
Olivier Danvy, Chung-chieh Shan (Eds.): IFIP Working Conference
on Domain-Specific Languages 2011 (DSL 2011).
EPTCS 66, 2011, pp. 226–235, doi:10.4204/EPTCS.66.12

Resumption-based big-step and small-step interpreters
for While with interactive I/O

Keiko Nakata
Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, EE-12618 Tallinn, Estonia

keiko@cs.ioc.ee

In this tutorial, we program big-step and small-step total interpreters for the While language extended
with input and output primitives. While is a simple imperative language consisting of skip, assign-
ment, sequence, conditional and loop. We first develop trace-based interpreters for While. Traces are
potentially infinite nonempty sequences of states. The interpreters assign traces to While programs:
for us, traces are denotations of While programs. The trace is finite if the program is terminating
and infinite if the program is non-terminating. However, we cannot decide (i.e., write a program to
determine), for any given program, whether its trace is finite or infinite, which amounts to deciding
the halting problem. We then extend While with interactive input/output primitives. Accordingly, we
extend the interpreters by generalizing traces to resumptions.

The tutorial is based on our previous work with T. Uustalu on reasoning about interactive pro-
grams in the setting of constructive type theory.

1 Introduction

Interactiveprograms are those programs that take inputs, do some computation, output results, and iterate
this cycle possibly infinitely. Operating systems and data base systems are typical examples. They are
important programs and have attracted formal study to guarantee their correctness/safety. For instance,
a web application should protect confidentiality of the datait processes in interaction with possibly
untrusted agents, and a certified compiler should preserve input/output behavior of the source program
in the compiled code. These works call for formal semantics of interactive programs.

In our previous work, we presented a constructive account ofinteractive input-output resumptions1,
their important properties, such as weak bisimilarity and responsiveness (a program always eventually
performs input or output unless it terminates), and severalcoinductive operational semantics for in-
teractive programs. Our operational semantics are resumption-based. A resumption is roughly a tree
representing possible runs of a program. The tree branches on inputs, each edge corresponding to each
possible input, and has infinitely deep paths if the program may diverge. The development has been fully
formalized in the Coq proof assistant.

This tutorial serves to deliver the central ingredients behind our coinductive semantics by program-
ming resumption-based interpreters for interactive programs in Haskell. No knowledge of Coq or coin-
duction is assumed. We use Haskell as we can naturally build and manipulate infinite objects. However,
one can also work with OCaml using the lazy and force primitives.

The tutorial starts by programming trace-based interpreters for the While language. Traces, defined
coinductively, are possibly infinite nonempty sequences ofstates. The interpreters assign traces to pro-
grams (to be more precise, to statement-state pairs), recording the states that program runs go through.

1The word ‘resumption’ is sometimes reserved for denotations of parallel threads. We apply it more liberally to datastruc-
tures recording evolution in small steps. This usage dates back to Plotkin [8] and was reinforced by Cenciarelli and Moggi [3].

http://dx.doi.org/10.4204/EPTCS.66.12

K. Nakata 227

The trace is finite if the program run is terminating and it is infinite if the program run is non-terminating.
Unlike the standard state-based interpreter for While, ourtrace-based interpreters are total: they return
traces forall programs. We will develop both big-step and small-step interpreters, which are provably
equivalent constructively. (The proof of the equivalence is beyond the scope of the tutorial.)

We then extend While with interactive input/output primitives and generalize traces to resumptions.
Accordingly, we extend our big-step and small-step interpreters, which now assign resumptions to inter-
active While programs. Once one learns trace-based interpreters for While, this step is rather straightfor-
ward.

This tutorial is based on our previous work [5, 6]. The whole development in the tutorial is portable
to Coq with minor syntax adjustment. We will be explicit in whether a datatype is defined inductively
(Inductive in Coq’s vernacular) or coinductively (CoInductive) and whether a function is defined by
recursion (Fixpoint) or by corecursion (CoFixpoint), although these distinctions are not visible when
one works in Haskell.

The accompanying Haskell code can be downloaded from
http://cs.ioc.ee/~keiko/code/dsl11.tgz.

2 Trace-based interpreters for While

Statesare functions from variables to values2. We represent bothvariablesandvaluesby integers:

type Var = Integer

type Val = Integer

type State = Var -> Val

Looking up a variable in a state is then simply function application:

lkp :: Var -> State -> Val

lkp x s = s x

We also define updateupd x v s of a states at a variablex by a valuev:

upd :: Var -> Val -> State -> State

upd x v s = \y -> if x == y then v else s y

The syntax of arithmetic expressions is defined inductivelyby

data AExp = N Integer | V Var

| AExp :+ AExp | AExp :- AExp | AExp :* AExp

The functionaexp a s evaluates an expressiona in a states. It is defined by recursion over the syntax
of expressions:

aexp :: AExp -> State -> Integer

aexp (N z) = z

aexp (V x) s = lkp x s

aexp (a0 :+ a1) s = aexp a0 s + aexp a1 s

aexp (a0 :- a1) s = aexp a0 s - aexp a1 s

aexp (a0 :* a1) s = aexp a0 s * aexp a1 s

Similarly, we define boolean expressions and an evaluator for them:

2The Haskell code, in particular the notations, are adapted from the lecture material for a programming language semantic
course by T. Uustalu.

http://cs.ioc.ee/~keiko/code/dsl11.tgz

228 Resumption-based big-step and small-step total interpreters for While with interactive I/O

data BExp = TT | FF | AExp :== AExp | AExp :<= AExp

| Not BExp | BExp :&& BExp | BExp :|| BExp

bexp :: BExp -> State -> Bool

bexp TT = True

bexp FF = False

bexp (a0 :== a1) s = aexp a0 s == aexp a1 s

bexp (a0 :<= a1) s = aexp a0 s <= aexp a1 s

bexp (Not b) s = not (bexp b s)

bexp (a0 :&& a1) s = bexp a0 s && bexp a1 s

bexp (a0 :|| a1) s = bexp a0 s || bexp a1 s

The syntax of the While language is defined inductively by

data Stmt = Skip | Stmt :\ Stmt | Var := AExp

| If BExp Stmt Stmt | While BExp Stmt

Our interpreters for While assigntraces to While programs. Traces are possibly infinite nonempty
sequences of states. They are defined coinductively by

data Trace = Nil State | Delay State Trace

A trace may be finite or infinite. But we cannot decide, for any given tracet, whethert is finite or not. In
other words, we cannot write a (total) function that returnstrue when the trace is finite and returns false
otherwise. (Why?)

2.1 Big-step interpreter

The standard state-based interpreter for While is partial:given a statement and an initial state, it returns
the final state if running the statement from the initial state is terminating. The interpreter diverges if
the statement runs forever. When one works in a setting whereonly total functions are definable, e.g.,
within the logic of Coq, the state-based interpreter cannotbe defined constructively, as this would require
deciding the halting problem, an instance of the Principle of the Excluded Middle. Working with traces
has the benefit that we do not need to decide: any statement andinitial state uniquely determine some
trace and we do not have to know whether this trace is finite forinfinite.

Our trace-based big-step interpretereval takes a statement and an initial state and returns a trace. It
is defined by recursion over the syntax of statements:

eval :: Stmt -> State -> Trace

eval Skip s = Nil s

eval (stmt0 :\ stmt1) s = seque (eval stmt1) (eval stmt0 s)

eval (x := a) s = Delay s (Nil (upd x v s)) where v = aexp a s

eval (If b stmt0 stmt1) s =

if bexp b s then

Delay s (eval stmt0 s)

else Delay s (eval stmt1 s)

eval (While b stmt0) s =

if bexp b s then

Delay s (loop (eval stmt0) (bexp b) s)

else Delay s (Nil s)

K. Nakata 229

We considerSkip to be terminal, or it does not take time to runSkip, so the interpreter returns a
singleton consisting of the initial state. The trace for assignmentx := a is a doubleton: it consists of
the initial state and the final state obtained by updating theinitial states at x by the value ofa in s. For
sequencestmt0 :\ stmt1, we use an auxiliary functionseque, defined by corecursion by

seque :: (State -> Trace) -> Trace -> Trace

seque k (Nil s) = k s

seque k (Delay s t) = Delay s (seque k t)

The idea is that we first run the statementstmt0 from the initial state, thenstmt1 is run from the last
state of the trace produced by the run ofstmt0 (if the last state exists). In particular,stmt1 will not be
run at all if runningstmt0 from the initial state is nonterminating: then the trace forstmt0 is infinite
and we never get to its last state, from wherestmt1 will be run.

For conditional, the appropriate branch is run depending onwhether the boolean guard evaluates to
true or false. The trace contains one additional delay to thetrace corresponding to the run of the branch,
accounting for the time taken to evaluate the guard.

For while, we use an auxiliary functionloop defined by mutual corecursion together withloopseq:

loop :: (State -> Trace) -> (State -> Bool) -> State -> Trace

loop k p s =

if p s then

case k s of

Nil s’ -> Delay s’ (loop k p s’)

Delay s’ t -> Delay s’ (loopseq k p t)

else Nil s

loopseq :: (State -> Trace) -> (State -> Bool) -> Trace -> Trace

loopseq k p (Nil s) = Delay s (loop k p s)

loopseq k p (Delay s t) = Delay s (loopseq k p t)

The functionloop takes three arguments:k for evaluating the loop body from a state;p for testing the
boolean guard on a state; and a states, which is the initial state.loopseq takes a trace, the initial trace,
instead of a state, as the third argument. The two functions work as follows.loop takes care of repeating
of the loop body, once the guard of a while loop has been evaluated. It analyzes the result and, if the
guard is false, then the run of the loop terminates. If it is true, then the loop body is evaluated by calling
k. loop then constructs the trace of the loop body by examining the result of k. If the loop body does
not augment the trace, which can only happen, if the loop bodyis a sequence ofSkips, a new round
of repeating the loop body is started by a recursive call toloop. If the loop body augments the trace,
the new round is reached by reconstruction of the trace of thecurrent repetition withloopseq. On the
exhaustion of this trace,loopseq recursively callsloop.

As a Haskell program, one might not find the definitions ofloop andloopseqmost intuitive. Indeed
they are arranged so that (co)recursive calls toloop andloopseq are “guarded” by aDelay constructor.
This way, Coq guarantees these functions are productive, asrequired by the logic of Coq.

Some design decisions we have made are thatSkip does not grow a trace, so we have

eval Skip s = Nil s

But an assignment and testing the guard of an if- or while-statement contribute a state, i.e., constitute a
small step, e.g., we have

eval (x := 17) s = Delay s (Nil (upd x 17 s))

eval (While FF Skip) s = Delay s (Nil s)

230 Resumption-based big-step and small-step total interpreters for While with interactive I/O

and

eval (While TT Skip) s = Delay s (Delay s (Delay s (...)))

This is good for several reasons. First, we have thatSkip is the identity of sequential composition,
i.e., the semantics does not distinguishstmt, Skip :\ stmtandstmt:\ Skip for any statementstmt.
Second, we get a notion of small steps that fully agrees with the textbook-style small-step interpreter
given in the next section. The third and most important outcome is that any while-loop always progresses,
because testing of the guard is a small step. Another option would be to regard testing of the guard to be
instantaneous, but take leaving the loop body, or a backwardjump in terms of low-level compiled code,
to constitute a small step. But then we would not agree to the textbook small-step interpreter.

2.2 Small-step interpreter

We proceed to an equivalent small-step interpreter for While. It is based on an option-returning one-step
reduction functionred, defined by recursion over the syntax of statements:

red :: Stmt -> State -> Maybe (Stmt, State)

red Skip s = Nothing

red (x := a) s = Just (Skip, upd x v s) where v = aexp a s

red (stmt0 :\ stmt1) s =

case red stmt0 s of

Just (stmt0’, s’) -> Just (stmt0’ :\ stmt1, s’)

Nothing -> red stmt1 s

red (If b stmt0 stmt1) s =

if bexp b s then

Just (stmt0, s)

else Just (stmt1, s)

red (While b stmt0) s =

if bexp b s then

Just (stmt0 :\ While b stmt0, s)

else Just (Skip, s)

The functionred returnsNothing if the given statement is terminal, otherwise it one-step reduces the
given statement from the given state and returns the resulting statement-state pair. Then the small-step
interpreternorm is defined by corecursion by repeatedly callingred:

norm :: Stmt -> State -> Trace

norm stmt s =

case red stmt s of

Nothing -> Nil s

Just (stmt’, s’) -> Delay s (norm stmt’ s’)

One can in fact prove that the big-step and small-step interpreters are equivalent: for any statement
stmtand states, eval stmt sandnorm stmt sreturns equal traces. The proof is found in [5], which is
however beyond the scope of this tutorial.

3 Resumption-based interpreters for While with interactive I/O

We now extend While with interactive input/output primitives. The new syntax for statements is defined
inductively by

K. Nakata 231

data Stmt = Skip | Stmt :\ Stmt | Var := AExp

| If BExp Stmt Stmt | While BExp Stmt

| Input Var | Output AExp

The statementInput x reads an input value and stores it at the variablex. The statementOutput a

evaluates the expressiona in the current state and outputs the resulting value.
To account for interactive input/output, we generalize traces toresumptions. Informally, a resump-

tion is a datastructure that captures all possible evolutions of a configuration (a statement-state pair), a
computation tree branching according to the external non-determinism resulting from interactive input.3

Resumptions are defined coinductively by

data Res = Ret State | In (Val -> Res) | Out (Val, Res) | Delay Res

so a resumption either has terminated with some final state,Ret s, takes an input valuev and evolves
into a new resumptionf v, In f, outputs a valuev and evolves intor, Out (v, r), or performs an
internal action (observable at best as a delay) and becomesr, Delay r.

Here are some examples of resumptions, defined by corecursion:

bot :: Res

bot = Delay bot

rep :: Val -> Res

rep v = Delay (Delay (Out (v, rep v)))

rep’ :: Val -> Res

rep’ v = Delay (Out (v, rep’ v))

echo :: State -> Res

echo s = In (\v -> Delay (if v == 0 then Out (v, echo s) else Ret s))

echo’ :: Res

echo’ = In (\v -> Delay (if v == 0 then Out (v, echo’) else bot))

bot represents a resumption that silently diverges.rep v outputs a valuev forever. rep’ v is similar
but has shorter latency. Bothecho andecho’ echo input interactively; the former terminates when the
input is 0, whereas the latter diverges in this situation.

3.1 Big-step interpreter

Extending the big-step interpreter for While to handle input/output primitives is straightforward. The
new interpreter is given in figure 1. Input and output statements evaluate to corresponding resumptions
that perform input or output actions and terminate thereafter. The functionsseque, loop andloopseq
are extended in an expected way.

3.2 Small-step interpreter

To define an equivalent small-step interpreter for the interactive While, we introduce labeled configura-
tions, defined inductively by:

data Lconf = Ret State | In (Stmt, Val -> State)

| Out (Val, Stmt, State) | Delay (Stmt, State)

3There are alternatives. We could have chosen to work, e.g., with functions from streams of input values into traces, i.e.,
computation paths.

232 Resumption-based big-step and small-step total interpreters for While with interactive I/O

The one-step reduction functionred for the interactive While returns a labeled configuration, given
a statement-state pair. It is defined by recursion over the syntax of statements by

red :: Stmt -> State -> Lconf

red Skip s = Ret s

red (x := a) s = Delay (Skip, upd x v s) where v = aexp a s

red (stmt0 :\ stmt1) s =

case red stmt0 s of

Ret s’ -> red stmt1 s’

In (stmt0’, f) -> In (stmt0’ :\ stmt1, f)

Out (v, stmt0’, s’) -> Out (v, stmt0’ :\ stmt1, s’)

Delay (stmt0’, s’) -> Delay (stmt0’ :\ stmt1, s’)

red (If b stmt0 stmt1) s =

if bexp b s then

Delay (stmt0, s)

else Delay (stmt1, s)

red (While b stmt0) s =

if bexp b s then

Delay (stmt0 :\ While b stmt0, s)

else Delay (Skip, s)

red (Input x) s = In (Skip, \v -> upd x v s)

red (Output a) s = Out (v, Skip, s) where v = aexp a s

Then the small-step interpreter is again obtained by repeatedly callingred. It is defined by corecursion
by

norm :: Stmt -> State -> Res

norm stmt s =

case red stmt s of

Ret s’ -> Ret s’

In (stmt’, f) -> In (\v -> norm stmt’ (f v))

Out (v, stmt’, s’) -> Out (v, norm stmt’ s’)

Delay (stmt’, s’) -> Delay (norm stmt’ s’)

3.3 Reasoning with resumptions

Resumptions are a syntax-free representation of the behavior of programs. We can reason about the be-
havior of programs in terms of resumptions they produce. In this subsection, we formalize two important
properties of resumptions, namely responsiveness and delay bisimilarity4. Informally, a resumption is re-
sponsive if it always eventually performs an input or outputaction unless it terminates. Two resumptions
are delay-bisimilar if they agree modulo finite delays.

A predicateP on resumptions isresponsiveif, wheneverPr holds, then one of the following condi-
tions holds:

1. r = Delayn (Res s) for somen ands;

2. r = Delayn (In f) for somen and f , and for any valuev, P(f v);

3. r = Delayn (Out (v, r ′)) for somen andr ′ andPr′.

4We assume extensional equality on resumptions.

K. Nakata 233

where the notationDelayn r denotes

n
︷ ︸︸ ︷

Delay(...(Delay r)...).
A resumptionr is responsive if there is a responsive predicateP such thatPr holds.
For instance,echo s given earlier in this section is responsive for anys, but echo’ is not. (TakeP

such that, for anyr, Pr holds if r is eitherecho s, Delay (Out (v, echo s)) or Delay (Ret s).)

A binary relationR, written in infix notation, on resumptions is a(termination-sensitive) delay-
bisimulation[10] if, wheneverr0 Rr1 holds, then one of the following conditions holds:

1. r0 = Delayn (Res s) andr1 = Delayn′ (Res s) for somen andn′;

2. r0 = Delayn (In f0) and r1 = Delayn′ (In f1) for somen,n′, f0 and f1, and, for any valuev,
(f0v) R (f1 v).

3. r0 = Delayn (Out (v, r ′0)) andr1 = Delayn′ (Out (v, r ′1)) for somen,n′, r ′0 andr ′1, andr ′0 R r′1.

4. r0 = Delay r ′0 andr1 = Delay r ′1 for somer ′0 andr ′1, andr ′0 R r′1.

Two resumptionsr0 andr1 are delay-bisimilar if there is a delay-bisimulationR such thatr0 Rr1.
For instance,rep v andrep’ v are delay-bisimilar for anyv. (TakeRsuch that, for anyr andr ′, rRr′

holds if r = rep v andr ′ = rep’ v.)

4 Some further reading

The material given in this tutorial is based on [5, 6]. The former presents four trace-based coinductive
operational semantics for While, big-step and small-step relational semantics and big-step and small-step
functional semantics, and prove their equivalence in the constructive setting of Coq. The latter looked
at a constructive account of interactive resumptions, their important properties such as delay bisimilarity
and responsiveness, and gave several big-step operationalsemantics for interactive While.

Coinductive functional semantics similar to ones given in the tutorial have appeared in the works of J.
Rutten and V. Capretta [9, 2]. J. Rutten gave in coalgebraic term a delayed state semantics for While, i.e.,
a semantics that, for a given statement-state pair, returnsa possibly infinitely delayed state. V. Capretta
also looked at a delayed state based semantics in his accountof general recursion in constructive type
theory. Central to him was the realization that the delay type constructor is a monad.

A general categorical account of small-step semantics has been given by I. Hasuo et al. [4].
Similar ideas also found applications in constructive formalization of domain theory, in particular to

compute least upper bounds. C. Paulin-Mohring [7] developed a Coq library for constructive pointed
ω-cpos and continuous functions and gave semantics for Kahn networks based on them. N. Benton et
al. [1] generalized her library to treat predomains and a general lift monad, which are used to define
denotational semantics for a simply-typed call-by-value lambda calculus with recursion and an untyped
call-by-value lambda calculus.

5 Exercise

1. Extend While with the statementrepeat Stmt Bexp, and adapt the interpreter accordingly.

2. Extend While with the statementStmt :||| Stmt, and adapt the interpreter accordingly.
(stmt0 :||| stmt1 non-deterministically chooses to run either ofstmt0 or stmt1.)

3. Write interactive programs that produce delay-bisimilar resumptions.

234 Resumption-based big-step and small-step total interpreters for While with interactive I/O

4. Give resumptions that are delay-bisimilar, and prove that they are indeed delay-bisimilar by finding a
delay-bisimulation.

Acknowledgments The author’s research was supported by the European Regional Development Fund
(ERDF) through the Estonian Centre of Excellence in Computer Science (EXCS).

References

[1] N. Benton, A. Kennedy & C. Varming (2009):Some Domain Theory and Denotational Semantics
in Coq. In S. Berghofer, T. Nipkow, C. Urban & M. Wenzel, editors:Proc. of 22nd Int. Conf.
on Theorem Proving in Higher-Order Logics, TPHOLs 2009, LNCS 5674, Springer, pp. 115–130,
doi:10.1007/978-3-642-03359-910.

[2] V. Capretta (2005):General recursion via coinductive types. Logical Methods in Comput. Sci.1(2),
doi:10.2168/LMCS-1(2:1)2005.

[3] P. Cenciarelli & E. Moggi (1993):A syntactic approach to modularity in denotational semantics. In: Proc.
of 5th Biennial Meeting on Category Theory and Computer Science, CTCS 1993.

[4] I. Hasuo, B. Jacobs & A. Sokolova (2007):Generic trace semantics via coinduction. Logical Methods in
Comput. Sci.3(4), doi:10.2168/LMCS-3(4:11)2007.

[5] K. Nakata & T. Uustalu (2009):Trace-based coinductive operational semantics for While:big-step and
small-step, relational and functional styles. In S. Berghofer, T. Nipkow, C. Urban & M. Wenzel, editors:
Proc. of 22nd Int. Conf. on Theorem Proving in Higher-Order Logics, TPHOLs 2009, LNCS5674, Springer,
pp. 375–390, doi:10.1007/978-3-642-03359-926.

[6] K. Nakata & T. Uustalu (2010):Resumptions, weak bisimilarity and big-step semantics forWhile with inter-
active I/O: an exercise in mixed induction-coinduction. In L. Aceto & P. Sobocinski, editors:Proc. of 7th
Workshop on Structural Operational Semantics, SOS 2010, Electron. Proc. in Theor. Comput. Sci.32, pp.
57–75, doi:10.4204/EPTCS.32.5.

[7] C. Paulin-Mohring (2009):A constructive denotational semantics for Kahn networks inCoq. In Y. Bertot,
G. Huet, J.-J. Lévy & G. Plotkin, editors:From Semantics to Computer Science – Essays in Honour of Gilles
Kahn, Cambridge University Press, pp. 383–414, doi:10.1017/CBO9780511770524.018.

[8] G. D. Plotkin (1983):Domains (“Pisa Notes”). Unpublished notes.

[9] J. Rutten (1999):A note on coinduction and weak bisimilarity for While programs. Theor. Inform. and Appl.
33(4–5), pp. 393–400, doi:10.1051/ita:1999125.

[10] W. P. Weijland (1989):Synchrony and Asynchrony in Process Algebra. Ph.D. thesis, University of Amster-
dam.

http://dx.doi.org/10.1007/978-3-642-03359-9_10
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.2168/LMCS-3(4:11)2007
http://dx.doi.org/10.1007/978-3-642-03359-9_26
http://dx.doi.org/10.4204/EPTCS.32.5
http://dx.doi.org/10.1017/CBO9780511770524.018
http://dx.doi.org/10.1051/ita:1999125

K. Nakata 235

eval :: Stmt -> State -> Res

eval Skip s = Ret s

eval (stmt0 :\ stmt1) s = seque (eval stmt1) (eval stmt0 s)

eval (x := a) s = Delay (Ret (upd x v s)) where v = aexp a s

eval (If b stmt0 stmt1) s =

if bexp b s then

Delay (eval stmt0 s)

else Delay (eval stmt1 s)

eval (While b stmt0) s =

if bexp b s then

Delay (loop (eval stmt0) (bexp b) s)

else Delay (Ret s)

eval (Input x) s = In (\v -> Ret (upd x v s))

eval (Output a) s = Out (v, Ret s) where v = aexp a s

seque :: (State -> Res) -> Res -> Res

seque k (Ret s) = k s

seque k (In f) = In (\v -> seque k (f v))

seque k (Out (v, r)) = Out (v, seque k r)

seque k (Delay r) = Delay (seque k r)

loop :: (State -> Res) -> (State -> Bool) -> State -> Res

loop k p s =

if p s then

case k s of

Ret s’ -> Delay (loop k p s’)

In f -> In (\v -> loopseq k p (f v))

Out(v, r) -> Out (v, r’) where r’ = loopseq k p r

Delay r -> Delay r’ where r’ = loopseq k p r

else Ret s

loopseq :: (State -> Res) -> (State -> Bool) -> Res -> Res

loopseq k p (Ret s) = Delay (loop k p s)

loopseq k p (In f) = In (\v -> loopseq k p (f v))

loopseq k p (Out(v, r)) = Out (v, loopseq k p r)

loopseq k p (Delay r) = Delay (loopseq k p r)

Figure 1: Resumption-based big-step interpreter for Whilewith I/O

	1 Introduction
	2 Trace-based interpreters for While
	2.1 Big-step interpreter
	2.2 Small-step interpreter

	3 Resumption-based interpreters for While with interactive I/O
	3.1 Big-step interpreter
	3.2 Small-step interpreter
	3.3 Reasoning with resumptions

	4 Some further reading
	5 Exercise

