Applying G 0del’s Dialectica Interpretation to Obtain a
Constructive Proof of Higman’s Lemma

Thomas Powell

Queen Mary, University of London
United Kingdom

tpowell@eecs.gmul.ac.uk

We use Godel’s Dialectica interpretation to analyse Na&lliams’ elegant but non-constructive
‘minimal bad sequence’ proof of Higman’s Lemma. The ressilaiconcise constructive proof of
the lemma (for arbitrary decidable well-quasi-orders) lick Nash-Williams’ combinatorial idea is
clearly present, along with an explicit program for findingeanbedded pair in sequences of words.

1 Introduction

We call a preorde(X, <x) a well-quasi-order(WQO) if any infinite sequencéx;) has the property
that x; <x x; for somei < j. The theory of WQOs contains several results which stated@dain
constructions on WQOs inherit well-quasi-orderedness,ntiost famous being Kruskal's tree theorem
[11]. A special case of this theorem is Higman’s lemma:

Theorem 1 (Higman, [9]) If (X,<x) is a WQO, then so is the seX*, <x-) of words in X under the
embeddability relatior<x-, where(xo, ..., Xm-1) <x- (X,...,X,_;) iff there is a strictly increasing map
f: [m] — [n] with x <x X}; foralli <m.

A short proof of Higman’'s lemma (and more generally Kruskdhieorem) was given by Nash-
Williams [13], using an elegant but non-constructive camalorial idea known as thainimal bad se-
guenceargument.

Higman’s lemma has attracted a great deal of attention ic kxgd computer science, and has been a
focal point of research into computational aspects of @akseasoning used in infinitary combinatorics.
The constructive content of Nash-Williams’ minimal bad sece argument has been widely analysed
(see for instance [5, 19]), and in particular, constructivatent has been extracted from the proof using
formal methods such th&-translation[[12] and inductive definitions| [6]. An extersistudy of program
extraction for Higman's lemma has been carried out by Beegel Seisenberger (se€ [3. 17]), who
improve the aforementioned techniques and implement thethrei MINLOG system.

In this article we give another constructive proof of Higrisalemma based on the minimal bad
sequence argument. The novelty of our approach is that wa tesehnique that has not been applied
in this context - Godel'Dialectica interpretation. The combination of the negative transtatind the
Dialectica interpretation forms an extremely powerful affitient method for extracting programs from
classical proofs - testament to this is its central role ewlell-knownproof miningprogram (se€ [10]).

The formal extraction of computational information frormopfs often results in output that is com-
plex, highly syntactic and difficult to understand nmathematicaterms. However, the use of proof
theoretic techniques to analyse the constructive confecitissical reasoning is becoming increasingly
relevant in mathematics, therefore we believe that it isdrtgnt to produce case studies in which these
techniques are applied in a transparent and intuitive nranne

© Thomas Powell
This work is licensed under the
Creative Commoris Attribution License.

Herman Geuvers, Ugo de’Liguoro (Eds): CL&C'12
EPTCS 97, 2012, pp. 4962, doi:10.4204/EPTCS|97.4

http://dx.doi.org/10.4204/EPTCS.97.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

50 A Constructive Proof of Higman’s Lemma

The goal of this article is not just a new proof of Higman’s ham but a case study that sheds
some light on the functional interpretation of proofs in mitthry combinatorics. Our emphasis here
is not on ‘mining’ the proof for quantitative information bto produce a constructive justification of
Higman'’s lemma that can actually be read as a mathematioaf,@nd in which Nash-Williams’ original
combinatorial idea is clearly present. In addition, we giVeuristic account of the operational behaviour
of the resulting program.

1.1 Preliminaries

We formalise Higman'’s lemma in the languag&® of Peano arithmetic in all finite types (see eld. [1]
for details), although throughout the paper we endeavoavaid excessivéormality and make various
syntactic shortcuts to keep things as readable as posBipkxtendingPA® with the axiom ofdependent
choice

DC : Vn,xX*3y* An(x,y) — VX3 FN7X(£(0) = xo AVN Ay(fn, f(n+1)))

over arbitrary type, one obtains a theory of analysis capable of formalisinggelaortion of mathe-
matics, including Nash-Williams’ minimal bad sequencestarction.

Notation. We make use of the following conventions and abbreviations.
e Oy denotes a canonical element of tye

e Because we will be confronted with a large number of varimbhee often use the convention that
when a term of typ& is denotedk, sequences of terms of the same type will often be denoted in
bold typex.

e Sxa represents the concatenation of the finite sequemaeel a finite/infinite sequenae.
e We writes < a when the finite sequencds an initial segment of a finite/infinite sequenze
e [a](n) is the initial segment of the infinite sequerze®f sizen.

e We writea<tbwhen a worda: X* is an initial segment d i.e. |a] < |b| anda = by for alli < |a.
If ais aprefix(|a] < |b|) we writea<b.

e Given two sequences of wordsandv we writeu <, v := ([u](n) = [v](n) Au, <Vvp) andu<ip V=
([ul(n) = [v](n) Aun < vy) - the latter simply states thatis lexicographically less thanat pointn
with respect to the prefix relatioq.

1.2 The functional interpretation of proofs in PA® +DC

This article assumes familiarity with Godel’s functioniaterpretation of classical proofs, by which we
mean the Dialectica interpretation combined with the regdtanslation. We do not have space to give
details of the interpretation - for this the reader is refdrto [1]. However, it is useful to recall a few

basic facts.

e The functional interpretation af, formulas coincides with the well-knowmo-counterexample in-
terpretationof Kreisel, interpretindd = IxvyAo(x,y) as a functionaF that witnesse¥ f IxXA(x, fXx).
Intuitively F justifiesA by refuting arbitrary counterexample functiohsittempting to disprova.

e The functional interpretation interprdft formulasvx3yB(x,y) directly with a functionalf satis-
fying VxB(x, fx), due to the fact that it admits Markov’s principle. This me#mat we can use the
interpretation to extract programs from ew&assicalproofs ofl1, theorems.

Thomas Powell 51

It was shown by Godel thaRA® has a functional interpretation in the systdmof higher-type
primitive recursive functionals. On the other hand, sysifiem insufficient to interpret the combination
of classical logic and countable choice. For this, one Bihicassigns a direct realizer to the negative
translation of choice, usually some form of backward ingurcsuch as the well-knowhar recursion
devised by Spector in [18]. In this article dependent chigdaterpreted using the more recgmoduct
of selection functionmtroduced in[[7].

Definition 2. A selection functioris any functional of typdrX := (X — R) — X, for arbitrary X, R.
Given an indexed family of selection functiasX* — JgrX together with functionals gX® — R and
¢ : X® — N, the product of selection functiofS is defined by the recursion schema

. xo Oy if (S <|s|
EPSS (e)(a) - { as+EPSL. (£)(0s,) oOtherwise

where @ = &5(AX. qx(EPsﬁkx(s)(qx))), ax is defined by g o) := gq(x*xa) and$ is the canonical extension
of s.

EPS is a variant of bar recursion that makes explicit the idealtharecursion can be viewed as kind
of backtracking algorithm analogous to the computation mifreal strategies in games ahbounded
length. We feel it is good practise to choose it over Spestaiginal bar recursion because it comes nat-
urally equipped with this game semantics. The idea is to ineag X“ — R specifying the outcome of
a sequential game with moves of tyeand outcome of typ®, the &s asselection functionghat specify
a strategy for rounds| given thats has already been played agd X® — N as a control functional that
indicates when the game has terminated. For further detailseEPS see[[8]. By unwinding Definition
one can prove the following key result.

Theorem 3(Main theorem orEPS, cf. [16]). Settinga::EPS‘é(s)(q) and py:= AX. Gsix(EPSZx(€) (Gsix))
solves the following system of equations

X
aN = &q)(n) (Pla)(n))

5 @)
q(a) = prajmy(an)

foralln< ¢a.

As originally established by Spector, in order to withess filmctional interpretation of dependent
choice it is sufficient to solve the equatioh$ (1) give and¢. Therefore a consequence of Theotédm 3
is thatEPS realizes the functional interpretation of dependent ahokor full details of the interpretation
of choice viaEPS the reader is referred to [16]. In this article however, iemugh to know thaEPS
solves[(1) - in our interpretation of the minimal bad seq@eranstruction an instance of these equations
naturally arises and we will solve them directly uskfgS, bypassing the formal interpretation of choice.

The statement thaX* is a WQO can be written as @, sentence. By formalising the classical
proof of Higman’'s lemma iPA® + DC, we guarantee in theory that given a realizer for the wedlsitu
orderedness of we can extract a direct realizEr. (X*)® — Nin T 4 EPS that bounds the search for an
embedded pair in an arbitrary sequence of words. We forediis proof in Secf.]3 and extract a realizer
I in Sect[4.

2 A Classical Proof of Higman’s Lemma

We begin by presenting Nash-Williams’ proof of Higman’s e First we need the following simple
result.

52 A Constructive Proof of Higman’s Lemma

Lemma 4. In a WQO(X, <x), any sequencex) has an infinite increasing subsequence.
Proof. For general WQOs this is an easy consequence of Ramseyretheo O

In the following we call a sequence in a preordegoodif x; <x X; for somei < j. A sequence is
badif it is not good. X is a WQO if all sequences X are good.

Proof of Theorerfil1 (Nash-Williams, [13]Buppose for contradiction thitis a WQO, but there exists
at least one bad sequencen (X*)®. Then among all bad sequences we pickiaimalbad sequence as
follows:

1. Choosey/ to be an element of* with the property thatg is the first element of some bad sequence
but no prefix ofvy extends to a bad sequence in this way. Such an element exi$is Assumption
that we have at least one bad sequeance

2. Given thatvy,...,v,_1 have been selected, choogeto be an element with the property that
Vo, ..., Vp Starts a bad sequence lwt...,v,_1,y does not extend to a bad sequence for any prefix
y < Vp.

By dependent choice we can construct an infinite sequencen this manner. It is easy to see tha)
must itself be bad and therefore in particular each weordust be non-empty, so we can wnke= v * X;
where thex; form an infinite sequence .

Now by Lemmad # the sequen¢r) has an increasing subsequence

Xio Sxxil SX
Consider the sequence
Vo, ... ,vio,l,vio,\”/il, e

This sequence must be bad, glgg¢ would be good, but;;'is a proper initial segment of,, contradicting
the minimality of(v;) atip. Therefore there cannot exist an initial bad sequeniceX*. O

3 Formalising the Classical Proof

We now formalise Nash-Williams’ proof iRA® + DC, so that we are ready to apply the functional
interpretation in the next section. Given a preor@ér<y) define the predicatéx on X x N by

BX(Xa J) = vIO < il < J(Xlo ﬁx Xll)
We define the predicatéyx- on (X*)® x N similarly. We suppress the subscript 8nwhen it is clear

which type it applies to.

Remark 5. In this article the intuition is that the underlying WQO X &ists of elements of tyfie and
that the relation<y is decidable. Thereforegl, <, <, and 8 will all be decidable over both X and*X

A sequenceis bad is it satisfies thB predicatevj@(x, j). The preordeX is a WQO if the closed
M, predicateWwQOI[X] := Vx3j—6x (X, j) holds, similarlyX* is a WQO ifWQO[X*] := Vu3j—6x-(u, j)
holds. Higman'’s lemma can then be formally written as

WQO[X] — WQO[X*].

Thomas Powell 53

In the proof of Higman'’s lemma, the hypothe®QO[X] appears in the form given by Lemila 4, namely
that any sequence X has an infinite monotone subsequence:

MonSeq[X] := ¥x*“3gN"Nvkvi < j < k(gi < gjAxgi <x Xgj)-)

In our interpretation of Nash-Williams' proof we do not ayse the computational content of Lemma 4,
rather we directly interpret

MonSeq[X] — WQO[X*].

There are two reasons for this - the first is that in generalptigsage fronWQO[X] to MonSeq[X]
requires Ramsey’s theorem and therefore full dependeritehso while one could in theory interpret
Lemmd4 using bar recursion or the product of selection fanst in this article we wish to focus on the
main content of Nash-William’s proof, so we omit these dstai

The second reason is that in certain interesting casesasiste proveMonSeq[X] directly, without
resorting to Ramsey’s theorem. For instance, when the lymigalphabeiX is a finite setMonSeq[X] is
provable inPA® using the infinite pigeonhole principle, and so a realizetlie functional interpretation
of MonSeq[X] can be given in system.

3.1 The Minimal Bad Sequence Argument

Our main step in the formalisation of Nash-Williams’ progfthe formalisation of his minimal bad
sequence argument. The main non-trivial principl®Af’ we require is théeast element principle

LEP : 3mA(m) — 3m (A(m) A -A(n — 1)),

where in our version we assume ttgis monotone in the sense that it satisfigs < j — (A(i) — A(j))
and(ii) —=A(0).

Lemma 6 (Minimal bad sequence constructior} it provable in PA® + DC that for any sequence of
words u (X*)®, there exists a sequengg = p° p',... of sequences of typeX*)® and a sequence
fu =1f9,f1,... of functions of typéX*)® — N, which, definingp~! := u, together satisfy the following
sentences:

vn([p" () = [p")(n); (3)
v, j(=8(p", j) = =6(p" 1, })); (4)
vn, g% (q<np" — -6(q,")). (5)

This formulation of the minimal bad sequence constructioa little more intricate than that given in
Sect[2, in particular our aim is to highlight the computasibaspects of the construction. The intuition
is that the sequeng®, is classicallyconstructed in the following manner:

1. Given an initial sequence we choose® to be a bad sequence such tpgki ug but noy <ipd
extends to a bad sequence. If no prefixgextends to a bad sequence weptt= u.

2. Given that we have constructed—?, we choosg" to be a bad extension @b"1](n) such that
[p"](n) xy does not extend to a bad sequence for aryp;. If no such bad extension exists, we
setp" :=p"L.

54 A Constructive Proof of Higman’s Lemma

If py is defined in this way then it clearly satisfiés (3), and forheglt we can produce a (classically
constructed) functiof that witnesses the minimality @ in the sense of (5).

We observe that thp" are not necessarily bad (in factXfis a WQO they never will be), but the
point is thatp” only fails to be bad in the event thait—1 is good, in which case we must hgye= p"~1.
This is the intuition behind {4). Nash-Williams’ proof isged on the fact that X is a WQO then by((5)
we can show that there is somend j such that9(p", j) fails, and then by induction overl(4) we must
have—-0(u, j).

Proof of Lemma&l6 Suppose for the moment thaandw* ") are fixed. Define the monotone predicate
A(m) := IrX)°Vi| Ayl where

Aml =1 InwWA | <mA (8(w,i) — 6(r,i)).

It is clear thatA(m) is monotone, and thati|A,,,1[{" holds. Therefore by EP there exists somaY
such that

{HIDVJ'(IDSlnwAIIDnI<'"M(B(W,J')—>9(IO,J')))A 6)

VoK (WA [an| <m —1— (B(w,k) A—6(q,k)))

Now, observing that i <naWA |pn| < M theng<in, p — q<nWA |gn| < M — 1 we can prove ilPA® that
(©) implies

Ip(Vj (Wi(n) = [pI(N) A (8w,]) = 8(p, |))) AVFK(q<tn p— —6(q,k))). (7)

Skolemizing [(¥) we have that for arbitrary w, there exists a sequenpeand functionf: (X*)® — N
satisfying

Vi, a(w(n) = [pl(M A (8(W,]) = 8(p,])) A(d<inp— —6(a, fq))). (8)
By DC of type (X*)® x ((X*)® — N) applied to[(8) (only dependent on the sequence part of théoue

entry), defining an initial valup—1 := u there exists an infinite sequence of sequepges p®,pt... and
functionsf, = 0,1 ... satisfying

vn, j,a(p" () = [P A (8™ 1) = B(P", 1)) A (A <tnp” — —6(a,f"9))). €)
This completes the proof, ds ()] (4) ahd (5) clearly folloani (). O

In the following MB[X*| abbreviates the statement that forwathere existp, andf, satisfying [(9).

3.2 Completing the Proof

Notation. Given a non-empty word: X* we write x = Xx X whereX: X* andx: X. So that these are
well defined for allx, we define@ = () and6 = Ox. Given a sequence @f: ((X*)®)® we define the
diagonal sequencds (X*)® by p; := 5: andp: X by p; := pl.

Theorem 7. It is provable inPA® that MonSeq[X] A MB[X*] — WQO[X*].

Proof. Take an arbitrary sequence (X*)©. By MB[X*] there existg, andf, satisfying [8-5). We
show that one of thp' must be good, which by{4) implies thaimust also be good.
By MonSeq[X] applied top there exists a monotone functignsuch thatpg <x pg; for all i < j.

Define -
x* w - - . - .
LnU = [pQO—l](go)* (pgi)ieN = pgo 17"'7pgg_iap907pgl7'--

Thomas Powell 55

MB[X*] MonSeq[X] A MB[X*] — WQO[X*]

MonSeq[X] — WQO[X*]

Figure 1: Structure of Nash-Williams’ proof.

Now eitherpgg is empty (and hencp® is trivially good) orfgo < pgg and thusip <igo p%°, which by [3)
implies that-8(y,fPy) i.e. the sequence

_ 001 0-1 x = ~
[LIJ] (fgow + 1) = pgo yery pgo_la ng7 pgl7 sty pg(fgow_go)
has one word contained in a later one. But by constructiantbis implies that the sequence

g0-1 g0—-1

0+1 90y —go 90y —g0)+1
pg 9 9(f"y—g0) g(f"—g0) (x)

g0
AR pgoflv ng’ pgofj]_? crey pg(fgolﬂng)’ g(fgolﬂng)qu

has one element contained in a later one (notextkat: ¥ — x <x- y unless|x| = 1 and|y| = 0, which is
why we need to add the extra element at the engpf But by the nesting propertx) is just an initial
segment opg(fgo‘i’*go)”, which must therefore be good. This completes the proof. O

Combining Theoreri]7 with Lemniad 6 we see tMxinSeq[X*] — WQO[X*] can be formalised in
PA® + DC. The proof as a whole is illustrated in FIg. 1.

3.3 Computational Aspects of Nash-Williams’ Proof

Now that we have formalised Nash-Williams’, we pause for armant before the full program extraction
to look at the computational hints contained in the cla$gic@of. Assuming a realizeg for MonSeq[X],
given an arbitrary sequence of words (X*)® suppose we construg, f, as in Lemmdl6 and the
sequencey as in the proof of Theorefd 7.

By inspecting the proof of Theorelm 7, it is not too difficultsbow that there exisig < i1 < ¢@(u)
such thau;, <x- u;,;, where

o(U) == g(IPY) + 1.

To see this, note that we prove thaf(p9(*¥-99+1 g(f®y — g0) + 1) and so therefore we also have
-6(u,g(fyw — g0) + 1) by @) and hence-6(u, @(u)) sinceg is monotone.

Now ¢(u) is clearly anineffectivebound for Higman'’s lemma, as it depends on non-constructive
objectsg, p, andf,. However, in order to verify the correctnessgiiu), we do not need the whole of
these objects. Rather

e gmust satisfy[(R) up té& = fuy,
e py, fu must satisfy[(B-5) up ta = ¢(u).

Therefore, if we have a procedure that will compafroximationsto these objects up to a finite
point parametrised by those objects themselves, we cangtiinto an effectivebound for Higman’s
lemma. This is precisely what the functional interpretatitves.

56 A Constructive Proof of Higman’s Lemma

4 A Constructive Proof of Higman’'s Lemma

We now build our constructive version of Nash-Williams’ pfoThis section follows closely the struc-
ture of Sect[B. Recall that we assume a realizer for the ifumaitinterpretation oMonSeq([X], namely
a functionalG: X® — (NN — N) — (N — N)) satisfying (cf. [2))

v N N < | < 9(GS)(Gh < Gl j Axyi <x X)- (10)

In general, such a realizer could be obtained from a reatiz&/QO[X] by implementing a computa-
tional interpretation of Ramsey’s theorem - such as the drengn [15] using the product of selection
functions. However, whekX is finite, G can be given directly using the standard interpretatiorhef t
infinite pigeonhole principle found in e.d. [14].

4.1 Interpreting the Minimal Bad Sequence Argument

The central part of our constructive proof is the followimgnstructive version of Lemnid 6, which is
just a realizer for the functional interpretationB[X*].

Notation. Recall (Sect[1]2) that we denote the type of a selectiontifamby JgX := (X — R) — X.
We use the abbreviatiori = (X*)? x ((X*)® — N) for the type of our choice sequence. Also, in what
follows it will be useful to implicitly write variables=: A — B x C as pairs(F{*”8, FA=C) - this slight
abuse of types will make our syntax much more intuitive.

Lemma 8 (Minimal bad sequence constructiorfor fixed n and W<)* define the decidable formula
A"} by
JARWI = r 9 WA [rg| < mA B(r,i),

which is slightly simpler than that used in the proof of LenfihaDefine the functionals

0 .1 ,.
Enw = (smw, Enw) " I (xyeY

by

=<

(€9 (YN, QX% gl (3,Q)) = (pi, i) (11)

where i< |wy| is the greatest integer satisfyingAi”?W\(f?Egégi)) and the finite sequences,p. ., p, and
fo...., fiw,| are defined recursively by 7

fo = O(X*)wﬁN

fi:=A0.J(q, fi_1) (12)
Pw,| -=W
Pi—1 = Q(pia fl)

Now, given an arbitrary sequence (X*)?, define the family of selection functiogts: Y* — Jy, (x+)eY
by
5<up,|:><J7Q> = 5|<RF>|7P\<RF>\71<J7Q>7 (13)
1it would have been sufficient, although less direct, to ab{@) in the proof of LemmEl6 by applyingEP to this simpler

formula. We opt for this variant now to simplify the subsequeonstructions, as either version would result in esatytihe
same program.

Thomas Powell 57

where we define the initial value®:= u. Now, given counterexample functiongls®: Y — N and
W: Y@ - (X*)N, the sequences

pu,fu = EPSR(EY)((®,W))
satisfy, definingp; ! := u, the following sentences (cfl[(B-5)):

VN < Qp([p"H(n) = [p"(n)); (14)
VN < Qpi(=6(p", Pps) — —B(p", Py)); (15)
VN < Qpt(Wpt <in p" — —|9(Wp7f,fn(lpp7f))). (16)

These sequenceyg, f, computed via the product of selection functions intergnetinstance obC
used in the minimal bad sequence construction, and wittessd-counterexample interpretation of
MB[X*]. The functionalQ determines how large the approximation to the choice segusnandd, ¥
in some sense calibrate dgpth

Our aim in the next section is to pick suitable counterexanfphctions such thaf (16) implies
—=0(p", Py ¢) for somen < Qp ¢, then by induction ovef (15) we have

~6(p", Bp) = —6(p ", Bp)) = —6(u, Ppy),

and we therefore obtaifiig < iy < ®p, 1, (Ui, <x- Uj,) i.€. a constructive bound farbeing good. First
we must prove the lemma.

Proof of Lemmal8 First, we show that,,, witnesses the functional (i.e. no-counterexample) imeerp
tation of (8), in the sense that given counterexample fonetd, Q: Y — N x (X*)® for j,q we have

(suppressing dependencies and writifg= 2, ((3,Q)))

w|(n) = [€°](n) A (B(w,Jg) — B(£°,J€)) A (Qe <in €2 — —0(Qe, £1(Qe))). (17)
The following is a constructive version of the proof of Lenmifhd_et 0< i < |wj| be the greatest number
such thah\A,”W\Q i ;'l 1))+ SO by definition we haveée?, 1) = (pi, fi). There are two cases.

Case 1: i= |wp|. Then we have
= A | (0e)) = Q€ WA [(QE)n] < Wil — -60(Qs,£X(Qe)).

Therefore, observing thaf = Pw,| := Wand(Qe) <n€% — (Q€) WA |(QE)n| < |Whl,

@2).

Case 2: i< |wp|. By maximality ofi, \A,+1\?fl"“’gfl)fl+l)) must be true. Now looking at the defining

equations[(12), we hav@(pi+1, fir1) = pi = €° and fi 1(Q(pit1, fir1)) = fira(p) = I(pi, fi) = Je,
therefore the following two formulas are true:

Al = €2 DawA | (€%)a] <TAB(°,38); (18)
-|AS () = QETnWA[(Qe)n| <i = -6(Qe,£1(Qe)). (19)

Now by (I8) we havedw](n) = [€°](n) A (8(w,Je) — O(£°,J¢)), and becaus®c <in €2 — Qe WA
|(Q¢)n| < i by (I9) we obtaimQe <1, €% — —06(Qg, €1(Qe)). Therefore[(Il7) holds.

58 A Constructive Proof of Higman’s Lemma

Thus we have shown tha,, witnesses[(17) for arbitrany,w,J andQ. Now setting

Y@ ~
pu,fu i= EPSF (E") ((®, W)
N ~
In(P. 1) 1= Pt p. 1) (EPS{oyg .ol ps o) (B (@, W))) (20)
(x)@

Qn(p, f) =

by the main theorem 0BPS quoted in Sec{._1]2 we satisfy Spector’s equations

Q ~
W (pal)l () (. £) (EPS o).l o,y (B (P W)

pn7 fn = grc]{pﬂfl (‘]l’h Qn)7 gr:::pnfl (‘Jna Qn)

n ¢n n ¢n (21)
‘Jl’l(p 7f)7Ql’l(p Jf):q)pJ?quf

for all n < Qps. By settingw :=p"~1, J:=J, andQ := Q, in (I7) and substituting if{21), we obtain
equations[(14-16). O

4.2 Constructing a Realizer for Higman’s Lemma

Definition 9. Given a pair of sequencgs. ((X*)®)® andf: ((X*)® — N)®, let Gy be a realizer for
MonSeq[X] on the sequencgp;) and counterexample function

ps = Ag. ([P 1(g0) (Bgi))-

Define the functionalf, ® andW by (suppressing the subscript on ¢,

Finally, definel": (X*)® — N by
r(u) = ®(pu, fu),
wherep,,f, := EPS%(?”)(((D, W)) with ¥ defined as in Lemnia 8.
The main theorem of this article is the following, constivetanalogue of Theoref 7.

Theorem 10(Higman’s lemma, constructive versionjuppose X is a WQO. Then for all sequences of
words u X* over X we have
Jig <i1 < T (u)(uiy <x- Ui,)

whererl is constructed as in Definitidd 9.

Proof. Fix u. In what follows, p, f are fixed ag,, f,. We use the abbreviatioQ, := Q(py,fy), and
similarly for @, ¥,, G, and¢,. We claim that there is some< Q, satisfying—6(p",®,). Then by
induction over[(1b), we see tha(u,d,), and the theorem follows from the definition &f It remains
to prove the claim.

First observe that becau& is a realizer oMonSeq[X] for ¢, we have (cf[ID)

Vi < J < ¢u(Gu)(Gul < GujAPa,i <x Payj)- (22)

Thomas Powell 59

£: LEP EPS: DC
= Lem.[8 Thm.[10
EPS(£): MB[X*] MonSeq[X] A MB[X*] = WQO[X*]

AG.Au. ®C(EPST()((®,W)): MonSeq[X] — WQO[X"]

Figure 2: Structure of constructive proof.

Now, GO < G(¢G) so we haves0 < G(¢G) + 1 = Q,, therefore by[(16) it follows that
Wy <o P — —0(Wy, FO(Wy)). (23)

The premise of{23) must hold by constructiortéf, since[p®®-1](G0) = [p®°] (n) by (I4) andpgo < pE3
(unlessp&3 = () in which case we trivially have:6(p®° GO+ 1) and hence-8(p®°,d,)). Therefore
we have-0 (W, ¢ G) sincef®O(W,) = ¢,G, by definition, i.e. the finite sequence

[LIJU] (¢G + 1) = p(?o_]-? pfl_;o_17 [ERS) pgg:ia ﬁG07 very f)G((PGfGO)

has one element contained in a later one (we illustrate the¢od > GO - if G < GO then[p©°-1](G0)
is bad and hence8(p®°—1,@,)). Now since¢ G — GO < ¢ G, by (22) we see that the sequence
_ _ _ G($G—GO) , G($G—G0)+1

pe% 1P, e 1. P& PSS - Paie a0 Pare cort ()
has one element contained in a later one (we need to add areéxtnent for the same reason as we do in
the proof of Theorerl7). But becaug¢p G — GO) +1 < G(¢G) + 1 = Q,, by the nesting property (114)
the sequencéx) is just an initial segment f®¢G-C9+1 and hence-8(p®#C-C0+1 G(¢ G— G0) + 1)
which implies—8(p®(#G-C0+1 @), This proves the claim, completing the proof. O

An rough map of our constructive proof, with partial reatzehown is given as Fig] 2.

4.3 An Informal Discussion on the Extracted Programl

We conclude the section with amformal analysis of our extracted realizer. Often, programs etdrhc
from classical proofs via proof interpretations can be \giffycult to understand, sometimes taking up
several pages of abstruse higher type syntax or computerto@Ven state. In contrast, given the logical
complexity of Nash-Williams’ proof our realizer extractesing the Dialectica interpretation is relatively
concise, and we can even describe its operational behawiaur extent.

We stress that everything which follows is heuristic andr@sbeen properly formalisedur aim
is merely to illustrate that it is at least feasible to deeipbur realizer on a qualitative level!

Our algorithm uses the product of selection functi@®S to interpret the minimal bad sequence
argument used in Nash-Williams’ proof. As observed in S&&, EPS - and consequently our extracted
program - comes equipped with a natural game theoretic g@rakor a full account of this the reader
is advised to consulf [8, 16]. However, for completeness tage s without further details, the game
theoretic reading of the key constructions in our algorithm

e The functionalgb, W assign to any sequence (i.e. infinite play) anoutcomeof typeN x (X*)®.

e The selection functiong" - built from the realizer of EP - implement a strategy for constructing
anoptimalplay py,fy, the selection functior?ir‘]J o1 being responsible for constructing thié point

ph, 1 in the sequence given that we have already computed theopsevaluep] .

60 A Constructive Proof of Higman’s Lemma

e The selection functions make a decision based on the furadtid,, Q, defined in[(2D) which (in
loose game theoretic terms) describe the optimal outcoreadt potential choice at point

e The functionalQ acts as a control, determining the ‘relevant part’ of an itdiplay p,f thereby
telling EPS when it has computed a sufficiently long sequence.

In terms of Nash-Williams proof, the sequenggf, strategically constructed byPS constitutes an
‘attempt’ at producing a minimal bad sequence frortgiven by p, with accompanying functional®
witnessing minimality at poinh). We define®, W and Q so that the construction can be essentially
reversed to obtain a bound for

So what can we say about this optimal sequeng&,? We prove in Theoreim 10 that there is some
element of the approximatiop{} such that-6(p;},®,) holds. It is not too difficult to see, bﬂ?l), that
—6(pg, Py) can only hold ife, pi-1 Picks the default value]) = p~1. Similarly we havep]}~! = pl—2
and so on, s&PS just returns the initial value at each step.

So how does the program justify selectingt pointn, given that it has already choseratn— 1?
We see that the selection functien, always setspy,fil) = (u, fi,,|) (where thef; are defined as in
(12)), unless the outcom@n(u, f|,,|) = Wy is lexicographically less tham at pointn, in which case it
must check thab(Wy, fi,, (Wu)) is false. Butfy, |(Wu) = In(Wu, flu,—1) by (I2) which checks the final
outcome ofEPS given the sequence

(U,fg), R (U,f271)7 (LIJLh f|un\—1) (*)

Now in the computation oEPS the functionalsQ, ®, ¥ only ever look at the first values ofp'~.
Therefore we propose that becaiié](n) = [u](n) (and|uy| — 1 = |(Wu)n|) we can identify(x) with the
outcome ofEPS given the sequence

(LIJthSJu)a'"7(LPU7fr\}J;1)a(LPU7 f|(‘-|—’u)n‘) (24)

which by our previous argument can be viewed as the outconmmenoiing our algorithm with initial
valueW, instead ofu. In other words we make the identificatidp(\Wy, fy,—1) ~ Py, = (W¥y), which
explains why we must haved(Wy, Jn(Wy, fju,-1))-

We claim that the algorithri obtained visEPS has characteristics of apen recursiorprocedure
(see e.q.[[2]), computing(u) by internally computing values df(v) for v lexicographically less than
u. If we takepy, to be the constant sequence with valyehen our bound fou is given byl (u) :=
®(py,fu) = G(¢G) + 1 where nowG is a witness forMonSeq[X] on u and counterexample function
Ag.f9([u](g0) = (Tgi)). But by our previous argument we can idenf([u] (g0) * (Cg;)) with I" ([u](gO)
(Ggi)). Thus it seems thdt is closely related to a functiondl defined, via open recursion, yu) :=
G(¢G) + 1 whereG is a witness foMonSeq[X] on the counterexample function

¢ :=Ag. F([u](g0) (Cg)).

Of course, none of this precise - the identifications abogevade very informally - and in particular
we anticipate that the way our algorithm treats empty wordsld/be more complex than a straightfor-
ward open recursion procedure. However, our purpose heneiisly to provide via a casual argument
some insight into how works.

It would be interesting to analyse the behaviour of our e&ée algorithm in depth, to give a precise
explanation of the way in which it computes bounds on bad eseces and compare this algorithm to
those extracted using other methods. We leave this as anpoplelem.

Thomas Powell 61

5 Final Comments

We have used Gdodel’s functional interpretation to prodaceonstructive version of Nash-Williams’
minimal bad sequence proof of Higman's lemma. Our proof latikely short and concise, and the
combinatorial idea behind Nash-William’s proof can be dieaeen in ours. Moreover, we can start to
make sense of the operational behaviour of the extractemtitim, at least on an informal level. We
hope that this case study provides some insight into progsaraction in infinitary combinatorics using
the functional interpretation.

An obvious direction of future work is to better understannl ealizer and give a more satisfactory
description than that given in the previous section! Onddcpotentially refine our realizer so that it is
more intuitive and efficient, or alternatively constructeamrealizer that directly interprets the functional
interpretation of the minimal bad sequence argument angbaoerhow it behaves to the one given here.
It would also be instructive to formalise our program exi@acin a theorem prover, and actually run the
algorithml™ on some concrete WQOs to analyse its behaviour.

We close with the remark that the ideas in this article co@dktended to solve the functional in-
terpretation of thejeneralminimal bad sequence construction, and thereby extragramos from more
complex proofs that use this construction, such as KruskbBorem. While our focus in this article
was on the qualitative aspects of program extraction, iatsnal to ask whether one could obtain useful
guantitativeinformation from the analysis of proofs in this area of conaborics. Bounds for Higman’s
lemma on a finite alphabet have already been produced usirgdirect methods e.d.1[4], but it would
be interesting to see if any useful constructive informatould be extracted in the general case or for
related theorems, through the formal analysis of proofs.

Acknowledgements. This work was supported by an EPSRC Daoctoral Training Grdrtie author
thanks Paulo Oliva for suggesting this project and for negqdin earlier draft of this article, and the
anonymous referees for corrections and several useful emtsn

References

[1] J. Avigad & S. Feferman (1998)Godel’s functional (“Dialectica”) interpretation In S. R. Buss, editor:
Handbook of proof theoryStudies in Logic and the Foundations of Mathemati8g, North Holland, Ams-
terdam, pp. 337—405. doi:10.1016/S0049-237X(98)80020-7

[2] U. Berger (2004):A Computational Interpretation of Open Inductiom F. Titsworth, editor:Proceedings
of the Ninetenth Annual IEEE Symposium on Logic in ComputeieSce IEEE Computer Society, pp.
326—334. d0i:10.1109/LICS.2004.1319627

[3] U. Berger & M. Seisenberger (2005):Applications of inductive definitions and choice princi-
ples to program synthesis In: From Sets and Types to Topology and Analysis Towards Prac-
ticable Foundations for Constructive Mathematiad®xford Logic Guides48, OUP, pp. 137-148.
doi{10.1093/acprof:0s0/9780198566519.003.0008

[4] E. Cichon & E. Bittar (1998):Ordinal Recursive Bounds for Higman’s Theorerfheoretical Computer
Science201, pp. 63-84. d0i:10.1016/S0304-3975(97)00009-1

[5] T. Coquand (1991)Constructive Topology and Combinatorictn: Constructivity in Computer Science
LNCS613, pp. 159-164.

[6] T. Coquand & D. Fridlender (1993)A proof of Higman’s lemma by structural inductiorUnpublished
Manuscript. doi:10.1007/BFb0021089

http://dx.doi.org/10.1016/S0049-237X(98)80020-7
http://dx.doi.org/10.1109/LICS.2004.1319627
http://dx.doi.org/10.1093/acprof:oso/9780198566519.003.0008
http://dx.doi.org/10.1016/S0304-3975(97)00009-1
http://dx.doi.org/10.1007/BFb0021089

62

[7]
(8]
[9]
[10]
[11]

[12]
[13]

[14]

[15]
[16]
[17]

[18]

[19]

A Constructive Proof of Higman’s Lemma

M. H. Escard6 & P. Oliva (2010)Selection Functions, Bar Recursion, and Backward InductMathemat-
ical Structures in Computer Scien2z@(2), pp. 127-168. d0i:10.1017/S0960129509990351

M. H. Escard6 & P. Oliva (2011)Sequential games and optimal strategi€yal Society Proceedings A
467, pp. 1519-1545. dpi:10.1098/rspa.2010.0471

G. Higman (1952)Ordering by Divisibility in Abstract AlgebrasProc. London Math. So@, pp. 326—336.
doi{10.1112/plms/s3-2.1.326

U. Kohlenbach (2008)Applied Proof Theory: Proof Interpretations and their UseNlathematics Mono-
graphs in Mathematics, Springer.

J.B. Kruskal (1960):Well-quasi-ordering, the tree theorem, and2gonyi’s conjecture Trans. American
Math. Soc95, pp. 210-225. d6i:10.1090/S0002-9947-1960-0111704-1

C. Murthy (1990):Extracting Constructive Content from Classical Prad?.D. thesis, Cornell University.

C. St. J. A. Nash-William (1963)YOn Well-Quasi-Ordering Finite Tree®roc. Cambridge Phil. So89, pp.
833—-835. d0i:10.1017/S0305004100003844

P. Oliva (2006):Understanding and using Spector’s bar recursive intemgien of classical analysisIn
A. Beckmann, U. Berger, B. Lowe & J. V. Tucker, editoRroceedings of CiE’2006, LNCS 3988pringer,
pp. 423-234. d0i:10.1007/117803442

P. Oliva & T. Powell (2011)A Constructive Interpretation of Ramsey’s Theorem via tloeléct of Selection
Functions To appear: Math. Struct. in Comp. Science. Preprint abvkglat http://arxiv.org/abs/1204.5631.

P. Oliva & T. Powell (2012)A Game-Theoretic Computational Interpretation of Proaf€lassical Analysis
Preprint available at http://arxiv.org/abs/1204.5244.

M. Seisenberger (2003)On the Constructive Content of ProofsPh.D. thesis, Ludwigs-Maximilians-
Universitat Munchen.

C. Spector (1962)Provably recursive functionals of analysis: a consistemopof of analysis by an extension
of principles in current intuitionistic mathematicén F. D. E. Dekker, editorRecursive Function Theory:
Proc. Symposia in Pure Mathemati€és American Mathematical Society, Providence, Rhodentslap.
1-27.

W. Veldman (2004)An Intuitionistic Proof of Kruskal’'s TheoremArchive for Mathematical Logié3(2),
pp. 215-264. doi:10.1007/s00153-003-0207-x

http://dx.doi.org/10.1017/S0960129509990351
http://dx.doi.org/10.1098/rspa.2010.0471
http://dx.doi.org/10.1112/plms/s3-2.1.326
http://dx.doi.org/10.1090/S0002-9947-1960-0111704-1
http://dx.doi.org/10.1017/S0305004100003844
http://dx.doi.org/10.1007/11780342_44
http://dx.doi.org/10.1007/s00153-003-0207-x

	1 Introduction
	1.1 Preliminaries
	1.2 The functional interpretation of proofs in PA+DC

	2 A Classical Proof of Higman's Lemma
	3 Formalising the Classical Proof
	3.1 The Minimal Bad Sequence Argument
	3.2 Completing the Proof
	3.3 Computational Aspects of Nash-Williams' Proof

	4 A Constructive Proof of Higman's Lemma
	4.1 Interpreting the Minimal Bad Sequence Argument
	4.2 Constructing a Realizer for Higman's Lemma
	4.3 An Informal Discussion on the Extracted Program

	5 Final Comments

