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This paper proposes new mathematical models of the untypetba-mu calculus. One is called
the stream model, which is an extension of the lambda modekhich each term is interpreted

as a function from streams to individual data. The other ieddhe stream combinatory algebra,
which is an extension of the combinatory algebra, and itas@d that the extensional equality of the
Lambda-mu calculus is equivalent to equality in stream doatbry algebras. In order to define the
stream combinatory algebra, we introduce a combinatogutadSCL, which is an abstraction-free

system corresponding to the Lambda-mu calculus. Moredvirshown that stream models are
algebraically characterized as a particular class of stre@mbinatory algebras.

1 Introduction

The A u-calculus was originally proposed by Parigot/8) &s a term assignment system for the classical
natural deduction, and some variantsAgfi-calculus have been widely studied as typed calculi with
control operators. Parigot noted that thebstraction of thé u-calculus can be seen as a potentially-
infinite sequence of th&-abstraction, and Saurin showed that an extension of thgedf p-calculus,
which was originally considered by de Groote[t) ind was called\u-calculus by Saurin, can be seen
as a stream calculus which enjoys some fundamental prepdt(10,[11]. In particular, Saurin proved
the separation theorem of tigu-calculus in[P], while it does not hold in the original ui-calculus H].

In [11], Saurin also proposed the Bohm-tree representationeof\tirterms. That suggests a rela-
tionship between the syntax and the semantics for the udtfpecalculus like the neat correspondence
between the Bohm-trees and Scold's model for the untyped -calculus. However, models of the un-
typedApu-calculus have not been sufficiently studied yet, so we tigate how we can extend the results
on the models of tha -calculus to the\u-calculus.

In this paper, we give simple extensions of thenodels and the combinatory algebras, and show
that they can be seen as models of the untypgecalculus. First, we introducsiream models of the
untypedAu-calculus, which are extended from thenodels. The definition of stream model is based on
the idea that thé u-calculus represents functions on streams, that is, instraodels, everpu-term is
interpreted as a function from streams to individual datsenT we give a new combinatory calcukiSL,
which is an extension of the ordinary combinatory lo@ic, and corresponds to theu-calculus. The
structure ofSCL induces another model of the untyp&g-calculus, calledtream combinatory algebra.

We will show that the extensional equality of thhgi-calculus is equivalent to equality in extensional
stream combinatory algebras. We also show that the streahelmare algebraically characterized as a
particular class of the stream combinatory algebras.

2 Untyped Au-Calculus

First, we remind the untypefiu-calculus. We are following the notation @][ because it is suitable to
see the\u-calculus as a calculus operating streams.
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36 Extensional Models of Untyped Lambda-mu Calculus

Terms:
M,N::=Xx|AXM|MN | ua.M | Ma

Axioms:

(AXM)N =g M[x:= N]
(Ha.M)B =p. M[a = f]
AXMX =p, M (X FV(M))
pa.Ma =,; M (a €FV(M))
(na.M)N =, pa.M[Pa :=PNda]

Figure 1: Untyped\p-calculus

Definition 2.1 (Au-calculus) Suppose that there are two disjoint sets of variables: otieeiset Var of
termvariables, denoted by,y, - - -, and the other is the set \é@of stream variables, denoted bya, 3, - -.
Terms and axioms of thAu-calculus are given in the Fidll The set of the\u-terms is denoted by
Termy,. We use the following abbreviationstxix; - - - x,.M denotesAxi.(Axz.(--- (A%,.M)---)) and
similarly for p, MA; - -- A, denoteq- - - (MA;) - - - )Aq, In which eachA; denotes either a term or a stream
variable, and the top-level parentheses are also ofterieamiVariable occurrences panda are bound
in Ax.M andua .M, respectively. Variable occurrences which are not bourcalled free, an&V (M)
denotes the set of variables freely occurrind/inin the axiomsM|[x:= N] andM|[a := 3] are the usual
capture-avoiding substitutions, aM]Pa := PNa| recursively replaces each subterm of the fétmin
M by PNa. The relationM =5, N is the compatible equivalence relation defined from theragio
Contexts are defined a¥ ::= [Ja | K[[]M], andK[M] is defined in a usual way. The substitution
M[Pa := K|[P]] recursively replaces each subterm of the fétmin M by K[P].

Each context has the forffM; ---M,a and it corresponds to a stream data, the initial segment of
which isM; ---Mp and the rest isr. It is easy to see tha¢[ua.M] =A, M[Pa := K[P]] for any termM
and any contexK.

The untypedA\u-calculus can be seen as a calculus operating streams, @ Wi Li-abstractions
represent functions on streams, and a tbthy - - - Noa means a function application df to the stream
data[|Np---Nna. For example, the terind = AX. o .Xx is the function to get the head element of streams
since we havendNp---Nnf =g, (Ua.No)N1---Nn = (Ha.No)B =p; No. For another example, we
have a terrmth representing the function which takes a stream and a numeraid returns the-th
element of the stream. The terith is defined as

Y (A fx.pa.Ay.if (zero?y) then xelse fa(y—1)),
whereY is a fixed point operator in th®-calculus, and we have
nthNoNiN2---NaB G =ap N;

for any 0<i < n. However, the\u-calculus has no term representing a stream, and that Meaterms
do not directly represent any function which returns stream
In Parigot’s originalA u-calculus [B], terms of the formPa, which are originally denoted bjyr|P,
are distinguished asamed terms from the ordinary terms, and bodies @fabstractions are restricted to
the named terms. On the other hand, we condideas an ordinary term and any term can be the body
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of p-abstraction in theé\u-calculus. For example, neithdtaN nor ua .x is allowed as a term in the

original A u-calculus, whereas they are well-formed terms inMecalculus. Such extensions of the
A u-calculus in which the named terms are not distinguishea lhaen originally studied by de Groote
[5], and Saurin[@] considered a reduction system with theeduction, where another axiom

Ho M =g AX.pua.M[Pa := Pxa|
is chosen instead ofi). For extensional equational systems, the axigm)sd (st) are equivalent since
pa M =p. Ax.(ua.M)x =, Ax.pa.M[Pa := Pxa], and
(Ha.M)N =g (Ax.ua.M[Pa := Pxa])N =g pa.M[Pa := PNa]).

3 Stream Models

In this section, we introduce extensional stream modelgheruntypedAp-calculus. The definition
follows the idea that th&u-terms represent functions on streams.

3.1 Definition of Extensional Stream Models

In the following, we use\ to represent meta-level functions.stkeam set over a seD is a pair(S; ::) of
a setSand a bijection(::) : D x S— S A typical stream set oveD is theN-fold product ofD, that is,
(DN, ::) where

d::s:XneN.{d (n=0)
s(n—1) (n>0).

For a functionf : D x S— E, Ad :: s€ S (d,s) denotes the functiofio (::)"1: S— E.
Definition 3.1 (Extensional stream modelg)n extensional streammodel is a tuple(D, S [S— DJ,::,¥)
such that

1. (S::) is a stream set oved.

2.[S— D] is asubset 08— D.

3. ¥:[S— D] — D s a bijection. We write its inverse by.

4. There is a (necessarily unique) functipa] : Termy, x (Varr — D) x (Vars — S) — D, called
meaning function, such that

[X]p.6 =P(X)
[AXM], 0 =W(Ad s SOM] iy, ,q1.6)(S)
[MN], o =¥Y(Ase SO(M], ([N, :9))
[HaM], o =W(Ase S[MI, paq)
Mall, g =P([M],)(8(a))

Herep[x — d] is defined by
d (x=Y)
di(y) =
Phe= At {p(y) (x ),

and@[a — g is defined similarly. We use the notatidnsto denoted(d)(s) ford € D andse S
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The condition 4 requires that each argumeri#a$ contained ifS— D]. In the next subsection, we
show that extensional stream models can be obtained fromoloéons of the simultaneous recursive
equationdd x S= SandS=- D = D in a well-pointed CCC (Theorel3.6).

Lemma 3.2 The following hold.
1. [M[x:=N]]p.6 = [M] ppes N, 61.6-
2. [Mla = Bllp.0 = Ml 01a50(8)-
3. [M[Pa :=PNalp.6 = [M], g1aws i, 0::6(a)-

Proof. By induction onM. We show only the case &f = M’a for 3.

(M'a)[Pa :=PNa]]pe
M'[Pa :=PNa]Na],.e
M’[Pa :=PNal]lp,0 * ([N]p,6 :: 6(ax))
M5 ojarsNjp.or00a) * ([NJo,0 22 B(a)) (by IH)
M@l o N, o::0(a)
Ol

Theorem 3.3(Soundness) et D be an arbitrary extensional stream modeMIt=5, N, then[M]}, 5 =
[N], ¢ holds inD for anyp andé.

Proof. By induction onM =5, N. We show only two cases, and the other cases are similanyegrioy

Lemmd3.2
Case ().

(WA 8. ([M] psay,0) ¥S)) * ([IN]p,6 12 9)
S.(IM] ppes Ng.61,6) * )

= [M] o5 Ng.0).6

=[Mx:=N]lp.0 (by Lemmd3.21)
Case [1).

[(Ha-M)N]pe = ¥(

W(

(WAS- M, gas)) * (INTp.6 22 9))

=Y(As.
=WASMI, oasng, 009)
On the other hand, if we |’ = 6[a — 9, then the following holds.
[ua.M[Pa :=PNallpe = W(As. Mlp6amny, ) (0y Lemma323)
= W(As. Mlpe@sing,e:s)  (Bya FV(N))
U

Theorem 3.4 Every extensional stream model is an extensidratodel in which the interpretation of
A-terms coincides with the interpretation in the stream rhode
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Proof. Let D be an extensional stream model, then we can degbne> D], ® : D — [D — D], and
Wo: [D — D] — D as follows.

[D—D]:={f:D—D|(Ad:seS(f(d))xs) €[S— D]}
Po(d) :=Ad € D.W(Ase Sd«(d ::s))
Wo(f) :=W(Ad:sc S(f(d))*s)
Note that these are variants efal and abst in [15], and just based on the isomorphidbnx S~ S,

Then, it is easily checked th&tis aA-model with®y andWy. The interpretation of tha-terms in the
A-model, denotecﬂ-]])‘ here, coincides with the interpretation in the stream maddbllows:

[AXM] = Wo(Ad € D.[M] )

=WAd S € S([M)p,q1) *S) (by Def. of Wo)

= [AxM], (by 1H),
[MN], = ®o([M])([N]5)

=W@Ase S(IM]})*(IN]} = 9)) (by Def. of ®y)

= [MN], (by IH).

3.2 Categorical Stream Models

In a categorical setting, a solutidiD,S) of the following simultaneous recursive equations in a CCC
provides a model of thAu-calculus.

DxS~S S=D~D Q)
Definition 3.5 (Categorical stream model$) categorical streammodel ina CCCC is a tuple(D, S,c, )

of objectsD andS, and isomorphisms: D x S— Sandy : S= D — D.
WhenC has countable products, the solutions of the following r&iga equation:

DN=D~D (2)

yield categorical stream models, as we always Ve~ D x DN,

Given a categorical stream mod®, S c, (), we can interpref\pi-terms as a morphisriMJly 5
DX x 8@l — D, wherex (resp.d) is a finite sequence of distinct term (stream) variable$ shat every
free term (stream) variable M occurs inX (a), and|X| (|@]) is the length ok (¢'). We omit the details of
this interpretation, as it is a straightforward categdricemulation of the meaning function in Definition

3.1
When the underlying CCC of a categorical stream model is well-pointed (that is, tlobal element
functorC(1,—) : C — Set is faithful), we can convert it to an extensional streaodeh

Theorem 3.6 Let C be a well-pointed CCC. For any categorical stream ma@@e5 c, ) in C, the
following tuple is an extensional stream model:

(C(1,D), C(1,9), {C(L,f) | f € C(SD)}, A(f.g).co(f.g), W),
whereW is the function defined bW (C(1, f)) = oA (fom).
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For instance, in the well-pointed CCC of pointed CPOs andaitinuous functions, the standard
inverse limit method13,[14] applied to the following embedding-projection péér: Do — D('}' = Do, p:
DY = Do — Do):

e(x) =AyeDi.x, p(f)="f(L,...)
on a pointed CPD, containing at least two elements yields a non-trivial sotuf @). From this
solution, an extensional stream model is derived by The@din This model distinguishe§A xy.x]|
and[[Axy.y], hence, we obtain a model theoretic consistency proof of\frealculus (consistency also
follows from confluence, which has been provedid]].

4 Stream Combinatory Algebra

We give another model of the untypégli-calculus. It is called stream combinatory algebra, whecari
extension of the combinatory algebra corresponding to ¢inebinatory logicCL.

4.1 Combinatory CalculusSCL

We introduce a new combinatory calcultSL, and show tha$CL is equivalent to thé\p-calculus. This
result is an extension of the equivalence betweemtgalculus and the untyped variant of the ordinary
combinatory logicCL with the combinator¥ andS. In SCL, the combinator& andS are denoted by
Ko andSo, respectively.
Definition 4.1 (SCL) Similarly to theApu-calculus,SCL has two sorts of variables: term variablesVar
and stream variables \arConstants, terms, streams, axioms, and extensionaléyg aiSCL are given
in Fig. @ The set of theSCL-terms and the set of theCL-streams are denoted by Teyen and
Streamyc,, respectively. The set of variables occurringTinis denoted byFV(T). We suppose that
the binary function symbol&) and(x) have the same associative strength, and both are left aggeci
For exampleT: - Tox.%3 - T4 denoteq (Ty - To) x.#3) - T4. The substitutiond [x:= T’ andT[a :=.] are
defined straightforwardly. The relatioh =g¢. U is the compatible equivalence relation defined from
the axioms and the extensionality rules.

The new operatior{x) represents the function application for streams, whichiesponds to the
applicationMa in the Au-calculus.

In the following, we think that the term of the for - T, .3 is simpler thanT; x (T, :: ./3), and
that is formalized as the following measufié.
Definition 4.2 The measurél | of SCL-terms is defined 43 | = c(T) +m(T), wherec(T) is the number
of the symbol :: occurring iff, andm(T) is the number of nodes of the syntax treelof

It is easily seen that i is a subterm ob) then|T| < |U|, and|Ty- Tox.%3| < [T1x (T2 :: #3)|, which
follows fromm(Ty - Tox.73) = m(Tyx (T2 1 .73)).

TheApu-calculus andbCL are equivalent through the following translations.
Definition 4.3 (Translations betweeAu andSCL) 1. ForT € Termgc, andx € Varr, we define the
SCL-termA*x.T inductively on|T| as follows:

A*XX=Sp-Kp-Kg
AXT =Ko T (XZFV(T))
A™X(T-U)=Sp- (A"™x.T)-(A*xV)
AX(T*a)=Cio- (A'XT)xa
AX(TxU za)) =A"%(T-Uxa).
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Constants:
CZZ:Ko’K]_’So’Sl‘Clo‘Cll’Wl
Terms:
TU::=C|x|T-U|TxY
Streams:
SLi=a|Tus
Axioms:
K()-T]_-Tzle Kl-Tl*yzle
So-Tl-Tz-Tg:Tl'Tg'(Tz'Tg) Sl'Tl-Tz*yngl*yg'(Tz*yg)
C10'T1*<72-T3:T1'T3*y2 C11-T1*y2*y3:T1*y3*y2
Wl'Tl*yzle*yz*yz T]_*(Tz Zlyg) :Tl'Tz*y3
Extensionality rules:
T-x=U-x x¢FV(T)UFV(U) Txa=Uxa a¢gFV(T)UFV(U)
Figure 2:SCL

ForT € Termgc. anda € Vars, we define th&CL-term u*a.T inductively on|T| as follows:
praT =K T (a ¢FV(T))
pra(T-U)=S:-(ua.T) (u*a.U)
wa. (Txa)=Wi-(u*a.T)
pra.(T*B)=Cu- (a.T)+B (a #B)
pa.(TxU:a))=p a.(T-Uxa).

Then the mappindl* from Termy, to Termsc is defined by

X" =X
(AXM)* = A*xX.M* (MN)* =M*-N*
(Ha.M)* =pu*a.M* (Ma)* =M"xa.
2. The mappingd. from Ternyc, to Term, , and., from Streamsc, to contexts are defined by
(Ko)« = AXxy.X X, = X
(K1)x = AX.pa.x (T-VU),=T.U,
(So)« = Axyzxz(yz) (T*S). = 7T
(S1)« = Axy.ua.xa(ya)
(C10)« = AX.HO.Ay.XyQ a.=[|a
(C11)« = AX.paB.xBa (T = AT
(W1), =Ax.pa.xaa
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By the extensionality 0c$CL, the definitions oA *x.T andu*a.T such that 1 of the following lemma
holds are unique modutegc, .

Lemma 4.4 The following hold.
1. (A*XT)-U =gc. T[x:=U]and(p*a.T)x.¥ =scL T[a :=.7].
2. If T =gc. U, thenA*X.T =gc. A*xU andu*a.T =g¢, u*a.U.

Proof. 1. By induction on[T]|.
2. By 1, we havgA*x.T) - X =gc. T and(A*x.U) -x =sc. U. SinceT =sc. U, we have(A*x.T) -
X=scL (A*xU)-x, and henc@ *x.T =gc. A*x.U by ({7). O

Lemma 4.5 The following hold.
1. (M[x:=N])* =gc. M*[x:= N*].
2. (M[a := B])* =scL M*[ar == B].
3. (M[Pa :=PNa])* =sc. M*[a :=N*::a].

Proof. By induction onM. We show only the case &fl = Ay.M’ for 1. We suppose thatZ FV(N)
andy # x by renaming bound variables. We hay@y.M’)[x := N|)* -y = (Ay.M’'[x := N])* -y =
(A*y.(M'[x:= N])*) -y =scL (M’[x:= N])* by Lemma4.41, and it is identical witiM"*[x := N*] by
the induction hypothesis. On the other hand, we Havg.M*[x:= N*]) -y =sc. M"*[x := N*]. Hence,
by (¢t), we have((Ay.M")[x := N])* =sc (AY.M)*[x:= N*]. O

Lemma 4.6 The following hold.
1. M =5, N impliesM* =g N*.
2. T =sc. U impliesT, =5, U,.
3. (M*), =au M.
4. (T*)* =scL T and(&’*[M])* =gcL M*x.¥

Proof. By the previous lemmas, they are proved by induction sttéaglardly. O

It is shown that the combinatory calculB€L is equivalent to thé\pi-calculus in the following sense.

Theorem 4.7 1. For anyAu-termsM andN, M =, N iff M* =g N*.
2. For anySCL-termsT andU, T =s¢ U iff T, =y U..

Proof. 1. The only-if part is LemmaL81, and the if part is proved by Lemn#a82 andl4.6.3 as
M =pAu (M) =ap (N*) =apu N.
2. Similarto 1 by 1, 2, and 4 of Lemn@a@ O

4.2 Stream Combinatory Algebra

The stream combinatory algebras are given as modél€lof SinceSCL is equivalent to thé\Li-calculus
in the sense of Theorehd, they are also models of the untyp&gi-calculus.

Definition 4.8 (Stream combinatory algebrag)) For non-empty set® andS, a tuple(D,S -, *,::) is
called astream applicative structure if () :DxD — D, (x) :DxS— D, and(::) : DxS— Sare
mappings such that

dl*(dg . Sg,) = dl'dg*Sg
foranyd;,d, e D andsz € S
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(2) A stream applicative structui2 is extensional if the following hold for anyd,d’ € D:
Vdo € D[d-do = d’- do] impliesd = d’,
Vsp € Jdrso = d' x50 impliesd = d’.
(3) A stream applicative structut@ is called astream combinatory algebra if D contains distin-

guished elementky, k1, sg, s1, c10, 11, andws such that the following hold for angy,d»,ds € D and
2,8 €S

ko-di-dh =dy ki-Oixsp=ds
so-dp-dy-d3=dp-ds- (dy-dg) s1-01-thxS3 =01 xSz (Do *3)
c10-d1xSp-dz3 =dy-d3*Sp C11 U1 *S*S=h»*xS

Wy xS = »H*xS

Note that, for a stream applicative structy S -, x,::), the setSis not necessarily a stream set on
D in the sense of Sectid@ and we will callD standard if (S,::) is a stream set oD.

It is clear that any stream combinatory algebra is alwaysrmabimatory algebra by ignoring the
stream part, that igix), (::), ki, s1, c10, €11, andwy. Therefore, any extensional stream combinatory
algebra is an extensional combinatory algebra, and henegtansionalA -model.

We can interpreSCL in stream combinatory algebras in a straightforward way.

Definition 4.9 (Interpretatlon ofSCL) Let (D,S -, *,::) be a stream comblnatory algebra. Theaning
functions (—|) : Termsc, x (Varr — D) x (Vars — S) — D and (|—|)° : Streamc, x (Varr — D) x
(Vars — S) — Sare defined by:

(Chpe=c (ape=6(a)
(X)p.0 =P (x) (T shse=(Thpe: (L D5e
(T-UDbo=(Thie (Ubpe
(TSN po=(Thpox{("D5e

wherec denotes the element &f corresponding to the consta®f that is, (Kol o = ko, {(|Sol) 5, 9 = so.
and so on. We often omit the superscripor S.

Theorem 4.10(Soundness and completenes)r anySCL-termsT andU, T =sc. U iff (T, =
(U \>p.9 in any extensional stream combinatory algebra for araynd 6.

Proof. (Only-if part) The soundness can be proved by straightfahvirsduction onT =g¢; U.

(If part) We can construct a term model as follows. LBt= Termsc / =sc. and S =
Streamc/ =sci, and the equivalence classesbnand S are denoted such d%] and [.]. The op-
erations are defined 4§]-[U] = [T -U], [T]x[.7] = [T ], and[T] :: [¥] = [T :: .¥]. The element
ko is defined asKo| and similar for the other constants. The resulting strecisieasily proved to be an
extensional stream combinatory algebra. If we takend6 asp(x) = [x] and6(a) = [a], respectively,

then(|T|) [T] foranyT € Termsc, , hence we have thdfT |) (U |>p’9 impliesT =sc.U. O

p.60 p.6 —

Corollary 4.11 For anyAp-termsM andN, M =5, N iff (M*)), 5 = (N*]), o in any extensional stream
combinatory algebra for any and®6.

Proof. It immediately follows from Theorefd.7and Theorerd. 10 O
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5 Algebraic Characterization of Stream Models

Definition [3.1 of the extensional stream models is a direct one, but it dipen the definability of
the meaning function on th&u-terms. In this section, we give a syntax-free characteomaor the
extensional stream models, that is, the class of the exteaisstream models exactly coincides with the
subclass of the extensional stream combinatory algebrakich Sis a stream set oD.

Definition 5.1 A stream applicative structu®, S, -, *,::) is standard if (S,::) is a stream set ob.

Note that, for standard stream applicative structuresextiensionality for term applicatiofi) fol-
lows from the extensionality fok) since(::) is surjective: supposa -d = d, - d for anyd € D, then for
anyse Swe haved; -dxs= dy-d s, which meangl; = (d :: s) = d = (d :: s) for anyd ands. Hence
di = dy by the extensionality with respect 0

Theorem 5.2 For a non-empty sdd and a stream sé€8::) on D, the following are equivalent.

1. (D,S) is an extensional stream model with sofSe- D] and¥.

2. (D,S) is a standard extensional combinatory algebra with someatipas(-) and(x), and some
elementskg, ki1, so, s1, ¢10, €11, w1 in D.

Proof. (1—-2) SupposéD, S [S— D],::,¥) is an extensional stream model. Define
dxs= d(d)(s) d-d =WAsc Sa(d)(d ::9)),

where we should note that- d’ is identical to[xy] ;4.4 @nd hence it is always defined. Define
ko = [[Axy.x]] and so on. ThefD, S -, ,::) is a standard extensional stream combinatory algebraethde
it is a stream applicative structure, since

dy -Gz = D(W(AsD(dp)(dp::8)))(S3) = P(dp)(d =2 S3) = dy % (dp =2 Sg).

(2=1) Suppos€D, S, -, *,::) is a standard extensional stream combinatory algebra. ®&in
D] :={fq|d € D}, wherefq denotests € Sdxs. Thend(d) = fq andW(f4) = d are well-defined since
D is extensional, and they give a bijection betwe8r+ D] andD. We can see that the interpretation
[M]lp,e with respect tod and ¥ coincides with(M*|), 5. That is shown by the following lemmas for
anySCL-termT:

<M*X'T’>p79 d= <’T‘>p[x»—>d]79 <“‘1*a'T’>P79*S: <‘T’>P»9[a'—>5]'

In the case oM = AX.N, [M]|p9 = (M*|),, 4 is proved as follows.

(IM™)pgx(d::s) = (M), g-dxs
= (N" ppesa 0 *S (by the lemma)
= [N] pjxaj,0 S (by IH)
= q)([[N]]p[XHd].Q )(S)

Therefore we havad :: SO([N] 5, ,4.)(S) = Ad 1 8.(M*)), g% (d 1 8) = fyy) € [S— D], and hence

p,0
[M]},, ¢ is defined and identical t@’(fw*‘)pe) = (M*)), o- The other cases are similarly proved. Hence,

(D,S [S— DJ,::,¥) is an extensional stream model. O
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6 Conclusion

We have proposed models of the untygeg-calculus: the set-theoretic and the categorical streanh mo
els, and the stream combinatory algebras. We have also ghetvaxtensional stream models are alge-
braically characterized as a particular class of the eidaatstream combinatory algebras. The stream
combinatory algebra has been induced from the new comijnatdculusSCL, which exactly corre-
sponds to the untypefiu-calculus.

6.1 Related Work

Models of the untypedA u-calculus. In [15], Streicher and Reus proposed the continuation models for
the untypedA u-calculus (which is a variant of Parigot’s origin&ju-calculus) based on the idea that
the A u-calculus is a calculus of continuations. If we see eactastie:: sas a pair(d,s) of a function
argumentd and a continuatiors, the meaning function for the stream models looks exactdysdme as
that for the continuation models.

In the untyped u-calculus in [L5], the named terms are distinguished from the ordinary tedms
the continuation models, an objdR{calledresponse object) for the denotations of named terms is fixed
first, then the objecD for the denotations of the ordinary terms and the ob§fir continuations are
respectively given as the solutions of the following siranious recursive equations:

DxS~S S= R~D. 3)

These equations say that the continuations are streamgiofoy terms, and the ordinary terms can
act as functions from continuations to responses (i.e.|tsesficomputations). On the other hand, in
the Au-calculus, the named terms and terms are integrated intsyariactic category, thus allowing us
to pass terms to named terms, suchVisN. In the model side, this extension corresponds to that the
response objed®in (@) is replaced byD, resulting in the simultaneous recursive equati@s (

In [[16], van Bakel et al. considered intersection type systemdfitadmodels for the) p-calculus
based on the idea of the continuation models of StreichelRas. They considered only the original
A p-calculus, and\u-terms such agiar.x have no type except faw in the proposed intersection type
system, and hence, they are interpreted as the bottom dlémtbe filter model. They also showed that
every continuation model can be a model of fke-calculus. The idea is to translate edgh-term to a
Au-term aspya.M to pa.Ma andMa to uB.Ma with a freshB. However, as pointed out ii], the
axiom (Bs) is unsound for this interpretation in general, whereas $sound in our stream models.

Akama [I] showed that the untypetlu-calculus can be interpreted in partial combinatory algsbr
It is based on the idea thatabstractions are functions on streams. However, it mstterms to affine
ones, that is, each bound variable must not occur more tham on

Fujita [6] considered a reduction system for thg-calculus with GB7), (n1), (1), and €st) rules, and
gives a translation from th& u-calculus to the\ -calculus which preserves the equality, and hence it is
shown that any extensionatmodel is a model of th& u-calculus. In the translation, eaghabstraction
is interpreted as a potentially infinite-abstraction by means of a fixed point operator. However, it
considers neither3s) nor (s), and it seems hard to obtain a similar result for them.

Combinatory logic and classical logic.Baba et al. considered some extensions ofAttealculus
with combinators corresponding to classical axioms sué¢Pesrge’s law and double negation elimination
in [2].

Nour [7] introduced the classical combinatory logic correspogdimBarbanera and Berardi’'s sym-
metric A -calculus [B]. The classical combinatory logic has two kinds of applmaioperators: one is the
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ordinary function application, and the other represerddrteraction of terms and continuations, which
is based on the same idea as the stream application oper&6i i(and denoted by the same symbol
*). Nour’s classical combinatory logic is a typed calculusresponding to classical logic, and its weak
reduction corresponds to the reduction of the symmeétralculus. On the other hand, we have not
found any reasonable type system $dil. as discussed below, b&CL corresponds to thap-calculus,
and, in particular, it can represent theabstraction over continuation variables.

6.2 Further Study

(Extensional) stream models.One natural direction of study is to analyze the local stmectof the
domain-theoretic extensional stream models constructed the solutions ofd) in Sectiori3.2 How do
they relate to the Bohm-tree representation proposetil? [Do these models enjoy the approximation
theorem? Which syntactic equality corresponds to the @gualthese models?

We have considered only extensional theories and modehgsipaper. We can naively define non-
extensional stream models by weakening the condjon D] ~ D to [S— D] <D, and then the func-
tions ®g andW¥y in Theoreni3.4are still well-defined. However, under such a structure, lweays have
Woo dg = id, so the extensionality axiomr is unexpectedly sound, for examgl@xy.xy] = [Ax.X]
always holds. Furthermore, we do not know how to derive that Wy = id, which is essential for
modeling the3-equality of the term application. It is future work to studgw we can define appropriate
notion of the models of the non-extensiorgl-calculus.

Moreover, syntactic correspondence between non-extegisibeories of thé\p-calculus andbCL
is still unclear and it is future work to study on it.

Types and classical logic.The A u-calculus was originally introduced as a typed calculugezor
sponding to the classical natural deduction in the senskeoCurry-Howard isomorphism. It is future
work to adapt our discussion to a typed setting and to stuelydlationship to classical logic. It is well-
known that the combinatory logic with types exactly cormugs to the Hilbert-style proof system of
intuitionistic logic. On the other hand, it is unclear how wan conside6CL as a typed calculus, since
the Apu-terms corresponding to the constant$S@l are not typable in the ordinary typédu-calculus,
for example,(S1). = Axy.pa.xa(ya).

AcknowledgmentsWe are grateful to Dana Scott, Kazushige Terui, Makoto Tafsand anonymous
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