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We present an embedded DSL to support adaptation-based programming (ABP) in Haskell. ABP is
an abstract model for defining adaptive values, calledadaptives, which adapt in response to some
associated feedback. We show how our design choices in Haskell motivate higher-level combinators
and constructs and help us derive more complicated compositional adaptives.

We also show an important specialization of ABP is in supportof reinforcement learning con-
structs, which optimize adaptive values based on a programmer-specified objective function. This
permits ABP users to easily define adaptive values that express uncertainty anywhere in their pro-
grams. Over repeated executions, these adaptive values adjust to more efficient ones and enable the
user’s programs to self optimize.

The design of our DSL depends significantly on the use of type classes. We will illustrate, along
with presenting our DSL, how the use of type classes can support the gradual evolution of DSLs.

1 Introduction

Programmers are often faced with the situation where it is not clear how to best write a program that
optimizes an objective of interest. For example, consider designing an intelligent opponent for a real-
time strategy game. Computer-controlled opponents are typically quite weak and predictable compared
to an experienced human. This is not too surprising since it is very difficult for a programmer to anticipate
all situations that will occur and to specify the best courseof action in each case.

As yet another example, consider trying to optimize the runtime of a satisfiability solver or other
type of constraint solver. There are many decision points insuch programs, and the best way to make
the decisions, with respect to runtime, depends very much onthe distribution of inputs to the program.
Often this distribution is not known to the programmer and/or it may change over the lifetime of the
program. Even if the distribution were known, the task of designing the best set of decision heuristics is
quite daunting and will often result in significant sub-optimality. Unfortunately, standard programming
paradigms offer the programmer no choice but to completely specify all such choices before program
execution.

As another example, in the development of network control software it is difficult to write complete
programs that achieve close to optimal performance. This isdue to the dynamic, stochastic nature of
networks leading to uncertainty about the best values of parameters.

In this paper, we explore an embedded DSL to expressadaptation-based programming (ABP). In
ABP, a programmer writes “adaptive programs” where they areallowed to explicitly specify their uncer-
tainty by including “adaptive values” at the program pointswhere they do not know the best course of
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action. In place of specifying a concrete course of action, the programmer will be required to specify
an objective function that provides feedback about the quality of program executions. Given such an
adaptive program, the adaptive values will then be automatically adapted across program executions in
an attempt to optimize the specified objective. For example,the objective might be score in a real-time
strategy game, and the adaptive values might dictate which of some number of strategies to employ in
a specific game situation, or program runtime might be the objective, and the adaptive values dictate
choices among different data structures and/or algorithmic choices. Provided that adaptive programs
can be optimized in an effective, automatic way, the ABP paradigm has the potential to save significant
development time and produce closer to optimal program performance.

In the context of this paper, Haskell serves as an appropriate host language for our embedded DSL.
Haskell provides abstractions that facilitate the easy experimentation with language ideas. Its type system
forces us to be precise in the description of language constructs while offering enough flexibility to
describe elements in their most general form. In particular, type classes together with type functions [19]
provide an elegant way of formulating the notion of adaptivevalues.

Our DSL is defined around a type class and multiple functions that transform and operate on instances
of it. Programs of the DSL consist of instances of this type class and allow the user to specify uncertainty.
We also provide template DSL programs for common patterns inthe form of generic instances such as
adaptive pairs and functions as well as operations supporting various patterns of evolution and adaptation.

As outlined in Section 7 there has been a small amount of priorwork in the Artificial Intelligence
community on ABP under various names, most notably partial programming [4]. However, ABP has
not yet been studied as a general programming paradigm from aprogramming-language perspective. It
has been employed only by Artificial Intelligence experts ona limited number of problems. This paper
formalizes the ABP paradigm through an executable definition in Haskell. This formalization is also
likely to suggest unforeseen usage patterns of ABP. The maincontributions of this paper include:

(1) Identification of adaptive values as a foundation for adaptation-based programming and their formal-
ization through a corresponding Haskell type class.

(2) The definition of specific instances of adaptive values, with intuitive interpretations, to be used as
building blocks for adaptive programs. In many cases these building blocks can draw on machine
learning theory to provide formal guarantees regarding their adaptation behavior.

(3) Identification and definition of adaptable computation patterns that are likely to arise in common
practice.

(4) A formal convergence result for that provides a guarantee for the convergence and optimality of a
specific class of adaptive computations.

(5) A report on some practical experiments that illustrate the potential utility of adaptive programming.

The remainder of this paper is structured as follows. In Section 2 we introduce the notion of adaptive
values and define the interface to adaptive values through type classes. The use of adaptive values to build
adaptive computations is demonstrated in Section 3. We willidentify adaptive computation patterns that
correspond to standard procedures in machine learning and those that are likely to arise in some typical
uses of ABP. In Section 4 we present functions to monitor and control adaptive computations. In Section
5 we present a convergence result and discuss the optimalityof adaptive computations. Section 6 provides
some empirical results for the application of ABP. Related work is discussed in Section 7, and finally
Section 8 concludes and suggests future work.
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2 Adaptive Values

The usual understanding of a value is that of a constant, unchanging object. In contrast, an adaptive
value can change over time. Changes to an adaptive value are determined by feedback gathered from the
context in which it is used.

To facilitate a meaningful, controlled adaptation an adaptive value of typev needs to be represented,
in general, by a somewhat “richer” typea, that is, typea allows the extraction of values of typev, but
also contains enough information to support interesting forms of adaptation.

We calla the representation typeandv thevalue typeof a. The adaptation is controlled by values
of another typef, called thefeedback typeof a. In the following we call an adaptive valueadaptivefor
short to avoid ambiguities between an adaptive value and the“value of an adaptive value”, that is, we
simply say thatx :: a is an adaptive andvalue x :: v is the value of (the adaptive)x (value will
be defined in Section 2.1).

In Section 2.1 we describe the definition and examples of basic adaptives, that is, adaptives defined
directly on specific representation types. In Section 2.2 wediscuss obvious ways of obtaining compound
adaptives through derived instances for type constructors. A particularly useful instance of this is the
derived instance for function types that leads tocontextual adaptivesto be discussed in Section 2.3. In
Section 2.4 we describe how to construct new adaptives through nesting.

2.1 Defining Adaptives

The described concept of adaptives can be nicely captured bythe following Haskell type class.

class Adaptive a where

type Value a

type Feedback a

value :: a -> Value a

adapt :: Feedback a -> a -> a

This class constitutes the core of our DSL: the operationvalue retrieves the current value from the
representation, and the functionadapt takes a feedback value and an adaptive and produces a new
adaptive. We represent points of uncertainty in our programas instances of this class.

To define an adaptive representation type, a programmer has to provide an instance definition for the
classAdaptive, which requires

• implementations for the functionsvalue andadapt, and
• a definition of the corresponding value and feedback types

The value and feedback types are associated with the representation typea through the type functions
Value andFeedback, which allows a large degree of flexibility in defining the adaptive behavior [19].

There are more things that we ultimately might want to store for adaptive values for practical purposes
(for example, statistics about usage, feedback, and adaptation/adaptive behavior). We will consider this
aspect later in Section 4.

As a simple example program we consider a form of incrementallinear regression. In particular, we
want to learn the equation of a liney=mx+b given a sequence of sample data points(x1,y1),(x2,y2), . . ..
The goal is to converge to anmandb that minimize the squared error of predictingyi givenxi .

The adaptive for this example could be defined as follows. First, we define the slope/intercept repre-
sentation of lines.
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type Slope = Double

type Intercept = Double

data Line = L Slope Intercept

type Point = (Double,Double)

Based on this representation we can define the line adaptive as follows.

instance Adaptive Line where

type Value Line = Line

type Feedback Line = Point

value = id

adapt (x,y) (L m b) = L m’ b’

where m’ = m + eta*x*(y - y0)

b’ = b + eta*(y - y0)

y0 = m*x + b

eta = 0.01

We can observe that the value of this particular adaptive is just the same as the representation. The
feedback is provided in the form of individual points, each of which leads to an update of slope and
intercept as defined by the expressions form’ andb’. The valueeta represents the learning rate, which
is how much new inputs influence the adaptation.

As another example, consider the game of Rock-Paper-Scissors, in which two players simultaneously
choose one of three valuesRock, Paper, or Scissors, trying to beat the opponent.

data Move = Rock | Paper | Scissors

The winning move against each move is defined by the followingfunctionwin.

win :: Move -> Move

win Rock = Paper

win Paper = Scissors

win Scissors = Rock

It turns out that, given a fixed opponent, this game is a specific instance of a so-called “multi-armed
bandit” problem. This is a classic problem, first described by Robbins [17], which captures the essential
elements of many experimental design problems, among others. The problem can be viewed as modeling
the process of playing a slot machine with multiple arms, where each arm has an unknown distribution
over random payoffs. At each time step the player must selectan arm to pull based on information
gathered from previous pulls, upon which a randomized return from the selected arm is received. The
goal is to develop an arm-pull strategy that maximizes some measure of the expected payoff sequence
over time, e.g. maximizing the expected temporally-averaged payoff. In the case of Rock-Paper-Scissors
with a fixed opponent strategy, the arms correspond to the selection of either rock, paper, or scissors, and
the payoff reflects whether the selected move won or lost against the selection of the opponent at that
time step.

A good bandit strategy must balance the exploitation-exploration tradeoff, which involves deciding
whether to exploit the current knowledge and pull the arm that currently looks best, or to explore other
arms that have been tried fewer times in the hope of discovering higher payoffs.

There are well known lower bounds on the performance of the best possible strategy and bandit
strategies that achieve those bounds asymptotically [11].More recent work [5] has developed an upper
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confidence bound (UCB) strategy, which was shown to achieve the lower bound uniformly over all finite
time periods. Below, we describe a multi-armed bandit adaptive based on UCB.

In our representation of a multi-armed bandit we store a map that gives for each arm how often it
was pulled and the total rewards collected with it. The representation is parameterized by the type used
to represent the bandit’s arms.

type Reward = Float

type Pulls = Int

data Bandit a = Bandit (PlayMap a)

type PlayMap a = [(a,Pulls,Reward)]

The definition of the bandit adaptive has to return arm values(of typea) as values. The feedback is the
arm that was pulled last together with a reward that will be added to the total reward of that arm in the
map.

We define the helper functionupdPM to update the play map for a given arm in some generic way.

updPM :: Eq a => (ArmInfo a -> ArmInfo a) -> a -> PlayMap a -> PlayMap a

updPM _ _ [] = []

updPM f x (a:as) | fst3 a==x = f a:as

| otherwise = a:updPM f x as

fst3 (x,_,_) = x

With these definitions we can define a multi-armed bandit as aninstance of an adaptive.

instance Eq a => Adaptive (Bandit a) where

type Value (Bandit a) = a

type Feedback (Bandit a) = (a,Reward)

adapt (a,r) (Bandit m) = Bandit (addReward r a m)

where addReward :: Eq a => Reward -> a -> PlayMap a -> PlayMap a

addReward x = updPM (\(a,p,r)->(a,p+1,r+x))

What remains to be defined is thevalue method, for which we use the UCB bandit algorithm. This ap-
proach first selects any arm that has not been pulled before, which is achieved by the functionzeroPulls,
and otherwise selects the arm with the highest upper confidence bound. This measure is defined for an
arm i that has been pulledni times and has a reward sum ofr i asr i/ni +

√

logn/ni wheren= ∑i ni .

value (Bandit m) = a

where ((a,_,_,):_) = zeroPulls ++ sortDesc ucb m

zeroPulls = filter ((==0) . pulls) m

n = fromIntegral (sum (map pulls m))

ucb (_,p,r) = r/ni + sqrt (log n/ni) where ni = fromIntegral p

pulls (_,p,_) = p

The above function extracts arma by first choosing any arm that has not been pulled (fromzeroPulls).
If all arms have been pulled, then it chooses the maximum value according to the UCB computation given
above. The functionsortDesc sorts a list in descending order of values as obtained by the parameter
functionucb.

It is illustrative to note how the above UCB-based implementation ofvaluemanages the exploration-
exploitation tradeoff. Assuming that all arms have been pulled at least once, the decision is based on
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the upper confidence bound, which is composed of two terms. The first termr i/ni can be viewed as
encouraging exploitation since it will be larger for arms that have been observed to be more profitable
on average. Conversely, the second term encourages exploration since it grows with the total number of
arm pulls, causing it to overwhelm the first term if an arm has not been pulled very often. However, the
exploration term vanishes very quickly for an arm as its number of pulls increases causing its evaluation
to be based solely on its observed returns. The result is thatlow-payoff arms tend to get fewer pulls than
those with higher payoffs over time, as desired.

TheBandit instance is a generic operation in our DSL, it can be utilizedby many consumer pro-
grams. We illustrate one such use by coming back to our Rock-Paper-Scissors example and instantiating
the bandit as an adaptive strategy for playing the game.

type Strategy = Bandit Move

initStrat :: Strategy

initStrat = Bandit [(m,0,0) | m <- [Rock, Paper, Scissors]]

We can use the following functionscore to translate wins and losses into numerical feedback.

score :: Move -> Move -> Int

score m m’ | win m == m’ = -1

| win m’ == m = 1

| otherwise = 0

We can then pairinitStrat with other strategies and observe how it adapts guided by thefeedback
values produced fromscore applied to the moves produced byvalue and the opponent’s move. We
will do this in Section 3 where we will identify and define adaptation computation patterns that allow
us to define applications (such as, line regression or Rock-Paper-Scissors tournaments) that employ the
defined adaptives.

One final note regarding the feedback employed for the multi-armed bandit: The theoretical opti-
mality result assumes the rewards are in the range[0..1]. To adjust theBandit adaptive to the feedback
produced byscore we just needed to multiply thesqrt term by 2. However, in this example the optimal
behavior is not affected even if we don’t scale the rewards since all we are interested in is average reward.

2.2 Derived Adaptives

We define adaptation of generic structures in DSL by defining derived instances ofAdaptive. This gives
us instances of for adaptives for many common patterns in adaptive programs.

As a first example, we define a derived instance ofAdaptive for pairs, which realizes the parallel
adaptation of two values in a synchronized fashion.

instance (Adaptive a,Adaptive b) => Adaptive (a,b) where

type Value (a,b) = (Value a,Value b)

type Feedback (a,b) = (Feedback a,Feedback b)

value (x,y) = (value x,value y)

adapt (u,v) (x,y) = (adapt u x,adapt v y)

One example use of this is the parallel adaptation of two competing or even cooperating adaptive strate-
gies in a game. For instance, an AI or agent might have two goals that need to be satisfied concomitantly.
Then twoBandits, one adapting to each goal automatically form a more complex agent that addresses
both with no additional programming.
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Another example use of this particular construct will be given in Section 3 where we can derive a
co-evolution computational pattern from a simple evolution pattern by using this class instance definition.

We can also obtain anAdaptive definition for lists. In this definition, each adaptive’s feedback value
is used exclusively for that adaptive.

instance Adaptive a => Adaptive [a] where

type Value [a] = [Value a]

type Feedback [a] = [Feedback a]

value = map value

adapt = zipWith adapt

This definition can be generalized to anyFunctor type constructor, because we can easily define a
correspondingfzipWith function.

2.3 Contextual Adaptives

A frequent scenario is to extend a given adaptive by context.For example, the best arm to pull for a
multi-armed bandit may depend on the time of day. Such a context extension can be very conveniently
achieved through the derivedAdaptive instance for function types. The idea is to turn an adaptive
for some typea into an adaptive for functions from some contextc into a. The value type of such an
adaptive function is a function from context into values of the original adaptivea, and feedback is given
by feedback fora enriched by context information. Contextual adaptive values are obtained in two steps.
First, apply the function to contextual informationx, and then extract the value of that result. Adaptation
based on a feedback(x,v) constructs an updated function that overrides inputx to map to the adapted
result of(f x) with feedbackv. All other inputs are delegated to the old function. This definition
illustrates that the functional adaptive essentially maintains a number of separate copies of the original
adaptive.

instance (Eq c,Adaptive a) => Adaptive (c -> a) where

type Value (c -> a) = c -> Value a

type Feedback (c -> a) = (c,Feedback a)

value f = \x->value (f x)

adapt (x,v) f = \y->if x==y then adapt v (f x) else f y

The definition forvalue could be given more succinctly as(value .), but we think the above definition
is easier to understand and explains better what is going on.

This derived instance effective expands our DSL to support function types transparently.
Note that thisAdaptive instance definition can be easily generalized to a whole class of context

type constructors, of which-> is one example. A mapping type is another example, which might be
preferable for efficiency reasons.

As a concrete example we can add a player context to the multi-armed bandit representing the Rock-
Paper-Scissors player, which then allows the adaptive to learn different strategies against different play-
ers.

data Opponent = Jack | Jill deriving Eq

flexible :: Opponent -> Strategy

flexible = \_ -> initStrat
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Note that this context-dependent strategy is obtained for free since it is based on the automatically derived
instance ofAdaptive for function types. For either player, the initial strategyis used, but as the function
receives feedbacks it will adapt more specialized strategies for each player (input).

2.4 Nested and Recursive Adaptives

Another way in which adaptives can be combined into more complex adaptives is through nesting, that
is, the value of one adaptive is another adaptive. In such a nested adaptive, value selection and adaptation
happens on two levels. While an “ordinary” adaptive represents an evolving decision, a nested adaptive
represents a sequence of such decisions.

To work effectively with nested adaptives it is not sufficient to simply place one adaptive as a value
into another one, because adaptation of the nested adaptives would be impossible. Theadapt function
for the outer adaptive would simply adjust the selection of the nested adaptive. Although a nested adap-
tive that is obtained by thevalue function of the outer adaptive can be adapted, there is no mechanism
to put this changed adaptive back into the outer one.

Therefore, we define a subclass ofAdaptive, calledDedaptive, to representdependent adaptives.
These contain an extended value functionvalueCtx, which returns the value plus the context where it
was found. This context is a function that allows the value, or an adapted version of it for that matter,
to be put back into the containing adaptive. The class also contains a functionpropagate that allows
the derivation of feedback for the outer adaptive from feedback for the nested one. The additional first
parameter of typea serves two purposes: First, it is needed to resolve the overloading ofpropagate,
and second it provides a context of values to properly derivefeedback, because in some situations, the
feedback type contains more than just an external value, butalso information related to the adaptive type.

class (Adaptive a,Adaptive (Value a)) => Dedaptive a where

valueCtx :: a -> (Value a,Value a -> a)

propagate :: a -> Feedback (Value a) -> Feedback a

Note that the dependency in nested adaptives goes both ways:The nested adaptive depends as a value
on the outer adaptive, while the outer adaptive’s adaptation is in part controlled, throughpropagate, by
the nested adaptive.

As an example we can consider a nested multi-armed bandit. The nested bandit could be a Rock-
Paper-Scissors game or actually a gambling machine, while the outer bandit could represent, for example,
the decision at which time to play.

In the instance definition ofDedaptive, the functionvalueCtx is based on the outervalue function
to find the value. The context is then simply obtained by isolating that value in a list and producing a
function that can insert an element in its place. Since the feedback for a bandit of typea is given by
values of type(a,Reward), we can produce feedback for the outer bandit simply by pairing the reward
provided for the nested one with the current value of the outer one.

instance (Eq a,Eq (Bandit a)) => Dedaptive (Bandit (Bandit a)) where

valueCtx b@(Bandit m) = (a,\y->Bandit (xs++(y,p,r):ys))

where a = value b

(xs,(_,p,r):ys) = break ((==a).fst3) m

fst3 (x,_,_) = x

propagate b (_,r) = (value b,r)

We can now create a nested adaptive as follows.
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dependent :: Bandit Strategy

dependent = Bandit [(initStrat,0,0),(initStrat,0,0)]

It seems thatdependent is very similar toflexible, and in fact, we can simulate contextual adaptives
by nested adaptives. However, nested adaptives are more general since we can nest different adaptives
(of the same type) if we want, which is not possible for contextual adaptives. This situation is reminiscent
of the relationship between dependent and independent products in type theory [22].

Nested adaptives also raise the question of “nested values”, that is, when we want to get the value of
a dedaptive, we in many cases do not want to have the immediatevalue, which is itself an adaptive, but
rather the “ultimate” value, that is, the value of the nestedadaptive. This can be easily computed by the
functionnestedValue.

nestedValue :: Dedaptive a => a -> Value (Value a)

nestedValue = value . value

3 Programs for Adaptive Computation

The idea behind our adaptation DSL is the gradual evolution of values to improve a programmatic solu-
tion to a problem. This view requires that an adaptive computation, that is, a computation that contains
adaptive values, is performed repeatedly so that feedback,often obtained from the results of the compu-
tation, is used to evolve the adaptives employed in the computation.

Under this view, an adaptive computation has to contain (repeated) calls toadapt functions, and
we can distinguish different adaptive computation patterns based on the relationship of these adaptation
steps with other computations.

One of the most basic adaptation operations in our DSL is given by theadapt function itself, namely
the one-step adaptation of an adaptive. More complex patterns can be obtained by considering different
forms of repeated adaptation.

What is the result of an adaptive computation? Is it the final adaptive or the trace of values that can be
obtained from the list of all intermediate adaptives, or both, or something else entirely? For generality we
define combinators for adaptive computation patterns to return the list of all adaptives produced during
the adaptation. From this list we can easily obtain the final adaptive through the list functionlast or the
trace of represented values through the functionvaluesOf, which is defined as follows.

valuesOf :: Adaptive a => [a] -> [Value a]

valuesOf = map value

Other inspection and debugging functions for sampling or aggregating can be added quite easily through
ordinary list processing functions.

3.1 Adaptation Combinators

One of the most basic adaptation patterns is to train an adaptive by a list of training values analogous to
supervised learning [8]. This is realized by the functiontrainBy below.

trainBy :: Adaptive a => a -> [Feedback a] -> [a]

trainBy = scanl adaptBy

adaptBy :: Adaptive a => a -> Feedback a -> a

adaptBy = flip adapt
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Thescanl function returns a list of all intermediate results as a leftward fold is applied to a list. Here it
will adapt an initial adaptive in sequence and return the list (stream) of all intermediate adaptives.

A more dynamic scenario is captured by the functionevolve that uses its function parameter to
compute feedback from the values of an adaptive.

evolve :: Adaptive a => (Value a -> Feedback a) -> a -> [a]

evolve f x = x:evolve f (x ‘adaptBy‘ (f (value x)))

The functionevolve represents a form of online learning [8] where the adaptive can be viewed as
alternating between making a decision (producing a value),getting feedback, and then adapting. The
bandit problem is a classic example of online learning, though there are many other instances in the
literature.

A generalization ofevolve is obtained by evolving two adaptives in parallel where the values of
both adaptives are the basis for feedback to either one of theadaptives. This definition makes use of
the Adaptive instance for pairs shown in Section 2.2. The functiondistr makes the values of both
adaptives available to compute feedback.

coevolve :: Adaptive (a,b) => (Value a -> Value b -> Feedback a,

Value a -> Value b -> Feedback b)

-> (a,b) -> [(a,b)]

coevolve = evolve . distr

distr :: (a -> b -> c,a -> b -> d) -> (a,b) -> (c,d)

distr (f,g) (x,y) = (f x y,g x y)

The adaptation pattern defined bycoevolve corresponds to the structure of multi-agent reinforcement
learning [13], an area of reinforcement learning that studies situations where multiple agents are learning
simultaneously, possibly interacting with one another either cooperatively or as adversaries.

As an example we consider the implementation of a Rock-Paper-Scissors tournament. In addition
to players, such asinitStrat described in Section 2.1, we need functions to produce feedback values
from the values of two players. One such function ismyScore.

myScore :: Move -> Move -> (Move,Reward)

myScore x y = (x,score x y)

Since different player adaptives might have other feedbacktypes, we generally need other functions as
well. For example, a simple Rock-Paper-Scissors strategy is to always play the move that wins against
the last move of the opponent.

data BeatLast = BL Move

instance Adaptive BeatLast where

type Value BeatLast = Move

type Feedback BeatLast = Move

value (BeatLast m) = m

adapt m (BeatLast _) = BL (win m)

Recallcoevolve uses the value of both adaptives to produce the corresponding feedback value for the
adaptive. The function below can be used to select the opponent’s move from the previous round and fits
nicely with the above strategy.
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opponent’sMove :: Move -> Move -> Move

opponent’sMove _ y = y

Or consider a smarter strategy that plays the move that beatsits opponent’s most frequently played move.
This player maintains a count that each move has been played.

data Max = MP [(Move,Int)]

deriving Show

instance Adaptive Max where

type Value Max = Move

type Feedback Max = Move

value (MP ms) = win (fst (maxWrt snd ms))

adapt m (MP ms) = MP (updF m (+1) ms)

The functionupdF updates a mapping in a list of pairs.

updF :: Eq a => a -> (b -> b) -> [(a,b)] -> [(a,b)]

updF x f [] = []

updF x f ((y,w):as) | x==y = (x,f w):as

| otherwise = (y,w):updF x f as

We can now define players as pairs of adaptive values plus their corresponding feedback-producing
functions.

bandit = (initStrat, myScore)

beatLast = (BL Rock, opponent’sMove)

maxMv = (MP [(m,0) | m<-rps], opponent’sMove)

To be able to play strategies with their corresponding feedback function against one another, we introduce
the following tournament function.

vs :: (Adaptive b, Adaptive a) =>

(a, Value a -> Value b -> Feedback a)

-> (b, Value b -> Value a -> Feedback b)

-> [(a, b)]

(a,f) ‘vs‘ (b,g) = coevolve (f,flip g) (a,b)

Tournaments can then be played usingvs in the obvious way, for example:

beatLast ‘vs‘ maxMv

This example leads as expected to an overall victory for themaxMv player.

3.2 Recursive Adaptation

In Section 2.4 we have considered nested adaptives, in whichvalue selection and adaptation happens
on two or more levels. While an “ordinary” adaptive represents an evolving decision, a nested adaptive
represents a sequence of such decisions.

When the number of nesting levels is not fixed and not known in advance, it is difficult to capture
this computational pattern in a single combinator. In that case, adaptation and value retrieval must be
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performed by individual function calls that are integratedinto the recursive structure of an adaptive
algorithm.

As an example we consider the problem of learning a combination of sorting methods. The idea is
based on the observation that for a specific kind of lists, onesorting method performs better than others.

To learn a combination of sorting algorithms we have to abstract some property of lists and store
costs or rewards for each sorting method under consideration in a table indexed by that property. Since
some sorting methods are recursive, this will lead to a recursive adaptation process in which potentially
different sorting methods can be chosen based on the respective properties of lists decomposed during
the sorting recursion.

For simplicity we consider here the length of the list as a property.1 We can build this adaptive table
in two steps. First, we define an adaptive for sorting methods, from which we can then create a table by
adding the list size as context, as demonstrated in Section 2.3.

data SortAlg = MSort | ISort

type Cost = Double

data Action = Action [(SortAlg,Int,Cost)]

The base adaptive for sorting algorithms has essentially the same structure as a multi-armed bandit (see
Section 2.1): It stores the number each method was chosen together with the cost (representing running
time). Here we consider two methods, namely insertion sort and merge sort.

The Adaptive instance definition forAction is also very similar to that ofBandit. The only
differences are thatvalue selects the smallest entry (that is, the on average fastest sorting method) and
thatadapt updates a running average of costs via theupdAvg function. We also choose any action not
sufficiently explored attempted (8 is used as cutoff to decide this).

instance Adaptive Action where

type Value Action = SortAlg

type Feedback Action = (SortAlg,Cost)

value (Action as)

| null unexplored = fst3 $ minWrt thd3 as

| otherwise = fst3 $ head unexplored

where unexplored = filter (\a -> snd3 a < 8) as

adapt (a,c) (Action as) = Action $ updF3 a

(\(a’,f’,c’) -> (a’, f’ + 1, runAvg f’ c’ c)) as

The functionrunAvg updates a running average,minWrt selects the minimum element with regard to
some criteria in our case the average time a sorting method takes, andupdF3 remaps a specific triple in
a list.

1We actually use the square root of the list length to keep the size of the table reasonable.
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runAvg f c’ c = (fd * c’ + c) / (fd + 1)

where fd = fromIntegral f

minWrt :: Ord b => (a -> b) -> [a] -> a

minWrt f = head . sortBy (\x y->compare (f x) (f y))

updF3 :: Eq a => a -> ((a,b,c) -> (a,b,c)) -> [(a,b,c)] -> [(a,b,c)]

updF3 x f [] = []

updF3 x f (a:as) | x == fst3 a = f a : as

| otherwise = a : updF3 x f as

To support unlimited recursive adaptives, we use the adaptive as the state of a state monad, which can
then be used to thread adaptives through arbitrary computations. To facilitate the computation of actual
timings for the given application, we use a state monad transformer that encapsulates theIO monad. The
following general definition of a Q-table [21] abstracts from the concrete types for state/context (s) and
actions (a).

type QTable s a r = StateT (s -> a) IO r

Note that the state of the state transformer monad is a function that represents a contextual adaptive. For
our example we have as an adaptive a function from list sizes to sorting method adaptives.

type Size = Int

type ASort r = QTable Size Action r

asort :: Size -> [Int] -> ASort [Int]

asort n xs =

do let s = isqrt n

q <- readTable

let m = value q s

t <- readTime

ys <- case m of

ISort -> isort n xs

MSort -> msort n xs

forceEval ys

t’ <- readTime

modify (‘adaptBy‘ (isqrt n,(m,t-t’)))

return ys

Adaptation sort takes as input a listxs and its sizen, which is used to select the best sorting method for
the list. First, the Q-table is read from the state using the functionreadTable, which is simply another
name for the state monad functionget that retrieves the state of the monad. The value of the adaptive
Q-table is the function that maps sizes to sorting methods. Based on the selected sorting methodm,
which is obtained by applying the functionvalue q to the integer square root ofs, we either sort using
insertion sort or merge sort. After forcing the evaluation of the result listys, we adapt the Q-table using
the monadic state updating functionmodify before returning the sorted list.

The recursively called sorting functions are also defined within the context of the monadic adaptive
ASort since, at leastmsort, has to recursively sort sublists (of smaller size). That sorting task should be
performed using the currently best method for those lists, and it should also adapt the information stored
in the Q-table.
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isort :: Size -> [Int] -> ASort [Int]

isort _ xs = return (foldr insert [] xs)

msort :: Size -> [Int] -> ASort [Int]

msort n xs =

if n<2 then

return xs

else

do let k = n ‘div‘ 2

let (us,vs) = splitAt k xs

us’ <- asort k us

vs’ <- asort (n-k) vs

return (merge compare us’ vs’)

In Section 6 we report some concrete timing results for this application, and we will present another
application that is also based on recursive adaptation.

3.3 Transactional Adaptations

The adaptive pattern operations considered so far all progressed in a very fine-grained fashion, by tightly
interwoven calls ofvalue andadapt. Although these patterns seem natural there might be cases in
which adaptation is less tightly controlled. For instance it is often convenient for a multi-armed bandit
may to have several arm pulls per reward (adapt) call.

To illustrate this consider the following alternative representation of our multi-armed bandit, which
stores in addition to the map the last pulled arm.

type ArmInfo a = (a,Pulls,Reward)

type PlayMap a = [ArmInfo a]

data Bandit a = Bandit a (PlayMap a)

In order to maintain this representation we have to use a different feedback type that distinguishes two
kinds of feedback: either (a) an arm was pulled, in which casethe corresponding pull counter is increased
and the arm is remembered as the last one pulled, or (b) a reward for the last pulled arm is delivered,
which will be added to the total reward of that arm in the map. These two different forms of feedback
are captured in the following type.

data Play a = Pull a | Reward Reward

This leads to a slightly differentAdaptive instance definition than the one shown in Section 2.1.

instance Eq a => Adaptive (Bandit a) where

type Value (Bandit a) = a

type Feedback (Bandit a) = Play a

adapt (Pull a) (Bandit _ m) = Bandit a (incPulls a m)

adapt (Reward r) (Bandit a m) = Bandit a (addReward r a m)

The functionincPulls increments the number of pulls of the given arm in the map,addReward adds
reward for a given arm. The definition ofvalue remains unchanged and still uses the UCB algorithm
previously described.
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Now consider what happens if we want to implement a Rock-Paper-Scissors strategy on the basis of
this representation and play it against some other strategy. The problem is that it now takestwoadaptation
steps, aPull of an arm and aReward for it, to make a meaningful adaptation transition in the sense of
machine learning. Therefore, we need some form of “big-step” adaptation that can for this example be
derived from the adaptive’s feedback as follows.

bigStep :: Eq a => (a,Reward) -> Bandit a -> Bandit a

bigStep (x,r) b = b ‘transBy‘ [Pull x,Reward r]

transBy :: Adaptive a => a -> [Feedback a] -> a

transBy = foldl adaptBy

The point to observe is that we have converted a value of typeFeedback a into a function of type
a -> a, which means that the big-step adaptation pattern that corresponds totrainBy takes a list of
such functions instead of feedback values.

transformBy :: a -> [a -> a] -> [a]

transformBy = scanl (flip ($))

Consider, for example, an adaptation of the following form.

initStrat ‘trainBy‘ xs

The corresponding adaptation for the changed adaptive could be implemented usingtransformBy in
the following way. HerestratB is the initial bandit value, defined in the same way asinitStrat for
the newBandit type.

stratB ‘transformBy‘ map bigStep xs

As for trainBy we can also produce a big-step version ofcoevolve by generalizing the type of
the argument functions. The result is a function that adaptstwo adaptives based on big-step adaptation
parameter functions that have access to both current adaptives.

cotransform :: Adaptive (a,b) =>

(a -> b -> a,b -> a -> b) -> (a,b) -> [(a,b)]

cotransform (f,g) (x,y) = (x,y):cotransform (f,g) (f x y,g y x)

An example would be the definition of a Rock-Paper-Scissors tournament for adaptives as defined at the
beginning of this section.

4 Monitoring Adaptation Behavior

The lifetime of adaptive programs can often be split into twomajor phases: (i) alearningor adaptation
phasein which adaptives adapt (significantly) and (ii) astable phasein which no or only minor adapta-
tions occur. It might be desirable, for example if we are training an adaptive with predefined feedback,
to be able to detect this transition.

To determine whether an adaptive program is stable requiresto monitor the adaptives. To this end,
we define a typeMonitor and a corresponding functionmonitor to produce observations about the
adaptation behavior.
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type Monitor a b = [a] -> b

monitor :: Adaptive a => Monitor a b -> [a] -> [b]

monitor m = map m . inits

The functioninits produces the list of all prefixes of a given list.
Here is an example monitor that ensures that a particular property holds for the values of thek last

adaptives produced in an adaptation.

ensureLast :: Adaptive a => Int -> ([Value a] -> Bool) -> Monitor a Bool

ensureLast n p xs = length xs >= n &&

p . map value . take n . reverse $ xs

A very simple example property to monitor is whether all the values in a list are the same.

allEq :: Eq a => [a] -> Bool

allEq [] = True

allEq (x:xs) = all (==x) xs

This property can be used to define a simple convergence criterion as follows.

convergence :: (Adaptive a,Eq (Value a)) => Monitor a Bool

convergence = last 3 allEq

Using monitors we can define adaptation combinators that arecontrolled by the monitors.

until :: Adaptive a => [a] -> Monitor a Bool -> [a]

until xs = shiftMonitor ([],xs)

shiftMonitor :: ([a],[a]) -> Monitor a Bool -> [a]

shiftMonitor (xs,[]) m = if m xs then xs else []

shiftMonitor (xs,y:ys) m | m xs = xs

| otherwise = shiftMonitor (xs++[y],ys) m

With until we can now define self-controlling adaptations that adapt until a certain criterion, such as
convergence, is met.

As a concrete example, consider again the linear regressionscenario. We can adapt a linel using a
list of pointsps until the last two lines in the approximation sequence are close enough together, that is,
their difference in slope and intercept is smaller than a specific threshold.

(l ‘trainBy‘ ps) ‘until‘ ensureLast 2 areClose

areClose :: [Line] -> Bool

areClose [L m b,L n c] = max (abs (m-n)) (abs (b-c)) <= 0.001

5 Convergence and Optimality

One of the primary motivations for the ABP framework is to allow for programs to automatically opti-
mize their performance relative to programmer-specified objectives. Thus, it is important to understand
conditions under which an adaptive program might converge to an optimal or approximately optimal
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solution. Convergence of an adaptive program depends on statistical properties of the adaptives and
program inputs, as well as the structure of the program. In general, understanding convergence issues
is quite complex, and we leave the general problem as future work. Instead below we take an initial
step in this direction for a particular type of adaptive usedin a restricted, but powerful, class of adaptive
programs which we will callsingle adaptive recursive functions (SARFs).

The definition of the SARF class of functions is inspired by the structure of the adaptive sorting ex-
ample. Specifically, SARFs are recursive functions that possibly call other functions, with the following
three restrictions:

1. There is a single adaptive in the entire program.
2. The value of the adaptive is used only once in the main function and used nowhere else in the

program.
3. For any instance of the adaptive and any function input, the function will terminate in a finite

amount of time (i.e. no infinite recursion).
4. The feedback is a numeric cost that is a function of the computation that took place during the

function call.

Note that the adaptive sorting function is a SARF, where the feedback corresponds to the time required
for the function to complete execution.

In order to study the convergence of SARF programs, we must first formalize the notion of optimality.
For this purpose, we define optimality with respect to an unknown but fixed probability distributionD
over possible inputs to the SARF. For simplicity, we will also assume that there exists a finite upper
bound such that the probability of inputs larger than the bound is zero. For example, in the adaptive
sorting example,D might be a distribution over random lists up to some maximum size. Given a SARF
P and a distribution over inputsD, we defineC(P,D) to be the expected cost of executingP on inputs
drawn fromD, where cost is as defined inP. We are interested in adaptation processes such thatP will
eventually achieve the optimal cost with high probability after some number of adaptations. In particular,
given an initialP, we consider applyingP to a sequence of inputs drawn fromD, each time allowing it
to adapt, ideally resulting in a version ofP that achieves the optimal expected cost.

Naturally, convergence depends on the choice of adaptive ina SARF. One option would be to use a
contextual bandit adaptive. It turns out that analyzing theconvergence of the resultingP is quite complex
due to the fact that the quality of the decisions at higher levels of the recursion depend on decisions at
lower levels of the recursion, which would always be adapting in the case of contextual bandits. We
conjecture that convergence can be guaranteed for the contextual bandit case, however, we leave it as
future work. Here we define a restricted class of adaptives, called principled adaptives, that allows for
an easier convergence proof.

Intuitively this adaptive will attempt to “learn” the quality of the actions in a context from the bottom
up with respect to the depth of the recursion. Roughly speaking, the principled adaptive can be viewed
as first learning the quality of the actions for contexts corresponding to the recursion base cases. Next,
fixing those contexts to the best decision, learning proceeds to contexts that are one level removed from
a base case. Here the quality of each action is judged conditioned on the fact that the base case decisions
are fixed and ideally optimal. Once these action qualities are learned well enough they are in turn fixed
and learning proceeds one level higher. Note that under thisstrategy action qualities for a context are
only learned, or updated, when lower level decisions are fixed, rather than when the lower level is also
adapting.

More formally, the principled adaptive is similar to the adaptive sorting adaptive in that it is based on
a Q-table. The key difference is the way that it computes values and does the adaptation. The principled
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adaptive is parameterized by an integert, which we will call the learning threshold. Our convergence
results will specify sufficient values of this parameter. First we introduce some terminology. We say that
a context-action pair isstableif it has been updated at leastt times. We say that a context is stable if all
of its actions are stable. Intuitively, we will think of stable context as one where we are quite confident
that we know the correct action to select. Given these definitions we can now specify the value and
adaptation function of the principled adaptive.

The value function returns the action that minimizes the Q-table (best action) if the context is stable,
and otherwise selects the first unstable action in the context. According to this definition, a greedy action
is only returned in a particular context, if all of the actions in that context have been updated at least
t times. In this sense, the value function is aggressive aboutexploring all of the actions equally before
settling on one of them. Now suppose that our SARF has computed a value for the current input, resulting
in a cost that is used as feedback to theadapt function of the principled adaptive. There are two cases
that are handled. In the first case, if any of the recursive calls involved a context that was not stable or the
current context-action pair has already been updatedt times, then no update is performed. Otherwise,
if all recursive calls involved stable contexts then the Q-table is updated based on the feedback for the
appropriate context and action that was selected. This involves updating the average cost observed for
the context-action pair.

Given a SARF with a principled adaptive we must make two assumptions to guarantee convergence.
First, we must assume that there is an ordering of the contexts of the adaptive that strictly descends with
the level of recursion. That is, given a recursive call in context c, all lower-level calls must correspond
to contexts that are ordered lower thanc. In this case, we say that the adaptive has thedescending
context property. This property holds in the adaptive sorting example where list length is the context
and each recursive call decreases the list length. It also holds for our budget optimization problem in
Section 6. The second assumption, is thecall-invariant cost assumption. This assumption means that for
any contextc, if all contexts ordered belowc are assigned fixed actions, then the distribution over costs
observed when taking each action inc is independent of the decisions in the higher-level contexts. In
other words, the recursive path taken to a particular context does not influence the costs of the choices at
that context.

We can now present the convergence result. First note that ifthere areN contexts andA actions, then
the maximum number of Q-table updates that the principled adaptive will perform ist ·N ·A. What our
convergence result states is that with high probability on inputs where no adaptation occurs the optimal
decisions will be made. In the followingε denotes the minimum difference across all contexts between
the expected cost of an optimal action and the expected cost of the second best action with respect to
inputs drawn fromD, andδ is the (user-selected) failure probability of not being optimal.

Theorem 1. Let P be a SARF with principled adaptive that has descending contexts and call-invariant
costs with respect to a fixed input distribution D. If the learning threshold t> 4ε−2 ln NA

δ , then with
probability at least1−δ , P will behave optimally on all but t·N ·A inputs drawn from D.

Proof. (Sketch) First note that the descending contexts assumption can be used to show that whenever an
input results in a computation that goes through a non-stable context that some context-action pair in the
Q-table will be updated. This means that in all other cases the input will only go through stable contexts
and thus all actions selected for those inputs are ones that are best as judged by the Q-table. Below we
argue that with probability at least 1− δ that all such actions will correspond to optimal actions, which
will compute the proof.

Let Q∗(s,a) be the optimal expected cost of actiona in contexts and letQ(s,a) be the cost of the
adaptive forsanda. Recall that whenever the value ofQ(s,a) is updated that the decisions in all lower-
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level contexts have been fixed. Consider the case where all ofthe lower level contexts are fixed at optimal
decisions. Under this assumption and the call-invariance assumption we can use a Chernoff bound2 to
get that aftert updates ofQ(s,a), with probability at least 1−δ ′, |Q∗(s,a)−Q(s,a)| ≤

√

− lnδ ′/t. By
settingδ ′ = δ

CA we guarantee that the bound will hold over allsanda with probability 1−δ . Using this
value and the bound onw from the proposition we get that|Q∗(s,a)−Q(s,a)| < ε

2 with probability at
least 1−δ , which by the definition ofε implies that no sub-optimal action will be ranked higher than an
optimal action.

In the above we assumed that wheneverQ(s,a) is updated all lower-level context made optimal
decisions. Using a proof by induction on the ordering of the contexts it is easy to use the above argument
to prove that in each context the optimal action will look best with probability at least 1− δ , which
completes the proof.

6 Empirical Results

Here we present empirical results for the application of ABPto two well known problems, RL has been
previously applied to: Sorting [10] and budgeted optimization [18]. Our framework is able to naturally
capture both problems, allowing for most of the details of the adaptation process to be hidden from the
programmer.

Adaptive Sorting. Prior work [10] on adaptive sorting used RL to learn to choosebetween quicksort
and insertion sort at each recursion point based on the length of the list. The learned program showed
small gains in average runtime over pure quicksort and insertion sort. We implemented adaptive sort
using the structure shown in Section 3.2 to learn a mixed strategy of insertion sort and merge sort.3 We
trained the algorithm on lists of integers of lengths up to 10000. The learned policy found a cutoff of
just above 300: For lists smaller than that, insertion sort was faster, whereas for lists longer than the
cutoff, merge sort was faster. Next we tested our learned algorithm policies of just merge sort (no cutoff)
and merge sort with cutoffs off 10 and 1000. The learned algorithm was considerably faster than just
mergesort with the other cutoffs we tested. For lists of size10000, we see a speedup of between 1.6 and
2.6. Against merge sort with no cutoff, the learned algorithm is 20 times faster.

An important observation was that the cutoff learned only applies in the environment it was learned.
That is, when we were learning the cutoff we were accessing the system timer and modifying our adap-
tives as we sorted lists. This overhead is necessarily included in the time we record to sort a sublist (in
asort). But if we sort in an environment without this overhead, thelearned cutoff does not apply, and a
different one is optimal. In fact, tests showed a very low cutoff (perhaps none) was fastest if there is no
overhead.

Whenever using time as a cost or reward, one must consider thefact that the timing observations
influence the results. Although our adaptive framework is fairly fast and efficient, the action being timed
(sorting in our case) must be significant compared to this overhead. In this sorting domain, the time to
sort a list was only significant for larger lists.

Adaptive Budgeted Optimization. We consider budgeted optimization where we are given a func-
tion f :Rn →R

m and wish to find the value ofx that minimizes the “squared loss” functionL(x)= | f (x)|2.
Furthermore, we are given a budgetB on the maximum number of times that we are allowed to evalu-
ate f during the optimization process. This situation of budgeted (or time-constrained) optimization

2Given a real-valued random variableX bounded in absolute value byXmax and an averagêX of w independently drawn
samples ofX, the additive Chernoff bound states that with probability at least 1−δ , |E[X]− X̂| ≤ Xmax

√

− lnδ/w.
3We used a tree-based map as a contextual adaptive instead of functions for performance reasons.
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occurs mostly due to real-time performance requirements (for example in computer vision and control
problems).

We consider applying the standard Levenberg-Marquardt (LM) algorithm [12] to this problem. LM
is an iterative optimization algorithm that starts at a random locationx0 and on each iteration evaluates
the function at the currentxi and computes a newxi+1. LM uses a mixture of gradient descent and Gauss-
Newton optimization to computexi+1. The details of this computation are not particularly important other
than the fact that a key component of the algorithm is that each iteration must decide how to best blend
gradient descent and Gauss-Newton, which is done by specifying a blending parameterλ . Marquardt
[15] proposed a simple way to modifyλ by increasingλ by a particular factor (putting more weight
on gradient descent) when the previous iteration increasedthe loss, and decreasingλ otherwise (giving
more weight to Gauss-Newton). Thisλ control works well and can be found in most implementations.

In [18], the authors apply reinforcement learning (RL) methods to learn a controller forλ and show
that it is possible to obtain a small improvement with respect to reduction in loss compared to the standard
λ control. We applied our framework to this problem using recursion to implement the iteration, resulting
in an adaptive that has seven actions: three actions either increase, decrease, or do not changeλ while
keeping the value ofx produced by the previous iteration; three actions that are similar but discard the
new value ofx; and an action that resets the value ofx to the best one seen so far. The adaptive’s context
is a triple(b,h1,h2) whereb is the remaining budget andh1, h2 are indicators that encode whether the
loss improved on the previous step and two steps back, respectively.

We tested the adaptation behavior of our program on three classic benchmark problems [16]: (1)
Rosenbrock, (2) Helical Valley, and (3) Brown & Dennis function, using a budget of 5 function evalu-
ations. We adapted the function for 3·106 for different starting points, each one applying the adaptive
procedure to one of the functions drawn at random starting ata random initialx value from[−10,10]n

(where the dimensionn is 2 in the case of Rosenbrock, 3 for Helical Valley, and 4 for Brown & Dennis).
After training we evaluated the averaged scaled reduction in loss (ASRL) of the resulting procedure over
105 initial x values for each function, where ASRL is simply the average across all runs of the reduction
in loss divided by the loss of the initial value ofx. Our results indicate a reduction in ASRL over the
standard LM for two functions: Brown & Denis by 0.01 and Rosenbrock by 0.004. For Helical Valley,
the ASRL increases by approximately 0.013 over the standard LM. The modest improvements are a due
to the fact that standard LM is close to optimal for these functions given our budget, leaving little room
for improvement. However, the fact that the adaptive program was able to learn to match the standard
LM performance is a great success; it demonstrates the effectiveness of the adaptation in this particular
example and indicates that the ABP idea works well in practice.

7 Related Work

In [6] we present a slightly different view of adaptive programming. There we viewed ABP in the
context of a popular object-oriented language in a much morefocused and limited form. For instance,
the feedback type is fixed to be a numeric reward rather than anarbitrary type. The goal of that work
was to support non-expert programmers and shield them from some of the complexities inherent in any
adaptive system. Conversely, this work’s goal is to understand how adaptive values interact with each
other and form adaptive programs in general.

Acar’s work on Self-Adjusting Computation [2] presents a different view of adaptive programming
where the goal is to produce programs that adjust automatically in response to any external change to
their state. The aim of this work is more in support of dynamic(online) algorithms and incremental data
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structures instead of the feedback-driven program optimization we present.
The ABP paradigm is inspired by recent work under the name partial programming in the field

of reinforcement learning (RL). RL [21] is a subfield of artificial intelligence that studies algorithms for
learning to control a system by interacting with the system and observing positive and negative feedback.
RL is intended for situations where it is difficult to write a program that implements a high-quality
controller, but where it is relatively easy to specify a feedback signal that indicates how well a controller
is performing. Thus, pure RL can be viewed as an extreme form of ABP where the non-adaptive part
of the program is trivial, requiring the RL mechanisms to solve the full problem from scratch. As such,
successful applications of RL typically require significant expertise and experience. It is somewhat of an
art to formulate a complex problem at the appropriate abstraction level so that RL will be successful.

The inherent complexity of pure RL led researchers to develop different mechanism for humans to
provide natural forms of “advice” to RL systems, e.g. in the form of a set of rules that specify hints about
good behavior in various situations [14], or example demonstrations of good behavior by a domain expert
[1]. However, these forms of advice still require an RL expert who is very familiar with the underlying
algorithms for their successful application. In addition,the expressiveness of the types of advice that can
be provided are quite limited, particularly in comparison with programming languages.

The desire to increase the expressiveness of advice provided to RL systems has resulted in research
on hierarchical reinforcement learning [9]. Here a human specifies behavioral constraints on the desired
controller, or program, to be learned in the form of sub-task, or sub-procedure, hierarchies. The hier-
archies specify potential ways that the high-level problemcan be solved by solving some number of
sub-problems, and in turn how those sub-problems can potentially be broken down and so on. Not all
of the possibilities specified by the hierarchies will be successful or optimal, but the space of possible
controllers can be dramatically smaller than the original unconstrained problem. Given these constraints,
RL algorithms are often able to solve substantially more complex problems.

Provided with enough constraints the hierarchies described above can be viewed as defining pro-
grams. This idea was made explicit under the name partial programming, where a simple language based
on hierarchical state machines was developed to provide guidance to an RL agent [3]. This language was
soon replaced by the development of ALISP [4], which was a direct integration of RL with LISP. The key
programming construct that ALISP adds to LISP is the choice point, which is qualitatively similar to an
adaptive value in our framework. The primary focus of work onALISP has been to develop adaptation
rules for choice points and to understand the conditions under which learning would be optimal in the
limit of infinite runs of the program in an environment.

Genetic Programming (GP) is a biologically-inspired approach for optimizing programs based on a
type of randomized search. Thus, like RL applied to ABP, GP aims to optimize some objective over
program runs. However, unlike RL, GP does not typically exploit the sequential nature of program exe-
cutions during the optimization process. Rather, GP is a more generic black box optimization approach,
which typically ignores all aspects of the program execution, except for the final returned objective value.
In this sense, RL is arguably a more appropriate formalism for ABP since it is specifically designed for
sequential decision making problems.

A more recent proposal for an adaptive programming languageis A2BL [20], which integrates RL
with the agent behavior language (ABL). The proposal for A2BL can be viewed as an instance of ABP
for a language that is specialized to behavioral-based programming of software agents. Few details
concerning a concrete syntax, implementation, and learning rules are currently available.

Our work is also inspired by prior work on partial programming. To date, work on ABP or partial
programming has been largely orthogonal to the main contributions of this paper. Most importantly, the
existing work has not resulted in a well-founded notion of ABP from a programming language perspec-



22 Adaptation-Based Programming in Haskell

tive, which has left many open issues regarding the pragmatics and properties of adaptive programs. Our
work is the first to formalize ABP in a declarative language and to define primitive ABP elements, their
combinations, and programming patterns.

8 Conclusions and Future Work

We presented a generic embedded DSL in Haskell for describing adaptation-based computations, which
is based on the concept of adaptive values. We demonstrated how standard machine learning scenarios
and more general adaptive programs can be captured via simple computational patterns. Initial exper-
iments demonstrated the potential of ABP. The main goal was to understand what constructs a DSL
for adaptive programming should support and what programming patterns we can identify in adaptive
programs. In future work we will investigate more formal properties of ABP. In particular, we want to
identify laws for optimizing adaptives with regard to convergence rate. Furthermore, we intend to extend
the language to patterns found in larger adaptive programs with the aim of solving harder problems.

The implementation described in this work is available at [7] to the curious reader.
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