Resumption-based big-step and small-step interpreters
for While with interactivel/O

Keiko Nakata
Institute of Cybernetics at Tallinn University of Techngyo Akadeemia tee 21, EE-12618 Tallinn, Estonia

keiko@cs.ioc.ee

In this tutorial, we program big-step and small-step tattdiipreters for the While language extended
with input and output primitives. While is a simple impevatianguage consisting of skip, assign-
ment, sequence, conditional and loop. We first developtbased interpreters for While. Traces are
potentially infinite nonempty sequences of states. Thepnéters assign traces to While programs:
for us, traces are denotations of While programs. The tmdimite if the program is terminating
and infinite if the program is non-terminating. However, ve@ot decide (i.e., write a program to
determine), for any given program, whether its trace isdioit infinite, which amounts to deciding
the halting problem. We then extend While with interactiwgtit/output primitives. Accordingly, we
extend the interpreters by generalizing traces to resamgti

The tutorial is based on our previous work with T. Uustalu easoning about interactive pro-

grams in the setting of constructive type theory.

1 Introduction

Interactiveprograms are those programs that take inputs, do some catigoyioutput results, and iterate
this cycle possibly infinitely. Operating systems and datselbsystems are typical examples. They are
important programs and have attracted formal study to gieeatheir correctness/safety. For instance,
a web application should protect confidentiality of the didtprocesses in interaction with possibly
untrusted agents, and a certified compiler should presapug/output behavior of the source program
in the compiled code. These works call for formal semantfdateractive programs.

In our previous work, we presented a constructive accouiritefactive input-output resumptidﬂ)s
their important properties, such as weak bisimilarity agsbonsiveness (a program always eventually
performs input or output unless it terminates), and sevapalductive operational semantics for in-
teractive programs. Our operational semantics are resompased. A resumption is roughly a tree
representing possible runs of a program. The tree branchewgats, each edge corresponding to each
possible input, and has infinitely deep paths if the prograag diverge. The development has been fully
formalized in the Coq proof assistant.

This tutorial serves to deliver the central ingredientsith@lour coinductive semantics by program-
ming resumption-based interpreters for interactive oy in Haskell. No knowledge of Coq or coin-
duction is assumed. We use Haskell as we can naturally boddranipulate infinite objects. However,
one can also work with OCaml using the lazy and force priragiv

The tutorial starts by programming trace-based intermdta the While language. Traces, defined
coinductively, are possibly infinite nonempty sequencestates. The interpreters assign traces to pro-
grams (to be more precise, to statement-state pairs),diagothe states that program runs go through.

1The word ‘resumption’ is sometimes reserved for denotatiafrparallel threads. We apply it more liberally to datastru
tures recording evolution in small steps. This usage datek to Plotkin[8] and was reinforced by Cenciarelli and Mo@j}

Olivier Danvy, Chung-chieh Shan (Eds.): IFIP Working Caefece
on Domain-Specific Languages 2011 (DSL 2011).
EPTCS 66, 2011, pp. 226=235, d0i:10.4204/EPTCS.66.12

http://dx.doi.org/10.4204/EPTCS.66.12

K. Nakata 227

The trace is finite if the program run is terminating and inirite if the program run is non-terminating.
Unlike the standard state-based interpreter for While tage-based interpreters are total: they return
traces forall programs. We will develop both big-step and small-steprjmegers, which are provably
equivalent constructively. (The proof of the equivalersbeyond the scope of the tutorial.)

We then extend While with interactive input/output primé$ and generalize traces to resumptions.
Accordingly, we extend our big-step and small-step intetgms, which now assign resumptions to inter-
active While programs. Once one learns trace-based ietergrfor While, this step is rather straightfor-
ward.

This tutorial is based on our previous work [5, 6]. The whadealopment in the tutorial is portable
to Cog with minor syntax adjustment. We will be explicit in @her a datatype is defined inductively
(Inductive in CoqQ’s vernacular) or coinductivelg¢Inductive) and whether a function is defined by
recursion Fixpoint) or by corecursionqoFixpoint), although these distinctions are not visible when
one works in Haskell.

The accompanying Haskell code can be downloaded from

http://cs.ioc.ee/~keiko/code/dslll.tgz.

2 Trace-based interpretersfor While

Statesare functions from variables to vali#eaVe represent bothariablesandvaluesby integers:

type Var = Integer
type Val Integer
type State = Var -> Val

Looking up a variable in a state is then simply function agadion:

lkp :: Var -> State -> Val
lkp x s = s X

We also define updaigpd x v s of a states at a variablex by a valuev:

upd :: Var -> Val -> State -> State
upd x v s = \y -> if x == y then v else s y

The syntax of arithmetic expressions is defined inductibgly

data AExp = N Integer | V Var
| AExp :+ AExp | AExp :- AExp | AExp :* AExp

The functionaexp a s evaluates an expressiarin a states. It is defined by recursion over the syntax
of expressions:

aexp :: AExp -> State -> Integer
aexp (N z) _ =z

aexp (V x) s = 1kp x s

aexp (a0 :+ al) s
aexp (a0 :- al) s
aexp (a0 :x al) s

aexp a0 s + aexp al s
aexp a0 s - aexp al s
aexp a0 s * aexp al s

Similarly, we define boolean expressions and an evaluatahém:

2The Haskell code, in particular the notations, are adaptad the lecture material for a programming language semanti
course by T. Uustalu.

http://cs.ioc.ee/~keiko/code/dsl11.tgz

228 Resumption-based big-step and small-step total intesygéor While with interactive I/0

data BExp = TT | FF | AExp :== AExp | AExp :<= AExp
| Not BExp | BExp :&& BExp | BExp :|| BExp

bexp :: BExp -> State —> Bool

bexp TT _ = True
bexp FF _ = False
bexp (a0 :== al) s = aexp a0 s == aexp al s

bexp (a0 :<= al) s aexp a0 s <= aexp al s
bexp (Not b) s = not (bexp b s)

bexp (a0 :&& al) s = bexp a0 s && bexp al s
bexp (a0 :|| al) s = bexp a0 s || bexp al s

The syntax of the While language is defined inductively by

data Stmt = Skip | Stmt :\ Stmt | Var := AExp
| If BExp Stmt Stmt | While BExp Stmt

Our interpreters for While assigmaces to While programs. Traces are possibly infinite nonempty
sequences of states. They are defined coinductively by

data Trace = Nil State | Delay State Trace

A trace may be finite or infinite. But we cannot decide, for aiveqg tracet, whethett is finite or not. In
other words, we cannot write a (total) function that returas when the trace is finite and returns false
otherwise. (Why?)

2.1 Big-step interpreter

The standard state-based interpreter for While is pagiaen a statement and an initial state, it returns
the final state if running the statement from the initial estst terminating. The interpreter diverges if
the statement runs forever. When one works in a setting wirdgetotal functions are definable, e.g.,
within the logic of Coq, the state-based interpreter cabralefined constructively, as this would require
deciding the halting problem, an instance of the Principlthe Excluded Middle. Working with traces
has the benefit that we do not need to decide: any statemennitiastate uniquely determine some
trace and we do not have to know whether this trace is finitenforite.

Our trace-based big-step interpreteial takes a statement and an initial state and returns a trace. It
is defined by recursion over the syntax of statements:

eval :: Stmt -> State -> Trace
eval Skip s = Nil s
eval (stmtO :\ stmtl) s
eval (x := a) s = Delay
eval (If b stmtO stmtl)
if bexp b s then
Delay s (eval stmtO s)
else Delay s (eval stmtl s)
eval (While b stmt0) s =
if bexp b s then
Delay s (loop (eval stmtO) (bexp b) s)
else Delay s (Nil s)

seque (eval stmtl) (eval stmtO s)
(Nil (upd x v s)) where v = aexp a s

n n

K. Nakata 229

We considerSkip to be terminal, or it does not take time to rBRip, so the interpreter returns a
singleton consisting of the initial state. The trace forgm®entx := a is a doubleton: it consists of
the initial state and the final state obtained by updatingriial states atx by the value ok in s. For
sequencetmtO :\ stmtil, we use an auxiliary functioneque, defined by corecursion by

seque :: (State -> Trace) -> Trace -> Trace

seque k (Nil s) = k s

seque k (Delay s t) = Delay s (seque k t)
The idea is that we first run the statemenint0 from the initial state, thestmt1 is run from the last
state of the trace produced by the rurseft0 (if the last state exists). In particulartmt 1 will not be
run at all if runningstmt0 from the initial state is nonterminating: then the tracedento is infinite
and we never get to its last state, from whetat1 will be run.

For conditional, the appropriate branch is run depending/bether the boolean guard evaluates to
true or false. The trace contains one additional delay toriee corresponding to the run of the branch,
accounting for the time taken to evaluate the guard.

For while, we use an auxiliary functiarmop defined by mutual corecursion together withbpseq:

loop :: (State -> Trace) -> (State -> Bool) -> State -> Trace
loop k p s =
if p s then
case k s of
Nil s’ -> Delay s’ (loop k p s’)
Delay s’ t -> Delay s’ (loopseq k p t)
else Nil s

loopseq :: (State -> Trace) -> (State -> Bool) -> Trace -> Trace

loopseq k p (Nil s) = Delay s (loop k p s)

loopseq k p (Delay s t) = Delay s (loopseq k p t)
The functionloop takes three argumentg:for evaluating the loop body from a stagefor testing the
boolean guard on a state; and a stgtevhich is the initial stateloopseq takes a trace, the initial trace,
instead of a state, as the third argument. The two functian® &as follows.1loop takes care of repeating
of the loop body, once the guard of a while loop has been etedudt analyzes the result and, if the
guard is false, then the run of the loop terminates. If itigfithen the loop body is evaluated by calling
k. loop then constructs the trace of the loop body by examining thelref k. If the loop body does
not augment the trace, which can only happen, if the loop bedysequence ddkips, a new round
of repeating the loop body is started by a recursive calldep. If the loop body augments the trace,
the new round is reached by reconstruction of the trace ofthent repetition withoopseq. On the
exhaustion of this trac@oopseq recursively calldoop.

As a Haskell program, one might not find the definitiond @p andloopseq most intuitive. Indeed

they are arranged so that (co)recursive callsdop andloopseq are “guarded” by &elay constructor.
This way, Coq guarantees these functions are productivegasred by the logic of Coqg.

Some design decisions we have made aredkap does not grow a trace, so we have
eval Skip s = Nil s

But an assignment and testing the guard of an if- or whileestant contribute a state, i.e., constitute a
small step, e.g., we have

eval (x := 17) s = Delay s (Nil (upd x 17 s))
eval (While FF Skip) s = Delay s (Nil s)

230 Resumption-based big-step and small-step total intesygéor While with interactive I/0

and

eval (While TT Skip) s = Delay s (Delay s (Delay s (...)))
This is good for several reasons. First, we have fatp is the identity of sequential composition,
i.e., the semantics does not distingugmt Skip :\ stmtandstmt:\ Skip for any statemenstmt
Second, we get a notion of small steps that fully agrees wightéxtbook-style small-step interpreter
given in the next section. The third and most important auteds that any while-loop always progresses,
because testing of the guard is a small step. Another optardibe to regard testing of the guard to be
instantaneous, but take leaving the loop body, or a backang in terms of low-level compiled code,
to constitute a small step. But then we would not agree togkibdok small-step interpreter.

2.2 Small-step interpreter

We proceed to an equivalent small-step interpreter for &/tilis based on an option-returning one-step
reduction functiorred, defined by recursion over the syntax of statements:
red :: Stmt -> State -> Maybe (Stmt, State)
red Skip s = Nothing
red (x := a) s = Just (Skip, upd x v s) where v = aexp a s
red (stmtO :\ stmtl) s =
case red stmtO s of
Just (stmt0’, s’) -> Just (stmtO’ :\ stmtl, s’)
Nothing -> red stmtl s
red (If b stmtO stmtl) s =
if bexp b s then
Just (stmtO, s)
else Just (stmtl, s)
red (While b stmt0) s =
if bexp b s then
Just (stmtO :\ While b stmtO, s)
else Just (Skip, s)
The functionred returnsNothing if the given statement is terminal, otherwise it one-stefuces the
given statement from the given state and returns the regutatement-state pair. Then the small-step
interpretemorm is defined by corecursion by repeatedly callirgi:
norm :: Stmt -> State -> Trace
norm stmt s =
case red stmt s of
Nothing -> Nil s
Just (stmt’, s’) -> Delay s (norm stmt’ s’)
One can in fact prove that the big-step and small-step ird&s s are equivalent: for any statement
stmtand states, eval stmt sandnorm stmt sreturns equal traces. The proof is foundlin [5], which is
however beyond the scope of this tutorial.

3 Resumption-based interpretersfor While with interactive |/O

We now extend While with interactive input/output priméi; The new syntax for statements is defined
inductively by

K. Nakata 231

data Stmt = Skip | Stmt :\ Stmt | Var := AExp
| If BExp Stmt Stmt | While BExp Stmt
|

Input Var | Output AExp

The statemenInput x reads an input value and stores it at the variabl& he statemen@utput a
evaluates the expressiarin the current state and outputs the resulting value.

To account for interactive input/output, we generalizedstoresumptions Informally, a resump-
tion is a datastructure that captures all possible evaigtaf a configuration (a statement-state pair), a
computation tree branching according to the external reiarchinism resulting from interactive inpﬁ;t.

Resumptions are defined coinductively by

data Res = Ret State | In (Val -> Res) | Out (Val, Res) | Delay Res

S0 a resumption either has terminated with some final state,s, takes an input value and evolves
into a new resumptiod v, In f, outputs a valuer and evolves intar, Out (v, r), or performs an
internal action (observable at best as a delay) and becoydegay r.

Here are some examples of resumptions, defined by coreoursio

bot :: Res

bot = Delay bot

rep :: Val -> Res

rep v = Delay (Delay (Out (v, rep v)))

rep’ :: Val -> Res

rep’ v = Delay (Out (v, rep’ v))

echo :: State —> Res

echo s = In (\v -> Delay (if v == O then Out (v, echo s) else Ret s))
echo’ :: Res

echo’ = In (\v -> Delay (if v == 0 then Out (v, echo’) else bot))

bot represents a resumption that silently divergesp v outputs a value forever. rep’ v is similar
but has shorter latency. Botitho andecho’ echo input interactively; the former terminates when the
input is 0, whereas the latter diverges in this situation.

3.1 Big-step interpreter

Extending the big-step interpreter for While to handle ihputput primitives is straightforward. The
new interpreter is given in figufé 1. Input and output stateimievaluate to corresponding resumptions
that perform input or output actions and terminate theeeaffhe functionseque, loop andloopseq
are extended in an expected way.

3.2 Small-step interpreter

To define an equivalent small-step interpreter for the autéive While, we introduce labeled configura-
tions, defined inductively by:

data Lconf = Ret_ State | In_ (Stmt, Val -> State)
| Out_ (Val, Stmt, State) | Delay_ (Stmt, State)

3There are alternatives. We could have chosen to work, eith functions from streams of input values into traces, i.e.
computation paths.

232 Resumption-based big-step and small-step total intesygéor While with interactive I/0

The one-step reduction functiard for the interactive While returns a labeled configuratiomeg
a statement-state pair. It is defined by recursion over th@agyof statements by

red :: Stmt -> State -> Lconf
red Skip s = Ret_ s
red (x := a) s = Delay_ (Skip, upd x v s) where v = aexp a s
red (stmtO :\ stmtl) s =
case red stmtO s of
Ret_ s’ -> red stmtl s’
In_. (stmt0’, f) -> In_ (stmt0’ :\ stmtl, f)
Out_. (v, stmt0’, s’) -> Out_ (v, stmt0’ :\ stmtl, s’)
Delay_ (stmt0’, s’) -> Delay_ (stmt0’ :\ stmtl, s’)
red (If b stmtO stmtl) s =
if bexp b s then
Delay_ (stmtO, s)
else Delay_ (stmtl, s)
red (While b stmt0) s =
if bexp b s then
Delay_ (stmtO :\ While b stmtO, s)
else Delay. (Skip, s)
red (Input x) s = In_ (Skip, \v -> upd x v s)
red (Output a) s = Out. (v, Skip, s) where v = aexp a s

Then the small-step interpreter is again obtained by repéatallingred. It is defined by corecursion
by
norm :: Stmt -> State -> Res
norm stmt s =
case red stmt s of
Ret_ s’ -> Ret s’
In. (stmt’, f) -> In (\v -> norm stmt’ (f v))
Out_ (v, stmt’, s’) -> Out (v, norm stmt’ s’)
Delay_ (stmt’, s’) -> Delay (norm stmt’ s’)

3.3 Reasoning with resumptions

Resumptions are a syntax-free representation of the bmhafvprograms. We can reason about the be-
havior of programs in terms of resumptions they producehilidubsection, we formalize two important
properties of resumptions, namely responsiveness ang blielmilaritﬂ Informally, a resumption is re-
sponsive if it always eventually performs an input or outpetion unless it terminates. Two resumptions
are delay-bisimilar if they agree modulo finite delays.

A predicateP on resumptions isesponsivef, wheneverP r holds, then one of the following condi-
tions holds:

1. r =Delay" (Res) for somen ands,
2. r =Delay" (In f) for somen andf, and for any value, P(fv);
3. r =Delay" (Out (v, r')) for somen andr’ andPr’.

4We assume extensional equality on resumptions.

K. Nakata 233

n

where the notatioDelay" r denoteDelay(...(Delay r)...).

A resumptionr is responsive if there is a responsive predi¢agich thaPr holds.

For instancegcho s given earlier in this section is responsive for anyutecho’ is not. (TakeP
such that, for any, Pr holds ifr is eitherecho s, Delay (Out (v, echo S)) or Delay (Ret 9).)

A binary relationR, written in infix notation, on resumptions is (ermination-sensitive) delay-
bisimulation[10] if, whenevergRr; holds, then one of the following conditions holds:

1. ro =Delay"” (Res S) andr; = Delay” (Res s) for somen andn’;

2. ro = Delay" (In fp) andry = Delay”' (In f1) for somen,n, fo and f1, and, for any value,
(foV) R (f]_V).

3. ro =Delay" (Qut (v, rh)) andry = Delay™ (Out (v, r})) for somen,n’,ry andr}, andry R r}.
4. ro =Delay r; andry = Delay r) for somerg andry, andrg R ry.

Two resumptionsg andr, are delay-bisimilar if there is a delay-bisimulati®&such thatrgRr.
For instancerep vandrep’ v are delay-bisimilar for any. (TakeR such that, for any andr’, rRr’
holds ifr =rep vandr’ =rep’ v.)

4 Somefurther reading

The material given in this tutorial is based on([5, 6]. Thenfer presents four trace-based coinductive
operational semantics for While, big-step and small-ségtional semantics and big-step and small-step
functional semantics, and prove their equivalence in thesicactive setting of Coq. The latter looked
at a constructive account of interactive resumptionsy thgyortant properties such as delay bisimilarity
and responsiveness, and gave several big-step operag@mahtics for interactive While.

Coinductive functional semantics similar to ones givernmtutorial have appeared in the works of J.
Rutten and V. Caprettal[9} 2]. J. Rutten gave in coalgebesin &t delayed state semantics for While, i.e.,
a semantics that, for a given statement-state pair, retupassibly infinitely delayed state. V. Capretta
also looked at a delayed state based semantics in his acobgaberal recursion in constructive type
theory. Central to him was the realization that the delag typnstructor is a monad.

A general categorical account of small-step semantics &as given by I. Hasuo et al.|[4].

Similar ideas also found applications in constructive falimation of domain theory, in particular to
compute least upper bounds. C. Paulin-Mohring [7] developeCoq library for constructive pointed
w-cpos and continuous functions and gave semantics for Katwonks based on them. N. Benton et
al. [1] generalized her library to treat predomains and aeg@riift monad, which are used to define
denotational semantics for a simply-typed call-by-valmlbda calculus with recursion and an untyped
call-by-value lambda calculus.

5 Exercise

1. Extend While with the statemenépeat Stmt Bexp, and adapt the interpreter accordingly.

2. Extend While with the statemestmt : ||| Stmt, and adapt the interpreter accordingly.
(stmtO : ||| stmtl non-deterministically chooses to run eithers@ftO or stmt1.)

3. Write interactive programs that produce delay-bisimigsumptions.

234 Resumption-based big-step and small-step total intesygéor While with interactive I/0

4. Give resumptions that are delay-bisimilar, and provettiey are indeed delay-bisimilar by finding a
delay-bisimulation.

Acknowledgments The author’s research was supported by the European Réfiemalopment Fund
(ERDF) through the Estonian Centre of Excellence in CompBitéence (EXCS).

References

[1] N. Benton, A. Kennedy & C. Varming (2009):Some Domain Theory and Denotational Semantics
in Cog In S. Berghofer, T. Nipkow, C. Urban & M. Wenzel, editorsProc. of 22nd Int. Conf.
on Theorem Proving in Higher-Order Logics, TPHOLs 20QNCS 5674, Springer, pp. 115-130,
doii10.1007/978-3-642-033591%.

[2] V. Capretta (2005): General recursion via coinductive typesLogical Methods in Comput. Scil(2),
doi{10.2168/LMCS-1(2:1)2005.

[3] P. Cenciarelli & E. Moggi (1993)A syntactic approach to modularity in denotational semastin: Proc.
of 5th Biennial Meeting on Category Theory and Computer$me CTCS 1993

[4] I. Hasuo, B. Jacobs & A. Sokolova (2007generic trace semantics via coinductiohogical Methods in
Comput. Sci3(4), doi:10.2168/LMCS-3(4:11)2007.

[5] K. Nakata & T. Uustalu (2009)Trace-based coinductive operational semantics for Whileg-step and
small-step, relational and functional stylesn S. Berghofer, T. Nipkow, C. Urban & M. Wenzel, editors:
Proc. of 22nd Int. Conf. on Theorem Proving in Higher-Ordegics, TPHOLs 2009.NCS5674, Springer,
pp. 375-390, doi:10.1007/978-3-642-033596)

[6] K. Nakata & T. Uustalu (2010)Resumptions, weak bisimilarity and big-step semantic¥\oite with inter-
active 1/0O: an exercise in mixed induction-coinductidn L. Aceto & P. Sobocinski, editorsProc. of 7th
Workshop on Structural Operational Semantics, SOS 2BIE&tron. Proc. in Theor. Comput. S82, pp.
57-75, doi:10.4204/EPTCS.32.5.

[7] C. Paulin-Mohring (2009)A constructive denotational semantics for Kahn network&ag; In Y. Bertot,
G. Huet, J.-J. Lévy & G. Plotkin, editor&rom Semantics to Computer Science — Essays in Honour @il
Kahn Cambridge University Press, pp. 383-414,doi:10.1010@B30511770524.018.

[8] G.D. Plotkin (1983):Domains (“Pisa Notes”) Unpublished notes.

[9] J. Rutten (1999)A note on coinduction and weak bisimilarity for While progra Theor. Inform. and Appl.
33(4-5), pp. 393—-400, doi:10.1051/ita:1999125.

[10] W. P. Weijland (1989)Synchrony and Asynchrony in Process Algeld®a.D. thesis, University of Amster-
dam.

http://dx.doi.org/10.1007/978-3-642-03359-9_10
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.2168/LMCS-3(4:11)2007
http://dx.doi.org/10.1007/978-3-642-03359-9_26
http://dx.doi.org/10.4204/EPTCS.32.5
http://dx.doi.org/10.1017/CBO9780511770524.018
http://dx.doi.org/10.1051/ita:1999125

K. Nakata 235

eval :: Stmt -> State -> Res
eval Skip s = Ret s
eval (stmtO :\ stmtl) s = seque (eval stmtl) (eval stmtO s)
eval (x := a) s = Delay (Ret (upd x v s)) where v = aexp a s
eval (If b stmtO stmtl) s =
if bexp b s then
Delay (eval stmtO s)
else Delay (eval stmtl s)
eval (While b stmt0) s =
if bexp b s then
Delay (loop (eval stmtO) (bexp b) s)
else Delay (Ret s)
eval (Input x) s = In (\v -> Ret (upd x v s))
eval (Output a) s = Out (v, Ret s) where v = aexp a s

seque :: (State -> Res) -> Res -> Res
seque k (Ret s) =k s

seque k (In f) = In (\v -> seque k (f v))
seque k (Out (v, r)) = Out (v, seque k r)
seque k (Delay r) = Delay (seque k r)

loop :: (State -> Res) -> (State -> Bool) -> State -> Res
loop k p s =
if p s then
case k s of
Ret s’ -> Delay (loop k p s’)
In £ -> In (\v -> loopseq k p (f v))
Out(v, r) -> Out (v, r’) where r’ = loopseq k p r
Delay r -> Delay r’ where r’ = loopseq k pr
else Ret s
loopseq :: (State -> Res) -> (State -> Bool) -> Res -> Res
loopseq k p (Ret s) = Delay (loop k p s)
loopseq k p (In f) = In (\v -> loopseq k p (f v))
loopseq k p (Out(v, r)) = Out (v, loopseq k p r)
loopseq k p (Delay r) = Delay (loopseq k p r)

Figure 1: Resumption-based big-step interpreter for Wiita 1/0

	1 Introduction
	2 Trace-based interpreters for While
	2.1 Big-step interpreter
	2.2 Small-step interpreter

	3 Resumption-based interpreters for While with interactive I/O
	3.1 Big-step interpreter
	3.2 Small-step interpreter
	3.3 Reasoning with resumptions

	4 Some further reading
	5 Exercise

