Adaptation-Based Programming in Haskell

Tim Bauer Martin Erwig Alan Fern
Oregon State University Oregon State University Oregon State University
Corvallis, Oregon, USA Corvallis, Oregon, USA Corvallis, Oregon, USA
bauertim@eecs.oregonstate.edu erwig@eecs.oregonstate.edu fern@eecs.oregonstate.edu
Jervis Pinto

Oregon State University
Corvallis, Oregon, USA

pintoQ@eecs.oregonstate.edu

We present an embedded DSL to support adaptation-basecprogng (ABP) in Haskell. ABP is
an abstract model for defining adaptive values, caflddptives which adapt in response to some
associated feedback. We show how our design choices in Hasiéate higher-level combinators
and constructs and help us derive more complicated conpusitadaptives.

We also show an important specialization of ABP is in suppbreinforcement learning con-
structs, which optimize adaptive values based on a progerspecified objective function. This
permits ABP users to easily define adaptive values that espracertainty anywhere in their pro-
grams. Over repeated executions, these adaptive valugst &mjmore efficient ones and enable the
user’s programs to self optimize.

The design of our DSL depends significantly on the use of tygeses. We will illustrate, along
with presenting our DSL, how the use of type classes can stgimogradual evolution of DSLs.

1 Introduction

Programmers are often faced with the situation where it tsclear how to best write a program that
optimizes an objective of interest. For example, consiagsighing an intelligent opponent for a real-
time strategy game. Computer-controlled opponents areaiyp quite weak and predictable compared
to an experienced human. This is not too surprising sinsevitiy difficult for a programmer to anticipate
all situations that will occur and to specify the best cowkaction in each case.

As yet another example, consider trying to optimize theinuatof a satisfiability solver or other
type of constraint solver. There are many decision poinsuh programs, and the best way to make
the decisions, with respect to runtime, depends very mudheaulistribution of inputs to the program.
Often this distribution is not known to the programmer andionay change over the lifetime of the
program. Even if the distribution were known, the task ofigleimg the best set of decision heuristics is
quite daunting and will often result in significant sub-opdlity. Unfortunately, standard programming
paradigms offer the programmer no choice but to completedcify all such choices before program
execution.

As another example, in the development of network contrithswe it is difficult to write complete
programs that achieve close to optimal performance. Thiugsto the dynamic, stochastic nature of
networks leading to uncertainty about the best values @rpaters.

In this paper, we explore an embedded DSL to expesgptation-based programming (ABR)
ABP, a programmer writes “adaptive programs” where theyallosved to explicitly specify their uncer-
tainty by including “adaptive values” at the program poimisere they do not know the best course of

Olivier Danvy, Chung-chieh Shan (Eds.): IFIP Working Caefece
on Domain-Specific Languages 2011 (DSL 2011).
EPTCS 66, 2011, pp. I=P3, do0i:10.4204/EPTCS|66.1

http://dx.doi.org/10.4204/EPTCS.66.1

2 Adaptation-Based Programming in Haskell

action. In place of specifying a concrete course of actiba,grogrammer will be required to specify

an objective function that provides feedback about theityuaf program executions. Given such an

adaptive program, the adaptive values will then be autaalltiadapted across program executions in
an attempt to optimize the specified objective. For exanthkepbjective might be score in a real-time

strategy game, and the adaptive values might dictate wHisbrae number of strategies to employ in

a specific game situation, or program runtime might be theativje, and the adaptive values dictate
choices among different data structures and/or algorithchpices. Provided that adaptive programs
can be optimized in an effective, automatic way, the ABP gligra has the potential to save significant
development time and produce closer to optimal progranopadnce.

In the context of this paper, Haskell serves as an apprepniast language for our embedded DSL.
Haskell provides abstractions that facilitate the easggrpentation with language ideas. Its type system
forces us to be precise in the description of language amristiwhile offering enough flexibility to
describe elements in their most general form. In partictyge classes together with type functions| [19]
provide an elegant way of formulating the notion of adaptiaties.

Our DSL is defined around a type class and multiple functibasttansform and operate on instances
of it. Programs of the DSL consist of instances of this tyaessland allow the user to specify uncertainty.
We also provide template DSL programs for common patterrisarform of generic instances such as
adaptive pairs and functions as well as operations supgovrérious patterns of evolution and adaptation.

As outlined in Sectioii]7 there has been a small amount of prask in the Artificial Intelligence
community on ABP under various names, most notably partiadjimmming [[4]. However, ABP has
not yet been studied as a general programming paradigm fremgaamming-language perspective. It
has been employed only by Artificial Intelligence expertsadimited number of problems. This paper
formalizes the ABP paradigm through an executable defmitioHaskell. This formalization is also
likely to suggest unforeseen usage patterns of ABP. The amatributions of this paper include:

(1) Identification of adaptive values as a foundation foraigon-based programming and their formal-
ization through a corresponding Haskell type class.

(2) The definition of specific instances of adaptive valuegh intuitive interpretations, to be used as
building blocks for adaptive programs. In many cases the#idibg blocks can draw on machine
learning theory to provide formal guarantees regarding tddaptation behavior.

(3) Identification and definition of adaptable computatiait@rns that are likely to arise in common
practice.

(4) A formal convergence result for that provides a guamrite the convergence and optimality of a
specific class of adaptive computations.

(5) Areport on some practical experiments that illustragegotential utility of adaptive programming.

The remainder of this paper is structured as follows. Ini8e& we introduce the notion of adaptive
values and define the interface to adaptive values throyghdiasses. The use of adaptive values to build
adaptive computations is demonstrated in Seé¢tion 3. Wadkititify adaptive computation patterns that
correspond to standard procedures in machine learninghaxse that are likely to arise in some typical
uses of ABP. In Sectidn 4 we present functions to monitor amdrol adaptive computations. In Section
Bwe present a convergence result and discuss the optirobdilaptive computations. Sectidn 6 provides
some empirical results for the application of ABP. Relatemtknis discussed in Sectidd 7, and finally
Sectior[8 concludes and suggests future work.

T. Bauer, M. Erwig, A. Fern, & J. Pinto 3

2 Adaptive Values

The usual understanding of a value is that of a constant,amgthg object. In contrast, an adaptive
value can change over time. Changes to an adaptive valuetam®rmined by feedback gathered from the
context in which it is used.

To facilitate a meaningful, controlled adaptation an adaptalue of typev needs to be represented,
in general, by a somewhat “richer” type that is, typea allows the extraction of values of type but
also contains enough information to support interestimm$oof adaptation.

We call a the representation typandv the value typeof a. The adaptation is controlled by values
of another typef, called thefeedback typef a. In the following we call an adaptive valasaptivefor
short to avoid ambiguities between an adaptive value antviilae of an adaptive value”, that is, we
simply say thak :: ais an adaptive andalue x :: v is the value of (the adaptive) (value will
be defined in Sectidn 2.1).

In Sectior 2.1l we describe the definition and examples otkadaptives, that is, adaptives defined
directly on specific representation types. In Sedtioh 2.2liseuss obvious ways of obtaining compound
adaptives through derived instances for type constructarparticularly useful instance of this is the
derived instance for function types that leadstmtextual adaptivet be discussed in Section P.3. In
Sectior 2.4 we describe how to construct new adaptives ghraesting.

2.1 Defining Adaptives
The described concept of adaptives can be nicely capturgaedpllowing Haskell type class.

class Adaptive a where
type Value a
type Feedback a
value :: a -> Value a
adapt :: Feedback a -> a -> a

This class constitutes the core of our DSL: the operatiaiue retrieves the current value from the
representation, and the functiadapt takes a feedback value and an adaptive and produces a new
adaptive. We represent points of uncertainty in our prograrimstances of this class.

To define an adaptive representation type, a programmephmevide an instance definition for the
classAdaptive, which requires

e implementations for the functionsalue andadapt, and
e a definition of the corresponding value and feedback types

The value and feedback types are associated with the repaéiea typea through the type functions
Value andFeedback, which allows a large degree of flexibility in defining the ptige behavior([19].

There are more things that we ultimately might want to storeflaptive values for practical purposes
(for example, statistics about usage, feedback, and adagtalaptive behavior). We will consider this
aspect later in Sectidq 4.

As a simple example program we consider a form of incremdintzer regression. In particular, we
want to learn the equation of a liye= mx+ b given a sequence of sample data po{misy1), (X2,¥2), - . ..
The goal is to converge to anandb that minimize the squared error of predictipggivenx;.

The adaptive for this example could be defined as followstRive define the slope/intercept repre-
sentation of lines.

4 Adaptation-Based Programming in Haskell

Double
Double

type Slope
type Intercept

data Line
type Point

L Slope Intercept
(Double,Double)

Based on this representation we can define the line adastifelews.

instance Adaptive Line where
type Value Line = Line
type Feedback Line = Point
value = id
adapt (x,y) (Lmb) =L m’ b’

where m’ = m + eta*x*x(y - y0)
b’ = Db + etax(y - y0)
yO = m*x + b
eta = 0.01

We can observe that the value of this particular adaptiveiss the same as the representation. The
feedback is provided in the form of individual points, eadhMbich leads to an update of slope and
intercept as defined by the expressionsdfolandb’. The valueeta represents the learning rate, which
is how much new inputs influence the adaptation.

As another example, consider the game of Rock-Paper-8gjssavhich two players simultaneously
choose one of three valugsck, Paper, or Scissors, trying to beat the opponent.

data Move = Rock | Paper | Scissors

The winning move against each move is defined by the folloumgtion win.

win :: Move -> Move
win Rock = Paper
win Paper = Scissors

win Scissors Rock

It turns out that, given a fixed opponent, this game is a spdositance of a so-called “multi-armed
bandit” problem. This is a classic problem, first describgdRbbbins[[17], which captures the essential
elements of many experimental design problems, amongsotfiée problem can be viewed as modeling
the process of playing a slot machine with multiple arms, neleach arm has an unknown distribution
over random payoffs. At each time step the player must selecrm to pull based on information
gathered from previous pulls, upon which a randomized nefitam the selected arm is received. The
goal is to develop an arm-pull strategy that maximizes soreasure of the expected payoff sequence
over time, e.g. maximizing the expected temporally-avedagayoff. In the case of Rock-Paper-Scissors
with a fixed opponent strategy, the arms correspond to tleetsah of either rock, paper, or scissors, and
the payoff reflects whether the selected move won or loshagé#ie selection of the opponent at that
time step.

A good bandit strategy must balance the exploitation-exgilon tradeoff, which involves deciding
whether to exploit the current knowledge and pull the arnh ¢@rently looks best, or to explore other
arms that have been tried fewer times in the hope of disauydrigher payoffs.

There are well known lower bounds on the performance of tls pessible strategy and bandit
strategies that achieve those bounds asymptotically Mb}e recent work[[b] has developed an upper

T. Bauer, M. Erwig, A. Fern, & J. Pinto 5

confidence bound (UCB) strategy, which was shown to achlevéotver bound uniformly over all finite
time periods. Below, we describe a multi-armed bandit adajpased on UCB.

In our representation of a multi-armed bandit we store a rhapdives for each arm how often it
was pulled and the total rewards collected with it. The re@ngation is parameterized by the type used
to represent the bandit’s arms.

type Reward = Float

type Pulls Int

data Bandit a = Bandit (PlayMap a)
type PlayMap a = [(a,Pulls,Reward)]

The definition of the bandit adaptive has to return arm va{oétype a) as values. The feedback is the
arm that was pulled last together with a reward that will bdeatlto the total reward of that arm in the
map.

We define the helper functionpdPM to update the play map for a given arm in some generic way.

updPM :: Eq a => (ArmInfo a -> ArmInfo a) -> a -> PlayMap a -> PlayMap a

updPM _ _ [] =[]

updPM f x (a:as) | fst3 a==x = f a:as
| otherwise = a:updPM f x as

fst3 (x,_,_) = x
With these definitions we can define a multi-armed bandit dastance of an adaptive.

instance Eq a => Adaptive (Bandit a) where
type Value (Bandit a) = a
type Feedback (Bandit a) = (a,Reward)
adapt (a,r) (Bandit m) = Bandit (addReward r a m)
where addReward :: Eq a => Reward -> a -> PlayMap a -> PlayMap a
addReward x = updPM (\(a,p,r)->(a,p+l,r+x))

What remains to be defined is thelue method, for which we use the UCB bandit algorithm. This ap-
proach first selects any arm that has not been pulled beftiehvs achieved by the functioteroPulls,
and otherwise selects the arm with the highest upper comfédbaund. This measure is defined for an
armi that has been pulleg times and has a reward sumrgisr; /n; + y/logn/n; wheren = 3;n;.

value (Bandit m) = a
where ((a,_,_,):_) = zeroPulls ++ sortDesc ucb m

zeroPulls = filter ((==0) . pulls) m
n = fromIntegral (sum (map pulls m))
ucb (_,p,r) = r/ni + sqrt (log n/ni) where ni = fromIntegral p

pulls (_,p,.) =p

The above function extracts arby first choosing any arm that has not been pulled (fe@roPulls).
If all arms have been pulled, then it chooses the maximurnewatgording to the UCB computation given
above. The functioortDesc sorts a list in descending order of values as obtained by dahenpeter
functionucb.

Itis illustrative to note how the above UCB-based impleratiah ofvalue manages the exploration-
exploitation tradeoff. Assuming that all arms have beerepuét least once, the decision is based on

6 Adaptation-Based Programming in Haskell

the upper confidence bound, which is composed of two terme fif$t termr;/n; can be viewed as
encouraging exploitation since it will be larger for armatthave been observed to be more profitable
on average. Conversely, the second term encourages digriosace it grows with the total number of
arm pulls, causing it to overwhelm the first term if an arm hetsheen pulled very often. However, the
exploration term vanishes very quickly for an arm as its nerd pulls increases causing its evaluation
to be based solely on its observed returns. The result isavgpayoff arms tend to get fewer pulls than
those with higher payoffs over time, as desired.

TheBandit instance is a generic operation in our DSL, it can be utiliagdnany consumer pro-
grams. We illustrate one such use by coming back to our RaglkeiPScissors example and instantiating
the bandit as an adaptive strategy for playing the game.

type Strategy = Bandit Move

initStrat :: Strategy
initStrat = Bandit [(m,0,0) | m <- [Rock, Paper, Scissors]]

We can use the following functioscore to translate wins and losses into numerical feedback.

score :: Move -> Move -> Int

scoremm’ | winm ==m’ = -1
| winm? ==m = 1
| otherwise = 0

We can then paitnitStrat with other strategies and observe how it adapts guided byetdback
values produced fromcore applied to the moves produced bylue and the opponent’s move. We
will do this in Sectior B where we will identify and define atktppn computation patterns that allow
us to define applications (such as, line regression or RagleiScissors tournaments) that employ the
defined adaptives.

One final note regarding the feedback employed for the nauttied bandit: The theoretical opti-
mality result assumes the rewards are in the rgdfg#. To adjust theBandit adaptive to the feedback
produced bycore we just needed to multiply thegrt term by 2. However, in this example the optimal
behavior is not affected even if we don'’t scale the rewangsesall we are interested in is average reward.

2.2 Derived Adaptives

We define adaptation of generic structures in DSL by defineriydd instances dfdaptive. This gives
us instances of for adaptives for many common patterns ipteggprograms.

As a first example, we define a derived instanc@addptive for pairs, which realizes the parallel
adaptation of two values in a synchronized fashion.

instance (Adaptive a,Adaptive b) => Adaptive (a,b) where
type Value (a,b) = (Value a,Value b)
type Feedback (a,b) = (Feedback a,Feedback b)
value (x,y) = (value x,value y)
adapt (u,v) (x,y) = (adapt u x,adapt v y)

One example use of this is the parallel adaptation of two @iimg or even cooperating adaptive strate-
gies in a game. For instance, an Al or agent might have twesdbat need to be satisfied concomitantly.
Then twoBandits, one adapting to each goal automatically form a more conggent that addresses
both with no additional programming.

T. Bauer, M. Erwig, A. Fern, & J. Pinto 7

Another example use of this particular construct will beegivin Sectiori 3 where we can derive a
co-evolution computational pattern from a simple evolufattern by using this class instance definition.
We can also obtain atdaptive definition for lists. In this definition, each adaptive’s dack value

is used exclusively for that adaptive.

instance Adaptive a => Adaptive [a] where
type Value [a] = [Value al
type Feedback [a] = [Feedback al
value = map value
adapt = zipWith adapt

This definition can be generalized to aRynctor type constructor, because we can easily define a
correspondingzipWith function.

2.3 Contextual Adaptives

A frequent scenario is to extend a given adaptive by contErt. example, the best arm to pull for a
multi-armed bandit may depend on the time of day. Such a gbeig¢ension can be very conveniently
achieved through the derivediaptive instance for function types. The idea is to turn an adaptive
for some typea into an adaptive for functions from some contexinto a. The value type of such an
adaptive function is a function from context into valuesha# briginal adaptive, and feedback is given
by feedback foa enriched by context information. Contextual adaptive galare obtained in two steps.
First, apply the function to contextual informati@nand then extract the value of that result. Adaptation
based on a feedbadl,v) constructs an updated function that overrides inptd map to the adapted
result of (f x) with feedbackv. All other inputs are delegated to the old function. This migén
illustrates that the functional adaptive essentially rreins a number of separate copies of the original
adaptive.

instance (Eq c,Adaptive a) => Adaptive (c -> a) where
type Value (c => a) = ¢ -> Value a
type Feedback (c -> a) = (c,Feedback a)
value f = \x->value (f x)
adapt (x,v) f = \y->if x==y then adapt v (f x) else f y

The definition forvalue could be given more succinctly dsalue .), but we think the above definition
is easier to understand and explains better what is going on.

This derived instance effective expands our DSL to suppmrttfon types transparently.

Note that thisAdaptive instance definition can be easily generalized to a wholesathsontext
type constructors, of which> is one example. A mapping type is another example, which ntigh
preferable for efficiency reasons.

As a concrete example we can add a player context to the aroftéd bandit representing the Rock-
Paper-Scissors player, which then allows the adaptiveatm ldifferent strategies against different play-
ers.

data Opponent = Jack | Jill deriving Eq

flexible :: Opponent -> Strategy
flexible = _ -> initStrat

8 Adaptation-Based Programming in Haskell

Note that this context-dependent strategy is obtaineddéerdince it is based on the automatically derived
instance of\daptive for function types. For either player, the initial strategyised, but as the function
receives feedbacks it will adapt more specialized stratefgir each player (input).

2.4 Nested and Recursive Adaptives

Another way in which adaptives can be combined into more dexngpdaptives is through nesting, that
is, the value of one adaptive is another adaptive. In suclsted@daptive, value selection and adaptation
happens on two levels. While an “ordinary” adaptive repneésan evolving decision, a nested adaptive
represents a sequence of such decisions.

To work effectively with nested adaptives it is not suffidiem simply place one adaptive as a value
into another one, because adaptation of the nested adaptowdd be impossible. Thedapt function
for the outer adaptive would simply adjust the selectiorheftested adaptive. Although a nested adap-
tive that is obtained by thealue function of the outer adaptive can be adapted, there is ndvamezm
to put this changed adaptive back into the outer one.

Therefore, we define a subclassAdiaptive, calledDedaptive, to representlependent adaptives
These contain an extended value functi@iueCtx, which returns the value plus the context where it
was found. This context is a function that allows the valuegaroadapted version of it for that matter,
to be put back into the containing adaptive. The class alstagts a functiorpropagate that allows
the derivation of feedback for the outer adaptive from feettlfor the nested one. The additional first
parameter of type serves two purposes: First, it is needed to resolve the @adirlg ofpropagate,
and second it provides a context of values to properly ddeedback, because in some situations, the
feedback type contains more than just an external valualbainformation related to the adaptive type.

class (Adaptive a,Adaptive (Value a)) => Dedaptive a where
valueCtx :: a —-> (Value a,Value a —> a)
propagate :: a -> Feedback (Value a) -> Feedback a

Note that the dependency in nested adaptives goes both Whgsnested adaptive depends as a value
on the outer adaptive, while the outer adaptive’s adaptasian part controlled, througpropagate, by
the nested adaptive.

As an example we can consider a nested multi-armed bandé.n&kted bandit could be a Rock-
Paper-Scissors game or actually a gambling machine, widledter bandit could represent, for example,
the decision at which time to play.

In the instance definition dfedaptive, the functionvalueCtx is based on the outetalue function
to find the value. The context is then simply obtained by isudathat value in a list and producing a
function that can insert an element in its place. Since tkdldack for a bandit of type is given by
values of type(a,Reward), we can produce feedback for the outer bandit simply by mpgithe reward
provided for the nested one with the current value of theraute.

instance (Eq a,Eq (Bandit a)) => Dedaptive (Bandit (Bandit a)) where
valueCtx b@(Bandit m) = (a,\y->Bandit (xs++(y,p,r):ys))
where a = value b
(xs,(_,p,r):ys) = break ((==a).fst3) m
fst3 (x,_,_) =x
propagate b (_,r) = (value b,r)

We can now create a nested adaptive as follows.

T. Bauer, M. Erwig, A. Fern, & J. Pinto 9

dependent :: Bandit Strategy
dependent = Bandit [(initStrat,0,0),(initStrat,0,0)]

It seems thatlependent is very similar tof lexible, and in fact, we can simulate contextual adaptives
by nested adaptives. However, nested adaptives are moeeagjsince we can nest different adaptives
(of the same type) if we want, which is not possible for contekadaptives. This situation is reminiscent
of the relationship between dependent and independenugioh type theory [22].

Nested adaptives also raise the question of “nested valtheg"is, when we want to get the value of
a dedaptive, we in many cases do not want to have the immeaikite, which is itself an adaptive, but
rather the “ultimate” value, that is, the value of the nestddptive. This can be easily computed by the
functionnestedValue.

nestedValue :: Dedaptive a => a -> Value (Value a)
nestedValue = value . value

3 Programs for Adaptive Computation

The idea behind our adaptation DSL is the gradual evolutforalves to improve a programmatic solu-
tion to a problem. This view requires that an adaptive comjm, that is, a computation that contains
adaptive values, is performed repeatedly so that feedlodtelny obtained from the results of the compu-
tation, is used to evolve the adaptives employed in the ctatipu.

Under this view, an adaptive computation has to containe@tsul) calls tadapt functions, and
we can distinguish different adaptive computation paidrased on the relationship of these adaptation
steps with other computations.

One of the most basic adaptation operations in our DSL isgdyetheadapt function itself, namely
the one-step adaptation of an adaptive. More complex pattean be obtained by considering different
forms of repeated adaptation.

What is the result of an adaptive computation? Is it the fidajpaive or the trace of values that can be
obtained from the list of all intermediate adaptives, ohbot something else entirely? For generality we
define combinators for adaptive computation patterns tomehe list of all adaptives produced during
the adaptation. From this list we can easily obtain the fidap#éive through the list functiobast or the
trace of represented values through the functiabues0f, which is defined as follows.

valuesOf :: Adaptive a => [a] -> [Value a]
valuesOf = map value

Other inspection and debugging functions for sampling gregating can be added quite easily through
ordinary list processing functions.

3.1 Adaptation Combinators

One of the most basic adaptation patterns is to train an &ddpyt a list of training values analogous to
supervised learning [8]. This is realized by the functiatainBy below.

trainBy :: Adaptive a => a -> [Feedback a] -> [a]
trainBy = scanl adaptBy

adaptBy :: Adaptive a => a -> Feedback a -> a
adaptBy = flip adapt

10 Adaptation-Based Programming in Haskell

The scanl function returns a list of all intermediate results as anafd fold is applied to a list. Here it
will adapt an initial adaptive in sequence and return thgdigseam) of all intermediate adaptives.

A more dynamic scenario is captured by the functiarlve that uses its function parameter to
compute feedback from the values of an adaptive.

evolve :: Adaptive a => (Value a -> Feedback a) -> a -> [al
evolve f x = x:evolve f (x ‘adaptBy‘ (f (value x)))

The functionevolve represents a form of online learningl [8] where the adaptie loe viewed as
alternating between making a decision (producing a valyefling feedback, and then adapting. The
bandit problem is a classic example of online learning, ¢fiothere are many other instances in the
literature.

A generalization ofevolve is obtained by evolving two adaptives in parallel where thi@s of
both adaptives are the basis for feedback to either one addbptives. This definition makes use of
the Adaptive instance for pairs shown in Sectibn12.2. The functidstr makes the values of both
adaptives available to compute feedback.

coevolve :: Adaptive (a,b) => (Value a -> Value b -> Feedback a,
Value a -> Value b -> Feedback b)
-> (a,b) -> [(a,b)]

coevolve = evolve . distr

distr :: (@a->b > c,a >b ->d) -> (a,b) -> (c,d)
distr (f,g) (x,y) = (f x y,g x y)

The adaptation pattern defined byevolve corresponds to the structure of multi-agent reinforcement
learning [13], an area of reinforcement learning that gsidituations where multiple agents are learning
simultaneously, possibly interacting with one anothenegitooperatively or as adversaries.

As an example we consider the implementation of a Rock-Papissors tournament. In addition
to players, such asnitStrat described in Section 2.1, we need functions to produce tezdizmlues
from the values of two players. One such functionyScore.

myScore :: Move -> Move -> (Move,Reward)
myScore x y = (x,score x y)

Since different player adaptives might have other feedlbgoks, we generally need other functions as
well. For example, a simple Rock-Paper-Scissors stratedty always play the move that wins against
the last move of the opponent.

data BeatLast = BL Move

instance Adaptive BeatLast where
type Value BeatLast = Move
type Feedback BeatLast
value (BeatLast m) = m
adapt m (BeatlLast _) = BL (win m)

Move

Recallcoevolve uses the value of both adaptives to produce the corresppheinback value for the
adaptive. The function below can be used to select the oppsmaove from the previous round and fits
nicely with the above strategy.

T. Bauer, M. Erwig, A. Fern, & J. Pinto 11

opponent’sMove :: Move -> Move -> Move
opponent’sMove _ y =y

Or consider a smarter strategy that plays the move that beagsponent’s most frequently played move.
This player maintains a count that each move has been played.

data Max = MP [(Move,Int)]
deriving Show

instance Adaptive Max where
type Value Max = Move
type Feedback Max = Move
value (MP ms) = win (fst (maxWrt snd ms))
adapt m (MP ms) = MP (updF m (+1) ms)

The functionupdF updates a mapping in a list of pairs.

updF :: Eq a => a -> (b -> b) -> [(a,b)] -> [(a,b)]

updF x £ [] =[]
updF x £ ((y,w):as) | x==y = (x,f w):as
| otherwise = (y,w):updF x f as

We can now define players as pairs of adaptive values plus ¢beiesponding feedback-producing
functions.

bandit = (initStrat, myScore)
beatLast = (BL Rock, opponent’sMove)
maxMv = (MP [(m,0) | m<-rps], opponent’sMove)

To be able to play strategies with their corresponding faelfunction against one another, we introduce
the following tournament function.

vs :: (Adaptive b, Adaptive a) =>
(a, Value a -> Value b -> Feedback a)
-> (b, Value b -> Value a -> Feedback b)
-> [(a, b)]
(a,f) ‘vs® (b,g) = coevolve (f,flip g) (a,b)

Tournaments can then be played usizgn the obvious way, for example:
beatLast ‘vs‘ maxMv

This example leads as expected to an overall victory fomthelv player.

3.2 Recursive Adaptation

In Section 2.4 we have considered nested adaptives, in wiicie selection and adaptation happens
on two or more levels. While an “ordinary” adaptive reprdsean evolving decision, a nested adaptive
represents a sequence of such decisions.

When the number of nesting levels is not fixed and not knowrdiraace, it is difficult to capture
this computational pattern in a single combinator. In tree; adaptation and value retrieval must be

12 Adaptation-Based Programming in Haskell

performed by individual function calls that are integrafatb the recursive structure of an adaptive
algorithm.

As an example we consider the problem of learning a combinadf sorting methods. The idea is
based on the observation that for a specific kind of lists,saméng method performs better than others.

To learn a combination of sorting algorithms we have to aostsome property of lists and store
costs or rewards for each sorting method under considaratia table indexed by that property. Since
some sorting methods are recursive, this will lead to a saeeiadaptation process in which potentially
different sorting methods can be chosen based on the resppobperties of lists decomposed during
the sorting recursion.

For simplicity we consider here the length of the list as apprqﬂ We can build this adaptive table
in two steps. First, we define an adaptive for sorting methfsds which we can then create a table by
adding the list size as context, as demonstrated in Sécigbn 2

data SortAlg = MSort | ISort
type Cost = Double
data Action = Action [(SortAlg,Int,Cost)]

The base adaptive for sorting algorithms has essentiayséime structure as a multi-armed bandit (see
Sectiorf 2.11): It stores the number each method was chosethargvith the cost (representing running
time). Here we consider two methods, namely insertion saitraerge sort.

The Adaptive instance definition foliction is also very similar to that oBandit. The only
differences are thatalue selects the smallest entry (that is, the on average fasigsigemethod) and
thatadapt updates a running average of costs viaitpeAvg function. We also choose any action not
sufficiently explored attempted (8 is used as cutoff to detiks).

instance Adaptive Action where
type Value Action = SortAlg
type Feedback Action = (SortAlg,Cost)

value (Action as)
| null unexplored = fst3 $ minWrt thd3 as
| otherwise fst3 $ head unexplored
where unexplored = filter (\a -> snd3 a < 8) as

adapt (a,c) (Action as) = Action $ updF3 a
(\(a’,f’,c’) -> (a’, £> + 1, runAvg £’ ¢’ ¢c)) as

The functionrunAvg updates a running averagejnWrt selects the minimum element with regard to
some criteria in our case the average time a sorting metted, tandipdF3 remaps a specific triple in
a list.

1We actually use the square root of the list length to keepitteeaf the table reasonable.

T. Bauer, M. Erwig, A. Fern, & J. Pinto 13

runAvg f ¢’ ¢ = (fd * ¢’ + ¢c) / (£4 + 1)
where fd = fromIntegral £

minWrt :: Ord b => (a => b) -> [a] -> a
minWrt f = head . sortBy (\x y->compare (f x) (f y))

updF3 :: Eq a => a -> ((a,b,c) -> (a,b,c)) -> [(a,b,c)] -> [(a,b,c)]

updF3 x £ [] = [

updF3 x f (a:as) | x == fst3 a =f a: as

| otherwise = a : updF3 x f as

To support unlimited recursive adaptives, we use the agapt the state of a state monad, which can
then be used to thread adaptives through arbitrary conipusgatTo facilitate the computation of actual
timings for the given application, we use a state monad foamer that encapsulates the monad. The
following general definition of a Q-tablé [21] abstractsrfréhe concrete types for state/contex} énd
actions &).

type QTable s a r = StateT (s -> a) I0 r

Note that the state of the state transformer monad is a funtiiat represents a contextual adaptive. For
our example we have as an adaptive a function from list s@esrting method adaptives.

type Size = Int

type ASort r = QTable Size Action r

asort :: Size -> [Int] -> ASort [Int]
asort n xs =
do let s = isqrt n

q <- readTable

let m = value q s

t <- readTime

ys <- case m of

ISort -> isort n xs
MSort -> msort n xs

forceEval ys

t’ <- readTime

modify (‘adaptBy‘ (isqrt n,(m,t-t’)))

return ys
Adaptation sort takes as input a list and its sizen, which is used to select the best sorting method for
the list. First, the Q-table is read from the state using tietionreadTable, which is simply another
name for the state monad functiget that retrieves the state of the monad. The value of the agapti
Q-table is the function that maps sizes to sorting methodaseB on the selected sorting methgd
which is obtained by applying the functiaralue q to the integer square root ef we either sort using
insertion sort or merge sort. After forcing the evaluatidhe result listys, we adapt the Q-table using
the monadic state updating functiandify before returning the sorted list.

The recursively called sorting functions are also definetthiwithe context of the monadic adaptive
ASort since, at leastsort, has to recursively sort sublists (of smaller size). Thaiirsg task should be
performed using the currently best method for those listd,ishould also adapt the information stored
in the Q-table.

14 Adaptation-Based Programming in Haskell

isort :: Size -> [Int] -> ASort [Int]
isort _ xs = return (foldr insert [] xs)

msort :: Size -> [Int] -> ASort [Int]
msort n xs =
if n<2 then
return xs
else
do let k = n ‘div‘ 2
let (us,vs) = splitAt k xs
us’ <- asort k us
vs’ <- asort (n-k) vs
return (merge compare us’ vs’)

In Section 6 we report some concrete timing results for tpiglieation, and we will present another
application that is also based on recursive adaptation.

3.3 Transactional Adaptations

The adaptive pattern operations considered so far all pssgd in a very fine-grained fashion, by tightly
interwoven calls ofvalue and adapt. Although these patterns seem natural there might be cases i
which adaptation is less tightly controlled. For instaricis bften convenient for a multi-armed bandit
may to have several arm pulls per rewasd{pt) call.

To illustrate this consider the following alternative regentation of our multi-armed bandit, which
stores in addition to the map the last pulled arm.

type ArmInfo a = (a,Pulls,Reward)
type PlayMap a = [ArmInfo a]

data Bandit a = Bandit a (PlayMap a)

In order to maintain this representation we have to use ardift feedback type that distinguishes two
kinds of feedback: either (a) an arm was pulled, in which ¢aseorresponding pull counter is increased
and the arm is remembered as the last one pulled, or (b) addaathe last pulled arm is delivered,
which will be added to the total reward of that arm in the mapede two different forms of feedback
are captured in the following type.

data Play a = Pull a | Reward Reward
This leads to a slightly differemdaptive instance definition than the one shown in Secfion 2.1.

instance Eq a => Adaptive (Bandit a) where
type Value (Bandit a) = a
type Feedback (Bandit a) = Play a
adapt (Pull a) (Bandit _ m) = Bandit a (incPulls a m)
adapt (Reward r) (Bandit a m) = Bandit a (addReward r a m)

The functionincPulls increments the number of pulls of the given arm in the m@jdReward adds
reward for a given arm. The definition ehlue remains unchanged and still uses the UCB algorithm
previously described.

T. Bauer, M. Erwig, A. Fern, & J. Pinto 15

Now consider what happens if we want to implement a Rock-P8pissors strategy on the basis of
this representation and play it against some other strafdggyproblem is that it now také&o adaptation
steps, @ull of an arm and &eward for it, to make a meaningful adaptation transition in thesgeof
machine learning. Therefore, we need some form of “big“séelaptation that can for this example be
derived from the adaptive’s feedback as follows.

bigStep :: Eq a => (a,Reward) -> Bandit a -> Bandit a
bigStep (x,r) b = b ‘transBy‘ [Pull x,Reward r]

transBy :: Adaptive a => a -> [Feedback a] -> a
transBy = foldl adaptBy

The point to observe is that we have converted a value of Fge@lback a into a function of type
a -> a, which means that the big-step adaptation pattern thaesponds tcrainBy takes a list of
such functions instead of feedback values.

transformBy :: a -> [a -> a] -> [a]
transformBy = scanl (flip ($))

Consider, for example, an adaptation of the following form.
initStrat ‘trainBy‘ xs

The corresponding adaptation for the changed adaptived dmiimplemented usingransformBy in
the following way. HerestratB is the initial bandit value, defined in the same wayiastStrat for
the newBandit type.

stratB ‘transformBy‘ map bigStep xs

As for trainBy we can also produce a big-step versioncogvolve by generalizing the type of
the argument functions. The result is a function that adapdsadaptives based on big-step adaptation
parameter functions that have access to both current adapti

cotransform :: Adaptive (a,b) =>
(a->b ->a,b->a->b) > (a,b) -> [(a,b)]
cotransform (f,g) (x,y) = (x,y):cotransform (f,g) (f x y,g y %)

An example would be the definition of a Rock-Paper-Scissmranament for adaptives as defined at the
beginning of this section.

4 Monitoring Adaptation Behavior

The lifetime of adaptive programs can often be split into major phases: (i) fearning or adaptation
phasein which adaptives adapt (significantly) and (iistable phasén which no or only minor adapta-
tions occur. It might be desirable, for example if we arenirag an adaptive with predefined feedback,
to be able to detect this transition.

To determine whether an adaptive program is stable reqgtare®monitor the adaptives. To this end,
we define a typélonitor and a corresponding functiamonitor to produce observations about the
adaptation behavior.

16 Adaptation-Based Programming in Haskell

type Monitor a b = [a] -> b
monitor :: Adaptive a => Monitor a b -> [a] -> [b]
monitor m = map m . inits

The functioninits produces the list of all prefixes of a given list.
Here is an example monitor that ensures that a particulgrepty holds for the values of tHelast
adaptives produced in an adaptation.

ensurelast :: Adaptive a => Int -> ([Value a] -> Bool) -> Monitor a Bool
ensurelast n p xs = length xs >= n &&
p . map value . take n . reverse $ xs

A very simple example property to monitor is whether all tdes in a list are the same.

allEq :: Eq a => [a] -> Bool
allEq [] = True
allEq (x:xs) = all (==x) xs

This property can be used to define a simple convergenceianitas follows.

convergence :: (Adaptive a,Eq (Value a)) => Monitor a Bool
convergence = last 3 allEq

Using monitors we can define adaptation combinators that@rgolled by the monitors.

until :: Adaptive a => [a] -> Monitor a Bool -> [a]
until xs = shiftMonitor ([],xs)

shiftMonitor :: ([al,[a]) -> Monitor a Bool -> [a]
shiftMonitor (xs,[]) m = if m xs then xs else []
shiftMonitor (xs,y:ys) m | m xs = Xs

| otherwise = shiftMonitor (xs++[y],ys) m

With until we can now define self-controlling adaptations that adapt aircertain criterion, such as
convergence, IS met.

As a concrete example, consider again the linear regressgmario. We can adapt a lineusing a
list of pointsps until the last two lines in the approximation sequence aseecknough together, that is,
their difference in slope and intercept is smaller than aifipghreshold.

(1 ‘trainBy‘ ps) ‘until‘ ensurelLast 2 areClose

areClose :: [Line] -> Bool
areClose [L m b,L n c] = max (abs (m-n)) (abs (b-c)) <= 0.001

5 Convergence and Optimality

One of the primary motivations for the ABP framework is towllfor programs to automatically opti-
mize their performance relative to programmer-specifigéatlyes. Thus, it is important to understand
conditions under which an adaptive program might conveogant optimal or approximately optimal

T. Bauer, M. Erwig, A. Fern, & J. Pinto 17

solution. Convergence of an adaptive program depends tistist properties of the adaptives and
program inputs, as well as the structure of the program. frege, understanding convergence issues
is quite complex, and we leave the general problem as futemx.winstead below we take an initial
step in this direction for a particular type of adaptive used restricted, but powerful, class of adaptive
programs which we will calsingle adaptive recursive functions (SARFSs)

The definition of the SARF class of functions is inspired by #ftructure of the adaptive sorting ex-
ample. Specifically, SARFs are recursive functions thasibbs call other functions, with the following
three restrictions:

1. There is a single adaptive in the entire program.

2. The value of the adaptive is used only once in the main fomeind used nowhere else in the
program.

3. For any instance of the adaptive and any function inp@,ftimction will terminate in a finite
amount of time (i.e. no infinite recursion).

4. The feedback is a numeric cost that is a function of the etatipn that took place during the
function call.

Note that the adaptive sorting function is a SARF, where #sgliback corresponds to the time required
for the function to complete execution.

In order to study the convergence of SARF programs, we mgsfdirmalize the notion of optimality.
For this purpose, we define optimality with respect to an wmkm but fixed probability distributiod
over possible inputs to the SARF. For simplicity, we will@lassume that there exists a finite upper
bound such that the probability of inputs larger than thenoois zero. For example, in the adaptive
sorting exampleD might be a distribution over random lists up to some maximiz®. Given a SARF
P and a distribution over input®, we defineC(P,D) to be the expected cost of executiRgn inputs
drawn fromD, where cost is as defined ih We are interested in adaptation processes suchPtiait
eventually achieve the optimal cost with high probabilitieasome number of adaptations. In particular,
given an initialP, we consider applying to a sequence of inputs drawn frdh each time allowing it
to adapt, ideally resulting in a version Bfthat achieves the optimal expected cost.

Naturally, convergence depends on the choice of adaptiseSARF. One option would be to use a
contextual bandit adaptive. It turns out that analyzingcbm/ergence of the resultifgis quite complex
due to the fact that the quality of the decisions at higheelewf the recursion depend on decisions at
lower levels of the recursion, which would always be adaptmthe case of contextual bandits. We
conjecture that convergence can be guaranteed for thextoaltdandit case, however, we leave it as
future work. Here we define a restricted class of adaptivaltedtprincipled adaptivesthat allows for
an easier convergence proof.

Intuitively this adaptive will attempt to “learn” the qusgliof the actions in a context from the bottom
up with respect to the depth of the recursion. Roughly smgrakhe principled adaptive can be viewed
as first learning the quality of the actions for contexts egponding to the recursion base cases. Next,
fixing those contexts to the best decision, learning proe¢edontexts that are one level removed from
a base case. Here the quality of each action is judged conddion the fact that the base case decisions
are fixed and ideally optimal. Once these action qualitiedearned well enough they are in turn fixed
and learning proceeds one level higher. Note that understhasegy action qualities for a context are
only learned, or updated, when lower level decisions aralfis@her than when the lower level is also
adapting.

More formally, the principled adaptive is similar to the ptige sorting adaptive in that it is based on
a Q-table. The key difference is the way that it computesesand does the adaptation. The principled

18 Adaptation-Based Programming in Haskell

adaptive is parameterized by an integewhich we will call the learning threshold. Our convergence
results will specify sufficient values of this parametersEwe introduce some terminology. We say that
a context-action pair istableif it has been updated at leddimes. We say that a context is stable if all
of its actions are stable. Intuitively, we will think of stalzontext as one where we are quite confident
that we know the correct action to select. Given these defitsitwe can now specify the value and
adaptation function of the principled adaptive.

The value function returns the action that minimizes theRle (best action) if the context is stable,
and otherwise selects the first unstable action in the comecording to this definition, a greedy action
is only returned in a particular context, if all of the actom that context have been updated at least
t times. In this sense, the value function is aggressive adxplbring all of the actions equally before
settling on one of them. Now suppose that our SARF has compuwalue for the current input, resulting
in a cost that is used as feedback to #ldapt function of the principled adaptive. There are two cases
that are handled. In the first case, if any of the recursivis dalolved a context that was not stable or the
current context-action pair has already been updatedes, then no update is performed. Otherwise,
if all recursive calls involved stable contexts then thea®l is updated based on the feedback for the
appropriate context and action that was selected. Thidviesaipdating the average cost observed for
the context-action pair.

Given a SARF with a principled adaptive we must make two aggioms to guarantee convergence.
First, we must assume that there is an ordering of the cantéxhe adaptive that strictly descends with
the level of recursion. That is, given a recursive call inteahc, all lower-level calls must correspond
to contexts that are ordered lower than In this case, we say that the adaptive hasdhscending
context property This property holds in the adaptive sorting example whestddngth is the context
and each recursive call decreases the list length. It alkis Hor our budget optimization problem in
Sectior 6. The second assumption, isa¢hl-invariant cost assumptionThis assumption means that for
any context, if all contexts ordered below are assigned fixed actions, then the distribution over costs
observed when taking each actiondiis independent of the decisions in the higher-level costekt
other words, the recursive path taken to a particular cowkess not influence the costs of the choices at
that context.

We can now present the convergence result. First note ttredrié aréN contexts andh actions, then
the maximum number of Q-table updates that the principlegbthek will perform ist -N - A. What our
convergence result states is that with high probabilityrgruts where no adaptation occurs the optimal
decisions will be made. In the following denotes the minimum difference across all contexts between
the expected cost of an optimal action and the expected tdse second best action with respect to
inputs drawn fronD, and?d is the (user-selected) failure probability of not beingimmat.

Theorem 1. Let P be a SARF with principled adaptive that has descendimgexts and call-invariant
costs with respect to a fixed input distribution D. If the lgiag threshold t> 4c=2In %*, then with
probability at leastl — 9, P will behave optimally on all but-tN - A inputs drawn from D.

Proof. (Sketch) First note that the descending contexts assumgdio be used to show that whenever an
input results in a computation that goes through a non-stathtext that some context-action pair in the
Q-table will be updated. This means that in all other caseut will only go through stable contexts
and thus all actions selected for those inputs are oneshdtest as judged by the Q-table. Below we
argue that with probability at least-10 that all such actions will correspond to optimal actionsjolth
will compute the proof.

Let Q*(s,a) be the optimal expected cost of actiarin contexts and letQ(s,a) be the cost of the
adaptive forsanda. Recall that whenever the value @fs, a) is updated that the decisions in all lower-

T. Bauer, M. Erwig, A. Fern, & J. Pinto 19

level contexts have been fixed. Consider the case wherethk édwer level contexts are fixed at optimal
decisions. Under this assumption and the call-invariasseiraption we can use a Chernoff batihol
get that aftet updates of)(s,a), with probability at least + &', |Q*(s,a) — Q(s,a)| < /—Ind’/t. By
settingd’ = & we guarantee that the bound will hold oversdinda with probability 1— . Using this
value and the bound ow from the proposition we get thaQ*(s,a) — Q(s,a)| < § with probability at
least 1— 9, which by the definition ot implies that no sub-optimal action will be ranked highemtlaz
optimal action.

In the above we assumed that whene@s, a) is updated all lower-level context made optimal
decisions. Using a proof by induction on the ordering of thietexts it is easy to use the above argument
to prove that in each context the optimal action will look toegth probability at least - 8, which
completes the proof. O

6 Empirical Results

Here we present empirical results for the application of ABRvo well known problems, RL has been
previously applied to: Sorting [10] and budgeted optimaa{18]. Our framework is able to naturally
capture both problems, allowing for most of the details ef éldlaptation process to be hidden from the
programmer.

Adaptive Sorting. Prior work [10] on adaptive sorting used RL to learn to chdosveen quicksort
and insertion sort at each recursion point based on thehasfghe list. The learned program showed
small gains in average runtime over pure quicksort and fiosesort. We implemented adaptive sort
using the structure shown in Sectionl3.2 to learn a mixedesgtyeaof insertion sort and merge sdrve
trained the algorithm on lists of integers of lengths up t0d@ The learned policy found a cutoff of
just above 300: For lists smaller than that, insertion sas$ ¥aster, whereas for lists longer than the
cutoff, merge sort was faster. Next we tested our learneatigthgn policies of just merge sort (no cutoff)
and merge sort with cutoffs off 10 and 1000. The learned dlgorwas considerably faster than just
mergesort with the other cutoffs we tested. For lists of 42@00, we see a speedup of betwedhahd
2.6. Against merge sort with no cutoff, the learned algoritisr20 times faster.

An important observation was that the cutoff learned onlgliag in the environment it was learned.
That is, when we were learning the cutoff we were accessiagybtem timer and modifying our adap-
tives as we sorted lists. This overhead is necessarily dieclun the time we record to sort a sublist (in
asort). But if we sort in an environment without this overhead, lderned cutoff does not apply, and a
different one is optimal. In fact, tests showed a very lowoffuperhaps none) was fastest if there is no
overhead.

Whenever using time as a cost or reward, one must considda¢hé¢hat the timing observations
influence the results. Although our adaptive frameworkidyféast and efficient, the action being timed
(sorting in our case) must be significant compared to thishmad. In this sorting domain, the time to
sort a list was only significant for larger lists.

Adaptive Budgeted Optimization. We consider budgeted optimization where we are given a func-
tion f : R" — R™and wish to find the value ofthat minimizes the “squared loss” functitsix) = | f (x)|2.
Furthermore, we are given a budd®bn the maximum number of times that we are allowed to evalu-
ate f during the optimization process. This situation of buddefer time-constrained) optimization

2Given a real-valued random variabkebounded in absolute value B{max and an aveAragﬁ of w independently drawn
samples oK, the additive Chernoff bound states that with probabiltieast 1— 3, |[E[X] — X| < Xmaxy/—Ind/w.
3We used a tree-based map as a contextual adaptive insteauttibhs for performance reasons.

20 Adaptation-Based Programming in Haskell

occurs mostly due to real-time performance requiremenptsefample in computer vision and control
problems).

We consider applying the standard Levenberg-Marquardt)(@glorithm [12] to this problem. LM
is an iterative optimization algorithm that starts at a @mdocationxy and on each iteration evaluates
the function at the current and computes a newy, 1. LM uses a mixture of gradient descent and Gauss-
Newton optimization to compute, 1. The details of this computation are not particularly intpot other
than the fact that a key component of the algorithm is thal @acation must decide how to best blend
gradient descent and Gauss-Newton, which is done by spagifyblending parameter. Marquardt
[15] proposed a simple way to modify by increasingA by a particular factor (putting more weight
on gradient descent) when the previous iteration incretigetbss, and decreasiigotherwise (giving
more weight to Gauss-Newton). Thiscontrol works well and can be found in most implementations.

In [18], the authors apply reinforcement learning (RL) noekh to learn a controller for and show
that itis possible to obtain a small improvement with respeoeduction in loss compared to the standard
A control. We applied our framework to this problem using remn to implement the iteration, resulting
in an adaptive that has seven actions: three actions eitberase, decrease, or do not chaagshile
keeping the value of produced by the previous iteration; three actions that ianédes but discard the
new value ofx; and an action that resets the valudd the best one seen so far. The adaptive’s context
is a triple (b, hy, hy) whereb is the remaining budget ard, h, are indicators that encode whether the
loss improved on the previous step and two steps back, resggc

We tested the adaptation behavior of our program on thressicléobenchmark problems [16]: (1)
Rosenbrock, (2) Helical Valley, and (3) Brown & Dennis funat using a budget of 5 function evalu-
ations. We adapted the function for B for different starting points, each one applying the adapti
procedure to one of the functions drawn at random startirgrahdom initialx value from[—10,10]"
(where the dimensionis 2 in the case of Rosenbrock, 3 for Helical Valley, and 4 foovi & Dennis).
After training we evaluated the averaged scaled reductidosis (ASRL) of the resulting procedure over
10° initial x values for each function, where ASRL is simply the averagesacall runs of the reduction
in loss divided by the loss of the initial value rf Our results indicate a reduction in ASRL over the
standard LM for two functions: Brown & Denis by@L and Rosenbrock by.@4. For Helical Valley,
the ASRL increases by approximately003 over the standard LM. The modest improvements are a due
to the fact that standard LM is close to optimal for these fioms given our budget, leaving little room
for improvement. However, the fact that the adaptive pnogveas able to learn to match the standard
LM performance is a great success; it demonstrates thetigéfieess of the adaptation in this particular
example and indicates that the ABP idea works well in practic

7 Related Work

In [6] we present a slightly different view of adaptive pragrming. There we viewed ABP in the
context of a popular object-oriented language in a much rfamesed and limited form. For instance,
the feedback type is fixed to be a numeric reward rather thaarlztrary type. The goal of that work
was to support non-expert programmers and shield them foone ©f the complexities inherent in any
adaptive system. Conversely, this work’s goal is to undadsthow adaptive values interact with each
other and form adaptive programs in general.

Acar’s work on Self-Adjusting Computationl[2] presents Hattent view of adaptive programming
where the goal is to produce programs that adjust autonfigticaresponse to any external change to
their state. The aim of this work is more in support of dynaoidine) algorithms and incremental data

T. Bauer, M. Erwig, A. Fern, & J. Pinto 21

structures instead of the feedback-driven program optititia we present.

The ABP paradigm is inspired by recent work under the namaapagrogramming in the field
of reinforcement learning (RL). RIL[21] is a subfield of adiil intelligence that studies algorithms for
learning to control a system by interacting with the systeoh@bserving positive and negative feedback.
RL is intended for situations where it is difficult to write aogram that implements a high-quality
controller, but where it is relatively easy to specify a fleack signal that indicates how well a controller
is performing. Thus, pure RL can be viewed as an extreme fdrAB® where the non-adaptive part
of the program is trivial, requiring the RL mechanisms tosedhe full problem from scratch. As such,
successful applications of RL typically require signifitarpertise and experience. It is somewhat of an
art to formulate a complex problem at the appropriate atttralevel so that RL will be successful.

The inherent complexity of pure RL led researchers to dgvdlfierent mechanism for humans to
provide natural forms of “advice” to RL systems, e.g. in thei of a set of rules that specify hints about
good behavior in various situations [14], or example dertratisns of good behavior by a domain expert
[1]. However, these forms of advice still require an RL expeno is very familiar with the underlying
algorithms for their successful application. In additithe expressiveness of the types of advice that can
be provided are quite limited, particularly in comparisoithvprogramming languages.

The desire to increase the expressiveness of advice pobtodeL systems has resulted in research
on hierarchical reinforcement learning [9]. Here a humasts@s behavioral constraints on the desired
controller, or program, to be learned in the form of sub-tasksub-procedure, hierarchies. The hier-
archies specify potential ways that the high-level problsan be solved by solving some number of
sub-problems, and in turn how those sub-problems can paltgrite broken down and so on. Not all
of the possibilities specified by the hierarchies will becassful or optimal, but the space of possible
controllers can be dramatically smaller than the origimalanstrained problem. Given these constraints,
RL algorithms are often able to solve substantially more glemproblems.

Provided with enough constraints the hierarchies destrdimve can be viewed as defining pro-
grams. This idea was made explicit under the name partigranoming, where a simple language based
on hierarchical state machines was developed to providiagoe to an RL agerit|[3]. This language was
soon replaced by the development of ALISP [4], which was eadliintegration of RL with LISP. The key
programming construct that ALISP adds to LISP is the chomatpwhich is qualitatively similar to an
adaptive value in our framework. The primary focus of workAdlSP has been to develop adaptation
rules for choice points and to understand the conditiongundhich learning would be optimal in the
limit of infinite runs of the program in an environment.

Genetic Programming (GP) is a biologically-inspired apgtofor optimizing programs based on a
type of randomized search. Thus, like RL applied to ABP, GRsatio optimize some objective over
program runs. However, unlike RL, GP does not typically eitpghe sequential nature of program exe-
cutions during the optimization process. Rather, GP is aergeneric black box optimization approach,
which typically ignores all aspects of the program execytexcept for the final returned objective value.
In this sense, RL is arguably a more appropriate formalisnA®P since it is specifically designed for
sequential decision making problems.

A more recent proposal for an adaptive programming langis@eéBL [20], which integrates RL
with the agent behavior language (ABL). The proposal f8BI can be viewed as an instance of ABP
for a language that is specialized to behavioral-basedranoging of software agents. Few details
concerning a concrete syntax, implementation, and legmiles are currently available.

Our work is also inspired by prior work on partial programminfo date, work on ABP or partial
programming has been largely orthogonal to the main carttdbs of this paper. Most importantly, the
existing work has not resulted in a well-founded notion off ABBom a programming language perspec-

22 Adaptation-Based Programming in Haskell

tive, which has left many open issues regarding the pragmatid properties of adaptive programs. Our
work is the first to formalize ABP in a declarative languagd smdefine primitive ABP elements, their
combinations, and programming patterns.

8 Conclusions and Future Work

We presented a generic embedded DSL in Haskell for desgrdmiaptation-based computations, which
is based on the concept of adaptive values. We demonstratedtandard machine learning scenarios
and more general adaptive programs can be captured viaescopiputational patterns. Initial exper-
iments demonstrated the potential of ABP. The main goal wasntlerstand what constructs a DSL
for adaptive programming should support and what progrargmatterns we can identify in adaptive
programs. In future work we will investigate more formal jpeoties of ABP. In particular, we want to
identify laws for optimizing adaptives with regard to corgence rate. Furthermore, we intend to extend
the language to patterns found in larger adaptive prograithstiae aim of solving harder problems.
The implementation described in this work is available_ht¢#he curious reader.

Acknowledgments

This work is supported by the National Science Foundatiareuthe grant CCF-0820286 “Adaptation-
Based Programming”.

References

[1] Pieter Abbeel & Andrew Y. Ng (2004)Apprenticeship learning via inverse reinforcement leagi In:
International Conference on Machine Learnipg. 1—, doi:10.1145/1015330.1015430.

[2] Umut A. Acar (2005):Self-adjusting computatiofPh.D. thesis, Carnegie Mellon University, Pittsburgh, PA
USA.

[3] David Andre & Stuart Russell (2001)Programmable Reinforcement Learning Agenta: Advances in
Neural Information Processing Systermpp. 1019-1024.

[4] David Andre & Stuart Russell (2002Btate Abstraction for Programmable Reinforcement Leay#igents
In: Eighteenth National Conference on Attificial Intelligenpp. 119-125.

[5] Peter Auer, Nicolo Cesa-Bianchi & Paul Fischer (2008)nite-time Analysis of the Multiarmed Bandit
Problem Machine Learnin@7, pp. 235-256, d0i:10.1023/A:1013689704352.

[6] Tim Bauer, Martin Erwig, Alan Fern & Jervis Pinto (201daptation-Based Programming in JavideEPM
11, pp. 81-90d0i:10.1145/1929501.1929518.

[7] Bauer, Tim and Erwig, Martin and Fern, Alan and Pinto, vier ABP.
http://web.engr.oregonstate.edu/~bauertim/abp/.

[8] Christopher Bishop (2006Pattern Recognition and Machine Learnin§pringer.

[9] Thomas Dietterich (1998)The MAXQ Method for Hierarchical Reinforcement Learnirg: International
Conference on Machine Learningp. 118-126.

[10] Michail Lagoudakis & Michael Littman (2000)Algorithm Selection using Reinforcement Learninig:
International Conference on Machine Learnipg. 511-518.

[11] T. Lai & H. Robbins (1985)Asymptotically efficient adaptive allocation rule&dvances in Applied Math-
ematics®, pp. 4-22, dci:10.1109/TAC.1987.1104491.

http://dx.doi.org/10.1145/1015330.1015430
http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1145/1929501.1929518
http://web.engr.oregonstate.edu/~bauertim/abp/
http://dx.doi.org/10.1109/TAC.1987.1104491

T. Bauer, M. Erwig, A. Fern, & J. Pinto 23

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

K. Levenberg (1944)A method for the solution of certain non-linear problemseadt squares Applied
Math Quatrterly, pp. 164—-168.

Michael Littman (1994):Markov Games as a Framework for Multi-Agent Reinforcemesarhing In:
International Conference on Machine Learnipg. 157-163.

R. Maclin, J. Shavlik, L. Torrey, T. Walker & E. Wild (2&): Giving Advice about Preferred Actions to
Reinforcement Learners Via Knowledge-Based Kernel Reigredn: Proceedings of the Twentieth National
Conference on Atrtificial Intelligenc@p. 819-824.

D. Marquardt (1963)An algorithm for least-squares estimation of nonlineargraeters SIAM Journal of
Applied Mathematics

H. B. Nielsen (2000)UCTP - Test Problems for Unconstrained Optimizatidiechnical Report, Technical
University of Denmark.

H. Robbins (1952)Some Aspects of the Sequential Design of ExperimBoitetin of the American Math-
ematical Societp8, pp. 527-535, d6i:10.1090/S0002-9904-1952-09620-8.

Paul Ruvolo, lan R. Fasel & Javier R. Movellan (2008ptimization on a Budget: A Reinforcement Learning
Approach In: Neural Information Processing Symposium (NIRS). 1385-1392.

T. Schrijvers, S. Peyton-Jones & M. Chakravarty (200§pe Checking with Open Type Functiohs ACM
Int. Conf. on Functional Programmingp. 51-62, dci:10.1145/1411203.1411215.

Christopher Simpkins, Sooraj Bhat, Michael Mateas &a@és Isbell (2008):Toward Adaptive Program-
ming: Integrating Reinforcement Learning into a ProgramgiLanguageln: ACM Conference on Object-
Oriented Programming Systems, Languages and Applicatig$£03—614, d0i:10.1145/1449955.1449811.

Richard Sutton & Andrew Barto (2000Reinforcement Learning: An IntroductioMIT Press.

S. Thompson (1991)Type Theory and Functional Programmingiddison-Wesley, Redwood City, CA,
USA.

http://dx.doi.org/10.1090/S0002-9904-1952-09620-8
http://dx.doi.org/10.1145/1411203.1411215
http://dx.doi.org/10.1145/1449955.1449811

	1 Introduction
	2 Adaptive Values
	2.1 Defining Adaptives
	2.2 Derived Adaptives
	2.3 Contextual Adaptives
	2.4 Nested and Recursive Adaptives

	3 Programs for Adaptive Computation
	3.1 Adaptation Combinators
	3.2 Recursive Adaptation
	3.3 Transactional Adaptations

	4 Monitoring Adaptation Behavior
	5 Convergence and Optimality
	6 Empirical Results
	7 Related Work
	8 Conclusions and Future Work

