
M. Ayala-Rincón E. Bonelli and I. Mackie (Eds):
Developments in Computational Models (DCM 2013)
EPTCS 144, 2014, pp. 1–15, doi:10.4204/EPTCS.144.1

c© A. Dı́az-Caro & G. Dowek
This work is licensed under the
Creative Commons AttributionLicense.

The probability of non-confluent systems

Alejandro Dı́az-Caro
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We show how to provide a structure of probability space to theset of execution traces on a non-
confluent abstract rewrite system, by defining a variant of a Lebesgue measure on the space of traces.
Then, we show how to use this probability space to transform anon-deterministic calculus into
a probabilistic one. We use as exampleλ+, a recently introduced calculus defined through type
isomorphisms.

1 Introduction

Many probabilistic calculi has been developed in the pasts years, e.g. [1,9,11,14,20]. In particular, the
algebraic versions ofλ -calculus [5,24] are extensions toλ -calculus where a linear combination of terms,
e.g.α .r +β .s, is also a term. One way to interpret such a linear combination is that it represents a term
which is the termr with probability α , or the terms with probability β . However, endowing such a
calculus with a non-restrictive type system is a challenge [3,4].

A simpler framework is that of non determinisitic calculi which can be seen as algebraic calculi
withouth scalars. They have been studied, for instance in [8,10,12,13,15–18,21], however moving back
from non-determinism to probabilities is not trivial. In this paper we propose, instead of changing these
models, to define a probability measure on reductions in non-deterministic systems. In fact, as we shall
see, such a probability measure can be defined on any abstractnon-deterministic transition systems, or
non-confluent abstract rewrite systems (ARS) (cf. [23, Chapter 1]). Our goal is to show that explicit
probabilities are not needed in the syntax, and that the simpler non-deterministic calculi are as powerful
as the more complicated probabilistic calculi.
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Consider for example the following non-confluent ARS

a→ b , a→ c , c→ d , c→ e ,

we want to associate a probability to events such as

a→∗ b , a→∗ c , a→∗ d , a→∗ e .

In this example, assuming equiprobability, we haveP(a →∗ b) = 1
2, P(a →∗ c) = 1

2, P(a →∗ d) = 1
4,

P(a→∗ e) = 1
4. Notice that these events are not disjoints and that their sum is larger than 1. In particular,

a →∗ d implies a →∗ c. Defining the elements of the setΩ of elementary events is not completely
straightforward, in particular because we want to make it general enough to also consider infinite cases.
For example, in the following system

ai → ai+1, ai → a′i+1 ,

we naturally would like thatP(a0 →
∗ an) =

1
2n .
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2 The probability of non-confluent systems

Besides defining the elements of the setΩ, we need to define a notion of a measurable subset ofΩ
and endow such a subset with a probability distribution verifying the Kolmogorov axioms.

Our idea is to follow Lebesgue: define first the probability ofrectangles, or boxes, then the probability
of any set and finally measurable sets as those that verify Lebesgue’s property. Thus besides defining the
setΩ, we need to define a subset ofP(Ω) of boxes.

The first intuition would be to take paths as elements of the set Ω, for instance assigning the prob-
ability 1

2 to the pathsa→ b, 1
4 to a→ c→ d and 1

4 to a→ c→ e. In fact it seems more convenient to
extend such paths to strategies prescribing one reduct for each non normal object. Boxes are then defined
as sets of strategies agreeing on a finite domain. We show in this paper that this is sufficient to define a
probability space on strategies, consistent with the intuitive probability of events of the forma→∗ b.

Our study is generic enough to be applicable to several settings, such as automatons, or any other
kind of transition systems. We use the nomenclature of abstract rewrite systems, but that of states and
transitions could be used as well. Finally, we apply this construction toλ+ [15,16].

Plan of the paper. Section2 introduces the basic concepts of strategies and boxes, it defines the
Lebesgue measures. Section3 proves that the space of strategies forms a probability space. Finally,
in section4 we show how to modify the calculusλ+ into a probabilistic calculusλ p

+. Also, we provide
an encoding of an algebraicλ -calculus intoλ p

+ and, to some extend, the inverse translation.

2 Preliminaries

Let Λ be a set of objects and→ a function fromΛ×Λ toN such that for alla the set{b | → (a,b) 6= 0}
is finite. We writea→ b if → (a,b) 6= 0. We allow a term to be written to the same symbol more than
once, so its probability increases, e.g. if→ (a,b) = 2 and→ (a,c) = 1, then the probability of getting
b will be the double than the probability of gettingc. Think for example in a non-deterministic choice
between two objects, which happen to be equal, then there would be two ways to get such an object by
doing the choice. For a given objecta∈ Λ, we denote byρ(a) its degree, that is, the number of objects
to which it can be rewritten to in one step. Definition2.1formalises this.

Definition 2.1 (Degree of an object). ρ : Λ → N is a function defined byρ(a) = ∑b → (a,b).

An object is normal if its degree is 0. We denote byΛ+ = {a | a∈ Λ andρ(a) ≥ 1} to the set of
non-normal objects, that is, objects that can be rewritten to other objects.

A strategy prescribing one reduct for each non-normal object is defined as a function fromΛ+ to Λ
(cf. [23, Def. 4.9.1]).

Definition 2.2 (Strategy). A strategy is a total functionf : Λ+ → Λ such thatf (a) = b impliesa→ b.
For instance, ifa→ b anda→ b′, there are two functions,f and f ′ assigning different results toa. We
denote byΩ the set of all such functions.

A box is a set of strategies agreeing on a finite domain.

Definition 2.3 (Box). A box B⊆ Ω is a set of the form{ f | f (a1) = a′1, . . . , f (an) = a′n} for some objects
ai , a′i . We writeB(Ω) the subset ofP(Ω) containing all the boxes.

Example 2.4.Continuing with the example given at the introduction,Λ+ = {a,c}. Let f1(a)= b, f1(c)=
d and f2(a) = b, f2(c) = e be two of the four strategies ofΩ. Then the box{ f | f (a) = b, f (c) = d}=
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{ f1}, and the box{ f | f (a) = b} is { f1, f2}.
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A probability distribution can be defined in term of boxes, and then be extended to arbitrary sets of
strategies.

Definition 2.5 (Probability function). Let p : B(Ω) → [0,1] be a total function defined over boxes as
follows. If B= { f | f (a1) = a′1, . . . , f (an) = a′n}, then

p(B) =
n

∏
i=1

→ (ai ,a′i)
ρ(ai)

.

By convention, if no condition is given inB (i.e. B= Ω), we haven= 0, and we consider the product of
zero elements to be 1, the neutral element of the product.

Then we define the probability measureP : P(Ω)→ [0,1] for arbitrary sets of strategies as follows

P(S) =

{
0 if S= /0
inf {∑B∈C p(B) | C is a countable family of boxes s.t.S⊆

⋃

B∈C B} in other case

Example 2.6. Consider the ARSa→ b with multiplicity 2 anda→ c with multiplicity 1.
LetBbe the boxB= { f | f (a)= b}. Then we havep(B)= →(a,b)

ρ(a) = 2
3. Intuitively,

a
�� ��
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⑧

b b cP(B) is the same asp(B) (this will be later formalised in Lemma3.10), becauseB is
the minimum cover ofB, that is,{B} is the minimum family of boxes such thatB is
in its union. HenceP(B) = 2

3.

Example 2.7. We continue with the same running example depicted in the introduc-
tion. Let f1(a) = b, f1(c) = d and f3(a) = c, f3(c) = ebe two strategies. Then the set
S= { f1, f3} is minimally covered by the boxesB1 = { f1}= { f | f (a) = b, f (c) = d}
andB2 = { f3}= { f | f (a) = c, f (c) = e}. So we haveP(S) = p(B1)+p(B2) =

1
2×2 +

1
2×2 = 1

2.

S=
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Now we can define the Lebesgue measure in terms of the given probability measure.

Definition 2.8 (Measurable). Let A be an element ofP(Ω), we writeA∼ for the complement ofA, that
is Ω\A. The setA is Lebesgue measurable if∀S∈ P(Ω), we haveP(S) = P(S∩A)+P(S∩A∼).

We defineA= {A | A is measurable}.

3 A probability space of strategies

The aim of this section is to prove that(Ω,A,P) is a probability space. That is, the sample spaceΩ (the
set of all possible strategies), the set of eventsA, which is the set of the Lebesgue measurable sets of
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strategies, and the probability measureP, form a probability space. Our proof follows [7]. We proceed by
proving that this triplet satisfies the Kolmogorov axioms, that is the probability of any event is between 0
and 1, the probability ofΩ is 1, and the probability of any countable sequence of pairwise disjoint (that
is incompatible) events, is the sum of their probabilities.In order to do so, we need first to prove several
properties.

Lemma3.1establishes several known properties of Lebesgue measurable sets.

Lemma 3.1.

1. Let A∈ A and S∈ P(Ω). If A∩S= /0, thenP(A∪S) = P(A)+P(S).

2. Let A1,A2 ∈A. If A1 ⊆ A2, thenP(A1)≤ P(A2).

3. /0, the empty set, is Lebesgue measurable.

4. A is Lebesgue measurable if and only if A∼ is Lebesgue measurable.

5. If A1,A2 are Lebesgue measurable, then A1∪A2 is Lebesgue measurable.

Proof.

1. P(A∪S) = P((A∪S)∩A)+P((A∪S)∩A∼) = P(A)+P(S).

2. First notice that by definition,P(S) ≥ 0 for anyS∈ P(Ω). Hence,P(A2) = P(A2∩A1)+ P(A2∩
A∼

1 ) = P(A1)+P(A2∩A∼
1 )≥ P(A1).

3. Notice thatP( /0) = 0. Then,∀S∈ P(Ω), P(S) = P(S∩ /0)+P(S∩Ω), so /0 is Lebesgue measurable.

4. Let A be Lebesgue measurable, then∀S⊆ Ω, P(S) = P(S∩A)+ P(S∩A∼) = P(S∩A∼)+ P(S∩
A∼∼), soA∼ is Lebesgue measurable.

5. LetA1,A2 be Lebesgue measurable, then∀S⊆ Ω, we have

P(S) = P(S∩A1)+P(S∩A∼
1 ) (1) and P(S) = P(S∩A2)+P(S∩A∼

2 ) (2)

From set theory S∩ (A1∪A2) = S∩ (A1∪ (A∼
1 ∩A2)) = (S∩A1)∪ (S∩A∼

1 ∩A2) (3)

UsingS∩A∼
1 for S in (2) gives

P(S∩A∼
1 ) = P(S∩A∼

1 ∩A2)+P(S∩A∼
1 ∩A∼

2 ) = P(S∩A∼
1 ∩A2)+P(S∩ (A1∪A2)

∼) (4)

From (3), using items1 and2, we haveP(S∩ (A1∪A2)) = P(S∩A1)+ P(S∩A∼
1 ∩A2). Adding

P(S∩ (A1 ∪A2)
∼) to both sides givesP(S∩ (A1 ∪A2) + P(S∩ (A1 ∪A2)

∼) = P(S∩A1) + P(S∩
A∼

1 ∩A2)+P(S∩ (A1∪A2)
∼) Using (4) and (1) we obtainP(S∩ (A1∪A2))+P(S∩ (A1∪A2)

∼) =
P(S∩A1)+P(S∩A∼

1 ) = P(S).

The concept of algebra (Definition3.2) gives a closure property of subsets. As a corollary of the
Lemma3.1we can show that the setA of Lebesgue measurable sets form an algebra (Corollary3.3).

Definition 3.2 (Algebra). Let X be a set. We say that a setA ∈ P(X) is an algebra overX if for all
A,B∈ A, A∪B, A∼ andX itself are also inA.

Corollary 3.3. A is an algebra overΩ.

Proof. A∈P(Ω). Let A,B∈A, then by Lemma3.1(5), A∪B∈A. By Lemma3.1(4), A∼ ∈A. Finally,
by Lemma3.1(3) and (4), Ω ∈ A.
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Moreover, we can show thatA is a σ -algebra, that is an algebra, completed to include countably
infinite operations. Definition3.4formalises it.

Definition 3.4 (σ -algebra). Let X be a set. We say that a setΣ ∈ P(X) is aσ -algebra overX if it is an
algebra and it is closed under countable unions, that is, ifA1,A2,A3, . . . are inΣ, then so is

⋃
Ai .

Theorem3.7states that the setA of Lebesgue measurable sets is aσ -algebra. We need to prove two
properties of Lebesgue measurable sets first (Lemmas3.5and3.6).

Lemma 3.5. Let S⊆ Ω and A1, . . . ,An ∈ A be a disjoint family. Then

P

(

S∩

(
n⋃

i=1

Ai

))

=
n

∑
i=1

P(S∩Ai) .

Proof. We proceed by induction onn. If n= 1 it is trivial. Assume it is true forn−1. Notice that

S∩

(
n⋃

i=1

Ai

)

∩An = S∩An (5) and S∩

(
n⋃

i=1

Ai

)

∩A∼
n = S∩

(
n−1⋃

i=1

Ai

)

(6)

Equation (5) is clear, and (6) follows since(
⋃n

i=1 Ai)∩A∼
n =

⋃n
i=1(Ai ∩A∼

n ) = (
⋃n−1

i=1 (Ai ∩A∼
n ))∪

(An∩A∼
n ) =

⋃n−1
i=1 (Ai ∩A∼

n ).
Thus, sinceAn is measurable, we have that

P

(

S∩

(
n⋃

i=1

Ai

))

= P

(

S∩

(
n⋃

i=1

Ai

)

∩An

)

+P

(

S∩

(
n⋃

i=1

Ai

)

∩A∼
n

)

and from (5) and (6) this is equal toP(S∩An)+P
(
S∩
(⋃n−1

i=1 Ai
))

, which by the induction hypothesis is
equal to∑n

i=1P(S∩Ai).

Lemma 3.6. Let S1,S2, · · · ⊆ Ω. Then

P

(
∞⋃

i=1

Si

)

≤
∞

∑
i=1

P(Si) .

Proof. If P(Si) = ∞ for somei, then we are finished. Therefore, assumeP(Si)< ∞ for eachi ∈ N.
Without lost of generality, assumeSi 6= /0, for all i. Indeed, sinceP( /0) = 0, an empty set would not

add anything to any side of the equation. For a givenε > 0 andi, there is a sequence{Bi j | i = 1, . . . , j =
1, . . .} of boxes such thatSi ⊆

⋃∞
j=1Bi j and∑∞

j=1p(Bi j ) < P(Si)+ 2−iε , by the definition ofP. Now,
#{Bi j | i, j} ≤ ℵ0 and

⋃∞
i=1 Si ⊆

⋃∞
i=1
⋃∞

j=1Bi j . Therefore, using the definition ofP,

P

(
∞⋃

i=1

Si

)

≤
∞

∑
i=1

∞

∑
j=1

p(Bi j )≤
∞

∑
i=1

P(Si)+ ε
∞

∑
i=1

1
2i =

∞

∑
i=1

P(Si)+ ε

Since this is true for eachε , the lemma holds.

Using these properties, we can prove thatA is aσ -algebra (Theorem3.7).

Theorem 3.7.A is a σ -algebra overΩ.
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Proof. By Corollary 3.3, A is an algebra. We only have to prove thatA is closed under any countable
unions. That is, ifB1,B2, · · · ∈ A, then

⋃∞
i=1 Bi ∈ A. SinceA is an algebra (Corollary3.3), there is

a disjoint familyA1,A2, · · · ∈ A such thatA =
⋃∞

i=1Bi =
⋃∞

i=1Ai. For example, we can takeA1 = B1,
A2 = B2\B1,A3 = B3\(B1∪B2), . . . . LetCn =

⋃n
i=1Ai , soCn ∈A again using thatA is an algebra. Also

notice thatA∼ ⊆C∼
n becauseCn ⊆ A.

SinceCn is measurable, take anyS⊆Ω and, using Lemma3.1(2), we can calculateP(S)= P(S∩Cn)+
P(S∩C∼

n ) ≥ P(S∩Cn)+ P(S∩A∼). SinceP(S∩Cn) = P(S∩ (
⋃n

i=1 Ai)), using Lemma3.5, we obtain
P(S) ≥ ∑n

i=1P(S∩Ai)+ P(S∩A∼) and, since the left-hand side is independent ofn, P(S) ≥ ∑∞
i=1P(S∩

Ai)+P(S∩A∼). Thus, by Lemma3.6, P(S)≥ P(S∩ (
⋃∞

i=1 Ai))+P(S∩A∼) = P(S∩A)+P(S∩A∼).
For the converse inequality, notice thatS= (S∩A)∪ (S∩A∼), so using Lemma3.6we haveP(S) =

P((S∩A)∪ (S∩A∼))≤ P(S∩A)+P(S∩A∼). Hence,A∈A.

As intuited in Example2.6, the probability of a boxB is p(B). Lemma3.10 formalises it. Before
proving this lemma, we need two auxiliary ones (Lemmas3.8 and3.9). For short, we use the notation
B∩a= b for B∩{ f | f (a) = b}.

Lemma 3.8. Let N⊆N and for all i∈ N, let B,Bi ⊆ Ω be boxes s.t. B⊆
⋃

i∈N Bi andp(B)> ∑i∈N p(Bi).
Then for every objecta, there exists an objectb such that,p(B∩a= b)> ∑i∈N p(Bi ∩a= b).

Proof. Let a→ bi , with i = 1, . . . ,n. Hence notice thatp(B) = ∑n
j=1p(B∩a= b j), and this happens for

anyB. Then, fromp(B)> ∑i∈N p(Bi), we have∑n
j=1p(B∩a= b j)> ∑i∈N ∑n

j=1p(Bi ∩a= b j)
= ∑n

j=1∑i∈N p(Bi ∩a= b j). Therefore, there must be at least oneh such thatp(B∩a= bh)> ∑i∈N p(Bi ∩
a= bh).

Lemma 3.9. Let N⊆N and for all i∈ N, let B,Bi ⊆ Ω be boxes s.t. B⊆
⋃

i∈N Bi andp(B)> ∑i∈N p(Bi).
Then for all family{a j} of objects, there exists a family{b j} such that, for every k,p(B∩a1 = b1∩·· ·∩
ak = bk)> ∑i∈N p(Bi ∩a1 = b1∩ ·· ·∩ak = bk).

Proof. We proceed by induction onk. For k = 1, use Lemma3.8. By the induction hypothesis, we
havep(B∩ a1 = b1∩ ·· · ∩ak−1 = bk−1) > ∑i∈N p(Bi ∩ a1 = b1∩ ·· · ∩ ak−1 = bk−1). We conclude by
Lemma3.8.

Lemma 3.10. Let B⊆ Ω be a box, thenP(B) = p(B).

Proof. Let B= { f | f (a1) = a′1, . . . , f (an) = a′n}. SinceB⊆ B, by definition ofP, we haveP(B)≤ p(B).
We must provep(B) ≤ P(B) = inf{∑i∈N p(Bi) | B ⊆

⋃

i∈N Bi}. In other words, we must prove that
B⊆

⋃

i∈N Bi impliesp(B)≤ ∑i∈N p(Bi). We proceed by induction onn.

• If n= 0, p(B) = 1. Notice that, without restrictions inB, B= Ω. We prove this case by contradic-
tion. Letp(F)> ∑i∈N p(Bi). Then by Lemma3.9, there existsg such that for allk,

p(a1 = g(a1)∩ ·· ·∩ak = g(ak))> ∑
i∈N

p(Bi ∩a1 = g(a1)∩ ·· ·∩ak = g(ak)) (7)

Sinceg∈ Ω⊆
⋃

i∈N Bi, there existsj such thatg∈B j . LetB j be defined with constraints on objects
a j1, . . . ,a jq. Let k= q and from equation (7),

p(a1 = g(a1)∩ ·· ·∩aq = g(aq))> ∑
i∈N

p(Bi ∩a1 = g(a1)∩ ·· ·∩aq = g(aq)) (8)
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We know thatp(a1 = g(a1)∩ ·· · ∩ aq = g(aq)) = ∏q
h=1

→(ah,g(ah))
ρ(ah)

, and sinceg ∈ B j , we know
that this is also equal top(B j ∩ a1 = g(a1)∩ ·· · ∩ aq = g(aq)). Hence equation (8) leads to a
contradiction.

• Consider the casen−1. Let B′ = { f | ∃g∈ B s.t. ∀a 6= an, f (a) = g(a)}. Then if B′ ⊆
⋃

i∈N′ B′
i

we havep(B′) ≤ ∑i∈N′ p(B′
i). Notice that eitherB′

i = Bi or Bi has a constraint onan and so
→(an,g(an))

ρ(an)
p(B′

i) = p(Bi). In any case,→(an,g(an))
ρ(an)

p(B′
i) ≤ p(Bi). Thenp(B) = →(an,g(an))

ρ(an)
p(B′) ≤

∑i∈N′
→(an,g(an))

ρ(an)
p(B′

i)≤ ∑i∈N′ p(Bi).

Theorem 3.11(Space of strategies). (Ω,A,P) is a probability space.

Proof. We prove it satisfies the Kolmogorov axioms.

1st axiom: ∀A∈ A, 0≤ P(A)≤ 1.

SinceP is defined as an inf of sums ofp, andp is always positive, soP cannot be negative. By
the second Kolmogorov axiomP(Ω) = 1. Notice thatA is measurable andA⊆ Ω, so 1= P(Ω) =
P(Ω∩A) + P(Ω \A) = P(A) + P(Ω \A), hence 1− P(Ω \A) = P(A). SinceP is not negative,
P(A)≤ 1.

2nd axiom: P(Ω) = 1.

Notice thatΩ is the box including all the functions. Hence, there is no condition on the functions
and son= 0. Thenp(Ω) = 1. By Lemma3.10, P(Ω) = p(Ω) = 1.

3rd axiom: Any countable sequence of pairwise disjoint (i.e. incompatible) eventsA1,A2 · · · ∈ A, satis-
fiesP(A1∪A2 . . . ) = ∑∞

i=1P(Ai).

Let /0 6= I (N. Since the setsAi are inA, considern∈N\ I and we have

P




⋃

i∈N\I

Ai



= P








⋃

i∈N\I

Ai



∩An



+P








⋃

i∈N\I

Ai



∩A∼
n





Notice that
(
⋃

i∈N\I Ai

)

∩An = An and since theAi ’s are pairwise disjoint
(
⋃

i∈N\I Ai

)

∩A∼
n =

⋃

i∈N\(I∪{n}) Ai. Therefore, considering that this is valid for anyI andn /∈ I , we have

P

(
∞⋃

i=1

Ai

)

= P(A1)+P

(
∞⋃

i=2

Ai

)

= P(A1)+P(A2)+P

(
∞⋃

i=3

Ai

)

= · · ·=
∞

∑
i=1

P(Ai).

Example 3.12. Consider the non-strongly-normalising non-confluent rewrite system described in the
introductionai → ai+1, ai → a′i+1, where each reduction is equiprobable and each symbol is different
from each other. It can be depicted as follows.

a0 //

""❊
❊❊

❊ a1

""❊
❊❊

❊
// a2

""❊
❊❊

❊
//

a′1 a′2 a′3

The probability that this rewrite system stops after exactly n steps, starting from terma0 is P(B), with
B= { f | f (a0) = a1, . . . f (an−2) = an−1 and f (an−1) = a′n}), and sinceB is a box, by Lemma3.10it is

the same toP(B) = p(B) =
1

ρ(a0) . . .ρ(an−1)
=

1
2n

.
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The probability of stopping at the stepn or before, starting at any point beforean−1, is just the

probability of the box{ f | f (an−1) = a′n}, which is
1
2

.

The probability of stopping at the stepn or m, starting at any point beforean−1 and am−1 is the
probability of the union of two boxes, however they are not independent events (its intersection is not
empty). Hence letB1 = { f | an−1 = a′n} and B2 = { f | am−1 = a′m}. The probabilityP(B1 ∪B2) =

P((B1\B2)∪B2) = P(B1\B2)∪P(B2) = P({ f | an−1 = a′n,am−1 = a′m)+P(B2) =
1
4
+

1
2
=

3
4

.

Finally, the probability of not stopping at all, is the probability of the setS= { f | f (ai) = ai+1 for
i ∈ N}, which is not a box, since there is an infinite number of conditions. It is easy to check that we
need an infinite number of boxes to cover such a set, however wecan chose boxes as small as we want
(that is, with a big number of conditions), which makes the infimum of their sums to be 0, and so the
probability of not stopping is, as expected, 0.

In other words,P(S) ≤ { f | f (ai) = ai+1, i ∈ [0,n]} = 1
2n , for anyn. Hence whenn tends to∞, P(S)

tends to 0.

4 Transforming a non-deterministic into a probabilistic calculus

4.1 The calculusλ+

In [15, 16] we have introduced a non-deterministic calculus calledλ+, which is a simplification of an
earlier probabilistic calculus by keeping non-determinism but removing explicit probabilities. Now we
can transform this calculus into a probabilistic one.

The full calculus is depicted in Table1. Typing judgements are of the formr : A. A term r is
typable if there exists a typeA such thatr : A. Following [19, 22], we use a presentation of typed
lambda-calculus without contexts and where each variable occurrence is labelled by its type, such as.
λxA.xA or λxA.yB. We sometimes omit the labels when they are clear from the context and write, for
example,λxA.x for λxA.xA. We use different letters for different variables and the type system forbids
terms such asλxA.xB whenA andB are different, by imposing preconditions to when the typingrules
apply. LetS= {xA1

1 , . . . ,xAn
n } be a set of declarations, we writeSf when this set is functional, that is when

xi = x j impliesAi = A j . For example{xA,yA⇒B}
f
, but not{xA,xA⇒B}

f
. Typing rules have the following

structure:

[Preconditions]
Hypotheses

Derived judgement
(Rule name)

Theα-conversion and the setsFV(r) of free variables ofr andFV(A) of free variables ofA are de-
fined as usual in theλ -calculus (cf. [6, §2.1]). For exampleFV(xAyB) = {xA,yB}. We say that a termr is
closed wheneverFV(r) = /0. If FV(r) = {xA1

1 , . . . ,xAn
n }, we writeΓ(r) = {A1, . . . ,An}. FV({A1, . . . ,An})

is defined by
⋃n

i=1 FV(Ai). Given two termsr ands we denote byr [s/x] the term obtained by simulta-
neously substituting the terms for all the free occurrences ofx in r , subject to the usual proviso about
renaming bound variables inr to avoid capture of the free variables ofs. AnalogouslyA[B/X] denotes
the substitution of the typeB for all the free occurrences ofX in A, andr [B/X] the substitution inr . For
example,(xA)[B/Y] = x(A[B/Y]), (λxA.r)[B/X] = λxA[B/X].r [B/X] and(πA(r))[B/X] = πA[B/X](r [B/X]).
Simultaneous substitutions are defined in the same way. Finally, terms and types are considered up to
α-conversion.

Each term of the language has a main type associated, which can be obtained from the type annota-
tions, and other types induced by the type equivalences.
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The operational semantics ofλ+ is also given in Table1, where there are two distinct relations
between terms: a symmetric relation⇄ and a reduction relation֒→. We write⇄

∗ and →֒∗ for the
transitive and reflexive closures of⇄ and→֒ respectively. In particular, notice that⇄∗ is an equivalence
relation. We just write→ when we do not want to make the distinction between these relations. We write
n.r in λ+ as a shorthand forr + · · ·+ r

︸ ︷︷ ︸

n times

.

This calculus has a non-deterministic projector. Indeed, the rule “If r : A, thenπA(r + s) →֒ r ” is
not-deterministic because the symbol+ is commutative, so ifs : A, this rule can produce eitherr or
s non-deterministically. In any case, both reducts are validproofs of A, and so the proof system is
consistent. Refer to [15] for details.

Grammar of types and terms

A,B,C, . . . ::= X | A⇒ B | A∧B | ∀X.A .

r ,s, t ::= xA | λxA.r | rs | r +s | πA(r) | ΛX.r | r{A} .

Equivalence between types

A∧B ≡ B∧A , (A∧B)∧C ≡ A∧ (B∧C) , A⇒ (B∧C) ≡ (A⇒ B)∧ (A⇒C) .

Rewriting system
Symmetric relation:

r +s⇄ s+ r , (r +s)t ⇄ rt +st , If r : A⇒ (B∧C), then
(r +s)+ t ⇄ r +(s+ t) , λxA.(r +s)⇄ λxA.r +λxA.s , πA⇒B(r)s⇄ πB(rs) .

Reductions:
(λxA.r) s →֒ r [s/x] , (ΛX.r){A} →֒ r [A/X] , If r : A, thenπA(r +s) →֒ r .

Typing system

[A≡B]
r : A
r : B

(≡)
xA : A

(ax)
[(FV(r)∪{xA})

f
]

r : B
λxA.r : A⇒ B

(⇒i) [FV(rs) f ]
r : A⇒ B s : A

rs : B
(⇒e)

[FV(r+s) f ]
r : A s : B
r +s : A∧B

(∧i)
r : A∧B
πA(r) : A

(∧e) [X /∈FV(Γ(r))] r : A
ΛX.r : ∀X.A

(∀i)
r : ∀X.A

r{B} : A[B/X]
(∀e)

Table 1: The non-deterministic calculusλ+

4.2 From non-determinism to probabilities (or from λ+ to λ p
+)

Consider the following example (cf. [16, Example 5]). Two possible reduction paths can be fired from
(ΛX.(πA(xA + yX))){A}: Reducing first the projection,(ΛX.xA){A} →֒ xA, or reducing first the beta
πA(xA+ yA) →֒ xA. The former path is deterministic and will always reduce toxA, on the contrary, the
latter can non-deterministically chose betweenxA andyA. However, in both cases a proof ofA is obtained.

Hence, the non-determinism is present not only due to the projector, but also by a combination of not
defining a reduction strategy and the polymorphism, which can turn a deterministic projection into a non-
deterministic one. We want to associate a probability to thesecond case, that is, to the non-deterministic
projector (theπ reduction). With this aim, we consider the following ARS, called λ ↓

+. The closed normal
terms ofλ+ are objects ofλ ↓

+. If r1, . . . , rn are objects, then it is also an object. The function→ is
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given by the relations⇄ and →֒. In particular, if r : A, thenπA(r + r) → r , with multiplicity 2, i.e.
→ (πA(r + r), r) = 2.

Theorem 4.1. Let (Ω,A,P) be a probability space overλ ↓
+. Let Br i = { f | f (πA(∑n

j=1mj .r j)) = r i} be
a box. ThenP(Br i ) =

mi
∑n

j=1 mj
.

Proof. Notice thatρ(πA(∑n
i=1 mi.r i))=∑r → ( πA(∑n

i=1mi.r i), r)= ♯[

m1 times
︷ ︸︸ ︷
r1, · · · , r1, . . . ,

mn times
︷ ︸︸ ︷
rn, · · · , rn] =∑n

j=1mj

And → (πA(∑n
i=1mi.r i), r i) = mi . Hence,P(Br i ) = p(Br i ) =

mi
∑n

j=1 mj
.

Definition 4.2 (The probabilistic calculusλ p
+). Let λ p

+ be the language of Table1, with the following
modification:
Replace rule “Ifr : A, thenπA(r +s) →֒ r ” by
“For i = 1, . . . ,n, let r i : A ands6 : A, be closed normal terms. Then

πA(
n

∑
i=1

mi.r i +s) →֒ r i with probability
mi

∑n
j=1mj

” .

Remark4.3. Notice that by Theorem4.1the probabilistic reduction is well defined.

4.3 The calculus AlgpF

The calculus AlgpF is inspired from [5,24]. We restrict the algebraic calculus to only have probabilistic
superpositions, and we type it with a simple extension of SystemF (cf. [2, Def. 5.1]). The grammar of
terms ensures that the linear combinations of terms are probability distributions, however the type system
allows typing pseudo-terms, that is, terms that are not probability distributions. A term in this language,
is a term produced by the grammar of terms, and typed. The fullcalculus is depicted in Table2.

4.4 From Algp
F to λ p

+

We give a translation from the probabilistic calculus Algp
F , including scalars, to the probabilistic calculus

λ p
+.

JxAK = xA JrsK = JrKJsK Jr{A}K = JrK{A}

JλxA.rK = λxA.JrK JΛX.rK = ΛX.JrK J∑n
i=1

ni

di
.r iK = πA(∑n

i=1 mi.Jr iK)

wherer i : A,di ∈ N∗,mi = ni(
n
∏
k=1
k6=i

dk), for i = 1, . . . ,n.

Example 4.4. Let r : A, t : A ands : A. J
3
4
.r +

1
8
.t +

1
8
.sK = πA(192.JrK+32.JtK+32.JsK). By Theo-

rem4.1, this last term reduces toJrK with probability 192
192+32+32 =

3
4, to JtK with probability 32

192+32+32 =
1
8, and toJsK with probability 32

192+32+32 =
1
8.

Lemma 4.5.

1. JrK[A/X] = Jr [A/X]K. 2. JrK[JsK/x] = Jr [s/x]K.

Proof.

1. We proceed by induction onr .

• Let r = xB. JxBK[A/X] = xB[A/X] = xB[A/X] = JxB[A/X]K = JxB[A/X]K.
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Grammar of types

A,B,C, . . . ::= X | A⇒ B | ∀X.A .

Grammar of pseudo-terms

r ,s, t ::= xA | λxA.r | rs | ΛX.r | r{A} | p.r | r +s

Grammar of terms

r ,s, t ::= xA | λxA.r | rs | ΛX.r | r{A} |
n

∑
i=1

pi .r i with







n> 0,
pi ∈Q(0,1] and
∑n

i=1 pi = 1

Rewriting system
Symmetric relation:

r +s⇄ s+ r , (r +s)t ⇄ rt +st , 1.r ⇄ r .
(r +s)+ t ⇄ r +(s+ t) , λxA.(r +s)⇄ λxA.r +λxA.s ,

Reductions:
Beta Elementary Factorisation

(λxA.r) s →֒ r [s/x] , p.q.r →֒ pq.r , p.r +q.r →֒ (p+q).r .
(ΛX.r){A} →֒ r [A/X] , p.(r +s) →֒ p.r + p.s ,

Typing system

xA : A
(ax)

[(FV(r)∪{xA})
f
]

r : B
λxA.r : A⇒ B

(⇒i) [FV(rs) f ]
r : A⇒ B s : A

rs : B
(⇒e)

[FV(r+s) f ]
r : A s : A

r +s : A
(+i)

r : A
p.r : A

(pi) [X /∈FV(Γ(r))] r : A
ΛX.r : ∀X.A

(∀i)
r : ∀X.A

r{B} : A[B/X]
(∀e)

Table 2: The algebraic calculus AlgpF .

• Let r = λxB.t. JλxB.tK[A/X] = λxB.JtK[A/X] = λxB[A/X].JtK[A/X]
IH
= λxB[A/X].Jt[A/X]K =

JλxB[A/X].t[A/X]K = J(λxB.t)[A/X]K.

• Let r = t1t2. Jt1t2K[A/X]= Jt1K[A/X]Jt2K[A/X]
IH
= Jt1[A/X]KJt2[A/X]K= Jt1[A/X]t2[A/X]K=

J(t1t2)[A/X]K.

• Let r =ΛY.t, withY /∈FV(A). JΛY.tK[A/X] =ΛY.JtK[A/X]
IH
= ΛY.Jt[A/X]K= JΛY.t[A/X]K=

J(ΛY.t)[A/X]K.

• Let r = t{B}. Jt{B}K[A/X] = JtK{B}[A/X] = JtK[A/X]{B[A/X]}
IH
= Jt[A/X]K{B[A/X]}=

Jt[A/X]{B[A/X]}K = J(t{B})[A/X]K.

• Let r = ∑n
i=1

ni
di
.r i . J∑n

i=1
ni
di
.r iK[A/X] = πA(∑n

i=1mi.Jr iK) [A/X] = πA(∑n
i=1 mi.Jr iK[A/X])

IH
=

πA(∑n
i=1 miJr i [A/X]K) = J∑n

i=1
ni
di
.r i [A/X]K = J(∑n

i=1
ni
di
.r i)[A/X]K.

2. We proceed by induction onr .

• Let r = xA. JxAK[JsK/x] = xA[JsK/x] = JsK = JxA[s/x]K.
• Let r = yA, JyAK[JsK/x] = yA[JsK/x] = yA = JyAK = JyA[s/x]K.

• Let r = λyB.t. JλyB.tK[JsK/x] = λyB.JtK[JsK/x]
IH
=

λyB.Jt[s/x]K = JλyB.t[s/x]K = J(λyB.t)[s/x]K.
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• Let r = t1t2. Jt1t2K[JsK/x] = Jt1K[JsK/x]Jt2K[JsK/x]
IH
= Jt1[s/x]KJt2[s/x]K = Jt1[s/x]t2[s/x]K =

J(t1t2)[s/x]K.

• Let r = ΛX.t, JΛX.tK[JsK/x] = ΛX.JtK[JsK/x]
IH
= ΛX.Jt[s/x]K = JΛX.t[s/x]K = J(ΛX.t)[s/x]K.

• Let r = t{B}. Let FV(s) = ~X and~Y be a set of free variables such thats[~Y/~X][~X/~Y] = s.

Then,Jt{B}K[JsK/x] = JtK{B}[JsK/x] = JtK[Js[~Y/~X]/xK]{B}[~X/~Y]
IH
= Jt[s[~Y/~X]/x]K{B}[~X/~Y]

= Jt[s[~Y/~X]/x]{B}K[~X/~Y]
item 1
= Jt[s[~Y/~X]/x]{B}[~X/~Y]K = J(t{B})[s/x]K.

• Let r = ∑n
i=1

ni
di
.r i . J∑n

i=1
ni
di
.r iK[A/X] = πA(∑n

i=1mi.Jr iK) [A/X] = πA(∑n
i=1 mi.Jr iK[A/X])

IH
=

πA(∑n
i=1 miJr i [A/X]K) = J∑n

i=1
ni
di
.r i [A/X]K = J(∑n

i=1
ni
di
.r i)[A/X]K.

Theorem 4.6. If r →∗ ∑n
i=1 pi .t i , with t i in Algp

F , with ∑n
i=1 pi = 1 and Jt iK →

∗ si , thenJrK →∗ si with

probability pi
(

∑n
j=1 p j

)−1
in λ p

+.

Proof. Let r : A in Algp
F . For i = 1, . . . ,n, assumepi =

ni

di
with ni ,di ∈N∗. We proceed by a case analysis

on the last reduction step to reach∑n
i=1 pi .t i .

• If r = ∑n
i=1 pi .t i , thenπA(∑n

i=1(∏
n
k=1
k6=i

dkni).Jt iK) →
∗ πA(∑n

i=1(∏
n
k=1
k6=i

dkni).s′i) By Theorem4.1, this

term reduces in one step tos′i with probability

∏n
k=1
k6=i

dkni

∑n
i=1

(

∏n
k=1
k6=i

dkni

) =






ni

di

∑n
i=1

ni

di




 .

(
∏n

k=1 dk

∏n
k=1 dk

)

= pi

(
n

∑
j=1

p j

)−1

.

• Consider 1.r ⇄ r , with r = ∑n
i=1 pi .t i . We have,J1.rK= πA(1.JrK)→∗ πA(1.s), which reduces with

probability one tos. Notice thats is a reduct ofJ∑n
i=1 pi .t iK = πA(∑n

i=1mi.Jt1K). We conclude with
Theorem4.1.

• Consider
(

∑n
i=m+1 pi.t i

)
+(∑m

i=1 pi .t i) ⇄ ∑n
i=1 pi .t i , with 1≤ m< n. Sincer : A, then eacht i : A.

We have,

J
n

∑
i=m+1

pi .t i +
m

∑
i=1

pi.t iK = πA

(
n

∑
i=m+1

mi.Jt iK+
m

∑
i=1

mi.Jt iK

)

⇄ πA

(
n

∑
i=1

mi .Jt iK

)

.

wheremi = ∏n
k=1
k6=i

dkni . We conclude with Theorem4.1.

• ConsiderλxA.(r + s) ⇄ λxA.r + λxA.s. We haveJλxA.(r +s)K = λxA.(Jr +sK) = λxA.πA(JrK+
JsK)→∗ λxA.πA(r ′+ s′) By Theorem4.1, λxA.πA(r ′+ s′) reduces toλxA.r ′ (which is a reduct of
JλxA.rK = λxA.JrK), with probability 1

2, and toλxA.s′ (which is a reduct ofJλxA.sK = λxA.JsK),
with probability 1

2.

• Consider(λxA.r) s →֒ r [s/x], with r [s/x] = ∑n
i=1 pi .t i . Then J(λxA.r) sK = (λxA.JrK) JsK →֒

JrK[JsK/x] which, by Lemma4.5(2), is equal toJr [s/x]K = J∑n
i=1 pi .t iK and this, by definition is

equal toπA

(

∑n
i=1(∏n

k=1
k6=i

dkni).Jt iK

)

. We conclude with Theorem4.1.

• Consider(ΛX.r){A} →֒ r [A/X], with r [A/X] = ∑n
i=1 pi .t i . Then, JΛX.r{A}K = ΛX.JrK{A} →֒

JrK[A/X], which by Lemma4.5(1) is equal toJr [A/X]K= J∑n
i=1 pi.t iK= πA

(

∑n
i=1(∏

n
k=1
k6=i

dkni).Jt iK

)

.

We conclude with Theorem4.1.
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• Considerp.q.r →֒ pq.r . Let p.q.r : A. Sincepq.r = ∑n
i=1 pi.t i with ∑n

i=1 pi = 1, we haven = 1
and pq= p1 = 1. Also, sincep.q.r is a term,p = q = 1. So, we haveJ1.1.rK = πA(1.J1.r K) =
πA(1.πA(1.JrK)) →∗ πA(1.πA(1.s)) Notice that this term reduces with probability 1 toπA(1.s),
which is a reduct ofπA(1.JrK) = J1.rK.

• Considerp.(r1 + r2) →֒ p.r1 + p.r2. Sincep.r1 + p.r2 = ∑n
i=1 pi .t i , with ∑n

i=1 pi = 1, we have
n= 2 andp= 1

2, however in such case12.(r1+ r2) is a pseudo-term, not a term.

• Considerp.r +q.r →֒ (p+q).r . Since(p+q).r = ∑n
i=1 pi .t i , with ∑n

i=1 pi = 1, we haven= 1 and
p+q= 1. Letp= m

d , thenq= d−m
d . So,Jp.r +q.rK= πA(dm.JrK+(d(d−m)).JrK) →֒ πA(d2.JrK),

which reduces with probability 1 tos, whereJrK →∗ s.

• Contextual rules are straightfoward.

4.5 Back from λ p
+ to Algp

F

The inverse translation is given by

LxAM = xA LrsM = LrMLsM Lr{A}M = LrM{A}
LλxA.rM = λxA.LrM LΛX.r M = ΛX.LrM Lr +sM = LrM+ LsM
If πA(t) →֒ si with probability pi, for i = 1, . . . ,n, LπA(t)M = ∑n

i=1 pi.LsiM

Remark4.7. This translation does not admit translating a term of the form πA(t) in normal form. More-
over, letΠ be the rule “πA⇒B(r)s⇄ πB(rs) with r : A⇒ (B∧C)”, then the translation keep reductions,
except for the one using ruleΠ, as expressed in Theorem4.9.

Lemma 4.8.

1. LrM[A/X] = Lr [A/X]M 2. LrM[LsM/x] = Lr [s/x]M

Proof. Both items follow by induction onr . CasesxB, λxB.t, t1t2, ΛY.t andt{B} are analogous to those
in proof of Lemma4.5. Hence we only need to verify the caseπB(t), whenr →֒ r i with probability pi ,
for i = 1, . . . ,n.

1. LπB(t)M[A/X] = (∑n
i=1 pi.Lr iM)[A/X] = ∑n

i=1 pi .Lr iM[A/X], which by the induction hypothesis, is
equal to∑n

i=1 pi .Lr i [A/X]M = LπB[A/X](t[A/X])M = L(πB(t))[A/X]M.

2. LπB(t)M[s/x] = (∑n
i=1 pi .Lr iM)[s/x] = ∑n

i=1 pi .Lr iM[s/x], which by the induction hypothesis, is equal
to ∑n

i=1 pi .Lr i [s/x]M = LπB(t[s/x])M = L(πB(t))[s/x]M.

Theorem 4.9. Let r ,s,si in λ p
+.

• If r ⇄ s, thenLrM ⇄ LsM.

• If r →֒ s, with probability1, thenLrM →֒ LsM, except if the reduction is done by ruleΠ.

• If r →֒ si with probability pi , for i = 1, . . . ,n, thenLrM = ∑n
i=1 pi .LsiM.

Proof. Case by case analysis.

• Considerr +s⇄ s+ r . Notice thatLr +sM = LrM+ LsM ⇄ LsM+ LrM = Ls+ rM.

• Consider(r +s)+ t ⇄ r +(s+ t). Notice thatL(r +s)+ tM= (LrM+LsM)+LtM⇄ LrM+(LsM+LtM) =
Lr +(s+ t)M.
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• Consider(r +s)t ⇄ rt +st. Notice thatL(r +s)tM = (LrM+ LsM)LtM ⇄ LrMLtM+ LsMLtM = Lrt +stM.

• ConsiderλxA.(r +s) ⇄ λxA.r +λxA.s. Notice thatLλxA.(r +s)M = λxA.(LrM+ LsM) ⇄ λxA.LrM+
λxA.LsM = LλxA.r +λxA.sM.

• Consider(λxA.r)s →֒ r [s/x]. Notice thatL(λxA.r)sM = (λxA.LrM)LsM →֒ LrM[LsM/x], and this, by
Lemma4.8(2), is equal toLr [s/x]M.

• Consider(ΛX.r){A} →֒ r [A/X]. Notice thatL(ΛX.r){A}M = ΛX.LrM[A/X] →֒ LrM[A/X], and this,
by Lemma4.8(1), is equal toLr [A/X]M.

• ConsiderπA(∑n
i=1mi .r i +s) →֒ r i with probability mi

∑n
j=1 mj

, wherer i : A ands6 : A are closed normal

terms. Notice that, by definition,LπA(∑n
i=1 mi.r i +s)M = ∑n

i=1
mi

∑n
j=1 mj

.Lr iM.

5 Conclusion

In this paper we have defined a probability space on the execution traces of non-confluent abstract rewrite
systems. We define a sample space on strategies deciding the rewrite to apply at each state (cf. Defini-
tion 2.2).

Our main motivation has been to be able to use this probability space in non-deterministic calculi,
hence being able to encode a probability superposition of the kindα .t +β .r , with α +β = 1, as a term
having probabilityα of rewriting to t and probabilityβ of rewriting to r . As an example, we provided
such an encoding from an algebraic calculus into a non-deterministic calculus.
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