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We describe an effort to soundly use off-the-shelf incremental SAT solvers within ACL2 by modeling
the behavior of a SAT solver library as an abstract stobj. The interface allows ACL2 programs to use
incremental SAT solvers, and the abstract stobj model allows us to reason about the behavior of an
incremental SAT library so as to show that algorithms implemented using it are correct, as long as
the library is bug-free.

1 Introduction

ACL2 users have long recognized the potential utility of integrating external proof tools [7]. While many
such tools have been successfully integrated and used in ACL2 proofs, as far as we know these have
all been used in a stateless manner: that is, a complete query is built up within ACL2 and exported in a
format accessible to the external tool, then the external tool is executed and finishes, at which point ACL2
reads its output. However, some external tools benefit from storing state between queries. Incremental
satisfiability (SAT) solvers, in particular, keep learned facts and heuristic information from previous
queries and use these to speed up later queries, allowing for repeated SAT checks that can be much faster
than they would be if the solver was started from scratch for every query.

This paper describes an interface allowing ACL2 programs to use an external incremental SAT library
in a stateful manner. The library is accessed through an abstract stobj. The abstract stobj interface
functions’ logical definitions model the behavior of the incremental SAT library, and their executable
definitions call into the library to set up queries and get their results. We show how our model of an
incremental SAT solver can be used in a complete algorithm, namely fraiging or AIG SAT sweeping [8],
and the algorithm proved correct assuming correct behavior of the incremental solver.

We begin in Section 3 by discussing the incremental SAT library interface we are targeting. Next we
give an overview of the integration in Section 4, describe the logical model in Section 5, and describe
the mechanics of interfacing with the external library in Section 6. We assess the soundness of the
incremental SAT integration in Section 7. We then describe the implementation of a fraiging algorithm
using incremental SAT in Section 8.

2 Related Work

Several other efforts have resulted in integrations between ACL2 and external proof tools. Our work is
most directly based on SATLINK [5], which calls an external SAT solver executable on a single problem
in a stateless manner. SATLINK provides a function that calls an external SAT solver on a CNF formula;
that function is assumed to only return :unsat when the formula is unsatisfiable, and this can be used to
perform ACL2 proofs using GL [12] or by otherwise appealing to that assumption. Similarly, SMTLINK
[9] provides a trusted clause processor which encodes ACL2 formulas as SMT problems and calls the
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Z3 SMT solver to prove them, also statelessly. Reeber’s SAT-based decision procedure for a decidable
subset of ACL2 formulas [10] also calls an external SAT solver statelessly.

Somewhat different in flavor is ACL2SIX [11], which calls IBM’s internal SixthSense checker to
verify hardware properties. SixthSense, in this case, provides not just the decision procedure but the
semantics of the model as well. The ACL2 logical interface to the hardware model consists of two
functions sigbit and sigvec. These functions each take as inputs an entity representing a machine and
environment model known to the external tool, a signal name, and a time, and they return the value of the
signal at the given time. These functions are not defined and cannot be executed, but facts about them
can be obtained by calling the ACL2SIX clause processor. This clause processor renders the formula
into a VHDL property and calls SixthSense to prove the property. For an adder module, for example,
the sum signal at time n can be proven to be the bit-vector sum of the a and b inputs at time n−1. Calls
into SixthSense are stateless, but because of the simplicity of the logical connection between the external
solver and ACL2, a stateful integration could have the same logical story. That is, integration with a
SixthSense shared library which collected information about a hardware model across multiple queries
could be used with the same logical model.

3 Incremental SAT Interface

Rather than targeting one particular incremental SAT solver, we chose to interface with IPASIR, a simple
C API introduced for use in SAT Race 2015 [2] and used through the 2017 SAT competition [3]. (IPASIR
stands for Reentrant Incremental SAT solver API, in reverse.) The IPASIR interface consists of the
following 10 functions. The API describes the states of the solver object as INPUT, SAT, or UNSAT. Most
functions may be used in any of these states, but a few, as noted below, require the solver to be in a
particular state.

• ipasir_signature returns a name and version string for the solver library.

• ipasir_init constructs a new solver object in the INPUT state and returns a pointer to it.

• ipasir_release destroys a solver object.

• ipasir_add adds a literal to the new clause currently being built or, if the input is 0 (which is not
a literal), adds that clause to the formula; the resulting solver is in the INPUT state.

• ipasir_assume adds a literal to be assumed true during the next SAT query and puts the solver
in the INPUT state.

• ipasir_solve solves the formula under the current assumptions, determining whether it is sat-
isfiable or unsatisfiable unless it is interrupted by the ipasir_set_terminate callback. Puts
the solver into the INPUT state if the check failed due to a termination condition, SAT or UNSAT
respectively if satisfiable or unsatisfiable.

• ipasir_val returns the truth value of a variable in the satisfying assignment produced by the
previous call of ipasir_solve; it requires that the solver is in the SAT state and leaves it in that
state.

• ipasir_failed checks whether a given assumption literal was used in proving the previous un-
satisfiability result produced by ipasir_solve; it requires that the solver is in the UNSAT state
and leaves it in that state.
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• ipasir_set_terminate sets up a callback function that will be called periodically by the solver
during ipasir_solve and can decide whether to interrupt the search. Preserves the current state
of the solver.

• ipasir_set_learn sets up a callback function that will be called each time a clause is learned,
allowing these clauses to be recorded. Preserves the current state of the solver.

The IPASIR interface supports the following basic usage of an incremental solver. The client first
creates a solver object using ipasir_init, then builds up a formula using repeated calls of ipasir_-
add. Usually the formula itself should be satisfiable: clauses can only be added and not removed, so once
it is determined that the formula is unsatisfiable, no further information can be obtained from subsequent
queries—it will always remain unsatisfiable. Instead, the formula is kept satisfiable, but a separate set of
assumptions may be provided using ipasir_assume that may or may not be satisfiable in conjunction
with the formula. A call to ipasir_solve checks whether the formula and all the assumptions can
be simultaneously satisfied, after which the assumptions are deleted. When the call of ipasir_solve
returns satisfiable, the satisfying assignment may be queried using ipasir_val, and when unsatisfiable,
the unsatisfiable subset of the assumptions may be queried using ipasir_failed. After the client is
done with these queries, it can then add more clauses and/or assumptions before solving again. (Once
the client starts adding clauses or assumptions, it is no longer allowed to query the satisfying assignment
or unsatisfiable subset until after the next call to ipasir_solve.) When done, the client calls ipasir_-
release to free the solver’s memory.

Our ACL2 interface supports this usage pattern, but it does not yet support ipasir_set_learn and
only supports ipasir_set_terminate in a limited fashion, allowing searches to be interrupted after
the callback is called some number of times. Some of the other functions are modified so as to make
their output more idiomatic in ACL2. For example, the C interface for ipasir_solve returns 10 when
satisfiable, 20 when unsatisfiable, and 0 when interrupted; we instead return one of the symbols :sat,
:unsat, or :failed.

4 Overview of ACL2 Integration

The logical model of the IPASIR interface is contained in a book named ipasir-logic.lisp, separate
from the code which interfaces with the external library. This book is purely in the ACL2 logic, and
its only trust tag is used to flag a function as having an unknown constraint, which in itself cannot
cause unsoundness. Books defining programs that use IPASIR functionality can therefore remain free of
external code or under-the-hood hacks. They will simply require that the book defining the executable
backend interface, ipasir-backend.lisp, be loaded before any IPASIR functions can be actually
executed.

The ipasir-logic book defines an abstract stobj that provides the interface to the incremental SAT
library. Abstract stobjs were conceived as a mechanism to replace a complicated executable implementa-
tion with a simpler logical model that still accurately represents the functionality of that implementation
[6]. Our use of abstract stobjs for interfacing with an external library is in this same spirit, differing in that
the executable definitions used in admitting the abstract stobj are later replaced (when ipasir-backend

is loaded) by under-the-hood implementations that use the external library.
The features of abstract stobjs are a very good fit for the requirements of interfacing with an external

library:
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• Usage of the library is forced to follow the stobj discipline, i.e., any operation that changes the
state of the external solver object must return that object, and that return value must replace the
(single) existing binding of that object.

• The set of interface functions can be restricted to a small API. This allows the logical model to
contain data that can’t be accessed in executable code (and therefore need not be computed) but
may still be important for modeling the behavior.

• The interface functions’ guards may be engineered to prevent ill-defined behaviors and illegal
interactions.

5 Logical Model

Our logical model of an incremental SAT solver is built on the existing theory of conjunctive normal
form satisfiability provided by the SATLINK library [5]. In particular, a literal is represented as a natural
number with its least significant bit representing its polarity and the rest of its bits giving the index of its
variable; a clause is a list of literals, and a formula is a list of clauses. The representation of literals is a
trivial difference between the ACL2 interface and the C interface, which uses signed non-zero integers
with negation giving the sign and the absolute value giving the variable number. We will refer to these
C-style literals as DIMACS literals, as opposed to SATLINK literals.

The IPASIR solver is accessed via an abstract stobj called ipasir. The logical model of that abstract
stobj is an object of type ipasir$a, which is a product type containing the following fields:

• formula, a list of lists of literals, representing the permanent formula stored in the solver

• assumption, a list of literals, the current assumption

• new-clause, a list of literals, the current clause being built

• status, one of the symbols :undef, :input, :unsat, or :sat, the current state of the solver

• solution, a list of literals, either a satisfying assignment or an unsatisfiable subset of the previous
assumption

• solved-assumption, a list of literals, the previous assumption that was proved unsatisfiable
(used in the guard for ipasir-failed, described below)

• callback-count, the number of times the callback function (set in the underlying solver with
ipasir_set_terminate) has been called during solve

• history, a list representing the history of all operations performed on the solver object.

The abstract stobj interface only allows direct access to a few of these fields. The others are logical
fictions which are convenient for modeling the state of the underlying solver implementation but are never
actually built. We describe the full abstract stobj interface below, but we begin by briefly describing how
the history field is updated.

The history field is a record of all updates performed on the solver object. Each updater operation
adds an entry to the history, which ensures that the solver object is never equal to a previous version of
itself. Additionally, before the solver object can be used the history must be initialized with an object
read from the ACL2 state’s oracle, which prevents any two solvers from being provably equal. This
removes a source of unsoundness due to nondeterminism, discussed in more detail in Section 7.2. In
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our description of the operations below, we will omit discussion of the history field because it is always
updated by simply consing on a new entry.

We now describe how a solver object is initialized and released. When it is created, an ipasir stobj
initially has status :undef and an empty history. The only interface function that allows us to progress
from this state is ipasir-init, whose guard only requires that the status be :undef. ipasir-init

initializes all non-history fields to default values except it sets status to :input. It uses the ACL2
state to add to the history a value read from the state’s oracle field, and returns a modified state with
that value removed from the oracle. The solver object is then usable, having status :input. When
done, it should be freed using ipasir-release, which sets the status field back to :undef. (If a
with-local-stobj form creating an ipasir object is exited without calling ipasir-release, the
memory used by the backend solver object will be leaked.) The solver can be reinitialized after releasing
it using ipasir-reinit, which is much like ipasir-init, but does not take state and cannot be used
for the first initialization (it requires that the history field is non-empty).

The remaining functions support the basic usage model of an incremental solver. The following
functions are used to set up the problem to be solved; they may be used in any initialized state (i.e., their
guards only require that status is not :undef), and all set the status to :input:

• (ipasir-add-lit ipasir lit) conses the given literal onto the new-clause field.

• (ipasir-finalize-clause ipasir) adds the current new-clause to the formula and empties
it.

• (ipasir-assume ipasir lit) conses the given literal onto the assumption field.

• (ipasir-input ipasir) only sets the status to :input.

The ipasir-input is convenient when defining functions that may add some assumptions or clauses
but sometimes do nothing; in this case, if one calls ipasir-input instead of doing nothing, then the
status of the resulting solver will always be :input. This is allowable since any interface function that
can be called in the :input state may be called in any state other than :undef.

After setting up the problem, (ipasir-solve ipasir) is used to check satisfiability. This is a
constrained function which returns a search status as well as a new solver object. Its guard requires that
status is not :undef and that the new-clause is empty. (This requirement simply removes an ambiguity
from the interface specification: it isn’t clear what it means if some literals have been added to a new
clause but the clause has not been finalized when the solver is called.) The constraints require:

• The search status returned will be :failed, :unsat, or :sat.

• The resulting solver will have status :input if failed, :unsat or :sat correspondingly otherwise.

• If :unsat, the solution field of the result solver contains a subset of the input solver’s assumption,
and that subset cannot be satisfied in conjunction with the formula.

• If :unsat, the solved-assumption field of the new solver equals the assumption field of the input
solver.

• The assumption and new-clause fields of the resulting solver are empty, and the formula is pre-
served from the input solver.

• The callback count of the resulting solver is greater than or equal to that of the input solver.

We could assume that the solver produces a satisfying assignment when it returns :sat, but in most
applications it is easy to check that the assignment is correct, if necessary.
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The constraints of the ipasir-solve function do not fully determine its behavior—for example,
it is allowed to return :failed on any input, even when it could alternatively return :sat or :unsat.
When actually executed with a backend solver loaded, ipasir-solve will return the answer supplied
by the solver—this gives us access to facts about ipasir-solve that are not implied by its constraints.
In ACL2’s usual treatment of constrained functions, the constraints are assumed to be everything that
is known about the function a priori, and to imply everything that is later proved about it. Any facts
proved about a constrained function can then be functionally instantiated, i.e., assumed true of any other
function that satisfies the constraints [4]. Since this is not true of the constraints for ipasir-solve, we
say that it has unknown constraints1 [7], which prevents functional instantiation of facts we have proved
about it.

After solving, if the result was :sat or :unsat, the solver may be queried to derive the satisfying
assignment or the unsatisfiable subset of the assumptions, respectively:

• (ipasir-val ipasir lit) requires that status is :sat and returns 1, 0, or NIL depending
whether that literal is true, false, or undefined in the satisfying assignment (i.e. the solution field).

• (ipasir-failed ipasir lit) requires that status is :unsat and that the literal is a member
of the solver’s solved-assumption field, and returns 1 if the literal is a member of the identified
unsatisfiable subset (i.e. the solution field), 0 if not.

In many algorithms it’s desirable to limit the amount of time spent trying to solve any one query. We
support this via the function (ipasir-set-limit ipasir limit), where limit is a natural number
or NIL; passing a natural number here will cause the solver to fail a call of ipasir-solve after that
many callbacks, and passing NIL will remove that limit. Logically, this only affects the history and
resets the callback count to 0. The callback count can be accessed for performance monitoring using
(ipasir-callback-count ipasir).

Rob Sumners contributed an update to the IPASIR integration that adds to the abstract stobj interface
the functions necessary to make all the guards executable. In earlier versions, the guards for the interface
functions were all non-executable, which in practice meant that all execution must be done on ipasir

objects created by with-local-stobj, not the global ipasir object. An ipasir object newly created
by with-local-stobj is known to be in a certain state, so functions that use this mechanism could
have verified, executable guards even if they called ipasir interface functions that have non-executable
guards. For example, the guard for ipasir-init is:

(non-exec (eq (ipasir$a->status ipasir) :undef))

This needed to be non-executable because ipasir$a->status is just the logical model, which can’t be
executed on the stobj, and there was no abstract stobj interface function that could return the status or
check whether it was :undef. However, a function with verified, executable guards could be created
using with-local-stobj as follows, because the ipasir object created is known to have :undef

status:

(defun ipasir-initialize-and-release (state)

(declare (xargs :stobjs state))

(with-local-stobj ipasir

(mv-let (ipasir state ans)

(b* (((mv ipasir state)

1 The unknown constraint is currently added using the define-trusted-clause-processor utility, but it may be sup-
ported more directly by the ACL2 system in the future.



S. Swords 53

(ipasir-init ipasir state))

(ipasir (ipasir-release ipasir)))

(mv ipasir state nil))

(mv state ans))))

Sumners added the following interface functions, which suffice to express all the guards as executable
terms:

• ipasir-get-status returns the solver status, :undef, :input, :unsat, or :sat

• ipasir-some-history returns T if the history is nonempty

• ipasir-empty-new-clause returns T if the new-clause is empty

• ipasir-get-assumption returns the list of current assumption literals

• ipasir-solved-assumption returns the assumption before the last solve, if the solver produced
:unsat.

Sumners additionally added two extra interface functions that require library support that is not part
of the IPASIR API, but still can be easily supported by most incremental SAT libraries. If the external
library is set up to support these, then an extra book can be loaded which supplies their actual implemen-
tation; otherwise, stub functions are used instead. The two functions:

• ipasir-bump-activity-vars increases the activity heuristic of the variables of the given liter-
als

• ipasir-get-curr-stats returns several counters useful for heuristically monitoring the current
size and complexity of the solver’s formula.

One remaining function, (ipasir-signature), is supported through another mechanism, in case
the user needs to access the solver library’s version information. The ipasir-signature function is
constrained to return a string. When the backend is loaded, we define a new function (in raw Lisp)
that returns the result from the external library’s ipasir_signature call. We use defattach to
attach this function to ipasir-signature. Defattach is designed to allow constrained functions to
execute only in contexts where their results can’t be recorded as logical truths. Otherwise we could
prove via functional instantiation that any function that always returns a string returns the same value as
ipasir-signature. We still need to trust that the backend library always returns the same string from
ipasir_signature; otherwise we could prove NIL using, for example, a clause processor that checks
(equal (ipasir-signature) (ipasir-signature)).

6 Interfacing with the External Library Backend

The interface with the external IPASIR implementation library is defined in the book ipasir-backend.
This loads (in raw Lisp) an external shared library specified by the environment variable IPASIR_-

SHARED_LIBRARY, then redefines the executable functions of the abstract stobj interface so that they call
into the external library. We use the Common Lisp CFFI (Common Foreign Function Interface) package
available through Quicklisp to load and call functions in the shared library.

The real underlying object on which the ipasir interface functions are run is a vector containing the
following seven pieces of data:

0. the foreign pointer to the backend solver object used by the C API
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1. the foreign pointer to the structure tracking the callback count and limit

2. the current solver status (:undef, :input, :unsat, or :sat)

3. a Boolean saying whether the current new clause is empty

4. a Boolean saying whether the current history is nonempty (that is, whether the solver has ever been
initialized)

5. a list of literals tracking the current assumption

6. a list of literals which is the previous solved assumption if status is :unsat.
To install the backend interface, we redefine all the executable interface functions of the abstract

stobj so that they run the appropriate operations on this vector. These executable interface functions are
defined in ACL2 as operating on the concrete stobj ipasir$c that was used to define the abstract stobj
ipasir. (We discuss a soundness problem that arises from this redefinition in Section 7.3.)

The backend functions are mostly simple wrappers around calls of the appropriate foreign library
functions on the backend solver object (slot 0 of the vector), along with a small amount of bookkeeping
to maintain the other fields of the vector. The wrappers also transform input literals from SATLINK to
DIMACS format, and translate some query results to make them more idiomatic in Lisp. The initializa-
tion functions also handle errors that might occur due to the external library not being loaded, catching
the raw Lisp error and producing an ACL2 hard error instead. The ipasir-set-limit$c function sets
up a callback (created using CFFI’s defcallback) that counts the number of times it is called and returns
1 to end the SAT search if a limit is reached. To support this, ipasir-init$c and ipasir-reinit$c

reset the count to 0 and the limit to NIL, and ipasir-solve$c resets the count to 0 before beginning
the SAT search.

7 Soundness Assessment

While we can’t show our integration to be sound via formal proof —in fact, we know of one soundness
bug, discussed in Section 7.3— we hope that it can be accepted through a social process of discussing and
eliminating potential problems. Similar to ACL2 itself, we hope that over time it can be inspected and
determined to be largely sound. We prioritize soundness problems that might be encountered by accident
and yield undetected false results, rather than those which would need to be exploited intentionally.

To start the assessment of the IPASIR integration’s soundness, we think it is useful to sort the prob-
lems that could cause unsoundness into three main categories. These distinctions are blurry, but useful
at least in describing what we think is the state of the integration’s soundness or lack thereof. We will
describe the three categories and then devote a subsection to each category and our efforts to avoid
unsoundness of that kind.

First, we may have soundness problems due to mismatches between the behavior of the external
library and our assumptions about that behavior. These might be bugs in the library or simply invalid
assumptions on our part. Out of the three categories, we believe these are the most critical, since they are
most likely to yield undetected false results.

Second, we may have other logical problems not directly due to invalid assumptions about the behav-
ior of the library. We focus here on the problem of ostensible functions that may actually return different
values on the same inputs.

Third, we may have soundness problems due to incidental misfeatures of our integration mechanisms,
rather than due to the logical modeling of the external library. We know of one soundness bug in this
area that remains unfixed, though it would be implausible for it to be exploited unintentionally.
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7.1 Validity of Assumed Behavior

We first discuss potential problems due to mismatches between the assumed and actual behavior of the
external incremental SAT library (along with the raw Lisp code interfacing with it). Of course, we first
have to assume that the external SAT library is bug-free: if the external solver’s ipasir_solve routine
produces a wrong answer, then our interface is not sound. Beyond this, our main defense against these
problems is to carefully assess what we are assuming about each interface function. We model our
correctness argument on the ACL2 proof obligations necessary to admit an abstract stobj [6]. That is,
it suffices to prove, for some correlation relation between the logical model state and the underlying
implementation state:

• The logical model and the underlying implementation of the stobj creator function produce initial
values satisfying the correlation.

• For each updater, if its logical model and implementation are passed objects satisfying the corre-
lation and the updater’s guard, their respective results satisfy the correlation.

• For each accessor, if its logical model and implementation are passed objects satisfying the corre-
lation and guard, their results are equal.

• For each interface function, the guard of the logical model implies the guard of the implementation.

• The logical model of each updater preserves the well-formedness predicate.

The last two items are trivial in our case: our implementations are in raw Lisp and have no guards,
and the well-formedness requirement has nothing to do with the implementation side and thus is already
proved when admitting the abstract stobj in the logical model.

The other three requirements depend on the correlation relation that we maintain. We can’t state
this in the ACL2 logic since it involves the raw Lisp and external C library implementation, but we
nevertheless try to describe it precisely:

• The formula must be logically equivalent to the set of clauses stored in the solver object, which
is field 0 of the implementation vector. (The implementation solver may simplify the formula, so
it may not be stored in the same form as in the model.)

• The assumption must reflect the set of assumption literals in the solver, and must also equal field
5 of the implementation vector.

• The new-clause field must reflect the clause under construction of the solver object, and must
additionally be empty if and only if field 3 of the implementation vector is true.

• The status must be equal to that recorded in field 2 of the implementation vector, and also
correspond to the solver object’s current state.

• The solution, when in the :unsat state, must correspond to the solver’s recorded unsatisfiable
subset of the assumptions, and when in the :sat state, must correspond to the solver’s recorded
satisfying assignment.

• The solved-assumption, when in the :unsat state, must equal field 6 of the implementation
vector, which must also be the set of assumptions from the last call of ipasir-solve.

• The callback-count must equal the count of callbacks stored in field 1 of the implementation
vector, or 0 of that field is a null pointer.

• The history must be nonempty if and only if field 4 of the implementation vector is true.
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There are 20 functions (including create-ipasir and all accessors/updaters) in the abstract stobj
interface. Of these, nine are purely accessors, 10 are purely updaters, and one (ipasir-solve) is both.
To fully argue the correctness of all of these with respect to the correlation relation above, we’d need to
justify the correlations for each of the eight fields for each of the updaters, and additionally argue that
the model and implementation of each accessor return equal values when the correlation holds. For most
interface functions, this is a straightforward but tedious argument. However, ipasir-solve is a special
case that requires additional explanation.

Rather than a full definition, ipasir-solve has constraints that do not fully specify what its result
must be. In fact, its constraints are not sufficient to prove that it preserves the correlation relation. For
example, suppose that on some inputs the implementation of ipasir-solve produces a satisfiable result
and therefore ended in the SAT state, but the logical model instead produces :failed and therefore ends
in the :input state. This is consistent with the constraints for ipasir-solve, which allow it to return
:failed for any input. But the Lisp definition of ipasir-solve simply translates the result from
the implementation library into the ACL2 idiom, so this can’t happen—as discussed in Section 5, the
logical model of ipasir-solve is given by its observed behavior, not by its constraints. We do need the
constraints to be consistent with all such concrete executions, which we argue, as with the other interface
functions, by appealing to the API description and knowledge of what a SAT solver is supposed to do.

7.2 Logical Consistency

Aside from mismatches between our logical assumptions and implementation realities, other possible
soundness problems may occur due to inconsistencies in the logical story. In particular, we’ll discuss
how we addressed nondeterminism, which might otherwise cause ostensible functions to return different
results on the same inputs, leading to unsoundness. We have already discussed the incompleteness of the
constraints on ipasir-solve, which is another example of such a problem; this was a soundness bug
in a previous version of the library, which we solved by adding unknown constraints to ipasir-solve.

Nothing in the IPASIR interface specification implies that the solver library must be fully determinis-
tic. We therefore need to expect that the solver may produce different results given the same inputs – i.e.
the interfaces to the solver are not actually functions. This could easily lead to unsoundness. Specifically,
if we could arrange for some interface function to be called twice on inputs that are provably equal and
return different results, we could use this to prove NIL. Since we can’t control the results returned by the
underlying solver, we instead ensure that we can’t run a vulnerable interface function twice on provably
equal inputs. We therefore seek to prevent:

• Coincidence: creation of two distinct ipasir objects that are provably equal

• Recurrence: recreation of a solver state provably equal to a previous state after changing it in a
way that might affect the answers returned from queries.

To prevent coincidence, we require that a solver must always be initialized for the first time by
ipasir-init, which seeds the solver’s history field with an object taken from the ACL2 state’s oracle
field, removing that object from the oracle. The oracle is a mechanism by which ACL2 models nonde-
terminism; it is simply an object about which nothing is initially known, and which can only be accessed
by read-acl2-oracle, which returns the oracle’s car and replaces the oracle with its cdr [1].) This
ensures that we can’t prove anything about what an oracle read will produce until that read happens. The
object read from the oracle in this case is written to the solver’s history field, which has no accessors in
the abstract stobj interface, so we can’t determine after the fact what object was read from the oracle,
either. Additionally, there is no interface function that removes elements from the history, so that object
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remains there permanently. Since we can’t determine the value stored in that field, and since any two
solver objects will be seeded upon initialization with two independent oracle reads, we can’t prove them
to be equal once they are initialized.

To prevent recurrence, every operation that changes the external library’s state is modeled as consing
some additional object onto the history. There is no operation that clears the history or removes any
element from it. Therefore a solver object can never be made to go back to a previous state, because the
length of its history always increases.

The abstract stobj interface functions which are just accessors (that is, they don’t return a modified
ipasir object) are assumed to be read-only and not affect the state of the underlying solver; there-
fore, they don’t need to update the history. Of these, ipasir-get-curr-stats, ipasir-val, and
ipasir-failed make library calls that might affect the external solver object, but if any of these af-
fected the solver state in an observable way we would view it as a bug in the external library. Additionally,
ipasir-input doesn’t need to update the history because it doesn’t touch the external solver object.

7.3 Integration Artifacts

A third class of soundness problems arise from factors that we view as unrelated to the logical story
of the IPASIR integration; they are merely artifacts of the ACL2 mechanisms that we used or abused
in order to achieve the integration. In particular, the defabsstobj event is almost exactly what we
need to implement an external library interface like this one. However, this requires us to supply a fake
implementation using a concrete stobj, in our case ipasir$c. This is perhaps unnecessarily complicated
and is fertile ground for unsoundness.

For example, in order to install the implementations of the abstract stobj interface functions, we
redefine the executable versions of those functions, which were originally defined as operations on the
concrete stobj ipasir$c. A soundness problem arises here because users could apply these functions
after redefinition to the ipasir$c object or any stobj congruent to ipasir$c. But the interface to
ipasir$c is not restricted in the same way as the ipasir abstract stobj—in fact, it has several low-level
accessors, such as one that purports to retrieve the ipasir$a object that logically models the solver’s
behavior. The use of such an accessor could easily lead to unsoundness. For example, the following
function can easily be shown to always return T as its first return value, but its execution (after loading
the backend) returns NIL:

(define ipasir$c-contra (state)

(with-local-stobj ipasir$c

(mv-let (ans state ipasir$c)

(b* (((mv ipasir$c state) (ipasir-init$c ipasir$c state))

(solver (ipasir-get ipasir$c)))

(mv (ipasir$a-p solver) state ipasir$c))

(mv ans state))))

To prevent this, we make the redefined functions untouchable, which disallows users from calling
these functions or defining new functions that call them. Unfortunately, this also prevents the creation
of new abstract stobjs congruent to ipasir, which is often desirable. Also unfortunately, this mitigation
doesn’t completely solve the problem. A determined user can defeat the untouchability of any function
defined outside the ACL2 system as follows: copy all the events needed to admit the function, define a
wrapper for that function, then load the book that declares the function untouchable. After that point,
simply call the wrapper instead of the untouchable function.
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We hope to solve this problem more comprehensively in future work, perhaps by adding some fea-
tures to the ACL2 system. A relatively easy solution for the specific problem above would be to allow
concrete stobjs to be defined with non-executable accessors and updaters. Then the only functions that
could be executed on that stobj would be ones that were redefined under the hood—namely, the abstract
stobj interface functions. A more heavyweight but perhaps also more direct solution would be to extend
ACL2 with support for a defabsstobj variant intended for this sort of application, perhaps avoiding the
introduction of an underlying concrete stobj altogether.

One other known extralogical problem has to do with ACL2’s save-exec feature. Under normal
circumstances this feature can be used to save an executable memory image of the running ACL2, so that
it can be restarted from the current state. However, foreign objects cannot be saved in the heap image.
Therefore, if we save an executable in which the global ipasir object is initialized, the underlying
solver object will not exist when the image is executed. Running any ipasir interface functions then
will at minimum cause a raw Lisp error and could potentially cause memory corruption or unsoundness.
This problem can be avoided by ensuring that live ipasir stobjs are in the :undef state before saving an
executable.

8 Application: AIG SAT sweeping

We built on the IPASIR integration to implement SAT sweeping, or fraiging, on top of the AIGNET and-
inverter graph (AIG) library [5]. Circuit structures such as AIGs are often a good target for incremental
SAT, since the logical relationships among the wires can be encoded in the permanent formula and the
various queries encoded in the assumptions. During each SAT check, the solver accumulates learned
clauses and heuristic information about the circuit that can be used on subsequent checks.

The purpose of SAT sweeping [8] is to search for and remove redundancies in the AIG; that is, to find
pairs of nodes that are provably equivalent and remove one of them, connecting its fanouts to the other.
This reduces the size of the graph and speeds up subsequent algorithms while preserving combinational
equivalence; that is, the combinational formulas of corresponding outputs or next-states in the input and
output networks are equivalent. This is a powerful algorithm for combinational equivalence checking be-
cause often the two circuits contain many equivalent internal nodes, and finding these equivalent internal
nodes makes it much easier to prove the full circuits equivalent.

As a preliminary requirement for SAT sweeping, we need to be able to use SAT to check equivalences
between AIG nodes. We use a standard Tseitin transformation [13] to encode substructures of the AIG
into CNF as needed. Whenever we need to do a SAT check involving some node, we encode the fanin
cone of that node into the CNF formula. This results in a CNF variable corresponding to that node. This
process maintains the invariant that each evaluation of the AIG maps to a satisfying assignment of the
CNF formula, where for each AIG node that has a corresponding CNF variable, the assignment to the
variable is the same as the value of the node:

(forall (invals regvals cnf-vals)

(equal (satlink::eval-formula

(ipasir::ipasir$a->formula ipasir)

(aignet->cnf-vals

invals regvals cnf-vals sat-lits aignet))

1))

In the above formula, sat-lits is a stobj containing a bidirectional mapping between AIG literals
and SAT literals. The invals and regvals are assignments to the AIG’s primary inputs and registers
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(which are treated as combinational inputs for this purpose). The function aignet->cnf-vals maps the
evaluation of the AIG given by invals and regvals to an assignment of the CNF variables, replacing
the relevant slots of stobj cnf-vals; specifically, it satisfies:

(implies (sat-varp m sat-lits)

(equal (nth m (aignet->cnf-vals

invals regvals cnf-vals sat-lits aignet))

(lit-eval

(sat-var->aignet-lit m sat-lits)

invals regvals aignet)))

That is, each variable in the CNF formula is assigned the evaluation of its corresponding AIG literal,
namely (sat-var->aignet-lit m sat-lits). The invariant above says that this is always a satis-
fying assignment for the CNF formula. Therefore, if we obtain an UNSAT result, it must be that the
added assumptions, (ipasir$a::assumption ipasir), are to blame. In particular, an UNSAT result
implies that no evaluation of the AIG yields a CNF variable assignment under which the assumption
literals are all simultaneously true; therefore, the corresponding AIG literals can’t be simultaneously true
either. So to check the equivalence of AIG nodes a and b, we can do two SAT checks after encoding both
nodes into CNF: one with assumption cnf(a)∧¬cnf(b), and one with assumption ¬cnf(a)∧ cnf(b). If
both these checks return UNSAT, we can then conclude that there is no evaluation of the AIG in which
the values of nodes a and b differ.

To perform SAT sweeping, we begin with a set of potential equivalences between the nodes, derived
by random simulation. We then sweep through the graph in topological order, meaning all of a node’s
fanins must be processed before we process that node. As we sweep, we build a copy of the graph with
redundancies removed, and maintain a mapping from the processed nodes of the input graph to their
combinationally-equivalent analogues in the output graph. To sweep a node Q, we first create a new
node Q′ in the output graph whose fanins are the analogues of the fanins of Q. If Q has no potential
equivalences or all potential equivalences occur later in the topological order (and therefore haven’t yet
been processed), we set Q′ as the analogue of Q and continue with the next node. Otherwise let P be the
potentially equivalent node earliest in the topological ordering and let P′ be its analogue in the output
graph. We check using SAT whether Q′ and P′ are equivalent. We set the analogue of Q to P′ if they are
equivalent and Q′ if not. If the SAT check produces a counterexample (rather than failing due to a solver
limit), we simulate the circuit using that counterexample and refine the candidate equivalence classes to
account for any newly differentiated pairs of nodes.

We have proved in ACL2 that this algorithm produces a new AIG that is combinationally equivalent
to the input AIG. The correctness proof is based on the invariant that the mapping of nodes of the input
graph to their analogues in the output graph preserves combinational equivalence. At a given step, we
set the mapping for Q either to Q′, which is equivalent to Q because it is the same operator applied to
fanins which are equivalent by inductive assumption to the fanins of Q, or to P′ in the case where P′ has
been shown by SAT to be equivalent to Q′.

9 Conclusion

This integration of incremental SAT solvers via the IPASIR API is in everyday use for hardware veri-
fication at Centaur, largely through the fraiging transform described above. The library and the fraig-
ing algorithm are both available in the ACL2 community books, in directories centaur/ipasir and
centaur/aignet, respectively.
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The soundness of this integration is a work in progress. One soundness bug is known to exist, though
it doesn’t pose a practical risk of undetected false results. We hope to address this problem in future
work, though that might require changes to ACL2 itself. Other soundness problems may be revealed
with further study, but we hope that the basic approach has the potential to be sound.
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