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GL is a verified tool for proving ACL2 theorems using Boolean methods such as BDD reasoning

and satisfiability checking. In its typical operation, GL recursively traverses a term, computing a

symbolic object representing the value of each subterm. In older versions of GL, such a symbolic

object could use Boolean functions to compactly represent many possible values for integer and

Boolean subfields, but otherwise needed to reflect the concrete structure of all possible values that its

term might take. When a term has many possible values that can’t share such a representation, this

can easily cause blowups because GL must then case-split. To address this problem, we have added

several features to GL that allow it to reason about term-like symbolic objects using various forms

of rewriting. These features allow GL to be programmed with rules much like the ACL2 rewriter, so

that users may choose a better normal form for terms for which the default, value-like representation

would otherwise cause case explosions. In this paper we describe these new features; as a motivating

example, we show how to program the rewriter to reason effectively about the theory of records.

1 Introduction

GL is an ACL2 framework for proving theorems using bit-level methods, namely BDD reasoning or

SAT solving [6, 5]. It works by computing bit-level symbolic representations of terms, which we also

describe as symbolically executing them. To prove a theorem, it computes such a representation of the

theorem’s conclusion and thus reduces it to a satisfiability check: if the negation of the Boolean formula

representing the conclusion is unsatisfiable, then the theorem is proved.

This paper introduces term-level reasoning capabilities that are now built into GL. These capabilities

allow GL to prove theorems at a higher level of abstraction, without computing a concrete representation

for the value of each subterm encountered. It also allows theorems to be proved about unconstrained

variables by generating bit-level representations for accessors applied to those variables. We have verified

the soundness of all of these extensions in order to admit GL as a verified clause processor.

1.1 Extensions to “Traditional” GL

GL has always contained a symbolic object representation for function calls and unconstrained variables,

but previously the use of such objects would almost guarantee failure. GL’s previous use was value-

oriented, as indicated by the use of the term “symbolic execution”: the GL system would crawl over a

term just as a simple applicative Lisp interpreter would, producing a (symbolic) value for each subterm.

Typical symbolic values expected to appear during a successful symbolic execution could include:

• symbolic Booleans – Boolean functions in a BDD or AIG representation, depending on the mode

of operation

• symbolic integers – represented as a list of Boolean functions, one for each two’s-complement bit

of the integer
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• concrete values – represented by themselves (except for objects containing certain tagging symbols

used to delineate kinds of symbolic objects, which could then be tagged to “escape” them)

• conses of symbolic values.

In certain cases the symbolic values might also be expected to contain:

• if-then-else constructs, so that a symbolic value could take various different concrete values or

different types of symbolic value depending on symbolic conditions.

But two other kinds of symbolic objects existed in the representation primarily for use in bad cases:

• function call – representing a function applied to a list of symbolic values, primarily used to indi-

cate that GL was unable to compute a useful representation for some subterm

• variable – representing a free variable of unknown type, used when a theorem variable lacked a

specific symbolic representation provided by the user.

The new GL features described in this paper allow it to operate in a term-oriented manner, where the

above function and variable representations can also be manipulated productively. We describe the new

features supporting this in Section 2 and discuss some implementation details that may be relevant to

users in Section 3. We show a complete set of rules for term-level manipulation of records in Section 4,

then describe how this new feature set has been applied to a class of industrial proofs in Section 5. We

discuss some issues involved in the proof of soundness of these new features in Section 6. Some possible

future extensions are discussed in Section 7.

2 Term-level Features of GL

The term-level capabilities of GL consist of the following new features. While complete documentation

of these features is beyond the scope of this paper (see the ACL2 community books documentation [1],

including topic gl::term-level-reasoning), we motivate and briefly describe each of them in this section:

• Conditional rewriting with user-defined rules integrated with the symbolic interpreter (Section 2.1)

• Generation and tracking of fresh Boolean variables representing truth values of term-level objects

(Section 2.2)

• Rules to generate counterexamples from Boolean valuations for terms (Section 2.3)

• Rules to add constraints among the generated Boolean variables (Section 2.4)

• Rules that merge if branches containing different term-level objects that could be represented in

a common way (Section 2.5)

• Support for binding theorem variables to shape specifiers representing function calls (Section 2.6).

2.1 Abstracting Implementation Details with Rewriting

Suppose we are using the popular records library found in the community books file “misc/records.lisp”

[4], and we have the term (s :a b nil). Supposing b is a 4-bit integer, and we have its symbolic

representation as a vector of 4 Boolean functions, we can represent this call as ’((:a . b)). But

suppose instead that b is a Boolean. The default value of any key in a record is nil, so the s function

does not add pairs to record structures when binding them to nil. So the best we can do to represent this

value is a term-like representation,

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=GL____TERM-LEVEL-REASONING
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(if b ’((:a . t)) ’nil)

This effectively introduces a case-split: every further operation on this record must consider separately

the case where b is t versus nil. We can easily get an exponential blowup in our representation by setting

several keys to symbolic Boolean values. This is especially annoying since the elision of pairs that bind

keys to NIL is just an implementation detail of the library, not particularly relevant to the meaning of

what is happening.

A better way to deal with this is to avoid representing the record as a cons structure. Instead, GL can

treat the record library’s s and g as uninterpreted, and use rewrite rules to resolve them. The following

forms declare these functions uninterpreted:

(gl::gl-set-uninterpreted g)

(gl::gl-set-uninterpreted s)

When the symbolic interpreter reaches a call of g or s, it will compute symbolic representations for

the arguments to the call. Normally, it would then symbolically interpret the definition of the function.

These declarations say to instead simply return an object representing the call of g or s applied to those

symbolic arguments. These function call objects can then be operated on by rewrite rules.

GL’s rewrite rules may be declared using gl::def-gl-rewrite; this stores the theorem as an ACL2

rewrite rule but disables it and adds it to a table that determines which rules GL will try. For records,

some proofs can be completed with only the case-splitting version of the simple get-of-set rule:

(gl::def-gl-rewrite g-of-s-for-gl

(equal (g k1 (s k2 v r))

(if (equal k1 k2)

v

(g k1 r))))

In general, a more comprehensive set of rules is required; we discuss these in Section 4. With this rule

in place, if a g call is encountered and the symbolic representation of its second argument is a call of s,

then this rule applies, and instead of producing a g call object, the symbolic interpreter is instead applied

to the right-hand side of this rule with the appropriate substitution.

GL’s rewriter supports a subset of the ACL2 rewriter’s features. It can use rules that rewrite on equal

or iff equivalences. It supports conditional rewriting by backchaining to relieve hypotheses. It supports

syntaxp hypotheses, but these aren’t compatible with ACL2’s syntaxp hypotheses, because ACL2’s use

term syntax whereas GL’s use symbolic object syntax. Some further improvements may be considered

in future work, which we discuss in Section 7.2.

2.2 Boolean Representations for Unconstrained Variables and Accessors

Traditionally, most theorems proved using GL have had hypotheses constraining each variable to a type

that could be represented using a bounded number of bits, such as (unsigned-byte-p 8 x). But in

some cases this shouldn’t be necessary because only certain bits are accessed from the variable regardless

of its size or type. Consider:

(equal (lognot (lognot (loghead 5 x))) (loghead 5 x))

This is true for any value of x, even non-integers; but previously, GL would not be able to prove this

without constraining x to be a member of a bounded type. However, GL’s new term-level capabilities

include the ability to generate fresh Boolean variables to represent certain terms. Specifically, GL gen-

erates a fresh Boolean variable for any if test that cannot be otherwise resolved to a symbolic Boolean
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value. Therefore, a rewrite rule such as the following may be used to introduce new Boolean variables

for loghead calls such as those above. (Note that the syntaxp test in this rule applies to the GL symbolic

object representation, not the ACL2 term representation!)

(gl::def-gl-rewrite expand-loghead-bits

(implies (syntaxp (integerp n))

(equal (loghead n x)

(if (zp n)

0

(logcons (if (logbitp 0 x) 1 0)

(loghead (1- n) (ash x -1)))))))

This rewrite rule unwinds the loghead call of the theorem above. Each logbitp call first simply

produces a term-level representation, but then, since the term is used as an if test, a new Boolean

variable is generated to represent it. In particular, Boolean variables are introduced for the following

terms:

(logbitp 0 x)

(logbitp 0 (ash x -1))

(logbitp 0 (ash (ash x -1) -1)) ...

We can tweak this representation via the following rewrite rule to a more uniform (logbitp n x):

(gl::def-gl-rewrite logbitp-of-ash-minus1

(implies (syntaxp (integerp n))

(equal (logbitp n (ash x -1))

(logbitp (+ 1 (nfix n)) x))))

All of the logbitp test terms are generated twice, once for each call (loghead 5 x), but the

second time each one is recognized and the Boolean variable generated the first time is returned instead

of generating a fresh one.

This strategy can be used to reason about more complex structures. For example, if a conjecture

references an arbitrary record but only accesses a fixed set of fields and a fixed number of bits of each

field, then it can generate Boolean variables as above for the fields, such as (logbitp n (g field x)).

2.3 Generating Term-level Counterexamples from Boolean Counterexamples

GL’s method of proving a theorem is to obtain a Boolean formula representing the conclusion and then

ask whether it is valid, either by examination of the canonical BDD representation or by querying a SAT

solver to determine whether the negation of the AIG representation is satisfiable. When the result is valid

(its negation is unsatisfiable), this proves the theorem, at least when all side obligations are met. But

when it is not valid, a contradiction at the Boolean level does not directly yield a real counterexample

to the theorem — instead, it gives a Boolean valuation to each of the terms that were assigned Boolean

variables as described above.1 Consider the following example:

(gl::def-gl-thm minus-logext-minus-loghead-is-logext-loghead

:hyp t

:concl (equal (- (logext 5 (- (loghead 5 x))))

1This problem does not exist in traditional GL, where all variables of a conjecture are given bit-level symbolic representa-

tions by the g-bindings, and no other Boolean variables are generated. A bit-level counterexample then directly yields valuations

for the term variables by evaluating their symbolic representations under the counterexample assignment.
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(logext 5 (loghead 5 x)))

:g-bindings nil

:rule-classes nil)

For this conjecture, a counterexample produced by the SAT solver includes the following assignments

for the logbitp terms that make up the loghead (as described in the previous section):

(logbitp 0 x) = NIL

(logbitp 1 x) = NIL

(logbitp 2 x) = NIL

(logbitp 3 x) = NIL

(logbitp 4 x) = T

We would like to translate the valuations for these terms into a value for x itself. In this case, it seems

obvious that we should assign x the value 16, or -16, or any integer whose low 5 two’s-complement bits

are 16: there isn’t a unique assignment satisfying the given Boolean valuation. Additionally, it may or

may not even be possible to set the term variables such that the terms all have their assigned values.

For example, a badly configured set of rewrite rules could result in (logbitp 0 (ash x -1)) and

(logbitp 1 x) being assigned independent Boolean values; if those values differ, then there is no x

for which both valuations hold. Furthermore, since Boolean variables can be assigned to arbitrary terms,

it could be an arbitrarily hard problem to simultaneously satisfy the Boolean valuations of the terms. So

we are looking for a heuristic solution that works in practice, since a total solution doesn’t exist.

Our solution is to allow the user to specify rewrite rules that describe how to update variables and

subterms in response to assignments. Every variable starts out assigned to NIL, and assignments to terms

involving the variables may cause that value to be updated if appropriate rules are in place. With no such

rules, the above theorem fails to prove but the counterexample produced assigns NIL to x, which is a

false counterexample. However, if we add the following rule, then it will instead assign 16 to x, which is

a real counterexample:

(gl::def-glcp-ctrex-rewrite

((logbitp n i) v)

(i (bitops::install-bit n (bool->bit v) i)))

This rule reads: “If a term matching (logbitp n i) is assigned value v, then instead assign i the

evaluation of (bitops::install-bit n (bool->bit v) i).” With this rule in place GL correctly

generates the counterexample x = 16 for the above proof attempt. These rules do not incur any proof

obligations, since they are not used for anything relevant to soundness. Note also that these operations

are performed without guard checking, so that installing a bit into NIL does not cause an error.

Counterexample rewrite rules work together to resolve nested accesses. For example, we could have

another rule for dealing with record accesses:

(gl::def-glcp-ctrex-rewrite

((g field rec) v)

(rec (s field v rec)))

This rule can work in concert with the logbitp rule above to resolve assignments to terms such as

(logbitp 4 (g :fld x)) = t. Suppose that before processing this assignment, x was bound to nil.

The logbitp rule fires first and replaces our assignment with (g :fld x) = (bitops::install-bit

4 (bool->bit t) (g :fld nil)), which evaluates to 16. Then the rule for g applies, and results in

the assignment x = (s :fld 16 nil), which evaluates to ((:FLD . 16)). This is then the provi-

sional value for x, until it is updated by the resolution of another Boolean assignment.
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Most counterexample rewrite rules essentially describe how to update an aggregate so that a particular

field of that aggregate will have a given value: the logbitp rule above shows how to update a particular

bit of an integer, and the g rule shows how to update a field in a record.

2.4 Adding Constraints among Generated Boolean Variables

When assigning Boolean variables to arbitrary term-level conditions, a pitfall is that by default all such

variables are assumed to be independent. As noted in Section 2.3, this isn’t guaranteed; it may be

impossible for the Boolean valuation to be satisfied by an assignment to the term-level variables. The

following form shows a proof attempt that fails due to a Boolean assignment that can’t be realized by a

term-level assignment:

(gl::def-gl-thm loghead-equal-12-when-integerp

:hyp t

:concl (equal (and (integerp x)

(equal (loghead 5 x) 12))

(equal (loghead 5 x) 12))

:g-bindings nil)

The Boolean formula given to the SAT solver for this conjecture has variables for (integerp x) and

for (logbitp n x) for n from 0 to 4. The counterexample it returns has (integerp x) = NIL and

the logbitps set so that (loghead 5 x) = 12. But this is impossible because, e.g., (logbitp 2 x)

= NIL if x is not an integer: in fact, (logbitp n x) implies (integerp x). GL allows a kind of rule

that encodes these sorts of constraints among Boolean conditions:

(gl::def-gl-boolean-constraint logbitp-implies-integerp

:bindings ((bit0 (logbitp n x))

(intp (integerp x)))

:body (implies bit0 intp))

This form submits the following theorem:

(let ((bit0 (if (logbitp n x) t nil))

(intp (if (integerp x) t nil)))

(implies bit0 intp))

It additionally adds information about the constraint rule to a database that is used to track relationships

among GL’s generated Boolean variables. In this case it keeps track of Boolean variables added for terms

matching (logbitp n x) and (integerp x), and for each combination of these terms it evaluates the

theorem body and adds the resulting Boolean formula to a list of constraints. When the theorem’s final

SAT query is constructed, all such constraints are included in the formula to be checked, preventing the

false counterexamples that led to our proof failure above. With this constraint rule, the theorem proves.

The distinction between bindings and body in a Boolean constraint rule has important effects on how

the rule is applied. All bindings must be matched to terms with existing Boolean variables before the rule

applies. So in the version above, both (logbitp n x) and (integerp x) terms must be encountered

as if tests before the rule fires. We can rewrite the rule as follows so that the constraint is added as soon

as a term matching (logbitp n x) is encountered:

(gl::def-gl-boolean-constraint logbitp-implies-integerp-stronger

:bindings ((bit0 (logbitp n x)))

:body (implies bit0 (integerp x)))
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Constraint rules can be used to perform a kind of forward reasoning. Suppose that we used terms

such as

(logbitp 0 (ash (ash (... (ash x -1) ...) -1) -1))

as our normal form for bits extracted from a variable x, rather than (logbitp n x); this occurs if we

omit the rule logbitp-of-ash-minus1 stated in Section 2.2. The following two rules then suffice to

prove our theorem:

(gl::def-gl-boolean-constraint logbitp-implies-nonzero

:bindings ((bit0 (logbitp n i)))

:body (implies bit0 (and (integerp i) (not (equal 0 i)))))

(gl::def-gl-boolean-constraint nonzero-rsh-implies-nonzero

:bindings ((iszero (equal 0 (ash i -1))))

:body (implies (not iszero) (and (integerp i) (not (equal 0 i)))))

Whenever a logbitp term is derived from the loghead in our theorem, this triggers the first rule. The

body of that rule is evaluated in an if-test-like context, so that (integerp i) and (equal 0 i) both

are assigned Boolean variables if necessary. Then if i matched a nesting of ash terms, the addition of

(equal 0 i) will lead to the second rule firing repeatedly until i unifies with the innermost variable.

Together these set up a chain of implications so that ultimately, if the logbitp is true, it is known that

the inner variable is an integer.

2.5 Rules to Unify Representations Between if Branches

One of the main strengths of GL is that it allows case splits that could otherwise lead to combinatorial

blow-ups to be represented symbolically in Boolean function objects. As an abstract example, suppose

each function fn in the term below produces a 10-bit natural:

(let* ((x1 (if (c1 x0) (f11 x0) (f12 x0)))

(x2 (if (c2 x1) (f21 x1) (f22 x1)))

(x3 (if (c3 x2) (f31 x2) (f32 x2)))

(x4 (if (c4 x3) (f41 x3) (f42 x3)))

...)

x10)

Proving this using ACL2 would likely require a case-split into 1024 cases, but those cases can all be

represented simultaneously in the bits of one symbolic number. Each if term produces a number on

each branch, which are merged into a common symbolic representation before continuing on with the

next term. These potential case splits are then handled in the BDD engine or SAT solver rather than by

explicit enumeration.

To extend this feature to term-level representations, GL allows rules to merge branches of ifs that

result in different term-level representations into a unified representation. An example for the theory of

records:

(gl::def-gl-branch-merge merge-if-of-s

(equal (if c (s k v rec1) rec2)

(s k

(if c v (g k rec2))

(if c rec1 rec2))))
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The left-hand side of this rule should always be an if with variables for the test and the else branch, but

some function call for the then branch. It is applied to both branches symmetrically, so in this case if a

call of s appears in the else but not then branch, it will still be applied (it effectively matches the same

if with the test negated and branches swapped). This rule is particularly useful when the two branches

of an if update different keys of a record. When using this rule it is best to also have rewrite rules in

place to eliminate redundant sets of the same key, since otherwise setting the same key on both branches

will cause the set of the key to be nested.

2.6 Function Call Shape Specifier

Shape specifiers, given in the :g-bindings argument to def-gl-thm, bind term variables to symbolic

representations. Without the other term-level features discussed here, the only practical way to use GL

was to provide such a binding for each variable, usually to a symbolic Boolean, a symbolic integer of

fixed bit width, or a cons structure containing symbolic Booleans and/or integers. The Boolean variable

generation feature discussed in Section 2.2 makes it possible to prove some practical theorems while

leaving variables unbound (effectively binding them to term-level variables named after themselves).

But when using term-level features it can still be advantageous to choose a BDD variable ordering or

otherwise control the representation of theorem variables. The g-call shape specifier is a new feature

that allows a theorem variable to be bound to a term-level function call. The difficulty of using such

a construct is in proving that the shape specifier covers the required range of objects. If we have the

hypothesis (signed-byte-p 8 x), then it is easy to prove that an 8-bit integer shape specifier covers

all needed inputs, but if the shape specifier instead is a function call then we need some knowledge about

the function.

The coverage obligation for a given shape specifier is to show that for any target object satisfying

some assumption (the theorem hypotheses, at the top level), there exists an environment under which

the symbolic object generated from the shape specifier evaluates to the target object. For most kinds of

shape specifiers, this can be determined syntactically: as noted above, an 8-bit integer shape specifier is

known to cover all 8-bit integers, because every bit is required to be an independent Boolean variable.

But to show that a function applied to some shape specifier arguments covers some object, we need to

know what arguments to that function produce that object, i.e., we need an inverse function. The g-call

shape specifier therefore contains not only the function and argument list of the call, but also a third field

giving the inverse function, which must be a single-argument function symbol or lambda. Applied to

a target object in the required coverage range, this function should produce an argument list on which

the function produces that target object. We can then split the coverage obligation into two parts: the

function applied to its inverse produces the target object, and the inverse is in the range of the argument

shape specifiers.

To relieve the coverage obligation for the shape specifiers, GL generates a proof obligation term

which it returns from the clause processor as a side goal. The proof obligation term is computed by

the function (shape-spec-oblig-term sspec target). When the given shape specifier sspec does not

contain any g-call objects, the obligation is stated as (shape-spec-obj-in-range sspec target),

which syntactically determines whether the shape specifier covers the target. On a g-call shape spec-

ifier, shape-spec-oblig-term produces two obligations using the provided inverse term. If sspec is

(g-call fn args inv), the obligations are:

1. The function applied to the argument list produced by the inverse function on the target object

equals the target object (here n is the length of args minus 1):
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(let ((inv-args (inv target)))

(equal (fn (nth 0 inv-args) . . . (nth n inv-args)))

target)

2. The shape specifiers of the argument list recursively cover the values produced by the inverse func-

tion when applied to the target object: the obligations showing this are generated by recursively

calling shape-spec-oblig-term on the arguments and the corresponding nths of the call of the

inverse function.

Here is an example:

(defun plus (st dest src1 src2)

(s dest (loghead 10 (+ (g src1 st) (g src2 st))) st))

(defun s-inverse (key obj)

(list key (g key obj) obj))

(gl::def-gl-thm plus-c-a-b-correct

:hyp (and (unsigned-byte-p 9 (g :a st))

(unsigned-byte-p 9 (g :b st)))

:concl (let* ((new-st (plus st :c :a :b))

(a (g :a st))

(b (g :b st))

(new-c (g :c new-st)))

(equal new-c (+ a b)))

:g-bindings ‘((st ,(gl::g-call

’s

(list :a

(gl::g-int 0 1 10)

(gl::g-call

’s

(list :b

(gl::g-int 10 1 10)

(gl::g-var ’rest-of-st))

’(lambda (x) (s-inverse ’:b x))))

’(lambda (x) (s-inverse ’:a x)))))

:cov-theory-add ’(nth-const-of-cons

s-same-g

s-inverse))

The first two arguments in each g-call are the function name and argument list, and the third argument

gives the inverse function. In the example, the variable st is bound to an object representing the following

term, where a and b are 10-bit integer shape specifiers:

(s :a a (s :b b rest-of-st))

The inverse function for each g-call produces a list of three values, corresponding to the argu-

ments key, val, rec of s. The key is chosen to match the key used by the call, the value is chosen to

match the existing binding of the key in the record, and the record is just the input record itself. By the
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record property s-same-g, (equal (s a (g a r) r) r), this reduces to the input record, satisfying

obligation 1.2 The shape specifiers for the arguments (key val rec) also cover the values, satisfying

Obligation 2: the keys are equal constants; the value shape specifiers are each 10-bit integers, which by

the unsigned-byte-p hypotheses suffice to cover the specified components, and the g-var construct

used as the innermost record can cover any object. The coverage proof completes with the help of the

:cov-theory-add argument, which enables the listed rules during the proof of the coverage obligation.

3 Implementation Details

While an in-depth description of the implementation of these features is beyond the scope of this paper,

we mention here some implementation details that may be relevant to users.

3.1 Priority Order of Function Call Reductions

As the GL symbolic interpreter crawls over a term, at each function call subterm it first interprets the

arguments to the call, reducing them to symbolic objects (though possibly term-like ones). Then there are

several reductions that may be used to resolve the function call to a symbolic object. These reductions

are affected by the setting of some functions as uninterpreted, as first discussed in Section 2.1; these

functions are stored in a table where their names are bound to NIL (interpreted), T (uninterpreted), or

:CONCRETE-ONLY (uninterpreted, but allowed to be concretely evaluated). The reductions are listed here

in the order they are considered.3

1. If the arguments are all syntactically concrete (implying they each have only one possible value),

and the function is allowed to be concretely evaluated (its uninterpreted setting is not T), then the

function is evaluated on the arguments’ values using magic-ev-fncall and the resulting value is

returned, properly quoted as a concrete object.

2. Rewrite rules are read from the function’s lemmas property; any rules whose runes are listed in

the gl-rewrite-rules table are attempted. If any such rule is successfully applied, the resulting

term is symbolically interpreted in place of the function call.

3. If the function has a custom symbolic counterpart defined in the current clause processor [5] (see

documentation topic gl::custom-symbolic-counterparts), it is run on the arguments and its value

returned.

4. If the function is uninterpreted, a new function call object is returned containing the function name

applied to the argument objects.

5. Otherwise, the body of the function is interpreted with the arguments bound to its formals. The

particular definition used may be overridden; see documentation topic gl::alternate-definitions.

3.2 Handling of if Terms

There are two main parts of the handling of if terms: interpreting the test, and merging the branches

when the test is not resolved to a constant value.

2The fact that we don’t need to assume that the input value is a record is due to a special property of the records library,

which goes to some pains to ensure that its functions work together logically without type assumptions.
3This is coded in the book “centaur/gl/glcp-templates.lisp” under (defun interp-fncall ...); this template is ex-

panded to an actual function definition when a new GL clause processor is created using def-gl-clause-processor.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____MAGIC-EV-FNCALL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=GL____CUSTOM-SYMBOLIC-COUNTERPARTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=GL____ALTERNATE-DEFINITIONS
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First, the test term is symbolically interpreted, resulting in some symbolic object. That symbolic

object is coerced to a Boolean function representation as follows:4

1. If it is a symbolic Boolean, extract its Boolean function.

2. If it is a symbolic number, return constant true.

3. If it is a cons, return constant true.

4. If it is syntactically concrete, return constant true its value is if non-nil, constant false if nil.

5. If it is an if-then-else, recursively extract the Boolean function of the test. If that function is

syntactically constant true or constant false, return the Boolean function of the corresponding

branch; else get the Boolean functions of both branches and return the Boolean if-then-else of the

test and branches.

6. If it is a variable term, return its associated Boolean variable if it has one, else generate a fresh

Boolean variable, record its association, and return it.

7. If it is a function call term matching (not x) or (equal x nil), then recursively extract the

Boolean function for x and return its negation.

8. If it is a function call term matching (gl::gl-force-check-fn x strong dir), recursively ex-

tract the Boolean function for x and use satisfiability checking to try to reduce it to constant-true

and/or constant-false; see the documentation of gl::gl-force-check.

9. If it is a function call term not matching any of the above, return its associated Boolean variable

if it has one, else generate a fresh Boolean variable, record its association, update the constraint

database, and return the variable.

If the resulting Boolean function is syntactically constant or known true or false under the path con-

dition, then only one of the two branches needs to be followed, and no merging is necessary. Otherwise,

each branch is symbolically interpreted with the path condition updated to reflect the required value of

the test, and the results are merged. Merging works as follows:5

1. If both branch objects are equal, return that object.

2. If the then branch is a function call object (or a cons object, which is viewed as a call of cons

here), try to rewrite the if with all branch merge rules stored under the function symbol. If any

succeeds, proceed to symbolically interpret the resulting term.

3. Similarly if the else branch is a function call or cons object, try to rewrite the inverted if term (if

¬test else then) with branch merge rules.

4. If both branches are calls of the same function or both conses, recursively merge the corresponding

arguments and interpret the application of the function to the merged arguments.

5. Otherwise, merge the two branch objects without further symbolic interpretation or rewriting,

merging components of similar type and making if objects when necessary [5].

4Coded in “centaur/gl/glcp-templates.lisp” under (defun simplify-if-test ...)
5Coded in “centaur/gl/glcp-templates.lisp” under (defun merge-branches ...)

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=GL____GL-FORCE-CHECK
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4 Record Example

We’ll develop a useful theory here for reasoning about records in GL, under the assumption that keys

will generally be concrete values; this won’t work as well for memories where addresses are sometimes

computed, for example.

To effectively reason about records, first it is important that the basic functions involved are un-

interpreted. Here we use the :concrete-only option so that they can be concretely executed when

necessary.

(gl::gl-set-uninterpreted g :concrete-only)

(gl::gl-set-uninterpreted s :concrete-only)

The most important rule for reasoning about records is this rule, which determines the value extracted by

a lookup after an update:

(gl::def-gl-rewrite g-of-s-casesplit

(equal (g k1 (s k2 v x))

(if (equal k1 k2)

v

(g k1 x))))

It is often desirable to normalize the ordering of keys in nests of s operators, to avoid growing terms

out of control. Here general-concretep and general-concrete-obj respectively check whether

a symbolic object is constant and return its constant value. The third hypothesis of the following rule

ensures that the rule does not loop and normalizes the ordering of keys to << sorted order.

(gl::def-gl-rewrite s-of-s-normalize

(implies (syntaxp (and (gl::general-concretep k1)

(gl::general-concretep k2)

(not (<< (gl::general-concrete-obj k1)

(gl::general-concrete-obj k2)))))

(equal (s k1 v1 (s k2 v2 x))

(if (equal k1 k2)

(s k1 v1 x)

(s k2 v2 (s k1 v1 x))))))

Other disciplines for organizing the record structure may perform better in certain contexts: it might be

preferable to avoid sorting keys, or to choose a representation that allows a specialized structure such as

a tree or fast alist to be used for record lookups.

To generate good counterexamples for theorems involving g and s, the following rule shows how to

update a record so that the given key is bound to a particular value:

(gl::def-glcp-ctrex-rewrite

((g k x) v)

(x (s k v x)))

The following rule shows how to merge branches in which one branch resulted in an s call:

(gl::def-gl-branch-merge merge-if-of-s

(equal (if test (s k v x) y)

(s k (if test v (g k y)) (if test x y))))
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The above rules are generally sufficient to reason about records provided we only care about equality of

certain fields. If we want to check equality of records, we need some rewriting tricks.

We use a helper function here that checks that two records are equal except possibly in their values

on a particular list of keys. This is equivalent to the quantified function

(forall k

(implies (not (member k lst))

(equal (g k x) (g k y))))

but the following recursive formulation is easier to reason about:

(defun gs-equal-except (lst x y)

(if (atom lst)

(equal x y)

(gs-equal-except (cdr lst)

(s (car lst) nil x)

(s (car lst) nil y))))

(gl::gl-set-uninterpreted gs-equal-except)

We can use this function to unwind equalities of s operations to a conjunction of equalities between the

stored values for each key set. This theorem starts the process (the theorem with swapped LHS arguments

is also needed):

(gl::def-gl-rewrite equal-of-s

(equal (equal (s k v x) y)

(and (equal v (g k y))

(gs-equal-except (list k) x y))))

This theorem (and the similar theorem with swapped arguments to the LHS gs-equal-except) unrolls

the rest of the way until we reach the original records at the beginning of the s nest:

(gl::def-gl-rewrite gs-equal-except-of-s

(equal (gs-equal-except lst (s k v x) y)

(if (member k lst)

(gs-equal-except lst x y)

(and (equal v (g k y))

(gs-equal-except (cons k lst) x y)))))

Finally, this theorem accounts for the base case in which we have no more s calls and just compare the

original records directly. This suffices in the common case where the original record is the same exact

object on both sides of the comparison. The syntaxp check here ensures that we don’t rewrite our equal

hypothesis with equal-of-s and cause a loop.

(gl::def-gl-rewrite gs-equal-except-of-s-base-case

(implies (and (syntaxp (and (not (and (consp x)

(eq (gl::tag x) :g-apply)

(eq (gl::g-apply->fn x) ’s)))

(not (and (consp y)

(eq (gl::tag y) :g-apply)

(eq (gl::g-apply->fn y) ’s)))))

(equal x y))

(equal (gs-equal-except lst x y) t)))
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This rewriting strategy isn’t complete for proving equality or inequality between records. For example,

if we have a comparison of two different variables and an assumption that they differ on some key, we

don’t resolve the equality to false. However, it does suffice for the common usage pattern of showing

that a machine model running some program produces the same final state as a specification.

5 Application

The GL features discussed here have been used in proofs about microcode routines at Centaur Technol-

ogy [2]. The proof framework was based on specifying the updates to the machine state computed by

small code blocks, then composing these blocks together to specify the resulting machine state from a

whole microcode routine. The correctness proof for each code block would prove that if the starting

state satisfied certain conditions – such as the program counter having the correct value, or certain con-

straints holding of data elements – that running the machine model for some number of steps produced a

state equal to that produced by the specification. Don’t-care fields could be “wormhole abstracted” [3],

essentially specifying their value as whatever was produced by the implementation.

The machine model used in the microcode proofs was a stobj (for best concrete execution perfor-

mance) but was modeled logically as a nested record structure in which field accessors always fixed the

stored values to the appropriate type to match what was stored in the stobj (see the documentation for

defrstobj). A GL term-level theory similar to the one described in Section 4 was used to handle the

accesses and updates, and Boolean variable generation was used to generate representations for fields of

the state, which were mostly fixed-width natural numbers.

A code block proof could be attempted either using GL or not; in some cases the traditional ACL2

proof procedure was preferable. GL was successfully used on basic code blocks of up to about 30

instructions, and also for some block composition theorems.

6 Soundness Proof

The GL clause processor is verified as a sound extension to ACL2. The symbolic interpreter at its core is

a 22-function mutual recursion, consisting of four functions responsible for different steps in interpreting

a term, five functions to implement the conditional rewriter, ten dealing with processing of if terms, two

responsible for adding Boolean variable constraints, and one that interprets a list of terms. To reason

about this mutual recursion, we used the utilities from community book “tools/flag.lisp” and a wrapper

macro to support proving similar theorems about all the functions in the mutual recursion. To get the

proofs about this mutual recursion to perform acceptably, we tried to make each function as simple as

possible, which sometimes involved splitting the functions into more mutually-recursive parts.

Previous to the addition of the term-level features, the main theorem about the interpreter was that

the evaluation of the output symbolic object under some environment was equal to the evaluation of the

input term under the alist formed by evaluating each of the symbolic objects in the input symbolic object

bindings. The statement, greatly simplified, looked like this:

(implies (and (bool-function-eval pathcond env)

...)

(equal (sym-object-eval (gl-interpret-term x bindings pathcond) env)

(term-eval x (sym-object-alist-eval bindings env))))

Of the new features discussed here, the only one that added significant complexity or difficulty to this

theorem was the generation of fresh Boolean variables (Section 2.2). Rewriting and if branch merging

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFRSTOBJ
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rules added functions to the mutual recursion, but didn’t require us to introduce any new concepts into

the proofs.

The Boolean variable generation feature complicates the relationship between the input bindings and

output symbolic object in the theorem above because the output term may reference Boolean variables

that were created during the course of the symbolic interpretation. The meanings of these new Boolean

variables are stored in a database that associates the generated variables (represented as natural numbers,

generated in increasing order) with the symbolic objects they were generated to represent. The symbolic

interpreter takes a Boolean variable database as input and returns it, possibly extended with new vari-

able/object correspondences, as output. Existing correspondences in the database are not changed during

symbolic interpretation.

In order to prove a correspondence between output symbolic object and input term and bindings

similar to the one above, we need some facts about the set of Boolean variables on which each object

depends:

• The symbolic object returned by the interpreter may only depend on Boolean variables present in

the input bindings or bound in the Boolean variable database.

• Symbolic objects bound to Boolean variables in the Boolean variable database are strictly ordered

in their dependencies: the object bound to a given Boolean variable may only depend on lower-

numbered variables.

We also need to assume:

• The symbolic objects in the input bindings do not depend on any Boolean variable numbers greater

than the maximum currently present in the Boolean variable database.

These show that adding a new variable/object correspondence to the database does not affect the meaning

of existing objects. Finally, an additional assumption is needed about the environment under which the

output object and input bindings are evaluated:

• The environment is consistent with the Boolean variable database: that is, for each Boolean vari-

able/object binding (v,o) in the database, the binding of v in the environment must agree with the

truth value of the evaluation of o under the environment.

With these assumptions, we can prove a correspondence between the output symbolic object and

input term and bindings similar to the one above. However, we must also show that environments sat-

isfying the above assumption exist; in particular, given an environment under which the input shape

specifiers evaluate to a particular assignment of theorem variables, we must show that there exists an en-

vironment that preserves this evaluation and is consistent with the Boolean variable database. We do this

by iteratively mapping the Boolean variables from the database to the evaluations of their corresponding

objects, in order from the lowest-numbered. The result, we prove, is an environment that preserves the

evaluation of the shape specifiers and is consistent with the database. This allows us to argue that if the

Boolean function representation of the theorem’s conclusion is valid, then the theorem is true: given an

assignment to the theorem’s variables under which the theorem is false:

1. this assignment satisfies the hypothesis, so by coverage there exists an environment under which

the shape specifiers evaluate to that assignment;

2. we can extend that environment to be consistent with the Boolean variable database while preserv-

ing the evaluation of the shape specifiers;

3. therefore the result of symbolic simulation of the conclusion under that environment must agree

with the evaluation of the theorem under that assignment;

4. but since the symbolic simulation result is a valid Boolean function, the theorem is true.
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7 Future Extensions

7.1 Fixtypes Support

The FTY library (see documentation for FTY) provides automation for defining (mutually-)recursive

sum-of-products, product, list, and alist types that support a fixing discipline that avoids the need to

assume that variables are well-typed when proving theorems [7]. In this fixing discipline, all types

have corresponding fixing functions, which logically fix their argument to the corresponding type but are

essentially free to execute in guard-verified code because the inputs are known to already be of the correct

type. Unfortunately, this fixing discipline could potentially have a very bad performance impact in GL,

where the logical version of the code is used and guards are ignored. This also affects performance

when calling discipline-compliant functions on concrete values, because each call from the symbolic

interpreter must first check its guard.

For cases where the fixing discipline becomes a practical problem, it may be a better approach to

treat the types involved as abstract datatypes. The FTY library already provides rewrite rules for the

ACL2 rewriter that do this, and some of these could be used directly in GL. Other rules necessary for

GL to effectively reason about an FTY type could be generated automatically. The FTY type definition

events leave behind information in ACL2 tables that fully describe the types. It would be reasonable to

use this information to generate a GL term-level theory for a given FTY type.

7.2 Feature Parity with the ACL2 Rewriter

GL’s rewriter is missing several important features of ACL2’s simplifier. We list these in order from most

to least likely to be worth the implementation effort.

• Bind-free and binding hypotheses are useful for effective programming of the rewriter and would

be relatively easy to implement. The primary burden would be to modify the correctness proof of

the rewriter/symbolic interpreter; we would need to show that these hypotheses only extend the

current unifying substitution with free variables, and that such extensions to the substitution are

allowable when applying a rewrite rule.

• Congruence-based reasoning is also somewhat likely to be useful for programming the rewriter,

and is partly implemented already. GL already distinguishes between equal and iff contexts

and the rewriter variable that makes this distinction already has been extended to handle other

equivalences; the correctness proof also accounts for arbitrary equivalences. The parts yet to be

implemented are the parsing and checking of congruence, refinement, and equivalence rules so

that we can soundly use these theorems, and the application of congruences to the equivalence

context when beginning to interpret a new subterm.

• Free-variable matching hypotheses are somewhat of a mismatch to GL’s reasoning paradigm.

Whereas ACL2 has a clause from which it derives a type-alist that stores its assumptions, GL

only has a path condition. The path condition typically stores assumptions that are Boolean for-

mulas rather than terms that are known true. Nevertheless, we could scan the path condition for

known-true terms that unify with the current hypothesis under the current substitution. The proof

obligations would be the same as for the bind-free and binding hypotheses, so only this implemen-

tation work would be necessary.

• Forward-chaining is an ACL2 feature that also doesn’t fit cleanly into GL’s paradigm, for similar

reasons as for free-variable matching hypotheses. We could allow forward reasoning when adding

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____FTY
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an if test to the path condition, which would require some non-insurmountable amount of new im-

plementation work. The Boolean variable constraint system (Section 2.4) already allows forward

reasoning after a fashion, but this doesn’t affect rewriting directly since the constraints generated

are currently only used in Boolean proofs.

7.3 Debugging Support

GL currently does not have any support beyond ACL2’s trace$ utility for debugging failed term-level

proofs. While trace$ is extremely useful to a user knowledgeable enough about implementation details

to know what functions to trace, targeted debugging tools such as ACL2’s break-rewrite would be a

dramatic usability improvement.

8 Conclusion

This paper describes extensions to the GL bitblasting framework that allow it to deal in abstract terms,

rather than a limited value-like representation. The GL framework is available under a permissive license

in the ACL2 community books.
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