
Herman Geuvers, Ugo de’Liguoro (Eds): CL&C’12
EPTCS 97, 2012, pp. 35–47, doi:10.4204/EPTCS.97.3

c© K. Nakazawa and S. Katsumata
This work is licensed under the
Creative Commons AttributionLicense.

Extensional Models of Untyped Lambda-mu Calculus

Koji Nakazawa
Graduate School of Informatics, Kyoto University

knak@kuis.kyoto-u.ac.jp

Shin-ya Katsumata
Research Institute for Mathematical Sciences, Kyoto University

sinya@kurims.kyoto-u.ac.jp

This paper proposes new mathematical models of the untyped Lambda-mu calculus. One is called
the stream model, which is an extension of the lambda model, in which each term is interpreted
as a function from streams to individual data. The other is called the stream combinatory algebra,
which is an extension of the combinatory algebra, and it is proved that the extensional equality of the
Lambda-mu calculus is equivalent to equality in stream combinatory algebras. In order to define the
stream combinatory algebra, we introduce a combinatory calculusSCL, which is an abstraction-free
system corresponding to the Lambda-mu calculus. Moreover,it is shown that stream models are
algebraically characterized as a particular class of stream combinatory algebras.

1 Introduction

Theλ µ-calculus was originally proposed by Parigot in [8] as a term assignment system for the classical
natural deduction, and some variants ofλ µ-calculus have been widely studied as typed calculi with
control operators. Parigot noted that theµ-abstraction of theλ µ-calculus can be seen as a potentially-
infinite sequence of theλ -abstraction, and Saurin showed that an extension of the untypedλ µ-calculus,
which was originally considered by de Groote in [5] and was calledΛµ-calculus by Saurin, can be seen
as a stream calculus which enjoys some fundamental properties [9, 10, 11]. In particular, Saurin proved
the separation theorem of theΛµ-calculus in [9], while it does not hold in the originalλ µ-calculus [4].

In [11], Saurin also proposed the Böhm-tree representation of the Λµ-terms. That suggests a rela-
tionship between the syntax and the semantics for the untyped Λµ-calculus like the neat correspondence
between the Böhm-trees and Scott’sD∞ model for the untypedλ -calculus. However, models of the un-
typedΛµ-calculus have not been sufficiently studied yet, so we investigate how we can extend the results
on the models of theλ -calculus to theΛµ-calculus.

In this paper, we give simple extensions of theλ -models and the combinatory algebras, and show
that they can be seen as models of the untypedΛµ-calculus. First, we introducestream models of the
untypedΛµ-calculus, which are extended from theλ -models. The definition of stream model is based on
the idea that theΛµ-calculus represents functions on streams, that is, in stream models, everyΛµ-term is
interpreted as a function from streams to individual data. Then, we give a new combinatory calculusSCL,
which is an extension of the ordinary combinatory logicCL, and corresponds to theΛµ-calculus. The
structure ofSCL induces another model of the untypedΛµ-calculus, calledstream combinatory algebra.
We will show that the extensional equality of theΛµ-calculus is equivalent to equality in extensional
stream combinatory algebras. We also show that the stream models are algebraically characterized as a
particular class of the stream combinatory algebras.

2 Untyped Λµ-Calculus

First, we remind the untypedΛµ-calculus. We are following the notation of [9], because it is suitable to
see theΛµ-calculus as a calculus operating streams.

http://dx.doi.org/10.4204/EPTCS.97.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

36 Extensional Models of Untyped Lambda-mu Calculus

Terms:
M,N ::= x | λx.M | MN | µα .M | Mα

Axioms:

(λx.M)N =βT
M[x := N]

(µα .M)β =βS
M[α := β]

λx.Mx =ηT M (x 6∈ FV (M))

µα .Mα =ηS M (α 6∈ FV (M))

(µα .M)N =µ µα .M[Pα := PNα]

Figure 1: UntypedΛµ-calculus

Definition 2.1 (Λµ-calculus) Suppose that there are two disjoint sets of variables: one isthe set VarT of
term variables, denoted byx,y, · · · , and the other is the set VarS of stream variables, denoted byα ,β , · · · .
Terms and axioms of theΛµ-calculus are given in the Fig.1. The set of theΛµ-terms is denoted by
TermΛµ . We use the following abbreviations:λx1x2 · · ·xn.M denotesλx1.(λx2.(· · · (λxn.M) · · ·)) and
similarly for µ , MA1 · · ·An denotes(· · · (MA1) · · ·)An, in which eachAi denotes either a term or a stream
variable, and the top-level parentheses are also often omitted. Variable occurrences ofx andα are bound
in λx.M andµα .M, respectively. Variable occurrences which are not bound are called free, andFV (M)
denotes the set of variables freely occurring inM. In the axioms,M[x := N] andM[α := β] are the usual
capture-avoiding substitutions, andM[Pα := PNα] recursively replaces each subterm of the formPα in
M by PNα . The relationM =Λµ N is the compatible equivalence relation defined from the axioms.

Contexts are defined asK ::= []α | K[[]M], andK[M] is defined in a usual way. The substitution
M[Pα := K[P]] recursively replaces each subterm of the formPα in M by K[P].

Each context has the form[]M1 · · ·Mnα and it corresponds to a stream data, the initial segment of
which isM1 · · ·Mn and the rest isα . It is easy to see thatK[µα .M] =Λµ M[Pα := K[P]] for any termM
and any contextK.

The untypedΛµ-calculus can be seen as a calculus operating streams, in which theµ-abstractions
represent functions on streams, and a termMN0 · · ·Nnα means a function application ofM to the stream
data[]N0 · · ·Nnα . For example, the termhd= λx.µα .x is the function to get the head element of streams
since we havehdN0 · · ·Nnβ =βT

(µα .N0)N1 · · ·Nnβ =µ (µα .N0)β =βS
N0. For another example, we

have a termnth representing the function which takes a stream and a numeralcn and returns then-th
element of the stream. The termnth is defined as

Y (λ f x.µα .λy.if (zero? y) then x else f α(y−1)),

whereY is a fixed point operator in theλ -calculus, and we have

nthN0N1N2 · · ·Nnβ ci =Λµ Ni

for any 0≤ i≤ n. However, theΛµ-calculus has no term representing a stream, and that meansΛµ-terms
do not directly represent any function which returns streams.

In Parigot’s originalλ µ-calculus [8], terms of the formPα , which are originally denoted by[α]P,
are distinguished asnamed terms from the ordinary terms, and bodies ofµ-abstractions are restricted to
the named terms. On the other hand, we considerPα as an ordinary term and any term can be the body

K. Nakazawa and S. Katsumata 37

of µ-abstraction in theΛµ-calculus. For example, neitherMαN nor µα .x is allowed as a term in the
original λ µ-calculus, whereas they are well-formed terms in theΛµ-calculus. Such extensions of the
λ µ-calculus in which the named terms are not distinguished have been originally studied by de Groote
[5], and Saurin [9] considered a reduction system with theη-reduction, where another axiom

µα .M →fst λx.µα .M[Pα := Pxα]

is chosen instead of (µ). For extensional equational systems, the axioms (µ) and (fst) are equivalent since

µα .M =ηT λx.(µα .M)x =µ λx.µα .M[Pα := Pxα], and

(µα .M)N =fst (λx.µα .M[Pα := Pxα])N =βT
µα .M[Pα := PNα]).

3 Stream Models

In this section, we introduce extensional stream models forthe untypedΛµ-calculus. The definition
follows the idea that theΛµ-terms represent functions on streams.

3.1 Definition of Extensional Stream Models

In the following, we useλ to represent meta-level functions. Astream set over a setD is a pair(S, ::) of
a setS and a bijection(::) : D× S → S. A typical stream set overD is theN-fold product ofD, that is,
(DN, ::) where

d :: s = λn ∈ N.

{

d (n = 0)

s(n−1) (n > 0).

For a functionf : D×S → E, λd :: s ∈ S. f (d,s) denotes the functionf ◦ (::)−1 : S → E.
Definition 3.1 (Extensional stream models)An extensional stream model is a tuple(D,S, [S → D], ::,Ψ)
such that

1. (S, ::) is a stream set overD.
2. [S → D] is a subset ofS → D.
3. Ψ : [S → D]→ D is a bijection. We write its inverse byΦ.
4. There is a (necessarily unique) function[[−]] : TermΛµ × (VarT → D)× (VarS → S) → D, called

meaning function, such that

[[x]]ρ ,θ = ρ(x)

[[λx.M]]ρ ,θ = Ψ(λd :: s ∈ S.Φ([[M]]ρ [x7→d],θ)(s))

[[MN]]ρ ,θ = Ψ(λ s ∈ S.Φ([[M]]ρ ,θ)([[N]]ρ ,θ :: s))

[[µα .M]]ρ ,θ = Ψ(λ s ∈ S.[[M]]ρ ,θ [α 7→s])

[[Mα]]ρ ,θ = Φ([[M]]ρ ,θ)(θ(α)).

Hereρ [x 7→ d] is defined by

ρ [x 7→ d](y) =

{

d (x = y)

ρ(y) (x 6= y),

andθ [α 7→ s] is defined similarly. We use the notationd ⋆ s to denoteΦ(d)(s) for d ∈ D ands ∈ S.

38 Extensional Models of Untyped Lambda-mu Calculus

The condition 4 requires that each argument ofΨ is contained in[S → D]. In the next subsection, we
show that extensional stream models can be obtained from thesolutions of the simultaneous recursive
equationsD×S ∼= S andS ⇒ D ∼= D in a well-pointed CCC (Theorem3.6).

Lemma 3.2 The following hold.
1. [[M[x := N]]]ρ ,θ = [[M]]ρ [x7→[[N]]ρ,θ],θ .

2. [[M[α := β]]]ρ ,θ = [[M]]ρ ,θ [α 7→θ (β)].
3. [[M[Pα := PNα]]]ρ ,θ = [[M]]ρ ,θ [α 7→[[N]]ρ,θ ::θ (α)].

Proof. By induction onM. We show only the case ofM = M′α for 3.

[[(M′α)[Pα := PNα]]]ρ ,θ

=[[M′[Pα := PNα]Nα]]ρ ,θ

=[[M′[Pα := PNα]]]ρ ,θ ⋆ ([[N]]ρ ,θ :: θ(α))

=[[M′]]ρ ,θ [α 7→[[N]]ρ,θ ::θ (α)] ⋆ ([[N]]ρ ,θ :: θ(α)) (by IH)

=[[M′α]]ρ ,θ [α 7→[[N]]ρ,θ ::θ (α)].

Theorem 3.3(Soundness)Let D be an arbitrary extensional stream model. IfM =Λµ N, then[[M]]ρ ,θ =
[[N]]ρ ,θ holds inD for anyρ andθ .

Proof. By induction onM =Λµ N. We show only two cases, and the other cases are similarly proved by
Lemma3.2.

Case (βT).

[[(λx.M)N]]ρ ,θ = Ψ(λ s.(Ψ(λ d′ :: s′.([[M]]ρ [x7→d′],θ)⋆ s′))⋆ ([[N]]ρ ,θ :: s))

= Ψ(λ s.([[M]]ρ [x7→[[N]]ρ,θ],θ)⋆ s)

= [[M]]ρ [x7→[[N]]ρ,θ],θ

= [[M[x := N]]]ρ ,θ (by Lemma3.2.1)

Case (µ).

[[(µα .M)N]]ρ ,θ = Ψ(λ s.(Ψ(λ s′.[[M]]ρ ,θ [α 7→s′]))⋆ ([[N]]ρ ,θ :: s))

= Ψ(λ s.[[M]]ρ ,θ [α 7→[[N]]ρ,θ ::s])

On the other hand, if we letθ ′ = θ [α 7→ s], then the following holds.

[[µα .M[Pα := PNα]]]ρ ,θ = Ψ(λ s.[[M]]ρ ,θ ′[α 7→[[N]]ρ,θ ′ ::s]
) (by Lemma3.2.3)

= Ψ(λ s.[[M]]ρ ,θ [α 7→[[N]]ρ,θ ::s]) (by α 6∈ FV (N))

Theorem 3.4 Every extensional stream model is an extensionalλ -model in which the interpretation of
λ -terms coincides with the interpretation in the stream model.

K. Nakazawa and S. Katsumata 39

Proof. Let D be an extensional stream model, then we can define[D → D], Φ0 : D → [D → D], and
Ψ0 : [D → D]→ D as follows.

[D → D] := { f : D → D | (λ d :: s ∈ S.(f (d))⋆ s) ∈ [S → D]}

Φ0(d) := λd′ ∈ D.Ψ(λ s ∈ S.d ⋆ (d′ :: s))

Ψ0(f) := Ψ(λ d :: s ∈ S.(f (d))⋆ s)

Note that these are variants ofeval and abst in [15], and just based on the isomorphismD × S ≃ S.
Then, it is easily checked thatD is aλ -model withΦ0 andΨ0. The interpretation of theλ -terms in the
λ -model, denoted[[·]]λ here, coincides with the interpretation in the stream modelas follows:

[[λx.M]]λρ = Ψ0(λd ∈ D.[[M]]λρ [x7→d])

= Ψ(λ d′ :: s′ ∈ S.([[M]]λρ [x7→d′])⋆ s′) (by Def. ofΨ0)

= [[λx.M]]ρ (by IH),

[[MN]]λρ = Φ0([[M]]λρ)([[N]]λρ)

= Ψ(λ s ∈ S.([[M]]λρ)⋆ ([[N]]λρ :: s)) (by Def. ofΦ0)

= [[MN]]ρ (by IH).

3.2 Categorical Stream Models

In a categorical setting, a solution(D,S) of the following simultaneous recursive equations in a CCC
provides a model of theΛµ-calculus.

D×S ≃ S, S ⇒ D ≃ D (1)

Definition 3.5 (Categorical stream models)A categorical stream model in a CCCC is a tuple(D,S,c,ψ)
of objectsD andS, and isomorphismsc : D×S → S andψ : S ⇒ D → D.

WhenC has countable products, the solutions of the following recursive equation:

DN ⇒ D ≃ D (2)

yield categorical stream models, as we always haveDN ≃ D×DN.
Given a categorical stream model(D,S,c,ψ), we can interpretΛµ-terms as a morphism[[M]]~x,~α :

D|~x|×S|~α| → D, where~x (resp.~α) is a finite sequence of distinct term (stream) variables such that every
free term (stream) variable inM occurs in~x (~α), and|~x| (|~α |) is the length of~x (~α). We omit the details of
this interpretation, as it is a straightforward categorical formulation of the meaning function in Definition
3.1.

When the underlying CCCC of a categorical stream model is well-pointed (that is, the global element
functorC(1,−) : C → Set is faithful), we can convert it to an extensional stream model.

Theorem 3.6 Let C be a well-pointed CCC. For any categorical stream model(D,S,c,ψ) in C, the
following tuple is an extensional stream model:

(C(1,D), C(1,S), {C(1, f) | f ∈ C(S,D)}, λ (f ,g).c◦ 〈 f ,g〉, Ψ),

whereΨ is the function defined byΨ(C(1, f)) = ψ ◦λ (f ◦π2).

40 Extensional Models of Untyped Lambda-mu Calculus

For instance, in the well-pointed CCC of pointed CPOs and allcontinuous functions, the standard
inverse limit method [13, 14] applied to the following embedding-projection pair(e : D0 → DN

0 ⇒ D0, p :
DN

0 ⇒ D0 → D0):
e(x) = λy ∈ DN

0 .x, p(f) = f (⊥, . . .)

on a pointed CPOD0 containing at least two elements yields a non-trivial solution of (2). From this
solution, an extensional stream model is derived by Theorem3.6. This model distinguishes[[λxy.x]]
and[[λxy.y]], hence, we obtain a model theoretic consistency proof of theΛµ-calculus (consistency also
follows from confluence, which has been proved in [12]).

4 Stream Combinatory Algebra

We give another model of the untypedΛµ-calculus. It is called stream combinatory algebra, which is an
extension of the combinatory algebra corresponding to the combinatory logicCL.

4.1 Combinatory CalculusSCL

We introduce a new combinatory calculusSCL, and show thatSCL is equivalent to theΛµ-calculus. This
result is an extension of the equivalence between theλ -calculus and the untyped variant of the ordinary
combinatory logicCL with the combinatorsK andS. In SCL, the combinatorsK andS are denoted by
K0 andS0, respectively.
Definition 4.1 (SCL) Similarly to theΛµ-calculus,SCL has two sorts of variables: term variables VarT

and stream variables VarS. Constants, terms, streams, axioms, and extensionality rules ofSCL are given
in Fig. 2. The set of theSCL-terms and the set of theSCL-streams are denoted by TermSCL and
StreamSCL, respectively. The set of variables occurring inT is denoted byFV (T). We suppose that
the binary function symbols(·) and(⋆) have the same associative strength, and both are left associative.
For example,T1 ·T2⋆S3 ·T4 denotes((T1 ·T2)⋆S3) ·T4. The substitutionsT [x := T ′] andT [α :=S] are
defined straightforwardly. The relationT =SCL U is the compatible equivalence relation defined from
the axioms and the extensionality rules.

The new operation(⋆) represents the function application for streams, which corresponds to the
applicationMα in theΛµ-calculus.

In the following, we think that the term of the formT1 ·T2 ⋆S3 is simpler thanT1 ⋆ (T2 :: S3), and
that is formalized as the following measure|T |.
Definition 4.2 The measure|T | of SCL-terms is defined as|T |= c(T)+m(T), wherec(T) is the number
of the symbol :: occurring inT , andm(T) is the number of nodes of the syntax tree ofT .

It is easily seen that ifT is a subterm ofU then|T |< |U |, and|T1 ·T2⋆S3|< |T1⋆ (T2 :: S3)|, which
follows fromm(T1 ·T2⋆S3) =m(T1⋆ (T2 :: S3)).

TheΛµ-calculus andSCL are equivalent through the following translations.
Definition 4.3 (Translations betweenΛµ andSCL) 1. For T ∈ TermSCL andx ∈ VarT , we define the
SCL-termλ ∗x.T inductively on|T | as follows:

λ ∗x.x = S0 ·K0 ·K0

λ ∗x.T = K0 ·T (x 6∈ FV (T))

λ ∗x.(T ·U) = S0 · (λ ∗x.T) · (λ ∗x.U)

λ ∗x.(T ⋆α) = C10 · (λ ∗x.T)⋆α
λ ∗x.(T ⋆ (U :: α)) = λ ∗x.(T ·U ⋆α).

K. Nakazawa and S. Katsumata 41

Constants:
C ::= K0 | K1 | S0 | S1 | C10 | C11 |W1

Terms:
T,U ::=C | x | T ·U | T ⋆S

Streams:
S ::= α | T :: S

Axioms:

K0 ·T1 ·T2 = T1 K1 ·T1⋆S2 = T1

S0 ·T1 ·T2 ·T3 = T1 ·T3 · (T2 ·T3) S1 ·T1 ·T2⋆S3 = T1⋆S3 · (T2⋆S3)

C10 ·T1⋆S2 ·T3 = T1 ·T3⋆S2 C11 ·T1⋆S2⋆S3 = T1⋆S3⋆S2

W1 ·T1⋆S2 = T1⋆S2⋆S2 T1⋆ (T2 :: S3) = T1 ·T2⋆S3

Extensionality rules:

T · x =U · x x 6∈ FV (T)∪FV (U)

T =U
(ζT)

T ⋆α =U ⋆α α 6∈ FV (T)∪FV (U)

T =U
(ζS)

Figure 2:SCL

For T ∈ TermSCL andα ∈ VarS, we define theSCL-termµ∗α .T inductively on|T | as follows:

µ∗α .T = K1 ·T (α 6∈ FV (T))

µ∗α .(T ·U) = S1 · (µ∗α .T) · (µ∗α .U)

µ∗α .(T ⋆α) =W1 · (µ∗α .T)

µ∗α .(T ⋆β) = C11 · (µ∗α .T)⋆β (α 6= β)

µ∗α .(T ⋆ (U :: α)) = µ∗α .(T ·U ⋆α).

Then the mappingM∗ from TermΛµ to TermSCL is defined by

x∗ = x

(λx.M)∗ = λ ∗x.M∗ (MN)∗ = M∗ ·N∗

(µα .M)∗ = µ∗α .M∗ (Mα)∗ = M∗ ⋆α .

2. The mappingsT∗ from TermSCL to Termλ µ andS∗ from StreamSCL to contexts are defined by

(K0)∗ = λxy.x x∗ = x

(K1)∗ = λx.µα .x (T ·U)∗ = T∗U∗

(S0)∗ = λxyz.xz(yz) (T ⋆S)∗ = S∗[T∗]

(S1)∗ = λxy.µα .xα(yα)

(C10)∗ = λx.µα .λy.xyα α∗ = []α
(C11)∗ = λx.µαβ .xβα (T :: S)∗ = S∗[[]T∗].

(W1)∗ = λx.µα .xαα

42 Extensional Models of Untyped Lambda-mu Calculus

By the extensionality ofSCL, the definitions ofλ ∗x.T andµ∗α .T such that 1 of the following lemma
holds are unique modulo=SCL.

Lemma 4.4 The following hold.
1. (λ ∗x.T) ·U =SCL T [x :=U] and(µ∗α .T)⋆S =SCL T [α := S].
2. If T =SCL U , thenλ ∗x.T =SCL λ ∗x.U andµ∗α .T =SCL µ∗α .U .

Proof. 1. By induction on|T |.
2. By 1, we have(λ ∗x.T) · x =SCL T and(λ ∗x.U) · x =SCL U . SinceT =SCL U , we have(λ ∗x.T) ·

x =SCL (λ ∗x.U) · x, and henceλ ∗x.T =SCL λ ∗x.U by (ζT).

Lemma 4.5 The following hold.
1. (M[x := N])∗ =SCL M∗[x := N∗].
2. (M[α := β])∗ =SCL M∗[α := β].
3. (M[Pα := PNα])∗ =SCL M∗[α := N∗ :: α].

Proof. By induction onM. We show only the case ofM = λy.M′ for 1. We suppose thaty 6∈ FV (N)
and y 6≡ x by renaming bound variables. We have((λy.M′)[x := N])∗ · y = (λy.M′[x := N])∗ · y =
(λ ∗y.(M′[x := N])∗) · y =SCL (M′[x := N])∗ by Lemma4.4.1, and it is identical withM′∗[x := N∗] by
the induction hypothesis. On the other hand, we have(λ ∗y.M′∗[x := N∗]) · y =SCL M′∗[x := N∗]. Hence,
by (ζT), we have((λy.M′)[x := N])∗ =SCL (λy.M′)∗[x := N∗].

Lemma 4.6 The following hold.
1. M =Λµ N impliesM∗ =SCL N∗.
2. T =SCL U impliesT∗ =Λµ U∗.
3. (M∗)∗ =Λµ M.
4. (T∗)∗ =SCL T and(S∗[M])∗ =SCL M∗ ⋆S

Proof. By the previous lemmas, they are proved by induction straightforwardly.

It is shown that the combinatory calculusSCL is equivalent to theΛµ-calculus in the following sense.

Theorem 4.7 1. For anyΛµ-termsM andN, M =Λµ N iff M∗ =SCL N∗.
2. For anySCL-termsT andU , T =SCL U iff T∗ =Λµ U∗.

Proof. 1. The only-if part is Lemma4.6.1, and the if part is proved by Lemma4.6.2 and4.6.3 as
M =Λµ (M∗)∗ =Λµ (N∗)∗ =Λµ N.

2. Similar to 1 by 1, 2, and 4 of Lemma4.6.

4.2 Stream Combinatory Algebra

The stream combinatory algebras are given as models ofSCL. SinceSCL is equivalent to theΛµ-calculus
in the sense of Theorem4.7, they are also models of the untypedΛµ-calculus.

Definition 4.8 (Stream combinatory algebras)(1) For non-empty setsD andS, a tuple(D,S, ·,⋆, ::) is
called astream applicative structure if (·) : D ×D → D, (⋆) : D × S → D, and (::) : D× S → S are
mappings such that

d1 ⋆ (d2 :: s3) = d1 ·d2 ⋆ s3

for anyd1,d2 ∈ D ands3 ∈ S.

K. Nakazawa and S. Katsumata 43

(2) A stream applicative structureD is extensional if the following hold for anyd,d′ ∈ D:

∀d0 ∈ D[d ·d0 = d′ ·d0] impliesd = d′,

∀s0 ∈ S[d ⋆ s0 = d′ ⋆ s0] impliesd = d′.

(3) A stream applicative structureD is called astream combinatory algebra if D contains distin-
guished elementsk0, k1, s0, s1, c10, c11, andw1 such that the following hold for anyd1,d2,d3 ∈ D and
s2,s3 ∈ S.

k0 ·d1 ·d2 = d1 k1 ·d1⋆ s2 = d1

s0 ·d1 ·d2 ·d3 = d1 ·d3 · (d2 ·d3) s1 ·d1 ·d2⋆ s3 = d1⋆ s3 · (d2⋆ s3)

c10 ·d1 ⋆ s2 ·d3 = d1 ·d3⋆ s2 c11 ·d1⋆ s2 ⋆ s3 = d1⋆ s3 ⋆ s2

w1 ·d1⋆ s2 = d1⋆ s2 ⋆ s2

Note that, for a stream applicative structure(D,S, ·,⋆, ::), the setS is not necessarily a stream set on
D in the sense of Section3, and we will callD standard if (S, ::) is a stream set onD.

It is clear that any stream combinatory algebra is always a combinatory algebra by ignoring the
stream part, that is,(⋆), (::), k1, s1, c10, c11, andw1. Therefore, any extensional stream combinatory
algebra is an extensional combinatory algebra, and hence anextensionalλ -model.

We can interpretSCL in stream combinatory algebras in a straightforward way.

Definition 4.9 (Interpretation ofSCL) Let (D,S, ·,⋆, ::) be a stream combinatory algebra. Themeaning
functions 〈|−|〉T : TermSCL × (VarT → D)× (VarS → S) → D and 〈|−|〉S : StreamSCL × (VarT → D)×
(VarS → S)→ S are defined by:

〈|C|〉T
ρ ,θ = c 〈|α |〉S

ρ ,θ = θ(α)

〈|x|〉T
ρ ,θ = ρ(x) 〈|T :: S |〉S

ρ ,θ = 〈|T |〉T
ρ ,θ :: 〈|S |〉S

ρ ,θ ,

〈|T ·U |〉T
ρ ,θ = 〈|T |〉T

ρ ,θ · 〈|U |〉T
ρ ,θ

〈|T ⋆S |〉T
ρ ,θ = 〈|T |〉T

ρ ,θ ⋆ 〈|S |〉S
ρ ,θ

wherec denotes the element ofD corresponding to the constantC, that is,〈|K0|〉
T
ρ ,θ = k0, 〈|S0|〉

T
ρ ,θ = s0,

and so on. We often omit the superscriptT or S.

Theorem 4.10(Soundness and completeness)For anySCL-termsT andU , T =SCL U iff 〈|T |〉ρ ,θ =
〈|U |〉ρ ,θ in any extensional stream combinatory algebra for anyρ andθ .

Proof. (Only-if part) The soundness can be proved by straightforward induction onT =SCL U .
(If part) We can construct a term model as follows. LetD = TermSCL/ =SCL and S =

StreamSCL/ =SCL, and the equivalence classes inD and S are denoted such as[T] and [S]. The op-
erations are defined as[T] · [U] = [T ·U], [T] ⋆ [S] = [T ⋆S], and[T] :: [S] = [T :: S]. The element
k0 is defined as[K0] and similar for the other constants. The resulting structure is easily proved to be an
extensional stream combinatory algebra. If we takeρ andθ asρ(x) = [x] andθ(α) = [α], respectively,
then〈|T |〉ρ ,θ = [T] for anyT ∈ TermSCL, hence we have that〈|T |〉ρ ,θ = 〈|U |〉ρ ,θ impliesT =SCL U .

Corollary 4.11 For anyΛµ-termsM andN, M =Λµ N iff 〈|M∗|〉ρ ,θ = 〈|N∗|〉ρ ,θ in any extensional stream
combinatory algebra for anyρ andθ .

Proof. It immediately follows from Theorem4.7and Theorem4.10.

44 Extensional Models of Untyped Lambda-mu Calculus

5 Algebraic Characterization of Stream Models

Definition 3.1 of the extensional stream models is a direct one, but it depends on the definability of
the meaning function on theΛµ-terms. In this section, we give a syntax-free characterization for the
extensional stream models, that is, the class of the extensional stream models exactly coincides with the
subclass of the extensional stream combinatory algebras inwhich S is a stream set onD.

Definition 5.1 A stream applicative structure(D,S, ·,⋆, ::) is standard if (S, ::) is a stream set onD.

Note that, for standard stream applicative structures, theextensionality for term application(·) fol-
lows from the extensionality for(⋆) since(::) is surjective: supposed1 ·d = d2 ·d for anyd ∈ D, then for
any s ∈ S we haved1 · d ⋆ s = d2 · d ⋆ s, which meansd1 ⋆ (d :: s) = d2 ⋆ (d :: s) for any d ands. Hence
d1 = d2 by the extensionality with respect to⋆.

Theorem 5.2 For a non-empty setD and a stream set(S, ::) on D, the following are equivalent.
1. (D,S) is an extensional stream model with some[S → D] andΨ.
2. (D,S) is a standard extensional combinatory algebra with some operations(·) and(⋆), and some

elementsk0, k1, s0, s1, c10, c11, w1 in D.

Proof. (1=⇒2) Suppose(D,S, [S → D], ::,Ψ) is an extensional stream model. Define

d ⋆ s = Φ(d)(s) d ·d′ = Ψ(λ s ∈ S.Φ(d)(d′ :: s)),

where we should note thatd · d′ is identical to[[xy]]ρ [x7→d,y7→d′] and hence it is always defined. Define
k0 = [[λxy.x]] and so on. Then(D,S, ·,⋆, ::) is a standard extensional stream combinatory algebra. Indeed,
it is a stream applicative structure, since

d1 ·d2 ⋆ s3 = Φ(Ψ(λ s.Φ(d1)(d2 :: s)))(s3) = Φ(d1)(d2 :: s3) = d1 ⋆ (d2 :: s3).

(2=⇒1) Suppose(D,S, ·,⋆, ::) is a standard extensional stream combinatory algebra. Define [S →
D] := { fd | d ∈ D}, where fd denotesλ s ∈ S.d ⋆s. ThenΦ(d) = fd andΨ(fd) = d are well-defined since
D is extensional, and they give a bijection between[S → D] andD. We can see that the interpretation
[[M]]ρ ,θ with respect toΦ andΨ coincides with〈|M∗|〉ρ ,θ . That is shown by the following lemmas for
anySCL-termT :

〈|λ ∗x.T |〉ρ ,θ ·d = 〈|T |〉ρ [x7→d],θ 〈|µ∗α .T |〉ρ ,θ ⋆ s = 〈|T |〉ρ ,θ [α 7→s].

In the case ofM = λx.N, [[M]]ρ ,θ = 〈|M∗|〉ρ ,θ is proved as follows.

〈|M∗|〉ρ ,θ ⋆ (d :: s) = 〈|M∗|〉ρ ,θ ·d ⋆ s

= 〈|N∗|〉ρ [x7→d],θ ⋆ s (by the lemma)

= [[N]]ρ [x7→d],θ ⋆ s (by IH)

= Φ([[N]]ρ [x7→d],θ)(s)

Therefore we haveλd :: s.Φ([[N]]ρ [x7→d],θ)(s) = λd :: s.〈|M∗|〉ρ ,θ ⋆(d :: s) = f〈|M∗|〉ρ,θ
∈ [S → D], and hence

[[M]]ρ ,θ is defined and identical toΨ(f〈|M∗|〉ρ,θ
) = 〈|M∗|〉ρ ,θ . The other cases are similarly proved. Hence,

(D,S, [S → D], ::,Ψ) is an extensional stream model.

K. Nakazawa and S. Katsumata 45

6 Conclusion

We have proposed models of the untypedΛµ-calculus: the set-theoretic and the categorical stream mod-
els, and the stream combinatory algebras. We have also shownthat extensional stream models are alge-
braically characterized as a particular class of the extensional stream combinatory algebras. The stream
combinatory algebra has been induced from the new combinatory calculusSCL, which exactly corre-
sponds to the untypedΛµ-calculus.

6.1 Related Work

Models of the untypedλ µ-calculus. In [15], Streicher and Reus proposed the continuation models for
the untypedλ µ-calculus (which is a variant of Parigot’s originalλ µ-calculus) based on the idea that
theλ µ-calculus is a calculus of continuations. If we see each stream d :: s as a pair(d,s) of a function
argumentd and a continuations, the meaning function for the stream models looks exactly the same as
that for the continuation models.

In the untypedλ µ-calculus in [15], the named terms are distinguished from the ordinary terms. In
the continuation models, an objectR (calledresponse object) for the denotations of named terms is fixed
first, then the objectD for the denotations of the ordinary terms and the objectS for continuations are
respectively given as the solutions of the following simultaneous recursive equations:

D×S ∼= S, S ⇒ R ∼= D. (3)

These equations say that the continuations are streams of ordinary terms, and the ordinary terms can
act as functions from continuations to responses (i.e. results of computations). On the other hand, in
theΛµ-calculus, the named terms and terms are integrated into onesyntactic category, thus allowing us
to pass terms to named terms, such asMαN. In the model side, this extension corresponds to that the
response objectR in (3) is replaced byD, resulting in the simultaneous recursive equations (1).

In [16], van Bakel et al. considered intersection type systems andfilter models for theλ µ-calculus
based on the idea of the continuation models of Streicher andReus. They considered only the original
λ µ-calculus, andΛµ-terms such asµα .x have no type except forω in the proposed intersection type
system, and hence, they are interpreted as the bottom element in the filter model. They also showed that
every continuation model can be a model of theΛµ-calculus. The idea is to translate eachΛµ-term to a
λ µ-term asµα .M to µα .Mα andMα to µβ .Mα with a freshβ . However, as pointed out in [16], the
axiom (βS) is unsound for this interpretation in general, whereas it is sound in our stream models.

Akama [1] showed that the untypedλ µ-calculus can be interpreted in partial combinatory algebras.
It is based on the idea thatµ-abstractions are functions on streams. However, it restricts terms to affine
ones, that is, each bound variable must not occur more than once.

Fujita [6] considered a reduction system for theλ µ-calculus with (βT), (ηT), (µ), and (fst) rules, and
gives a translation from theλ µ-calculus to theλ -calculus which preserves the equality, and hence it is
shown that any extensionalλ -model is a model of theλ µ-calculus. In the translation, eachµ-abstraction
is interpreted as a potentially infiniteλ -abstraction by means of a fixed point operator. However, it
considers neither (βS) nor (ηS), and it seems hard to obtain a similar result for them.

Combinatory logic and classical logic.Baba et al. considered some extensions of theλ -calculus
with combinators corresponding to classical axioms such asPeirce’s law and double negation elimination
in [2].

Nour [7] introduced the classical combinatory logic corresponding to Barbanera and Berardi’s sym-
metricλ -calculus [3]. The classical combinatory logic has two kinds of application operators: one is the

46 Extensional Models of Untyped Lambda-mu Calculus

ordinary function application, and the other represents the interaction of terms and continuations, which
is based on the same idea as the stream application operator in SCL (and denoted by the same symbol
⋆). Nour’s classical combinatory logic is a typed calculus corresponding to classical logic, and its weak
reduction corresponds to the reduction of the symmetricλ -calculus. On the other hand, we have not
found any reasonable type system forSCL as discussed below, butSCL corresponds to theΛµ-calculus,
and, in particular, it can represent theµ-abstraction over continuation variables.

6.2 Further Study

(Extensional) stream models.One natural direction of study is to analyze the local structure of the
domain-theoretic extensional stream models constructed from the solutions of (2) in Section3.2. How do
they relate to the Böhm-tree representation proposed in [11]? Do these models enjoy the approximation
theorem? Which syntactic equality corresponds to the equality in these models?

We have considered only extensional theories and models in this paper. We can naı̈vely define non-
extensional stream models by weakening the condition[S → D]≃ D to [S → D]⊳D, and then the func-
tionsΦ0 andΨ0 in Theorem3.4are still well-defined. However, under such a structure, we always have
Ψ0 ◦Φ0 = id, so the extensionality axiomηT is unexpectedly sound, for example[[λxy.xy]] = [[λx.x]]
always holds. Furthermore, we do not know how to derive thatΦ0 ◦Ψ0 = id, which is essential for
modeling theβ -equality of the term application. It is future work to studyhow we can define appropriate
notion of the models of the non-extensionalΛµ-calculus.

Moreover, syntactic correspondence between non-extensional theories of theΛµ-calculus andSCL
is still unclear and it is future work to study on it.

Types and classical logic.The λ µ-calculus was originally introduced as a typed calculus corre-
sponding to the classical natural deduction in the sense of the Curry-Howard isomorphism. It is future
work to adapt our discussion to a typed setting and to study the relationship to classical logic. It is well-
known that the combinatory logic with types exactly corresponds to the Hilbert-style proof system of
intuitionistic logic. On the other hand, it is unclear how wecan considerSCL as a typed calculus, since
theΛµ-terms corresponding to the constants ofSCL are not typable in the ordinary typedλ µ-calculus,
for example,(S1)∗ = λxy.µα .xα(yα).

AcknowledgmentsWe are grateful to Dana Scott, Kazushige Terui, Makoto Tatsuta, and anonymous
reviewers for helpful comments, and to Daisuke Kimura for fruitful discussions.

References

[1] Akama, Y. Limiting partial combinatory algebras towards infinitary. In Proceedings of Computer Science
Logic (CSL 2001), volume 2142 ofLNCS, pages 399–414, 2001. doi:10.1007/3-540-44802-028.

[2] Baba, K., Kameyama, Y., and Hirokawa, S. Combinatory logic andλ -calculus for classical logic.Bulletin of
Informatics and Cybernetics, 32:105–122, 2000.

[3] Barbanera, F. and Berardi, S. A symmetric lambda-calculus for classical program extraction. InTACS’94,
pages 495–515, 1994. doi:10.1006/inco.1996.0025.

[4] David, R. and Py, W.λ µ-calculus and Böhm’s theorem.The Journal of Symbolic Logic, 66:407–413, 2001.
doi:10.2307/2694930.

http://dx.doi.org/10.1007/3-540-44802-0_28
http://dx.doi.org/10.1006/inco.1996.0025
http://dx.doi.org/10.2307/2694930

K. Nakazawa and S. Katsumata 47

[5] de Groote, P. On the relation between theλ µ-calculus and the syntactic theory of sequential control. In
F. Pfenning, editor,Proceedings of the International Conference on Logic Programming and Automated
Reasoning (LPAR’94), volume 822 ofLNCS, pages 31–43, 1994.

[6] Fujita, K. An interpretation ofλ µ-calculus inλ -calculus. Information Processing Letters, 84:261–264,
2002. doi:10.1016/S0020-0190(02)00300-9.

[7] Nour, K. Classical combinatory logic. InComputational Logic and Applications (CLA’05), DMTCS pro-
ceedings, pages 87–96, 2006.

[8] Parigot, M. λ µ-calculus: an algorithmic interpretation of classical natural deduction. InProceedings of
the International Conference on Logic Programming and Automated Reasoning (LPAR ’92), volume 624 of
LNCS, pages 190–201, 1992. doi:10.1007/BFb0013061.

[9] Saurin, A. Separation with streams in theΛµ-calculus. In20th Annual IEEE Symposium on Logic in
Computer Science (LICS’ 05), pages 356–365, 2005. doi:10.1109/LICS.2005.48.

[10] Saurin, A. A hierarchy for delimited control in call-by-name. In 13th International Conference on Foun-
dations of Software Science and Computation Structures (FoSSaCS 2010), volume 6014 ofLNCS, pages
374–388, 2010.

[11] Saurin, A. Standardization and Böhm trees forΛµ-calculus. InTenth International Symposium on
Functional and Logic Programming (FLOPS 2010), volume 6009 ofLNCS, pages 134–149, 2010.
doi:10.1007/978-3-642-12251-411.

[12] Saurin, A. Typing streams in theΛµ-calculus.ACM Transactions on Computational Logic, 11:1–34, 2010.
doi:10.1145/1805950.1805958.

[13] Scott, D.S. Continuous lattices. InToposes, Algebraic Geometry, and Logic, volume 274 ofLecture Notes in
Mathematics, pages 97–136. 1972. doi:10.1007/BFb0073967.

[14] Smyth, M.B. and Plotkin, G.D. The category-theoretic solution of recursive domain equations.SIAM Journal
on Computation, 11(4):761–783, 1982. doi:10.1137/0211062.

[15] Streicher, T. and Reus, B. Classical logic, continuation semantics and abstract machines.Journal of Func-
tional Programming, 8(6):543–572, November 1998. doi:10.1017/S0956796898003141.

[16] van Bakel, S., Barbanera, F., and de’Liguoro, U. A filter model for the λ µ-calculus. In C.-H.L. Ong,
editor,Typed Lambda Calculi and Applications, 10th International Conference (TLCA 2011), volume 6690
of LNCS, pages 213–228, 2011. doi:10.1007/978-3-642-21691-618.

http://dx.doi.org/ 10.1016/S0020-0190(02)00300-9
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1109/LICS.2005.48
http://dx.doi.org/10.1007/978-3-642-12251-4_11
http://dx.doi.org/10.1145/1805950.1805958
http://dx.doi.org/10.1007/BFb0073967
http://dx.doi.org/10.1137/0211062
http://dx.doi.org/10.1017/S0956796898003141
http://dx.doi.org/10.1007/978-3-642-21691-6_18

	1 Introduction
	2 Untyped -Calculus
	3 Stream Models
	3.1 Definition of Extensional Stream Models
	3.2 Categorical Stream Models

	4 Stream Combinatory Algebra
	4.1 Combinatory Calculus SCL
	4.2 Stream Combinatory Algebra

	5 Algebraic Characterization of Stream Models
	6 Conclusion
	6.1 Related Work
	6.2 Further Study

