Typed lambda-terms in categorical attributed graph
transformation

Bertrand Boisvert, Louis Féraud, Sergei Soloviev
IRIT

Université Paul Sabatier
Toulouse, France

{boisvert,feraud,soloviev}@irit.fr

This paper deals with model transformation based on at&tbgraph rewriting. Our contribution
investigates a single pushout approach for applying theiteevules. The computation of graph at-
tributes is obtained through the use of tygedalculus with inductive types. In this paper we present
solutions to cope with single pushout construction for tfepb structure and the computations func-
tions. As this rewrite system uses inductive types, the esgiveness of attribute computations is
facilitated and appears more efficient than the one basédalgebras. Some examples showing the
interest of our computation approach are described in tyiep

1 Introduction.

There is currently a need of rigorous support to model baséivare engineering. In model-driven
software engineering, models are mostly described usingghgcal syntax (UML, SDL, ...). Models
are composed of a structural part which can be representadj@ph and of attributes which are infor-
mations attached to vertices or edges of the graph. Thuselsiodn be formalized as attributed graphs
and model transformation as attributed graph transfoomathn attributed graph transformation is com-
posed of a rewrite of the structural part and of computatmmgts attributes. Thus, we need a formal
framework that can express these two types of transformatio

Graph rewriting systems based on category theory have beiywsed to deal with the trans-
formation of structural part. One of the challenges of latited graph rewriting systems concerns the
implementation of attribute computations. Most of the exg systems based on category theory adopt
the standard algebraic approach where graphs are atttibgiag algebraic data types represented by
2-algebras[[9, 13]. However, the implementation of compaoitat with algebraic data types meets many
difficulties, and for the sake of efficiency considerationd aonvenient uses, these systems do not gen-
erally implement the whole attribute computations but myprograms written in a host-languagé [1].

In our earlier work[[15] 16, 18] we suggested to use indudijpes and lambda terms in combina-
tion with a modification of the double pushout approach [Ialledi DPoPb (“double pushout-pullback”
approach). Our goal was to use the well developed doubleoptisipproach to implement rewriting of
the structural part of graphs and to use the expressive paiveterms and inductive types to describe
and facilitate attribute computations. But the constarctof the double pushout imposed restricting
constraints on computation functions mostly due to the eisdgotal maps and the obligation to split
computations into two parts. That is why we now present a rwaach based on single pushout.

The first section of this paper introduces the main appraaohgraph rewriting based on category
theory, and particularly the single pushout approach orclwbur approach is based. Second we define
our category of attributed graphs, and then explain how piya@ rewrite rule by the computation of a
weak pushout. Finaly we present examples.

Francisco Duran and Vlad Rusu (Eds.):

Second International Workshop on Algebraic Methods

in Model-Based Software Engineering 2011 (AMMSE’11)
EPTCS 56, 2011, pp. 3847, d0i:10.4204/EPTCSI|56.3

© B Boisvert, L. Feraud & S. Soloviev

http://dx.doi.org/10.4204/EPTCS.56.3

34 Typed lambda-terms in categorical attributed graph t@nsdtion

2 Categorical graph rewriting.

In graph rewriting systems based on category theory, welyisiedine a category whose objects are
graphs and morphisms are graph homomorphisms. A transfiormale is composed of at least two
graphs called the left-hand side (usually notgdand right-hand side (usually not&). The left-hand
side describes which subgraph a gr&must contain in order that the transformation could be appli
to it, and the right-hand side describes how this part wikltike after the transformation. Morphisms
between left-hand side and right-hand side describe whacts pf graphs will be deleted, transformed
or added. To apply a rule to some subgraph of a larger gggpie need first to embed the left-hand side

as a subgraph d&. The embedding is represented by an inclusich G. Cf Figure 1(@) anfl I(b).

There are two principal categorical approaches to graphtiew: double pushout (abbreviated DPo,
concieved by H. Ehrig and his colleaguis [7]./[17]) and €rqgishout (abbreviated SPo, mainly devel-
opped by Lowe([12],[[17]). The main difference is that in DiRorphisms are total maps and in SPo
morphims are partial maps. This implies different formsidés.

In the DPo approach a rule is defined by 3 graphs and 2 totalhisongs: L L KSR The morphism
| indicates what vertices or edges should be erased (thewhesre not in the image d) and the
morphismr indicates what vertices or edges should be transformeddtiadno are irk), and added
(those who are not in the image Qf The application of the rule is done by a computation of ehpus
complement (adding the arrols > D andD 5 G and then a pushout (the arroRss H andD H).
Cf Figure[1(a).

In the SPo approach, arule is defined by one partial mor;hhirmR. Vertices and edges not included
in the domain of will be deleted, the ones in the domainrofvill be transformed and those which are
not in the image of will be added. The application of the rule is done by the coraion of one pushout

(adding the arrow& " HandR% H). Cf Figure 1(D)

L K R L——R

i (PO1) I (PO2) i* i (PO) i*

G - D = H G = H
(a) DPo approach (b) SPo approach

Figure 1: Classical categorical graph rewriting approache

Because not all pushout-complements necessarily exibeicdtegories of graphs, there exist “ap-
plication conditions” in DPo approach. As a consequendesrilnat create dangling edges are forbidden
in the DPo approach while in SPo approach dangling edgesareved when the rule is applied. If nec-
essary, it is possible to add application conditions in tRe Spproach as well. Thus the SPo approach
is more general than the DPo approach, but SPo approachnexrlass developed due, in our opinion,
mostly to historical reasons and to the fact that computadifoppushout in categories of partial maps is
more difficult than in categories of total maps.

Both approaches met many difficulties on the level of attalmomputations. Our experience with the
DPoPb approach [16, 15,/18] and the usage-térms for attributes was encouraging but the construction
of a double pushout imposed us some constraints due to thefuséal maps and the obligation to

B Boisvert, L. Feraud & S. Soloviev 35

split computation into two parts. The new approach we piteBere is more direct and natural, free
of application conditions and we have no more constraintshencomputational level. The rewriting
process involves structure transformation and attribotaputations. In this paper, we would stress on
attribute computations and lighten the structure rewrlfée hope that the combined use of SPo and
A-terms will permit to overcome many known difficulties ofrditite computations.

To develop a categorical graph rewriting system we must deficategory (objects and morphisms)
and then explain how to apply a rule (in our case by the contiputaf a pushout).

A pushout of two morphismk LRL L Gisa couple of morphismsG(L/> H, R H) such that:
e i'or=roi

o for every other couple of morphist@ H', G2 H’) such thathor = goi it exists a unique
morphismc such that the diagram below commutes:

As a consequence, the existence of pushout implies theemégs of the objeét up to isomorphism
(cf. [6,[12]). If we have the two properties in the definitiohpushout but not the unicity of, the
construction is called a weak pushout.

3 Category of Attributed Graphs.

We shall denot&rT the category of graphs we consider below.

Objects. Objects ofGr™ are oriented attributed graphs. We shall assume that thizesrand
edges are sets (not&{G) and E(G) for a graphG) of natural numbers witV (G) NE(G) = 0 and
that a standard (lexicographic) ordering on vertices argkgds defined and noted. This will help
us to avoid ambiguity in the definition of morphisms, and iy aase this assumption is standard when
implementations are considered. The attributes willberms. The system of lambda calculus in this
paper is the simply typed lambda calculus with surjectivieim@ terminal object and inductive types,
(see for example_ [3]). We shall denote the function typeAby> B and the product type for types
andB by A x B. The presence of inductive types permits to define all orglibgpes of attributes, like
Bool, Nat, etc., as well as more complex types like lists, binary treesees, etc. We prefer to include
pairings in the syntax directly instead of defining it usindutctive types.

We decide to have exactly one attribute per node or edgeinggiermits to embed different datas
into this unique attribute. We can see each attribute asla tgmtaining all informations attached to a
node or an edge. The n-tuplety,...,t, > is considered as an abbreviation of the term. < t;,t, >

36 Typed lambda-terms in categorical attributed graph t@nsdtion

Lt > IF Aq, ..., Ay are types ofy, ..., t, respectively, the type of this tuple will be written&gx ... x A,
instead of(...(A1 x A2) x ...An). We shall use trivial attribute OT. (T - terminal object) to represent the
absence of attributes. Thus we have a bijection betweeretlné sodes and edges and the set of attributes
which permits to simplify some proofs.

If Gis an attributed graphV(G) is the set of its verticed: (G) the set of its edgestt(v) where
v eV (G)UE(G) is the corresponding attributa {term).

Three-level morphisms.Let G,H be two attributed graphs. We shall assume thad @krms con-
sidered below are typed in the same contextThis context may be fixed for the whole category, or
at least sufficient for all graphs and terms in consideratibhe terms are not necessarily closed. The
equality of terms is understood in ordinary sense as egualitt. a,3,n and alsor conversion for
recursiofd. Morphismsf : G — H are defined using the following three-level construction:

1. The “structural partfg; is a partial graph homomorphism (without attributesicao H (cf. Fig.

2@).

2. The “attribute dependency relatiofiiq, is a relation between the sat§G) UE(G) andV (H) U
E(H) induced by computation functions. For each V(H)UE(H) its preimage (i.e. the set of
all its antecedents) is]r,,, €V (G) UE(G) and represents all attributes of graplthat we can use
to computev. (We could consider here instead of vertices and edgesspanneing attributes, cf.
Fig.[2(B).)

3. The “computational part” is represented, by Aheerm fem(v), for each elemente V(H)UE(H).
TheseA-terms will be called computation functions. They are fions that take as argument
attributes of grapl@ defined byfag;. More precisely, lev € V(H)UE(H). Letatt(v) =t: Abe
the corresponding attribute. L@fs,, = {ui,...,u}, U1 < ... < ux (we use here the fact that the
vertices are natural numbers) and

att(uy) =t3: Aq,...,att(ux) =t : Ax
be the attributes of the antecedents. Now the t®&rm fcmp(v) has the type

Al— ... A—A
and should satisfy the following property:
S\/(tlv "'7tk) =t
(of course, many arguments may be “dummy”). In particulalylk,,, = 0 thens, =t. (See Fig.
2(c).)
Equality of morphisms. Two morphismsf,g: G — H are equal if
1. fstr = Ostrs

2. the relationsfagr = Gagr;

3. and for eaclv € V(H) UE(H) their computation function$cmp, and gemp, are equals on their
arguments irG. More precisely, lefV]t,,, = [Vlg.y, = {U1,..., U} be the arguments ofgm, and
Ocmp,; We have:

femp (U1, .., Un) = Gemp, (Ut, ..., Un)

asA-terms.

1in principle, other forms of equality could be considered.

B Boisvert, L. Feraud & S. Soloviev

1: Nat>

1: Nat>

(a) Structural part

1: Nat> o

1: Nat>

(b) Structural part + attribute dependency relation

A x:(StrxNat).x :(StrxNat) — (StrxNat)
C<Key":Str, |- N
i 1:Nat>

‘ <"Key" : Str,
1: Nat>
I -
. <1:Nat, |
""" ¥ 2:Nat>
A x:(Natx Nat). Ay:(Strx Nat).<pg X, (X)+(p y)>(Str xNat) - (NatxNat) — (Nat x Nat)
(c) Structural part + attribute dependency relation + cotaienal part

Figure 2: Three-level attributed graph morphism

37

38

Typed lambda-terms in categorical attributed graph t@nsdtion

Remarks:

e One may notice that the equality of morphisms does not inf@yeiquality of computations func-
tions and two morphisms can be equal and have different ctatipn functions.

o If the attributes ofG are variables then the equality of functions on values isvetgnt to the
equality of computation functions. (This choice of varegbhs attributes is natural if we consider
rule schemes instead of instance of the rules).

e Given two morphismsf,g: G — H, the equality of first two levelds = gsir and fagr = Qagr
implies f = g because the values of the attributes of H are the same.

e Taking into account the way how the rules are applied, it igdod accord with the intuition.
A mosphismr : L — R is used for the formulation of a rule (or rule scheme) and masural
that the values (attributes &) are known. The computation occurs in the application ofla ru
(construction of a pushout).

Composition.
1. Onthe level of structure, we take the compositigho fg;
2. On the level of attribute dependency relations we takectimeposition of relation$gagr o fadr) -
One may note that:
[W](gof)adr = [W]gadrofadr = Uve[w]gadr M fadr

3. On the level of computation functiona terms) the composition is defined using composition of
A-terms.

More precisely, let:
t= gcmp(W);
Wgag, = {V1, -, Wi}, V1 < oo < Vg
t1 = femp(Ve), .-tk = Temp(Vk);
o Vi)t = {U11, ooy Uing }y ooy [Vid g, = {Uks -5 Uk }-
The intersections of the antecedents may be not empty, 3 let... < up be the distinct ele-
ments (vertices or edges) of the uniem|r,, U... U [Vi] . LEtA1,...,Ap be the types of attributes
att(uy), ..., att(up) respectively, and : Ay, ...,Xp : Ap term variables not belonging to the context

. Since each of the elementig corresponds to exactly one of,...,up, we haveu;; = uny, for
somem,1 < m< p, and for term variables we may pxjf = Xm.

Now we define:

(9o f)emp(W) =df AXy : Ar.. AXp - Ap. (t(taXe1.. Xan,) (tkXit---Xkn)) -

Identity morphisms. For an attributed graph G, we c#dlg its identiy morphism defined by:
1. for the structural part, we take the identity graph homghism;
2. for the attribute dependency relation, we take the itiendiation;

3. for the computation functions, for eack V(G) UE(G), letA be the type oéitt(v), (Idg)emp(V) =
AXTAXTA— A

B Boisvert, L. Feraud & S. Soloviev 39

Theorem. Attributed graphs and graph morphisms described above dacategory.

Proof: Composition is associative due to associativity of the cositipn of graph homomorphisms,
and associativity of the composition of relations. Reterms composition is associative too because of
confluence and the fact that all simply typgeterms are strongly normalizable. Thus any evaluation
strategy will terminate on a same simply typ&eterm. It is easy to verify that for every morphism
f:G— Hwehavefoldg = f andldyo f = f.

4 Weak pushout computation in categoryGr?.

As we said, to apply a rule L Rtoa graphG we must find an embeddiri@—'> G and then compute
the pushout of andi. But in our attributed graphs, the attributesRfnay contain free variables that
are instanciated . So we shall see r as a rule “scheme”. The application censigieneral in two
steps. First we take an instancelofs R obtained by substitution of-terms for certain free variables.
Afterwards we try to “embed” the left side inf®.

Injective attributed graph morphism: Let f : G — H be an attributed graph morphisnt is
injective if:
1. fg is an injective partial graph homomorphism (i1, v, € V(G) UE(G).(fstr(v1) = fstr(V2) =
V1 =V2));
2. fadr = fstr;
3. forallvV e V(H)UE(H):

e if [V]1,,, is not empty (thusv]s,,, is a singleton that we denofe} because g, is injective),
femp(V) = Ax: Ax:A— Awhere A is the type oftt(v).

Canonical retraction of a total injective attributed graph morphism: Let f : G — H be a total
injective attributed graph morphism. A retractionfofor a left inverse) is an attributed graph morphism
f:H — Gsuchthatfo f =Idg.

With this definition, we have not necessarfly f = Idy, andf is not unique in general. That's why
we give a canonical construction to obtain a retractior.ofhis construction is defined by:

1. foreveryv e V(H)UE(H) if [V]t,, is empty,V has no image by¥,; if [V]r,, iS not empty (thus
[V]1,, is a singleton that we denofe} becauseds, is injective), f, (V) = v.
2. Tadr = Tstr
3. for eachv e V(G)UE(G):
o if V7, is empty,fony(v) = att(v);
o if [V7_, is not empty (thugvj;) is a singleton that we denofe’'}), femp(V) = Ax: AX:
A — Awhere A is the type ott(V).

As f is a total injection, it is easy to see thit f = Idg.

40 Typed lambda-terms in categorical attributed graph t@nsdtion

G+R

fll

G+R (G+R)

(G+RY

H
Figure 3: Construction of weak pushout

Construction of a weak pushoutThe construction of a (weak) pushout in case of applicatioam o
rule is inspired by the paper by Lowe and othérs [17], butehvall be differences due to our definition
of attributed graphs and graph morphisms.

The “starting point” is the pair of morphismk (& R, L N G) wherei is injective and total attributed

graph morphism as definded above. We want to compute the wustlopt R'—/> H,G L/> H) of this pair.

The definition of pushout in the paper by Lowe [17] uses caégers. We will have in mind this
construction, but will give here a more restricted and gtrdiorward definition, without detailed study
of coequalizers in the catego@rT.

First step to define a pushout using coequalizers in the aateyf graphs would be to take the
coproductG + R of G and R (coproduct being here just the disjoint union). Next stepulcoe to
factorize it by certain equivalence relation (creati@+ R)’ which contains equivalence classes), and
then to complete the construction using composition withitaie morphismp from factor object to
pushout objecH.

We shall define each of the morphismsandi’ as a composition of three morphisms (Cf figure 3) in
order to have

=G (G+R % (G+R/ 2 H
and
=R (G+R % (G+R/ B H
The objects and morphisms in these diagrams are definedensdeveps.
e On the level of structur& + Ris disjoint union of the graph& andR;
¢ on the level of attributes each element®&ndR in G+ R has the same attribute as@andR,;

e j’andj” are inclusions respectively @& andRinto G+ R, thus they are total injective attributed
graph morphisms.

To continue, we define first the equivalence relatignon the elements of the graph struct@e-R.
e let's puta~q bforabe G+Rif Ixe L.(j'(i(x)) =aA j”’(r(x)) =b)

B Boisvert, L. Feraud & S. Soloviev 41

e then the relation- is defined as reflexive, symmetric and transitive closure of

e notice that the elements @& + R which are not the images of elements®f- i(dom(r)) form
equivalence classes consisting of single element (itself)

The elements ofG+ R)’ are defined as equivalence classes of elemer@staR. It is easily checked
that this definition is consistent with the incidence relatand the map sending each elemenGef R
to its equivalence class is a (total) graph homomorphisnis ap will be structural part of’ and f”.

Moreover, each equivalence class with respeet wontaining an image of an element®imay be
seen as a “span”, consisting of the image of this elemeRwiderj” and the images of its antecedent
viar underj’ oi. In particular, each equivalence class contains exactyimage of an element & As
a consequence, the composititf) o j%; is injective.

It permits also to define the attribute part(@+ R)’. Each equivalence class that contains an image
of an element oR has the same attribute as this element hd® i@ther equivalence classes (that have
the form{j’(y)},y € G,y # i(x) for somex € L) keep the same attribute as@

The definitions of relational part and computation funcsiaf f’ and f” are different.

For f” the relationf/, connects the elements & with corresponding equivalence classes (it is
bijective on theR-part). There is no connections on tGepart. The computation functions are identities.

Remark. The compositionf” o j” is injective, in particular(f” o j”)s is an injective total graph
homomorphism(f” o j”)adr = (f” 0 j")str and computation functions are identities.

Now we may defind’ as follows:

e Yveimg(j oi):

#—=G+RLHGHLLRL GRS (GHR).

e for the elements o —i(L), f’ is like the identity.

As usual (cf. [1¥])H is defined now as for coequalizer construction. Let= dom(r). In our case
H will be a subgraph of G+ R)’. The incidence relation ifG + R)’ is inherited fromR andG. The
elements on H (on the level of graph structure) are:

1. all the equivalence classes of the fofRra, ..., X, z} (x1,...,% € j'(i(Lo)),z€ j”(r(L));
2. all the equivalence classes of the fofm}, z€ j"(R—r(L));
3. all the equivalence classes of the fofr}, x € j'(G—i(L)) that are not dangling edges [17].

The attributes for the equivalence classes of the first tpegyare inherited frorR and for the third
from G.

The morphismp is defined as follows. Its structural part is identity on dreents of(G + R)’ that
remain inH. We have als@agr = psir, @and all computation functions are identities.

Now i’, r" andH are defined such thétor =r’oi.

Leth:R— H’andg: G — H’ be two other morphisms such thatr = goi. Asi’ is injective, we can
use the canonical retractiohand take forc (cf figure[4)hoi’ and for elements who are not in the domain
of i’ we extendc in order to make it in accord witg. The commutativity on the level of computation
functions follows from the definition of equality of attrited graph morphisms (cf sectibh 3). Thus the
diagram commutes but in general the unicityca$ not guaranteed, so we have a weak pushout.

42 Typed lambda-terms in categorical attributed graph t@nsdtion

r-/:pof/oj/
i/:po f//oj//

H/

Figure 4: Definition of Pushout

5 Examples.

To illustrate our transformation approach we present mgbtion two examples: the first one compares
the graph grammar to computéin our framework with the graph grammar given on th@ G website

[1], i.e. the graph grammar corresponding to the framewaidel orx-algebras. And the second one
presents computation on attributes representing infiréstwhich is not possible by usigalgebras.
Let us mention also some examples that we do not developsipémger but that can be easily developped
using our approach:

e graph cloningl[2];
e information balance between attributes and structure;

e computation on functional attributes.

5.1 Computation ofn!.

This example shows the advantage of our approach at corrgnathblevel. Figuréb presents the example
of computing the factorial of a numberusing two different graph rewriting systems. The first one is
based ork-algebras and is a copy of an example given on the AGG welfditaiid the other is based
on our approach using-terms.

If we use classical approach basedsalgebras, we need three rules in two layers (layers define a
priority of application on the rules [6] and are depicted ynfin ciffers on the figures) (cf figure 5(a)):

1. the first rule is used — 2 times and creates a chain with all values betweand 2 (the looping
edge is used to specify which attribute must be decremented)

2. the second rule is used to terminate the excecution of sterfile (it consists in removing the
looping edge);
3. the third rule is used — 2 times to multiply all numbers betweerand 2.
Thus to computa! we must apply B8 — 3 rules. This number of rule computations is due to the fact
that in graph rewriting systems each rule can modelize thpdicgtion of certain operations of a-

algebra, but putting to work recursion ¥algebras is difficult. Thus, the computation of a factoisal
not straightforward.

B Boisvert, L. Feraud & S. Soloviev 43

If we use our framework based dnterms, only one rule is necessary to compute the factofial o
because recursion operators exist, thus it is easy to witéeam that computa! (Cf figure[5(b)). Of
course computation of recursive functions requires maegssbut it is included in a standard computa-
tional framework based on inductive types and optimizedtmh computations.

This reduction of the number of rules needed to compute oibatits has two advantages:

e the simplicity of the graph grammar;

o the application of a rule is expensive in terms of algorithicomplexity. To apply a rule we need
to solve the problem of subgraph isomorphism (wich is NPgete) to find a matching. If we
simplify the left side of rules and if we reduce the numbermflacations we significantly reduce
the time of computing ofil.

Resting on this example, it appears that the attribute ctatipn is more expressive and certainly
more efficient than the one basedDilgebras, particularly when addressing problems rewgirecur-
sion.

a1
2)
ap 3) "Nal Ax.x!
®- T N e
e e
(a) n! computation based orb-algebras (b) n! computations based ok-terms. Here we writexX!”

instead of the\ -term computing! to lighten the figure.

Figure 5: graph grammars to compuien two different attributed graph rewriting systems

5.2 Managing infinity with functional attributes.

Another advantage of usimf-terms as attributes is the possibility to have complex datactures that
can represent infinity. If we want to modelize infinite atiitidiss we can do that by defining a function
with an infinite data type as domain. For example the fipef w-trees (cf figur¢ 6(d)) represents trees
where nodes can have an infinity of subtrees. Using the riecugperators on inductive types we can
define transformation on these infinite tree structures.

We may recall the form of recursive equations frbrat to any typeA and fromT,, to B:

o Y(0) =a y(sucex)) = g(x, ¢(x)) (for Nat)
e andg(Leaf) =t; @(Suce,(x) = g(x, @(X)); @(Lim(f)) =h(f,@o f) (o denotes the composition).
In the syntax ofA-calculus the solution of these equation is denoted by

44 Typed lambda-terms in categorical attributed graph t@nsdtion

e Red'@A(a)(g)
e andRec“~B(t)(g)(h).
Now the transformation of the trees we are considering mayriiten as follows.

e Letd be defined by (0) = 0,d(Succx)) = Suc¢Succd(x))), d = Red'@Na(Q)(Ax.Ay.Suc¢Sucgy))),
i.e. d(x) = 2xin arithmetical notation.

e Let ¢ be defined byp(Leaf) = Leaf, ¢(Sucg,(x)) = Sucg@(x)), @(Lim(f)) = Lim(f od), using
Reg ¢(f) = Rede~To(Leaf)(Ax™@.Sucg,)(Au.Av.(uod)). This transformation selects (once) the
branches with pair numbers at the first (infinite) branching.

Slightly more sophisticated transformation selects tlaatines with pair numbers at every infinite branch-
ing. There is only one modification. We defigé by ¢/(Leaf) = Leaf, ¢/(Suce,(x)) = Succq (x)),
@ (Lim(f)) = Lim((¢/ o f)od). UsingReg ¢/ (f) = Recdv~Te(Leaf)(Ax™*.Sucg,) (Au.Av.(vod)).

The figurg 6(B) presents a rule that selects the branchegaiitimumbers at the first infinite branch-
ing (usingg defined above). The figufe 6(c) presents an example-ofreeand the figuré 6(dl) presents
the result of the application of the rule on it.

e
,,,,,,,,,,,,,,, BY G
X Te b 90 Teo
To =Inda{Leaf:a, | |
Suce,: o — @, ® -8
Lim: (Nat—a) —» a} (b) Transformation rule
(a) Definition of the inductive typeo-trees
\ \
I I
(c) Example ofw-tree defined by the term (d) Result of the application of the rdle [b)
Lim(Red'a>To (Leaf)(AxNaAyTe Sucg,(y))). on a graph with thev— Treeof figure6(c) as
The length of the n-th branch is n. attribute: only the branches with pair num-

bers are selected.

Figure 6: Computation on attributes representing infimiteg.

This is a very simple example but we can imagine a more cormglarmple where leafs are elements
of a complex type.

B Boisvert, L. Feraud & S. Soloviev 45

6 Conclusion.

The aim of this paper was to present a new attributed graphtmegvsystem based on the the SPo
approach and whose main originality concerns the use ofetygcalculus to express attribute compu-
tations. On the structural parts our approach has the saanaathristics than the classical SPo approach,
but on the computation on attributes we have shown by exaripl we can simplify the grammars,
extend the expressivity of rules and certainly gain in efficy of the computation.

Thanks to the expressive power of inductive types, it is nogsble to dispatch some rewrite mech-
anism from structure to attribute computation and backilfaties can represent certain types of graphs
e.g. trees).

Theoretically speaking, the SPo approach necessitatatefimtion and the construction of a weak
pushout when dealing with attributes. A solution is preséni this paper. The next step of this work
will concern the study of usual properies of any rewritingtsyn such as confluence, termination, critical
pairs analysis, etc. Note that for attribute computatidrese properties are well known properties\ef
calculus. In addition, we are now investigating another wagescribe transformation of attributes,
based on a calculus using deduction rules.

The possible domains of applications include all usualiapfibns of graph transformations, e.g.,
verification and model transformations in programming, foore “tight” relationship between compu-
tational and structural parts will permit also the pursdiilmuch more specific goals.

46 Typed lambda-terms in categorical attributed graph t@nsdtion

References

[1] AGG Homepageyttp://tfs.cs.tu-berlin.de/agg/.

[2] Sergey Baranov, Bertrand Boisvert, Louis Feraud & Seg@pdoviev (2011):Typed Lambda Terms in Cat-
egorical Graph Rewriting In N.N. Vassiliev, editor:The International Conference Polynomial Computer
Algebra, April 18-22-2011, Saint-Petersburg, RussiagElrternational Mathematical InstitytéVM Pub-
lishing, pp. 9-16.

[3] David Chemouil (2005)Isomorphisms of simple inductive types through extensremaiting. Math. Struc-
tures in Computer Sciend®(5), doi10.1017/S0960129505004950.

[4] David Chemouil & Sergei Soloviev (2003Remarks on isomorphisms of simple inductive types Math-
ematics, Logic and Computation , Eindhoven, 04/07/03-0/08 Elsevier, ENTCS 85, 7, pp. 1-19, dug..
1016/S1571-0661(04)80760-6.

[5] Andrea Corradini, Hartmut Ehrig, Hans-Jorg Kreowsk@8zegorz Rozenberg, editors (200&yraph Trans-
formation, First International Conference, ICGT 2002, Balona, Spain, October 7-12, 2002, Proceedings
LNCS 2505, Springer.

[6] H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2006yundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science. An EATC®SeBpringer-Verlag New York, Inc., Secau-
cus, NJ, USA.

[7] Hartmut Ehrig (1978):Introduction to the Algebraic Theory of Graph Grammars (Av&y). In: Graph-
Grammars and Their Application to Computer Science andogigipp. 1-69.

[8] Hartmut Ehrig, Gregor Engels, Francesco Parisi-Poes& Grzegorz Rozenberg, editors (20048raph
Transformations, Second International Conference, ICG04 Rome, lItaly, September 28 - October 2,
2004, Proceedingd. NCS 3256, Springer, doi0.1007/5100934.

[9] Hartmut Ehrig, Julia Padberg, Ulrike Prange & Annegretddl (2006):Adhesive High-Level Replacement
Systems: A New Categorical Framework for Graph Transfoiomat~undam. Inf74(1), pp. 1-29.

[10] Hartmut Ehrig, Ulrike Prange & Gabriele Taentzer (2RGdundamental Theory for Typed Attributed Graph
Transformation In Ehrig et al.[8], pp. 161-177, daio . 1007/978-3-540-30203-2_13.

[11] Annegret Habel, Reiko Heckel & Gabriele Taentzer (199Braph Grammars with Negative Application
Conditions.Fundam. Inform26(3/4), pp. 287-313.

[12] Michael Lowe (1993):Algebraic approach to single-pushout graph transformatiorheor. Comput. Sci.
109, pp. 181-224, ddi0.1016/0304-3975(93) 90068-5.

[13] Fernando Orejas (2011Rymbolic graphs for attributed graph constraints Symb. Compu#6, pp. 294—
315, doi10.1016/j.jsc.2010.09.009.

[14] Maxime Rebout (2008)Une approche cé&gorique uni&e pour la Ecriture de graphes attritks Ph.D.
thesis, Université Paul Sabatier.

[15] Maxime Rebout, Louis Féraud, Lionel Marie-Magdeke#a Sergei Soloviev (2009 Computations in Graph
Rewriting: Inductive types and Pullbacks in DPO ApproabhTomasz Szmuc, Marcin Szpyrka & Jaroslav
Zendulka, editorsiFIP TC2 Central and East European Conference on Softwag@Eearing Techniques -
CEE-SET, Krakow, Pologne, 12/10/09-14/10/8@ringer-Verlag, pp. 164-177.

[16] Maxime Rebout, Louis Féraud & Sergei Soloviev (2008)Unified Categorical Approach for Attributed
Graph Rewriting In E Hirsch & A Razborov, editordnternational Computer Science Symposium in Russia
(CSR 2008), Moscou 07/06/2008-12/06/2008ICS 5010, Springer-Verlag, pp. 398-410, dai: 1007/
978-3-540-79709-8_39.

[17] Grzegorz Rozenberg, editor (199Handbook of Graph Grammars and Computing by Graph Transfierm
tions, Volume 1: FoundationsVorld Scientific, doi10.1142/9789812384720.

[18] Hanh Nhi Tran, Christian Percebois, Ali Abou Dib, Loléraud & Sergei Soloviev (2010ttribute Com-
putations in the DPoPb Graph Transformation Engine (regwaper). In: 4th International Workshop

http://dx.doi.org/10.1017/S0960129505004950
http://dx.doi.org/10.1016/S1571-0661(04)80760-6
http://dx.doi.org/10.1016/S1571-0661(04)80760-6
http://dx.doi.org/10.1007/b100934
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1016/0304-3975(93)90068-5
http://dx.doi.org/10.1016/j.jsc.2010.09.009
http://dx.doi.org/10.1007/978-3-540-79709-8_39
http://dx.doi.org/10.1007/978-3-540-79709-8_39
http://dx.doi.org/10.1142/9789812384720

B Boisvert, L. Feraud & S. Soloviev 47

on Graph Based Tools (GRABATS 2010), University of Twentaséhede, The Netherlands, 28/09/2010-
28/09/2010University of Twente, http://www.utwente.nl/en, p. (eti@nic medium).

	1 Introduction.
	2 Categorical graph rewriting.
	3 Category of Attributed Graphs.
	4 Weak pushout computation in category GrT.
	5 Examples.
	5.1 Computation of n!.
	5.2 Managing infinity with functional attributes.

	6 Conclusion.

