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We present a new syntactical proof that first-order Peanth#wetic with Skolem axioms is con-
servative over Peano Arithmetic alone for arithmeticahfatas. This result — which shows that
the Excluded Middle principle can be used to eliminate Skofenctions — has been previously
proved by other techniques, among them the epsilon sutistittnethod and forcing. In our proof,
we employ Interactive Realizability, a computational satita for Peano Arithmetic which ex-
tends Kreisel's modified realizability to the classicaleas

1 Introduction

For a long time it has been known that intuitionistic redlifity can be used as a flexible tool for
obtaining a wealth of unprovability, conservativity andgi-theoretic results [23, 25]. As title of
example, with Kreisel's modified realizability [17], onercahow the unprovability of Markov Prin-
ciple in Heyting Arithmetic in all finite typesHA®) and the conservativity dflA® with the Axiom

of Choice AC) over HA® for negative formulas. In both cases, one starts by showiagany for-
mula provable in one of those systems can be shown to beablimHA®. In the first case, one
proves that the realizability of Markov Principle implidgetsolvability of the Halting Problem, and
concludes that Markov Principle is unprovableHA®. In the second, one exploits the fact that the
assertion t realizesA” is exactly the formulaA whenA is negative and concludes tHaA® provesA.

The situation in classical logic has been very different. ddong time it did not exist any re-
alizability notion suitable to interpret directly classigroofs, let alone proving independence or
conservation results. However, recently several classdzdizability interpretations have been put
forward. Among them: Krivine’s classical realizabilityd], which has been shown in [19] to yield
striking unprovability results in Zermelo-Fraenkel setdhy, and Interactive realizability [[1] 4 [6, 7],
which has been shown inl[3], 6] to provide conservation resfultl'lg—formulas.

Being a tool for extracting programs from proofs, it is hoeequite natural that Interactive re-
alizability is capable of producing'lg—conservativity results. The aim of this paper is to provat th
Interactive realizability can as well be used to prove otwrservativity results. In particular, let us
consider first-order classical Peano Arithmét, which isHA 4+ EM, whereEM is the excluded mid-
dle over arithmetical formulas. Then we give a new syntgatanf thatPA with the Skolem axiom
schemeSK is conservative ovelPA for arithmetical formulas — a result first syntactically yea by
Hilbert and Bernays [16] by means of the epsilon substitutieethod. The result is particularly inter-
esting since it implies that classical choice principles ba eliminated by using the excluded middle
alone. The structure of our proof resembles the patternenintiuitionistic-realizability conservation
proofs we have sketched above and allows to obtain a straageit. Namely, we shall show that if
an arithmetical formuld is provable inHA® + EM + SK, then the assertiort tealizesA” is provable
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2 Interactive Realizability and the elimination of Skolenmétions in Peano Arithmetic

in HA® alone. Afterwards, we shall show the provabilityHA® -+~ EM of the assertion ft(realizesA)
implies A” and thus conclude thatA® + EM provesA. Since this latter system is conservative over
PA for arithmetical formulas, we obtain the result.

In our opinion, there are at least two reasons our proof igalenis interesting. As remarked by
Avigad[10], the methods based on the epsilon-method, ldad®s Theorem or cut-elimination lead
to an exponential increase in the size of the proof, whenipgg$som a proof inHA® + EM + SK
to a corresponding proof iHA + EM; instead, we conjecture that our transformation is polyiahm
To the best of our knowledge, there is only another methoddibes equally well, which is Avigad’s
[10]. The technique of Avigad is related to ours since it ubesmethod of forcing, in which the con-
ditions are finite approximations of the Skolem functionedus the proof. With forcing one avoids
speaking about infinite non-computable objects (i.e. thaele®k functions) and can approximate the
original proof. Avigad’s method is very simple and elegahiew there is only one Skolem function to
eliminate, but it becomes more complicated and difficultandie when dealing with several Skolem
functions. In fact, a nesting of the notion of forcing togathvith a technical result about elimination
of definitions become necessary and the method loses sonivenappeal. Instead, the use of Inter-
active realizability allows to deal with all the Skolem fiilonis at the same time, and we conjecture
that the resulting proofs are much shorter than the onesnelotdy forcing. Moreover, the notion of
forcing as an approximation of model-theoretic truth isdearto come up with, and it is much more
natural to talk about states and approximations when dgalith programs.

Secondly, the theory of Interactive realizability offersrdform explanation of a number of differ-
ent phenomena. Rather than proving each particular metadtic result about classical Arithmetic
with an ad-hoc technique, one employs a single methodolBgy.example, one may prove conser-
vativity of PA overHA for I'Ig—formulas by a negative translation followed by Friedmdrasslation
[13]; one may extract from proofs terms of Godel's SystEimy realizability or functional interpreta-
tions [14]; one may prove the result about the eliminatio®kdlem functions with forcing; one may
extract from proofs strategies in backtracking Tarski gaimeanalyzing sequent calculus proafs|[12];
one may obtain a simple ordinal analysisR# + SK by using update procedured [9]. Instead, with
the theory of Interactive realizability one obtains all lesults above as a consequence of a single
concept (see [3,5) 7]).

Plan of the paper In Section§2 we review the term calculusz,. in which Interactive realizers
are written, namely an extension of Godel's systémlus Skolem function symbols for a countable
collection of Skolem functions. In Sectigf8 we recall Interactive realizability, as described[in g],
computational semantics fefA“ + EM + SK, an arithmetical system with functional variables which
includes first-order classical Peano Arithmetic and Skadeqoms. In Sectior§d we use Interactive
realizability to prove the conservativity 6fA®“ + EM + SK overHA® + EM for arithmetical formulas.
In Sectiondd we explain in more detail how to formalize the proofs of &t in HA® + EM and
HA 4+ EM.

2 The Term Calculus .7,

In this section we follow([7] and recall the typed lambda c#lc7 and .7, in which interactive
realizers are written.7 is an extension of Godel's system(as presented in Girard [15]) with some
syntactic sugar. The basic objects®fare numerals, booleans, and its basic computational catstr
are primitive recursion at all types, if-then-else, paisin Godel’sT. .7 also includes as basic objects
finite partial functions oveN and simple primitive recursive operations over thef,. is obtained
from .7 by adding on top of it a collection of Skolem function symbolg &1, d,, ..., of typeN — N,
one for each arithmetical formula. The symbols are inemnftbe computational point of view and
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realizers are always computed with respect to some appatiximof the Skolem maps represented
by &g, ®1,®5,....

2.1 Updates

In order to define7, we start by introducing the concept of “update”, which ishirng but a finite
partial function overN. Realizers of atomic formulas will return these finite parfunctions, or
“updates”, as new pieces of information that they have kdabout the Skolem functiobg, ¢4, .. ..
Skolem functions, in turn, are used as “oracles” during catapons in the systeni;... Updates are
new associations input-output that are intended to cqragct in this sense, tapdate wrong oracle
values used in a computation.

Definition 1 (Updates and Consistent Union)We define:

1. An update set U, shortly ampdate is a finite set of triples of natural numbers representing a
finite partial function fromN? to N.

2. Two triples(a,n,m) and(a’,n’,m’) of numbers areonsistentf a=a and n=n"implies m=m.
Two updates Y U, are consistent if yuU, is an update.

3. Uis the set of all updates.

4. Theconsistent uniotJ; % U, of U1,U, € U is Uy UU, minus all triples of Y which are incon-
sistent with some triple of{J

The consistent uniol; % U, is an hon-commutative operation: whenever a triplé&Jofand a
triple of U, are inconsistent, we arbitrarily keep the tripldJafand we reject the triple @f,, therefore
for someU;,U, we havel, % U, £ U, % U1. % represents a way of selecting a consistent subset of
Ui UUy, such that)i;ZU, =0 — U; =U, = 0.

2.2 The System7

7 is formally described in figurel1. Terms of the foifiat, tot3 will be sometimes written in the
more legible formif t; then ty else t3. A numeralis a term of the formS(...S(0)...). For every
updateU € U, there is in.7 a constanU : U, whereU is a new base type representitig We write &
for 0. In .7, there are four operations involving updates (see figlre 1):

1. The first operation is denoted by the constain : U — N. min takes as argument an update
constanyJ; it returns the minimum numeral such thata,n,m) € U for somen,m € N, if any
exists; it returns O otherwise.

2. The second operation is denoted by the congleintU — N — N. get takes as arguments an
update constard and three numerals n,|; it returnsmif (a,n,m) € U for somem e X (i.e. if
(a,n) belongs to the domain of the partial functior); it returnsl otherwise.

3. The third operation is denoted by the constaktipd : N3 — U. mkupd takes as arguments three
numeralsa, n,m and transforms them into (the constant codingZinthe update{(a,n,m)}.

4. The forth operation is denoted by the constantu® — U. U takes as arguments two update
constants and returns the update constant denoting thesistent union.
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Types
0,T:=N|Bool|U|0—T|OXT
Constants
c:=R¢|if; |0]S | True | False | min | get | mkupd | U |U (VU € U)
Terms

t,ui= c|x" |tu]| Ax"u] {t,u) | U | THU
Typing Rules for Variables and Constants
X' T|0:N|S: N—N|True: Bool | False: Bool |U: U(foreveryU cU) |U: U—U—=T
|min: U—N|get: U N—>N—N—N|mkupd: N-N—>N—-U
|iffi Bool 2T T—T|Ri: T N> (T—>T1)=>N>T

Typing Rules for Composed Terms

t:o—>T1 u.o u:t u:ao t:r U:TgxXTp
tu:t AXPuio—T (ut):oxt U T

i€{0,1}

Reduction Rules All the usual reduction rules for simply typed lambda calsu{see Girard [15]) plus the rules for recur-
sion, if-then-else and projections

Rruv0— u  RruvS(t) — vi(Rruvt) if Trueuv— u  ifFalseuv—v T15(Up,up) — Ui, i =0,1

plus the following ones, assumirggn, m,| be numerals:

- if Im,n. U b,i,j)eU.a<b o .
minD s a i m,n. (a,n,m) eUAV(bji,j)eU.a< U0, U770,
0 otherwise

m if 3m. (a,n,m) €U

) mkupdanm~— {(a,n,m)}
| otherwise

getUanl — {

Figure 1: the extensio of Godel's systenT

We observe that the constantsn, get, mkupd,U, U, and the typeJ are just syntactic sugar and
may be avoided by coding finite partial functions into natatambers. Systen¥” may thus be coded
in Godel'sT.

As proved in[[1]4],.7 is strongly normalizing, has the uniqueness-of-normahf@roperty and
the following normal form theorem also holds.

Lemma 1 (Normal Form Property for .7) Assume A is either an atomic type or a product type.
Then any closed normal termet 7 of type A is: a numeral nN, or a booleanTrue,False : Bool,
or an update constafd : U, or a constant of type A, or a paju,Vv) : Bx C.

2.3 The SystemZ..
We now define a classical extension.4f, that we call.7,., with a Skolem function symbol for each
arithmetical formula. The elements 6t Will represent (non-computable) realizers.

Definition 2 (The System.%..) Define 7= 7 + F€, Where.#% is a countable set of Skolem
function constants, each one of tyjpe+ N. We assume to have an enumeratiogf ¢4, o, ... of all
the constants in”% (while generic elements of % will be denoted with letterd, ¥, .. .).

Every ® € % represents &kolem functiorfor some arithmetical formulay" A(x,y), taking
as argument a numberand returning somg such thatA(x,y) is true if any exists, and an arbitrary
value otherwise. In general, there is no set of computatdaat®n rules for the constants if ¢,
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and therefore no set of computable reduction rulesdgt, Each (in general, non-computable)
termt € Ju.e is associated to a sét[g [s€ .7,s: N? — N} C .7 of computable terms we call its
“approximations”, one for each terst N2 — N of .7, which is thought as a sequenggs;,s,, ... of
computable approximations of the oracteg ®1, 2, ... (with s we denotes(i)).

Definition 3 (Approximation at State)
1. Astateis a closed term of type? — N of .7. If i is a numeral, with swe denote §).

2. Assume £ J. and s is a state. The “approximation of t at a state s” is themefs| of .7
obtained from t by replacing each constahtwith s.

3 Interactive Realizability for HA® + EM + SK

In this section we introduce a notion of realizability basednteractive learning fadA® +EM + SK,
Heyting Arithmetic in all finite types (see e.g. Troelsir@]Pplus Excluded Middle and Skolem axiom
schemes for all arithmetical formulas. Then we prove ounm&ieorem, the Adequacy Theoretif:

a closed formula is provable iIHA® + EM + SK, then it is realizable”

We first define the formal systeiA® + EM + SK. We represent atomic predicates H#“ -+
EM + SK with closed terms of7, of type Bool. Terms ofHA® 4+ EM + SK are elements 0f7; ..
and thus may include the function symbols.#i%’. We assume having in GodelB some terms
=Boo1. B00l — Bool — Bool, yo1 : Bool — Bool, Vpeo1 : Bool — Bool — Bool.. ., implementing
boolean connectives. As usual, we shall use infix notationexample, we writé;, =-p,.1 t2 in place
of =p.01 t1t2 @and similarly for the other connectives.

3.1 Language ofHA® +EM 4 SK
We now define the language of the arithmetical theldf?” -+ EM + SK.

Definition 4 (Language ofHA® + EM + SK) The language%..s of HA® + EM + SK is defined as
follows.

1. The terms of . are allt € Tpee
2. The atomic formulas o4 . are all Q € Z;... Such that Q Bool.

3. The formulas 0of%,. are built from atomic formulas of/.. by the connectives, A, —
,\,V,3 as usual, with quantifiers possibly ranging over variablésyk z, ... of arbitrary
finite typet of Tjaes

4. Aformula of%, . is saidarithmeticalif it does not contain constants iff 4" and all its quanti-
fiers range over the typi, i.e. it has one of the following formsx"A, IxXYA AV B,AAB,A—
B,A~ B, P, with A B arithmetical and P atomic formula of .

We denote withl the atomic formul&alse and with—A the formulaA — 1. A~ Bis the dual
of implication as in bi-intuitionistic logic and mean# ‘and the opposite d8”. If F is a formula
of % in the free variables{l,...,x,ﬁn andty : Tq,...,ty : Ty are terms 0f%;.e With F(tg,...,ty)
we shall denote the formulafty /x4, ...,tn/%:]. Sequences of variabld, ..., x{ will be written asX.
We denote withX) a term of.7 in the free numeric variablegrepresenting a injection af into N.
Moreover, for every sequence of numerdls ny,...,ng, we define(ri) := (X)[fi/X] and assume that
the functionni— () is a bijection.
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TheExcluded Middle axiom scheni# is defined as the set of all formulas of the form:
vRY. A(R) v -A(R)

whereA is an arithmetical formula.
The Skolem axiom schen$& contains for each arithmetical formudX,y) an axiom:

VR IYTARRY) — AR P(X))

with ¢ € %. We assume that for everly € .% there is inSK one and only one formula in
which ¢ occurs. Such unique formula is said to be thdormula associated t@® and ¢ will be
sometimes written a®a. If sis a state ane; = d 4, with sy we denotes and withmkupd Aut we
denotemkupdiut. We claim that the result of this paper would even hold if tberfulaA was not
required to be arithmetical, i.e. it was allowed to contahmeo Skolem functions previously defined by
other Skolem axioms, possibility which in Avigad's case][@Omplicates the elimination technique
considerably.

For each formuld of Z. its involutive negatior - is defined by induction oR. First, we say
that an atomic formul® is positive if it is of the form—gee1 - . . 7Bo01 @, Q IS NOt of the form—g,,1 R,
and the number ofg,.1 in front of Q is even. Then we define:

(=001 P)* = P (if P positive) P+ = —.01 P (if P positive)
(AAB)L =AL VBt (AVB)t =AtAB*

(A—B): =A-\B (ANB):=A—B
(VXTA)L = IXAL (IXA)E = XAt

As usual, one hagF+)*t =F.
We now fix a special set of formulds

Definition 5 (Setl") We fix an arbitrary finite seft of arithmetical formulas &y) of Zass

In the following, T will serve as a parameter in order to relativize the defingiof the realizability
relation and of the ordering of states providedL[in [7]. Theaids that any given proof in the system
HA® +EM + SK uses only a finite number of instancestdfl andSK. Thus, it is enough to specialize
the atomic case of the definition of realizability in such anitaefers only to the formulas ifi. The
restriction is necessary in order to avoid to speak aboutthie of an infinite number of formulas, as
done in [7]. When we shall have to interpret a particular pf@owe will choosel" as containing all
the sub-formulas of the classical axioms appearing.in

3.2 Truth Value of a Formula in a State

The axioms of the systeHA® + EM + SK give a great computational power to the systé@).s
thanks to the use of Skolem functions as oracles, one cangigtmhby a termyr of 7. the truth
value of any arithmetical formulg. When one effectively evaluatgs in a particular state, we say
that one computethe truth value of a formula F in a state s

Definition 6 (Truth Value of a Formula F in a States) For every arithmetical formula FX) of % .

we define, by induction on F, a tergp : Bool of system7;,.., With the same free variables of F:
xp = P, P atomic

XAVB = XA VBool XB Xvy'A = XA[PaL(X) /Y] XA<B = XA/ \Bool XBL
XAAB = XA /\Bool XB Xay'A = XA[Pa(X) /Y] XA—B = XA =Bool XB
We define F:= xg[g] and call itthe truth value of in the states.
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Intuitively, if F(f) is a closed formula, our intended interpretation is:

1. xr (A) is a term of 7., denoting in any standard model ¢fA® + EM + SK, the truth value of
F(n).
2. F5(A) is aterm of.7 computing what would bie truth value of (i) in some standard model

of HA® + EM under the (possible false) assumptithat the interpretation mapping; to s
satisfies the axioms &K.

We remark that thusS(A) is only aconditionaltruth value: ifF3(i) is not the correct truth value
of F(A) — it may well happen — then the interpretation mappingn s does not satisfy the axioms
of SK. This subtle point is what makes possible learning in Irdiéra realizability: whenever a
contradiction follows, realizers are able to effectivelydficounterexamples to the assertion that the
interpretation mapping; in 5 satisfies the axioms &K. We also observe that this way of computing
the truth of a formula comes from the epsilon substitutiorthoe (see Avigad [9], Mints et al._[20]).

Every statesis considered as aapproximationof the Skolem functions denoted by the constants
of % for each formulaA, sy may be a correct approximation @ on some arguments, but wrong
on other ones. More precisely, we are going to consider thde$¢s) of the pairs(i, (i)) such that
®; = dpandA e T = WYA(R,y) — A(R,s () is true as the real “domain” &f representing the set of
arguments at which is surely a correct approximation @f, in the sense tha returns an appropriate
witness if any exists. We point out thatdf; = ®5 andA ¢ T, then trivially (i, (i)) € def(s). The
choice is made just for technical convenience, since onetisterested in the behaviour sbutside
I'. We also define an ordering between states: we sathas if, intuitively, s is at least as good an
approximation as. Thus, we ask that #is a correct approximation at argumént(ri)) alsos' is and
in particulars (i) = s (f).

Definition 7 (Domains, Ordering between States)
1. We define

def(s) = {(i, (M) | ®; = da and (A c T = WA(Ry) — A(f,s ()}

where i andi range over numerals and sequences of numerals.

2. Let s and’sbe two states. We define>s s if and only if for all(i, (R)), (i, (f)) € def(s) implies
s() = s().

We remark that by definitions' > s implies def(s') D def(s) and that thanks to the restriction
to I the relations' > s is arithmetical, because the conditign(f)) € def(s) is non-trivial only for
finitely manyi. From now onwards, for every pair of termst, of system.7, we shall writet; =t
if they are the same term modulo the equality rules corredipgrio the reduction rules of systef
(equivalently, if they have the same normal form).

3.3 Interactive Realizability
For every formulaA of %...s We now define what typg\| a realizer ofA must have.

Definition 8 (Types for realizers) For each formula A of#;,..s Wwe define a typgA| of F.. by induc-
tion on A:

|P| =U, if P is atomic
|IAAB| =|A| x B |3XTA| = T x |A| AN B| = |A| x |BY|
|AV B| = Bool x (|A| x |B|) VXA =T — |A| |A— B|=|A| — |B|
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Let now pg := T : Oy X (01 X 02) — Op, p1 = THTH : Op X (01 X O2) — 01 and p := THTH :
0o X (01 X 02) — 0z be the three canonical projections fragx (01 x 02). We define the realizability
relationt IIF F, wheret € T, F € Zonssandt : |F|.

Definition 9 (Interactive Realizability) Assume s is a state, t is a closed terntfs, F € Liass IS
a closed formula, and t|F|. We define first the relationlt-s F by induction and by cases according
to the form of F:

1. tli-s Q for some atomic Q if and only @ = t[g] implies:
e for every(i,i,m) e U, ®; = & for some Ac T, and A(fi, s (f)) = False and A(A,m) =
True.
e U = o implies Qs = True

2. tlIFsAAB if and only ifrpt IIFs A and it liFs B

3. tlFs AV Bif and only if eithemot[s| = True andpat IFs A, or pot[s] = False andpyt lIFs B
4. tliks A— B if and only if for all u, if ull-g A, then tul-¢ B

5. tliFs AN B if and only ifrpt IIFs A and it I B

6. tli-s Vx'A if and only if for all closed terms ur of .7, tull-s Aju/X]

7. tli-s IX'A if and only for some closed term @ of .7, mpt[g) = u andmt II-s Aju/X]

We define i F if and only if for all states s of7, t lI-g F.

The ideas behind the definition tfs in the case oHA® + EM + SK are those we already ex-
plained in [7]. A realizer is a term of 7. pPOSSibly containing some non-computable Skolem
function of #%’; if such a function was computableywould be an intuitionistic realizer. Since in gen-
eralt is not computable, we calculate its approximatifshat states. t is an intelligent, self-correcting
program, representing a proof/construction dependingherstates. The realizetinteractswith the
environment, which may provide a counter-proof, a countargle invalidating the current construc-
tion of the realizer. But the realizer is always able to tumslsa negative outcome into a positive
information, which consists in some new piece of knowledgeried about some Skolem functibn

The next proposition tells that realizability at statespects the notion of equality 6k,..terms,
when the latter is relativized to state That is, if two terms are equal at the stai¢hen they realize
the same formulas in the stage
Proposition 1 (Saturation) If t1[s] = tz[s| and w[s] = up[s], then { li-s B[uy/x] if and only if & Il
Bluz/X].

Proof. By straightforward induction oA.

In the following, we use a standard natural deduction systerilA® 4+ EM + SK, together with
a term assignment in the spirit of Curry-Howard correspodeor classical logic. We denote with
HA® + EM + SK It : A the derivability relation in that system, wherés a term of. 7. andA is a
formula of %..= All details can be found in[_[4][7].

The main theorem about Interactive realizability is the dukecy Theorem: if a closed formula is
provable inHA® + EM + SK, then it is realizable (se&l[7] for a proof).

Theorem 1 (Adequacy Theorem)If A is a closed formula such th&tA® + EM +SK -t : A and all
the subformulas of the instanceskdl and SK used in the derivation belong 14 then tii- A.
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4 Conservativity of HA® + EM + SK over HA® + EM (HA + EM)

The aim of this section is to use Interactive realizabilityorder to prove that for every arithmetical
formula A, if HA® + EM + SK - A thenHA® +EM - A (HA+EM F A). Since we know by the
Adequacy Theorerfl 1 th#dA® 4+ EM + SK - A implies HA® + EM +SK -t : A and HA® proves

t - A, our goal is to show itHA® + EM thatt II- A impliesA.

The intuitive reason this latter result is true is the follogt one can always find an approximation
s of the Skolem functions af which is good enough to contain all the information needed tiy
compute thdrue witnesses foA against any particular purported counterexample. The islézat
one has only to collect finitely many values of each Skolenttion called during the execution of
the program represented hyTo this end, it suffices to invoke the excluded middle a nunabémes
which, intuitively, can be expressed in a proof formalizalsl HA® + EM. This is possible because
HA® 4+ EM is strong enough to prove the normalization of each tewh 7., with respect to any
interpretation of its Skolem functions. Finally, if thergiged a counterexample #, it would be
possible to falsify the construction of the realizén the states. Sincet is a self-correcting program,
it would be able to correct one of the valuessaf has used in the computation of some withessAor
But sis constructed as to be correct on all the values usddwiich entails a contradiction.

For example, leA = IX"Vy"32'P(x,y,z). Then one can find a stagavhich contains all the values
of the Skolem functions needed to compate: 1pt[s]. Suppose a counterexampteto the formula
YW3Z'P(n,y, z) existed. Then one can find a state> s which contains all the values of the Skolem
functions needed to compute= 1 ((rmt)m) [S]. Now, we would have tha®(n,m,l) is false; thus,
mm ((rmt)m) [S'] would be equal to some updafecontaining some corrections $o We shall show that
this will not be the case, and the intuitive reason is thain be chosen as to be correct everywhere it
is needed.

We now elaborate our argument. We start with a definitionragitizing the informal concept that
a states contains all the information needed to compute the nornrah fof a termt of ground type.
Namely, if for everys extendings the evaluation of in the states’ gives the same result obtained
evaluatingt in s, then we may assume all the relevant information is already i

Definition 10 (Definition of a term in a states) For every state s and term t of,,., Of atomic type,
we define §* (and we say “t is defined in s”) as the statement: for all stades s, t[s'] =t([g].

Remark. There is another, perhaps more intuitive way to expressdheept of “being defined in
the states’. For every states we may define a binary reduction relationC Terass X Teiss @S follows:
t+> u if eithert — U in Jy... or U is obtained front by replacing one of its subterm (n) with a
numeralm = s(n) such that(i,n)  def(s). Then one could say thatis defined insif t — a where
ais either a numeral, a boolean or an update. Though this apprworks well, it is unsuitable to be
directly formalized inHA®, because in that system one cannot express this syntaetasdning on
terms.

We now define for every type a set of “computable” terms of typeby means of the usual Tait-
style computability predicates [22]. In our case, follogithe approach of the previous discussion,
we consider a terrhof ground type to be computable if for every stat®ne can find a stateé > s
such that is defined ins. The notion is lifted to higher types as usual.

Definition 11 (Computable terms)
For every typer of 7. We define a set of closed terms%f,.; of typet as follows:

e ||IN||={t : N | for all states s there is a statés s such that {5 }
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|IBool||={t : Bool | for all states s there is a staté s s such that | }

|U||={t : U | for all states s there is a statés s such that {° }

It = olj={t[vue |Irfftuc flo]}

[T x af|={t| et € [[t]land at € [o][}

In order to show that every terinin . iS computable, as usual we need to prove that the set
of computable terms is saturated with respect to some $eiitalation. In our case, two terms are
related if they are equal in all states greater than some. stat

Lemma 2 For every term t p of 7., if for every state s there exists a state>ss and ue ||p|| such
that for all state § > <, t[s’] = u[s’], then te ||p|].

Proof. By induction on the typg.

e p=N. Letsbe a state. We have to show that there exists a stats such that |". By as-
sumption ort there exists a stat > sandu € ||N|| such that for als” > s, t[s"] = u[s"]. Since
u e ||N||, there exists” > & such thau |S'. Letr = s’; we provet |". Letr’ > r. We have that
u[r'] = ufr], by u]', andt[r’'] = u[r’], sincer’ > <. Hencet[r'] = u[r] =t[r]. We conclude |/
and finallyt € ||N]|.

e p =Bool,U: as for the casp = N.

e p=T— 0. Letve ||T]|. We have to show thav € ||o||. Letsbe any state. By assumption on
t there exist a staté > sandu € ||T — o|| such that for alk” > s/, t[s"] = u[s"]. Therefore for
alls’ > ¢, tv[s’] = uv{s’] anduv € ||g||. Hence, by induction hypothesisy, € | o]].

e p=Tpx T1. Leti € {0,1}, we have to show thatt € ||7||. Letsbe any state. By assumption
ont there exis§ > sandu € ||To x T1|| such that for als” > s, t[s’] = u[s’]. Therefore for all
s’ > ¢, rit[s’] = gu[s’] andgu € ||Ti||. Hence, by induction hypothesist € ||7i|.

We are now ready to prove, by using the excluded middle altved,every ternt of Jg.. IS
computable.

Theorem 2 (Computability Theorem)
Let v: T be a term of 7, and suppose that all the free variables of v are amoffg.x. X9, If
i€ [|ow],....th € [|onll, then it /X7, ... ta/XT] € || T]].

Proof. We proceed by induction on We first remark that iti = t andt < ||7||, thenu € ||T|| by
trivial application of Lemmal2.

Notation 1 For any term w in7,., We denote Wl/xfl, <o, /X9 ] with w.
1. vis a variable : g andt = g;. Thenv=t; € ||gi|| = ||T].

2. vis 0, True, False, U: trivial.

3. v is uw, then by means of typing rules,: o — 1, w: g. Since by induction hypothesis
e ||o— 1| andw e ||o||, we obtainv=tw € ||T]|.
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4.

10.

11.

12.

vis AX™.u: 11 — Tp. Then, by means of typing rules,: T,. Suppose now, for a tertn 17 in
Toass thatt € ||T1]. We have to prove thatt € ||12||. We have:

Ut = (AX™.U) [t /X7 - ta /X3N]t
= XUt /Xt ] = Ut Xt/ -t/ XT] = Ut/ X 0t/

By induction hypothesis, this latter term belongg|te||. We concludert € || 12|

u,w) : To X T1. By means of typing rulesy: 1o, w: 73 and by induction hypothesis
U € ||1o|| andmmv =W € ||11||. The thesi¥ € ||1p x 11|| follows by definition.

visT5(u) : Tj, i = 0,1, whereu : 1o X T1. 75U € || Tj|| because@ € ||Tp x 11| by induction hypoth-

. Visif; :Bool — T — T — T. Suppose thai € ||Bool||, us € || T||, U2 € ||T||. Then, for all states

sthere exists > ssuch thau |5. We have to prove thaf;uwus, € ||7||. Letsbe a state and let
g > sbe such that 5. If u[s] = True, then for alls’ > s, if ;U Up[s’] = w[s’] anduy € ||1]|.
If u[s] =False, then for alls” > ¢, iffunuy[s’] = uy[s’] andu; € ||T||. By Lemmal2, we
concludeif uwup € ||T||.

ViSR;:T— (N— (T —T)) - N— 7. Suppose that € || T|,we |[N— (T — T)||, z€ ||N|. We
have to prove thak; uwze ||7||. By a plain induction, it is possible to prove, for each nuaher
n, R; uwne ||7||. Letsbe a state and let > sbe such thaz 5. Let z|s] = n with n numeral.
Then for alls” > ¢,

RruvZs’] = Ryuvns’] € ||T||

By Lemmd 2, we concludB;uwze ||T||.

vis min : U — N. Suppose, for a termin J,s thatu € ||U||. Letsbe a state. Sincec ||U||,
there exists > ssuch thau [*. We have to prove thahin u € |N]|. There exists an updaté
such that for als” > s, u[s’] =U. Then for alls” > &/, minu[s’] = minU = n for some numeral
n. By definition of ||N||, min u € ||N]|.

visU:U— U — U. Suppose that; € ||U|| andu, € ||[U]|. We have to prove that uu; € ||U]|.
Let sbe a state. Sincey € |[U]| there exists’ > ssuch thaty |5. Sinceu; € ||[U]|, there exists
s’ > ¢ such that, |S'. Therefore, there exist two constahts andU, such that for als” > ¢,
u1[s”] =Uj anduy[s”] = Us. Finally, for alls” > ¢’,

W uiUz [SIH] =y U]_Uz = U3

and by definition of|U

, Uugup € ||UJ].
vis S, mkupd or get. Analogous to the previous case.
vis a constan®; : N — N in .’¢. Suppose now, for a term: N, thatu € ||N||. We have to prove

that®dju € ||N|. Letsbe a state. We must show that there existsas such thatb;u |5. Since
u € ||N||, there exists a stat > ssuch thau |$. Letn = u[s], with n numeral, andn= g/(n).
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Letdj = daxy). If AZT, then trivially (i,n) € def(s') by definition[7. Therefore for a§’ > s,
®;u[s’] =5'(n) = mand we are done. Hence, we may assudneel". There are two cases, and
this is the only point of this proof in which we ug\.

(@) A(n,m) is true. Therefore, for a#’ > s, §'(n) = mbecausdi,n) € def(s'). Thus, for all
s’ > ¢, dju[s’] = §'(n) = m, which is the thesis.

(b) A(n,m) is false. If there existssuch thatA(n,l) is true, then let

= AXAVVif X =1 Apoo1 Y = N then melse sfx(y)

Then, for alls” > s’, §”(n) = | becauséi,|) € def(s”). Thus, for alls” > s’, d;u[s”] =
s”(n) =1, which is the thesis. If there is nlosuch thatA(n,l) is true, then trivially
(i,n) € def(s). Thus for alls” > &, ¢;u[s’] = §'(n) = mand we are done.

According to the Definitionl6 of the truth valu& of a formulaA in a states, when we compute
AS we need only a finite number of Skolem function values, oneefmh quantifier oA. Thus, we
can show with the excluded middle that for every staigere exists a sta&® > s such that when we
evaluateA in the states’' we obtain the real truth value &

Proposition 2 Let AX) be any arithmetical formula and be numerals. For every state s, there exists
a state 6> s such that A(H) = True if and only if Afi) is true.

Proof. We prove the thesis by induction én Let s be any state. The cases in whighs atomic
orA=BVC,BAC,B— C are trivial. Let us consider those in whiéhstarts with a quantifier.

e A(A) = 3y"B(A,y). By the excluded middle, we extersdo a states' > s such thatm = s5(f)
implies that
Jy'B(niy) — B(1,m)

By induction hypothesis, there exists a stite> s’ such thaB(rfi, m) is true if and only if

B (A, m) = xg(A,m)[s] = True
Assuming®; = ®g, since(i, (1)) € def(s'), we haves;(A) = s3(f). Since
A% (1) = xa(1, @5 (1)) [S"] = xa(1, M)[$']
andA(n) is equivalent td3(A, m), we obtain the thesis.
e A(M) = vy"B(f,y). By the excluded middle, we extersdo a states' > s such thain = s, (Fi)

implies that
3B (A,y) — B (A,m)

By induction hypothesis, there exists a ststte> s such thaB (i, m) is true if and only if

L s’ /

(BY)" (f,m) =xg: [s'](,m) = True

Assuming®; = &g, since(i, (f)) € def(s'), we haves;, (M) = s, (). Since
A% (1) = xg- (1, Pg. ()[8"] = xg- (A, M)[s]

we obtain the thesis.
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Now we prove a special case of the statement that the rediligaib a formula implies the formula
itself. Namely, we show thdtrealizesl implies L. The idea, as we have explained before, is to find
a states which contains all the information needed to evaluate

Theorem 3 (Consistency of Interactive Realizability) For every closed term t 0f .., t 1. In
particular, for every state s, there exists a stdtes such that fi¥y L.

Proof. Suppose, for the sake of contradiction, that there exisésnat such that II- L. Letsbe
any state. Since: U, by theoreni 2 we havec ||U|| and therefore there exists a state s such that
t . Lett[r] = U for some updat&). Sincet lI-, L, U is non-empty: le{i,fi,m) € U. By application
of theoreni 2, ifd; = ®p, there exists a stag> r such thatxa(fi, m) |9. By definition,

Aq(ﬁ7 m) = XA(ﬁ’ m) [C]] =b

for some boolea. Sincet -y L andt[g) =U (because | andq > r), we obtain by definition of
realizability thatb = True. Letq; (i) = 1. We have two possibilities:

1. A(n,l) is false. We define the state
g 1= AXAYYif X =i Apoor Y = (M) then melse gx(Yy)

Then,s > q, for A(f,1) is false. Moreover, sincga(fi,m) /9, for all d > q, xa(f,m)[q] = b;
by Propositior R, there existg > q, such thatxa(fi,m)[d] = True if and only if A(fA,m) is
true. Sincexa(f,m)[q] = b = True, we have thaf\(i, m) is true. By assumption an we have
tlky L andt[s] =U, because& > r. Sinces (fi) = m, by definition oft II-y | we would have
both AS (i, m) = False andAS (i, m) = True, which is a contradiction.

2. A(R, ) is true. By Propositioh]2, there is a state> q such thaid® (fi,|) = True. By assumption
ont, we havet llF¢ | andt[s] =U. Butq(fi) =1, A(f,]) is true ands' > q; therefore(i, ) €
def(q) and hences/(f) = |. By definition oft Iy L, we would haveA® (1) = False and
AS (A, m) = True, which is in contradiction withA® (A1) = True.

Finally, we are in a position to prove HA® + EM that the realizability of a formul& implies its
truth. For simplicity we assum& is a—-free, but the result holds also in the general case.

Theorem 4 (Soundness of Realizability)Let A be any—-free arithmetical formula and suppos#Ht
A. Then Ais true.

Proof. We prove a stronger statement. Isdte a state and suppose that forsalb s, t li-g A. We
prove by induction o, thatA is true.

e A= P, with P atomic. Suppose, by the way of contradiction, tRas$ false. Then we have that
for all § > s, tlI-g L, which is impossible by Theoreni 3.

e A=BAC. Then, for alls > s, t lIF¢ A andt ll-¢ B. By induction hypothesi# andB are true,
and we obtain the thesis.

e A=BVC. By Theorenl R, there exists a state ssuch thapot |'. Letpgt[r] = bwith b boolean,
sayb = True. Then, by defintion, for every > r, pot[r'] = True and thereforé I A. By
induction hypothesié\ is true, and we obtain the thesis.
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e A=VX'B. Letnbe any numeral. Then, for &l > s, tnliFy B(n). By induction hypothesig(n)
is true. Thereforeyx'B is true, and we obtain the thesis.

e A= 3X"B. By TheoreniR2, there exists a state> s such thatrpt |". Let mt[r] = n with n
numeral. Then, by definition, for every> r, mt[r'| = nand therefore |l B(n). By induction
hypothesisB(n) is true, and we obtain the thesis.

Since all the proofs given in this section are formalizablélA® + EM (see Sectiofl5), we are
able to prove the conservativity 8fA“ + EM + SK overHA® + EM for arithmetical formulas.

Theorem 5 (Conservativity of HA® + EM + SK over HA® + EM) Let A be a closed arithmetical for-
mula, and suppose

HA® + EM+SKF A
Then:
HA® +EM F A @
HA+EMFA 2
Proof.

1. We may assume thatis —-free. Otherwise,
HA® + EM - A+« B

with B —-free and we considdB. Sincel is arbitrary, we may assume that all the subfor-
mulas of the instances &M and SK used in the derivation belong fa By formalization

of the Adequacy Theoref 1 IHA® (see Sectiofi]5), we obtain thBA® -t lI- A for some
termt of J. By formalization of the proof of Theorefid 4 IHA® + EM, we obtain that
HA® +EM - (tIF A) — A. We concludeHA® + EM |- A.

2. There are at least two ways to obtain the thesis. On one hanthay use[(1) and the standard
result about the conservativity 6fA“ + EM over HA -+ EM for arithmetical formulas (see for
example Troesltre [24]). On the other hand, we may code tiirégrms of system7,, into
natural numbers and then express the proofs of point HAR- EM (see Sectiohl5).

5 Formalization of the Proofs in PA and in HA® 4+ EM

In this section we explain how to formalize A andHA® + EM the proof of the Adequacy Theorém 1
of Sectior B and the proofs of the Computability Theokém 2tAedSoundness Theorém 4 of Section
4. We start with the case &fA.

5.1 Formalization in PA

One can routinely code iRA all the concepts we have so far used. As in Tait [22], one mag toe
terms of 7., With natural numbers and successively the definition ofdadizability and computabil-
ity predicates with arithmetical formulas. Since neithefrtheoretic concepts nor Skolem axioms are
employed in any of the given proofs, everything can be coddti
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5.2 Formalization in HA® + EM

Instead of coding everything into natural numbers, whicbfiimited practical interest, it is more
satisfying to formalize our proofs directly iHA® 4 EM. There is no serious obstacle to this end,
except for a small formalization issue: the notidg of evaluation of a termt of .7, in a state

s, which we have heavily used in the definitions of the reallitgtand computability predicates, is
not directly representable iIHA® + EM. To begin with, terms of7,... may contain some constant
® € .7%¢ which does not belong to the languageH#®. This problem is easily solved by considering
terms of the fornt[g) with s state variable. However, in the definition of Interactivalizability for
implication and in the statement of the Computability Treeorone needs to define formutas- A
andx € ||N||, wherexis a variable. In these definitions it is necessary to spealtahe substitution of
an actual statsin the body of a variable, which is impossible iHA® (remember thax represents

a termt[g of .7). This last issue is overcome quite easily by consideringléce of a ternt : 7 in
Tenssthe termA s t[s] 1 S — 1, wheres 1= N2 — N is the type of states. In this way, one makes explicit
the functional dependence bfrom the states and transformg into an object having a semantical
denotation. It is however necessary to slightly adapt thimitiens of realizability and computability,
which is what we are going to do.

First, we give an alternative definition of Interactive reability, which is shown in[[4] to be
equivalent to Kreisel's modified realizability fotA“ applied to some Friedman translation of formu-
las. We denote witl” the restriction of the languag#’,...to the formulas not containing any Skolem
function constan® € .%.

Definition 12 (Alternative Definition of Interactive Realizability) Assume sS is a closed term of
T, tis aclosed term of/, D € .Z is a closed formula ofZ, and t: |D|. We define by induction on
D the relation ti-g D:

1. tlIFs Qif and only if t= U implies:
o for every(i,i,m) € U, ®; = ¢ for some Ac T, and A(A,s (i)) = False and A(f,m) =

True.

e U =g implies Q= True
2. tiIksAABifand only ifmpt s A and it IHs B
3. tIFs AV B if and only if eitherpgt = True andpit mr A, or Tpt = False andpit mr B
4. tIFs A— Bifand only if for all u, if ulFg A, then tul-s B
5. tliFs YX'A if and only if for all closed terms ut of .7, tu lFs Aju/X]

6. tIFs IX"A if and only for some closed term @ of .7, ot = u andt I-s Aju/X]

One can prove straightforwardly, as in [4], that our first Diifon [3 of Interactive realizability is
equivalent to this alternative one.

Theorem 6 (Characterization of Interactive Realizability) Lette J;.and s be a state. Then, for
every Be Zjass

t s B <= t[gIFsB]s]
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Theorem 6 allows us to replace in our conservativity pro@f éxpressior II- A with the ex-
pressionvs®.t[s]IFsAls], which is a formula ofHA®. Moreover, the Adequacy Theorem fir is
formalizable inHA®, since it is a special case of the Adequacy Theorem for madializability,
which is formalizable in that system (sée|[25]).

Secondly, we adapt the notion of computability to terms pety — 7. For every pair of terms
t,u € 7 respectively of typ& — (0 — 1) andS — o, we define the following notion of application:

t-u:=As’.ts(us)
For every ternt € 7 of type S — (10 x 71) andi € {0,1}, we define the following notion of

projection:
mt = AS.Tits

Finally, for every constant term¢ .¢, we definec* := As*c. We now adapt Definition 10 and
Definition[11. Since there is no possibility of confusion, maintain the same notations of Section 4
but with the new specified meaning.

Definition 13 (Definition of a term in a states) For every state s and term:tS — 1 of .7 with T
atomic type, we definelt (and we say ‘t is defined in s”) as the statement: for all state¥ s,
ts =ts.

Definition 14 (Computable terms)
For every typer of .7, we define a set of closed terms%fof types — 1 as follows:

e |[N||={t : s — N | for all states s there is a staté s s such that t }

e ||Bool||={t: S — Bool | for all states s there is a staté s s such that {* }
e ||[U|={t : s — U | for all states s there is a staté s s such that t }

o [t—=ol={t[vue]|t| t-uclol}

o |Txol={t|met € ||T]]andmt € ||O]|}

The proofs of LemmBl2 and of the Computability Theorem candsélyeadapted (for details, see
the full version of this paper [8]).

Lemma 3 For every term t S — p of .7, if for every state s there exists a state>ss and ue ||p||
such that for all states’s> s, ts’ = us’, then te ||p||.

Theorem 7 (Computability Theorem)
Let v: T be a term of 7, and suppose that all the free variables of v are amoﬁg.x. X9 If
t1 € |ow],-..,th € ||onl|, thenA s’ .v[g|[tis/x{:, . .., tas/x3"] € ||T].

The proofs of Propositidn 2 and Theorem 3 remain exactlyahses while the proof of Theorelm 4
can be straightforwardly adapted. In particular, in theehemse of the induction one needs to prove
that a ternt, possibly with free variables of typg is computable. This follows from Theordmh 7 and
the fact that it is possible to prove by induction the staterive®. As’x € ||N]|.
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