r.t. the rewrite system Rn ∪B,E (i.e. there is no non-trivial
critical pair between rules in Rn∪B), Rn∪B,E is Church-Rosser modulo E by the critical pair lemma [5].
Thus, Rn∪B,E is convergent modulo E .

Finally, we show that for each constant c ∈ K, there exists at least one ground term t ∈ T (F)

such that t ∗←→Rn,E c by induction. Let c be a constant in K and f (c1, . . . ,ck)→ c be the correspond-
ing extension rule for c when c was added. By induction hypothesis, we have si

∗←→Rn,E ci, and thus
f (s1, . . . ,sk)

∗←→Rn,E f (c1, . . . ,ck)→∪iRi c. By Lemma 6, we also have f (s1, . . . ,sk)
∗←→Rn∪PnB∪E c, and thus

f (s1, . . . ,sk)
∗←→Rn∪B∪E c because Pn = /0. As Rn∪B,E is convergent modulo E and no more REWRITE

rule can be applied to f (s1, . . . ,sk) by fairness of the derivation, we have f (s1, . . . ,sk)
∗←→Rn,E c. Thus Rn

is a congruence closure modulo E ∪B for P0.

In the following lemma, recall that function symbols in F include 0-ary function symbols in F , i.e.,
constants in F .

Lemma 9. Let (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · be a fair µ-derivation such that P0 is a finite set of ground
equations with K0 = /0 and R0 = /0. Then its derivation length is bounded by O(n2), where n is the sum
of the sizes (number of symbols) of the left-hand and right-hand sides of equations in P0.

Proof. We show that the number of applications of each rule in Figure 1 in a fair µ-derivation is bounded
above by O(n2), where n is the sum of the sizes (number of symbols in F) of the left-hand and right-
hand sides of equations in P0. Since (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · is a fair µ-derivation, we may write
this derivation as

(K0,P0,R0) ⊢∗ (Km,Pm,Rm) ⊢ (Km+1,Em+1,Rm+1) ⊢ ·· · ,

where the derivation (Km,Pm,Rm) ⊢ (Km+1,Em+1,Rm+1) ⊢ ·· · does not involve any application of the
EXTEND rule, and thus we have the finite set Km = Km+1 = · · · .

(i) The total number of the EXTEND inference steps is bounded by O(n). This is because the total
number of F -symbols in the second component of the state is not increasing for each transition
step4 and each EXTEND inference step decreases this number by one.

(ii) A derivation step by the SIMPLIFY, REWRITE, DEDUCE, COMPOSE, or COLLAPSE rule ei-
ther reduces the number of function symbols of F in Ri∪Pi or rewrites some constant. The length
of a rewriting sequence c1→ c2→ ··· is bounded by |Km|. (Here, |Km| is O(n) because the total
number of the EXTEND inference steps is bounded by O(n) as discussed in (i).) Also, the total
number of symbols in Pi∪Ri is bounded by O(n+ |Km|),5 which is also O(n). This means that the
total number of the SIMPLIFY, DEDUCE, COLLAPSE, or COMPOSE inference steps is bounded

4The only exception is the case where the REWRITE inference step using the nilpotency rule introduces constant 0 in the
second component of the state, where 0 does not occur in P0. But this requires at most one additional EXTEND inference step.

5The total number of symbols in Pi ∪Ri for each transition step does not increase except by an EXTEND inference step,
where an EXTEND inference step may increase this number by two.

D. Kim and C. Lynch 93

by O(n2). (Note that rewriting constants takes O(n2) because there are at most O(n) constants, and
the length of a rewriting sequence for each constant is bounded by O(n).)

(iii) The total number of the DELETE inference steps is bounded by O(n + |Km|) (i.e. O(n)) because
the total number of symbols in Pi∪Ri is bounded by O(n+ |Km|).

(iv) The total number of the ORIENT inference steps is bounded by the total number of EXTEND,
SIMPLIFY, DEDUCE, COLLAPSE, and COMPOSE inference steps, which is O(n2). Note that
each ORIENT inference step neither increases the number of function symbols nor the number of
constants.

Thus, the derivation length of any fair µ-derivation starting from (K0,P0,R0) is bounded by O(n2).

Given a finite (fixed) set of permutation equations E and two terms s = f (s1, . . . ,sk) and t = f (t1, . . . ,
tk) with f ∈ FE , we can determine whether s ≈E t in O(n2) time (measured in n = |s|+ |t|) using an
additional data structure (i.e. a table) that can be constructed in polynomial time [1]. If s and t are both
flat, then we can determine whether s≈E t in O(n) time using the following procedure with a table that
can be constructed in polynomial time (see [1]).

Equality-Test(s, t)
Input: s = f (c1, . . . ,ci) and t = g(d1, . . . ,d j), where s and t are both flat.
Output: If s≈E t, then return true. Otherwise, return false.

1. Determine whether s and t are headed by the same function symbol (i.e. f = g and thus i = j). If
not, then return false. If it is true, then consider the following:

2. Determine whether f ∈FE . If not, then s and t are compared by syntactic equality, and return true
if they are syntactically equal. Otherwise, if f ∈FE , then consider the following:

3. Determine whether s≈E t using the TestEq procedure in [1].

It is easy to see that steps 1 and 2 of the Equality-Test(s, t) procedure take at most O(n) time. For
step 3, which corresponds to the case f = g and f ∈FE , it takes O(n) time for comparing two multisets.

If they are equal, then s and t are further compared in constant time using the TestEq procedure
in [1] with a table that can be constructed in polynomial time. (Note that the arity of all f ∈FE and
the size of the data structure (i.e. table) is bounded by a constant independent of the size of the input
terms.) Therefore, the Equality-Test(s, t) procedure takes O(n) time using a table that can be constructed
in polynomial time. In what follows, we denote by Table(Eq(f)) this table for each f ∈FE for a finite
(fixed) set of permutation equations E .

Theorem 10. Given the table Table(Eq(f)) for each f ∈FE , a congruence closure modulo E ∪B for a
finite set of ground equations P can be computed in O(n3) time, where n is the sum of the sizes (number
of symbols) of the left and right sides of equations in P.

Proof. We first construct a fair µ-derivation (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · such that P0 is a finite set of
ground equations with K0 = /0 and R0 = /0.

It is easy to see that each EXTEND, SIMPLIFY, ORIENT, COMPOSE, and COLLAPSE inference
step in the derivation takes O(n) time.

Each REWRITE inference step in the derivation takes O(n) time because we only need to consider
for rules g(x,x) → x, g(x,x) → 0, g(x,0) → x, and g(0,x) → x for some interpreted function symbol
g ∈F .

Each DEDUCE inference step in the derivation takes O(n) time for checking E-equality (see the

94 Congruence Closure Modulo Permutation Equations

Equality-Test(s, t) procedure) between two left-hand side terms s and t in Ri. Similarly, each DELETE
inference step in the derivation takes O(n) time for checking E-equality.

By Lemma 9, we know that the derivation length of a fair µ-derivation is bounded by O(n2). Since
each inference step in the derivation takes O(n) time, a congruence closure modulo E ∪B for a finite set
of ground equations P can be computed in O(n3) time.

Corollary 11. The word problem for a finite set of ground equations P with a fixed set of permutation
function symbols is decidable in polynomial time.

Proof. We can decide whether s ≈?
E t for two ground terms s and t using a congruence closure modulo

E for P. By Theorem 10, we can compute a congruence closure modulo E for P in polynomial time by
constructing and using the table Table(Eq(f)) for each f ∈FE . Let R be a congruence closure modulo
E for P. We obtain each normal form of s and t using R. We first rewrite each constant symbol in F
of s and t to a new constant symbol in K obtained from constructing R, which takes O(m) time where
m = |s|+ |t|. Each rewrite step either reduces the size of a term or rewrites a constant in K to another
constant in K. The length of a rewriting sequence c1 → c2 → ··· is bounded by |K| (i.e. O(n)), where
n is the sum of the sizes of the left-hand and right-hand sides of equations in P. We may also infer that
the sum of the sizes of the left-hand and right-hand sides of the rewrite rules in R is O(n+ |K|), which is
O(n). Each rewrite step takes at most O(n2) time using R and the Equality-Test procedure. By combining
these steps together, we can decide whether s≈?

E t for two ground terms s and t using their normal forms
in polynomial time.

The above corollary also holds if some function symbols (not necessarily permutation function sym-
bols) satisfies the properties, such as idempotency (I), nilpotency (N), unit (U), I∪U , or N ∪U .

4 Example of congruence closure modulo E ∪B

Let B be the set of the equation for an idempotency function symbol g, i.e., B = {g(x,x)→ x} and let E
be the following set of permutation equations:

E = { f (x1,x2,x3,x4,x5,x6,x7,x8)≈ f (x2,x1,x3,x4,x5,x6,x7,x8),
f (x1,x2,x3,x4,x5,x6,x7,x8)≈ f (x2,x3,x4,x1,x5,x6,x7,x8),
f (x1,x2,x3,x4,x5,x6,x7,x8)≈ f (x1,x2,x3,x4,x6,x5,x7,x8),
f (x1,x2,x3,x4,x5,x6,x7,x8)≈ f (x1,x2,x3,x4,x5,x6,x8,x7)}.

In this example, we may view each variable xi as a switch in a specially designed electric board, where
each variable will be assigned to either constant T (representing “on”) or constant F (representing “off”).
Each ground term f (c1,c2,c3,c4,c5,c6,c7,c8) with ci = T or F represents a certain state of this electric
board. There is a special transformation button in this electric board, which may transform one state to
another state of the electic board. This transformation button is represented by a function with symbol
h /∈FE . The problem is to determine if a certain state in the electric board (represented by a term) gener-
ates a fault state (represented by term ⊥). We see that ∏[E] = {(12),(1234),(56),(78)}, which means
that f (x1,x2,x3,x4,x5,x6,x7,x8) ≈E f (xρ(1),xρ(2),xρ(3),xρ(4),x5,x6,x7,x8) for any permutation ρ on the
set {1,2,3,4}, f (x1,x2,x3,x4,x5,x6,x7,x8)≈E f (x1,x2,x3,x4,xπ(5),xπ(6),x7,x8) for any permutation π on
the set {5,6}, and f (x1,x2,x3,x4,x5,x6,x7,x8)≈E f (x1,x2,x3,x4,x5,x6,xτ(7),xτ(8)) for any permutation τ

D. Kim and C. Lynch 95

on the set {7,8} (see Thereom 1). Therefore, eight switches in the board are partitioned into three com-
ponents, i.e. {x1,x2,x3,x4}, {x5,x6} and {x7,x8}, where the order of “switch on” or “switch off” does
not matter in each component. For example, f (T,T,F,F,T,F,T,F) ≈E f (F,F,T,T,F,T,T,F). Mean-
while, g is an idempotent function symbol, which serves as a comparator for fault states. For example, if
g(⊥, f (F,F,F,T,T,T,T,F)), then it is ⊥ if f (F,F,F,T,T,T,T,F) is ⊥. Now we start with the following
set of ground equations:

1. f (T,T,T,T,T,T,T,T)≈⊥
2. h(f (F,F,F,F,F,F,F,F))≈ f (F,T,F,T,F,T,F,T)
3. f (T,F,F,F,F,F,F,T)≈ g(⊥,h(f (T,T,T,T,F,T,F,T)))
4. h(f (T,F,T,F,T,F,T,F))≈ f (F,F,F,F,T,T,T,T)
5. f (F,F,F,F,T,T,T,T)≈ f (T,T,T,T,F,F,F,F)
6. h(f (T,T,T,T,F,F,F,F))≈ f (T,T,T,T,T,F,T,F)
7. h(f (T,T,T,T,F,T,F,T))≈ f (T,T,T,T,T,T,T,T)

We show that, for example, each of h4(f (F,F,F,F,F,F,F,F)) and f (T,F,F,F,F,F,F,T) is a fault
state. (For notational brevity, by hi(t), we mean the function symbol h is applied to term hi−1(t) with h0(t)
denoting t.) The initial state is (K0,P0,R0), where K0 = R0 = /0 and P0 consists of the above equations
1−7. We apply a fair µ-derivation starting with (K0,P0,R0) and some intermediate and repetitive steps
are omitted for clarity. In the following, each rewrite rule is an element of some Ri and each equation is
an element of some Pj. We assume that ci ≻ c j if i < j.

1(a). T → c1,F → c2,⊥→ c3 EXTEND and SIMPLIFY for 1
1(b). f (c1,c1,c1,c1,c1,c1,c1,c1)→ c4
1(c). c4 ≈ c3
2(a). f (c2,c2,c2,c2,c2,c2,c2,c2)→ c5 EXTEND and SIMPLIFY for 2
2(b). h(c5)→ c6
2(c). f (c2,c1,c2,c1,c2,c1,c2,c1)→ c7
2(d). c6 ≈ c7
3(a). f (c1,c2,c2,c2,c2,c2,c2,c1)→ c8 EXTEND and SIMPLIFY for 3
3(b). f (c1,c1,c1,c1,c2,c1,c2,c1)→ c9
3(c). h(c9)→ c10
3(d). g(c3,c10)→ c11
3(e). c8 ≈ c11
4(a). f (c1,c2,c1,c2,c1,c2,c1,c2)→ c12 EXTEND and SIMPLIFY for 4
4(b). h(c12)→ c13
4(c). f (c2,c2,c2,c2,c1,c1,c1,c1)→ c14
4(d). c13 ≈ c14
5(a). f (c2,c2,c2,c2,c1,c1,c1,c1)→ c15 EXTEND and SIMPLIFY for 5
5(b). f (c1,c1,c1,c1,c2,c2,c2,c2)→ c16
5(c). c15 ≈ c16
6(a). f (c1,c1,c1,c1,c2,c2,c2,c2)→ c17 EXTEND and SIMPLIFY for 6
6(b). h(c17)→ c18
6(c). f (c1,c1,c1,c1,c1,c2,c1,c2)→ c19
6(d). c18 ≈ c19
7(a). f (c1,c1,c1,c1,c2,c1,c2,c1)→ c20 EXTEND and SIMPLIFY for 7

96 Congruence Closure Modulo Permutation Equations

7(b). h(c20)→ c21
7(c). f (c1,c1,c1,c1,c1,c1,c1,c1)→ c22
7(d). c21 ≈ c22
8(a). c7 ≈ c12 (Rule 2(c) is now removed.) DEDUCE with 2(c) and 4(a)
8(b). c14 ≈ c15 (Rule 4(c) is now removed.) DEDUCE with 4(c) and 5(a)
8(c). c16 ≈ c17 (Rule 5(b) is now removed.) DEDUCE with 5(b) and 6(a)
8(d). c9 ≈ c20 (Rule 3(b) is now removed.) DEDUCE with 3(b) and 7(a)
8(e). c19 ≈ c20 (Rule 6(c) is now removed.) DEDUCE with 6(c) and 7(a)
8(f). c4 ≈ c22 (Rule 1(b) is now removed.) DEDUCE with 1(b) and 7(c)

We next orient equations into C-rules and apply other inference rules. The set of C-rules is C = {c3→
c4,c6 → c7,c8 → c11,c13 → c14,c15 → c16,c18 → c19,c21 → c22,c7 → c12,c14 → c15,c16 → c17,c9 →
c20,c19 → c20,c4 → c22}. Using DEDUCE, COMPOSE, and ORIENT inference steps, it becomes
C′ = {c3→ c22,c6→ c12,c8→ c11,c13→ c17,c15→ c17,c18→ c20,c21→ c22,c7→ c12,c14→ c17,c16→
c17,c9 → c20,c19 → c20,c4→ c22}. The REWRITE inference step 9(d) is available after the following
inference steps 9(a), 9(b), and 9(c):

9(a). h(c20)→ c10 COLLAPSE 3(c) with c9→ c20
9(b). c10→ c22 DEDUCE with 7(b) and 9(a), ORIENT, COMPOSE
9(c). g(c22,c22)→ c11 COLLAPSE 3(d) with c3→ c22 and c10→ c22
9(d). c11→ c22 REWRITE 9(c), ORIENT

In the above, Rule 3(c) is removed after 9(a), Rule 9(a) is removed after 9(b), Rule 3(d) is removed
after 9(c), and Rule 9(c) is removed after 9(d). We may obtain a congruence closure Rn = Cn ∪Dn
modulo E ∪B for P0 for some n with some additional inference steps, where Cn = {c3 → c22,c4 →
c22,c6 → c12,c7 → c12,c8 → c11,c9 → c20,c10 → c22,c11 → c22,c13 → c17,c14 → c17,c15 → c17,c16 →
c17,c18→ c20,c21→ c22} and Dn consists of the following set of rules:

D1: T → c1 D2: F → c2
D3: ⊥→ c22 D4: f (c2,c2,c2,c2,c2,c2,c2,c2)→ c5
D5: h(c5)→ c12 D6: f (c1,c2,c2,c2,c2,c2,c2,c1)→ c22
D7: f (c1,c2,c1,c2,c1,c2,c1,c2)→ c12 D8: h(c12)→ c17
D9: f (c2,c2,c2,c2,c1,c1,c1,c1)→ c17 D10: f (c1,c1,c1,c1,c2,c2,c2,c2)→ c17
D11: h(c17)→ c20 D12: f (c1,c1,c1,c1,c2,c1,c2,c1)→ c20
D13: h(c20)→ c22 D14: f (c1,c1,c1,c1,c1,c1,c1,c1)→ c22

Now we determine whether h4(f (F,F,F,F,F,F,F,F)) is a fault state: i.e., h4(f (F,F,F,F,F,F,F,F))

≈?
Rn∪B∪E ⊥. Since h4(f (F,F,F,F,F,F,F,F))

∗−→Rn,E h4(f (c2,c2,c2,c2,c2,c2,c2,c2))→Rn,E h4(c5)→Rn,E

h3(c12)→Rn,E h2(c17)→Rn,E h(c20)→Rn,E c22 and⊥→Rn,E c22, it is a fault state. Similarly, we can deter-
mine whether f (T,F,F,F,F,F,F,T) is a fault state. Since f (T,F,F,F,F,F,F,T)

∗−→Rn,E f (c1,c2,c2,c2,c2,
c2,c2,c1)→Rn,E c11→Rn,E c22 and ⊥→Rn,E c22, it is a fault state. Meanwhile, h2(f (F,F,T,T,F,T,F,T))

is not a fault state, i.e., h2(f (F,F,T,T,F,T,F,T)) 6≈Rn∪B∪E ⊥. Since h2(f (F,F,T,T,F,T,F,T))
∗−→Rn∪B,E

h2(f (c2,c2,c1,c1,c2,c1,c2,c1))→Rn∪B,E h2(c12)→Rn∪B,E h(c17)→Rn∪B,E c20 and ⊥ →Rn∪B,E c22, it is
not a fault state.

D. Kim and C. Lynch 97

5 Conclusion

We have presented a framework for constructing congruence closure modulo a finite set of permutation
equations E , extending the abstract congruence closure framework for handling permutation function
symbols with or without the interpreted function symbols (not necessarily permutation function sym-
bols) satisfying each of the following properties: idempotency (I), nilpotency (N), unit (U), I ∪U , or
N ∪U . We have provided a polynomial time decision procedure for the word problem for a finite set of
ground equations with a fixed set of permutation function symbols by constructing congruence closure
modulo E .

Although congruence closure procedures have been widely used in software/hardware verfication and
satisfiability modulo theories (SMT) solvers, congruence closure procedures with built-in permutations
have not been well studied. We believe that our framework for constructing congruence closure modulo
permutation equations has practical significance to software/hardware verfication and SMT solvers in-
volving built-in permutations, where built-in permutations are represented by a finite set of permutation
equations containing permutation function symbols.

References

[1] Jürgen Avenhaus (2004): Efficient Algorithms for Computing Modulo Permutation Theories. In David
Basin & Michaël Rusinowitch, editors: Automated Reasoning - Second International Joint Confer-
ence, IJCAR 2004, Cork, Ireland, July 4–8, Springer, Berlin, Heidelberg, pp. 415–429, doi:10.1007/
978-3-540-25984-8_31.

[2] Jürgen Avenhaus & David A. Plaisted (2001): General Algorithms for Permutations in Equational Inference.
Journal of Automated Reasoning 26(3), pp. 223–268, doi:10.1023/A:1006439522342.

[3] Franz Baader & Deepak Kapur (2020): Deciding the Word Problem for Ground Identities with Commutative
and Extensional Symbols. In Nicolas Peltier & Viorica Sofronie-Stokkermans, editors: Automated Reason-
ing, Springer International Publishing, Cham, pp. 163–180, doi:10.1007/978-3-030-51074-9_10.

[4] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press, Cam-
bridge, UK, doi:10.1017/CBO9781139172752.

[5] Leo Bachmair (1991): Canonical Equational Proofs. Birkhäuser, Boston, doi:10.1007/
978-1-4684-7118-2.

[6] Leo Bachmair, IV Ramakrishnan, Ashish Tiwari & Laurent Vigneron (2000): Congruence Closure Mod-
ulo Associativity and Commutativity. In Hélène Kirchner & Christophe Ringeissen, editors: Frontiers of
Combining Systems, Springer, Berlin, Heidelberg, pp. 245–259, doi:10.1007/10720084_16.

[7] Leo Bachmair, Ashish Tiwari & Laurent Vigneron (2003): Abstract congruence closure. Journal of Auto-
mated Reasoning 31(2), pp. 129–168, doi:10.1023/B:JARS.0000009518.26415.49.

[8] Clark Barrett & Cesare Tinelli (2018): Satisfiability Modulo Theories, pp. 305–343. Springer International
Publishing, Cham, doi:10.1007/978-3-319-10575-8_11.

[9] David Cyrluk, Sreeranga Rajan, Natarajan Shankar & Mandayam K. Srivas (1995): Effective theorem proving
for hardware verification. In Ramayya Kumar & Thomas Kropf, editors: Theorem Provers in Circuit Design,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 203–222, doi:10.1007/3-540-59047-1_50.

[10] Leonardo De Moura & Nikolaj Bjørner (2011): Satisfiability modulo theories: introduction and applications.
Communications of the ACM 54(9), pp. 69–77, doi:10.1145/1995376.1995394.

[11] Nachum Dershowitz & David A. Plaisted (2001): Rewriting. In: Handbook of Automated Reasoning, chap-
ter 9, Volume I, Elsevier, Amsterdam, pp. 535 – 610, doi:10.1016/b978-044450813-3/50011-4.

98 Congruence Closure Modulo Permutation Equations

[12] Peter J. Downey, Ravi Sethi & Robert Endre Tarjan (1980): Variations on the Common Subexpression Prob-
lem. J. ACM 27(4), p. 758–771, doi:10.1145/322217.322228.

[13] Thomas W. Hungerford (1980): Algebra. Springer, New York, NY, doi:10.1007/978-1-4612-6101-8.
[14] Deepak Kapur (1997): Shostak’s Congruence Closure as Completion. In Hubert Comon, editor: Rewriting

Techniques and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 23–37, doi:10.1007/
3-540-62950-5_59.

[15] Deepak Kapur (2019): Conditional Congruence Closure over Uninterpreted and Interpreted Symbols. Jour-
nal of Systems Science and Complexity 32, pp. 317–355, doi:10.1007/s11424-019-8377-8.

[16] Deepak Kapur (2021): A Modular Associative Commutative (AC) Congruence Closure Algorithm. In: 6th In-
ternational Conference on Formal Structures for Computation and Deduction, FSCD 2021, Buenos Aires, Ar-
gentina (Virtual Conference), July 17–24, 195, LIPIcs, pp. 15:1–15:21, doi:10.4230/LIPIcs.FSCD.2021.
15.

[17] Dohan Kim & Christopher Lynch (2021): An RPO-based ordering modulo permutation equations and its
applications to rewrite systems. In: 6th International Conference on Formal Structures for Computation
and Deduction, FSCD 2021, Buenos Aires, Argentina (Virtual Conference), July 17–24, 195, LIPIcs, pp.
19:1–19:17, doi:10.4230/LIPIcs.FSCD.2021.19.

[18] Dexter Kozen (1977): Complexity of Finitely Presented Algebras. In John E. Hopcroft, Emily P. Friedman
& Michael A. Harrison, editors: Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
May 4-6, 1977, Boulder, Colorado, USA, ACM, pp. 164–177, doi:10.1145/800105.803406.

[19] Greg Nelson & Derek C. Oppen (1980): Fast Decision Procedures Based on Congruence Closure. J. ACM
27(2), p. 356–364, doi:10.1145/322186.322198.

[20] Vilhelm Sjöberg & Stephanie Weirich (2015): Programming up to Congruence. SIGPLAN Not. 50(1), p.
369–382, doi:10.1145/2676726.2676974.

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 99–113, doi:10.4204/EPTCS.342.9

© W. Schreiner and F.-X. Reichl
This work is licensed under the
Creative Commons Attribution License.

First-Order Logic in Finite Domains: Where Semantic
Evaluation Competes with SMT Solving

Wolfgang Schreiner∗
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University Linz, Austria
Wolfgang.Schreiner@risc.jku.at

Franz-Xaver Reichl†
Algorithms and Complexity Group

TU Wien, Austria
freichl@ac.tuwien.ac.at

In this paper, we compare two alternative mechanisms for deciding the validity of first-order for-
mulas over finite domains supported by the mathematical model checker RISCAL: first, the original
approach of “semantic evaluation” (based on an implementation of the denotational semantics of the
RISCAL language) and, second, the later approach of SMT solving (based on satisfiability preserving
translations of RISCAL formulas to SMT-LIB formulas as inputs for SMT solvers). After a short pre-
sentation of the two approaches and a discussion of their fundamental pros and cons, we quantitatively
evaluate them, both by a set of artificial benchmarks and by a set of benchmarks taken from real-life
applications of RISCAL; for this, we apply the state-of-the-art SMT solvers Boolector, CVC4, Yices,
and Z3. Our benchmarks demonstrate that (while SMT solving generally vastly outperforms seman-
tic evaluation), the various SMT solvers exhibit great performance differences. More important, we
identify classes of formulas where semantic evaluation is able to compete with (or even outperform)
satisfiability solving, outlining some room for improvements in the translation of RISCAL formulas
to SMT-LIB formulas as well as in the current SMT technology.

1 Introduction
The aim of the RISCAL system [16] is to support the analysis of theories and algorithms over discrete
domains, as they arise in computer science, discrete mathematics, logic, and algebra. For this purpose,
RISCAL provides an expressive specification language based on a strongly typed variant of first-order
logic in which theories can be formulated and algorithms can be specified; nevertheless the validity of
all formulas and the correctness of all algorithms is decidable. This is because all RISCAL types have
finite sizes which are configurable by model parameters. Therefore, a RISCAL model actually represents
an infinite set of finite models; before verifying the validity of a theorem over the infinite model set
by a deductive proof in some theorem proving environment, we can check its validity over selected finite
instances of the set by model checking in RISCAL. The system has beenmainly developed for educational
purposes [15] but it has also been applied in research [19].

The basic mechanism of RISCAL for deciding the validity of formulas and the correctness of algo-
rithms is “semantic evaluation”, which is based on a constructive implementation of the denotational
semantics of all kinds of syntactic phrases allowed by the language. However, since 2020, the system
also provides an alternative (and potentially much more efficient) decision mechanism based on SMT
(satisfiability modulo theories) solving, implemented by the second author [14, 17]. In this approach, the
decision of a RISCAL formula is performed via a translation to a formula in the SMT-LIB language [3]
and the application of some external SMT solver (currently, the SMT solvers Boolector, CVC4, Yices,

∗Supported by the JKU Linz LIT Project LOGTECHEDU and by the Aktion Österreich-Slowakei Project 2019-10-15-003.
†Supported by the Austrian Science Fund (FWF) under grant W1255.

100 First-Order Logic in Finite Domains

and Z3 are supported). Indeed, this has achieved great performance improvements [14] and allowed to
constructively work with theories that were out of reach of semantic evaluation.

Actually, SMT solvers have served for a long time as backends of various program verification tools,
for real languages such as Java [1] as well as for algorithmic languages such as Dafny [10] where the
verification backend Boogie [2] generates SMT-LIB conditions that are discharged by the SMT solver
Z3. Furthermore, SAT/SMT solvers are applied for the analysis of system modeling languages such as
Alloy , Event-B, and VDM. Last but not least, they are employed as backends for interactive provers, e.g.,
in Isabelle’s “sledgehammer” component [4] and in Coq’s SMTCoq plugin [7].

As for the translation of higher-level specification languages into the languages of satisfiability solvers,
[9] describes the techniques used in the Alloy Analyzer to transform formulas from first-order relational
logic; [21] discusses improvements implemented in the SAT-based relational model finder Kodkod. On
top of Kodkod, the counterexample generator Nitpick [5] generates finite countermodels of Isabelle for-
mulas by a translation to relational logic. In [8], it is briefly sketched how Alloy constraints have been
(manually) translated into the language of the SMT solver Yices, which shows drastic speedups when
tautologies are decided. [11] sketches the encoding of VDM proof obligations as SMT problems proved
with the SMT solver Z3. In somewhat more detail, [6] discusses the implementation of a SMT plugin for
the Event-B platform Rodin and experimentally compares this plugin with those for other provers.

However, as beneficial SMT solving in general is, in our own work of deciding RISCAL formulas we
also have regularly encountered cases where the performance of the SMT-based decision is comparatively
poor, sometimes even beaten by semantic evaluation. While some potential reasons have already been
outlined in [14], a more systematic analysis and evaluation has been lacking so far. Also the work reported
in the scientific literature is a bit unsatisfactory in this respect: while the relative merits of SMT solvers
are regularly evaluated in the SMT-COMP competition series [20], it is harder to find comparisons with
alternative decision mechanisms such as the one with the Vampire prover presented in [13].

In this paper, we provide a detailed comparison of the built-in decision mechanism of RISCAL by se-
mantic evaluation with the corresponding decisions by SMT solving. In particular, we identify classes of
situations where the performance of SMT-based decisions is relatively low, i.e., where indeed “semantic
evaluation competes with SMT solving”, as a starting point for potential improvements in the SMT-LIB
translation of RISCAL and in SMT technology in general. While our insights are clearly limited to the
particular strategy applied for translating RISCAL formulas to SMT-LIB, our work shows that SMT is
not a panacea in all kinds of reasoning problems but has to be applied with some caveats.

Closest to our work is [12], where the untyped first-order logic of Lamport’s language TLA+ is trans-
lated to SMT-LIB conditions that are discharged by the SMT solvers CVC4 and Z3; however the results
have not been experimentally compared with the built-in TLC model checker. As another difference, the
TLA+ translation heavily relies on a nonconstructive encoding of non-integer values by uninterpreted
sorts and functions with corresponding background axioms. In contrast to this, the RISCAL translation
generates formulas over bit vectors with uninterpreted sort and function symbols, which minimizes the
use of uninterpreted functions by a constructive encoding of all types as bit vectors.

The remainder of this paper is organized as follows: In Section 2, we outline the decision mechanisms
applied in RISCAL. In Section 3, we present the artificial benchmarks which we use to compare both
mechanisms. In Section 4, we extend these investigations to a selected set of benchmarks taken from real-
life applications of RISCAL. In Section 5, we present our conclusions derived from these investigations
and outline possible strands of further research in RISCAL and SMT technology. Appendix A includes
detailed illustrations of the benchmark results. More details can be found in the technical report [18] on
which this paper is based. Due to space restrictions, we have to refer the reader to [16] for an overview on
the RISCAL language which is elucidated by a tutorial and reference manual and various publications.

W. Schreiner and F.-X. Reichl 101

2 Deciding First-Order Formulas
In the following, we briefly describe the two alternative mechanisms that RISCAL implements for decid-
ing first-order formulas: internal semantic evaluation and the application of external SMT solvers.

Semantic Evaluation The built-in decision mechanism of RISCAL is based on the translation of every
syntactic phrase of the RISCAL language into an executable representation of its denotational semantics.
This representation is a Java “lambda expression” that in essencemaps an assignment for the free variables
of the phrase to the value denoted by its semantics, i.e., the truth value of a formula or the updated variable
assignment resulting from the execution of a command [17]. In the case of first-order logic formulas, the
most interesting part of the translation is that of a universally quantified formula ∀x∶D. F and that of
an existentially quantified formula ∃x∶D. F , respectively; these translations are semi-formally sketched
below (here [F] denotes the body of a function whose execution yields the truth value of F):

[∀x∶D. F] ≔
e := enumerate(D)
loop
if empty(e) then return true
x := next(e); e := rest(e)
if ¬call([F],x) then return false

[∃x∶D. F] ≔
e := enumerate(D)
loop
if empty(e) then return false
x := next(e); e := rest(e)
if call([F],x) then return true

The core of the translation is a loop that enumerates every element of the domainD of the quantified
variable x and evaluates the body of the quantified formula with x bound to that element, until the truth
value of the body determines the overall result. As an optimization, RISCAL actually implements the
enumeration of D in a mostly “lazy” fashion such that it is not necessary to simultaneously keep all
elements in memory; the generation stops when the first element has been produced that allows to decide
the formula. Consequently, the “worst case” is exhibited by a true universal formula or a false existential
formula: here we have to generate all elements, before we can decide that the universal formula is true or
the existential formula is false.

Furthermore, RISCAL supports expressions that do not denote unique values, for example the term
(choose x∶D with F [x]) that denotes any value x of the domain D that satisfies the formula F [x].
RISCAL implements such a term in its “nondeterministic” evaluation mode [17] by the computation
of a (lazily evaluated) stream of such values. Like for quantified formulas, the core of this translation is a
loop that enumerates every element of D; the translation yields each element that satisfies the body for-
mula as a value of the expression (i.e., this value is appended to a stream of values denoted by the term).
A formula that depends on such terms correspondingly denotes a stream of truth values; the formula is
only considered as valid if this stream only consists of instances of truth value “true”. Not necessar-
ily unique choices arise in many mathematical definitions and algorithms (“choose any element e of set
S”). Furthermore, applications of such expressions may emerge from the modular verification of user-
defined operations; here not the definition of an operation but its contract is considered. For instance, an
application f (a) of a function f specified as

fun f (x∶D)∶ D ensures F [x,result]

(where result, is a special variable that denotes the result of the function) can be replaced by the expression
(choose result∶D. F [a,result]).

102 First-Order Logic in Finite Domains

SMT Solving The problem of deciding the validity of a formula F , denoted as valid[F], can be re-
duced to the problem of deciding the satisfiability of the negation of F , denoted as sat[¬F], by applying
the equivalence. valid[F] ≡ ¬sat[¬F]. RISCAL implements a translation to formulas in the SMT-LIB
format [3]; thus we can decide the validity of the RISCAL formula F by letting an external SMT solver
decide the satisfiability of the SMT-LIB version of ¬F . As a background theory we have chosen the
theory of fixed-size bit vectors: since every RISCAL domain is finite, every element of a domain with
n elements can be represented by a vector of ⌈logn⌉ bits; furthermore the set of bit vector operations is
expressive enough to allow a proper encoding of the various RISCAL operations. However, bit vectors
alone are not enough: the treatment of quantifiers and choose expressions (discussed below) requires
functions which are not explicitly characterized by definitions but only implicitly by axioms; therefore
we demand from the theory also support for uninterpreted functions. Furthermore, the main SMT-LIB
logic that provides bit vectors and uninterpreted function is the logic QF_UFBV of “unquantified formu-
las over bit vectors with uninterpreted sort and function symbols” which is supported, e.g., by the well
known SMT solvers Boolector, CVC4, Yices, and Z3. We therefore have to translate a RISCAL formula
with quantifiers into a corresponding quantifier-free SMT-LIB formula (since some SMT solvers actually
support as a non-standard extension also quantified bit vector formulas with uninterpreted functions, we
will in the benchmarks later also experiment with the preservation of quantifiers).

The problem of eliminating quantifiers is addressed by the following equivalenceswhich semi-formally
sketch how quantifiers can be removed fromRISCAL formulas (the role of function f is explained below):

valid[∃x∶D. F [x]] ≡ ¬sat[¬∃x∶D. F [x]]
≡ ¬sat[∀x∶D. ¬F [x]] ≡ ¬sat[¬F [e1]∧…∧¬F [en]]

valid[∀x∶D. F [x]] ≡ ¬sat[¬∀x∶D. F [x]]
≡ ¬sat[∃x∶D. ¬F [x]] ≡ ¬sat[¬F [f (x1,… ,xn)]]

We assume that before the translation is applied all formulas have been transformed into negation normal
form, i.e., all applications of the negation symbol have been pushed inside down to the level of atomic
formulas. Thus, above occurrences of quantified formulas are positive, i.e., they do not appear in the con-
text of negation. Then the decision of valid[∃x∶D. F [x]] boils down to the decision of the satisfiability
of the universally quantified formula ∀x∶D. ¬F [x]. Now, if D consists of n values denoted by terms
e1,… , en, we can expand the quantified formula to an equivalent conjunction ¬F [e1] ∧…∧¬F [en]. On
the other hand, the decision of valid[∀x∶D. F [x]] boils down to the decision of the satisfiability of the
existentially quantified formula ∃x∶D. ¬F [x]. Analogously to the previous case, we could in principle
also expand this formula, namely to a disjunction ¬F [e1] ∨…∨¬F [en]. However, for this kind of deci-
sion we generally prefer another option that avoids the blow-up of the formula. Let us assume that the
existentially quantified formula appears in the context of n universally quantified variables x1,… ,xm, i.e.,
the problem of deciding the satisfiability of ∃x∶D. ¬F [x] actually occurs in the course of deciding the
satisfiability of a global formula of the shape ∀x1∶D1. …∀xm∶Dm. …∃x∶D. ¬F [x]. Then we introduce
an m-ary function symbol f that does not appear anywhere else in the global formula; the denoted func-
tion can therefore have an arbitrary interpretation (we call such a function a Skolem function). Finally,
we replace ∃x∶D. ¬F [x] by ¬F [f (x1,… ,xm)]. In the special case m = 0, i.e., if there is no outer univer-
sally quantified variable, f becomes a Skolem constant and the formula becomes ¬F [f]. Although the
resulting formula is not logically equivalent to the original one, it is equi-satisfiable, i.e., it is satisfiable
if and only if the original formula is (if we may choose for all values x1,… ,xm a value for x that makes
F [x] true, then from these choices we may construct the Skolem function f and vice versa). Since the
translation preserves satisfiability, the equivalence stated above holds.

W. Schreiner and F.-X. Reichl 103

From the above translation, deciding the validity of an existentially quantified formula may blow-up
the formula to a size that is exponential in the depth of the nesting of existential quantifiers; this may
also increase the complexity of the decision. Furthermore, problems may arise even with the decision
of the validity of a universally quantified formula, which entails deciding the satisfiability of a formula
¬F [f (x1,… ,xm)] with Skolem function f (please note that x1,… ,xm represent concrete values, the
translated formula does not have any free variables). In the translation to the SMT-LIB theory QF_-
UFBV, the range of f is not anymore the original RISCAL domain D of the existentially quantified
variable, but some bit vector type B whose values encode the values of D. Since not every bit vector
in B necessarily represents an element fromD, we have to constrain the range of f by a predicate pD that
holds for a bit vector b ∈ B if and only if b actually represents an element from D. We achieve this by
adding to the translation an axiom

⋀
d1,…,dm

pD(f (t(d1),… , t(dm)))

where t(d) represents an expression that denotes the bit vector associated to the RISCAL value d. The
size of this conjunction is proportional to the number of possible combinations of values d1,… ,dm for
the arguments of f ; this may blow up the SMT-LIB translation considerably and overcome the benefits of
applying Skolemization rather than expansion. Thus the translation can be configured to apply a heuristic:
if the number of conjuncts in the Skolemization axiom is significantly larger than the number of conjuncts
derived from expanding the original formula, the translation forsakes Skolemization in favor of expansion.

While expressions denoting unique values can be directly encoded by bit vectors operations, an
(choose y∶D. F [x,y]) with free variable x∶D gives in the SMT-LIB translation rise to a new function
f ∶ D → D with axiom ∀x∶D. F [x,f (x)]. Similarly, in modular verification, every RISCAL operation
(function, predicate, procedure) specified by a contract gives rise to an SMT-LIB function with a corre-
sponding axiomatization. As explained above, such axiomatizations by universally quantified formulas
yield large SMT-LIB expansions and potentially costly SMT decisions (in addition to the user-defined
axiomatization, such functions have also to be constrained by the type representation axioms explained
above). However, in certain contexts we may replace applications of such axiomatized functions. For
instance, take the formula ∀a. (…f (a)…)where application f (a) occurs positively (unnegated) in a con-
text (… f (a)…) that does not embed f (a) in another quantifier and assume that function f ∶ D → D
has been axiomatized as described above. Then above formula can be transformed to the equi-satisfiable
formula ∀a,b. (F [a,b]⇒…b…). Thus, we have replaced the application f (a) of axiomatized function f
by a fresh universally quantified variable b with assumption F [a,b]. This means that the original axiom-
atization (which applied formula F to arbitrary values x from D) has been specialized to the instances
that are actually relevant. RISCAL optionally implements in the SMT-LIB translation a generalized form
of this transformation under the name “eliminate choices”, because it is directly applied to choose ex-
pressions given by the user and to choose expressions generated from applications of implicitly defined
functions. In combination with the option “inline definitions”, also choose expressions indirectly arising
from the definitions of operations may be inlined. While this expands the size of the core formula to be
decided, it removes general axiomatizations and may thus be beneficial all in all.

Comparison As discussed above, deciding by SMT solving formulas with quantifiers or choose expres-
sions can become problematic, because the SMT-LIB translation may yield vastly expanded formulas
(arising from existential formulas, quantified constraints of Skolem functions, and axioms of uninter-
preted functions emerging from choose expressions or modular verification). To which extent this affects
the actual performance of the decision process can be investigated only by actual benchmarks.

104 First-Order Logic in Finite Domains

3 Artificial Benchmarks
Basic Setup We start by investigating the “base behavior” of the two decision approaches. For this, we
use the following two predicates:

cycle4-valid ≡ ¬(x1 < x2∧x2 < x3∧x3 < x4∧x4 < x1)
cycle4-sat1 ≡ ¬(x1 < x2∧x2 < x3∧x3 < x4∧x4 < x1+4)

Both predicates have free occurrences of four integer variables x1,x2,x3,x4. Predicate cycle4-valid states
that these variables cannot form a “less-than cycle”; this predicate is valid and its negation is unsatisfiable.
On the other side, predicate cycle4-sat1 is satisfiable but not valid, as is its negation. However, while
cycle4-sat1 has many satisfying assignments, its negation has only few; thus cycle4-sat1 represents a
“mostly valid” formula, while its negation denotes a “mostly unsatisfiable” one. Both predicates only
depend on the atomic predicate< (the second one also on the constant addition+4). The predicates do not
require any complex calculations or decisions in order to most clearly exhibit the effect of various forms
of quantification structures on the decision process. Here we investigate the eight quantification patterns
∃4∀0, ∃3∀1,∃2∀2, ∃1∀3, ∀4∃0, ∀3∃1, ∀2∃2, ∀1∃3 where Qi represents the i-fold repetition of quantifier Q
and the variables are quantified in the order x1,x2,x3,x4. Thus, e.g., the combination of quantification
pattern ∃3∀1 with predicate cycle4-valid represents the following formula:

∃x1∶D,x2∶D,x3∶D. ∀x4∶D. ¬(x1 < x2∧x2 < x3∧x3 < x4∧x4 < x1)

Above quantifier patterns consider the cases of purely existential formulas (∃4∀0), purely universal for-
mulas (∀4∃0), as well as existential formulas with universal bodies (∃i∀j) and universal formulas with
existential bodies (∀j∃i) where the number of corresponding quantifiers represent different sizes of the
respective quantification ranges. As for the domain D of the variables, we focus on D ∶= ℕ[2N − 1]
for some N ∈ ℕ, i.e., each of the 4 variables holds some natural number up to maximum 2N −1; the
total value space thus consists of 24N elements. In the following benchmarks, we choose N ∶= 6, i.e.,
a value space of size 224. For a formula of shape ∃i∀j or ∀j∃i, this value space is partitioned according
to the numbers i and j of existentially and universally quantified variables, respectively. The “existential
search space” has size 2iN , which leads in the QF_UFBV translation to the generation of 2iN clauses. The
“universal search space” has size 2jN , which leads in QF_UFBV to j Skolem constants (if the universal
quantifiers are outermost) or j Skolem functions of arity i (if the universal quantifiers are innermost); the
domain of each Skolem constant or function is a bit vector of lengthN with 2N possible values.

Experimental Results The four diagrams in Figure 1 plot the decision times for the quantified formulas
with (valid) predicate cycle4-valid and its (unsatisfiable) negation and for the satisfiable (mostly valid)
predicate cycle4-sat1 and its also satisfiable (but mostly unsatisfiable) negation. The labels of the hori-
zontal axis denote the applied quantification pattern (labels eiaj and aiej denote patterns ∃i∀j and ∀i∃j ,
respectively). The vertical axis denotes the decision time in ms, within the interval [1,60000] (please
note the logarithmic scale). All decision procedures were forcefully terminated after 1 minute; thus, if
a plot point is at the top line of the diagram, this actually indicates “timeout” or “no result” (a timeout
is also indicated, if the software ran out of memory or produced any other kind of error). All measure-
ments were performed on a virtual GNU/Linuxmachine with a CPU of type i7-2670QM@2.20GHz using
8 GB RAM. In case of the SMT solvers, only the time for the actual decision (not including the time for
translating the RISCAL formula to an SMT-LIB formula) was considered.

W. Schreiner and F.-X. Reichl 105

Figure 1: Artificial Benchmarks: Base Behavior

The various labeled curves give the times for the decision mechanisms that we have benchmarked us-
ing RISCAL 3.8.5 and the SMT solvers Boolector 3.1.0, CVC4 1.7, Yices 2.6.1, and Z3 4.8.7. Here tag
RISCAL represents the built-in semantic evaluation mechanism of RISCAL. Tags Boolector-S, CVC4-S,
Yices-S, Z3-S represent the application of the various SMT solvers to the generated QF_UFBV formula
where quantifiers are removed by Skolemization (in case of the originally universal quantifiers) or expan-
sion (in case of the existential quantifiers). Tags Boolector-Q, CVC4-Q, Z4-Q represent the application
of the SMT solvers where, however, in the generated formula all quantifiers are preserved (Boolector,
CVC4, and Z3 also support quantification). Yices-E represents the application of Yices where also the
(originally) universal quantifiers have been removed by expansion rather than by Skolemization. Thus
every SMT solver is benchmarked twice, with two different mechanisms for dealing with quantifiers: by
eliminating them as described in Section 2 to yield a formula in the standard logic QF_UFBV of SMT-
LIB, or by applying the non-standard quantification support of the various SMT solvers. Only in the case
of Yices (which has only a limited support for quantification), we apply the alternative of expanding also
(originally) universal quantifiers.

An inspection of the diagrams shows that, when eliminating quantifiers by Skolemization or expan-
sion, Yices is mostly the fastest among the benchmarked SMT solvers; the other solvers are able to com-
pete with Yices only if quantifiers are preserved in the formulas. The semantic evaluation mechanism
is mostly outperformed by Yices and also by the other solvers. However, the other solvers are superior
only if the quantifiers are preserved in the formulas, or if we consider the cases in the middle of the
left diagrams (few or no existential quantifiers and mainly valid base predicates). When quantifiers are
eliminated, the semantic evaluation mechanism of RISCAL outperforms Boolector, CVC4, and Yices at
the boundaries of the left diagrams; also in the right diagrams (mostly unsatisfiable base predicates), the
performance of semantic evaluation at least matches that of the solvers.

106 First-Order Logic in Finite Domains

Furthermore, the semantic evaluation mechanism of RISCAL exhibits comparatively good perfor-
mance in diagram cycle4-valid for the quantification pattern ∃i∀j . Since the outermost quantifier is ex-
istential, only a single value for its variable has to be found that makes the formula true; since the base
predicate is valid, already the first choice is successful. The more existential quantifiers follow, i.e., the
bigger i is, the bigger the advantage is. If all quantifiers are existential (case ∃4∀0), the first attempted
choice for all variables already leads to a decision of the formula. However, if more and more variables
get universally quantified, the more and more work has to be performed to validate the existential choice.
The worst situation arises, if all variables are universally quantified (case ∀4∃0); here the full variable
space has to be investigated to determine the validity of the formula. However, the more of the inner
variables get existentially quantified, the quicker the decision for each value of a universally quantified
variable becomes. If only the outermost variable is universally quantified (case ∀1∃3), only the space of
the outermost variable has to be fully investigated. This explains the shape of the RISCAL curve which
grows from the fully existentially quantified formula of type ∃4∀0 until it reaches a sharp peak at the
fully universally quantified formula of type ∀4∃0; then the curve goes down again towards the formula
pattern ∀1∃3. On the other hand, plot cycle4-unsat illustrates the dual behavior for the negated (unsatis-
fiable) version of the predicate. To show that the fully existentially quantified formula ∃4∀0 is false, the
whole value space has to be investigated, while for the fully universally quantified formula ∀4∃0 the first
encountered value combination represents a counterexample to the truth of the formula; for a growing
number of inner existential quantifiers, again more value combinations have to be investigated, though.
Finally, the two plots for the mostly satisfiable predicate cycle4-sat1 and its mostly unsatisfiable negation
cycle4-sat2 are similar to the plots for the valid and unsatisfiable cases, except that there is no more a
pronounced “peak” (maximum or minimum) for the fully universally quantified pattern ∀4∃0: the inves-
tigation of the value space can stop when the first counterexample is found, but not necessarily the first
value combination encountered immediately represents such a counterexample.

More results are given in Appendix A which illustrates in Figure 4 and Figure 5 corresponding bench-
marks with more complex predicates involving operations such as non-linear arithmetic, arithmetic quan-
tification, set and array operations. These benchmarks reveal various situations when the semantic eval-
uation mechanism of RISCAL is able to compete with or even outperform some of the SMT solvers; for
a more detailed interpretation of these and other benchmarks, see [18].

So far, we have only considered formulas with built-in operations (functions and predicates). Now
we are going to also consider operations specified by contracts such as the following two functions:

fun f (x1,x2,x3,x4) ensures
if x1 < x2∧x2 < x3∧x3 < x4∧x4 < x1 then result = 0 else result = 1;

fun g(x1,x2,x3,x4) ensures
if x1 = x2∧x3 = x4 then result = 0 else result = 1;

Here f (x1,x2,x3,x4) is 1 for all x1,x2,x3,x4 and g(x1,x2,x3,x4)may be 1 or 0, depending on the values
of x1,x2,x3,x4. We will consider quantified formulas with the quantification patterns used in the previous
sections, using four base predicates that test the equality of above functions with values 1 or 0, yielding
again one valid, one unsatisfiable, and two satisfiable situations.

Figure 2 displays the decision times for model parameterN ∶= 5 (we now use value 5 rather than 6 to
compensate the additional quantifier of the function axiom). Here the evaluation mechanism of RISCAL
is generally faster than the SMT solvers (indeed Boolector and CVC4 do mostly not deliver any answers
within the given time bound); the major exception is Z3 if quantifiers are preserved, which is faster than
RISCAL for valid and unsatisfiable formulas. Yices also produces results but is mostly much slower than

W. Schreiner and F.-X. Reichl 107

Figure 2: Formulas with Functions Specified by Contracts

RISCAL. Boolector does not support uninterpreted functions if quantifiers are preserved, thus also the
benchmark set “Boolector-Q” expands (as “Boolector-S” does) universal and existential quantifiers to
conjunctions and disjunctions, respectively.

The results demonstrate that uninterpreted functions characterized by axioms rather than definitions
pose a major problem for most SMT solvers; in the presence of such functions often the nondeterministic
evaluation mechanism of RISCAL is superior. In an attempt to mitigate this problem a bit, we have ap-
plied the previously mentioned options “eliminate choices” and “inline definitions” to eliminate certain
applications of contract-specified operations by embedding the postconditions into the enclosing formu-
las; this does not change the satisfiability of the formula, if the application occurs in a non-negated purely
universally quantified context. In our experiments, this is the case (only) for the quantifier pattern a4e0
(∀4∃0) which indeed shows substantial speedups (only) with the application of Yices; the experimental
results given above have been derived with these options.

4 Real-Life Benchmarks
The artificial benchmarks investigated so far do not demonstrate whether/how often the observed effects
indeed emerge in “real-life” examples. To shed some light on this issue, we have also collected from
real RISCAL models a selection of formulas whose validity is to be decided. These formulas mainly
represent conditions to validate the specifications of problems, verify the correctness of algorithms, or
also theorems over the domains of consideration. In the overwhelming majority of cases, the decision
of such conditions by SMT solving vastly outperforms the decision by semantic evaluation. However,
for the purpose of this paper, we have explicitly selected a sample where this is not the case, i.e., where
semantic evaluation is competitive with SMT solving.

108 First-Order Logic in Finite Domains

Figure 3: Real-Life Benchmarks

The diagram displayed in Figure 3 presents the results of benchmarking the decision of some of these
formulas (see Appendix A or [18] for a link to the sources). The benchmarks are visualized as a circular
“net” chart where each radial represents one formula whose validity is to be decided, the center represents
some minimal time and the outermost rim of the net represents the 60 seconds timeout limit. Therefore,
the closer the lines connecting the benchmark points of a particular decisionmechanism are to the center of
the net, the faster the decision mechanism is; a line along the outermost rim indicates timeout situations.
As in the artificial benchmarks, the values along the radials are plotted in logarithmic magnitudes. In
particular, the diagram illustrates benchmarks for formulas that have substantial “existential” content;
many stem from validating procedure contracts by checking the satisfiability of the postconditions for
all inputs that satisfy the preconditions; here the semantic evaluation of RISCAL often outperforms the
various SMT solvers. The best SMT results are achieved by Z3 when preserving quantifiers (Z3-Q) and
Yices with either Skolemization or expansion of the (original) universal quantifiers (Yices-S andYices-E).

Appendix A lists in Figure 6 more benchmarks where the left column illustrates the execution of the
benchmarks with smaller values for the model parameters, while the right column illustrates executions
with larger values; all executions were again terminated after 60 seconds. The top row gives the bench-
marks already shown in Figure 3, but now also with larger model parameters. The second row illustrates
benchmarks for formulas with choose expressions; here in the SMT decisions the option “choose elimina-
tion” transformation was not applied. The evaluation mechanism of RISCAL again outperforms many of
the SMT solvers; among these typically Yices performs best. The third row illustrates benchmarks for the
same formulas as in the second row but with the options “choose elimination” and “inline definitions”
turned on. This shows a clear improvement in many examples; now various SMT solvers clearly beat
the semantic evaluation mechanism of RISCAL. The last row illustrates benchmarks for formulas that
do not obviously fall into above categories but where nevertheless the semantic evaluation mechanism is
competitive, from the structure of the formulas and/or the complexity of the underlying operations.

W. Schreiner and F.-X. Reichl 109

5 Conclusions
Generally the decision of first-order formulas over finite domains by external SMT solvers via a transla-
tion into the SMT-LIB logic QF_UFBV (unquantified formulas over bit vectors with uninterpreted sort
and function symbols) and applying external SMT solvers vastly outperforms the semantic evaluation
mechanism built-in into RISCAL. In this paper, however, we have also identified cases where this is not
necessarily the case, mainly because the SMT-LIB translation leads to a large number of clauses in the
generated conjunctive normal form.

One case are theorems with substantial “existential” content, i.e., positive occurrences of existential
quantifiers with large quantification ranges: the resulting formulas may be so big that their decision by
SMT solving may be outperformed by semantic evaluation. Another case are theorems with uninterpreted
functions that are axiomatized by universally quantified formulas with large quantification ranges; also
these axioms lead to the generation of SMT-LIB formulas with a huge number of clauses that slow down
the execution of SMT solvers. This problem may be partially mitigated, if applications of such functions
occur in a pure universal context; an optimization technique may replace the function application by
universally quantified variables that are constrained by an appropriate instance of this axiom.

Furthermore, also for universally quantified theorems the problem arises that the Skolem functions
generated from their negated counterparts have to be constrained by axioms that describe which bit vec-
tor values indeed denote valid RISCAL values. RISCAL therefore implements an SMT-LIB option that
applies a heuristic to decide whether it is cheaper to expand the quantified formula rather than to generate
a Skolem function. Another problem may result from the necessary encoding of various operations on
the data types supported by RISCAL (such as non-linear arithmetic, arithmetic quantifiers, or set size
computations) where the built-in evaluation mechanisms of RISCAL may perform better than the cor-
responding RISCAL encodings; however, while this effect can be observed in artificial benchmarks, it
seems not to be a major problem in most real-life examples.

Our work demonstrates that there is still room for improvement in current SMT solvers for the SMT-
LIB logic QF_UFBV with respect to deciding theorems with substantial existential content and applica-
tions of axiomatized functions. On the other side, we will continue to investigate how the translation of
RISCAL formulas to SMT-LIB formulas can be optimized to take the presented findings into account.

References
[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reinher Hähnle, Peter H. Schmitt & Mattias Ulbrich,

editors (2016): Deductive Software Verification — The KeY Book — From Theory to Practice. LNCS 10001,
Springer International Publishing, Cham, doi:10.1007/978-3-319-49812-6.

[2] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs & K. Rustan M. Leino (2005): Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: FMCO 2005: FormalMethods for Components
and Objects, LNCS 4111, Springer, Berlin, Germany, pp. 364–387, doi:10.1007/11804192_17.

[3] Clark Barrett, Pascal Fontaine & Cesare Tinelli (2016): The Satisfiability Modulo Theories Library (SMT-
LIB). Available at http://www.SMT-LIB.org.

[4] Jasmin Christian Blanchette, Sascha Böhme & Lawrence C. Paulson (2011): Extending Sledgehammer with
SMT Solvers. In: CADE-23: Automated Deduction, 23rd International Conference, LNCS 6803, Springer,
Berlin, Germany, pp. 116–130, doi:10.1007/978-3-642-22438-6_11.

[5] Jasmin Christian Blanchette & Tobias Nipkow (2010): Nitpick: A Counterexample Generator for Higher-
Order Logic Based on a Relational Model Finder. In: ITP 2010: Interactive Theorem Proving, LNCS 6172,
Springer, Berlin, Germany, pp. 131–146, doi:10.1007/978-3-642-14052-5_11.

110 First-Order Logic in Finite Domains

[6] David Déharbe, Pascal Fontaine, Yoann Guyot & Laurent Voisin (2012): SMT Solvers for Rodin. In: ABZ
2012: Abstract State Machines, Alloy, B, VDM, and Z, Third International Conference, Pisa, Italy, June
18–21, 2012, LNCS 7316, Springer, Berlin, Germany, pp. 194–207, doi:10.1007/978-3-642-30885-7_14.

[7] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz et al. (2017): SMTCoq: A Plug-In for
Integrating SMT Solvers into Coq. In: CAV 2017: Computer Aided Verification, Heidelberg, Germany, July
24–28, 2017, LNCS 10427, Springer, Cham, Switzerland, pp. 126–133, doi:10.1007/978-3-319-63390-9_7.

[8] Aboubakr Achraf El Ghazi & Mana Taghdiri (2015): Analyzing Alloy Formulas using an SMT Solver: A
Case Study. AFM10: Automated Formal Methods, July 14, 2010, Edinburgh, UK. Available at https:
//arxiv.org/abs/1505.00672.

[9] Daniel Jackson (2000): Automating First-Order Relational Logic. In: SIGSOFT’00/FSE-8 International Sym-
posium, San Diego, California, USA, November 2000, SIGSOFT Software Engineering Notes 25(6), ACM,
New York, NY, USA, pp. 130–139, doi:10.1145/355045.355063.

[10] K. Rustan M. Leino (2010): Dafny: An Automatic Program Verifier for Functional Correctness. In Ed-
mund M. Clarke & Andrei Voronkov, editors: LPAR-16: Logic Programming and Automated Reasoning,
16th International Conference, Dakar, Senegal, April 25–May 1, 2010, LNCS 6355, Springer, Berlin, Ger-
many, pp. 348–370, doi:10.1007/978-3-642-17511-4_20.

[11] Hsin-Hung Lin & Bow-Yaw Wang (2017): Releasing VDM Proof Obligations with SMT Solvers. In:
MEMOCODE ’17: 15th ACM-IEEE International Conference on Formal Methods and Models for Sys-
tem Design, Vienna, Austria, September 29–October 2, 2017, ACM, New York, NY, USA, p. 132–135,
doi:10.1145/3127041.3127066.

[12] Stephan Merz & Hernán Vanzetto (2016): Encoding TLA+ into Many-Sorted First-Order Logic. In: ABZ
2016: Abstract State Machines, Alloy, B, TLA, VDM, and Z: 5th International Conference, Linz, Austria,
May 23–27, 2016, LNCS 9675, Springer, Cham, Switzerland, pp. 54–69, doi:10.1007/978-3-319-33600-8_3.

[13] Giles Reger, Martin Suda & Andrei Voronkov (2017): Instantiation and Pretending to be an SMT Solver with
Vampire. In: SMT 2017 Workshop, Heidelberg, Germany, July 22–23, 2017, CEUR Workshop Proceedings
1889, pp. 63–75. Available at http://ceur-ws.org/Vol-1889/paper6.pdf.

[14] Franz-Xaver Reichl (2020): The Integration of SMT Solvers into the RISCAL Model Checker. Master’s thesis,
Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Austria. Available
at https://www.risc.jku.at/publications/download/risc_6103/Thesis.pdf.

[15] Wolfgang Schreiner (2018): ValidatingMathematical Theories and Algorithms with RISCAL. In: CICM2018,
11th Conference on Intelligent Computer Mathematics, Hagenberg, Austria, August 13–17, LNCS/Lecture
Notes in Artificial Intelligence 11006, Springer, Berlin, pp. 248–254, doi:10.1007/978-3-319-96812-4_21.

[16] Wolfgang Schreiner (2019): The RISC Algorithm Language (RISCAL). Research Institute for Symbolic Com-
putation (RISC), Johannes Kepler University, Linz, Austria. Available at https://www.risc.jku.at/
research/formal/software/RISCAL.

[17] Wolfgang Schreiner & Franz-Xaver Reichl (2020): Mathematical Model Checking Based on Semantics and
SMT. Transactions on Internet Research 16(2), pp. 4–13. Available at http://ipsitransactions.org/
journals/papers/tir/2020jul/p2.pdf.

[18] Wolfgang Schreiner & Franz-Xaver Reichl (2021): Semantic Evaluation versus SMT Solving in the RISCAL
Model Checker. Technical Report 21-11, RISC, Johannes Kepler University, Linz, Austria. Available at
https://www.risc.jku.at/publications/download/risc_6328/21-11.pdf.

[19] Wolfgang Schreiner, William Steingartner & Valerie Novitzká (2020): A Novel Categorical Approach to the
Semantics of Relational First-Order Logic. Symmetry 12(10), doi:10.3390/sym12101584.

[20] SMT-COMP (2021): SMT-COMP: The International Satisfiability Modulo Theories (SMT) Competition.
Available at https://smt-comp.github.io.

[21] Emina Torlak &Daniel Jackson (2007): Kodkod: A Relational Model Finder. In: TACAS 2007: Tools and Al-
gorithms for the Construction and Analysis of Systems, 3th International Conference, Braga, Portugal, March
24–April 1, 2007, LNCS 4424, Springer, Berlin, Germany, pp. 632–647, doi:10.1007/978-3-540-71209-1_49.

W. Schreiner and F.-X. Reichl 111

A Benchmark Diagrams

Figure 4: Artificial Benchmarks: Valid versus Unsatisfiable Predicates

112 First-Order Logic in Finite Domains

Figure 5: Artificial Benchmarks: Satisfiable Predicates and their Negations

W. Schreiner and F.-X. Reichl 113

Figure 6: Real-Life Benchmarks (available from https://www.risc.jku.at/research/formal/
software/RISCAL/papers/EvalSMT2021-models.tgz)

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 114–128, doi:10.4204/EPTCS.342.10

c©M. Soualhia, F. Khomh & S. Tahar
This work is licensed under the
Creative Commons Attribution License.

Failure Analysis of Hadoop Schedulers using an Integration
of Model Checking and Simulation

Mbarka Soualhia
Concordia University,

Montréal, Canada
soualhia@ece.concordia.ca

Foutse Khomh
Polytechnique Montréal,

Montréal, Canada
foutse.khomh@polymtl.ca

Sofiène Tahar
Concordia University,

Montréal, Canada
tahar@ece.concordia.ca

Abstract: The Hadoop scheduler is a centerpiece of Hadoop, the leading processing framework
for data-intensive applications in the cloud. Given the impact of failures on the performance of
applications running on Hadoop, testing and verifying the performance of the Hadoop scheduler is
critical. Existing approaches such as performance simulation and analytical modeling are inadequate
because they are not able to ascertain a complete verification of a Hadoop scheduler. This is due to
the wide range of constraints and aspects involved in Hadoop. In this paper, we propose a novel
methodology that integrates and combines simulation and model checking techniques to perform
a formal verification of Hadoop schedulers, focusing on the following properties: schedulability,
fairness and resources-deadlock freeness. We use the CSP language to formally describe a Hadoop
scheduler, and the PAT model checker to verify its properties. Next, we use the proposed formal
model to analyze the scheduler of OpenCloud, a Hadoop-based cluster that simulates the Hadoop
load, in order to illustrate the usability and benefits of our work. Results show that our proposed
methodology can help identify several tasks failures (up to 78%) early on, i.e., before the tasks are
executed on the cluster.

1 Introduction
Motivated by the reasonable prices and the good quality of cloud services, several enterprises and gov-
ernments are deploying their applications in the cloud. Hadoop [1] has become enormously popular for
processing data-intensive applications in the cloud. A core constituent of Hadoop is the scheduler. The
Hadoop scheduler is responsible for the assignment of tasks belonging to applications across available
computing resources. Scheduling data-intensive applications’ tasks is a crucial problem, especially in the
case of real-time systems, where several constraints should be satisfied. Indeed, an effective scheduler
must assign tasks to meet applications’ specified deadlines and to ensure their successful completions. In
the cloud, failures are the norm rather than the exception and they often impact the performance of tasks
running in Hadoop. Consequently, the Hadoop scheduler may fail to achieve its typical goal for different
reasons such as resources-deadlock, task starvation, deadline non-satisfaction and data loss [8] [11]. This
results in extra delays that can be added and propagated to the overall completion time of a task, which
could lead to resources wastage, and hence significantly decreasing the performance of the applications
and increasing failure rates. For instance, Dinu and Ng [7] analyzed the performance of the Hadoop
framework under different types of failures. They reported that the Hadoop scheduler experiences sev-
eral failures due to the lack of information sharing about its environment (e.g., scheduler constraints,
resources availability), which can lead to poor scheduling decisions. For instance, they claim that the
Hadoop scheduler experiences several failures because of prioritized executions of some long tasks be-
fore small ones, long delays of the struggling tasks or unexpected resources contentions [7] [14]. The
widespread use of the Hadoop framework in safety and critical applications, such as healthcare [4] and

M. Soualhia, F. Khomh & S. Tahar 115

aeronautics [3], poses a real challenge to software engineers for the designing and testing of such frame-
work to meet its typical goal and avoid poor scheduling decisions. Although several fault-tolerance mech-
anisms are integrated in Hadoop to overcome and recover from these failures, several failures still occur
when scheduling and executing tasks [14]. Indeed, these failures can occur because of poor scheduling
decisions (e.g., resources deadlock, task starvation) or constraints related to the environment where they
are executed (e.g., data loss, network congestion). As such, verifying the design of Hadoop scheduler is
an important and open challenge to identify the circumstances leading to task failures and performance
degradation so that software engineers studying Hadoop can anticipate these potential issues and propose
solutions to overcome them. This is to improve the performance of the Hadoop framework.

Different approaches have been adopted by the research community to verify and validate the behav-
ior of Hadoop with respect to scheduling requirements. Traditionally, simulation and analytical modeling
have been widely used for this purpose. However, with many Hadoop-nodes being deployed to accom-
modate the increasing number of demands, they are inadequate because they are not efficient in exploring
large clusters. In addition, given the highly dynamic nature of Hadoop systems and the complexity of
its scheduler, they cannot provide a clear understanding and exhaustive coverage of the Hadoop system
especially when failures occur. Particularly, they are not able to ascertain a complete verification of the
Hadoop scheduler because of the wide range of constraints and unpredictable aspects involved in the
Hadoop model and its environment (e.g., diversity of running loads, availability of resources and depen-
dencies between tasks). Formal methods have recently been used to model and verify Hadoop. However,
to the best of our knowledge very few efforts have been invested in applying formal methods to verify the
performance of Hadoop (e.g., data locality, read and write operations, correctness of running application
on Hadoop) [15] [12] [9]. In addition, there is no work that addresses the formal verification of Hadoop
schedulers. Considering the above facts, we believe that it is important to apply formal methods to verify
the behavior of Hadoop schedulers. This is because formal methods are more able to model complex
systems and thoroughly analyze their behavior than empirical testing. Our aim is to formally analyze the
impact of the scheduling decisions on the failures rate and avoid simulation cost in terms of execution
time and hardware cost (especially for large clusters). This allows to early identify circumstances leading
to potential failures, in a shorter time compared to simulation, and prevent their occurrences. In contrast
to simulation and analytical modeling, knowing these circumstances upfront would help practitioners
better select the cluster settings (e.g., number of available resources, type of scheduler) and adjust the
scheduler design (e.g., number of queues, priority handling strategies, failures recovery mechanisms) to
prevent poor scheduling decisions in Hadoop.

In this paper, we present a novel methodology that combines simulation and model checking tech-
niques to perform a formal analysis of Hadoop schedulers. Particularly, we study the feasibility of inte-
grating model checking techniques and simulation to help in formally verifying some of the functional
scheduling properties in Hadoop including schedulability, resources-deadlock freeness, and fairness [5].
To this aim, we first present a formal model to construct and analyze the three mentioned properties
within the Hadoop scheduler. We use the Communicating Sequential Processes (CSP) language [16]
to model the existing Hadoop schedulers (FIFO, Fair and Capacity schedulers [14]), and use the Pro-
cess Analysis Toolkit (PAT) model checker [18] to verify the schedulers’ properties. Indeed, the CSP
language has been successfully used to model the behavior of synchronous and parallel components in
different distributed systems [16]. Furthermore, PAT is a CSP-based model checker that has been widely
used to simulate and verify concurrent, real-time systems, etc. [18]. Based on the generated verifica-
tion results in PAT, we explore the relation between the scheduling decisions and the failures rate while
simulating different load scenarios running on the Hadoop cluster. This is in order to propose possible
scheduling strategies to reduce the number of failed tasks and improve the overall cluster performance

116 Failure Analysis of Hadoop Schedulers using an Integration of Model Checking and Simulation

(resources utilization, total completion time, etc). In order to illustrate the usability and benefits of our
work to identify failures that could have been prevented using our formal analysis methodology, we ap-
ply our approach on the scheduler of OpenCloud, a Hadoop-based cluster that simulates the real Hadoop
load [10]. Using our proposed methodology, developers would identify up to 78% of tasks failures early
on before the deployment of the application. Based on the performed failures analysis, our method-
ology could provide potential strategies to overcome these failures. For instance, our solution could
propose new scheduling strategies to adjust the Hadoop cluster settings (e.g., size of the queue, allocated
resources to the queues in the scheduler, etc.) and reduce the failures rate when compared to the real-
execution simulation results. To the best of our knowledge, the present work is different from existing
research in applying and integrating both formal methods and simulation for the analysis of Hadoop
schedulers and formally analyzing the impact of the scheduling decisions on the failures rate in Hadoop.
Furthermore, our proposed methodology to integrate model checking and simulation to verify Hadoop
schedulers could be also applied to formally analyze other schedulers, than Hadoop, such as Spark [2],
which has become one of the key cluster-computing framework that can be running on Hadoop.

The rest of the paper is organized as follows: Section 2 describes basics of Hadoop architecture,
CSP language, and the tool PAT. Section 3 presents the proposed methodology for the formal analysis of
the Hadoop scheduler. We describe the analysis of the scheduler of the OpenCloud a Hadoop cluster in
Section 4. Section 5 summarizes the most relevant related work. Finally, Section 6 concludes the paper
and highlights some future directions.

2 Preliminaries
In this section we briefly present the Hadoop architecture and some of the basic of the CSP language and
the tool PAT, which will be used in the rest of the paper. This is in order to better understand the different
steps of our proposed methodology.

2.1 Hadoop Architecture

Hadoop [14] is an open source implementation of the MapReduce programming model [8]. MapRe-
duce is designed to perform parallel processing of large datasets using a large number of computers. A
MapReduce job is comprised of two functions: a map and reduce, and the input data [14]. Hadoop has
become the de facto standard for processing large data in today’s cloud environment. It is a master-slave-
based framework, the master node consists of a JobTracker and NameNode. The worker/slave node
consists of a TaskTracker and DataNode. The Hadoop Distributed File System (HDFS) is the storage
unit responsible for controlling access to data in Hadoop. Hadoop is equipped with a centerpiece; the
scheduler which distributes tasks across worker nodes according to their availability. The default sched-
uler in Hadoop is based on the First In First Out (FIFO) principle. Facebook and Yahoo! have developed
two new schedulers for Hadoop: Fair scheduler and Capacity scheduler, respectively [14].

2.2 CSP and PAT

CSP is a formal language used to model and analyze the behavior of processes in concurrent systems. It
has been practically applied in modeling several real time systems and protocols [16]. In the sequel, we
present a subset of the CSP language, which will be used in this work, where P and Q are processes, a is
an event, c is a channel, and e and x are values:
P , Q ::= Stop | Skip | a → P | P ; Q | P || Q | c!e → P | c?x → P

M. Soualhia, F. Khomh & S. Tahar 117

• Stop: indicates that a process is in the state of deadlock.

• Skip: indicates a successfully terminated process.

• a → P: means that an object first engages in the event a and then behaves exactly as described by
P.

• P ; Q: denotes that P and Q are sequentially executed.

• P || Q: denotes that P and Q are processed in parallel. The two processes are synchronized with
the same communication events.

• c!e → P: indicates that a value e was sent through a channel c and then a process P.

• c?x → P: indicates a value was received through a channel c and stored in a variable x and then
a process P.

PAT [18] is a CSP-based tool used to simulate and verify concurrent, real-time systems, etc. [17]. It
implements different model checking techniques for system analysis and properties verification in dis-
tributed systems (e.g., deadlock-freeness, reachability, etc.). Different advanced optimizations tech-
niques, such as partial order reduction, symmetry reduction, etc., are available in PAT to reduce the
number of explored states and CPU time.

3 Formal Analysis Methodology
In this section, we first present a general overview of our methodology followed by a description of each
step.

3.1 Methodology Overview

Figure 1 provides an overview of the main idea behind our formal analysis of the Hadoop scheduler
when integrating model checking and simulation, to early identify failure occurrences. The inputs of our
proposed methodology are (1) the description of the Hadoop scheduler, (2) the specification of the prop-
erties to be verified, and (3) the scheduling metrics (e.g., type of scheduler, number of nodes, workload
and failure distributions, schedulability rate). Our proposed methodology is comprised of three main
steps, including (a) the formal modeling of the Hadoop scheduler and its properties in CSP and LTL, (b)
the quantitative analysis of failures using model checking in PAT, and (c) the qualitative analysis of the
failures using simulation of the proposed scheduling strategies and real-simulation traces. The outputs
of our methodology are the rate of failures of the verified scheduler, and a set of possible scheduling
strategies to overcome these failures.
We have chosen the CSP language to formally describe the scheduler as it allows to model the behav-
ior of processes in concurrent systems. It has been successfully applied in modeling synchronous and
parallel components for several real-time and distributed systems [16] (which is the case of Hadoop).
The properties we aim to verify are written in Linear Temporal Logic (LTL). Thereafter, we use the
PAT model checker to perform the formal quantitative analysis of failures in Hadoop scheduler. PAT is
based on CSP and implements various model checking techniques to analyze and simulate the behavior
of several distributed systems (e.g., transportation management system, Web authentication protocols,
wireless sensor networks, etc.) [18]. Furthermore, it allows to model timed and probabilistic processes
in the studied systems [17]. Based on the generated results from PAT, we perform a qualitative failures
analysis to determine the circumstances and specifications leading to tasks’ failures in the scheduler. The
remainder of this section elaborates more on each of the steps of our methodology.

118 Failure Analysis of Hadoop Schedulers using an Integration of Model Checking and Simulation

Figure 1: Overview of the Formal Analysis of Hadoop Schedulers Methodology

3.2 Hadoop Scheduler Formal Model: Model Checking
The first step in conducting the proposed formal analysis of the Hadoop scheduler using a model checker
is to construct a formal model of the main components in Hadoop responsible for the scheduling of tasks,
using the CSP language. To do so, we start by writing a formal description of the Hadoop master node:
the JobTracker and NameNode. At the master level, we model the scheduler and the main entities re-
sponsible for task assignment and resources allocation in Hadoop. Next, we model the TaskTracker and
the DataNode including the entity responsible for the task execution at the worker nodes. In addition, we
integrate some of the important scheduling constraints in Hadoop in the model of the TaskTracker nodes
including the data locality, data placement, and speculative execution of tasks [14]. Here, we selected
these three constraints because of their direct impact on the scheduling strategies and the performance of
executed tasks [14]. At this level, we should mention that the provided model of the Hadoop scheduler
represents a close representation of the actual ones (e.g., FIFO, Fair, and Capacity) because it includes
the main functionalities responsible for assigning the received tasks on available nodes. Furthermore, we
checked the correspondence between the provided model and the real Hadoop scheduler by comparing
the scheduling outcomes of scheduled tasks when using the formal model and the existing ones. More
details about this comparison is given in Section 4.2.2. The obtained results showed a good matching
between the two models. Nevertheless, further functionalities can be added to the presented model in
order to improve its results (i.e., recovery mechanisms, efficient resources assignment). In the following,
we present a formal description of the steps to model a Hadoop cluster. Then, we present examples of
implemented CSP processes1 to describe the Hadoop scheduler, TaskTracker activation and task assign-
ment, where “Cluster()” is the main process and N is the number of available TaskTracker nodes in the
cluster:

Cluster() = initialize(); NameNode activate() ‖ JobTracker activate() ‖
(‖ i:{0..(N-1)}@DataNode activate(i)) ‖
(‖ i:{0..(N-1)}@TaskTracker activate(i))‖
Hadoop Scheduler();

The following process presents a formal description of the steps in “Hadoop Scheduler()” to
check scheduling constraints of map/reduce tasks. First, it checks the availability of resource slots
(slotTT[i]>0). Then, it checks the type of task to be scheduled, either a map (Queue[index] == 1) or re-
duce (Queue[index] == 2) task. It also checks whether a task is speculatively executed or not (e.g., map:

1The entire CSP script is available at:
http://hvg.ece.concordia.ca/projects/cloud/fvhs.html

M. Soualhia, F. Khomh & S. Tahar 119

Queue[index] == 3 or reduce: Queue[index] == 4). Next, it assigns the received task to the TaskTracker
node where it will be executed (signedtask?i → signedtask i → Task Assignment(location,type);).

Hadoop Scheduler() =

{ if((slotTT[i]>0))

{while((found==0) && (index < maxqueue))

{ if (Queue[index] == 1) //it is a map task

{ schedulable = 1; found =1; location = index;

type = MapTask; IDjob task = IDJob[index];}
if((Queue[index] == 2)) //it is a reduce task

{ if(FinishedMap[IDJob[index]] == Map[IDJob[index]])

{ schedulable = 1; found =1; location = index;

type = ReduceTask; IDjob task = IDJob[index];} }
if(Queue[index] == 3) //it is a speculated map task

{ schedulable = 1; found =1; location = index; type = MapTask;

IDjob task = IDJob[index]; SpeculateTask[location] = 1;}
if(Queue[index] == 4) //it is a speculated reduce task

{ schedulable = 1; found =1; location = index; type = ReduceTask;

IDjob task = IDJob[index]; SpeculateTask[location] = 1;}
...

}
}
} → signedtask?i→ signedtask i→Task Assignment(location, type);

“TaskTracker activate(i)” presents our proposed process to activate the TaskTracker, after checking
that the JobTracker was already activated (JobTracker == ON) and this TaskTracker was not already
activated (TaskTracker[i] == OFF). Next, it activates this Tasktracker (TaskTracker[i] == ON) and the
number of slots specified to this TaskTracker (slotsnb). These activated slots are ready to execute tasks.

TaskTracker activate(i) = activate jt success → ifa(TaskTracker[i] ==

OFF && JobTracker == ON) {activate tt.i{
TaskTracker[i] = ON; trackercount++;}
→ atomic{activate tt success.i →

(‖ j:{1..(slotsnb)}@TaskTracker sendready(i))}};

The following “TaskTracker execute(i)” process presents an example of executing a task after checking
its locality in Hadoop. For instance, it checks the availability of the slot assigned to a given task by
the scheduler (if slot is free then task running[nbTT][k] is equal to 0, where nbTT is the ID of the
TaskTracker and k is the ID of the assigned slot). Next, it checks the locality of the task by checking
whether the node where to execute the task (selectedTT) is the same node where its data is located (Data-
LocalTT[idtask]).

TaskTracker execute(i) =

{ var nbTT =i; var found = 0; var k = 0;

while((k<slotsnb) && (found == 0)){
if(task at tasktracker[nbTT][k]==1 && task running[nbTT][k]== 0)

{selectedslot =k; found = 1; }

120 Failure Analysis of Hadoop Schedulers using an Integration of Model Checking and Simulation

k++; } ...

if(Data-LocalTT[idtask] == selectedTT) //check locality of the task

{locality = locality + 1; Locality[idtask] = 1;}
else {nonlocality = nonlocality + 1; Locality[idtask] = 0; }

...}
} → if(pos== -1) {TaskTracker execute(i)}

else {execute(i,selectedslot)};

3.3 Hadoop Scheduler Properties: Model Checking

The three selected properties we aim to verify in our work are the schedulability, fairness and resources-
deadlock freeness. We select these properties because they represent some of the main critical properties
affecting the execution of tasks in real-time systems (e.g., task outcome, delays, resources utilization) [5].
The three properties can be described as follows: the schedulability checks whether a task is scheduled
and satisfies its specified deadline when scheduled according to a scheduling algorithm. The fairness
checks whether the submitted tasks are served (e.g., receiving resources slots that ensure their processing)
and there are no tasks that will never be served or will wait in the queue more than expected. The
resources-deadlock checks whether two tasks are competing for the same resource or each is waiting for
the other to be finished.

To better illustrate the properties to be verified, we explain as an example the schedulability property
and its corresponding states in our approach. For the schedulability, a task can go from state: submitted to
scheduled to processed then to finished-within-deadline or finished-after-deadline or failed. Let X be the
total number of scheduled tasks and Y be the number of tasks finished within their expected deadlines.
The schedulability rate can be defined as the ratio of X over Y. The property “schedulabilityrate > 80”
means checking whether the scheduler can have a total of 80% of tasks finished within their deadlines.

To verify above properties in PAT, we need to provide their descriptions in LTL. For example, the
following LTL formulas check the schedulability and resource-deadlock freeness of given tasks. The
first example checks whether a given task eventually goes from the state submitted to the state finished
within the deadline. The second example checks whether a given task should not go to a state of
waiting-resources. Here, ♦, |=, ->, and ¬ represent eventually, satisfy, imply, and not, respectively, in
the LTL logic.

assert ♦ (task |= (submitted -> finished-within-deadline));

assert ¬ (task |= (submitted -> waiting-resources));

3.4 Quantitative Failures Analysis using Model Checking

Provided the CSP model of the Hadoop scheduler and the properties to be verified, we perform the
formal analysis of the scheduler performance using the PAT model checker while simulating different
Hadoop workload scenarios. Here, we can vary the property requirements to assess the performance
of the scheduler under different rates and evaluate their impact on the failures rates of the cluster and
the simulated scenarios. For example, we can define “goal0” to check whether all the submitted tasks
(“workload”) are successfully scheduled. Using PAT, we can verify if the modeled cluster, “cluster1”,
can reach this goal or not. Another example could be to check if “cluster1” meets “goal0” with a
“schedulabilityrate” of 80%. The following examples present some of the properties that can be verified
using our approach.

M. Soualhia, F. Khomh & S. Tahar 121

#define goal0 completedscheduled == workload && workload >0;

#assert cluster1 reaches goal0;

#assert cluster1 reaches goal0 && schedulabilityrate >80;

#define goal1 fairnessrate ==50;

#assert cluster1 reaches goal0 && goal1;

#define goal2 resourcedeadlockrate ==50;

#assert cluster1 reaches goal0 && goal1 && goal2;

3.5 Qualitative Failures Analysis using Simulation

The last step in our proposed methodology is to use the traces simulated and generated by the PAT
model checker to extract information about the applied scheduling strategies and explore their impact
on tasks’ failures using simulation. For instance, we can investigate the states where the scheduler
does (not) meet a given property and map these states to the obtained scheduler performance and to the
input cluster settings. This step allows us to find a possible correlation between the cluster settings, the
applied scheduling strategies, and the failures rate. Next, we use these correlations to suggest scheduling
strategies to overcome these failures by either (1) recommending to the Hadoop developers to change the
scheduling decisions (e.g., delay long tasks, wait for a local task execution) or (2) to customers to change
and adjust their cluster settings (e.g., number of nodes, number of allowed speculative executions). In
next section, we propose a case study to evaluate and simulate the suggested scheduling strategies on a
Hadoop environment and measure their impact on the failure rates and the Hadoop cluster performance.
Generally, our solution could propose new scheduling strategies to adjust the Hadoop cluster settings and
hence reduce failures rate when compared to the real-execution simulation results.

4 Case Study: Formal Analysis of OpenCloud Scheduler

In this section, we illustrate the practical usability and benefits of our work by formally analyzing the
scheduler of OpenCloud, a Hadoop-based cluster [10] that simulates the Hadoop load.

4.1 Case Study Description

To apply our formal approach on a case study, we investigated existing Hadoop case studies in the open
literature. Overall, we found three main public case studies including: Google [19], Facebook [20],
and OpenCloud [10] traces. We found out that the Google traces do not provide data about the cluster
settings, which is an important factor affecting the analysis results in our approach. For the Facebook
traces, we noticed that they do not provide data about the cluster settings, capacity of nodes, failures rate,
etc., which are essential for our approach. Whereas, we found that the OpenCloud traces provide the
required inputs of our verification approach (e.g., # nodes, capacity of nodes, workload). Therefore, we
choose to formally analyze the scheduler of this cluster because it provides public traces of real-executed
Hadoop workload for more than 20 months. OpenCloud [10] is an open research cluster managed by
Carnegie Mellon University. It is used by several groups in different areas such as machine learning,
astrophysics, biology, cloud computing, etc.

Based on the modeled system of the OpenCloud’s scheduler and the specified properties, we start
the verification by parsing the trace files to extract the input information needed in our methodology.
Specifically, we use the description of the workload included in the first month traces, and the first
six months traces together. This allows us to evaluate the scalability of our methodology, in terms of
number of visited states and execution time, using different traces. Although these traces provide the
required inputs for our methodology, we did not find any information describing the type of scheduler

122 Failure Analysis of Hadoop Schedulers using an Integration of Model Checking and Simulation

used in the cluster. Since the type of the scheduler is an important factor that impacts the performance
of the cluster, we evaluate the performance of the modeled cluster for the three existing schedulers of
Hadoop (FIFO, Fair and Capacity). We vary the property requirements to assess the performance of
the used scheduler under different rates and evaluate their impact on the failures rate in the cluster while
executing the same Hadoop workload. For the search engines in PAT, we use the “First Witness Trace
using Depth First Search” in order to perform an analysis without reduction, and the “First Witness Trace
with Zone Abstraction” for the analysis with symmetry reduction. The testbed is a workstation with Intel
i7-6700HQ (2.60GHz*8) CPU and 16 GB of RAM.

4.2 Verification and Evaluation
In this section, we present the obtained scalability results of our methodology along with the results of
the formal quantitative and qualitative analyses of failures in Hadoop schedulers.

4.2.1 Properties Verification and Scalability Analysis

Tables 1 and 2 summarize the verification results of the first month trace, and the first six months traces
together, respectively. The first trace provides information about 1,772,144 scheduled tasks, whereas the
six files describing the executed workload for six months contain information about 4,006,512 scheduled
tasks. In the sequel, we discuss the results of the performed analysis.

The results presented in Table 1 show that only the Fair scheduler satisfies the schedulability property
(for the two given rates), meaning that up to 80% are scheduled and executed within their expected
deadlines. The Capacity scheduler does not meet the schedulability rate of 80%. However, the FIFO
does not satisfy the schedulability properties for the two input rates, meaning that more than 50% of
scheduled tasks are exceeding their expected deadlines. Hence, these tasks are using their assigned
resources more than expected, which can affect the overall performance of the cluster.

For the fairness property, only the Fair scheduler satisfies the property of fairness with a rate of 50%
and 80%, meaning that at most 80% of tasks get served and executed on time. However, both the FIFO
and the Capacity schedulers violate the fairness property for the two given values. Therefore, we can
claim that more than 80% of the submitted tasks are waiting longer than expected in the queue before
getting executed. This may lead to a problem of task starvation.

For the resources-deadlock, we can report that the Capacity scheduler is characterized by more tasks
that experience a resources-deadlock compared to the FIFO and the Fair schedulers. This is because it
satisfies the property of resources-deadlock for the two given rates (e.g., 10% and 30%). This can be
explained by the fact that the Capacity scheduler suffers from the problem of miscalculation of resources
(headroom calculation). The FIFO scheduler shows that only 10% of the scheduled tasks experience the
problem of resources-deadlock. The Fair scheduler does not satisfy the resources-deadlock property for
two given rates (10% and 30%) for the first trace, which means that less than 10% of tasks may expe-
rience an issue of resources-deadlock. Hence, we can conclude that the Fair scheduler generates less
scheduling decisions leading to resources-deadlock situations for the OpenCloud cluster.

Overall, our proposed methodology is able to verify the given three properties for the three exist-
ing Hadoop schedulers, while exploring on average 11086 K states in 3724 seconds without symmetry
reduction, and 742 K states in 1619 seconds with symmetry reduction, as shown in Table 1.

In order to evaluate the scalability of our methodology, we perform the formal analysis of a cumula-
tive workload. This is done by incrementally adding the Hadoop workload of each month to the previous
trace(s) to be analyzed. We start the evaluation by analyzing the trace of the first month, and add the
traces up to the trace where the tool cannot perform the analysis. This is in order to check the bounds
of the analysis performed in terms of explored states. The obtained results, presented in Table 2, show

M. Soualhia, F. Khomh & S. Tahar 123

Table 1: Verification Results: Trace for the First Month (1,772,144 Tasks)

Property Scheduler Results without SR Results with SR
Valid? #States Time(s) Valid? #States Time(s)

Schedulability
= 50%

FIFO No 11086 K 3869 No 742 K 1648
Fair Yes 11086 K 3524 Yes 742 K 1597

Capacity Yes 11086 K 3601 Yes 742 K 1604

Schedulability
= 80%

FIFO No 11086 K 3789 No 742 K 1650
Fair Yes 11086 K 3676 Yes 742 K 1614

Capacity No 11086 K 3721 No 742 K 1602

Fairness
= 50%

FIFO No 11086 K 3714 No 742 K 1594
Fair Yes 11086 K 3759 Yes 742 K 1615

Capacity No 11086 K 3736 No 742 K 1612

Fairness
= 80%

FIFO No 11086 K 3855 No 742 K 1675
Fair Yes 11086 K 3795 Yes 742 K 1642

Capacity No 11086 K 3761 No 742 K 1619

Resources-
Deadlock

= 10%

FIFO Yes 11086 K 3615 Yes 742 K 1602
Fair No 11086 K 3698 No 742 K 1610

Capacity Yes 11086 K 3704 Yes 742 K 1632
Resources-
Deadlock

= 30%

FIFO No 11086 K 3742 No 742 K 1596
Fair No 11086 K 3733 No 742 K 1618

Capacity Yes 11086 K 3752 Yes 742 K 1623

SR = Symmetry Reduction

that our approach could formally analyze the first six traces (combined) describing the workload (about
4,006,512 tasks) for the first six months. It could analyze the first five traces together with and without
symmetry reduction, however, it could analyze the six traces together only with symmetry reduction by
exploring on average 17,692 K states in 4346 seconds.

Table 2: Verification Results: Trace for the 1-6 Months (4,006,512 Tasks)

Property Scheduler Results without SR Results with SR
Valid? #States Time(s) Valid? #States Time(s)

Schedulability
= 50%

FIFO ** ** ** Yes 17692K 4350
Fair ** ** ** Yes 17692K 4362

Capacity ** ** ** Yes 17692K 4359

Schedulability
= 90%

FIFO ** ** ** No 17692K 4346
Fair ** ** ** No 17692K 4341

Capacity ** ** ** No 17692K 4367

Fairness
= 30%

FIFO ** ** ** Yes 17692K 4377
Fair ** ** ** Yes 17692K 4312

Capacity ** ** ** Yes 17692K 4335

Fairness
= 90%

FIFO ** ** ** No 17692K 4352
Fair ** ** ** No 17692K 4328

Capacity ** ** ** No 17692K 4369

Resources-
Deadlock

= 10%

FIFO ** ** ** Yes 17692K 4322
Fair ** ** ** No 17692K 4360

Capacity ** ** ** Yes 17692K 4354
Resources-
Deadlock

= 50%

FIFO ** ** ** No 17692K 4338
Fair ** ** ** No 17692K 4342

Capacity ** ** ** No 17692K 4328

SR = Symmetry Reduction, ** = Not Available

4.2.2 Quantitative Failures Analysis

We use the traces generated by the PAT model checker during the verification of the three properties de-
scribed in Section 4.2.1, to explore states where the scheduler did not satisfy a given property value. This
step is important to map these states to the failed tasks, if found, and examine the relationship between

124 Failure Analysis of Hadoop Schedulers using an Integration of Model Checking and Simulation

the verified property and the task failure. We apply this step on the first trace file because it contains
an important number of scheduled tasks (i.e., 1,772,144 tasks). To do so, we first identify the tasks that
did not satisfy a given property, for example schedulability = 80% or resources-deadlock = 10%. Then,
we check whether these tasks were failed when they were executed in the real cluster. Next, we classify
the observations into four main categories: True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN). TP represents the successfully executed tasks, based on the simulation traces,
that are identified as finished tasks using our approach. Likewise, TN represents the failed tasks, based
on the simulation traces, that are identified as failed tasks. While FP denotes the amount of identified
finished tasks that failed during the real simulation. Finally, FN denotes the number of identified failed
tasks that are finished in reality. These four metrics are calculated by comparing the status of the tasks in
the generated traces using our methodology, specifically from PAT, and the simulation traces across the
total number of scheduled tasks in the input trace (1,772,144 tasks).

Overall, we observe that our formal analysis approach could identify up to 61.49% of the finished
tasks (TP, Fair, schedulability = 50%), and up to 4.62% of the failed tasks (TN, Fair, schedulability =
80%) without symmetry reduction. Here, we notice that the TN values are small compared to the TP
ones. This can be explained by the fact that the first trace contains more than 94% of successful tasks.
For this reason, we computed another metric that we call the Detected Failures (DF). The DF is calcu-
lated by mapping the TN rate over the total number of failed tasks in the input trace. Our aim here
is to quantify the amount of detected failures using our formal verification approach when compared to
the given OpenCloud traces (obtained from real-execution simulation). This is to answer the question
of how many failures could be identified by our formal verification approach before the application is
deployed in the field?

At this level, we can claim that our approach is able to catch between 42% and 78.57% of the total
failed tasks without symmetry reduction. While it can catch between 42% and 78.91% of the failures
when using the symmetry reduction. On the other hand, we notice that the FN is in the order of 40%,
which means that more than 40% of tasks are finished, in the simulation traces, but our methodology
indicates their failures. This can be explained by the internal mechanisms implemented in Hadoop inter-
nally to recover these tasks in case of a failure. For example, the mechanism of pausing and resuming
running tasks allows higher priority tasks to be executed without killing the lower priority ones [11].
Furthermore, we notice that the false positive rate varies from 1.26% and 3.41% and indicates failed
tasks that are identified as finished using our methodology. A possible explanation for these false posi-
tive results can be the lack of some real-world constraints that affect the execution of tasks (e.g., network
congestion, lack of resources). In addition, failed tasks identified as finished can generate more false
positive results due to the tight dependency between the map and the reduce tasks (the reduce tasks will
be launched when all the map tasks are successfully executed).

Next, we check the states of the failed tasks and analyze the factors that may cause the failure of
these tasks. We find that the scheduler of OpenCloud experiences several failures, up to 32%, because of
long delays that exceed the maximum timeout for a task to be finished (property “mapred.task.timeout”:
defining the maximum timeout for a task to be finished). We carefully checked the sates of these tasks
and found that these delays are mainly caused by data locality constraints [14] and that they can reach 10
minutes (for small and medium tasks). Moreover, we found out that about 40% of these straggling tasks
cause the failure of the job to which they belong, resulting in a waste of resources. Moreover, we noticed
that many failures are cascaded from one job to another, especially in the long Hadoop chains. A Hadoop
chain is a connection between more than one Hadoop job to execute a specific workload. This may
result in a degradation in performance and many failures. We can claim that the Hadoop scheduler lacks
mechanisms to share information about these failures between its components to avoid their occurrence.

M. Soualhia, F. Khomh & S. Tahar 125

Table 3: Coverage Results(%): Trace for the First Month (1,772,144 Tasks)

Property Scheduler Results without SR Results with SR
TP TN FP FN DF TP TN FP FN DF

Schedulability
= 50%

FIFO 56.03 3.2 2.68 38.09 54.76 47.29 2.47 3.41 46.83 42.00
Fair 61.49 4.53 1.35 32.63 77.04 55.38 3.82 2.06 38.74 64.96

Capacity 49.16 2.47 3.41 44.96 42.00 46.09 2.85 3.03 48.03 48.46

Schedulability
= 80%

FIFO 50.14 3.46 2.42 43.98 58.84 47.98 2.79 3.09 46.14 47.44
Fair 59.83 4.62 1.26 34.29 78.57 56.82 4.21 1.67 37.3 71.59

Capacity 43.61 3.05 2.83 37.73 51.87 42.18 3.03 2.85 51.94 51.53

Fairness
= 50%

FIFO 49.28 2.92 2.96 44.84 49.65 47.84 2.92 2.96 46.28 49.65
Fair 55.36 3.89 1.99 38.76 66.15 49.63 3.86 2.02 44.49 65.64

Capacity 47.03 2.47 3.41 47.09 42.00 44.11 3.04 2.84 50.01 51.70

Fairness
= 80%

FIFO 44.88 3.76 2.12 49.29 63.94 49.77 3.32 2.56 44.35 56.46
Fair 57.21 4.07 1.81 36.91 69.21 50.14 4.64 1.24 43.98 78.91

Capacity 43.14 3.01 2.87 50.98 51.19 48.29 3.48 2.4 45.83 76.18

Resources-
Deadlock

= 10%

FIFO 43.73 3.06 2.82 50.39 52.04 46.21 3.19 2.69 47.92 54.25
Fair 49.99 3.82 2.06 44.13 64.96 51.44 3.63 2.25 42.68 61.73

Capacity 46.07 3.19 2.69 48.05 54.25 43.77 2.84 3.04 50.35 48.29
Resources-
Deadlock

= 30%

FIFO 50.22 3.53 2.35 43.9 60.03 48.54 2.91 2.97 45.58 49.48
Fair 52.39 4.17 1.71 41.73 70.91 55.26 3.75 2.13 38.86 63.77

Capacity 49.02 3.16 2.72 45.1 53.74 49.71 3.19 2.69 44.41 54.25

SR = Symmetry Reduction, DF = Detected Failures
TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative

On the other hand, we found out that 26% of tasks failed because they exceeded the maximum number
of allowed speculative execution (e.g., property “mapred.map.tasks.speculative.execution”: defining
the maximum number of allowed speculative execution, they have likely more chances to fail). When
checking the tasks waiting for a long time in the queue before being served, we observed that this is due
to the fact that the long tasks are scheduled first and they occupy their assigned resources for a long time
(e.g., a large input file to be processed, a job composed of more than 1000 tasks). Consequently, we
can conclude that knowing these factors and issues, one can adapt the scheduler system of the Hadoop
framework to overcome these failures and improve its performance.

4.2.3 Qualitative Failures Analysis

To show the benefits of our formal analysis approach, we propose to integrate and simulate some guide-
lines or strategies to adapt the scheduling decisions of the created Hadoop cluster and evaluate their
impact on the failures rate. This is based on the generated traces and the performed failures analysis to
check whether our work can help early identify the occurrence of failures and then propose appropriate
mechanisms to overcome them. For instance, one possible strategy could be to change the cluster settings
by adding more resources on its nodes or adding the number of nodes on it. This could solve for example
the fairness and resources-deadlock issues. Another scheduling strategy could be to change the value of
timeout of scheduled task, which represents the number of milliseconds before terminating a task. An-
other strategy could be to adjust the type of the scheduler used in the cluster (e.g., FIFO, Fair, Capacity,
etc.). In this paper, we evaluate the impact of the strategy to change the cluster settings by adding more
resources on the OpenCloud cluster where we change the number of nodes from 64 to 100 and simulate
the same Hadoop workload. Figure 2 gives an overview of the impact of adding more resources in the
cluster for the three schedulers considering a failures’ rate of 5.88%; the identified failure rate from the
first trace file. Overall, we noticed that adding more nodes in the cluster could reduce the failure rates by
up to 2.34% (Fair scheduler), which means a reduction rate of 39.79%. This was expected since when
we analyzed the traces we found out that several tasks are straggling for more than 10 minutes, waiting
for other resources to be released.

126 Failure Analysis of Hadoop Schedulers using an Integration of Model Checking and Simulation

Given the obtained findings, we can claim that our solution could identify new scheduling strate-
gies to adjust the Hadoop cluster to reduce failures rates by combining simulation and model checking
techniques and formally verifying the functional scheduling properties.

FIFO Fair Capacity

0

2

4

6

8

5.
88

5.
88

5.
88

4.
26

3.
54 3.

97

F
a
il
u
re
s
R
a
te

(%
)

64-Nodes Cluster 100-Nodes Cluster

Figure 2: Impact of Resources Adding on Failures Rate

5 Related Work

In this section, we discuss the most relevant work that apply formal methods in the context of Hadoop
framework. In [6] and [13], the authors analyzed the behavior of MapReduce using Stochastic Petri
Nets and Timed Colored Petri Nets, respectively. They modeled the mean delay in each time transi-
tion of the scheduled tasks as formulas, and the Hadoop jobs were simulated based on the used Petri
Nets. The proposed approaches could evaluate the correctness of the system and analyze the perfor-
mance of MapReduce. But, they lack several constraints about the scheduling of the jobs and cannot
cover larger Hadoop clusters. Su et al. [15] used the CSP language to formalize four key components
in MapReduce. Specifically, they formally modeled the master, mapper, reducer and file system while
considering the basic operations in Hadoop (e.g., task state storing, error handling, progress controlling).
However, none of the properties of the Hadoop framework is verified using the formalized components.
Xie et al. [22] address the formal verification of the HDFS reading and writing operations using CSP
and the PAT model checker. For instance, they formally modeled the reading and writing operations for
the HDFS based on the formalized components proposed in [15]. Moreover, they verified some of the
HDFS properties including the deadlock-freeness, minimal distance scheme, mutual exclusion, write-
once scheme and robustness. While this approach allows to detect unexpected traces generating errors
and verify data consistency in the HDFS, a limitation of this work is that it only models the reading and
writing operations for just one file system and requires to investigate the validity of these operations for
distributed files as in HDFS. In [12], Reddy et al. propose an approach to model Hadoop’s system using
the PAT model checker. They used CSP to model Hadoop software components including the “NameN-
ode”, “DataNode”, task scheduler and cluster setup. They identified the benefits of some properties like
data locality, deadlock-freeness and non-termination among others and proved the correctness of these
properties. However, their proposed model is evaluated on a small workload, and none of the properties
is verified to check the performance of the Hadoop scheduler. Kosuke et al. [9] used the proof assistant

M. Soualhia, F. Khomh & S. Tahar 127

Coq to write an abstract computation model of MapReduce. They modeled the mapper and reducer as
Coq functions and proved that the implementation of the mapper and reducer satisfies the specification
of some applications such as WordCount [21]. The authors present an abstracted model of MapReduce,
where many details are not included such as task assignment or resources allocation. These issues can
affect the performance of applications running on Hadoop.

6 Conclusion and Future Work
Given the dynamic behavior of the cloud environment, the verification of the Hadoop scheduler has
become an open challenge especially with many Hadoop-nodes being deployed to accommodate the
increasing number of demands. Existing approaches such as performance simulation and analytical
modeling are not able to ascertain a complete verification of the Hadoop scheduler because of the wide
range of constraints involved in Hadoop. In this paper, we presented a novel methodology that combines
and integrates simulation and model checking techniques to perform a formal analysis of Hadoop sched-
ulers. Particularly, we studied the feasibility of integrating model checking techniques and simulation to
help in formally verifying some of the functional scheduling properties. So, we formally verified some
of the most important scheduling properties on Hadoop including the schedulability, resources-deadlock
freeness, and fairness properties, and analyzed their impact on the failure rates. The ultimate goal of this
work is to be able to propose possible scheduling strategies to reduce the number of failed tasks and im-
prove the overall cluster performance and practitioner better assign and configure resources to mitigate
the failures that a Hadoop scheduler may experience while simulating the Hadoop workload. We used
CSP to model Hadoop schedulers, and the PAT model checker to verify the mentioned properties. To
show the practical usefulness of our work, we applied our approach on the scheduler of OpenCloud, a
real Hadoop-based cluster. The obtained results show that our approach is able to formally verify the
selected properties and that such analysis can help identify up to 78% of failures before they occur in the
field.

An important direction of future work is to verify other properties that can impact the failures rate in
Hadoop, like the resource assignment, load balancing, and modeling the internal recovery mechanisms
of Hadoop. Another direction can be the use of our work to automatically generate scheduling guidelines
to improve the performance of the Hadoop framework and reduce the failures rate. Finally, the failure
analysis approach and findings of this paper can be extended and evaluated on Spark [2], which has
become one of the key cluster-computing framework that can be running on Hadoop. In fact, one can
easily adapt the proposed methodology according to the architecture of Spark.

References

[1] Apache Hadoop: http://hadoop.apache.org/.

[2] Apache Spark: http://spark.apache.org/.

[3] Applying Apache Hadoop to NASA’s Big Climate Data: http://events.linuxfoundation.org/

sites/events/files/slides/ApacheCon_NASA_Hadoop.pdf.

[4] D. Chen, Y. Chen, B. N. Brownlow, P. P. Kanjamala, C. A. G. Arredondo, B. L. Radspinner & M. A.
Raveling (2017): Real-Time or Near Real-Time Persisting Daily Healthcare Data Into HDFS and Elastic-
Search Index Inside a Big Data Platform. IEEE Transactions on Industrial Informatics 13(2), pp. 595–606,
doi:10.1109/TII.2016.2645606.

[5] A.M. K. Cheng (2002): Real-Time Systems: Scheduling, Analysis, and Verification. John Wiley & Sons, Inc.,
doi:10.1002/0471224626.

128 Failure Analysis of Hadoop Schedulers using an Integration of Model Checking and Simulation

[6] S.-T. Cheng, H.-C. Wang, Y.-J. Chen & C.-F. Chen (2015): Performance Analysis Using Petri Net Based
MapReduce Model in Heterogeneous Clusters. In: Advances in Web-Based Learning, LNCS 8390, Springer,
pp. 170–179, doi:10.1007/978-3-662-46315-4 18.

[7] F. Dinu & T.S. E. Ng (2012): Understanding the Effects and Implications of Compute Node Related Failures
in Hadoop. In: International Symposium on High-Performance Parallel and Distributed Computing, pp.
187–198, doi:10.1145/2287076.2287108.

[8] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta & R. Pace (2014): WOHA: Deadline-Aware Map-Reduce
Workflow Scheduling Framework over Hadoop Clusters. In: IEEE International Conference on Distributed
Computing Systems, pp. 93–103, doi:10.1109/ICDCS.2014.18.

[9] K. Ono, Y. Hirai, Y. Tanabe, N. Noda & M. Hagiya (2011): Using Coq in Specification and Program Extrac-
tion of Hadoop Mapreduce Applications. In: International Conference on Software Engineering and Formal
Methods, pp. 350–365, doi:10.1007/978-3-642-24690-6 24.

[10] OpenCloud: http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html.
[11] J. A. Quiané-Ruiz & et al. (2011): RAFTing MapReduce: Fast Recovery on the RAFT. In: IEEE International

Conference on Data Engineering, pp. 589–600, doi:10.1109/ICDE.2011.5767877.
[12] G.S. Reddy, F. Yuzhang, L. Yang, S.D. Jin, J. Sun & R. Kanagasabai (2013): Towards Formal Modeling and

Verification of Cloud Architectures: A Case Study on Hadoop. In: International World Congress on Services,
pp. 306–311, doi:10.1109/SERVICES.2013.47.

[13] M. C. Ruiz, J. Calleja & D. Cazorla (2015): Petri Nets Formalization of Map/Reduce Paradigm
to Optimise the Performance-Cost Tradeoff. In: IEEE Trustcom/BigDataSE/ISPA, 3, pp. 92–99,
doi:10.1109/Trustcom.2015.617.

[14] M. Soualhia, F. Khomh & S. Tahar (2017): Task Scheduling in Big Data Platforms: A Systematic Literature
Review. Journal of Systems and Software 134, pp. 170 – 189, doi:10.1016/j.jss.2017.09.001.

[15] W. Su, F. Yang, H. Zhu & Q. Li (2009): Modeling MapReduce with CSP. In: IEEE International Symposium
on Theoretical Aspects of Software Engineering, pp. 301–302, doi:10.1109/TASE.2009.28.

[16] J. Sun, Y. Liu, J. S. Dong & C. Chen (2009): Integrating Specification and Programs for System Modeling
and Verification. In: IEEE International Symposium on Theoretical Aspects of Software Engineering, pp.
127–135, doi:10.1109/TASE.2009.32.

[17] J. Sun, Y. Liu, J. S. Dong & J. Pang (2009): PAT: Towards Flexible Verification under Fairness. In: Computer
Aided Verification, LNCS 5643, pp. 709–714, doi:10.1007/3-540-10843-2 22.

[18] Process Analysis Toolkit: http://sav.sutd.edu.sg/PAT/.
[19] Google Traces: https://github.com/google/cluster-data.
[20] Facebook Traces: https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository.
[21] WordCount Example: http://wiki.apache.org/hadoop/WordCount.
[22] W. Xie, H. Zhu, X. Wu, S. Xiang & J. Guo (2016): Modeling and Verifying HDFS Using CSP. In: IEEE An-

nual Computer Software and Applications Conference, 1, pp. 221–226, doi:10.1109/COMPSAC.2016.158.

T. Kutsia (Ed.): Symbolic Computation
in Software Science (SCSS’21)
EPTCS 342, 2021, pp. 129–135, doi:10.4204/EPTCS.342.11

c© S. Stratulat
This work is licensed under the
Creative Commons Attribution License.

E-CYCLIST: Implementation of an Efficient Validation of
FOLID Cyclic Induction Reasoning

Sorin Stratulat

Université de Lorraine, CNRS, LORIA
Metz, F-57000, FRANCE

sorin.stratulat@univ-lorraine.fr

Checking the soundness of cyclic induction reasoning for first-order logic with inductive definitions
(FOLID) is decidable but the standard checking method is based on an exponential complement op-
eration for Büchi automata. Recently, we introduced a polynomial checking method whose most
expensive steps recall the comparisons done with multiset path orderings. We describe the imple-
mentation of our method in the CYCLIST prover. Referred to as E-CYCLIST, it successfully checked
all the proofs included in the original distribution of CYCLIST. Heuristics have been devised to au-
tomatically define, from the analysis of the proof derivations, the trace-based ordering measures that
guarantee the soundness property.

Introduction. Cyclic pre-proofs for the classical first-order logic with inductive predicates (FOLID)
have been extensively studied in [2,3,5]. They are finite sequent-based derivations where some terminal
nodes, called buds, are labelled with sequents already occurring in the derivation, called companions.
Bud-companion (BC) relations, graphically represented as back-links, are described by an induction
function attached to the derivation, such that only one companion is assigned to each bud, but a node can
be the companion of one or several buds. The pre-proofs can be viewed as digraphs whose cycles, if any,
are introduced by the BC-relations.

It is easy to build unsound pre-proofs, for example by creating a BC-relation between the nodes
labelled by the sequents from a stuttering step. The classical soundness criterion is the global trace
condition. Firstly, the paths are annotated by traces built from inductive atoms occurring on the lhs of the
sequents in the path, referred to as inductive antecedent atoms (IAAs). Then, it is shown that, for every
infinite path p in the cyclic derivation of a false sequent, there is some trace following p such that all
successive steps starting from some point are decreasing and certain steps occurring infinitely often are
strictly decreasing w.r.t. some semantic ordering. We say that a progress point occurs in the trace when a
step is strictly decreasing. A proof is a pre-proof if every infinite path has an infinitely progressing trace
starting from some point.

The standard checking method [3] of the global trace condition is decidable but based on an exponen-
tial complement operation for Büchi automata [8]. It has been implemented in the CYCLIST prover [4]
and experiments showed that the soundness checking can take up to 44% of the proof time. On the
other hand, we presented in [9,10] a less costly, polynomial-time, checking method. The pre-proof to be
checked is firstly normalized into a digraph P consisting of a set of derivation trees to which is attached
an extended induction function. The resulting digraph counts the companions among its roots, as well as
the root of the pre-proof to be checked. Also, all infinite paths in the pre-proof, starting from some point,
can be reconstructed by concatenating root-bud paths (rb-paths) in P . Finally, a sufficient condition for
ensuring the global trace condition is to show that every rb-path from the strongly connected components

130 E-CYCLIST: Implementation of an Efficient Validation of FOLID Cyclic Induction Reasoning

(SCCs) of P has a trace that satisfies some trace-based ordering constraints. Therefore, in theory, if the
soundness of some pre-proof can be validated with the new method, it can also be validated with the
standard one.

Implementation. Our method has been integrated in the CYCLIST release labelled as CSL-LICS14,
by replacing the standard checking method. The result was called E-CYCLIST. CYCLIST builds the
pre-proofs using a depth-first search strategy that aims at closing open nodes as quickly as possible.
Whenever a new cycle is built, model-checking techniques provided by an external model checker are
called to validate it. If the validation result is negative, the prover backtracks by trying to find another
way to build new cycles. Hence, the model checker may be called several times during the construction
of a pre-proof.

Here is how our method works. Firstly, the pre-proof is normalized to a digraph P . To each root r
from P , the method attaches a measure M (r) consisting of a multiset of IAAs of the sequent labelling
r, denoted by S(r). One of the challenges is to find the good measure values that satisfy the trace-based
ordering constraints. A procedure for computing these values is given by Algorithm 1.

Algorithm 1 GenOrd(P): to each root r of P is attached a measure M (r)
for all root r do

M (r) := /0
end for
for all rb-path r→ b from a non-singleton SCC do

if there is a trace between an IAA A of S(b) and an IAA A′ of S(r) then
add A to M (rc) and A′ to M (r), where rc is the companion of b

end if
end for

At the beginning, the value attached to each root is the empty set. Then, for each rb-path from a
cycle, denoted by r→ b, and for every trace along r→ b, leading some IAA of S(r) to another IAA of
S(b), we add the corresponding IAAs to the values of r and the companion of b, respectively. Since the
number of rb-paths is finite, Algorithm 1 terminates.

Algorithm 1 may compute values that do not pass the comparison test for some non-singleton SCCs
that are validated by the model checker. For this case, we considered an improvement consisting of the
incremental addition of IAAs from a root sequent that are not yet in the value of the corresponding root r.
Since the validating orderings are trace-based variants of multiset extension orderings, such an addition
does not affect the comparison value along the rb-paths starting from r. On the other hand, it may affect
the comparison tests for the rb-paths ending in the companions of r. This may duplicate some IAAs from
the values of the roots from the rb-paths leading to these companions. The duplicated IAAs have to be
processed as any incrementally added IAA, and so on, until no changes are performed.

Table 1 illustrates some statistics about the proofs of the conjectures considered in Table 1 from [4],
using inductive predicates as N, E, O, and Add, referring to the naturals, even and odd numbers, as
well as the addition on naturals. All inductive predicates but p are defined in [4]. The proofs have
been checked with the standard as well as our method. The IAAs are indexed in CYCLIST to facilitate
the construction of traces; the way they are indexed influences how the pre-proofs are built. Different
indexations for a same conjecture may lead to different proofs (see the statistics for the second and third
conjectures). The column labelled ‘Time-E’ presents the proof time measured in milliseconds by using

S. Stratulat 131

our method. Similarly, the ‘Time’ column displays the proof time when using the standard method, while
‘SC%’ shows the percentage of time taken to check the soundness by the model checker. ‘Depth’ shows
the depth of the proof, ‘Nodes’ the number of nodes in the proof, and ‘Bckl.’ the number of back-links
in the proof. The last column gives the number of calls for pre-proof validations. The proof runs have
been performed on a MacBook Pro featuring a 2,7 GHz Intel Core i7 processor and 16 GB of RAM. It
can be noticed that, by using our method, the execution time is reduced by a factor going from 1.43 to 5.

Theorem Time-E Time SC% Depth Nodes Bckl. Queries
O1x ` N2x 2 7 61 2 9 1 3
E1x∨O2x ` N3x 4 11 63 3 19 2 6
E1x∨O1x ` N3x 2 9 77 2 13 2 6
N1x ` O2x∨E3x 3 7 52 2 8 1 4
N1x∧N2y ` Q1(x,y) 297 425 40 4 19 3 665
N1x ` Add1(x,0,x) 1 5 76 1 7 1 4
N1x∧N2y∧Add3(x,y,z) ` N1z 8 14 38 2 8 1 16
N1x∧N2y∧Add3(x,y,z)`Add1(x,sy,sz) 15 22 32 2 14 1 14
N1x∧N2y ` R1(x,y) 266 484 48 4 35 5 759
N1x∧N2y ` p1(x,y) 597 ? ? 4 28 3 2315

Table 1: Statistics for proofs checked with the standard and our method.

The last conjecture was not tested in [4] and refers to the 2-Hydra example [1]. A pre-proof of
it, reproduced in Figure 1, can also be generated by CYCLIST, as shown in Figure 4. Unfortunately,
CYCLIST was not able to validate it using the standard method, the missing figures being denoted by ?.

` p00
N0 ` p10

(a)Nx,Ny ` pxy
Nsz,Nz ` pszz

Nsz,Nz ` pssz0
Nx′ ` psx′0

NxNx ` px0
N0,Nx ` px1

(a)Nx,Ny ` pxy
Nsu,Nu ` psuu
Nsu,Nu ` p0ssu

(a)Nx,Ny ` pxy
Nx′,Nu ` px′u

Nsu,Nx′,Nu ` psx′ssu
NxNsu,Nx,Nu ` pxssu

Nx,Ny′ ` pxsy′
Ny

(a)Nx,Ny ` pxy

Figure 1: The Berardi and Tatsuta’s cyclic pre-proof of the 2-Hydra example.

It also may occur that the proposed measure values, as shown in Figure 5 for a non-optimised proof
of 2-Hydra, may not pass some comparison tests that succeed with the standard method, even when using
the improved version of Algorithm 1. Indeed, this happened while proving N1x∧N2y ` R(x,y). Luckily,
the prover backtracked and finally found the same pre-proof as that originally built with CYCLIST.1

We detail now how our method has been applied for validating the 2-Hydra pre-proof from Figure 4.

The 2-Hydra case. The 2-Hydra problem is a particular case showing the termination of the battle
between Hercules and Hydra [6] when Hydra has at most two heads that hang on the top of necks of

1The source code of the implementation and the examples can be downloaded at https://members.loria.fr/
SStratulat/files/e-cyclist.zip

132 E-CYCLIST: Implementation of an Efficient Validation of FOLID Cyclic Induction Reasoning

different lengths. Hercules prevails if either Hydra has i) no heads at all, or ii) the length of the first neck
is 1 unit and it has lost the second head (i.e., the length of the neck is 0), or iii) the length of the second
neck is 1 unit, as in Figure 2.

Figure 2: The cases when Hercules wins.

Hercules can cut the Hydra’s necks according to the following rules. If both necks have strictly
positive lengths, then Hercules can cut them such that the first neck is shorter by 1 unit and the second
by 2 units (see the case iv in Figure 3). If Hydra has already lost one of the heads and the neck of the
other head has a length l of at least 2 units, the first head will have a neck of length l− 1 units and the
second head a neck of length l−2 units (see the cases v and vi in Figure 3).

Figure 3: The cases when Hercules cuts the necks of Hydra.

Next, we introduce the notations, the specification of the inductive predicates, the inference rules,
then explain the pre-proof from Figure 4. Contrary to the pre-proof from Figure 1, the CYCLIST pre-
proof is horizontally indented by the level of nodes. The nodes are numbered and labelled by sequents
where the comma (,) is replaced on the lhs of the sequents by the conjunction connector (/\).

S. Stratulat 133

The axioms defining the inductive predicates N and p are:

⇒ N(0)

N(x)⇒ N(s(x))

⇒ p(0,0)

⇒ p(s(0),0)

⇒ p(x,s(0))

p(x,y)⇒ p(s(x),s(s(y)))

p(s(y),y)⇒ p(0,s(s(y)))

p(s(x),x)⇒ p(s(s(x)),0)

The applied inference rule for each sequent is pointed out at the end of the sequent.
(N L.Unf) [n1,n2] generates the nodes n1 and n2 by choosing an IAA of the form N(t). If t is a

variable, t will be replaced by 0 and s(z), where z is a fresh variable. For the second instantiation, the
IAA is replaced by N(z). This represents a progres point. If t is of the form s(t ′), the original sequent is
reduced to another sequent by replacing the chosen IAA N(s(t ′)) with N(t ′).

(p R.Unf) [n] produces the node n resulting from the replacement of the consequent atom from the
sequent labelling n with the condition of some axiom defining p and whose conclusion matches the atom.

(Id) and (Ex Falso) delete trivial conjectures. (Weaken) (resp., (Subst)) [n] is the LK’s weakening
(resp., substitution) rule [7] whose premise labels n. Finally, (Backl) [n] shows that the current node is a
bud for the companion n.

Figure 4: The screenshot of the 2-Hydra pre-proof generated by CYCLIST.

The pre-proof from Figure 4 is already normalized and has one non-singleton SCC with three rb-
paths.

Our validity method is based on properties to be satisfied locally, at the level of rb-paths. An rb-
path r→ b is valid if b is “smaller” than r w.r.t. a trace-based multiset extension relation. This relation
guarantees the existence of traces following each infinite path p, built from the concatenation of the traces
defined for the rb-paths along p. The definitions for the standard and trace-based multiset extension are:

134 E-CYCLIST: Implementation of an Efficient Validation of FOLID Cyclic Induction Reasoning

• (standard multiset extension) B <mul A if there are two finite multisets X and Y such that B =
(A−X)]Y , X 6= /0 and ∀y ∈ Y , ∃x ∈ X ,y < x holds.

• (trace-based multiset extension) b is “smaller” than r if, after pairwisely deleting the IAAs linked
by a non-progressing trace along r→ b (the result is X and Y as above), X 6= /0 and ∀y ∈Y , ∃x ∈ X
such that there is a progressing trace along r→ b between x and y.

In Figure 5, we summarize the result of the application of the improved version of Algorithm 1 to
a non-optimized version of the pre-proof from Figure 4, for which the node 27 was denoted as 28. The
found measure of the root is the multiset of its IAAs indexed by 2 and 1, i.e., {N2(x),N1(y)}.

Figure 5: The E-CYCLIST validation of the 2-Hydra pre-proof from Figure 4.

In Figure 5, for each rb-path, i -> j denotes that there is a trace linking the root IAA indexed by j to
the bud IAA indexed by i, [true] means that the trace is progressing, and ‘===> true’ informs that
the rb-path is valid, as follows:

1. 0 to 28 (27 in Figure 4); the possible traces following this path are: [N1(x),N1(x),N1(y),N1(y),
N1(y),N1(y),N1(x)] and [N2(y),N2(z),N2(z),N2(w),N2(w),N2(w),N2(y)],

2. 0 to 21; the possible traces are: [N2(y),N2(z),N2(z),N2(y),N2(y),N2(y),N2(y)] and
[N2(y),N2(z),N2(z),N5(s(y)),N5(s(y)),N1(s(y)),N1(x)], and

3. 0 to 13; the possible traces are: [N1(x),N1(x),N1(y),N1(y),N1(s(z)),N1(s(z)),N1(s(z)),N1(x)] and
[N1(x),N1(x),N4(s(y)),N4(y),N4(z),N4(z),N4(z),N2(y)].

All the above traces are progressing, where the underlined IAAs correspond to progress points. By
definition, these rb-paths are valid and conclude that the 2-Hydra pre-proof is a proof, by using arguments
as in [9, 10].

Conclusions and future work. We have implemented in CYCLIST a more effective technique for val-
idating FOLID cyclic pre-proofs which allows to speed up the proof runs by 5. Besides its polynomial
time complexity, an important factor for its efficiency is the lack of the overhead time required to com-
municate with external tools. In practice, our method can validate pre-proofs that cannot be validated by
the CSL-LICS14 release of CYCLIST. Even if we do not have yet a clear evidence, we strongly believe
that this also holds for the other way around, as this might have happened for the N1x∧N2y ` R(x,y)
example.

The considered pre-proof examples are rather small. We intend to test our method more extensively
and on cyclic pre-proofs from domains other than FOLID, e.g., separation logic.

S. Stratulat 135

References
[1] S. Berardi & M. Tatsuta (2019): Classical System of Martin-Lof’s Inductive Definitions is not Equivalent to

Cyclic Proofs. Logical Methods in Computer Science 15(3), doi:10.23638/LMCS-15(3:10)2019.
[2] J. Brotherston (2005): Cyclic Proofs for First-Order Logic with Inductive Definitions. In: Proceedings of

TABLEAUX-14, LNAI 3702, Springer-Verlag, pp. 78–92, doi:10.1007/11554554_8.
[3] J. Brotherston (2006): Sequent Calculus Proof Systems for Inductive Definitions. Ph.D. thesis, University of

Edinburgh.
[4] J. Brotherston, N. Gorogiannis & R. L. Petersen (2012): A Generic Cyclic Theorem Prover. In: APLAS-10

(10th Asian Symposium on Programming Languages and Systems), LNCS 7705, Springer, pp. 350–367,
doi:10.1007/978-3-642-35182-2_25.

[5] J. Brotherston & A. Simpson (2011): Sequent calculi for induction and infinite descent. Journal of Logic and
Computation 21(6), pp. 1177–1216, doi:10.1093/logcom/exq052.

[6] N. Dershowitz & G. Moser (2007): The Hydra Battle Revisited. Rewriting, Computation and Proof, pp. 1–27,
doi:10.1007/978-3-540-73147-4_1.

[7] G. Gentzen (1935): Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 39, pp. 176–
210, doi:10.1007/BF01201353.

[8] M. Michel (1988): Complementation is more difficult with automata on infinite words. Technical Report,
CNET.

[9] S. Stratulat (2017): Cyclic Proofs with Ordering Constraints. In R. A. Schmidt & C. Nalon, editors:
TABLEAUX 2017 (26th International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods), LNAI 10501, Springer, pp. 311–327, doi:10.1007/978-3-319-66902-1_19.

[10] S. Stratulat (2018): Validating Back-links of FOLID Cyclic Pre-proofs. In S. Berardi & S. van Bakel, editors:
CL&C’18 (Seventh International Workshop on Classical Logic and Computation), EPTCS 281, pp. 39–53,
doi:10.4204/EPTCS.281.4.

