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We show how to provide a structure of probability space tosieof execution traces on a non-
confluent abstract rewrite system, by defining a variant cfladsgue measure on the space of traces.
Then, we show how to use this probability space to transfomordeterministic calculus into

a probabilistic one. We use as example, a recently introduced calculus defined through type
isomorphisms.

1 Introduction

Many probabilistic calculi has been developed in the pastss; e.g.1,9,11, 14, 20]. In particular, the
algebraic versions of-calculus p,24] are extensions ta-calculus where a linear combination of terms,
e.g.a.r + B.s, is also a term. One way to interpret such a linear combinasighat it represents a term
which is the ternr with probability a, or the terms with probability 3. However, endowing such a
calculus with a non-restrictive type system is a challergyd][

A simpler framework is that of non determinisitic calculi wh can be seen as algebraic calculi
withouth scalars. They have been studied, for instanc®, f0[12, 13,15-18,21], however moving back
from non-determinism to probabilities is not trivial. Indlpaper we propose, instead of changing these
models, to define a probability measure on reductions indeiarministic systems. In fact, as we shall
see, such a probability measure can be defined on any abstracteterministic transition systems, or
non-confluent abstract rewrite systems (ARS) (28, [Chapter 1]). Our goal is to show that explicit
probabilities are not needed in the syntax, and that theleimpn-deterministic calculi are as powerful
as the more complicated probabilistic calculi.

Consider for example the following non-confluent ARS a
a—b, a—c, c—d, c—e, /\
b c
we want to associate a probability to events such as / \
a—"b, a—"c, a—*d, a—'e. d €

In this example, assuming equiprobability, we haa —* b) = 3, P(a—* ¢) = , P(a—" d) = 3,
Pla—*e) = %. Notice that these events are not disjoints and that theirisdarger than 1. In particular,

a —* d impliesa —* ¢. Defining the elements of the s& of elementary events is not completely
straightforward, in particular because we want to makeriegal enough to also consider infinite cases.
For example, in the following system

a —a1, a—a,
we naturally would like thab(ag —* @) = .
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2 The probability of non-confluent systems

Besides defining the elements of the etwe need to define a notion of a measurable subs&t of
and endow such a subset with a probability distributionfyerg the Kolmogorov axioms.

Ourideais to follow Lebesgue: define first the probabilityesftangles, or boxes, then the probability
of any set and finally measurable sets as those that verifgdgele’s property. Thus besides defining the
setQ, we need to define a subset®@fQ) of boxes.

The first intuition would be to take paths as elements of the€sdor instance assigning the prob-
ability 3 to the pathsa — b,  toa— c—d and toa— c— e In fact it seems more convenient to
extend such paths to strategies prescribing one reducaébrmon normal object. Boxes are then defined
as sets of strategies agreeing on a finite domain. We showvisipdiper that this is sufficient to define a
probability space on strategies, consistent with theftintuprobability of events of the forra —* b.

Our study is generic enough to be applicable to severahgsitisuch as automatons, or any other
kind of transition systems. We use the nomenclature of atistewrite systems, but that of states and
transitions could be used as well. Finally, we apply thisstarction toA. [15,16].

Plan of the paper. Section?2 introduces the basic concepts of strategies and boxesfiitedethe
Lebesgue measures. Sectidproves that the space of strategies forms a probabilityesp&mally,
in section4 we show how to modify the calculus, into a probabilistic calculuﬁf. Also, we provide
an encoding of an algebralc-calculus into)\f and, to some extend, the inverse translation.

2 Preliminaries

Let A be a set of objects ané a function fromA x A to N such that for ala the set{b | — (a,b) # 0}

is finite. We writea — b if — (a,b) # 0. We allow a term to be written to the same symbol more than
once, so its probability increases, e.g—f(a,b) = 2 and— (a,c) = 1, then the probability of getting

b will be the double than the probability of gettirng Think for example in a non-deterministic choice
between two objects, which happen to be equal, then theré&vieuwo ways to get such an object by
doing the choice. For a given objezt A, we denote by(a) its degree, that is, the number of objects
to which it can be rewritten to in one step. Definitiarl formalises this.

Definition 2.1 (Degree of an object)p : A — N is a function defined bp(a) = 5, — (a,b).

An object is normal if its degree is 0. We denotehy = {a | ac A andp(a) > 1} to the set of
non-normal objects, that is, objects that can be rewritbasthier objects.

A strategy prescribing one reduct for each non-normal dligedefined as a function from™ to A
(cf. [23, Def. 4.9.1]).

Definition 2.2 (Strategy) A strategy is a total functiorf : A* — A such thatf (a) = b impliesa — b.
For instance, ik — b anda — b’, there are two functiond, and f’ assigning different results @ We
denote byQ the set of all such functions.

A box is a set of strategies agreeing on a finite domain.

Definition 2.3 (Box). AboxB C Qis a set of the forr{ f | f(ay) =4],..., f(an) = &} for some objects
a;, 8. We write 3(Q) the subset of?(Q) containing all the boxes.

Example 2.4. Continuing with the example given at the introductidv, = {a,c}. Let fl( a)=b, fi(c)=
d and fy(a) = b, fo(c) = e be two of the four strategies 1. Then the boX f | f(a) =b, f( ):d}
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{f1}, and the boX f | f(a) = b} is {f1, f2}.

A probability distribution can be defined in term of boxesd dnen be extended to arbitrary sets of
strategies.

Definition 2.5 (Probability function) Let p : B(Q) — [0,1] be a total function defined over boxes as
follows. IfB={f | f(a1) =4],..., f(an) = &}, then

o (a,a)
P®=["%a)

By convention, if no condition is given iB (i.e. B = Q), we haven = 0, and we consider the product of
zero elements to be 1, the neutral element of the product.
Then we define the probability meas®reP(Q) — [0, 1] for arbitrary sets of strategies as follows

p(S) — 0 if S=0
~ | inf{Sgecp(B) | Cis a countable family of boxes s$.C | Jg.cB} in other case

Example 2.6. Consider the ARS — b with multiplicity 2 anda — ¢ with multiplicity 1. a
LetBbetheboB={f | f(a)=b}. Thenwe have(B) = _;)((2;)) = 2. Intuitively, J N\
P(B) is the same ag(B) (this will be later formalised in Lemma.10), becaus®8is b b ¢

the minimum cover oB, that is,{B} is the minimum family of boxes such thBtis

in its union. Hence(B) = .

Example 2.7. We continue with the same running example depicted in tlmeduot-

tion. Letfi(a) =b, fi1(c) =d andfs(a) =c, f3(c) = ebe two strategies. Then the set
S={fi, f3} is minimally covered by the boxd® = {f;} = {f | f(a) =b, f(c) =d}

andB; = {f3} = {f | f(a) =c, f(c) = e}. So we haveP(S) = p(B1) + p(Bz) = 505 + 525 = 3.

Now we can define the Lebesgue measure in terms of the givealpility measure.

Definition 2.8 (Measurable) Let A be an element gP(Q), we write A~ for the complement oA, that
is Q\ A. The setA is Lebesgue measurablevd§ c P(Q), we haveP(S) = P(SNA) +P(SNA™).
We defined = {A| Ais measurablp

3 A probability space of strategies

The aim of this section is to prove th@®,.4,P) is a probability space. That is, the sample spadghe
set of all possible strategies), the set of evestsavhich is the set of the Lebesgue measurable sets of
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strategies, and the probability measByéorm a probability space. Our proof follows][ We proceed by
proving that this triplet satisfies the Kolmogorov axiontgttis the probability of any event is between 0
and 1, the probability of2 is 1, and the probability of any countable sequence of pagwlisjoint (that
is incompatible) events, is the sum of their probabilitiesorder to do so, we need first to prove several
properties.

Lemma3.1establishes several known properties of Lebesgue meéssets.

Lemma 3.1.

1.

a s~ wDN

Let Ac Aand Se P(Q). If ANS=0, thenP(AUS) =P(A) +P(9).

Let A Ay € A. If A; C Ay, thenP(A1) <P(A).

0, the empty set, is Lebesgue measurable.

A is Lebesgue measurable if and onlyif i& Lebesgue measurable.

If A1, A, are Lebesgue measurable, then AA; is Lebesgue measurable.

Proof.

. P(AUS) =P((AUS)NA)+P((AUS NA™) =P(A)+P(S).
. First notice that by definitiore(S) > 0 for anySe P(Q). Hence,P(Az) = P(A2NA1) +P(AxN

AT) =P(A1) +P(A20AI) >P(A1).

3. Notice thaP(0) = 0. ThenVSe P(Q), P(S) =P(SN0)+P(SNQ), so 0 is Lebesgue measurable.
4. LetA be Lebesgue measurable, théBC Q, P(S) = P(SNA) +P(SNA~) =P(SNA™) +P(SN

A~™), sOA™ is Lebesgue measurable.

. LetA;, A, be Lebesgue measurable, théhC Q, we have
P(S) =P(SNA1) +P(SNAT) (1) and P(S) =P(SNA)+P(SNAT) (2)
From set theory SN(ALUAL) =SN(ALU(ATNAR)) = (SNA)U(SNATNA)  (3)

UsingSN A7 for Sin (2) gives
P(SNAT) =P(SNAT NA2) +P(SNATNAY) =P(SNAT NA2) +P(SN(ALUA2)™)  (4)

From @3), using itemsl and2, we haveP(SN (A1 UA2)) = P(SN A1) +P(SNAT NAz). Adding
P(SN (A1 UA2)™) to both sides give®(SN (A1 UA2) +P(SN (ALUA2)™) =P(SN A1) +P(SN
AT NA2) +P(SN (ALUAL)™) Using @) and (1) we obtainP(SN (A1 UA2)) +P(SN(ALUAR)™) =
P(SNA1) +P(SNAY) =P(S). O

The concept of algebra (DefinitioBL2) gives a closure property of subsets. As a corollary of the
Lemma3.1we can show that the sgt of Lebesgue measurable sets form an algebra (Cordlajy

Definition 3.2 (Algebra) Let X be a set. We say that a skte P(X) is an algebra oveX if for all
A,Be A, AUB, A~ andX itself are also im.

Corollary 3.3. A is an algebra ovef.

Proof. A € P(Q). LetA B e A, then by Lemma.1(5), AUB € A. By Lemma3.1(4), A~ € A. Finally,
by Lemma3.1(3) and @), Q € A. O
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Moreover, we can show th# is a g-algebra, that is an algebra, completed to include countabl
infinite operations. DefinitioR.4formalises it.

Definition 3.4 (o-algebra) Let X be a set. We say that a set P(X) is ao-algebra oveX if it is an
algebra and it is closed under countable unions, that 4, i#,,As, ... are inZ, then so ig JA;.

Theorem3.7 states that the set of Lebesgue measurable sets is-algebra. We need to prove two
properties of Lebesgue measurable sets first (Lenirieand3.6).

Lemma 3.5. Let SC Q and A, ..., A, € A be a disjoint family. Then

P (Sﬂ (QA,)) = iiP(SmAi)

Proof. We proceed by induction om If n= 1t is trivial. Assume it is true fon— 1. Notice that

SN (UA) NAL=SNA,  (5) and i (CJA) NAY =SN (UA> (6)
i=1 i=1 i=1
Equation B) is clear, and §) follows since(U1A) NAY = UL (ANAY) = (U (A NAY)) U
(AaNAY) = UL (ANAY).

Thus, sincéd, is measurable, we have that

b <Sm (UlA.>> p <Sm (UA) mAn> p (m <|U1A.> mAn>

and from ) and 6) this is equal t®(SNA,) +P (SN (U1 A/) ), which by the induction hypothesis is
equal toy{L;P(SNA)). O

Lemma3.6.LetS,S, .- C Q. Then

P <QS> < iiP(S)

Proof. If P(S) = o for somei, then we are finished. Therefore, assur(®) < o for eachi € N.

Without lost of generality, assuntg # 0, for alli. Indeed, sinc®(0) = 0, an empty set would not
add anything to any side of the equation. For a gigen0 andi, there is a sequend®;; |[i=1,...,] =
1,...} of boxes such thag C J_;Bjj and 351 p(Bij) < P(S) +27¢, by the definition ofe. Now,
#Bij |1,]} <OoandUiZ, S € Uiz Ui, Bij. Therefore, using the definition &f

8

(o] [ee] (o] 1
P p(Bij) < (S)+ey ==S P(§)+¢
(Us) <5 em=groes ;-3
Since this is true for each, the lemma holds. O

Using these properties, we can prove tdas ac-algebra (TheorerB.7).

Theorem 3.7. A is a g-algebra overQ.
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Proof. By Corollary 3.3, A is an algebra. We only have to prove thétis closed under any countable
unions. That is, ifB1,By,--- € A, thenJ21B;j € A. SinceA is an algebra (Corollarg.3), there is
a disjoint family A, Ay, --- € A such thatA = | J? 1 By = ;> 1 Ai. For example, we can taki = B,
Ay =B\ B;,A3 =B3\ (B1UBy),.... LetC, = U1 Aj, soC, € A again using thatl is an algebra. Also
notice thatA™ C C; becaus€, C A.

SinceC, is measurable, take a8LC Q and, using Lemma.1(2), we can calculate(S) =P(SNC,) +
P(SNCy) > P(SNC,) +P(SNA™). SinceP(SNCp) =P (SN (U1 A)), using LemmaB.5, we obtain
P(S) > 3L,P(SNA) +P(SNA™) and, since the left-hand side is independent,d(S) > 5%, P(SN
A) +P(SNA™). Thus, by Lemma.6, P(S) > P (SN (UiZ1 A)) +P(SNA™) =P(SNA) +P(SNA™).

For the converse inequality, notice tf&& (SNA) U (SNA™), so using Lemm&.6 we haveP(S) =
P((SNA)U(SNA™)) <P(SNA)+P(SNA™). HenceAc A. O

As intuited in Example2.6, the probability of a boxB is p(B). Lemma3.10formalises it. Before
proving this lemma, we need two auxiliary ones (Lemriasand3.9). For short, we use the notation
Bna=bforBn{f | f(a)=b}.

Lemma3.8. LetNC Nand forallie N, let BB; C Q be boxes s.t. B Jicny Bi andp(B) > Sicnp(Bi).
Then for every objed, there exists an objettsuch thatp(Bna="b) > yi.nyp(Bina=b).

Proof. Leta— bj, withi = 1,...,n. Hence notice that(B) = y_; p(BNa= bj), and this happens for
anyB. Then, fromp(B) > ey p(Bi), we havey f_; p(Bna=bj) > Fien 3 i1 p(BiNa=bj)

=Y -1Yienp(Bina=bj). Therefore, there must be at least dreeich thap(Bna=bn) > Ficnp(BiN
a=nbyp). Ol

Lemma3.9. LetNC Nand forallie N, let BB; C Q be boxes s.t. B iy Bi andp(B) > Sicnp(Bi).
Then for all family{a; } of objects, there exists a famifp; } such that, for every lp(Bna; =byN---N
ax=by) > Fienp(BiNag=b1N---Nax = by).

Proof. We proceed by induction ok. Fork = 1, use Lemm&.8 By the induction hypothesis, we
havep(BNna; =byN---Nak_1 = bx-1) > Jienp(BiNar =byN---Nax_1 = bk_1). We conclude by
Lemma3.8. O

Lemma 3.10. Let BC Q be a box, the®(B) = p(B).
Proof. LetB={f | f(a1) = 4&,..., f(an) = &,}. SinceB C B, by definition ofp, we haveP(B) < p(B).
P =

We must provep(B) < P(B) = inf{Sicnp(Bi) | B C UienBi}. In other words, we must prove that
B C Uien Bi impliesp(B) < Sienp(Bi). We proceed by induction am

e If n=0, p(B) = 1. Notice that, without restrictions B, B = Q. We prove this case by contradic-
tion. Letp(F) > Sicnp(Bi). Then by Lemma.9, there existg such that for alk,

p(a =g(a)N---Nax=g(a)) > _Z‘P(Bi Nay=g(a)N---Nak = g(a)) 7

Sinceg € Q C Ui Bi, there existg such thag € B;. LetB; be defined with constraints on objects
aj,,.--,aj,- Letk=qgand from equation?),

p(ar=g(a)N---Nag=g(aqg)) > _va(Bi Nap=g(a)N---Nag=9(aq)) (8)
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We know thatp(a; = g(a1) N---Nag = g(aq)) = ﬂﬂ:l%' and sinceg € Bj, we know

that this is also equal tp(Bjna; = g(a1) N---Nag = g(ay)). Hence equationd) leads to a
contradiction.

e Consider the case— 1. LetB' = {f | 3ge Bs.t. Va# a,, f(a) =g(a)}. ThenifB' C Uiy B
we havep(B') < Sicnp(B). Notice that eithelB] = B; or B; has a constraint oa, and so

~& 95 (B)) = p(B;). In any case~ %I p(B!) < p(B;). Thenp(B) = ~&d&p(@') <

Sien 28 p(B) < 5y p(B)). O
Theorem 3.11(Space of strategies)Q,.4,P) is a probability space.

Proof. We prove it satisfies the Kolmogorov axioms.

1Staxiom: VA€ A, 0<P(A) < 1.
SinceP is defined as an inf of sums @ andp is always positive, s&@ cannot be negative. By
the second Kolmogorov axio®(Q) = 1. Notice thatA is measurable and C Q, so 1=P(Q) =
P(QNA)+P(Q\A) =P(A)+P(Q\A), hence :-P(Q\ A) = P(A). SinceP is not negative,
P(A) <1.

2nd axiom: P(Q) = 1.
Notice thatQ is the box including all the functions. Hence, there is noditton on the functions
and son=0. Thenp(Q) = 1. By Lemma3.10, P(Q) = p(Q) = 1.

3'd axiom: Any countable sequence of pairwise disjoint (i.e. inconfgbal eventsi;, A - -- € A, satis-
ﬁESP(AlUAg. . ) = Zw:lP(Au)
Let 0# | C N. Since the set#; are in.A, considem € N\ | and we have

) () ()

Notice that (UieN\| Ai) N Ay = A, and since the’s are pairwise disjoinl(UieN\, Ai> NAY =
Uien (ugny) Ai- Therefore, considering that this is valid for angndn ¢ I, we have

P (UA;) =P(A1)+P (UA;) =P(A1) +P(A2) +P (UA;) == ZP(A;). O
i=1 i=2 i=3 i=
Example 3.12. Consider the non-strongly-normalising non-confluent r@nsystem described in the

introductiona; — &1, & — & ,, Where each reduction is equiprobable and each symbolfésefit
from each other. It can be depicted as follows.

The probability that this rewrite system stops after eyactteps, starting from teriay, is P(B), with
B={f| f(ap) =a,... f(an-2) =an_1 andf(a,_1) = &,}), and sinceB is a box, by Lemm&.10it is
1 1

the same t®(B) = p(B) = 0(@0) . pEd) = o0
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The probability of stopping at the stapor before, starting at any point befoeg_1, is just the
probability of the boxX{ f | f(a,_1) = &}, which is:—2L.
The probability of stopping at the stepor m, starting at any point befora, ; anday,_1 is the

probability of the union of two boxes, however they are naejpendent events (its intersection is not
empty). Hence leB; = {f | a,-1 = a,} andBy = {f | an-1 = &,,}. The probabilityP(B; UBy) =

P((B1\B) UB) = P(B1 \ Bo) UP(By) = P({f | 8 1= 8h,m 1= ) +P(B2) = 5 + 5 =

Finally, the probability of not stopping at all, is the prailay of the setS= {f | f(a) = a1 for
i € N}, which is not a box, since there is an infinite number of coodg. It is easy to check that we
need an infinite number of boxes to cover such a set, howeveawehose boxes as small as we want
(that is, with a big number of conditions), which makes thigmim of their sums to be 0, and so the
probability of not stopping is, as expected, 0.

In other wordsp(S) < {f | f(a) = a1,i € [0,n]} = &, for anyn. Hence whem tends tow, P(S)
tends to 0.

4 Transforming a non-deterministic into a probabilistic calculus

4.1 The calculusA .

In [15, 16] we have introduced a non-deterministic calculus called which is a simplification of an
earlier probabilistic calculus by keeping non-determinisut removing explicit probabilities. Now we
can transform this calculus into a probabilistic one.

The full calculus is depicted in Table Typing judgements are of the form: A. A termr is
typable if there exists a typA such thatr : A. Following [19, 22], we use a presentation of typed
lambda-calculus without contexts and where each variattercence is labelled by its type, such as.
AxAxA or AxA.yB. We sometimes omit the labels when they are clear from theéegband write, for
example Ax*.x for Ax*.xA. We use different letters for different variables and theetgystem forbids
terms such ad x*.x whenA andB are different, by imposing preconditions to when the typinigs
apply. LetS= {)(fl, ...,xAn) be a set of declarations, we wrigé when this set is functional, that is when
X = X; impliesA = A;. For example[xA,yA;‘B}f, but not{xA,xA;‘B}f. Typing rules have the following

structure:
Hypotheses (Rule name)

Preconditiong - -
[ "Derived judgement

The a-conversion and the se8/(r) of free variables of andFV (A) of free variables oA are de-
fined as usual in th&-calculus (cf. B, §2.1]). For examplé&V (x*yB) = {x*,y®}. We say that a termis
closed wheneveFV (r) = 0. If FV(r) = {X;*, ..., x ), we writel (r) = {Aq,...,Aq}. FV({AL,...,A})
is defined byl J'; FV(A). Given two terms andswe denote by [s/x] the term obtained by simulta-
neously substituting the tersifor all the free occurrences afin r, subject to the usual proviso about
renaming bound variables mto avoid capture of the free variables ©fAnalogouslyA[B/X] denotes
the substitution of the typB for all the free occurrences of in A, andr [B/X] the substitution irr. For
example,(x)[B/Y] = xABY)  (AxAr)[B/X] = AxAB/X]y[B/X] and (Ta(r))[B/X] = Tiag)x (1 [B/X]).
Simultaneous substitutions are defined in the same wayll¥iterms and types are considered up to
a-conversion.

Each term of the language has a main type associated, whidbecabtained from the type annota-
tions, and other types induced by the type equivalences.
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The operational semantics &f, is also given in Tablel, where there are two distinct relations
between terms: a symmetric relatien and a reduction relatior—. We write =* and —* for the
transitive and reflexive closures of and< respectively. In particular, notice that* is an equivalence
relation. We just write— when we do not want to make the distinction between theseae$a We write
n.r in A, as a shorthand far+---+r.

%,—J
_ ntimes _ _

This calculus has a non-deterministic projector. Indekd,rtile “If r : A, thena(r +s) < r” is
not-deterministic because the symbelis commutative, so i6: A, this rule can produce eitheror
s non-deterministically. In any case, both reducts are vaimbfs of A, and so the proof system is
consistent. Refer tdlp] for details.

Grammar of types and terms
ABC,... :== X|A=B|AAB| VXA .
r,st o= x| At [rs|r+s| m(r) | AX.r | r{A} .
Equivalence between types
AAB = BAA,  (AAB)AC = AA(BAC), A= (BAC) = (A=B)A(A=C) .
Rewriting system
Symmetric relation:
r+s=s+r , (r+st=rt+st, Ifr:A= (BAC), then
(r4+s)+t=r+4(s+t) , AXB(r+s) 2 AxAr +Axis Ma—p(r)s= m(rs) .
Reductions:
(AXAr) s—=r[s/X (AX.r){A} = r[A/X] , If r:A thenma(r+s) —r .
Typing system
_PIA () f r:B i nr:A=B s:A
BB G SAA (PO I m asg ) VTR (=e)
nr:A s:B . r:A/\B(Ae) r:A Vi r:vxX.A (Ve)
Ve s ane Y T A XV A XA " F{B}: AB/X]

Table 1: The non-deterministic calculus,

4.2 From non-determinism to probabilities (or from A, to )\f)

Consider the following example (cfl§, Example 5]). Two possible reduction paths can be fired from
(AX.(m(x* +y*))){A}: Reducing first the projectionAX.x*){A} < xA, or reducing first the beta
(X2 +yA) — xA. The former path is deterministic and will always reducetpon the contrary, the
latter can non-deterministically chose betwe@andy®. However, in both cases a proofAs obtained.
Hence, the non-determinism is present not only due to thegqar, but also by a combination of not
defining a reduction strategy and the polymorphism, whichtaen a deterministic projection into a non-
deterministic one. We want to associate a probability testfmond case, that is, to the non-deterministic
projector (therrreduction). With this aim, we consider the following ARSI,Ied)\i. The closed normal

terms of A, are objects oﬂi. If rq,...,ry are objects, then it is also an object. The functienis
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given by the relations= and <. In particular, ifr : A, then ma(r +r) — r, with multiplicity 2, i.e.
— (ma(r+r),r)=2.

Theorem 4.1. Let (Q,.A,P) be a probability space overy. Let B, = {f | f(m T(3j—1mj.rj)) =ri} be
a box. TherP(By,) = =nt—

Yi—am’ m, times m, times
Proof. Notice thatp (Ta(Sy M.r)) = 5, — (Ta(Symri),r) =4Fr, - ra...,fo o Pal = 30 m,
And — (Ma(3ym.ri),ri) =m. HenceP(B;,) = p(By,) = i"% 0

Definition 4.2 (The probabilistic calculuéf). Let )\f be the language of Table with the following
modification:

Replace rule “Ifr : A, thentia(r +5s) < r” by

“Fori=1,...,n,letr;: Aands /A, be closed normal terms. Then

n
. o m
() Mmuri+s) < r; with probability ————" .
i;l I I ZT:lmj

Remark4.3. Notice that by Theorem.1the probabilistic reduction is well defined.

4.3 The calculus Al

The calculus AI@ is inspired from b, 24]. We restrict the algebraic calculus to only have probatudi
superpositions, and we type it with a simple extension ot&y$ (cf. [2, Def. 5.1]). The grammar of
terms ensures that the linear combinations of terms arepiidy distributions, however the type system
allows typing pseudo-terms, that is, terms that are notaisibiby distributions. A term in this language,
is a term produced by the grammar of terms, and typed. Thedidulus is depicted in Tabl&

4.4 FromAlgf to AP

We give a translation from the probabilistic calculus ,@Ig’pcluding scalars, to the probabilistic calculus
AP,

DA] = xA [rs] = [r][s] [[rn{A}]] [rI{A}
[AAr] = AT [AXr] = AX[r] [3 g fl = mziiameInl)
whererI A d € N m _n.(|‘| dy), fori=1,....n
k#

3 1 1
Example 4.4. Letr : A, t: Aands: A [[—.r+§.t+— g = (192[[r]]+32 [t] +32[s]). By Theo-

rem4 1, this last term reduces fo] with probability ngsz = 4, to [t] with probability m =

£, and to[s] with probabllltywﬂ32 5

Lemma 4.5.

L [r][A/X] = [r[A/X]]- 2. [r]lls] /¥ = [rls/«]-

Proof.

1. We proceed by induction an
o Letr =xB. [XB][A/X] = xB[A/X] = xBAX] = [xBIAXI] = [xB[A/X]].
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Grammar of types
ABC,... i== X|A=B|VXA .
Grammar of pseudo-terms
r,st o= X AAr[rs|AXr [r{A} | pr|r+s

Grammar of terms

n n>o0,
r,stu= XM AAr [rs|AXr [ r{A} | Zpi.ri with { pi € Q(0,1] and
= SiLapi=1
Rewriting system
Symmetric relation:
r+s=s+r (r+st=rt+st, 1r=2r .
(r+s)+t=r4(s+t) , AXA(r+s) 2 AxAr +Axhs
Reductions:
Beta Elementary Factorisation
(AXAr)s<r[s/x , p.g.r < pgr , p.r+ar < (p+q.r .
(AX.r){A} = r[A/X] , p.(r+s) < pr+ps,
Typing system
r:B : :
An ™ VO i s s A= _S1A
T A SIA H r:A () r-A v r:vX.A (Vo)
[FV(r+9)] 1S A (+i) or A [X§éFV(I’(r))]7/\X.r “UX A (1) —r{B}:A[B/X]

Table 2: The algebraic calculus Afg

o Letr = 1Bt [AxBAJ[A/X] = D[] [A/X] = MxERX] ] [A/X] B AxBAX Tt[A/X]] =
[ABAXIHA/X]] = [(AXB.H)[A/X]].

o Letr =tstp. [tato] [A/X] = [ta][A/X][ta] [A/X] £ [ta[A/X][t2lA/X]] = [talA/X]t2[A/X]] =
[(tat2) [A/X]].

o Letr =AY.t,withY ¢ FV(A). [AY.1][A/X] =AY [t][A/X] B AY. [t[A/X]] = [AY-t{A/X]] =
[(AY.1)[A/X]].

o Letr =t{B}. [t{B}][A/X] = [t{B}A/X] = [t][A/X]{BIA/X]} = [t[A/X]]{BIA/X]} =
[t[A/X{BIA/X]}] = [(t{B})[A/X]].

o Letr =30, Bori [ BilIA/X] = (5T m[ri]) [A/X] = 7 (57 m[ri][A/X]) =
M (X mriA/X]]) = [Za g -rilA/X]] = [(Ziy g 1) [A/X]]-

2. We proceed by induction an

o Letr =x [XA][[s]/x] = x([s] /x| = [8] = [x*[s/x]].

o Letr =yA [Y][[s]/X = yA[[s] /X = y* = V"] = [Y*[s/X]].-

o Letr = AyB.t. [AYBA][[S] /X = AYB.[t][[s]/X] gl

AY2.[t[s/X]] = [AY2.t[s/x]] = [(AyB.t)[s/X]].




12 The probability of non-confluent systems

o Letr =tyty. [tat][[8]/X] = [ta] [[8] /X [t2] [[8]/X] = [tals/X[tals/X]] = [tafs/Xtz[s/X]] =
[(tatz)[s/x]].
o Letr = AX.t, [AXA][[S]/X = AX[IS]/X 2 AX.[tfs/X] = [AX.t[s/X]] = [(AX.1)[s/X].
e Letr =t{B}. LetFV(s) = X andY be a set of free variables such tisif /X][X /Y] = s.
Then, [t{B}][[s] /] = [t]{B}[[s] /] = [[tﬂ[[[s[?/)?]/x]]]{B}[)?/\?] = [t[s[¥ /X]/XI{B}X/V]
— [t[sI¥ /X] /X {BHIX /Y] "2 [t[s¥ /X1 /X {B} X V1] = [(t{B})[s/].
o Letr =51, §.ri. [ g NHlIA/X] = m (s mu[ril) [A/X] = m (TLy my. [ri[A/X]) =
M (X mri[A/X]]) = [Za g -rilA/X]] = [(Ziy g 1) [A/X]]- [

Theorem 4.6. If r —* S, pi.ti, with tj in AIg,'?, with L, pp = 1 and [tj] —* s, then[r] —* 5 with
probability p (37, pj) T in A,
Proof. Letr : Ain AIg,E. Fori=1,...,n,assumey; = g with n;, d; € N*. We proceed by a case analysis
on the last reduction step to reagfi ; pi.ti. |

o Ifr= Zin:l pi.ti, then T[A(zln:l(ﬂ?;l diny).[ti]) —* TI;A(ZP::L(HE? dkni).s’1) By Theorem4.1, this

term reduces in one step $owith probability

r]rllzl g il n n
ki _ d | <|_|k—ldk> =p(3p
Zinzlg Mk-1 0k A

Yit1 <I'I?_1 dk”i>
k#i

e Consider Ir = r, withr =S ; pi.ti. We have[1.r] = ma(1.[r]) —* ma(1.s), which reduces with
probability one tcs. Notice thatsis a reduct of 3! ; pi.ti] = ma(3{L; m.[t1]). We conclude with
Theoremd. 1

e Consider(yL 1 piti) + (3T pi-ti) = YLy pi-ti, with 1< m< n. Sincer : A, then each; : A,
We have,

[[i_%l pi ti +Zm1 pi-ti] = T (i_%lm.[[ti]] +izmlm.[[ti]]> =M (iim,[[ti]o ,

wherem; = [, dkni. We conclude with Theorerh.1
ke£i

e ConsideAx2.(r +s) 2= AxAr + AxAs. We have[AxA.(r +8)] = AXA([r +9]) = AxAm([r] +
[s]) —* AxXA.m(r' + ) By Theoremd.1, AxA.ma(r’ + ) reduces to\x".r’ (which is a reduct of
[AXA.r] = AxA.[r]), with probability 3, and toAx".s' (which is a reduct of AxA.s] = AxA.[s]),
with probability 5.

e Consider(AxA.r) s r[s/x], with r[s/X = S, pi.ti. Then[(AXAr) §] = (AXA[r]) [s] <
[r1ilsl/x] which, by Lemma4.52), is equal to]r[s/x]] = [¥{., pi-ti] and this, by definition is

-1

equal torm <Z{‘_1(ﬂ21 dkni).[[ti]]> . We conclude with Theorer. 1.
k£
e Consider(AX.r){A} < r[A/X], with r[A/X] = SiL; pi.ti. Then, [AX.r{A}] = AX.[r[{A} —

[r1[A/X], which by Lemmat.5(1) is equal td]r [A/X]] = [SL1 pi-ti] = T <z{‘_1(|'|ﬁl_l dkni).[[ti]]> :
We conclude with Theorer. L .
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e Considerp.qr < pgr. Let p.qr: A Sincepgr =3, pi.ti with S ; pi = 1, we haven =1
andpg= p1 = 1. Also, sincep.qr isaterm,p=q=1. So, we havdl.1lr] = m(1.[1r]) =
(L. m(1.Jr])) —* ma(1.ma(1.5)) Notice that this term reduces with probability 1 tm(1.s),
which is a reduct ofia (1.[r]) = [1.r].

e Considerp.(ry+rz) < p.ri+ p.ro. Sincep.ri+ p.ra = 3L, pi.ti, with 3i'; pi = 1, we have

n=2andp= 3, however in such cas?(rl +r32) is a pseudo-term, not a term.

e Considerp.r +q.r — (p+q).r. Since(p+q).r = 3L pi.ti, with 3, pi = 1, we haven = 1 and
p+q=1. Letp="T, theng= 9™ So,[p.r +q.r] = m(dm[r]+(d(d—m)).[r]) = m(d2.[r]),
which reduces with probability 1 t§ where[r] —* s.

e Contextual rules are straightfoward. O

4.5 BackfromAP to AlgP

The inverse translation is given by

() = xA (rs) = (r)(9) (r{A}) = (r){A}
(AXAr) = AXA(r)  (AXxr) = AX.(r) r+9 = (r)+(9
If ma(t) — s with probability p;, fori=1,....,n, (m(t)) = Y1 pi-(s)

Remark4.7. This translation does not admit translating a term of thenfag (t) in normal form. More-
over, letl be the rule fi—g(r)s<= ms(rs) with r : A= (BAC)”, then the translation keep reductions,
except for the one using ruleé, as expressed in Theorefr®.

Lemma 4.8.

L. (rp[A/X] = (r[A/X]) 2. (r)l(s) /> = (rls/X)

Proof. Both items follow by induction om. Cases®, AxB.t, tit,, AY.t andt{B} are analogous to those
in proof of Lemma4.5. Hence we only need to verify the cagg(t), whenr — r; with probability p;,
fori=1,...,n.

1. (ms())[A/X] = (Sihq pi-(ri)) [A/X] = Y1 pi-(ri) [A/X], which by the induction hypothesis, is
equal tog il pi.(ri[A/X]) = (Tlia/x) (tA/X])) = ((T8(1))[A/X]).

2. (me(t))[s/X = (3qpi-(ri))[s/X] = Sitq pi-(ri)[s/x], which by the induction hypothesis, is equal
to 3Ly pi-(rifs/X) = (7. (t[s/X])) = ((7w(t))[s/X]). O

Theorem 4.9. Letr,s;s in AP.

e If r = s then(r) = (9.

e If r — s, with probability 1, then(r) < (g), except if the reduction is done by rule

e If r — s with probability p, fori=1,...,n, then(r) = S, pi.(s)-

Proof. Case by case analysis.
e Consider +s= s+r. Notice that(r +) = (r) + (s) = (s) + (r) = (s+7).

e Consider(r +s)+t=r +(s+t). Notice that(r +s) +t) = ((r) + () + (t) = (r) + (9 + (t)) =
(r + (s+1)).
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Consider(r +s)t = rt + st. Notice that((r +s)t) = ((r) + (9))(t) = (r)(t) + () (t) = (rt + st).
ConsideA xA.(r +s) = AxAr +AxA.s. Notice that(AxA.(r +s)) = AXA.((r) + (g) = AxA.(r) +
AXA(Y) = (AXAr +AXAS).

Consider(AxA.r)s < r[s/x]. Notice that((Ax*.r)s) = (AXA.(r))(s) — (r)[(s)/X], and this, by
Lemma4.8(2), is equal to(r[s/X]).

Consider(AX.r){A} < r[A/X]. Notice that((AX.r){A}) = AX.(r)[A/X] = (r)[A/X], and this,
by Lemma4.§(1), is equal to(r[A/X]).

Considerm (3, m.ri +s) < r; with probablllty—n—, whererI Aands /A are closed normal
terms. Notice that, by definitiorf7ia (3L, m.r; +s)[) Z| i (i) O

=1""

Conclusion

In this paper we have defined a probability space on the exaduéces of non-confluent abstract rewrite
systems. We define a sample space on strategies decidingwihigerto apply at each state (cf. Defini-
tion 2.2).

Our main motivation has been to be able to use this probalsiiace in non-deterministic calculi,

hence being able to encode a probability superpositioneokiid a.t + 3.r, with a + 8 =1, as a term
having probabilitya of rewriting tot and probability3 of rewriting tor. As an example, we provided
such an encoding from an algebraic calculus into a non-uénéstic calculus.
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