A call-by-value A -calculus with lists and control

Robbert Krebbers
Radboud University Nijmegen

mail@robbertkrebbers.nl

Calculi with control operators have been studied to reasmutcontrol in programming languages
and to interpret the computational content of classicabf&o To make these calculi into a real
programming language, one should also include data types.

As a step into that direction, this paper defines a simplydygadl-by-valueA -calculus with the
control operatorgatch andthrow, a data type of lists, and an operator for primitive recurgi
la Godel'sT). We prove that our system satisfies subject reduction rpesgconfluence for untyped
terms, and strong normalization for well-typed terms.

1 Introduction

The extension of simply typedl-calculus with control operators and the observation tiese operators
can be typed using rules of classical logic is originally daeGriffin [Gri90] and has lead to a lot
of research by varying the control operators, the undeglyalculus or the computation rules, or by
studying concrete examples of the computational contentaskical proofs. Little of this research has
considered the problem of how to incorporate primitive dgies in direct style. If one wants to use
these calculi as a real functional programming languagke @attrol, this is a gap that needs filling.

This paper contributes towards the development af@alculus with both data types and control
operators that allows program extraction from classicabfg. In such a calculus one can write specifi-
cations of programs, which can be proven using (a restricted of) classical logic. Program extraction
would then allow to extract a program from such a proof whieeeclassical reasoning steps are extracted
to control operators. This approach yields programs-withtrol that areorrect by constructiotvecause
they are extracted from a proof of the specification. Howeawasrder for these extracted programs to be
useful in practice, data types in direct style should be stipp.

As a step into that direction, we introdude:catch, a simply typed call-by-valud -calculus with
the control operatorsatch andthrow, a list and unit data type, and an operator for primitive rsicun
(a la Godel'sT). We consider lists because those are among the most commsed data types in
functional programming. Expressively, lists make our eysias least as strong as Godal'vecause
natural numbers can be encoded as lists over the unit typeprdVe the conventional meta theoretical
properties — subject reduction, progress, confluence, tamiigsnormalization — so that it may be used as
a sound basis for a calculus that allows program extractimm tlassical proofs.

Our system is based on Herbelin's IQ&calculus withcatch and throw that he uses to give a
computational interpretation of Markov’s principle [HO}]1 Most importantly, we adopt his restriction
of the control operatotatch to —-free types. This restriction enables the system to satisfgress
without losing other meta theoretical properties. The pEeg property states thattifis a well-typed
closed term, thenhis either a value or there is a tetmsuch that reduces td’. From a programmer’s
point of view this is an important property as together witimtuence it ensuresnique representation
of data For example, for the natural numbers, unique representafi data means that for each natural
number there is (up to conversion) a unique closed term ofyie of natural numbers. To show how

© Robbert Krebbers
This work is licensed under the
Creative Commoris Attribution License.

Herman Geuvers, Ugo de’Liguoro (Eds): CL&C'12
EPTCS 97, 2012, pp. 18133, d0i:10.4204/EPTCS|97.2

http://dx.doi.org/10.4204/EPTCS.97.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

20 A call-by-value lambda-calculus with lists and control

the system can be used in programming, we give a simple egamgl11, where we define a function
that multiplies the values of a list and throws an except®saon as it encounters the value O.

Proving confluence or strong normalization for systems wathtrol generally requires complex ex-
tensions of standard proof methods, see for example [FBy®R/BHFOL, Nak03, GKM12, RS94]. For
Aicatch this is less the case. We give relatively short proofs ofesthjeduction, progress, confluence
for untyped terms, and strong normalization for well-typeans.

1.1 Related work

Incorporating data types into &-calculus with control has not received much attention. \Wefly
summarize the research done in this direction and compuaiiéhipur work.

Parigot [Par92] has described a variant of Rig-calculus with second-order types. His system
is very powerful, because all the well-known second-ordgresentable data types are included in it.
But as observed i [Par92, Par93], it does not ensure unipresentation of data. This defect can be
remedied by adding additional reduction rules, howevas, tesults in a loss of confluence. Another
approach is to use output operators to extract data, bunthigluces an additional indirection.

Rehof and Sgrensen have described an extension ofAthemlculus with basic constants and func-
tions [RS94]. Unfortunately their extension is quite liedt In particular, an operator for primitive
recursion, which takes terms rather than basic constaiiis @aguments, cannot be defined.

Barthe and Uustall [BU02] have considered CPS-transkfrmminductive and coinductive types. In
particular, they describe a system with a primitive forat@n over the natural numbers, and the control
operatorA. They prove preservation of typing and reduction under a-@&%lation, but do not consider
other meta theoretical properties of this system.

Crolard and Polonowski [CP11] have considered a versiondofeBs T with products ana¢tall/cc.
However, as their semantics is presented by CPS-transaitstead of a direct specification via a cal-
culus, their work is not directly related to ours.

Geuvers, Krebbers and McKinna [GKM12] have defined an exanrs Parigot’sA (-calculus with
a data type of natural numbers and an operator for primiggeinsion. They prove that their system
satisfies subject reduction, unique representation of #ierals, confluence and strong normalization.
Also, they define a CPS-translation into Godal'so show that adding control operators does not extend
the expressive power. Unfortunately, their system is loglhame with call-by-value evaluation for data
types, making it less suitable to model control in most pragning languages. Due to their decision to
useA U, their proofs involve many complex extensions of standawodftechniques, and expose a lot of
non-trivial interaction between control and data types.

Several extensions df-calculus with the control operatoratch andthrow have been studied in
the literature. We discuss those that are most relevantrtovark. Crolard [Cro99] has considered a call-
by-name variant of such a calculus, for which he defines aspandence with Parigotspu-calculus.
He uses this correspondence to prove confluence, subjedatti@u and strong normalization, but does
not consider data types in direct style.

Herbelin [Her10] has defined 1Qg, a calculus withcatch and throw to give a computational
interpretation of Markov’s principle. His calculus is caly-value and supports product, sum, existential,
and universally quantified types. An essential feature ®thiculus is the restriction ehtch to V-—-
free types. This restriction enables him to prove progressch is an important property for his main
result, a proof of the disjunction and existence property.

Since Herbelin's 1Q¢p-calculus has a convenient meta theory, we use it as thengtadint for our
work. But instead of considering product, sum, existenéiatl universally quantified types, we consider

Robbert Krebbers 21

a data type of lists in direct style. Whereas Herbelin dogsansider confluence, and does not give a
direct proof of strong normalization, we will give directgmfs of these properties for our system.

1.2 Outline

In Sectiorl 2, we define the typing rules, and the basic redluctiles, whose compatible closure defines
computation inA ::catch. We give two example programs showing interaction betwesa types and
control. Sectio 2 moreover contains proofs of subject cgdno and progress. Sectidh 3 contains a
direct proof of confluence for untyped terms based on an sisabf complete developments. Section 4
contains a direct proof of strong normalization using trucgbility method. We close with conclusions
and indications for further work in Sectiéh 5.

2 The system
Definition 2.1. Thetypes termsandvaluesof A::catch are defined as

o,T,p:=T|[T]|]c—>T
t,r,si=x| () |nil| (::) | lrec |AXr |tS| catcha.t|throwat
VWV, Vs i=X| () | nil | (i) | () v] (::) vW]| lrec | lrec V; | lrec Vp Vs | AX.K

where X, y, and z range oveariables anda, B and y range overcontinuation variables

The construcA x.r bindsx in r, andcatch a.t bindsa int. The precedence of andcatch is
lower than application, so instead @tch a . (tr) we writecatch a.tr. We let Ft) denote the set of
free variables of, and FC\(t) the set of free continuation variablestofAs usual, we us8arendregt’s
variable conventioriBar84]. That is, given a term, we may assume that boundblasaare distinct from
free variables and that all bound variables are distincte dperation of capture avoiding substitution
t[x:=r] of r for xin t is defined in the usual way.

The constructail and(::) are the constructors of the list data type. We treat thesstieartors, and
the operatoilrec for primitive recursion over lists, as unary constants socese use them in partially
applied position. Also, this treatment results in a mordarm definition of the reduction rules. We
often useHaskell-style notation. In particular, we write:: r to denote(::) t r, andA_.t to denoteA x.t
with x ¢ FV(t). Furthermore, we writdts, ... t,] to denotet; :: ... ity:inil.

Following Herbelin [Her10] we restrictatch to —-free types. Without this restriction, progress
(Theoren2.15) would fail. Let us consider the teemtch a.Ax.throw a (Ay.y). Without this re-
striction, this term would have had type — T, whereas it would not reduce to a value. In fact, even
(catch a.Ax.throw a (Ay.y)) () : T would not reduce. The reduction rules ftoatch andthrow are
very similar to [Her10], but quite different from those bydard [Cro99]. In particular, Crolard includes
reduction rules to move theatch whereas Herbelin's system and ours merely allovhaow to move
towards the correspondingatch. This is due to the restriction te>-free types.

Definition 2.2. We letg and () range over—-free types.

Definition 2.3. Letl" be a map from variables to types, and A&ebe a map from continuation variables
to —-free types. The derivation rules for the typing judgnie®t -t : p are as shown below.

x:pel
MAEX:p HAE():T M AFnil: [o] MAF () 0— 0] — (0]

22 A call-by-value lambda-calculus with lists and control

MNAFlrec:p— (o= [0]—p—p)—[0]—=p

Mx:o;AFt: T MAFt:o—T1 MNAFs:o
MAFAXt:0—T MARts: T
HAa: Yty ARt @ a:yPel
MNAFcatcha.t:y MAFthrowat:T

Lemma 2.4. Given a value v withA+ v: p, then:
1. If p=T, then vis of the shapg.
2. If p=0], then v is of the shaplevy, ..., wy).

3. If p=0 — 1, then vis of the shapg:), (::)w, 1rec, lrecV;, lrecV, Vs Or AX.I.

Proof. This result is proven by induction on the structurevof he cases = x is impossible becauseis
closed for free variables. The other cases are easy. O

Definition 2.5. Thecontextsof A ::catch are defined as:
E:=0t|vd| throwa O

Given a context E and a term s, tBabstitution ofs for the hole inE, notation Hg, is defined in the
usual way.

Definition 2.6. Reduction t— t’ is defined as the compatible closure of:

(Axt) v—tx:=V] (B)

E[throw a t] — throw o't (t)
catcha.throwat— catcha.t (c1)
catch a.throw BV — throw S Vif a ¢ {8} UFCV(v) (c2)
catcha.v—v if a ¢ FCV(v) (c3)

lrec V; Vsnil — V; (nil)
lrec Vi Vs (Vh i1 k) — Vs Vh it (1rec Vy Vs))

As usual,— denotes the reflexive/transitive closure arddenotes the reflexive/symmetric/transitive
closure.

Notice that because we treat partially applied and1lrec constructs as values, we get reductions

like throwar:t = (i) (throwa r)t — (throw a r) t — throw a r for free without the need for
additional contexts fof::) andlrec.

Fact2.7.If ;A v: ¢, thenFCV(v) =0

Proof. By induction on the structure of the valwe Sincey is —-free, we only have to consider the
casey=x,V=(),v=nil andv=y, :: Vv, for which the result trivially holds. O

The reduction rulesc@) and ¢3) require thatr ¢ FCV(v). This side condition can be omitted for
well-typed terms by the previous fact. However, since wesiaT the problem of confluence for untyped
terms (Sectioql3), we do need this additional restriction.

Robbert Krebbers 23

Definition 2.8. We define a type for the natural numbars= [T|, with the following operations on it.
0:=nil
s:=(:) ()
nrec:=AXXs.1lrec X (A _.Xs)

We let n:= s"0 denote the representation of a natural number.
Fact 2.9. The operations oi satisfy the expected conversions.

nrec Vy Vs 0 —
nrec Vi Vs (SV) = VsV (nrec Vy Vs V)

Colson and Fredholm [CF98] have shown that in GodEl'with call-by-value reduction, it takes
at least a number of steps that is linear with respect to thetifor a non-trivial algorithm to reduce
to a value. In particular, it is impossible to compute thedemessor in constant time. Intuitively it is
easy to see why, consider the reductiarec v; Vs (SV) — VsV (nrec V; Vs V). Due to the restriction of

B-reduction to values, the recursive caltec v; Vs v has to be reduced to a value before the whole term
is able to reduce to a value. M:catch we can use the control mechanism to do better.

Example 2.10. We define the predecessor functired : N — N as follows.
pred:=An.catch d.nrec 0 (AX.throw o X) n
Computing the predecessor is possible in a constant nunitstepps.

pred n+1— catch a.nrec 0 (AX.throw a X) (Sn)
— catch o . (AX.throw a X) n (1rec 0 (A _X.throw O X) n)
— catch o . (throw o n) (1lrec 0 (A _X.throw a X) n)
— catchd.throwan—n
Example 2.11. We define a ::catch-program F: [N] — N that computes the product of the elements
of a list. The interest of this program is that it uses the mannhechanism to stop multiplying once the
value 0 is encountered.
F:=Al.catcha.lrec1HI
H := Ax_.nrec (throw a 0) (Ay_h.Syxh) x

Here, addition(+) and multiplication(x) are defined as follows.
(+) :=Anm.nrecm(A _y.Sy)n
(¥) :=Anm.nrec 0 (A_y.m+y)n
We show a computation of[&,0,9].
F[4.0,9] - catcha.lrec 1H [4,0,9]
— catch of .nrec (throw a 0) (Ay_h.Syxh) 4 (1rec 1H [0,9))
— catcha.(Ah.4xh) (lrec 1H [0,9])

— catch 0 .(Ah.4xh) (throw a 0)
—» catcha.throwa 0 - 0

24 A call-by-value lambda-calculus with lists and control

Lemma2.12.If ;A r:oandl x: o;AFt: p, thenl;AFtX:=r]: p.
Theorem 2.13(Subject reduction)If [;A+t:pandt—t/, thenl; At : p.

Proof. We have to show that each reduction rule preserves typingus&/é emma 2.12 for)). O

Lemma 2.14. Given a normal form t withAFt : p, then either t is a value, or£ throw 3 v for some
value v and continuation variablg.

Proof. This result is proven by induction on the derivation Aft: t : p.
1. Let;AFx: pwithx: p € 0. This is impossible because p ¢ 0.
2. Inthe case of), nil, (::), lrec andAx.r the result is immediate.

3. Let;AFts:Twith;A+t: 0 — tand AF s: 0. By the induction hypothesis we know that the

termsr ands are either a value orehrow. Sincetsis in normal form, it is impossible that either
of them is athrow. Therefore, we may assume that both are values. Now, simegtypeo — 1,
we can use Lemmnia 2.4 to analyze the possible shapes of

(a) Lett =1recv;vs. By the typing rules we obtain thathas type[p] for somep. So, by

Lemmd Z.4 we have thatis a list. Howevertsis in normal form, so this is impossible.
(b) Lett = Ax.r. This case is impossible becaussis a value andsis in normal form.
(c) In all other cases, the termais a value.

4. Let ;A catcha.t: @ with ;A,a: ¢ -t : . By the induction hypothesis we know thais a
value or athrow. If tis a value, Fadt 217 gives us that¢ FCV(t). This is impossible since
catch a .t is in normal form. Similarly, it is also impossible thails athrow.

5. Let;A-throwat: o with;AFt: Y anda : ¢ € A. By the induction hypothesis we know thias
avalue or a&hrow. If tis a value, we are done. Furthermdreannot be ahrow sincethrow a t
is in normal form. O

Theorem 2.15(Progress) If ; -t : p, then t is either a value, or there is a terfmaith t — t’.

Proof. This result follows immediately from Lemnha 2]114. O

3 Confluence

To prove confluence for untyped termsdfcatch, we use the notion gbarallel reduction as intro-
duced by Tait and Martin-Lof [Bar84]. A parallel reductioelation=- allows to contract a number of
redexes in a term simultaneously so as to make it being pedemder substitution. If one proves that
the parallel reductiors- satisfies:

e Thediamond propertyif t; = t, andt; = t3, then there existsta such that, = t4 andtz = t4.

o t1 =1 impliestl -ty andty — to impliestl =*1.
then one obtains confluence -ef.

Following Takahashi [Tak95], we further streamline thegfroy defining thecomplete development
of a termt, notationt®, which is obtained by contracting all redexestinNow to prove the diamond
property of=, it suffices to prove thag =t impliest, =-t7.

For Parigot’sA p-calculus, it is well known that the naive parallel reductis not preserved under
substitution[[BHFOL]. Instead, a complex parallel reduttihat moves subterms located very deeply in

Robbert Krebbers 25

a term towards the outside is needed [BHFO01, Nak03, GKM18}. AF:catch we experience another
issue. Consider the following rule.

If t =t/, thenE[throw o t] = throw a t’

If we takethrow a; (throw a (...throwap()...)) (with n > 5), then we could perform a reduction
that contracts all even numberedrows, and also a reduction that contracts all odd numberedws.
Since these two reducts do not converge in a single paraltkiction step, such a parallel reduction
would not be confluent. To repair this issue we use a similaadixn [BHFO1! Nak03, GKM12]: we
allow athrow to jump over ecompound context

Definition 3.1. Compound contextare defined as:
E:=0|Et|VE |throwa E
Given a compound contektand a term s, theubstitution o for the hole inE, notationE|[g], is defined
in the usual way.
Definition 3.2. Parallel reduction = t’ is inductively defined as:
1. x=X,() = (),nil =nil, (1) = (::), andnrec = nrec.
Ift=t'andr=r’, thentr=t'r’".
Ift=t, thenAxt = Axt’.
Ift =1, thencatcha.t = catcha.t’.
Ift=t" and v=-r, then(Axt)v=t'[x:=r].
Ift = t, thenE[throw a t] = throw a t'.
Ift = t/, thencatch o .throwadt = catch o .t’.
Ifv=tanda ¢ {B} UFCV(v), thencatch a.throw 3 V= throw 3 t.
9. Ifv=tanda ¢ FV(v), thencatch a.v=-t.

© N o gk~ Db

10. If 4 = r, thenlrec v vgnil =r.
11. If v =r,vs=S,\y=hand y=t, thenlrec v Vs (Vs ::) = Sht(lrecrst).
Lemma 3.3. Parallel reduction satisfies the following properties.
1. ltis reflexive, i.e. = t.
2. The term {x := wj] is a value.
3. Ifv=-t, thentis a value.
4. Ift=1t/, thenFV(t') CFV(t) andFCV(t") C FCV(t).
5. Ift=t and v=r, then fx:=Vv] = t'[x:=r].
Lemma 3.4. Parallel reduction enjoys the intended behavior. That is:
1. Ift—t, thent=1t'.
2. Ift=1t/,thent—»t.
Proof. The first property is proven by induction on the derivatiom ef t’ using that parallel reduction is

reflexive and satisfies the substitution property (Lernmi 3.8e second property is proven by induction
on the derivation of = t’ using an obvious substitution lemma fer. O

26

A call-by-value lambda-calculus with lists and control

Definition 3.5. Thecomplete developmet is defined as:

(Axt)v)® :=t°[x:=V]
(E[throw a t])® := throw a t° if t Zthrowys
(catch a.throwat)®:=catcha.t®
(catch a.throw 3 V)° ;= throw 3 V° if a ¢ {B}UFCV(v)
(catcha.v)®:=V° if a ¢ FCV(v)
(lrec Vy Vsnil)® =V}
(lrec Vi Vs (Vh i W) i= Ve Vi, Vi (Lrec Vf Vi)

For variables, (), nil, (::) andnrec, the complete development is defined as the identity, andptap
gates through the other cases that we have omitted.

We lift the parallel reductiors to compound contexts with the intended behavior th&t# F and
q= ¢, thenE[throw a] = F[throw a (.

Definition 3.6. Parallel reductiorE = F on compound contexts is inductively defined as:

1.

2 T

U=0

throwa =01

If E= F and t=t/, thenEt = Ft'.

If E = F and v=t, then \E = tF.

If E = E, thenthrow a E = throw a F.

If E = F, thenthrow 8 (throw a E) = throw a F.

Remark that if we have th&[throw a g = r, thenr is not necessarily of the shapéthrow o (]
with E = F andq = ¢ becausej could be athrow.

Lemma 3.7. If E[throw a qi] = r and ¢ # throw y s, then there exists agnd F such that r=
F[throw a] with E = F and q = 0p.

Lemma 3.8. If t; = tp, then b = t7.

Proof. By induction on the derivation df = t,. We consider some interesting cases.

1.

Lett;r1 = torp with t; = t; andr, = ro. We distinguish the following cases:

(a) Lett; = Ax.s; andry a value. By distinguishing reductions we hawe= Ax.s, with s; = s,.
Now, t; = tJ ands, = s] by the induction hypothesis. Furthermore, we have thas a
value by Lemma@a3I3. Thereforgr, = (Ax.)r; = sj[x:=rj] = (t1r1)° by Lemmé& 3.B.

(b) Lett; =nrec V; Vs andr; =nil. By distinguishing reductions we hate= nrecr s and
r; =nil with vy = r andvs = s. Now, r = \; by the induction hypothesis. Therefore,
torp =nrecrsnil = VW = (nrec V; Vsnil)® = (t1r1)°.

(c) Lett; =nrec Vv, vsandriy =V, :: . This case is similar to the previous one.

(d) Lett; = E[throw B q1] with g1 # throw ys. By Lemma3.V, we have = F [throw a qp]
with E = F andqg; = g». Now we haveg, = gj by the induction hypothesis. Therefore,
tor, = If[throw a Qp]r1 = throw a o = (t1r1)°.

(e) Letr; = E[throw 3 q1] with g, # throw y sandt; a value. This proof of this case is similar
to the previous one.

Robbert Krebbers 27

(f) Forthe remaining cases we haye=tj andr, = r{ by the induction hypothesis. Therefore,
tory = tory = (t1r1)°.

2. Letcatch a.t; = catch a.ty with t; = t,. We distinguish the following cases:

(a) Lett; = throw a g1 with g1 # throw ys. By distinguishing reductions we obtain that
to = throw a ¢ with g1 = g2. Now we haveg, = @ by the induction hypothesis. There-
fore,catch a .ty = catch a.throw a gp = catch a.qj = (catch a.ty)°.

(b) Lett; = throw a (E[throw B qu]) with gy # throw y's. We havet; = F [throw 8 gp] with
throw a E = F andq; = g, by Lemma 3. Alsog, = ¢ by the induction hypothesis.
Thereforecatch a .ty = catch o . F[throw B 0p] = catch a.q5 = (catch a.t7)°.

(c) Lett; = throw 3 vy with o ¢ {B} UFV(v1). By distinguishing reductions we obtain that
to = throw 3 Vo with v1 = v,. Now, v = j by the induction hypothesis, amd¢ FCV/(v2)
by Lemmé 3.B. Sogatch a .ty = catch a.throw 3 Vo = throw B V] = (catch a.ty)°.

(d) Lett; be a value witho ¢ FCV(t1). We havet; = t7 by the induction hypothesis. Alst,is
avalue andx ¢ FCV(tp) by Lemmd 3.B. Thereforeatch a .ty = t] = (catch a.t)°.

(e) For the remaining cases we haye> t7 by the induction hypothesis. As a result we have
catch O .t = catch o .t] = (catch a.ty)°.

3. LetE[throw o t;) = throw a tp with t; = t,. We distinguish the following cases:
(a) Lett; = E[throw B g1] with g1 # throw ys. This case is similar to1d.

(b) For the remaining cases we haye= t7 by the induction hypothesis. As a result we have
throw o t, = throw o t{ = (E[throw a t1])°.

4. Letcatcha.throw oty = catch o .t withty = t. We have; =-t7 by the induction hypothesis.
As aresult we haveatch a .ty = catch a.t] = (catch o . throw a t1)°.

5. Letcatch o .throw 8 vi = throw B to with vy = tp, a ¢ {B} UFV(vq). We havet, = V; by the
induction hypothesis. Furthermottg,s a value by Lemmia_3.3. As a result we hateow 8 t, =
throw B V] = (catch a . throw 3 v1)°.

6. Letcatch a.vy = tr with vy = tp anda ¢ FV(vq). We havet; = vj by the induction hypothesis
andty is a value by Lemm@a3.3. Therefotge= V; = (catch a.v1)°. O

Corollary 3.9. Ift; = t; and t = t3, then there exists q such that1 = t4 and § = t4.
Proof. Taket, :=t7. Now we have, = t{ andts = t7 by Lemmd 3.8B. O
Theorem 3.10(Confluence) If t; — t, and § — t3, then there exists a such that$ — t; and § — t4.

Proof. By Corollary[3.9 and a simple diagram chase (as in [Bar84¢) obtain confluence cf-. Now,
confluence of- is immediate by Lemmia 3.4. O

4 Strong normalization

In this section we prove that reduction M:catch is strongly normalizing. We use the reducibility
method, which is originally due to Talt [Tai67]. By this meth instead of proving that a tertrof type
p is strongly normalizing, one proves [[p]], where[o — 1] := {t | Vse [o] . tse [1]}.

Although Tait's method does work for the call-by-nahg-calculus|[Par97], David and Nour [DNO5]
have shown that it does not extend to its symmetric variahéyTproved that the property, rife SN and

28 A call-by-value lambda-calculus with lists and control

tix:=r] € [o], then(Ax.t)r € [o]), no longer holds due to the reductibfua.c) — pa.cla = a(t0)].
However, the similar reductiointhrow a r) — throw a r in our calculus consumeswithout perform-
ing any (structural) substitution in So, forA::catch this problem does not exist.

It may be possible to prove strong normalization by use ofietlst reduction preserving translation
into another system that is already known to be strongly atimng. For example, one may try to
use the obvious translation into the second-order calldiye A u-calculus where the data type of lists
can be defined dg] :=VX. X — (1 =+ X — X) — X. However, this translation does not preserve the
reduction(::). We are unaware of other systems that are both known to begbfraormalizing, and
allow a straightforward strictly reduction preservingniséation.

Definition 4.1. The set ofstrongly normalizing termssN, contains the terms t for which the length of
each reduction sequence starting at t is bounded. We useothgan v(t) to denote this bound.

Due to the addition of lists td ::catch, the interpretation becomes a bit more involved than for the
case ofA —. Intuitively, we want our interpretation to ensure thatreatement of the list € [[0]] is
contained in[o].

Definition 4.2. Given a set of terms S, the set of terfisis inductively defined by the following rule.

Yww.ift = v:wthenve S and we %
te %

Notice that the above definition ensures thiat € .%s becausail cannot reduce te:: w.
Definition 4.3. The interpretatiorip] of a typep is defined as:

[T]:=8sN
[[o]]) :=sNN Zg
[o—1]:={t|vse[o] .tse [r]}

Lemmd 4.5 an 418 establish an important propeftyl] = SN for —-free types)y. Since thecatch
operator is restricted te>-free types, this means theatch a.r € SNimpliescatch a.r € [¢]. This
property is the key result to prove thag [[¢] impliescatch a.r € [¢] (Lemmd4.1b).

The propertyr € [o] impliescatch a.r € [[o] does not hold for all types. For example, consider
t = (catch o .throw a w) w with w = Ax.xx By Corollary[4.10 we havehrow a w e [T — T] and
using the above result we would have haglSN. This is impossible because» ww — ww — ...

Definition 4.4. We define thsizeof t, notation/(t), as the number of symbols in t. FoetsSN, we define
/n(t) as the size of the normal form of t.

Lemma 4.5. If ¢ is —-free, thersN C [¢].
Proof. We have to show that for eathe SN, we havet € []]. We proceed by well-founded induction
on /y(t) and a case distinction on the structura/ofThe only interesting case is (list), where we have to

show that € ;. So, lett — v::w for valuesv andw. We havev € sN C [[¢/] andw € [[[{/]] by the
induction hypothesis a& (V) < £n(t) andén(w) < /q(t). Hencet € £ as required. O

Lemma4.6.Ift € [o] andt—t, thent € [o].

Proof. We prove this result by structural induction on
(unit) Lett € [T] = SN andt — t’. By definition of SN we havet’ € SN.

Robbert Krebbers 29

(list) Lett € [[[0]] = SNN Z],) andt — t'. As we have’ € SN by definition ofSN, it remains to prove
thatt’ € Zj4. So, lett’ — v::w for valuesv andw. Now we havet — t" — v::w. Therefore,
v e [o] andw € .Z|4) by the assumption thate %4

(=) Lett € [o — 1] andt — t’. Since we have to prove thdte [0 — 1], letr € [g]. By assumption
we havetr € [[1]]. Furthermore we have — t'r becausd — t’. Therefore,t’r € [7] by the
induction hypothesis. O

Definition 4.7. We letf and U denote a sequence of terms. TheSsitontains all sequences of strongly
normalizing terms.
Lemma 4.8. We have the following results:

1. [o] C sN.

2. Ifde Sk then xi [o].

Proof. The results are proven simultaneously by structural irdoain o.
(unit) Both results are immediate.
(list) Property (1).[[0]] = SNN.Z|g) C SN.

Property (2). Leti € SN. We have to show thadi € [[o]] = sNN.Zjg). Since itis immediate that
Xt € SN, it remains to show thadii ¢ ,iﬂ[[a]]. However, as reductiongl — v :: w are impossible, we
are done.

(—) Property (1). Let € [0 — 1]]. We havex € [[g] by the induction hypothesis of property (2), and
thereforetx € [[1]. By the induction hypothesis of property (1) we hgw@ C SN, sot € SN.

Property (2). Letl € SN. We have to show thatl € [o — 1], so letr € [[o]. By the induction
hypothesis of property (1) we have= SN, and thereforedr € [[7]] by the induction hypothesis of
property (2). Thereforesti € [0 — 1] as required. O

Lemma4.9.Ifr e SNandU e S_1>\I then(throw a r)u € SN.

Proof. We prove this result by induction on the lengthtbf

1. We prove that we havehrow o r € SN by induction onv(r). We proceed by distinguishing the
reductionsthrow a r — g and show that we hawge SN for each such a.

(a) Letthrow a (throw ft) — throw 8 t. The result holds by assumption.
(b) Letthrow a r — throw a r’ with r — r’. The result follows from the induction hypothesis.

2. We prove that we haveghrow a r)t U € SN by induction onv(t) + v((throw o r)U). Itis easy to
verify thatq € SN for all reductions(throw a r)td — Q. O
Corollary 4.10. Ifr € SN andU SN, then(throwa r)d € [[a].

Proof. We prove this result by structural induction on
(unit) This case is a direct consequence of Lerhmh 4.9.

(list) We have to show thatthrow o r)U € [[[0]] = SNN.Z}4). As we have(throw a r)U € SN by
Lemmal4.9, it remains to show théthrow a r)U € Zy). SO, let(throw a r)t — v:iw for
valuesv andw. By distinguishing reductions we see that this reductiamizossible.

(—) This case follows directly from the induction hypothesisld emmad 4.8. O

30 A call-by-value lambda-calculus with lists and control

It would be convenient if we could provec [[o]] by showing that for all reductioris— t’ we have
t’ € [o]. Unfortunately, this result does not hold in general. Famegle, whereas the term:: nil is
in normal form, we do not have :: nil € [[[() — ()]]]. Similarly to Girardet al. [GTL89], we restrict
ourselves to the terntghat areneutral

Definition 4.11. A term isneutralif it is not of the shap@ x.r, nrec v; Vs, Or Vi w.
Lemma 4.12. If t is neutral, and for all terms’twith t — t’ we havete [g], then te [[o].

Proof. The results is proven by structural induction @n
(unit) The result is immediate.

(list) Lett be a neutral term such that for all termisvith t — t’ we havet’ € [[o]]]. We have to prove
thatt € [[[0]] = SNN.Z}4). By Lemmée 4.8 we hav§{a]]] C SN, and therefore < SN ast’ < SN for
eacht’ with t — t’ by assumption. It remains to show that %4, so lett — v:: w for valuesv
andw. Sincet is neutral, there should be a tethsuch that —t’ — v:: w. For such a terni we
havet’ € [[[o]] by assumption, henaec [[o] andw € .Z}4). Thereforef € 4y as required.

(—) Lett be a neutral term such that for all terthsvith t — t’ we havet’ € [0 — 1]]. We have to prove
thatt € [o — 7]}, so letr € [[o]. By the induction hypothesis it is sufficient to show thatif- q
thenq € [[7]. By Lemmd&.4.8 we havee SN, so we proceed by induction or{r). We distinguish
the following reductions.

(@) Lettr — t'r with t —t’. Now we havet’ € [0 — 1]] by assumption. Hencé'r € [1] by
definition, so we are done.
(b) Lettr — tr’ with r — r’. The result follows from the induction hypothesis.

(c) Let (throw a s) r — throw a s. By Lemmal4.8 we havdo — 1]] C SN, and therefore
throw a se SN ast’ € SN for eacht” with throw a s— t’ by assumption. As a consequence
we havethrow a s € [[1]] by Corollary(4.10.

(d) Letv(throwa s) — throwa s. By assumption we havehrow a s€ [[0]], sothrow a s€ SN
by Lemm& 4.B. Henceshrow a se [[1]] by Corollary(4.10.

No other reductions are possible becatis® neutral (so, in particular it cannot be of the shape
AX.SOrnrec V; Vg). O

Lemma 4.13.1f r e SNand ix:=r] € [o], then(Ax.t)r € [a].
Proof. We prove this result by well-founded induction oft) + v(r). By Lemm&4.1P it is sufficient to
show that for eacly with (Ax.t)r — g we haveq € [o]. We consider some interesting reductions.

1. Let(Axt)v—t[x:=V]. The result holds by assumption.

2. Let(Axt) (throw 3r)— throw B r. Inthis case we havehrow 1 € [[o]] by Corollary(4.10. O
Lemma 4.14.1ft € [o] and sc [[[o]]], thent:: s [[0]].
Proof. First we have to prove that: s € SN. That means, for eadpwith t :: s— qwe haveq € SN. We

prove this result by induction on(t) + v(s). We consider the following reductions.

1. Letthrowa r::s— (throwa r)s. Since we havehrow a r € [o]] ands e [[[o]] by assumption,
we obtain that,s € SN by Lemmd4.8. Thereforéthrow a r) se€ SN by Lemmd 4.D.

2. Letv: throwa r — throw o r. Since we havehrow a r € [[[0]] by assumption, we obtain that
throwa r € SN by Lemmd4.8.

Robbert Krebbers 31

Secondly, we have to prove that s € Z[]. So, lett :: s— v :: wfor valuesv andw. By distinguishing
reductions we obtain that— v ands — w. Therefore, we have € [o] andw € £ by Lemmd 4.6.
Hencet :: s € £ as required. O

Lemma 4.15. If ¢ is —-free and re [, thencatch a.r € [[Y].

Proof. By Lemmd4.b it is sufficient to prove thadtch a.r € SN. We prove this result by well-founded
induction on the lexicographic order orfr) and/(r). Letq with catch a.r — g. It remains to prove
prove thatg € SN. We consider the following interesting reductions.

1. Letcatch a.throwda r — catch a.r. The result follows from the induction hypothesis as we
havev(r) < v(throwa r) and/(r) < ¢(throw 3 r).

2. Letcatch a.throw 3 v— throw 3 v. The result holds by Lemnia 4.8.
3. Letcatch a.v— v. The result holds by Lemnia 4.8. O

Lemma 4.16.1f r € [p], s€ [o — [0] — [o]]], and te€ [[[o]], thenlrecrst € [p].

Proof. We prove this result by well-founded induction oifr) + v(s) + v(t) + ¢n(t). By Lemma4.1P
it is sufficient to show that for eaapwith 1recrst — qwe haveq € [p]. We consider the following
interesting reductions.

1. Letlrec V; Vsnil — V. The result holds by assumption.

2. LetlrecVy Vs (Vh i1 k) — Vs Vh t (Irec vy Vs). By the definition ofv, :: v € [[0]] we obtain
thatv, € [o] andw € [[[0]]. Therefore, we haverec v; vs vt € [p]] by the induction hypothesis
asln(v) < fn(Vh :: vt). Now, the result follows from the assumption.

3. Letlrec (throwa r)st— (throw o r) st. By assumption and Lemna #.8 we haygt < SN,
hence(throw a r) ste [p]] by Corollary[4.10. O

Corollary 4.17. If X3 : p1,..., % : pp;AFt:Tand i € [p] forall 1 <i <n, then
txa:=r1,..., % :=rn] € [T].

Proof. We prove this result by induction on the derivationfofA -t : 7. All cases follow immediately
from the results proven in this section. O

Theorem 4.18(Strong normalization)If I';A+t : p, then te SN.

Proof. We havex; € [pi]] for eachx; : pi € I by Lemm& 4.8B. Therefore,c [p]] by Corollary[4.1¥ and
hencet € SN by Lemmd 4.8. O

5 Conclusions

In this paper we have definéd:catch and proven that it satisfies the usual meta theoretical piiepe
subject reduction, progress, confluence, and strong nizatiah. These proofs require minor extensions
of well-known proof methods. This section concludes witmeaemarks on possible extensions.

An obvious extension is to add more simple data types, likelyets, sums, finitely branching trees,
etc. We expect our proofs to extend easily to these data types. ekmwadding more complex data
types presents some challenges. For example, considemertee of unlabeled trees with infinitary

32 A call-by-value lambda-calculus with lists and control

branching nodes, with the constructaksaf : tree andnode : (N — tree) — tree. A naive extension
of the —-free restriction would not forbidatch a .node (AX.throw o leaf) which does not reduce to
a value. It would be interesting to modify the-free restriction to avoid this.

Instead of using a GodelE style recursor, it would be interesting to consider a sysiédtima pattern
match and fixpoint construct. First of all, this approach @enconvenient as Godels style recursors
only allows recursion on direct subterms. Secondly, thigegach would avoid the need for tricks as in
Exampld 2.1D to improve efficiency.

Another useful extension is to add second-order types pd8F. Doing this in a naive way results
in either a loss of subject reduction (if we define type vddaato be—-free) or makes usingatch and
throw for the second-order fragment impossible (if we define tygmables not to be»-free).

Instead of using the statically bound control operatarsch andthrow, it would be interesting to
consider their dynamically bound variants. In a dynamychbundcatch andthrow mechanism, that
is for example used in the programming langu&genmon Lisp, substitution is not capture avoiding for
continuation variables. We do not see problems to use suathanism instead.

The further reaching goal of this paper is to defie-@alculus with data types and control operators
that allows program extraction from proofs constructeshgisilassical reasoning. In such a calculus one
can write specifications of programs, which can be provenguéh restricted form of) classical logic.
Program extraction would then allow to extract a programmfeuch a proof where the classical reasoning
steps are extracted to control operators. Herbelin'sy\j@€alculus [Her10] could be interesting as it
includes first-order constructs.

This goal is particularly useful for obtaining provably oeet algorithms where the use of control
operators would really pay off (for example if a lot of baeldking is performed). Seé [CGUO0O] for
applications to classical search algorithms. The work ok&iav [Mak06] may also be useful here, as it
gives ways to optimize program extraction to make it feasfbt practical programming.

Acknowledgments. | am grateful to Herman Geuvers and James McKinna for mantfutraiscus-
sions, and to the anonymous referees for providing sevetpful suggestions. | thank Freek Wiedijk
for feedback on a draft version of this paper. This work isrized by the Netherlands Organisation for
Scientific Research (NWO).

References

[Bar84] H. P. BarendregfThe lambda calculus: its syntax and semantiedume 103 ofStudies in Logic and
the Foundations of MathematicBlorth-Holland, 1984.

[BHFO1] K. Baba, S. Hirokawa, and K. Fujita. Parallel Redoctn Type FreeA,-calculus.ENTCS 42:52—-66,
2001. doi:10.1016/S1571-0661(04)80878-8.

[BUO2] G. Barthe and T. Uustalu. CPS Translating Inductive @oinductive Types. IREPM pages 131-142.
ACM, 2002. doi:10.1145/509799.503043.

[CF98] L. Colsonand D. Fredholm. System T, call-by-valud #ive minimum problemTheoretical Computer
Science206(1-2):301 — 315, 1998. doi:10.1016/S0304-3975(9B)QEE.

[CGUO0Q] J.L.Caldwell, I. P. Gent, and J. Underwood. SearlgoAthms in Type TheoryTheoretical Computer
Science232(1-2):55-90, 2000. dpi:10.1016/S0304-3975(99)064.7

[CP11] T. Crolard and E. Polonowski. A program logic for higtorder procedural variables and non-local
jumps, 2011. Technical report TR-LACL-2011¥ttp://arxiv.org/abs/1112. 1554,

http://dx.doi.org/10.1016/S1571-0661(04)80878-8
http://dx.doi.org/10.1145/509799.503043
http://dx.doi.org/10.1016/S0304-3975(98)00011-5
http://dx.doi.org/10.1016/S0304-3975(99)00170-X
http://arxiv.org/abs/1112.1554

Robbert Krebbers 33

[Cro99]
[DNO5]
[GKM12]
[Gri90]

[GTL89]
[Her10]

[Makoe6]
[Nako3]
[Par92]
[Par93]
[Par97]

[Py98]
[RS94]

[Tai67]

[Tak95]

T. Crolard. A confluent lambda-calculus with a cdtislow mechanismJournal of Functional Pro-
gramming 9(6):625-647, 1999.

R. David and K. Nour. Why the usual candidates of rebility do not work for the symmetric ;-
calculus.ENTCS 140:101-111, 2005. dpbi:10.1016/j.entcs.2005.06.020.

H. Geuvers, R. Krebbers, and J. McKinna. Thg'-calculus. Annals of Pure and Applied Logic,
2012. doi:10.1016/j.apal.2012.05.005.

T. G. Griffin. A Formulae-as-Types Notion of Controlln POPL, pages 47-58. ACM, 1990.
doii10.1145/96709.96714.

J.Y. Girard, P. Taylor, and Y. LafonProofs and TypesCambridge University Press, 1989.

H. Herbelin. An Intuitionistic Logic that Proves Mav’s Principle. InLICS pages 50-56. IEEE
Computer Society, 2010. doi:10.1109/LICS.2010.49.

Y. Makarov. Practical program extraction from desl proofs. INMFPS volume 155 ofENTCS
pages 521 — 542, 2006. doi:10.1016/j.entcs.2005.11.071.

K. Nakazawa. Confluency and Strong NormalizabditZall-by-ValueA,-calculus.Theoretical Com-
puter Science290(1):429-463, 2003. doi: 10.1016/S0304-3975(01)0€38

M. Parigot. A,-calculus: An Algorithmic Interpretation of Classical Ne&l Deduction. INLPAR
volume 624 ofLNCS pages 190-201, 1992. d0i:10.1007/BFb0013061.

M. Parigot. Classical Proofs as ProgramsKimt Godel Colloquiumvolume 713 ofLNCS pages
263-276, 1993. doi:10.1007/BFb0022575.

M. Parigot. Proofs of Strong Normalisation for Sst@rder Classical Natural Deductiodournal of
Symbolic Logic62(4):1461-1479, 1997. doi:10.2307/2275652.

W. Py.Confluence e -calcul. PhD thesis, Université de Savoie, 1998.

J. Rehof and M. H. Sgrensen. Thyecalculus. INTACS volume 789 olLNCS pages 516-542, 1994.
doii10.1007/3-540-57887-D13.

W. W. Tait. Intensional Interpretations of Functals of Finite Type I. Journal of Symbolic Logic
32(2):198-212,1967. dbi:10.2307/2271658.

M. Takahashi. Parallel ReductionsAnCalculus. Information and Computatiqrl18(1):120-127,
1995. doi:10.1006/inc0.1995.1057.

http://dx.doi.org/10.1016/j.entcs.2005.06.020
http://dx.doi.org/10.1016/j.apal.2012.05.005
http://dx.doi.org/10.1145/96709.96714
http://dx.doi.org/10.1109/LICS.2010.49
http://dx.doi.org/10.1016/j.entcs.2005.11.071
http://dx.doi.org/ 10.1016/S0304-3975(01)00380-2
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/BFb0022575
http://dx.doi.org/10.2307/2275652
http://dx.doi.org/10.1007/3-540-57887-0_113
http://dx.doi.org/10.2307/2271658
http://dx.doi.org/10.1006/inco.1995.1057

	1 Introduction
	1.1 Related work
	1.2 Outline

	2 The system
	3 Confluence
	4 Strong normalization
	5 Conclusions

