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Kohlenbach’s proof mining program deals with the extraction of effective information from typically
ineffective proofs. Proof mining has its roots in Kreisel’s pioneering work on the so-called unwinding
of proofs. The proof mining of classical mathematics is rather restricted in scope due to the existence
of sentences without computational content which are provable from the law of excluded middle and
which involve only two quantifier alternations. By contrast, we show that the proof mining of classical
Nonstandard Analysis has a very large scope. In particular, we will observe that this scope includes
any theorem of pure Nonstandard Analysis, where ‘pure’ means that only nonstandard definitions
(and not the epsilon-delta kind) are used. In this note, we survey results in analysis, computability
theory, and Reverse Mathematics.

1 Introduction

The aim of this note is to survey the vast computational content of classical Nonstandard Analysis as
established in [34–37]. Results are mostly presented without proofs but references are provided.

First of all, numerous practitioners of Nonstandard Analysis have alluded to the constructive nature
of its praxis; The following quotes serve as a representative illustration.

It has often been held that nonstandard analysis is highly non-constructive, thus somewhat
suspect, depending as it does upon the ultrapower construction to produce a model [. . . ] On
the other hand, nonstandard praxis is remarkably constructive; having the extended number
set we can proceed with explicit calculations. (Emphasis in original: [1, p. 31])

Those who use nonstandard arguments often say of their proofs that they are “constructive
modulo an ultrafilter”; implicit in this statement is the suggestion that such arguments might
give rise to genuine constructions. ([30, p. 494])

The reader may interpret the word constructive as the mainstream/classical notion ‘effective’, or as the
foundational notion from Bishop’s Constructive Analysis ([7]). As will become clear, both cases will be
treated below and separated carefully.

To uncover the computational content of Nonstandard Analysis alluded to in the above quotes, we
shall introduce a template CI in Section 3.2 which converts a theorem of pure Nonstandard Analysis into
the associated ‘constructive’ theorem; Here, a theorem of ‘pure’ Nonstandard Analysis is one formulated
solely with the nonstandard definitions (of continuity, convergence, etc) rather than the usual ‘epsilon-
delta’ definitions. We present a wide range of applications of the template CI in this note.

On a historical note, the late Grigori Mints has repeatedly pushed the author to investigate the com-
putational content of classical Nonstandard Analysis. In particular, Mints conjectured the existence of
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results analogous or similar to Kohlenbach’s proof mining program ([19]). The latter program has its
roots in Kreisel’s pioneering work on the ‘unwinding’ of proofs, where the latter’s goal is similar to ours:

To determine the constructive (recursive) content or the constructive equivalent of the non-
constructive concepts and theorems used in mathematics, particularly arithmetic and analy-
sis. (Emphasis in original on [22, p. 155])

Finally, Horst Osswald has qualified the observation from the above quotes as Nonstandard Analysis
is locally constructive, to be understood as the fact that the mathematics performed in the nonstandard
world is highly effective while the principles needed to ‘jump between’ the nonstandard world and usual
mathematics, are highly non-constructive in general (See [45, §7], [28, §1-2], or [29, §17.5]). The results
in this paper shall be seen to vindicate both the Mints and Osswald view.

2 About and around internal set theory

In this section, we introduce Nelson’s internal set theory, and its fragments P and H from [4]. We discuss
the term extraction result in Corollary 2.2, which is central to our enterprise.

2.1 Internal set theory

In Nelson’s syntactic approach to Nonstandard Analysis ([25]), as opposed to Robinson’s semantic one
([31]), a new predicate ‘st(x)’, read as ‘x is standard’ is added to the language of ZFC, the usual founda-
tion of mathematics. The notations (∀stx) and (∃sty) are short for (∀x)(st(x)→ . . .) and (∃y)(st(y)∧ . . .).
A formula is internal if it does not involve ‘st’, and external otherwise. The three external axioms Ideal-
isation, Standard Part, and Transfer govern the new predicate ‘st’; They are respectively defined1 as:

(I) (∀st finx)(∃y)(∀z ∈ x)ϕ(z,y)→ (∃y)(∀stx)ϕ(x,y), for internal ϕ with any parameters.

(S) (∀stx)(∃sty)(∀stz)
(
(z ∈ x∧ϕ(z))↔ z ∈ y

)
, for any ϕ .

(T) (∀stt)
[
(∀stx)ϕ(x, t)→ (∀x)ϕ(x, t)

]
, where ϕ(x, t) is internal, and only has free variables t,x.

The system IST is (the internal system) ZFC extended with the aforementioned external axioms; The
former is a conservative extension of ZFC for the internal language, as proved in [25].

In [4], the authors study Gödel’s system T extended with special cases of the external axioms of
IST. In particular, they introduce the systems H and P which are conservative extensions of the (internal)
logical systems E-HAω and E-PAω , respectively Heyting and Peano arithmetic in all finite types and the
axiom of extensionality. We refer to [19, §3.3] and [4, §2] for the exact definitions of the (mainstream in
mathematical logic) systems E-HAω and E-PAω and the associated extensions E-HAω∗ and E-PAω∗. We
refer to [35] and [37] for the exact definition of the systems P and H. Their importance lies in the term
extraction corollary which we discuss in the next section.

Note that the contraposition of the idealisation axiom (I) allows one to ‘push outside’ a standard
quantifier. The axiom (I) (formulated in the language of finite types) is included in P and H; We shall
need this axiom in the proof of Theorem 3.6 and therefore list it as follows:

Definition 2.1. [Idealisation I] For any internal formula ϕ , we have

(∀stxσ∗)(∃yτ)(∀zσ ∈ x)ϕ(z,y)→ (∃yτ)(∀stxσ )ϕ(x,y), (2.1)

1The superscript ‘fin’ in (I) means that x is finite, i.e. its number of elements are bounded by a natural number.



26 The computational content of Nonstandard Analysis

Note that xσ∗ in the antecedent of (2.1) is a finite sequence of objects of type σ .

Finally, we note that IST is just ZFC with an extra unary predicate governed by the aforementioned
axioms. In other words, all the usual definitions (of real function, large cardinal, Turing machine, etc)
from ZFC can also be stated in IST by exactly the same formula of ZFC. The same holds for P and H; In
particular, the latter systems use Kohlenbach’s definition of real number and real function from [20] in
the higher-type framework.

2.2 The term extraction corollary

In this section, we discuss the central tool of our investigation, namely the term extraction corollary of
the system P, and sketch its vast scope. The following is essentially a corollary to [4, Theorem 7.7].

Corollary 2.2 (Term extraction). If ∆int is a collection of internal formulas and ψ is internal, and

P+∆int ` (∀stx)(∃sty)ψ(x,y,a), (2.2)

then one can extract from the proof a sequence of closed terms t in T ∗ such that

E-PAω∗+∆int ` (∀x)(∃y ∈ t(x))ψ(x,y,a). (2.3)

Note that t does not provide a witnessing functional for (∃y) in (2.3); In particular t(x) is only a finite
sequence (of length |t(x)|) of witnesses for (∃y). For the remainder of this paper, the notion of ‘normal
form’ shall always refer to a formula of the form (∀stx)(∃sty)ϕ(x,y) with ϕ internal, i.e. without ‘st’.

Curiously, the previous corollary is not proved in [4]; A proof making essential use of [4, Theo-
rem 7.7] may be found in [35, 36]. The previous corollary is proved for the constructive system H rather
than the classical system P in [4, Theorem 5.9], but our interest goes out to classical systems. Further-
more, Corollary 2.2 does not depend on the full strength of Peano arithmetic: The same result holds for
any system which at least includes EFA, also called I∆0 +EXP.

Clearly, Corollary 2.2 allows us to extract effective information (in the form of the term t) from proofs
as in (2.2) in Nonstandard Analysis, to obtain effective results as in (2.3) not involving Nonstandard
Analysis. We now discuss why Corollary 2.3 has such a vast scope, including all of ‘pure’ Nonstandard
Analysis, as claimed in the introduction.

1. First of all, the nonstandard definitions of common notions (such as continuity, integrability, con-
vergence, compactness, et cetera) in Nonstandard Analysis can be brought into the ‘normal form’
(∀stx)(∃sty)ϕ(x,y). This can always be done in P and usually in H. As an example, nonstandard
continuity for f : R→ R as follows (where ‘x≈ y’ is short for (∀stn0)(|x− y|<R

1
n)):

(∀stx ∈ [0,1])(∀y ∈ [0,1])[x≈ y→ f (x)≈ f (y)]. (2.4)

is equivalent (over P or H) to the following normal form by Theorem 3.3:

(∀stk0)(∀stx ∈ [0,1])(∃stN0)(∀y ∈ [0,1])(|x− y|<R
1
N → | f (x)− f (y)|<R

1
k

)
, (2.5)

where the underlined formula is internal. Similar equivalences hold for nonstandard definitions of
compactness, Riemann integration, differentiability, convergence, et cetera.
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2. Secondly, the normal forms are closed under modus ponens: Indeed, it is possible (easy in P and
involved in H) to show that an implication between normal forms:

(∀stx0)(∃sty0)ϕ0(x0,y0)→ (∀stx1)(∃sty1)ϕ1(x1,y1),

can also be brought into a normal form (∀stx)(∃sty)ϕ(x,y). Hence, it seems theorems of ‘pure’
Nonstandard Analysis, i.e. formulated solely with nonstandard definitions like (2.4), can be brought
into the latter normal form. This can always be done in H and P.

3. Third, normal forms are closed under quantification over the nonstandard numbers: In particular,
for internal formulas ϕ(x,y,M), the following formula

(∀M0)
(
¬st(M)→ (∀stx))(∃sty)ϕ(x,y,M)

)
,

is equivalent to a normal form in P. The same holds for quantification over nonstandard higher-
type objects. This item is significant because applications of Nonstandard Analysis often start with
‘divide the compact space at hand into pieces of infinitesimal surface/volume/measure 1

M0 ’.

4. Fourth, the normal form (∀stx)(∃sty)ϕ(x,y) has exactly the right structure to yield the effective
version (∀x)ϕ(x, t(x)). In particular, from the proof of the normal form (∀stx)(∃sty)ϕ(x,y) (inside
H or P), a term s can be ‘read off’ such that (∀x)(∃y ∈ s(x))ϕ(x,y) has a proof inside a system
involving no Nonstandard Analysis. The term t is then defined in terms of s. For theorems of
analysis, ϕ(x,y) is often monotone in y, and t is then just the maximum of all entries of s. For
instance, (2.5) is ‘monotone in N’ in the sense that any larger number than N will also do.

It is important to note that there is no general procedure to convert the ‘weak witnessing’ term s into a
‘strong witnessing’ term t in the fourth step. However, when dealing with mathematical theorems (rather
than purely logical statements), experience bears out that this conversion is almost always possible.

It goes without saying that most technical details have been omitted from the above sketch, this in
order to promote intuitive understanding. Nonetheless, the previous four steps form the skeleton of the
template CI introduced in Section 3.2. In light of the previous observations, the class of normal forms,
and hence the scope of CI, seems to be very large, which is what we intend to establish in the remainder.

Finally, the results in this note should be contrasted with the ‘mainstream’ view of Nonstandard Anal-
ysis: One usually thinks of the universe of standard objects as ‘the usual world of mathematics’, which
can be studied ‘from the outside’ using nonstandard objects such as infinitesimals. In this richer frame-
work, proofs can be much shorter than those from standard (=non-Nonstandard) analysis; Furthermore,
there are conservation results guaranteeing that theorems of usual mathematics proved using Nonstan-
dard Analysis can also be proved without using Nonstandard Analysis. Thus, the starting and end point
(according to the mainstream view) is always the universe of standard objects, i.e. usual mathematics.
By contrast, our starting point is pure Nonstandard Analysis and our end point is effective mathematics.

3 An elementary example

In this section, we present an elementary example which we believe to be enlightening. Based on this
example, we formulate a general template CI to obtain effective theorems from nonstandard ones.
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3.1 From continuity to Riemann integration

In this section, we study the statement CRI: A uniformly continuous function on the unit interval is
Riemann integrable. We first obtain the effective version of CRI from the nonstandard version inside
P. We then obtain the same result in the constructive system H. Finally, we re-obtain the nonstandard
version from a special effective version, called the Hebrandisation.

First of all, the ‘usual’ nonstandard definitions of continuity and integration are as follows. Recall
that ‘x≈ y’ is an abbreviation for ‘(∀stn)(|x− y|<R

1
n)’.

Definition 3.1. [Continuity] A function f : R→ R is nonstandard continuous on [0,1] if

(∀stx ∈ [0,1])(∀y ∈ [0,1])[x≈ y→ f (x)≈ f (y)]. (3.1)

A function f : R→ R is nonstandard uniformly continuous on [0,1] if

(∀x,y ∈ [0,1])[x≈ y→ f (x)≈ f (y)]. (3.2)

Definition 3.2. [Integration]

1. A partition of [0,1] is any sequence π = (0, t0,x1, t1, . . . ,xM−1, tM−1,1). We write ‘π ∈ P([0,1])’ to
denote that π is such a partition.

2. For π ∈ P([0,1]), ‖π‖ is the mesh, i.e. the largest distance between two partition points xi and xi+1.

3. For π ∈ P([0,1]) and f : R→ R, Sπ( f ) := ∑
M−1
i=0 f (ti)(xi− xi+1) is the Riemann sum of f and π .

4. A function f : R→ R is nonstandard Riemann integrable on [0,1] if

(∀π,π ′ ∈ P([0,1]))
[
‖π‖,‖π ′‖ ≈ 0→ Sπ( f )≈ Sπ( f )

]
. (3.3)

Secondly, it was claimed in the previous section that nonstandard continuity has a nice normal form.

Theorem 3.3 (P). Nonstandard uniform continuity (3.2) is equivalent to

(∀stk0)(∃stN0)(∀x,y ∈ [0,1])(|x− y|<R
1
N → | f (x)− f (y)|<R

1
k

)
, (3.4)

Proof. We only need to prove the forward implication. Resolving ‘≈’ in (3.2), we obtain

(∀x,y ∈ [0,1])((∀stN0)|x− y|<R
1
N → (∀stk)| f (x)− f (y)|<R

1
k

)
,

and pushing outside all standard quantifiers, we obtain

(∀stk0)(∀x,y ∈ [0,1])(∃stN0)(|x− y|<R
1
N → | f (x)− f (y)|<R

1
k

)
,

where the underlined formula is internal. Applying the contraposition of idealisation I as in (2.1):

(∀stk0)(∃stw0∗)(∀x,y ∈ [0,1])(∃N0 ∈ w)(|x− y|<R
1
N → | f (x)− f (y)|<R

1
k

)
.

Now let M be the maximum of all numbers in w = (n0
0, . . . ,n

0
k), and note that

(∀stk0)(∃stM)(∀x,y ∈ [0,1])(|x− y|<R
1
M → | f (x)− f (y)|<R

1
k

)
,

by the monotonicity of the internal formula. This is exactly (3.4), and we are done.
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Thirdly, we now introduce the nonstandard and effective versions of CRI as follows.

Theorem 3.4 (CRIns). Every nonstandard uniformly continuous function on the unit interval is nonstan-
dard Riemann integrable there.

Theorem 3.5 (CRIef(t)). For any f : R→R with modulus of uniform continuity g, the functional t(g) is
a modulus of Riemann integration, i.e. we have

(∀x,y ∈ [0,1],k)(|x− y|< 1
g(k) → | f (x)− f (y)| ≤ 1

k ) (3.5)

→ (∀n)(∀π,π ′ ∈ P([0,1]))
(
‖π‖,‖π ′‖< 1

t(g)(n) → |Sπ( f )−Sπ ′( f )| ≤ 1
n

)
.

Kohlenbach has shown that continuous real-valued functions as represented in RM (See [39, II.6.6]
and [19, Prop. 4.4]) have a modulus of (pointwise) continuity as in the antecedent of (3.5).

Theorem 3.6. From a proof of CRIns in P, a term t can be extracted such that E-PAω∗ proves CRIef(t).

Proof. The theorem CRIns can be proved in far weaker systems than P by [33, Theorem 19]. A variation
of the latter proof may be found in [35, §3.1.1]. We now sketch how to obtain a normal form for CRIns.
Applying Corollary 2.2 to this normal form will then yield CRIef(t).

First of all, a normal form for uniform nonstandard continuity (3.2) is (3.4), while the (equivalent)
normal form for nonstandard Riemann integration similarly is:

(∀stn0)(∃stM0)(∀π,π ′ ∈ P([0,1]))
[
‖π‖,‖π ′‖< 1

M → |Sπ( f )−Sπ( f )|<R
1
k

]
. (3.6)

Secondly, in light of the previous equivalences, CRIns is the implication (3.4)→ (3.6) for all f : R→ R.
By strengthening the antecedent of the latter implication, we obtain for all f : R→R and all standard g:

(∀stk)(∀x,y ∈ [0,1])(|x− y|< 1
g(k) → | f (x)− f (y)| ≤ 1

k ) (3.7)

→ (∀stn)(∃stM)(∀π,π ′ ∈ P([0,1]))
(
‖π‖,‖π ′‖< 1

M → |Sπ( f )−Sπ ′( f )| ≤ 1
n

)
.

Now drop the ‘st’ in the ‘(∀stk)’ quantifier in (3.7), and bring outside all standard quantifiers to obtain:

(∀stn,g)(∀ f : R→ R)(∃stM)
[
(∀k,x,y ∈ [0,1])(|x− y|< 1

g(k) → | f (x)− f (y)| ≤ 1
k ) (3.8)

→ (∀π,π ′ ∈ P([0,1]))
(
‖π‖,‖π ′‖< 1

M → |Sπ( f )−Sπ ′( f )| ≤ 1
n

)]
.

Applying idealisation (I), we obtain that:

(∀stn,g)(∃stw)(∀ f : R→ R)(∃M ∈ w)
[
(∀k,x,y ∈ [0,1])(|x− y|< 1

g(k) → | f (x)− f (y)| ≤ 1
k ) (3.9)

→ (∀π,π ′ ∈ P([0,1]))
(
‖π‖,‖π ′‖< 1

M → |Sπ( f )−Sπ ′( f )| ≤ 1
n

)]
.

Now let N be the maximum of all numbers in w from (3.9), and note that

(∀stn,g)(∃stN)(∀ f : R→ R)
[
(∀k,x,y ∈ [0,1])(|x− y|< 1

g(k) → | f (x)− f (y)| ≤ 1
k ) (3.10)

→ (∀π,π ′ ∈ P([0,1]))
(
‖π‖,‖π ′‖< 1

N → |Sπ( f )−Sπ ′( f )| ≤ 1
n

)]
,
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due to the monotone behaviour of the consequent. Now apply the term extraction corollary to ‘P` (3.10)’
to obtain a term s such that E-PAω∗ proves

(∀n,g)(∃N ∈ s(g,n))(∀ f : R→ R)
[
(∀k,x,y ∈ [0,1])(|x− y|< 1

g(k) → | f (x)− f (y)| ≤ 1
k ) (3.11)

→ (∀π,π ′ ∈ P([0,1]))
(
‖π‖,‖π ′‖< 1

N → |Sπ( f )−Sπ ′( f )| ≤ 1
n

)]
,

Define t(g,n) as the maximum number of s(g,n), and note that (3.11) implies CRIef(t), again due to the
monotone behaviour of the consequent.

Corollary 3.7. Theorem 3.6 also goes through constructively, i.e. we can prove CRIns in H and a term t
can be extracted such that E-HAω∗ proves CRIef(t).

Proof. The proof of CRIns in [33] is clearly constructive in the sense of H. A careful inspection of the
proof of the theorem shows that (3.10) can also be derived in H from CRIns. Applying the term extraction
result for H ([4, Theorem 5.6]) then yields the corollary. A full proof is in [35, §3.1].

Finally, define the Herbrandisation of CRIns as follows:

(∀ f ,g,k′)
[
(∀k ≤ s(g,k′))(∀x,y ∈ [0,1])(|x− y|< 1

g(k) → | f (x)− f (y)| ≤ 1
k ) (CRIher(s, t))

→ (∀π,π ′ ∈ P([0,1]))
(
‖π‖,‖π ′‖< 1

t(g,k′) → |Sπ( f )−Sπ( f )| ≤ 1
k′
)]

The Herbrandisation CRIher(s, t) follows from CRIns in the same way as in the theorem. In particular, we
obtain the former if we do not drop the ‘st’ in ‘(∀stk)’ to obtain (3.8). We have the following corollary.
Corollary 3.8. Let t be a term in the internal language. A proof inside E-PAω∗ of the Herbrandisation
CRIher(s, t), can be converted into a proof inside P of CRIns.

Proof. The basic axioms of P state that any term of the internal language is standard. The rest of the
corollary is now straightforward. A full proof is in [35, §3.1].

3.2 The template CI

In this section, we formulate the template CI based on the above case study. We emphasize that some
aspects of CI are inherently vague. Recall from the previous section that a ‘normal form’ is a formula of
the form (∀stx)(∃sty)ϕ(x,y) with ϕ internal.
Template 3.9 (CI). The starting point for CI is a theorem T formulated in the language of E-PAω∗.

(i) Replace in T all definitions (convergence, continuity, et cetera) by their well-known counterparts
from Nonstandard Analysis. For the resulting theorem T ∗, look up the proof (e.g. in [17, 41, 45])
and formulate it inside P or H if possible. If T ∗ cannot be proved in P, consider A→ T ∗, where A
is a collection of external axioms from IST to guarantee the provability in P.

(ii) Bring all nonstandard definitions in T ∗ into the normal form (∀stx)(∃sty)ϕ(x,y). This operation
usually requires I for P, and usually requires extra axioms for H. If necessary, drop ‘st’ in leading
existential quantifiers of positively occurring formulas (like to obtain (3.8)).

(iii) Starting with the most deeply nested implication, bring

(∀stx0)(∃sty0)ϕ0(x0,y0)→ (∀stx1)(∃sty1)ϕ1(x1,y1), (3.12)

into a normal form (∀stx)(∃sty)ϕ(x,y).
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(iv) Apply Corollary 2.2 (if applicable [4, Theorem 5.6] for H) to the proof of the normal form of T ∗.

(v) Output the term(s) t and the proof(s) of the effective version. Modify these terms for monotone
formulas if necessary.

The theorems in the above case study all had proofs inside H or P, i.e. the final sentence in step (i)
does not apply. In Section 4.2, we shall study theorems for which we do have to add external axioms of
IST to the conditions of the theorem.

Finally, there is a tradition of Nonstandard Analysis in RM and related topics (See e.g. [16, 40,
42–44, 47–49]), which provides a source of proofs in (pure) Nonstandard Analysis for CI. To automate
the process of applying CI, we have initiated the implementation of the term extraction algorithm from
Corollary 2.2 in Agda, which is work in progress at this time ([46]).

4 Reverse Mathematics

In this section, we first introduce the program Reverse Mathematics, and then list results regarding the
main systems consider therein.

4.1 Introducing Reverse Mathematics

Reverse Mathematics (RM) is a program in the foundations of mathematics initiated around 1975 by
Friedman ([11, 12]) and developed extensively by Simpson ([38, 39]) and others. The aim of RM is to
find the axioms necessary to prove a statement of ordinary mathematics, i.e. dealing with countable or
separable spaces. The classical2 base theory RCA0 of ‘computable3 mathematics’ is always assumed.
Thus, the aim of RM is as follows:

The aim of RM is to find the minimal axioms A such that RCA0 proves [A→ T ] for statements
T of ordinary mathematics.

Surprisingly, once the minimal axioms A have been found, we almost always also have RCA0 ` [A↔ T ],
i.e. not only can we derive the theorem T from the axioms A (the ‘usual’ way of doing mathematics), we
can also derive the axiom A from the theorem T (the ‘reverse’ way of doing mathematics). In light of the
latter, the field was baptised ‘Reverse Mathematics’.

Perhaps even more surprisingly, in the majority4 of cases for a statement T of ordinary mathemat-
ics, either T is provable in RCA0, or the latter proves T ↔ Ai, where Ai is one of the logical systems
WKL0,ACA0, ATR0 or Π1

1-CA0. The latter together with RCA0 form the ‘Big Five’ and the aforemen-
tioned observation that most mathematical theorems fall into one of the Big Five categories, is called
the Big Five phenomenon ([24, p. 432]). Furthermore, each of the Big Five has a natural formulation
in terms of (Turing) computability (See e.g. [39, I.3.4, I.5.4, I.7.5]). As noted by Simpson in [39, I.12],
each of the Big Five also corresponds (sometimes loosely) to a foundational program in mathematics.

The logical framework for Reverse Mathematics is second-order arithmetic, in which only natural
numbers and sets thereof are available. As a result, functions from reals to reals are not available, and
have to be represented by so-called codes (See [39, II.6.1]). In the latter case, the coding of continuous

2In Constructive Reverse Mathematics ([18]), the base theory is based on intuitionistic logic.
3The system RCA0 consists of induction IΣ1, and the recursive comprehension axiom ∆0

1-CA.
4Exceptions are classified in the so-called Reverse Mathematics Zoo ([8]).
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functions amounts to introducing a modulus of (pointwise) continuity (See [21, §4]). The nonstan-
dard theorems proved in the system P will not involve coding (for continuous functions or otherwise);
However, as will become clear below, a modulus of continuity naturally ‘falls out of’ the nonstandard
definition of continuity as in (2.4). Thus, the nonstandard framework seems to ‘do the coding for us’.

In light of the previous, one of the main results of RM is that mathematical theorems fall into only five
logical categories. By contrast, there are lots and lots of (purely logical or non-mathematical) statements
which fall outside of these five categories. Similarly, most mathematical theorems from Nonstandard
Analysis have the normal from required for applying term extraction via Corollary 2.2, while there are
plenty of non-mathematical or purely logical statements which do not. In conclusion, the results in this
paper are inspired by the Reverse Mathematics way of thinking that mathematical theorems (known in the
literature) will behave ‘much nicer’ than arbitrary formulas (even of restricted complexity). In particular,
since there is no meta-theorem for the (Big Five and its zoo) classification of RM, one cannot hope to
obtain a meta-theorem for the template CI from Section 3.2.

4.2 The Big Five

In this section, we list the results of applying CI to equivalences involving the strongest three Big Five
systems. We do not go into the details regarding WKL0 because of a lack of space. Proofs may be found
in [35, §4].

4.2.1 Theorems equivalent to ACA0

In this section, we study the monotone convergence theorem MCT, i.e. the statement that every bounded
increasing sequence of reals is convergent, which is equivalent to arithmetical comprehension ACA0
by [39, III.2.2]. We prove an equivalence between a nonstandard version of MCT and a fragment of
Transfer. From this nonstandard equivalence, we obtain an effective RM equivalence involving MCT
and arithmetical comprehension by applying CI.

Firstly, the nonstandard version of MCT (involving nonstandard convergence) is:

(∀stc0→1
(·) )

[
(∀n0)(cn ≤ cn+1 ≤ 1)→ (∀N,M ∈Ω)[cM ≈ cN ]

]
, (MCTns)

where ‘(∀K ∈Ω)(. . .)’ is short for (∀K0))(¬st(K)→ . . .). The effective version MCTef(t) is:

(∀c0→1
(·) ,k0)

[
(∀n0)(cn ≤ cn+1 ≤ 1)→ (∀N,M ≥ t(c(·))(k))[|cM− cN | ≤ 1

k ]
]
. (4.1)

We require two equivalent ([20, Prop. 3.9]) versions of arithmetical comprehension:

(∃µ
2)
[
(∀ f 1)((∃n) f (n) = 0→ f (µ( f )) = 0)

]
, (µ2)

(∃ϕ2)
[
(∀ f 1)((∃n) f (n) = 0↔ ϕ( f ) = 0)

]
, (∃2)

and also the restriction of Nelson’s axiom Transfer as follows:

(∀st f 1)
[
(∀stn0) f (n) 6= 0→ (∀m) f (m) 6= 0

]
. (Π0

1-TRANS)

Denote by MU(µ) the formula in square brackets in (µ2). We have the following theorem which estab-
lishes the explicit equivalence between (µ2) and uniform MCT.
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Theorem 4.1. From P `MCTns↔Π0
1-TRANS, terms s,u can be extracted such that E-PAω∗ proves:

(∀µ
2)
[
MU(µ)→MCTef(s(µ))

]
∧ (∀t1→1)

[
MCTef(t)→MU(u(t))

]
. (4.2)

Proof. Apply CI to MCTns↔Π0
1-TRANS; The proof of the latter in [36, §4.1] is rather elementary.

4.2.2 Theorems equivalent to ATR0 and Π1
1-CA0

In this section, we study equivalences relating to ATR0 and Π1
1-CA0, the strongest Big Five systems from

RM. The associated results show that the template CI also works for the fourth and fifth Big Five system.

We shall work with the Suslin functional (S2), the functional version of Π1
1-CA0.

(∃S2)(∀ f 1)
[
S( f ) =0 0↔ (∃g1)(∀x0)( f (gx) 6= 0)

]
. (S2)

Feferman has introduced the following version of the Suslin functional (See e.g. [3]).

(∃µ
1→1
1 )

[
(∀ f 1)

(
(∃g1)(∀x0)( f (gx) 6= 0)→ (∀x0)( f (µ1( f )x) 6= 0)

)]
, (µ1)

where the formula in square brackets is denoted MUO(µ1). We shall require another instance of Transfer:

(∀ f 1)
[
(∃g1)(∀x0)( f (gx) 6= 0)→ (∃stg1)(∀stx0)( f (gx) 6= 0)

]
. (Π1

1-TRANS)

We shall obtain an effective version of the equivalence proved in [32, Theorem 4.4]. The relevant (non-
uniform) principle pertaining to the latter is PST, i.e. the statement that every tree with uncountably many
paths has a non-empty perfect subtree. The latter has the following nonstandard and effective versions.

Theorem 4.2 (PSTns). For all standard trees T 1, there is standard P1 such that

(∀ f 0→1
(·) )(∃ f ∈ T )(∀n)( fn 6=1 f )→ P is a non-empty perfect subtree of T .

Theorem 4.3 (PSTef(t)). For all trees T 1, we have

(∀ f 0→1
(·) )(∃ f ∈ T )(∀n)( fn 6=1 f )→ t(T ) is a non-empty perfect subtree of T .

As a technicality, we require that P as in the previous two principles consists of a pair (P′, p′) such
that P′ is a perfect subtree of T such that p′ ∈ P′. We have the following theorem.

Theorem 4.4. From P ` PSTns↔Π1
1-TRANS, terms s,u can be extracted such that E-PAω∗ proves:

(∀µ1)
[
MUO(µ1)→ PSTef(s(µ1))

]
∧ (∀t1→1)

[
PSTef(t)→MUO(u(t))

]
. (4.3)

In light of the intimate connection between theorems concerning perfect kernels of trees and the
Cantor-Bendixson theorem for Baire space (See [39, IV.1]), a version of Theorem 4.4 for the former can
be obtained in a straightforward way. Another more mathematical statement which can be treated along
the same lines is every countable Abelian group is a direct sum of a divisible and a reduced group. The
latter is called DIV and equivalent to Π1

1-CA0 by [39, VI.4.1]. By the proof of the latter, the reverse
implication is straightforward; We shall study DIV→Π1

1-CA0.

To this end, let DIV(G,D,E) be the statement that the countable Abelian group G satisfies G=D⊕E,
where D is a divisible group and E a reduced group. The nonstandard version of DIV is as follows:

(∀stG)(∃stD,d,E)
[
DIV(G,D,E)∧ (D 6= {0G}→ d ∈ D)

]
, (DIVns)
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where we used the same technicality as for PSTns. The effective version is:

(∀G)
[
DIV(G, t(G)(1), t(G)(2))∧ (t(G)(1) 6= {0G}→ t(G)(3) ∈ t(G)(1))

]
. (DIVef(t))

We have the following (immediate) corollary.

Corollary 4.5. From P ` DIVns→Π1
1-TRANS, a term u can be extracted such that E-PAω∗ proves:

(∀t1→1)
[
DIVef(t)→MUO(u(t))

]
. (4.4)

4.3 The Reverse Mathematics zoo

The Reverse Mathematics zoo is a collection of theorems which do not fit the ‘Big Five’ categories
([8]). In [36, 37], a variant of CI is used to classify uniform versions of the RM zoo as equivalent to
arithmetical comprehension (∃2). We list the relevant results for one theorem from the RM zoo, namely
DNR as defined below. All known theorems from the RM zoo have been classified in the same way.

Thus, consider the principle UDNR as follows: (∃Ψ1→1)
[
(∀A1)(∀e0)(Ψ(A)(e) 6= ΦA

e (e))
]
. Clearly,

UDNR is the uniform version of the zoo principle5 DNR defined as: (∀A1)(∃ f 1)(∀e0)
[

f (e) 6= ΦA
e (e)

]
.

The principle DNR was first formulated in [15] and is even strictly implied by WWKL (See [2]) where
the latter principle sports some Reverse Mathematics equivalences ([24, 50, 51]) but is not a Big Five
system. Nonetheless, it is the case that UDNR↔ (∃2). In other words, the ‘exceptional’ status of DNR
disappears completely if we consider its uniform version UDNR.

To prove that UDNR is equivalent to arithmetical comprehension, we consider UDNR+:

(∃st
Ψ

1→1)
[
(∀stA1)(∀e0)(Ψ(A)(e) 6= Φ

A
e (e))∧ (∀stC1,D1)

(
C ≈1 D→Ψ(C)≈1 Ψ(D)

)]
,

where A≈1 B if (∀stn)(A(n) = B(n)). The second conjunct expresses that Ψ is standard extensional.

Theorem 4.6. In P, we have UDNR+↔Π0
1-TRANS.

Denote by UDNR(Ψ) the formula in square brackets in UDNR.

Theorem 4.7. From P ` UDNR+↔Π0
1-TRANS terms s,u can be extracted such that E-PAω∗ proves:

(∀µ
2)
[
MU(µ)→ UDNR(s(µ))

]
∧ (∀Ψ1→1)

[
UDNR(Ψ)→MU(u(Ψ,Ξ))

]
, (4.5)

where Ξ satisfies (∀A1,B1,k0)(AΞ(A,b,k) = BΞ(A,B,k)→Ψ(A)(k) = Ψ(B)(k)).

In the previous theorem, we say that Ξ is an extensionality functional for Ψ, as the former witnesses
the axiom of extensionality for the latter. Proofs of the previous theorems may be found in [36], while a
general template to similarly treat theorems from the Reverse Mathematics zoo may be found in [36,37].
As it turns out, these proofs also go through relative to Heyting arithmetic ([37]).

5 The Gandy-Hyland functional

In this section, we apply CI to computability theory by studying the Gandy-Hyland functional. Proofs
and additional results may be found in [34].

5We sometimes refer to inhabitants of the RM zoo as ‘theorems’ and sometimes as ‘principles’.
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5.1 Introducing the Gandy-Hyland functional Γ

The Gandy-Hyland functional was introduced in [13] as an example of a higher-type functional not
computable, in the sense of Kleene’s S1-S9 (See [26, 1.10] or [23, 5.1.1]), in the fan functional over the
total continuous functionals (See [26, 4.61] or [23, 8.3.3]). The Gandy-Hyland functional Γ is:

(∃Γ3)(∀Y 2 ∈C,s0)
[
Γ(Y 2,s0) = Y

(
s∗0∗ (λn0)Γ(Y,s∗ (n+1))

)]
, (GH)

where ‘Y 2 ∈C’ is the usual definition of pointwise continuity on Baire space as in (5.1). We adopt the
usual notational conventions as in e.g. [6].

(∀ f 1)(∃N0)(∀g1)( f N =0 gN→ Y ( f ) =0 Y (g)). (5.1)

The functional Γ from (GH) apparently exhibits non-well-founded self-reference: Indeed, in order to
compute Γ at s0, one needs the values of Γ at all child nodes of s0, as is clear from the right-hand side of
(GH). In turn, to compute the value of Γ at the child nodes of s, one needs the value of Γ at all grand-child
nodes of s, and so on. Hence, repeatedly applying the definition of Γ seems to result in a non-terminating
recursion. By contrast, primitive recursion is well-founded as it reduces the case for n+1 to the case for
n, and the case for n = 0 is given.

As it turns out, the Gandy-Hyland functional as in (GH) can be approximated in Nonstandard Anal-
ysis by the following primitive recursive6 functional:

G(Y,s,M) =

{
Y (s∗00 . . .) |s| ≥M
Y (s∗0∗ (λn0)G(Y,s∗ (n+1),M)) otherwise

(5.2)

Indeed, G as in (5.2) equals the Γ-functional from (GH) for standard input and any nonstandard number
M0 (See Section 5.2). Note that one need only apply the definition of G at most M times to terminate in
the first case of (5.2). In other words, the extra case ‘|s| ≥M’ provides a nonstandard stopping condition
which ‘unwinds’ the non-terminating recursion in Γ to the terminating one in G. Or: one can trade in
self-reference for nonstandard numbers. Thus, we shall refer to G as the canonical approximation of Γ.

To be absolutely clear, all systems mentioned in this paper deal with total functionals only. In par-
ticular, in the system P+ (GH), there is a functional Γ3 which behaves as described in (GH) for Y 2 ∈C,
while Γ(Z,s) is a natural number for discontinuous Z2 and s0, but we have no additional information.
The same convention applies to the modulus-of-continuity functional defined in the next section.

5.2 Term extraction and Γ

In this section, we show that Γ equals its canonical approximation G assuming certain fragments of
Transfer and Standard Part as in Theorem 5.1. Applying CI to this result, one obtains a term t expressing
the Gandy-Hyland functional in terms of the modulus-of-continuity functional and a special case of the
fan functional, as in Corollary 5.2. To this end, we need the following nonstandard axioms.

(∀stY 2 ∈C,s0)
[
Γ(Y 2,s0) = Y

(
s∗0∗ (λn0)Γ(Y,s∗ (n+1))

)]
. (GHst(Γ))

(∀st f 1)
[
(∃m0)(∀n0) f (m,n) = 0→ (∃stk0)(∀l0) f (k, l) = 0

]
. (Σ0

2-TRANS)

6The functional G is primitive recursive in the sense of Gödel’s system T by [9, Theorem 18].
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(∀ f 1 ≤1 1)(∃stg1 ≤1 1)( f ≈1 g). (STP)

The notation f ≈1 g stands for ‘(∀stn0)( f (n) =0 g(n))’, and the the function g1 from STP is called a
standard part of f 1. Clearly, (STP) is a fragment of Standard Part, while Σ0

2-TRANS is a fragment of
Transfer. Proofs of the following theorem and corollary may be found in [34, §4.1].

Theorem 5.1. In P+Σ0
2-TRANS+STP, the Gandy-Hyland functional exists and equals its canonical

approximation, i.e. there is standard Γ3 such that GHst(Γ) and

(∀stY 2 ∈C,s0)(∀N ∈Ω)(G(Y,s,N) = Γ(Y,s)). (CA(Γ))

Furthermore, the Gandy-Hyland functional is unique, i.e. (∀Γ3
1)(GHst(Γ1)→ CA(Γ1)).

To apply term extraction to Theorem 5.1, the following principles are needed.

(∀Y 2 ∈C, f 1,g1)( f Ψ(Y, f ) = gΨ(Y, f )→ Y ( f ) = Y (g)). (MPC(Ψ))

Note that MPC(Ψ) states that Ψ3 is a modulus-of-continuity functional, while MU(µ) states that µ2 is
Feferman’s search operator (See e.g. [20] for the latter). We also need the following functional.

(∀g2,T 1 ≤1 1)
[
(∀α1 ∈Θ(g)(2))(α ≤1 1→αg(α) 6∈ T )→ (SCF(Θ))

(∀β ≤1 1)(∃i≤0 Θ(g)(1))(β i 6∈ T )
]
.

The functional Θ3 as in SCF(Θ) is called the special fan functional, and its properties are discussed in
Section 5.4. For now, it suffices to know that the special functional is part of classical and Brouwerian
intuitionistic mathematics. Note that there is no unique Θ as in SCF(Θ), i.e. it is in principle incorrect to
talk about ‘the’ special fan functional. Finally, let GH(Γ) be (GH) with the leading quantifier omitted.

Corollary 5.2 (Term Extraction). From the proof in P of

Σ
0
2-TRANS+STP→ (∀Γ3)

[
GHst(Γ)→ CA(Γ)

]
, (5.3)

a term t4 can be extracted such that E-PAω∗+QF-AC1,0 proves that

(∀µ
2,Θ3,Γ3)

[(
GH(Γ)∧MU(µ)∧SCF(Θ)

)
→ (∀Y 2 ∈C,s0)

(
G(Y,s, t(Y,s,µ,Θ)) = Γ(Y,s)

)]
,

i.e. G(Y,s, t(Y,s,µ,Θ)) is the Gandy-Hyland functional expressed in terms of Feferman’s search operator
and the special fan functional.

Proof. Apply CI to the proof in Theorem 5.1.

Note that Feferman’s search operator can be defined in terms of a modulus-of-continuity functional
(and vice versa) by combining the results in [20, §3], [10], and [21, §4]. Hence, we have the following:

Corollary 5.3. In the system from the previous corollary, the Gandy-Hyland functional can be expressed
in terms of a modulus-of-continuity functional and the special fan functional.
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5.3 Term extraction and Γ, again

In this section, we show that the results of the previous section are rather modular, in that we may obtain
variations of Theorem 5.1 and its corollaries. To this end, let NPC(Y ) be the following formula:

(∀st f 1)(∀g1)( f ≈1 g→ Y ( f ) =0 Y (g)), (NPC(Y ))

i.e. the previous formula expresses that Y 2 ∈ C is nonstandard continuous. Furthermore, let ST(Γ,Y )
be (∀sts0)(st(Γ(Y,s))), i.e. Γ produces standard outputs, and let GH(Γ,Y ) be (GH) with the two leading
quantifiers omitted.

Theorem 5.4. The system P+STP proves that for all Γ3 and Y 2[
NSC(Y )∧GH(Γ,Y )∧ST(Γ,Y )

]
→ (∀sts0)(∀N ∈Ω)(Γ(Y,s) = G(Y,s,N)). (5.4)

We need the following principles; Note that PCM(Y 2,Z2) expresses that Z is a modulus of pointwise
continuity for Y .

(∀ f 1,g1)( f Z( f ) =0 gZ( f )→ Y ( f ) =0 Y (g)) (PCM(Y,Z))

(∀s0)
[
Γ(Y,s) = Y (s∗0∗ (λn)Γ(Y,s∗ (n+1)))∧Γ(Y,s)≤ H(Y,s)

]
, (GHU(Γ,Y,H))

Applying CI to the previous theorem, one obtains the following theorem.

Corollary 5.5 (Term Extraction). From the proof in Theorem 5.4, a term t can be extracted such that
E-PAω∗+QF-AC1,0 proves for Ξ = (H1,Z2,Θ3) and Γ3,Y 2 that[

PCM(Y,Z)∧SCF(Θ)∧GHU(Γ,Y,H)
]
→ (∀s)(∀N ≥ t(s,Ξ))(Γ(Y,s) = G(Y,s,N)),

i.e. the Gandy-Hyland functional Γ at Y can be approximated via a modulus of continuity of Y , the special
fan functional, and an upper bound for Γ(Y, ·).

5.4 The special fan functional

We discuss some surprising (computational and otherwise) properties of the special fan functional, which
was first introduced in [34, §3].

First of all, the full axiom Transfer of IST does not imply the full axiom Standard Part (over various
systems; see [5,14]). In this light, it is a natural question whether the same holds for prominent fragments
discussed in this paper. For instance, are Π0

1-TRANS→ STP or Π1
1-TRANS→ STP provable in P?

Secondly, the previous questions can be translated into relative computability questions regarding the
special fan functional and functionals like (µ2). We briefly discuss the answers to these questions from
[27]. We need the following functionals.

(∀Y 2)(∀ f 1,g1 ≤1 1)( f Φ(Y ) = gΦ(Y )→ Y ( f ) = Y (g)). (MUC(Φ))

(∃ξ 3)(∀Y 2)
[
(∃ f 1)(Y ( f ) = 0)↔ ξ (Y ) = 0

]
. (E2)

The functional Φ3 as in MUC(Φ) is called the intuitionistic fan functional and yields a conservative
extension of weak König’s lemma for the second-order language (See [20, Prop. 3.15]). By the following
theorems, the special fan functional is an object of intuitionistic and classical mathematics.
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Theorem 5.6. There is a term t such that E-PAω proves (∀Ω3)(MUC(Ω)→ SCF(t(Ω))).

Theorem 5.7 (ZFC). A functional Θ3 as in SCF(Θ) can be computed (Kleene’s S1-S9) from ξ as in (E2).

Theorem 5.8 (ZFC). Let ϕ2 be any type two functional. Any functional Θ3 as in SCF(Θ) is not com-
putable (Kleene S1-S9) in ϕ2.

Theorems 5.7 and 5.8 were first proved by Normann and are forthcoming in [27]. Theorem 5.8 for
the special case of (µ2) originates from the conjecture by the author that Π0

1-TRANS does not imply
STP over P. Since the Suslin functional is of type two, it cannot compute (Kleene S1-S9) the special fan
functional, which translates back to the fact that P does not prove Π1

1-TRANS→ STP.
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[29] , Malliavin calculus for Lévy processes and infinite-dimensional Brownian motion, Cambridge Tracts
in Mathematics, vol. 191, Cambridge University Press, Cambridge, 2012. DOI http://dx.doi.org/10.1017/

CBO9781139060110.

[30] David A. Ross, A nonstandard proof of a lemma from constructive measure theory, MLQ Math. Log. Q. 52 (2006), no. 5,
494–497. DOI http://dx.doi.org/10.1002/malq.200610008.

[31] Abraham Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966. DOI http://dx.doi.org/10.2307/
2271109.

[32] Nobuyuki Sakamoto and Takeshi Yamazaki, Uniform versions of some axioms of second order arithmetic, MLQ Math.
Log. Q. 50 (2004), no. 6, 587–593. DOI http://dx.doi.org/10.1002/malq.200310122.

[33] Sam Sanders, ERNA and Friedman’s Reverse Mathematics, J. Symb. Logic (2011), 637-664. DOI http://dx.doi.
org/10.2307/23041884.

[34] , The Gandy-Hyland functional and a hitherto unknown computational aspect of Nonstandard Analysis, Submit-
ted, Available from: http://arxiv.org/abs/1502.03622 (2015).

[35] , The unreasonable effectiveness of Nonstandard Analysis, Submitted, Available from: http://arxiv.org/abs/
1508.07434 (2015).

[36] , The taming of the Reverse Mathematics zoo, Submitted, http://arxiv.org/abs/1412.2022 (2015).

[37] , The refining of the taming of the Reverse Mathematics zoo, To appear in Notre Dame Journal for Formal Logic,
http://arxiv.org/abs/1602.02270 (2016).

[38] Stephen G. Simpson (ed.), Reverse mathematics 2001, Lecture Notes in Logic, vol. 21, ASL, La Jolla, CA, 2005.

[39] , Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, CUP, 2009. DOI http://dx.doi.org/
10.1017/CBO9780511581007.

http://dx.doi.org/10.2307/2586708
http://dx.doi.org/10.1016/j.apal.2013.06.022
http://dx.doi.org/10.1090/S0273-0979-1987-15523-6
http://dx.doi.org/10.4000/philosophiascientiae.406
http://dx.doi.org/10.1007/978-3-540-77533-1
http://dx.doi.org/10.1.1.165.461
http://dx.doi.org/10.1.1.16.2371
http://dx.doi.org/10.1090/S0002-9904-1967-11689-6
http://dx.doi.org/10.1090/S0002-9904-1967-11689-6
http://dx.doi.org/10.1007/978-3-662-47992-6
http://dx.doi.org/10.2178/bsl/1309952320
http://dx.doi.org/10.2178/bsl/1309952320
http://dx.doi.org/10.2307/2273684
http://dx.doi.org/10.2307/2274205
http://dx.doi.org/10.2307/2274205
http://dx.doi.org/10.1017/CBO9781139060110
http://dx.doi.org/10.1017/CBO9781139060110
http://dx.doi.org/10.1002/malq.200610008
http://dx.doi.org/10.2307/2271109
http://dx.doi.org/10.2307/2271109
http://dx.doi.org/10.1002/malq.200310122
http://dx.doi.org/10.2307/23041884
http://dx.doi.org/10.2307/23041884
http://arxiv.org/abs/1502.03622
http://arxiv.org/abs/1508.07434
http://arxiv.org/abs/1508.07434
http://arxiv.org/abs/1412.2022
http://arxiv.org/abs/1602.02270
http://dx.doi.org/10.1017/CBO9780511581007
http://dx.doi.org/10.1017/CBO9780511581007


40 The computational content of Nonstandard Analysis

[40] Stephen G. Simpson and Keita Yokoyama, A nonstandard counterpart of WWKL, Notre Dame J. Form. Log. 52 (2011),
no. 3, 229–243. DOI http://dx.doi.org/10.1215/00294527-1435429.

[41] Keith D. Stroyan and Wilhelminus A.J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press, 1976.
DOI http://dx.doi.org/10.1137/1020056.

[42] Kazuyuki Tanaka, The self-embedding theorem of WKL0 and a non-standard method, Annals of Pure and Applied Logic
84 (1997), 41-49. DOI http://dx.doi.org/10.1016/S0168-0072(95)00058-5.

[43] , Non-standard analysis in WKL0, Math. Logic Quart. 43 (1997), no. 3, 396–400. DOI http://dx.doi.org/
10.1002/malq.19970430312.

[44] Kazuyuki Tanaka and Takeshi Yamazaki, A non-standard construction of Haar measure and weak König’s lemma, J.
Symbolic Logic 65 (2000), no. 1, 173–186. DOI http://dx.doi.org/10.2307/2586530.

[45] Manfred Wolff and Peter A. Loeb (eds.), Nonstandard analysis for the working mathematician, Mathematics and its
Applications, vol. 510, Kluwer, 2015. DOI http://dx.doi.org/10.1007/978-94-011-4168-0.

[46] Chuangjie Xu and Sam Sanders, Extracting the computational content of Nonstandard Analysis, In preparation; Agda
code: http://cj-xu.github.io/agda/dialectica/Dialectica.html (2015).

[47] Keita Yokoyama, Formalizing non-standard arguments in second-order arithmetic, J. Symbolic Logic 75 (2010), no. 4,
1199–1210. DOI http://dx.doi.org/10.2178/jsl/1286198143.

[48] , Non-standard analysis in ACA0 and Riemann mapping theorem, Math. Log. Q. 53 (2007), no. 2, 132–146. DOI
http://dx.doi.org/10.1002/malq.200610033.

[49] , Standard and non-standard analysis in second order arithmetic, Tohoku Mathematical Publications, vol. 34,
Sendai, 2009. PhD Thesis, Tohoku University, 2007.

[50] Xiaokang Yu, Lebesgue convergence theorems and reverse mathematics, Math. Logic Quart. 40 (1994), no. 1, 1–13. DOI
http://dx.doi.org/10.1002/malq.19940400102.

[51] Xiaokang Yu and Stephen G. Simpson, Measure theory and weak König’s lemma, Arch. Math. Logic 30 (1990), no. 3,
171–180. DOI http://dx.doi.org/10.1007/BF01621469.

http://dx.doi.org/10.1215/00294527-1435429
http://dx.doi.org/10.1137/1020056
http://dx.doi.org/10.1016/S0168-0072(95)00058-5
http://dx.doi.org/10.1002/malq.19970430312
http://dx.doi.org/10.1002/malq.19970430312
http://dx.doi.org/10.2307/2586530
http://dx.doi.org/10.1007/978-94-011-4168-0
http://cj-xu.github.io/agda/dialectica/Dialectica.html
http://dx.doi.org/10.2178/jsl/1286198143
http://dx.doi.org/10.1002/malq.200610033
http://dx.doi.org/10.1002/malq.19940400102
http://dx.doi.org/10.1007/BF01621469

	1 Introduction
	2 About and around internal set theory
	2.1 Internal set theory
	2.2 The term extraction corollary

	3 An elementary example
	3.1 From continuity to Riemann integration
	3.2 The template CI

	4 Reverse Mathematics
	4.1 Introducing Reverse Mathematics
	4.2 The Big Five
	4.2.1 Theorems equivalent to ACA0
	4.2.2 Theorems equivalent to ATR0 and 11-CA0

	4.3 The Reverse Mathematics zoo

	5 The Gandy-Hyland functional
	5.1 Introducing the Gandy-Hyland functional 
	5.2 Term extraction and 
	5.3 Term extraction and , again
	5.4 The special fan functional

	6 Bibliography

