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This paper deals with model transformation based on attributed graph rewriting. Our contribution
investigates a single pushout approach for applying the rewrite rules. The computation of graph at-
tributes is obtained through the use of typedλ -calculus with inductive types. In this paper we present
solutions to cope with single pushout construction for the graph structure and the computations func-
tions. As this rewrite system uses inductive types, the expressiveness of attribute computations is
facilitated and appears more efficient than the one based onΣ-algebras. Some examples showing the
interest of our computation approach are described in this paper.

1 Introduction.

There is currently a need of rigorous support to model based software engineering. In model-driven
software engineering, models are mostly described using a graphical syntax (UML, SDL, ...). Models
are composed of a structural part which can be represented asa graph and of attributes which are infor-
mations attached to vertices or edges of the graph. Thus, models can be formalized as attributed graphs
and model transformation as attributed graph transformation. An attributed graph transformation is com-
posed of a rewrite of the structural part and of computationson its attributes. Thus, we need a formal
framework that can express these two types of transformation.

Graph rewriting systems based on category theory have been widely used to deal with the trans-
formation of structural part. One of the challenges of attributed graph rewriting systems concerns the
implementation of attribute computations. Most of the existing systems based on category theory adopt
the standard algebraic approach where graphs are attributed using algebraic data types represented by
Σ-algebras [9, 13]. However, the implementation of computations with algebraic data types meets many
difficulties, and for the sake of efficiency considerations and convenient uses, these systems do not gen-
erally implement the whole attribute computations but relyon programs written in a host-language [1].

In our earlier work [15, 16, 18] we suggested to use inductivetypes and lambda terms in combina-
tion with a modification of the double pushout approach [17] called DPoPb (“double pushout-pullback”
approach). Our goal was to use the well developed double pushout approach to implement rewriting of
the structural part of graphs and to use the expressive powerof λ -terms and inductive types to describe
and facilitate attribute computations. But the construction of the double pushout imposed restricting
constraints on computation functions mostly due to the usage of total maps and the obligation to split
computations into two parts. That is why we now present a new approach based on single pushout.

The first section of this paper introduces the main approaches of graph rewriting based on category
theory, and particularly the single pushout approach on which our approach is based. Second we define
our category of attributed graphs, and then explain how to apply a rewrite rule by the computation of a
weak pushout. Finaly we present examples.

http://dx.doi.org/10.4204/EPTCS.56.3
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2 Categorical graph rewriting.

In graph rewriting systems based on category theory, we usualy define a category whose objects are
graphs and morphisms are graph homomorphisms. A transformation rule is composed of at least two
graphs called the left-hand side (usually notedL) and right-hand side (usually notedR). The left-hand
side describes which subgraph a graphG must contain in order that the transformation could be applied
to it, and the right-hand side describes how this part will look like after the transformation. Morphisms
between left-hand side and right-hand side describe which parts of graphs will be deleted, transformed
or added. To apply a rule to some subgraph of a larger graphG, we need first to embed the left-hand side

as a subgraph ofG. The embedding is represented by an inclusionL
i
→G. Cf Figure 1(a) and 1(b).

There are two principal categorical approaches to graph rewriting: double pushout (abbreviated DPo,
concieved by H. Ehrig and his colleagues [7], [17]) and single pushout (abbreviated SPo, mainly devel-
opped by Löwe [12], [17]). The main difference is that in DPomorphisms are total maps and in SPo
morphims are partial maps. This implies different forms of rules.

In the DPo approach a rule is defined by 3 graphs and 2 total morphisms:L
l
←K

r
→R. The morphism

l indicates what vertices or edges should be erased (the oneswho are not in the image ofl ) and the
morphismr indicates what vertices or edges should be transformed (those who are inK), and added
(those who are not in the image ofr). The application of the rule is done by a computation of a pushout-

complement (adding the arrowsK
d
→D andD

l∗
→G and then a pushout (the arrowsR

i∗
→ H andD

r∗
→ H).

Cf Figure 1(a).
In the SPo approach, a rule is defined by one partial morphimL

r
→R. Vertices and edges not included

in the domain ofr will be deleted, the ones in the domain ofr will be transformed and those which are
not in the image ofr will be added. The application of the rule is done by the computation of one pushout

(adding the arrowsG
r∗
→ H andR

i∗
→ H). Cf Figure 1(b)
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Figure 1: Classical categorical graph rewriting approaches

Because not all pushout-complements necessarily exist in the categories of graphs, there exist “ap-
plication conditions” in DPo approach. As a consequence, rules that create dangling edges are forbidden
in the DPo approach while in SPo approach dangling edges are removed when the rule is applied. If nec-
essary, it is possible to add application conditions in the SPo approach as well. Thus the SPo approach
is more general than the DPo approach, but SPo approach remained less developed due, in our opinion,
mostly to historical reasons and to the fact that computation of pushout in categories of partial maps is
more difficult than in categories of total maps.

Both approaches met many difficulties on the level of attribute computations. Our experience with the
DPoPb approach [16, 15, 18] and the usage ofλ -terms for attributes was encouraging but the construction
of a double pushout imposed us some constraints due to the useof total maps and the obligation to
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split computation into two parts. The new approach we present here is more direct and natural, free
of application conditions and we have no more constraints onthe computational level. The rewriting
process involves structure transformation and attribute computations. In this paper, we would stress on
attribute computations and lighten the structure rewrite.We hope that the combined use of SPo and
λ -terms will permit to overcome many known difficulties of attribute computations.

To develop a categorical graph rewriting system we must define a category (objects and morphisms)
and then explain how to apply a rule (in our case by the computation of a pushout).

A pushout of two morphismsL
r
→ R, L

i
→G is a couple of morphisms (G

r ′
→ H, R

i′
→ H) such that:

• i′ ◦ r = r ′ ◦ i

• for every other couple of morphisms (R
h
→ H ′, G

g
→ H ′) such thath◦ r = g◦ i it exists a unique

morphismc such that the diagram below commutes:

L

i

r
R

i′

hG

g

r ′
H

c

H ′

As a consequence, the existence of pushout implies the uniqueness of the objectH up to isomorphism
(cf. [6, 12]). If we have the two properties in the definition of pushout but not the unicity ofc, the
construction is called a weak pushout.

3 Category of Attributed Graphs.

We shall denoteGrT the category of graphs we consider below.

Objects. Objects ofGrT are oriented attributed graphs. We shall assume that the vertices and
edges are sets (notedV(G) and E(G) for a graphG) of natural numbers withV(G)∩E(G) = /0 and
that a standard (lexicographic) ordering on vertices and edges is defined and noted<. This will help
us to avoid ambiguity in the definition of morphisms, and in any case this assumption is standard when
implementations are considered. The attributes will beλ -terms. The system of lambda calculus in this
paper is the simply typed lambda calculus with surjective pairing, terminal object and inductive types,
(see for example [3]). We shall denote the function type byA→ B and the product type for typesA
andB by A×B. The presence of inductive types permits to define all ordinary types of attributes, like
Bool, Nat, etc., as well as more complex types like lists, binary trees, ω-trees, etc. We prefer to include
pairings in the syntax directly instead of defining it using inductive types.

We decide to have exactly one attribute per node or edge. Pairing permits to embed different datas
into this unique attribute. We can see each attribute as a tuple containing all informations attached to a
node or an edge. The n-tuple< t1, ..., tn > is considered as an abbreviation of the term< ... < t1, t2 >
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, ..., tn >. If A1, ...,An are types oft1, ..., tn respectively, the type of this tuple will be written asA1× ...×An

instead of(...(A1×A2)× ...An). We shall use trivial attribute 0 :T (T - terminal object) to represent the
absence of attributes. Thus we have a bijection between the set of nodes and edges and the set of attributes
which permits to simplify some proofs.

If G is an attributed graph,V(G) is the set of its vertices,E(G) the set of its edges,att(v) where
v∈V(G)∪E(G) is the corresponding attribute (λ -term).

Three-level morphisms.Let G,H be two attributed graphs. We shall assume that allλ -terms con-
sidered below are typed in the same contextΓ. This context may be fixed for the whole category, or
at least sufficient for all graphs and terms in consideration. The terms are not necessarily closed. The
equality of terms is understood in ordinary sense as equality w.r.t. α ,β ,η and alsoι conversion for
recursion1. Morphismsf : G→ H are defined using the following three-level construction:

1. The “structural part”fstr is a partial graph homomorphism (without attributes) ofG to H (cf. Fig.
2(a)).

2. The “attribute dependency relation”fadr is a relation between the setsV(G)∪E(G) andV(H)∪
E(H) induced by computation functions. For eachv∈V(H)∪E(H) its preimage (i.e. the set of
all its antecedents) is[v] fadr ⊆V(G)∪E(G) and represents all attributes of graphG that we can use
to computev. (We could consider here instead of vertices and edges corresponding attributes, cf.
Fig. 2(b).)

3. The “computational part” is represented, by theλ -term fcmp(v), for each elementv∈V(H)∪E(H).
Theseλ -terms will be called computation functions. They are functions that take as argument
attributes of graphG defined byfadr. More precisely, letv∈V(H)∪E(H). Let att(v) = t : A be
the corresponding attribute. Let[v] fadr = {u1, ...,uk},u1 < ... < uk (we use here the fact that the
vertices are natural numbers) and

att(u1) = t1 : A1, ...,att(uk) = tk : Ak

be the attributes of the antecedents. Now the termsv = fcmp(v) has the type

A1→ ...→ Ak→ A

and should satisfy the following property:

sv(t1, ..., tk) = t

(of course, many arguments may be “dummy”). In particular, if [y] fadr = /0 thensv = t. (See Fig.
2(c).)

Equality of morphisms. Two morphismsf ,g : G→ H are equal if

1. fstr = gstr;

2. the relationsfadr = gadr;

3. and for eachv ∈ V(H)∪E(H) their computation functionsfcmpv and gcmpv are equals on their
arguments inG. More precisely, let[v] fadr = [v]gadr = {u1, ...,uk} be the arguments offcmpv and
gcmpv; we have:

fcmpv(u1, ...,un) = gcmpv(u1, ...,un)

asλ -terms.
1In principle, other forms of equality could be considered.
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  2 : Nat>
<1 : Nat,<1 : Nat,

  2 : Nat>

1 3

2

1

2 3

   1: Nat>    1: Nat>
<"Key" : Str, <"Key" : Str,

(a) Structural part
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<1 : Nat,<1 : Nat,

  2 : Nat>

1 3
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   1: Nat>    1: Nat>
<"Key" : Str, <"Key" : Str,

(b) Structural part + attribute dependency relation

→(Str × Nat) (Nat× Nat) → (Nat × Nat)λ Nat).×x:(Nat λ 1

λ x:(Str×Nat).x :(Str ×Nat) → (Str ×Nat) 

×y:(Str Nat).<p  x, (p  x)+(p  y)>:1 2
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  2 : Nat>
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   1: Nat>    1: Nat>
<"Key" : Str, <"Key" : Str,

(c) Structural part + attribute dependency relation + computational part

Figure 2: Three-level attributed graph morphism
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Remarks:

• One may notice that the equality of morphisms does not imply the equality of computations func-
tions and two morphisms can be equal and have different computation functions.

• If the attributes ofG are variables then the equality of functions on values is equivalent to the
equality of computation functions. (This choice of variables as attributes is natural if we consider
rule schemes instead of instance of the rules).

• Given two morphismsf ,g : G→ H, the equality of first two levelsfstr = gstr and fadr = gadr

implies f = g because the values of the attributes of H are the same.

• Taking into account the way how the rules are applied, it is ingood accord with the intuition.
A mosphismr : L→ R is used for the formulation of a rule (or rule scheme) and it isnatural
that the values (attributes ofR) are known. The computation occurs in the application of a rule
(construction of a pushout).

Composition.

1. On the level of structure, we take the compositiongstr ◦ fstr;

2. On the level of attribute dependency relations we take thecomposition of relations(gadr ◦ fadr) .
One may note that:

[w](g◦ f )adr
= [w]gadr◦ fadr = ∪v∈[w]gadr

[v] fadr

3. On the level of computation functions (λ -terms) the composition is defined using composition of
λ -terms.

More precisely, let:

• t = gcmp(w);

• [w]gadr = {v1, ...,vk},v1 < ... < vk;

• t1 = fcmp(v1), ..., tk = fcmp(vk);

• [v1] fadr = {u11, ...,u1n1}, ..., [vk] fadr = {uk1, ...,uknk}.

The intersections of the antecedents may be not empty, so letu1 < ... < up be the distinct ele-
ments (vertices or edges) of the union[v1] fadr ∪ ...∪ [vk] fadr. Let A1, ...,Ap be the types of attributes
att(u1), ...,att(up) respectively, andx1 : A1, ...,xp : Ap term variables not belonging to the context
Γ. Since each of the elementsui j corresponds to exactly one ofu1, ...,up, we haveui j = um for
somem,1≤m≤ p, and for term variables we may putxi j = xm.

Now we define:

(g◦ f )cmp(w) =d f λx1 : A1...λxp : Ap.(t(t1x11...x1n1)...(tkxk1...xknk)).

Identity morphisms. For an attributed graph G, we callIdG its identiy morphism defined by:

1. for the structural part, we take the identity graph homomorphism;

2. for the attribute dependency relation, we take the identity relation;

3. for the computation functions, for eachv∈V(G)∪E(G), letA be the type ofatt(v), (IdG)cmp(v) =
λx : A.x : A→ A.
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Theorem. Attributed graphs and graph morphisms described above forma category.

Proof: Composition is associative due to associativity of the composition of graph homomorphisms,
and associativity of the composition of relations. Forλ -terms composition is associative too because of
confluence and the fact that all simply typedλ -terms are strongly normalizable. Thus any evaluation
strategy will terminate on a same simply typedλ -term. It is easy to verify that for every morphism
f : G→ H we havef ◦ IdG = f andIdH ◦ f = f .

4 Weak pushout computation in categoryGrT .

As we said, to apply a ruleL
r
→ R to a graphG we must find an embeddingR

i
→ G and then compute

the pushout ofr and i. But in our attributed graphs, the attributes ofR may contain free variables that
are instanciated inG. So we shall see r as a rule “scheme”. The application consists in general in two
steps. First we take an instance ofL

r
→ R obtained by substitution ofλ -terms for certain free variables.

Afterwards we try to “embed” the left side intoG.

Injective attributed graph morphism: Let f : G→ H be an attributed graph morphism.f is
injective if:

1. fstr is an injective partial graph homomorphism (i.e.∀v1,v2 ∈V(G)∪E(G).( fstr(v1) = fstr(v2)⇒
v1 = v2));

2. fadr = fstr;

3. for all v′ ∈V(H)∪E(H):

• if [v′] fadr is empty, fcmp(v′) = att(v′),

• if [v′] fadr is not empty (thus[v′] fadr is a singleton that we denote{v} becausefadr is injective),
fcmp(v′) = λx : A.x : A→ A where A is the type ofatt(v).

Canonical retraction of a total injective attributed graph morphism: Let f : G→ H be a total
injective attributed graph morphism. A retraction off (or a left inverse) is an attributed graph morphism
f : H→G such thatf ◦ f = IdG.

With this definition, we have not necessarilyf ◦ f = IdH , and f is not unique in general. That’s why
we give a canonical construction to obtain a retraction off . This construction is defined by:

1. for everyv′ ∈V(H)∪E(H) if [v′] fstr is empty,v′ has no image byf str; if [v′] fstr is not empty (thus
[v′] fstr is a singleton that we denote{v} becausefstr is injective), f str(v

′) = v.

2. f adr = f str

3. for eachv∈V(G)∪E(G):

• if [v] f adr
is empty, f cmp(v) = att(v);

• if [v] f adr
is not empty (thus[v] f adr)

is a singleton that we denote{v′}), f cmp(v) = λx : A.x :
A→ A where A is the type ofatt(v′).

As f is a total injection, it is easy to see thatf ◦ f = IdG.
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L

i

r
R

j ′′

G

i

j ′

G+R

f ′′

j ′′

G+R

f ′

j ′

(G+R)′

p

(G+R)′ p H

Figure 3: Construction of weak pushout

Construction of a weak pushoutThe construction of a (weak) pushout in case of application of a
rule is inspired by the paper by Löwe and others [17], but there will be differences due to our definition
of attributed graphs and graph morphisms.

The “starting point” is the pair of morphisms (L
r
→R, L

i
→G) wherei is injective and total attributed

graph morphism as definded above. We want to compute the weak pushout (R
i′
→H, G

r ′
→H) of this pair.

The definition of pushout in the paper by Löwe [17] uses coequalizers. We will have in mind this
construction, but will give here a more restricted and straightforward definition, without detailed study
of coequalizers in the categoryGrT .

First step to define a pushout using coequalizers in the category of graphs would be to take the
coproductG+R of G and R (coproduct being here just the disjoint union). Next step would be to
factorize it by certain equivalence relation (creating(G+R)′ which contains equivalence classes), and
then to complete the construction using composition with certain morphismp from factor object to
pushout objectH.

We shall define each of the morphismsr ′ andi′ as a composition of three morphisms (Cf figure 3) in
order to have

r ′ = G
j ′
→ (G+R)

f ′
→ (G+R)′

p
→ H

and

i′ = R
j ′′
→ (G+R)

f ′′
→ (G+R)′

p
→ H

The objects and morphisms in these diagrams are defined in several steps.

• On the level of structureG+R is disjoint union of the graphsG andR;

• on the level of attributes each element ofG andR in G+Rhas the same attribute as inG andR;

• j ′ and j ′′ are inclusions respectively ofG andR into G+R, thus they are total injective attributed
graph morphisms.

To continue, we define first the equivalence relation∼1 on the elements of the graph structureG+R.

• let’s puta∼1 b for a,b∈G+R if ∃x∈ L.( j ′(i(x)) = a∧ j ′′(r(x)) = b)
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• then the relation∼ is defined as reflexive, symmetric and transitive closure of∼1.

• notice that the elements ofG+R which are not the images of elements ofG− i(dom(r)) form
equivalence classes consisting of single element (itself).

The elements of(G+R)′ are defined as equivalence classes of elements ofG+R. It is easily checked
that this definition is consistent with the incidence relation and the map sending each element ofG+R
to its equivalence class is a (total) graph homomorphism. This map will be structural part off ′ and f ′′.

Moreover, each equivalence class with respect to∼ containing an image of an element ofR may be
seen as a “span”, consisting of the image of this element ofR under j ′′ and the images of its antecedent
via r under j ′ ◦ i. In particular, each equivalence class contains exactly one image of an element ofR. As
a consequence, the compositionf ′′str ◦ j ′′str is injective.

It permits also to define the attribute part of(G+R)′. Each equivalence class that contains an image
of an element ofR has the same attribute as this element has inR. Other equivalence classes (that have
the form{ j ′(y)},y∈G,y 6= i(x) for somex∈ L) keep the same attribute as inG.

The definitions of relational part and computation functions of f ′ and f ′′ are different.
For f ′′ the relation f ′′adr connects the elements ofR with corresponding equivalence classes (it is

bijective on theR-part). There is no connections on theG-part. The computation functions are identities.
Remark. The compositionf ′′ ◦ j ′′ is injective, in particular( f ′′ ◦ j ′′)str is an injective total graph

homomorphism,( f ′′ ◦ j ′′)adr = ( f ′′ ◦ j ′′)str and computation functions are identities.
Now we may definef ′ as follows:

• ∀v∈ img( j ′ ◦ i):

f ′ = G+R
j ′
→G

i
→ L

r
→ R

j ′′
→G+R

f ′′
→ (G+R)′.

• for the elements ofG− i(L), f ′ is like the identity.

As usual (cf. [17])H is defined now as for coequalizer construction. LetL0 = dom(r). In our case
H will be a subgraph of(G+R)′. The incidence relation in(G+R)′ is inherited fromR andG. The
elements on H (on the level of graph structure) are:

1. all the equivalence classes of the form{x1, ...,xk,z} (x1, ...,xk ∈ j ′(i(L0)),z∈ j ′′(r(L));

2. all the equivalence classes of the form{z}, z∈ j ′′(R− r(L));

3. all the equivalence classes of the form{x}, x∈ j ′(G− i(L)) that are not dangling edges [17].

The attributes for the equivalence classes of the first two types are inherited fromR and for the third
from G.

The morphismp is defined as follows. Its structural part is identity on all elements of(G+R)′ that
remain inH. We have alsopadr = pstr, and all computation functions are identities.

Now i′, r ′ andH are defined such thati′ ◦ r = r ′ ◦ i.
Let h : R→H ′ andg : G→H ′ be two other morphisms such thath◦r = g◦ i. As i′ is injective, we can

use the canonical retractioni′ and take forc (cf figure 4)h◦ i′ and for elements who are not in the domain
of i′ we extendc in order to make it in accord withg. The commutativity on the level of computation
functions follows from the definition of equality of attributed graph morphisms (cf section 3). Thus the
diagram commutes but in general the unicity ofc is not guaranteed, so we have a weak pushout.
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L

i

r
R

i′

hG

g

r ′
H

c

H ′

r ′ = p◦ f ′ ◦ j ′

i′ = p◦ f ′′ ◦ j ′′

Figure 4: Definition of Pushout

5 Examples.

To illustrate our transformation approach we present in this section two examples: the first one compares
the graph grammar to computen! in our framework with the graph grammar given on theAGGwebsite
[1], i.e. the graph grammar corresponding to the framework based onΣ-algebras. And the second one
presents computation on attributes representing infinite trees which is not possible by usingΣ-algebras.
Let us mention also some examples that we do not develop in this paper but that can be easily developped
using our approach:

• graph cloning [2];

• information balance between attributes and structure;

• computation on functional attributes.

5.1 Computation ofn!.

This example shows the advantage of our approach at computational level. Figure 5 presents the example
of computing the factorial of a numbern using two different graph rewriting systems. The first one is
based onΣ-algebras and is a copy of an example given on the AGG website [1], and the other is based
on our approach usingλ -terms.

If we use classical approach based onΣ-algebras, we need three rules in two layers (layers define a
priority of application on the rules [6] and are depicted by Roman ciffers on the figures) (cf figure 5(a)):

1. the first rule is usedn−2 times and creates a chain with all values betweenn and 2 (the looping
edge is used to specify which attribute must be decremented);

2. the second rule is used to terminate the excecution of the first rule (it consists in removing the
looping edge);

3. the third rule is usedn−2 times to multiply all numbers betweenn and 2.

Thus to computen! we must apply 2n− 3 rules. This number of rule computations is due to the fact
that in graph rewriting systems each rule can modelize the application of certain operations of aΣ-
algebra, but putting to work recursion inΣ-algebras is difficult. Thus, the computation of a factorialis
not straightforward.
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If we use our framework based onλ -terms, only one rule is necessary to compute the factorial of n
because recursion operators exist, thus it is easy to write aλ -term that computen! (Cf figure 5(b)). Of
course computation of recursive functions requires many steps but it is included in a standard computa-
tional framework based on inductive types and optimized forsuch computations.

This reduction of the number of rules needed to compute on attributes has two advantages:

• the simplicity of the graph grammar;

• the application of a rule is expensive in terms of algorithmic complexity. To apply a rule we need
to solve the problem of subgraph isomorphism (wich is NP-complete) to find a matching. If we
simplify the left side of rules and if we reduce the number of applications we significantly reduce
the time of computing ofn!.

Resting on this example, it appears that the attribute computation is more expressive and certainly
more efficient than the one based onΣ-algebras, particularly when addressing problems requiring recur-
sion.

II

I

n:Nat

n−1:Nat

n:Nat

2:Nat 2:Nat2)

1)

3) n:Nat

p:Nat

n×p:Nat

(a) n! computation based onΣ-algebras

n:Nat

λx.x!

n:Natx.x!)λ(

(b) n! computations based onλ -terms. Here we write “x!”
instead of theλ -term computingx! to lighten the figure.

Figure 5: graph grammars to computen! in two different attributed graph rewriting systems

5.2 Managing infinity with functional attributes.

Another advantage of usingλ -terms as attributes is the possibility to have complex datastructures that
can represent infinity. If we want to modelize infinite attributes we can do that by defining a function
with an infinite data type as domain. For example the typeTω of ω-trees (cf figure 6(a)) represents trees
where nodes can have an infinity of subtrees. Using the recursion operators on inductive types we can
define transformation on these infinite tree structures.

We may recall the form of recursive equations fromNat to any typeA and fromTω to B:

• ψ(0) = a;ψ(succ(x)) = g(x,ψ(x)) (for Nat)

• andφ(Lea f) = t;φ(Succω (x) = g(x,φ(x));φ(Lim( f )) = h( f ,φ ◦ f ) (◦ denotes the composition).

In the syntax ofλ -calculus the solution of these equation is denoted by
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• RecNat→A(a)(g)

• andRecTω→B(t)(g)(h).

Now the transformation of the trees we are considering may bewritten as follows.

• Letd be defined byd(0)= 0,d(Succ(x))=Succ(Succ(d(x))), d=RecNat→Nat(0)(λx.λy.Succ(Succ(y))),
i.e. d(x) = 2x in arithmetical notation.

• Let φ be defined byφ(Lea f) = Lea f,φ(Succω (x)) = Succ(φ(x)),φ(Lim( f )) = Lim( f ◦d), using
Rec, φ( f ) = RecTω→Tω (Lea f)(λxTω .Succω )(λu.λv.(u◦d)). This transformation selects (once) the
branches with pair numbers at the first (infinite) branching.

Slightly more sophisticated transformation selects the branches with pair numbers at every infinite branch-
ing. There is only one modification. We defineφ ′ by φ ′(Lea f) = Lea f, φ ′(Succω (x)) = Succ(φ ′(x)),
φ ′(Lim( f )) = Lim((φ ′ ◦ f )◦d). UsingRec, φ ′( f ) = RecTω→Tω (Lea f)(λxTω .Succω)(λu.λv.(v◦d)).

The figure 6(b) presents a rule that selects the branches withpair numbers at the first infinite branch-
ing (usingφ defined above). The figure 6(c) presents an example ofω− treeand the figure 6(d) presents
the result of the application of the rule on it.

Tω = Indα{Lea f : α ,

Succω : α → α ,

Lim : (Nat→ α)→ α}
(a) Definition of the inductive typeω-trees

Tx: ω

φ

(x):φ Tω

(b) Transformation rule

... ...

(c) Example ofω-tree defined by the term
Lim(RecNat→Tω (Lea f)(λxNatλyTω .Succω (y))).
The length of the n-th branch is n.

... ...

(d) Result of the application of the rule 6(b)
on a graph with theω−Treeof figure 6(c) as
attribute: only the branches with pair num-
bers are selected.

Figure 6: Computation on attributes representing infinite trees.

This is a very simple example but we can imagine a more complexexample where leafs are elements
of a complex type.
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6 Conclusion.

The aim of this paper was to present a new attributed graph rewriting system based on the the SPo
approach and whose main originality concerns the use of a typedλ -calculus to express attribute compu-
tations. On the structural parts our approach has the same characteristics than the classical SPo approach,
but on the computation on attributes we have shown by examples that we can simplify the grammars,
extend the expressivity of rules and certainly gain in efficiency of the computation.

Thanks to the expressive power of inductive types, it is now possible to dispatch some rewrite mech-
anism from structure to attribute computation and back (attributes can represent certain types of graphs
e.g. trees).

Theoretically speaking, the SPo approach necessitates thedefinition and the construction of a weak
pushout when dealing with attributes. A solution is presented in this paper. The next step of this work
will concern the study of usual properies of any rewriting system such as confluence, termination, critical
pairs analysis, etc. Note that for attribute computations these properties are well known properties ofλ -
calculus. In addition, we are now investigating another wayto describe transformation of attributes,
based on a calculus using deduction rules.

The possible domains of applications include all usual applications of graph transformations, e.g.,
verification and model transformations in programming, butmore “tight” relationship between compu-
tational and structural parts will permit also the pursuit of much more specific goals.
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