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We present a new syntactical proof that first-order Peano Arithmetic with Skolem axioms is con-
servative over Peano Arithmetic alone for arithmetical formulas. This result – which shows that
the Excluded Middle principle can be used to eliminate Skolem functions – has been previously
proved by other techniques, among them the epsilon substitution method and forcing. In our proof,
we employ Interactive Realizability, a computational semantics for Peano Arithmetic which ex-
tends Kreisel’s modified realizability to the classical case.

1 Introduction
For a long time it has been known that intuitionistic realizability can be used as a flexible tool for
obtaining a wealth of unprovability, conservativity and proof-theoretic results [23, 25]. As title of
example, with Kreisel’s modified realizability [17], one can show the unprovability of Markov Prin-
ciple in Heyting Arithmetic in all finite types (HAω ) and the conservativity ofHAω with the Axiom
of Choice (AC) overHAω for negative formulas. In both cases, one starts by showing that any for-
mula provable in one of those systems can be shown to be realizable inHAω . In the first case, one
proves that the realizability of Markov Principle implies the solvability of the Halting Problem, and
concludes that Markov Principle is unprovable inHAω . In the second, one exploits the fact that the
assertion “t realizesA” is exactly the formulaA whenA is negative and concludes thatHAω provesA.

The situation in classical logic has been very different: for a long time it did not exist any re-
alizability notion suitable to interpret directly classical proofs, let alone proving independence or
conservation results. However, recently several classical realizability interpretations have been put
forward. Among them: Krivine’s classical realizability [18], which has been shown in [19] to yield
striking unprovability results in Zermelo-Fraenkel set theory, and Interactive realizability [1, 4, 6, 7],
which has been shown in [3, 6] to provide conservation results for Π0

2-formulas.
Being a tool for extracting programs from proofs, it is however quite natural that Interactive re-

alizability is capable of producingΠ0
2-conservativity results. The aim of this paper is to prove that

Interactive realizability can as well be used to prove otherconservativity results. In particular, let us
consider first-order classical Peano ArithmeticPA, which isHA+EM, whereEM is the excluded mid-
dle over arithmetical formulas. Then we give a new syntacticproof thatPA with the Skolem axiom
schemeSK is conservative overPA for arithmetical formulas – a result first syntactically proven by
Hilbert and Bernays [16] by means of the epsilon substitution method. The result is particularly inter-
esting since it implies that classical choice principles can be eliminated by using the excluded middle
alone. The structure of our proof resembles the pattern of the intuitionistic-realizability conservation
proofs we have sketched above and allows to obtain a strongerresult. Namely, we shall show that if
an arithmetical formulaA is provable inHAω +EM+SK, then the assertion “t realizesA” is provable
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in HAω alone. Afterwards, we shall show the provability inHAω +EM of the assertion “(t realizesA)
impliesA” and thus conclude thatHAω +EM provesA. Since this latter system is conservative over
PA for arithmetical formulas, we obtain the result.

In our opinion, there are at least two reasons our proof technique is interesting. As remarked by
Avigad[10], the methods based on the epsilon-method, Herbrand’s Theorem or cut-elimination lead
to an exponential increase in the size of the proof, when passing from a proof inHAω +EM+ SK

to a corresponding proof inHA+EM; instead, we conjecture that our transformation is polynomial.
To the best of our knowledge, there is only another method that does equally well, which is Avigad’s
[10]. The technique of Avigad is related to ours since it usesthe method of forcing, in which the con-
ditions are finite approximations of the Skolem functions used in the proof. With forcing one avoids
speaking about infinite non-computable objects (i.e. the Skolem functions) and can approximate the
original proof. Avigad’s method is very simple and elegant when there is only one Skolem function to
eliminate, but it becomes more complicated and difficult to handle when dealing with several Skolem
functions. In fact, a nesting of the notion of forcing together with a technical result about elimination
of definitions become necessary and the method loses some intuitive appeal. Instead, the use of Inter-
active realizability allows to deal with all the Skolem functions at the same time, and we conjecture
that the resulting proofs are much shorter than the ones obtained by forcing. Moreover, the notion of
forcing as an approximation of model-theoretic truth is harder to come up with, and it is much more
natural to talk about states and approximations when dealing with programs.

Secondly, the theory of Interactive realizability offers auniform explanation of a number of differ-
ent phenomena. Rather than proving each particular meta-theoretic result about classical Arithmetic
with an ad-hoc technique, one employs a single methodology.For example, one may prove conser-
vativity of PA overHA for Π0

2-formulas by a negative translation followed by Friedman’stranslation
[13]; one may extract from proofs terms of Gödel’s SystemT by realizability or functional interpreta-
tions [14]; one may prove the result about the elimination ofSkolem functions with forcing; one may
extract from proofs strategies in backtracking Tarski games by analyzing sequent calculus proofs [12];
one may obtain a simple ordinal analysis ofPA+SK by using update procedures [9]. Instead, with
the theory of Interactive realizability one obtains all theresults above as a consequence of a single
concept (see [3, 5, 7]).
Plan of the paper In Section§2 we review the term calculusTClass in which Interactive realizers
are written, namely an extension of Gödel’s systemT plus Skolem function symbols for a countable
collection of Skolem functions. In Section§3 we recall Interactive realizability, as described in [7],a
computational semantics forHAω +EM+SK, an arithmetical system with functional variables which
includes first-order classical Peano Arithmetic and Skolemaxioms. In Section§4 we use Interactive
realizability to prove the conservativity ofHAω +EM+SK overHAω +EM for arithmetical formulas.
In Section§5 we explain in more detail how to formalize the proofs of Section 4 inHAω +EM and
HA+EM.

2 The Term CalculusTClass

In this section we follow [7] and recall the typed lambda calculi T andTClass in which interactive
realizers are written.T is an extension of Gödel’s systemT (as presented in Girard [15]) with some
syntactic sugar. The basic objects ofT are numerals, booleans, and its basic computational constructs
are primitive recursion at all types, if-then-else, pairs,as in Gödel’sT. T also includes as basic objects
finite partial functions overN and simple primitive recursive operations over them.TClass is obtained
from T by adding on top of it a collection of Skolem function symbolsΦ0,Φ1,Φ2, . . . , of typeN→ N,
one for each arithmetical formula. The symbols are inert from the computational point of view and
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realizers are always computed with respect to some approximation of the Skolem maps represented
by Φ0,Φ1,Φ2, . . ..

2.1 Updates
In order to defineT , we start by introducing the concept of “update”, which is nothing but a finite
partial function overN. Realizers of atomic formulas will return these finite partial functions, or
“updates”, as new pieces of information that they have learned about the Skolem functionΦ0,Φ1, . . ..
Skolem functions, in turn, are used as “oracles” during computations in the systemTClass. Updates are
new associations input-output that are intended to correct, and in this sense, toupdate, wrong oracle
values used in a computation.

Definition 1 (Updates and Consistent Union)We define:

1. An update set U, shortly anupdate, is a finite set of triples of natural numbers representing a
finite partial function fromN2 toN.

2. Two triples(a,n,m) and(a′,n′,m′) of numbers areconsistentif a= a′ and n= n′ implies m=m′.
Two updates U1,U2 are consistent if U1∪U2 is an update.

3. U is the set of all updates.

4. Theconsistent unionU1U U2 of U1,U2 ∈ U is U1∪U2 minus all triples of U2 which are incon-
sistent with some triple of U1.

The consistent unionU1U U2 is an non-commutative operation: whenever a triple ofU1 and a
triple ofU2 are inconsistent, we arbitrarily keep the triple ofU1 and we reject the triple ofU2, therefore
for someU1,U2 we haveU1U U2 6=U2U U1. U represents a way of selecting a consistent subset of
U1∪U2, such thatU1U U2 = /0 =⇒ U1 =U2 = /0.

2.2 The SystemT

T is formally described in figure 1. Terms of the formifA t1 t2 t3 will be sometimes written in the
more legible formif t1 then t2 else t3. A numeral is a term of the formS(. . .S(0) . . .). For every
updateU ∈ U, there is inT a constantU : U, whereU is a new base type representingU. We write∅
for /0. In T , there are four operations involving updates (see figure 1):

1. The first operation is denoted by the constantmin : U → N. min takes as argument an update
constantU ; it returns the minimum numerala such that(a,n,m) ∈U for somen,m∈ N, if any
exists; it returns 0 otherwise.

2. The second operation is denoted by the constantget : U→ N
3 → N. get takes as arguments an

update constantU and three numeralsa,n, l ; it returnsm if (a,n,m) ∈U for somem∈ N (i.e. if
(a,n) belongs to the domain of the partial functionU ); it returnsl otherwise.

3. The third operation is denoted by the constantmkupd : N3 → U. mkupd takes as arguments three
numeralsa,n,m and transforms them into (the constant coding inT ) the update{(a,n,m)}.

4. The forth operation is denoted by the constant⋒ : U2 → U. ⋒ takes as arguments two update
constants and returns the update constant denoting their consistent union.
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Types
σ ,τ ::= N | Bool | U | σ → τ | σ × τ

Constants
c ::= Rτ | ifτ | 0 | S | True | False | min | get | mkupd | ⋒ |U (∀U ∈ U)

Terms
t,u ::= c | xτ | tu | λxτ u | 〈t,u〉 | π0u | π1u

Typing Rules for Variables and Constants

xτ : τ | 0 : N | S : N→ N | True : Bool | False : Bool |U : U (for everyU ∈ U) | ⋒ : U→ U→ U

| min : U→ N | get : U→ N→ N→ N→ N | mkupd : N→ N→ N→ U

| ifτ : Bool→ τ → τ → τ | Rτ : τ → (N→ (τ → τ))→ N→ τ

Typing Rules for Composed Terms

t : σ → τ u : σ
tu : τ

u : τ
λxσ u : σ → τ

u : σ t : τ
〈u, t〉 : σ × τ

u : τ0× τ1 i ∈ {0,1}πiu : τi

Reduction Rules All the usual reduction rules for simply typed lambda calculus (see Girard [15]) plus the rules for recur-
sion, if-then-else and projections

Rτuv0 7→ u RτuvS(t) 7→ vt(Rτ uvt) ifτ Trueuv 7→ u ifτ Falseuv 7→ v πi〈u0,u1〉 7→ ui , i = 0,1

plus the following ones, assuminga,n,m, l be numerals:

minU 7→

{

a if ∃m,n. (a,n,m) ∈U ∧∀(b, i, j) ∈U. a≤ b

0 otherwise
U1⋒U2 7→ U1U U2

getU anl 7→

{

m if ∃m. (a,n,m) ∈U

l otherwise
mkupdanm 7→ {(a,n,m)}

Figure 1: the extensionT of Gödel’s systemT

We observe that the constantsmin,get,mkupd,U ,⋒, and the typeU are just syntactic sugar and
may be avoided by coding finite partial functions into natural numbers. SystemT may thus be coded
in Gödel’sT.

As proved in [1, 4],T is strongly normalizing, has the uniqueness-of-normal-form property and
the following normal form theorem also holds.

Lemma 1 (Normal Form Property for T ) Assume A is either an atomic type or a product type.
Then any closed normal term t∈ T of type A is: a numeral n: N, or a booleanTrue,False : Bool,
or an update constantU : U, or a constant of type A, or a pair〈u,v〉 : B×C.

2.3 The SystemTClass

We now define a classical extension ofT , that we callTClass, with a Skolem function symbol for each
arithmetical formula. The elements ofTClass will represent (non-computable) realizers.

Definition 2 (The SystemTClass) DefineTClass= T +S C , whereS C is a countable set of Skolem
function constants, each one of typeN→ N. We assume to have an enumerationΦ0,Φ1,Φ2, . . . of all
the constants inS C (while generic elements ofS C will be denoted with lettersΦ,Ψ, . . .).

EveryΦ ∈ S C represents aSkolem functionfor some arithmetical formula∃yNA(x,y), taking
as argument a numberx and returning somey such thatA(x,y) is true if any exists, and an arbitrary
value otherwise. In general, there is no set of computable reduction rules for the constants inS C ,
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and therefore no set of computable reduction rules forTClass. Each (in general, non-computable)
term t ∈ TClass is associated to a set{t[s] |s∈ T ,s : N2 → N} ⊆ T of computable terms we call its
“approximations”, one for each terms : N2 → N of T , which is thought as a sequences0,s1,s2, . . . of
computable approximations of the oraclesΦ0,Φ1,Φ2, . . . (with si we denotes(i)).

Definition 3 (Approximation at State)

1. Astateis a closed term of typeN2 → N of T . If i is a numeral, with si we denote s(i).

2. Assume t∈ TClass and s is a state. The “approximation of t at a state s” is the term t[s] of T

obtained from t by replacing each constantΦi with si .

3 Interactive Realizability for HA
ω +EM+SK

In this section we introduce a notion of realizability basedon interactive learning forHAω +EM+SK,
Heyting Arithmetic in all finite types (see e.g. Troelstra [26]) plus Excluded Middle and Skolem axiom
schemes for all arithmetical formulas. Then we prove our main Theorem, the Adequacy Theorem:“if
a closed formula is provable inHAω +EM+SK, then it is realizable”.

We first define the formal systemHAω + EM+ SK. We represent atomic predicates ofHAω +
EM+SK with closed terms ofTClass of typeBool. Terms ofHAω +EM+SK are elements ofTClass

and thus may include the function symbols inS C . We assume having in Gödel’sT some terms
⇒Bool: Bool→ Bool→ Bool,¬Bool : Bool→ Bool,∨Bool : Bool→ Bool→ Bool . . ., implementing
boolean connectives. As usual, we shall use infix notation: for example, we writet1 ⇒Bool t2 in place
of ⇒Bool t1t2 and similarly for the other connectives.

3.1 Language ofHAω +EM+SK

We now define the language of the arithmetical theoryHAω +EM+SK.

Definition 4 (Language ofHAω +EM+SK) The languageLClass of HAω +EM+ SK is defined as
follows.

1. The terms ofLClass are all t ∈ TClass.

2. The atomic formulas ofLClass are all Q∈ TClass such that Q: Bool.

3. The formulas ofLClass are built from atomic formulas ofLClass by the connectives∨,∧,→
,r ,∀,∃ as usual, with quantifiers possibly ranging over variables xτ ,yτ ,zτ , . . . of arbitrary
finite typeτ of TClass.

4. A formula ofLClass is saidarithmeticalif it does not contain constants inS C and all its quanti-
fiers range over the typeN, i.e. it has one of the following forms:∀xNA,∃xNA,A∨B,A∧B,A→
B,ArB,P, with A,B arithmetical and P atomic formula ofT .

We denote with⊥ the atomic formulaFalse and with¬A the formulaA→⊥. ArB is the dual
of implication as in bi-intuitionistic logic and means “A and the opposite ofB”. If F is a formula
of LClass in the free variablesxτ1

1 , . . . ,xτn
n and t1 : τ1, . . . , tn : τn are terms ofLClass, with F(t1, . . . , tn)

we shall denote the formulaF[t1/x1, . . . , tn/xn]. Sequences of variablexN1, . . . ,x
N

k will be written as~x.
We denote with〈~x〉 a term ofT in the free numeric variables~x representing a injection ofNk into N.
Moreover, for every sequence of numerals~n= n1, . . . ,nk, we define〈~n〉 := 〈~x〉[~n/~x] and assume that
the function~n 7→ 〈~n〉 is a bijection.
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TheExcluded Middle axiom schemeEM is defined as the set of all formulas of the form:

∀~xN. A(~x)∨¬A(~x)

whereA is an arithmetical formula.
TheSkolem axiom schemeSK contains for each arithmetical formulaA(~x,y) an axiom:

∀~xN. ∃yNA(~x,y)→ A(~x,Φ〈~x〉)

with Φ ∈ S C . We assume that for everyΦ ∈ S C there is inSK one and only one formula in
which Φ occurs. Such unique formulaA is said to be theformula associated toΦ andΦ will be
sometimes written asΦA. If s is a state andΦi = ΦA, with sA we denotesi and withmkupdAut we
denotemkupd iut. We claim that the result of this paper would even hold if the formulaA was not
required to be arithmetical, i.e. it was allowed to contain other Skolem functions previously defined by
other Skolem axioms, possibility which in Avigad’s case [10] complicates the elimination technique
considerably.

For each formulaF of LClass, its involutive negationF⊥ is defined by induction onF. First, we say
that an atomic formulaP is positive if it is of the form¬Bool . . .¬BoolQ, Q is not of the form¬BoolR,
and the number of¬Bool in front of Q is even. Then we define:

(¬BoolP)
⊥ = P (if P positive) P⊥ = ¬BoolP (if P positive)

(A∧B)⊥ = A⊥∨B⊥ (A∨B)⊥ = A⊥∧B⊥

(A→ B)⊥ = ArB (ArB)⊥ = A→ B

(∀xτ A)⊥ = ∃xτA⊥ (∃xτA)⊥ = ∀xτA⊥

As usual, one has(F⊥)⊥ = F.
We now fix a special set of formulasΓ .

Definition 5 (SetΓ ) We fix an arbitrary finite setΓ of arithmetical formulas A(~x,y) of LClass.

In the following,Γ will serve as a parameter in order to relativize the definitions of the realizability
relation and of the ordering of states provided in [7]. The idea is that any given proof in the system
HAω +EM+SK uses only a finite number of instances ofEM andSK. Thus, it is enough to specialize
the atomic case of the definition of realizability in such a way it refers only to the formulas inΓ . The
restriction is necessary in order to avoid to speak about thetruth of an infinite number of formulas, as
done in [7]. When we shall have to interpret a particular proof P, we will chooseΓ as containing all
the sub-formulas of the classical axioms appearing inP.

3.2 Truth Value of a Formula in a State
The axioms of the systemHAω + EM+ SK give a great computational power to the systemTClass:
thanks to the use of Skolem functions as oracles, one can “compute” by a termχF of TClass the truth
value of any arithmetical formulaF. When one effectively evaluatesχF in a particular states, we say
that one computesthe truth value of a formula F in a state s.

Definition 6 (Truth Value of a Formula F in a States) For every arithmetical formula F(~x) ofLClass

we define, by induction on F, a termχF : Bool of systemTClass, with the same free variables of F:
χP = P, P atomic

χA∨B = χA∨Bool χB χ∀yNA = χA[ΦA⊥〈~x〉/y] χArB = χA∧Bool χB⊥

χA∧B = χA∧Bool χB χ∃yNA = χA[ΦA〈~x〉/y] χA→B = χA ⇒Bool χB

We define Fs := χF [s] and call it the truth value ofF in the states.
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Intuitively, if F(~n) is a closed formula, our intended interpretation is:

1. χF(~n) is a term ofTClass denoting, in any standard model ofHAω +EM+SK, the truth value of
F(~n).

2. Fs(~n) is a term ofT computing what would bethe truth value ofF(~n) in some standard model
of HAω + EM under the (possible false) assumptionthat the interpretation mappingΦi to si

satisfies the axioms ofSK.

We remark that thusFs(~n) is only aconditionaltruth value: ifFs(~n) is not the correct truth value
of F(~n) – it may well happen – then the interpretation mappingΦi in si does not satisfy the axioms
of SK. This subtle point is what makes possible learning in Interactive realizability: whenever a
contradiction follows, realizers are able to effectively find counterexamples to the assertion that the
interpretation mappingΦi in si satisfies the axioms ofSK. We also observe that this way of computing
the truth of a formula comes from the epsilon substitution method (see Avigad [9], Mints et al. [20]).

Every states is considered as anapproximationof the Skolem functions denoted by the constants
of S C : for each formulaA, sA may be a correct approximation ofΦA on some arguments, but wrong
on other ones. More precisely, we are going to consider the set def(s) of the pairs(i,〈~n〉) such that
Φi =ΦA andA∈ Γ ⇒∃yNA(~n,y)→A(~n,si〈~n〉) is true as the real “domain” ofs, representing the set of
arguments at whichsi is surely a correct approximation ofΦi, in the sense thatsi returns an appropriate
witness if any exists. We point out that ifΦi = ΦA andA /∈ Γ , then trivially (i,〈~n〉) ∈ def(s). The
choice is made just for technical convenience, since one is not interested in the behaviour ofsoutside
Γ . We also define an ordering between states: we say thats′ ≥ s if, intuitively, s′ is at least as good an
approximation ass. Thus, we ask that ifs is a correct approximation at argument(i,〈~n〉) alsos′ is and
in particulars′i〈~n〉= si〈~n〉.

Definition 7 (Domains, Ordering between States)

1. We define

def(s) = {(i,〈~n〉) | Φi =ΦA and(A∈ Γ ⇒∃yNA(~n,y)→ A(~n,si〈~n〉)}

where i and~n range over numerals and sequences of numerals.

2. Let s and s′ be two states. We define s′ ≥ s if and only if for all(i,〈~n〉), (i,〈~n〉) ∈ def(s) implies
si〈~n〉= s′i〈~n〉.

We remark that by definition,s′ ≥ s implies def(s′) ⊇ def(s) and that thanks to the restriction
to Γ the relations′ ≥ s is arithmetical, because the condition(i,〈~n〉) ∈ def(s) is non-trivial only for
finitely manyi. From now onwards, for every pair of termst1, t2 of systemT , we shall writet1 = t2
if they are the same term modulo the equality rules corresponding to the reduction rules of systemT
(equivalently, if they have the same normal form).

3.3 Interactive Realizability
For every formulaA of LClass, we now define what type|A| a realizer ofA must have.

Definition 8 (Types for realizers) For each formula A ofLClass we define a type|A| of TClass by induc-
tion on A:

|P|= U, if P is atomic

|A∧B|= |A|× |B| |∃xτA|= τ ×|A| |ArB|= |A|× |B⊥|

|A∨B|= Bool× (|A|× |B|) |∀xτA|= τ → |A| |A→ B|= |A| → |B|
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Let now p0 := π0 : σ0 × (σ1 × σ2) → σ0, p1 := π0π1 : σ0 × (σ1 × σ2) → σ1 and p2 := π1π1 :
σ0×(σ1×σ2)→σ2 be the three canonical projections fromσ0×(σ1×σ2). We define the realizability
relationt � F, wheret ∈ TClass, F ∈ LClass andt : |F|.

Definition 9 (Interactive Realizability) Assume s is a state, t is a closed term ofTClass, F ∈ LClass is
a closed formula, and t: |F|. We define first the relation t�s F by induction and by cases according
to the form of F:

1. t �s Q for some atomic Q if and only ifU = t[s] implies:

• for every(i,~n,m) ∈U, Φi = ΦA for some A∈ Γ , and As(~n,si〈~n〉) = False and As(~n,m) =
True.

• U =∅ implies Q[s] = True

2. t �s A∧B if and only ifπ0t �s A andπ1t �s B

3. t �s A∨B if and only if eitherp0t[s] = True andp1t �s A, or p0t[s] = False andp2t �s B

4. t �s A→ B if and only if for all u, if u�s A, then tu�s B

5. t �s ArB if and only ifπ0t �s A andπ1t 
s B⊥

6. t �s ∀xτA if and only if for all closed terms u: τ of T , tu�s A[u/x]

7. t �s ∃xτA if and only for some closed term u: τ of T , π0t[s] = u andπ1t �s A[u/x]

We define t� F if and only if for all states s ofT , t �s F.

The ideas behind the definition of�s in the case ofHAω +EM+ SK are those we already ex-
plained in [7]. A realizer is a termt of TClass, possibly containing some non-computable Skolem
function ofS C ; if such a function was computable,t would be an intuitionistic realizer. Since in gen-
eralt is not computable, we calculate its approximationt[s] at states. t is an intelligent, self-correcting
program, representing a proof/construction depending on the states. The realizerinteractswith the
environment, which may provide a counter-proof, a counterexample invalidating the current construc-
tion of the realizer. But the realizer is always able to turn such a negative outcome into a positive
information, which consists in some new piece of knowledge learned about some Skolem functionΦi.

The next proposition tells that realizability at states respects the notion of equality ofTClass terms,
when the latter is relativized to states. That is, if two terms are equal at the states, then they realize
the same formulas in the states.

Proposition 1 (Saturation) If t1[s] = t2[s] and u1[s] = u2[s], then t1 �s B[u1/x] if and only if t2 �s

B[u2/x].

Proof. By straightforward induction onA.
In the following, we use a standard natural deduction systemfor HAω +EM+SK, together with

a term assignment in the spirit of Curry-Howard correspondence for classical logic. We denote with
HAω +EM+SK ⊢ t : A the derivability relation in that system, wheret is a term ofTClass andA is a
formula ofLClass. All details can be found in [4], [7].

The main theorem about Interactive realizability is the Adequacy Theorem: if a closed formula is
provable inHAω +EM+SK, then it is realizable (see [7] for a proof).

Theorem 1 (Adequacy Theorem)If A is a closed formula such thatHAω +EM+SK ⊢ t : A and all
the subformulas of the instances ofEM andSK used in the derivation belong toΓ , then t� A.
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4 Conservativity ofHAω +EM+SK overHAω +EM (HA+EM)
The aim of this section is to use Interactive realizability in order to prove that for every arithmetical
formula A, if HAω + EM+ SK ⊢ A thenHAω + EM ⊢ A (HA+ EM ⊢ A). Since we know by the
Adequacy Theorem 1 thatHAω + EM+ SK ⊢ A implies HAω + EM+ SK ⊢ t : A andHAω proves
t � A, our goal is to show inHAω +EM thatt � A impliesA.

The intuitive reason this latter result is true is the following: one can always find an approximation
s of the Skolem functions oft which is good enough to contain all the information needed byt to
compute thetrue witnesses forA against any particular purported counterexample. The ideais that
one has only to collect finitely many values of each Skolem function called during the execution of
the program represented byt. To this end, it suffices to invoke the excluded middle a number of times
which, intuitively, can be expressed in a proof formalizable inHAω +EM. This is possible because
HAω +EM is strong enough to prove the normalization of each termt of TClass with respect to any
interpretation of its Skolem functions. Finally, if there existed a counterexample toA, it would be
possible to falsify the construction of the realizert in the states. Sincet is a self-correcting program,
it would be able to correct one of the values ofs it has used in the computation of some witness forA.
But s is constructed as to be correct on all the values used byt, which entails a contradiction.

For example, letA= ∃xN∀yN∃zNP(x,y,z). Then one can find a stateswhich contains all the values
of the Skolem functions needed to computen= π0t[s]. Suppose a counterexamplem to the formula
∀yN∃zNP(n,y,z) existed. Then one can find a states′ ≥ s which contains all the values of the Skolem
functions needed to computel = π0((π1t)m) [s′]. Now, we would have thatP(n,m, l) is false; thus,
π1((π1t)m) [s′] would be equal to some updateU containing some corrections tos′. We shall show that
this will not be the case, and the intuitive reason is thats′ can be chosen as to be correct everywhere it
is needed.

We now elaborate our argument. We start with a definition axiomatizing the informal concept that
a states contains all the information needed to compute the normal form of a termt of ground type.
Namely, if for everys′ extendings the evaluation oft in the states′ gives the same result obtained
evaluatingt in s, then we may assume all the relevant information is already in s.

Definition 10 (Definition of a term in a states) For every state s and term t ofTClass of atomic type,
we define t↓s (and we say “t is defined in s”) as the statement: for all statess′ ≥ s, t[s′] = t[s].

Remark. There is another, perhaps more intuitive way to express theconcept of “being defined in
the states”. For every states we may define a binary reduction relation

s
7→⊆ TClass×TClass as follows:

t
s
7→ u if either t 7→ u in TClass or u is obtained fromt by replacing one of its subtermsΦi(n) with a

numeralm= si(n) such that(i,n) ∈ def(s). Then one could say thatt is defined ins if t
s
7→ a where

a is either a numeral, a boolean or an update. Though this approach works well, it is unsuitable to be
directly formalized inHAω , because in that system one cannot express this syntacticalreasoning on
terms.

We now define for every typeτ a set of “computable” terms of typeτ by means of the usual Tait-
style computability predicates [22]. In our case, following the approach of the previous discussion,
we consider a termt of ground type to be computable if for every states, one can find a states′ ≥ s
such thatt is defined ins′. The notion is lifted to higher types as usual.

Definition 11 (Computable terms)
For every typeτ of TClass, we define a set of closed terms ofTClass of typeτ as follows:

• ‖N‖={t : N | for all states s there is a state s′ ≥ s such that t↓s
′
}
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• ‖Bool‖={t : Bool | for all states s there is a state s′ ≥ s such that t↓s
′
}

• ‖U‖={t : U | for all states s there is a state s′ ≥ s such that t↓s
′
}

• ‖τ → σ‖={t | ∀u∈ ‖τ‖. tu∈ ‖σ‖}

• ‖τ ×σ‖={t | π0t ∈ ‖τ‖andπ1t ∈ ‖σ‖}

In order to show that every termt in TClass is computable, as usual we need to prove that the set
of computable terms is saturated with respect to some suitable relation. In our case, two terms are
related if they are equal in all states greater than some state.

Lemma 2 For every term t: ρ of TClass, if for every state s there exists a state s′ ≥ s and u∈ ‖ρ‖ such
that for all state s′′ ≥ s′, t[s′′] = u[s′′], then t∈ ‖ρ‖.

Proof. By induction on the typeρ .

• ρ = N. Let s be a state. We have to show that there exists a stater ≥ s such thatt ↓r . By as-
sumption ont there exists a states′ ≥ sandu∈ ‖N‖ such that for alls′′ ≥ s′, t[s′′] = u[s′′]. Since
u∈ ‖N‖, there existss′′ ≥ s′ such thatu ↓s

′′
. Let r = s′′; we provet ↓r . Let r ′ ≥ r. We have that

u[r ′] = u[r], by u ↓r , andt[r ′] = u[r ′], sincer ′ ≥ s′. Hence,t[r ′] = u[r] = t[r]. We concludet ↓r

and finallyt ∈ ‖N‖.

• ρ = Bool,U: as for the caseρ = N.

• ρ = τ → σ . Let v∈ ‖τ‖. We have to show thattv∈ ‖σ‖. Let sbe any state. By assumption on
t there exist a states′ ≥ s andu∈ ‖τ → σ‖ such that for alls′′ ≥ s′, t[s′′] = u[s′′]. Therefore for
all s′′ ≥ s′, tv[s′′] = uv[s′′] anduv∈ ‖σ‖. Hence, by induction hypothesis,tv∈ ‖σ‖.

• ρ = τ0× τ1. Let i ∈ {0,1}, we have to show thatπit ∈ ‖τi‖. Let s be any state. By assumption
on t there exists′ ≥ s andu∈ ‖τ0× τ1‖ such that for alls′′ ≥ s′, t[s′′] = u[s′′]. Therefore for all
s′′ ≥ s′, πit[s′′] = πiu[s′′] andπiu∈ ‖τi‖. Hence, by induction hypothesisπit ∈ ‖τi‖.

We are now ready to prove, by using the excluded middle alone,that every termt of TClass is
computable.

Theorem 2 (Computability Theorem)
Let v : τ be a term ofTClass and suppose that all the free variables of v are among xσ1

1 , . . . ,xσn
n . If

t1 ∈ ‖σ1‖, . . . , tn ∈ ‖σn‖, then v[t1/xσ1
1 , . . . , tn/xσn

n ] ∈ ‖τ‖.

Proof. We proceed by induction onv. We first remark that ifu= t andt ∈ ‖τ‖, thenu∈ ‖τ‖ by
trivial application of Lemma 2.

Notation 1 For any term w inTClass, we denote w[t1/xσ1
1 , . . . , tn/xσn] with w.

1. v is a variablexσi
i : σi andτ = σi . Then,v= t1 ∈ ‖σi‖= ‖τ‖.

2. v is 0,True, False, U : trivial.

3. v is uw, then by means of typing rules,u : σ → τ , w : σ . Since by induction hypothesis
u∈ ‖σ → τ‖ andw∈ ‖σ‖, we obtainv= uw∈ ‖τ‖.
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4. v is λxτ1.u : τ1 → τ2. Then, by means of typing rules,u : τ2. Suppose now, for a termt : τ1 in
TClass, thatt ∈ ‖τ1‖. We have to prove thatvt ∈ ‖τ2‖. We have:

vt = (λxτ1.u)[t1/xσ1
1 · · · tn/xσn

n ]t

= (λxτ1u)t[t1/xσ1
1 · · · tn/xσn

n ] = u[t/xτ1][t1/xσ1
1 · · · tn/xσn

n ] = u[t/xτ1 t1/xσ1
1 · · · tn/xσn

n ]

By induction hypothesis, this latter term belongs to‖τ2‖. We concludevt ∈ ‖τ2‖.

5. v is 〈u,w〉 : τ0 × τ1. By means of typing rules,u : τ0, w : τ1 and by induction hypothesis
π0v= u∈ ‖τ0‖ andπ1v= w∈ ‖τ1‖. The thesisv∈ ‖τ0× τ1‖ follows by definition.

6. v is πi(u) : τi, i = 0,1, whereu : τ0× τ1. πiu∈ ‖τi‖ becauseu∈ ‖τ0× τ1‖ by induction hypoth-
esis.

7. v is ifτ : Bool→ τ → τ → τ . Suppose thatu∈ ‖Bool‖, u1 ∈ ‖τ‖, u2 ∈ ‖τ‖. Then, for all states
s there existss′ ≥ ssuch thatu ↓s

′
. We have to prove thatifτuu1u2 ∈ ‖τ‖. Let sbe a state and let

s′ ≥ sbe such thatu ↓s
′
. If u[s′] = True, then for alls′′ ≥ s′, ifτuu1u2[s′′] = u1[s′′] andu1 ∈ ‖τ‖.

If u[s′] = False, then for alls′′ ≥ s′, ifτuu1u2[s′′] = u2[s′′] andu2 ∈ ‖τ‖. By Lemma 2, we
concludeifτuu1u2 ∈ ‖τ‖.

8. v isRτ : τ → (N→ (τ → τ))→ N→ τ . Suppose thatu∈ ‖τ‖, w∈ ‖N→ (τ → τ)‖, z∈ ‖N‖. We
have to prove thatRτ uwz∈ ‖τ‖. By a plain induction, it is possible to prove, for each numeral
n, Rτ uwn∈ ‖τ‖. Let s be a state and lets′ ≥ s be such thatz↓s

′
. Let z[s′] = n with n numeral.

Then for alls′′ ≥ s′,
Rτuvz[s′′] = Rτuvn[s′′] ∈ ‖τ‖

By Lemma 2, we concludeRτuwz∈ ‖τ‖.

9. v is min : U→ N. Suppose, for a termu in TClass, thatu∈ ‖U‖. Let s be a state. Sinceu∈ ‖U‖,
there existss′ ≥ s such thatu ↓s

′
. We have to prove thatmin u∈ ‖N‖. There exists an updateU

such that for alls′′ ≥ s′, u[s′′] =U . Then for alls′′ ≥ s′, minu[s′′] =minU = n for some numeral
n. By definition of‖N‖, min u∈ ‖N‖.

10. v is ⋒ : U→ U→ U. Suppose thatu1 ∈ ‖U‖ andu2 ∈ ‖U‖. We have to prove that⋒ u1u2 ∈ ‖U‖.
Let s be a state. Sinceu1 ∈ ‖U‖ there existss′ ≥ s such thatu1 ↓

s′ . Sinceu2 ∈ ‖U‖, there exists
s′′ ≥ s′ such thatu2 ↓

s′′ . Therefore, there exist two constantsU1 andU2 such that for alls′′′ ≥ s′′,
u1[s′′′] =U1 andu2[s′′′] =U2. Finally, for alls′′′ ≥ s′′,

⋒ u1u2[s
′′′] = ⋒U1U2 =U3

and by definition of‖U‖, ⋒ u1u2 ∈ ‖U‖.

11. v is S, mkupd or get. Analogous to the previous case.

12. v is a constantΦi : N→ N in S C . Suppose now, for a termu : N, thatu∈ ‖N‖. We have to prove
thatΦiu∈ ‖N‖. Let sbe a state. We must show that there exists as′ ≥ ssuch thatΦiu ↓s

′
. Since

u∈ ‖N‖, there exists a states′ ≥ s such thatu ↓s
′
. Let n= u[s′], with n numeral, andm= s′i(n).
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LetΦi =ΦA(x,y). If A /∈ Γ , then trivially (i,n) ∈ def(s′) by definition 7. Therefore for alls′′ ≥ s′,
Φiu[s′′] = s′′i (n) = m and we are done. Hence, we may assumeA∈ Γ . There are two cases, and
this is the only point of this proof in which we useEM.

(a) A(n,m) is true. Therefore, for alls′′ ≥ s′, s′′i (n) = m because(i,n) ∈ def(s′). Thus, for all
s′′ ≥ s′, Φiu[s′′] = s′′i (n) = m, which is the thesis.

(b) A(n,m) is false. If there existsl such thatA(n, l) is true, then let

s′′ := λxNλyN. if x= i ∧Bool y= n then m else s′x(y)

Then, for alls′′′ ≥ s′′, s′′′i (n) = l because(i, l) ∈ def(s′′). Thus, for alls′′′ ≥ s′′, Φiu[s′′′] =
s′′′i (n) = l , which is the thesis. If there is nol such thatA(n, l) is true, then trivially
(i,n) ∈ def(s′). Thus for alls′′ ≥ s′, Φiu[s′′] = s′′i (n) = m and we are done.

According to the Definition 6 of the truth valueAs of a formulaA in a states, when we compute
As we need only a finite number of Skolem function values, one foreach quantifier ofA. Thus, we
can show with the excluded middle that for every states there exists a states′ ≥ s such that when we
evaluateA in the states′ we obtain the real truth value ofA.

Proposition 2 Let A(~x) be any arithmetical formula and~n be numerals. For every state s, there exists
a state s′ ≥ s such that As

′
(~n) = True if and only if A(~n) is true.

Proof. We prove the thesis by induction onA. Let s be any state. The cases in whichA is atomic
or A= B∨C,B∧C,B→C are trivial. Let us consider those in whichA starts with a quantifier.

• A(~n) = ∃yNB(~n,y). By the excluded middle, we extends to a states′ ≥ s such thatm= s′B〈~n〉
implies that

∃yNB(~n,y)→ B(~n,m)

By induction hypothesis, there exists a states′′ ≥ s′ such thatB(~n,m) is true if and only if

Bs′′(~n,m) = χB(~n,m)[s′′] = True

AssumingΦi = ΦB, since(i,〈~n〉) ∈ def(s′), we haves′′B〈~n〉= s′B〈~n〉. Since

As′′(~n) = χB(~n,ΦB〈~n〉)[s
′′] = χB(~n,m)[s′′]

andA(~n) is equivalent toB(~n,m), we obtain the thesis.

• A(~n) = ∀yNB(~n,y). By the excluded middle, we extends to a states′ ≥ s such thatm= s′B⊥〈~n〉
implies that

∃yNB⊥(~n,y)→ B⊥(~n,m)

By induction hypothesis, there exists a states′′ ≥ s′ such thatB⊥(~n,m) is true if and only if

(B⊥)
s′′
(~n,m) = χB⊥ [s′′](~n,m) = True

AssumingΦi = ΦB⊥, since(i,〈~n〉) ∈ def(s′), we haves′′B⊥〈~n〉= s′B⊥〈~n〉. Since

As′′(~n) = χB⊥(~n,ΦB⊥〈~n〉)[s′′] = χB⊥(~n,m)[s′′]

we obtain the thesis.
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Now we prove a special case of the statement that the realizability of a formula implies the formula
itself. Namely, we show thatt realizes⊥ implies⊥. The idea, as we have explained before, is to find
a states which contains all the information needed to evaluatet.

Theorem 3 (Consistency of Interactive Realizability)For every closed term t ofTClass, t ��⊥. In
particular, for every state s, there exists a state s′ ≥ s such that t��s′⊥.

Proof. Suppose, for the sake of contradiction, that there exists aterm t such thatt � ⊥. Let s be
any state. Sincet : U, by theorem 2 we havet ∈ ‖U‖ and therefore there exists a stater ≥ s such that
t ↓r . Let t[r] =U for some updateU . Sincet �r ⊥, U is non-empty: let(i,~n,m) ∈U . By application
of theorem 2, ifΦi = ΦA, there exists a stateq≥ r such thatχA(~n,m) ↓q. By definition,

Aq(~n,m) = χA(~n,m)[q] = b

for some booleanb. Sincet �q ⊥ andt[q] =U (becauset ↓r andq≥ r), we obtain by definition of
realizability thatb= True. Let qi〈~n〉= l . We have two possibilities:

1. A(~n, l) is false. We define the state

s′ := λxNλyN. if x= i ∧Bool y= 〈~n〉 then m else qx(y)

Then,s′ ≥ q, for A(~n, l) is false. Moreover, sinceχA(~n,m) ↓q, for all q′ ≥ q, χA(~n,m)[q′] = b;
by Proposition 2, there existsq′ ≥ q, such thatχA(~n,m)[q′] = True if and only if A(~n,m) is
true. SinceχA(~n,m)[q′] = b= True, we have thatA(~n,m) is true. By assumption ont, we have
t �s′ ⊥ andt[s′] =U , becauses′ ≥ r. Sinces′i〈~n〉 = m, by definition oft �s′ ⊥ we would have
bothAs′(~n,m) = False andAs′(~n,m) = True, which is a contradiction.

2. A(~n, l) is true. By Proposition 2, there is a states′ ≥ q such thatAs′(~n, l) = True. By assumption
on t, we havet �s′ ⊥ andt[s′] =U . But qi〈~n〉 = l , A(~n, l) is true ands′ ≥ q; therefore(i,~n) ∈
def(q) and hences′i〈~n〉 = l . By definition of t �s′ ⊥, we would haveAs′(~n, l) = False and
As′(~n,m) = True, which is in contradiction withAs′(~n, l) = True.

Finally, we are in a position to prove inHAω +EM that the realizability of a formulaA implies its
truth. For simplicity we assumeA is a→-free, but the result holds also in the general case.

Theorem 4 (Soundness of Realizability)Let A be any→-free arithmetical formula and suppose t�

A. Then A is true.

Proof. We prove a stronger statement. Lets be a state and suppose that for alls′ ≥ s, t �s′ A. We
prove by induction onA, thatA is true.

• A= P, with P atomic. Suppose, by the way of contradiction, thatP is false. Then we have that
for all s′ ≥ s, t �s′ ⊥, which is impossible by Theorem 3.

• A= B∧C. Then, for alls′ ≥ s, t �s′ A andt �s′ B. By induction hypothesisA andB are true,
and we obtain the thesis.

• A=B∨C. By Theorem 2, there exists a stater ≥ ssuch thatp0t ↓r . Letp0t[r] = b with b boolean,
sayb = True. Then, by defintion, for everyr ′ ≥ r, p0t[r ′] = True and thereforet �r ′ A. By
induction hypothesisA is true, and we obtain the thesis.
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• A= ∀xNB. Let n be any numeral. Then, for alls′ ≥ s, tn�s′ B(n). By induction hypothesisB(n)
is true. Therefore,∀xNB is true, and we obtain the thesis.

• A = ∃xNB. By Theorem 2, there exists a stater ≥ s such thatπ0t ↓r . Let π0t[r] = n with n
numeral. Then, by definition, for everyr ′ ≥ r, π0t[r ′] = n and thereforet �r ′ B(n). By induction
hypothesisB(n) is true, and we obtain the thesis.

Since all the proofs given in this section are formalizable in HAω +EM (see Section 5), we are
able to prove the conservativity ofHAω +EM+SK overHAω +EM for arithmetical formulas.

Theorem 5 (Conservativity ofHAω +EM+SK over HAω +EM) Let A be a closed arithmetical for-
mula, and suppose

HAω +EM+SK ⊢ A

Then:

HAω +EM ⊢ A (1)

HA+EM ⊢ A (2)

Proof.

1. We may assume thatA is→-free. Otherwise,

HAω +EM ⊢ A↔ B

with B →-free and we considerB. SinceΓ is arbitrary, we may assume that all the subfor-
mulas of the instances ofEM andSK used in the derivation belong toΓ . By formalization
of the Adequacy Theorem 1 inHAω (see Section 5), we obtain thatHAω ⊢ t � A for some
term t of TClass. By formalization of the proof of Theorem 4 inHAω + EM, we obtain that
HAω +EM ⊢ (t � A)→ A. We concludeHAω +EM ⊢ A.

2. There are at least two ways to obtain the thesis. On one hand, we may use (1) and the standard
result about the conservativity ofHAω +EM overHA+EM for arithmetical formulas (see for
example Troesltra [24]). On the other hand, we may code directly terms of systemTClass into
natural numbers and then express the proofs of point 1) inHA+EM (see Section 5).

5 Formalization of the Proofs inPA and in HA
ω +EM

In this section we explain how to formalize inPA andHAω +EM the proof of the Adequacy Theorem 1
of Section 3 and the proofs of the Computability Theorem 2 andthe Soundness Theorem 4 of Section
4. We start with the case ofPA.

5.1 Formalization in PA

One can routinely code inPA all the concepts we have so far used. As in Tait [22], one may code the
terms ofTClasswith natural numbers and successively the definition of the realizability and computabil-
ity predicates with arithmetical formulas. Since neither set-theoretic concepts nor Skolem axioms are
employed in any of the given proofs, everything can be coded in PA.
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5.2 Formalization in HA
ω +EM

Instead of coding everything into natural numbers, which isof limited practical interest, it is more
satisfying to formalize our proofs directly inHAω + EM. There is no serious obstacle to this end,
except for a small formalization issue: the notiont[s] of evaluation of a termt of TClass in a state
s, which we have heavily used in the definitions of the realizability and computability predicates, is
not directly representable inHAω +EM. To begin with, terms ofTClass may contain some constant
Φ∈S C which does not belong to the language ofHAω . This problem is easily solved by considering
terms of the formt[s] with s state variable. However, in the definition of Interactive realizability for
implication and in the statement of the Computability Theorem one needs to define formulasx� A
andx∈ ‖N‖, wherex is a variable. In these definitions it is necessary to speak about the substitution of
an actual states in the body of a variablex, which is impossible inHAω (remember thatx represents
a termt[s] of T ). This last issue is overcome quite easily by considering inplace of a termt : τ in
TClass the termλsS.t[s] : S→ τ , whereS := N

2 → N is the type of states. In this way, one makes explicit
the functional dependence oft from the states and transformst into an object having a semantical
denotation. It is however necessary to slightly adapt the definitions of realizability and computability,
which is what we are going to do.

First, we give an alternative definition of Interactive realizability, which is shown in [4] to be
equivalent to Kreisel’s modified realizability forHAω applied to some Friedman translation of formu-
las. We denote withL the restriction of the languageLClassto the formulas not containing any Skolem
function constantΦ ∈ S C .

Definition 12 (Alternative Definition of Interactive Realizability) Assume s: S is a closed term of
T , t is a closed term ofT , D ∈ L is a closed formula ofL , and t : |D|. We define by induction on
D the relation t
s D:

1. t 
s Q if and only if t=U implies:

• for every(i,~n,m) ∈U, Φi = ΦA for some A∈ Γ , and As(~n,si〈~n〉) = False and As(~n,m) =
True.

• U =∅ implies Q= True

2. t 
s A∧B if and only ifπ0t 
s A andπ1t 
s B

3. t 
s A∨B if and only if eitherp0t = True andp1t mr A, or π0t = False andp1t mr B

4. t 
s A→ B if and only if for all u, if u
s A, then tu
s B

5. t 
s ∀xτA if and only if for all closed terms u: τ of T , tu
s A[u/x]

6. t 
s ∃xτA if and only for some closed term u: τ of T , π0t = u andπ1t 
s A[u/x]

One can prove straightforwardly, as in [4], that our first Definition 9 of Interactive realizability is
equivalent to this alternative one.

Theorem 6 (Characterization of Interactive Realizability) Let t∈ TClass and s be a state. Then, for
every B∈ LClass

t �s B ⇐⇒ t[s]
sB[s]
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Theorem 6 allows us to replace in our conservativity proof the expressiont � A with the ex-
pression∀sS. t[s]
sA[s], which is a formula ofHAω . Moreover, the Adequacy Theorem for
 is
formalizable inHAω , since it is a special case of the Adequacy Theorem for modified realizability,
which is formalizable in that system (see [25]).

Secondly, we adapt the notion of computability to terms of typeS→ τ . For every pair of terms
t,u∈ T respectively of typeS→ (σ → τ) andS→ σ , we define the following notion of application:

t ·u := λsS.ts(us)

For every termt ∈ T of type S → (τ0 × τ1) and i ∈ {0,1}, we define the following notion of
projection:

πit := λsS.πits

Finally, for every constant termc /∈ S C , we definec∗ := λsSc. We now adapt Definition 10 and
Definition 11. Since there is no possibility of confusion, wemaintain the same notations of Section 4
but with the new specified meaning.

Definition 13 (Definition of a term in a states) For every state s and term t: S → τ of T with τ
atomic type, we define t↓s (and we say “t is defined in s”) as the statement: for all statess′ ≥ s,
ts′ = ts.

Definition 14 (Computable terms)
For every typeτ of T , we define a set of closed terms ofT of typeS→ τ as follows:

• ‖N‖={t : S→ N | for all states s there is a state s′ ≥ s such that t↓s
′
}

• ‖Bool‖={t : S→ Bool | for all states s there is a state s′ ≥ s such that t↓s
′
}

• ‖U‖={t : S→ U | for all states s there is a state s′ ≥ s such that t↓s
′
}

• ‖τ → σ‖={t | ∀u∈ ‖τ‖ t ·u∈ ‖σ‖}

• ‖τ ×σ‖={t | π0t ∈ ‖τ‖andπ1t ∈ ‖σ‖}

The proofs of Lemma 2 and of the Computability Theorem can be easily adapted (for details, see
the full version of this paper [8]).

Lemma 3 For every term t: S→ ρ of T , if for every state s there exists a state s′ ≥ s and u∈ ‖ρ‖
such that for all states s′′ ≥ s′, ts′′ = us′′, then t∈ ‖ρ‖.

Theorem 7 (Computability Theorem)
Let v : τ be a term ofTClass and suppose that all the free variables of v are among xσ1

1 , . . . ,xσn
n . If

t1 ∈ ‖σ1‖, . . . , tn ∈ ‖σn‖, thenλsS.v[s][t1s/xσ1
1 , . . . , tns/xσn

n ] ∈ ‖τ‖.

The proofs of Proposition 2 and Theorem 3 remain exactly the same, while the proof of Theorem 4
can be straightforwardly adapted. In particular, in the base case of the induction one needs to prove
that a termt, possibly with free variables of typeN, is computable. This follows from Theorem 7 and
the fact that it is possible to prove by induction the statement ∀xN. λsSx∈ ‖N‖.
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