Accurate Programming:
Thinking about programs in terms of properties*

Walid Taha Veronica Gaspes Rex Page
Halmstad University, Halmstad, Sweden University of Oklahoma, Norman, OK, USA
{Walid.Taha,Veronica.Gaspes}@hh.se page.ou.edu

Accurate programming is a practical approach to producigiy uality programs. It combines ideas
from test-automation, test-driven development, agilgpmmming, and other state of the art software
development methods. In addition to building on approatteshave proven effective in practice, it
emphasizes concepts that help programmers sharpen tligrstanding of both the problems they
are solving and the solutions they come up with. This is aglidy encouraging programmers to
think about programs in terms of properties.

1 Introduction

Technical usage differentiates being accurate from beiagise. “In the fields of science, engineering,
industry, and statistics, the accuracy of a measuremetarays the degree of closeness of measurements
of a quantity to its actual (true) value. The precision of ameement system, also called reproducibil-
ity or repeatability, is the degree to which repeated measants under unchanged conditions show
the same results. Although the two words can be synonymoausllioquial use, they are deliberately
contrasted in the context of the scientific methodl” [1]

Accurate programming is the idea that thinking about matiteral properties of programs as we
are developing them helps us produce better programs. Wehe@termprogramin the broadest sense
to include software, hardware, protocols, and algorithmgeaneral. With the growing success of what
is known as property-based testing, thinking about mattieaigorogram properties has suddenly be-
come much easier and much more accessible than it ever ware b&fhese notes introduce accurate
programming using Scala as the programming language fonges, and using the ScalaCheck library
for specifying and randomly checking program properties.

1.1 Why are program properties such an important concept?

In recent years the techniques for developing software amdware systems seems to have picked
up pace dramatically. This trend has been seen in both br@aklet methods (such as static typing,
static analysis, unit-testing, extreme programming, aodenbroadly, test-driven development) as well
as special-purpose, high-end methods (such as model dgeakher mathematical correctness meth-
ods, and clean-room methods). The upside of this progremisve seem to have both much better
understanding of how to build such systems well. The dovensidhat there has been an explosion in
the number of terms and concepts relating to the construeti@ analysis of software and hardware
systems.

*This work is funded by the Swedish KK Foundation, the Fulbrigrogram, and the US NSF.
TThis tutorial is contained in lecture notes entitled “Acater Programming” by Veronica Gaspes, Rex Page, and Walil Tah
available under the Creative Commons 3.0 Unported LicenBeebataccurate-programming.orgl

Olivier Danvy, Chung-chieh Shan (Eds.): IFIP Working Caefece
on Domain-Specific Languages 2011 (DSL 2011).
EPTCS 66, 2011, pp. 236-260, d0i:10.4204/EPTCS.66.13

This work is licensed under the
Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.66.13
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
accurate-programming.org

W. Taha, V. Gaspes & R. Page 237

The main point that these notes aim to get across is that ttigematical notion of gropertycan
play a central role in helping us organize our understandinmgany of these techniques as well as how
they relate to or differ from each other. That is, the notiefph clarify why certain recently developed
techniques such as property-based testihg![4, 3] bearadgeomise for improving the state of the art in
building computational systems.

Thinking about program properties, especially with theddid property-based testing tool, simulta-
neously

1. reduces the number of defects in our code,
2. enhances our understanding of our code,

3. provides us with a powerful, practical way to gain realpdson experience with writing and
understanding specifications of program properties, and

4. actually makes it easier to go all the way to mathemayigaibve the correctness our programs, if
and when an appropriate technology for doing that kind afghs available.

We all know that we program to change the world in some real vy, why should we bother with
trying to think about programs in a more mathematical, méxstract way? In addition to the fact that
it will allow us to write programs of significantly higher diitg, it also has the immediate benefit of
simplifying a lot of concepts, and helping us make a lot ofr@xtions between a wide range of concepts
that may have previously seemed disconnected.

As an example, let us try to see if thinking abstractly cam gis better intuitions about why program-
ming is hard. In abstract terms, “to change the world” meartsansform one point of its state space
into another. As we program, we quickly build up complex sfanmations that go far beyond simple
intuitions. To manage this complexity, our most importaat is careful reasoning, or, put more bluntly,
our brain. While programming and careful reasoning arerafijuvery closely related, it is a curious
fact that traditional programming languages and modeld terobfuscate this relation. Programming,
we are often told, is about writing programs, and carefusoaing is the realm of logic or mathematics.
Another example is an idea that we hope these notes will éharee, which is that programs not only
have mathematical properties but they are also matherhptimgerties themselves.

Viewing programming from the perspective of propertiesvites a unifying framework for under-
stand strong connections between a range of widely impoectanputing concepts, including

e Use-cases and use-case analysis

Unit testing, test-driven development, and continuairgst

Automatic test-case generation

Types, static type checking, and type inference

Mathematically stating and proving correctness

Contracts and dynamic monitoring

1.2 Properties as a tool for the serious hacker

Far too often, people talking about production programnsegm to think that hacking is a bad thing.
But hacking, in the sense of experimental programming, tsomty fun but also an extremely useful
activity. To see that, however, we need to spell out what wamisy the word and analyze the activity
with some care.

238 Accurate Programming

Here, we use the term to mean the activity of sitting in frohthe computer, writing programs,
running them, seeing what they do, revising them, and reme#tie process. Surely, other people will
have other definitions, and we will not even argue that oundifn is superior or popular. It's just what
we mean by the term here.

Hacking is a way of finding out if we can write a program to aghia certain functionality, and
to accumulate knowledge about what the language can do, ttvbahachine or compiler running the
language can do, or what we as programmers may be able to pod&/ien hacking is done in the
manner described above, the rapid cycle of program modditand execution can provide us with a
high-frequency stream of new discoveries about the systeitnvie are exploring. This is a big part of
what makes hacking fun. We are creating experiments, rgnthiem, and very quickly learning a lot
about a system that we are interested in.

Of course, as an experimental process, hacking does haveweak spots. The good news is that
the property-based view of programming can actually helfpuhese and turn hacking into an activity
that is not only enjoyable but also productive. Here are sofrike things that happen during hacking
that we do not tend to think about very much. The first is thdeolersions of programs tend to get
thrown away: we usually edit the same file in place. This mdéhaswe lose one way in which our
thought and reasoning process could have been documentiednaybe the history of the code as it is
being edited is not the best record of our reasoning whil&ihgc In fact, often it is the tests that we run
on these programs (as well as the expected outputs that velyusaver document) that are probably
the best record of our thinking process. Thus, a more sepmdem is that we generally do not keep
track of the tests that we run. An interesting side effechis is that often newer versions of the program
that we are editing do not pass tests that older versionsIfame had somehow documented the old
test cases, we would have quickly realized that we made akeisthen we made some change as we
were editing the program. This means that we will often haedrmpression that we have tested the most
recent version more extensively than we actually have. Vébil, it is often the case that while hacking
we tend to use far too few test cases to really provide us wiyhegsurance about the functionality that
we think our code provides.

As we will see in this tutorial, thinking about program pradjes will help us spell out explicitly
the kinds of tests that we would like to run on our programsl asing a property-based framework
will allows us to automatically test these properties usairigrge number of test cases. This means that
we can hack much more effectively, end up with well-docuredrand well-tested code, and be able to
explain the results of our hacking to others much more gtesartl convincingly.

1.3 What you can expect to learn from this tutorial
At a practical level, this tutorial aims to convince the reathat:

e Testing really helps you debug your programs and get theimt fagter. But, you may say, writing
test cases can simply be tedious and boring. Using propedieapture how you expect your code
to behave helps you write the code and helps you get a lot rasteases “for free”.

e Properties are a key concept for expressing what a programsbkould be doing. They are a
fundamental tool in any notion afccurateprogramming because until we have a clear idea of
where we are going, it is hard to imagine how we can get thevefcnmention check whether
we are there or not. Thinking about program properties mg&ing much more intellectually
satisfying.

W. Taha, V. Gaspes & R. Page 239

e Testing is much easier and works much better when we do tirgijdrom small pieces of code
and work our way up to the full system. The “bottom-up” orfinethe-ground-up” approach is
the most effective approach to accurate programming. tucep what can be viewed as a divide-
and-conquer strategy to software quality. It's hard to nfagé-quality systems from poor-quality
ingredients. Interestingly, mathematically proving prdjes of smaller programs is alsouch
easier. So, if your goal is not only extensive testing bud tdamathematically prove the correctness
of your code, your best strategy is the same: write and chexgepties of pieces of your code from
the ground up.

e Examples and use cases are crucial for effective softwarel@®nent and are your entry point
into the world of properties. The process of developed exesnand use cases starts both the
process of developing your test suite and of capturing yieomghts about your program in terms
of properties. Just as with testing and mathematical aisalysu want to have these for every
smallest part of your code. Starting your development byingirepresentative examples and
documenting them in an executable form in your code will saue alot of headaches when you
are checking or proving more sophisticated properties.

At the end of this tutorial, you can expect to be able to:

e Understand why programming is actually quite hard. Thisasan immediately obvious fact.
Worse, the man on the street is inclined to think that prognarg is not hard, and that it is
just something that teenagers do in their spare time. Onleeoimtost fundamental benefits from
learning to think about programs in terms of their properisghat we begin to learn the vocabulary
needed for reasoning about programs and their behavialsyhat makes some programs easier
to reason about and others harder.

e Interact effectively with “customers” and others inteegbin your programs. Properties provide us
with a way to think about our interaction with the “customést the code that we are developing,
both in terms of soliciting specific use cases and in term&weélbping a precise understanding of
some of the customer’s more nuanced expectations aboubdeeticat they want.

e Know how to get your programs much closer to being amenabieathematical proofs. There
are several reasons for this. The first is that a program ishreasier to prove correct when it
does not have bugs. Testing, especially property-bas¢idgesan be very effective at finding
bugs. The other reason is that using property-based tastams you also develop the properties
along with the code, thus ensuring that you have all the sthat you need to start the process of
mathematically proving that a program is correct.

1.4 What you will NOT learn in this tutorial

While the goal of this tutorial is to teach you to think aboutaexpress mathematical properties of
programs, it is focused on using testing as a practical gidwieight technique for catching obvious
cases when these properties do not hold. This process dméshtays, and does increase the chances
that your programs are correct, but it certainly is not a matétical proof that the properties of your
program hold. For several reasons, this tutorial will nqilextly address the issue of proving programs
correct. These include the fact that there are already o#x¢s elsewhere about using tools such as
the Z or VDM property languages to prove the correctness @jnams. They also include the fact that
traditionally the cost of carrying out such proofs has beehibitively high for most businesses, in terms
of both training their personnel to carry out such proofs #ratime and effort it takes to compete the

240 Accurate Programming

proofs themselves, as well as to keep them updated when tleeatmnges. At the same time, when
tools to automate the proof process exist, they require ;w@me training time. With the property-based
testing approaches, we get essentially most of the benéfitsroal verification with dramatically less
work.

1.5 Practicalities: Using Scala and ScalaCheck for exer@sroblems

This tutorial is written with the intention that the readeal wead the notes and use Scala and ScalaCheck
to perform the exercise problems presented in the text.eftwa, it is important that you have Scala and
ScalaCheck installed and running on your machine beforérgiado go through the rest of the tutorial.

To use Scala and ScalaCheck [5] you need to download the tmmapid some tools that follow with
it. The best way is to go to the official site for downloading

http://www.scala-lang.org/downloads

and follow the instructions for your system. You need to hdaea 1.5 or later in your system. If you
don’t have it, there are instructions on the scala downlcagkep All information and documentation
about Scala is under

http://www.scala-lang.org/

Together with Scala you get the Scala Bazaar Syst@aA). To start using it, follow the instructions in
the first section of

http://www.scala-lang.org/node/93
Now, in order to install ScalaCheck, you just have to sisez doing

sbaz update
sbaz install scalacheck

All documentation and more detailed instructions are under
http://code.google.com/p/scalacheck/
In order to test your installation, you can write a Scala proy

import org.scalacheck._
import org.scalacheck.Prop._

object Helloq{
val trivial = Prop.forAll((n:Int) => n==n)
def main(args: Array[String]){
println("Hello " + args(0))
trivial.check
}
}

save it in a fileHelloWorld.scalaand then compile and run with

prompt> scalac HelloWorld.scala
prompt> scala Hello someone
Hello someone

+ OK, passed 100 tests.

prompt>

W. Taha, V. Gaspes & R. Page 241

If you have any problems running this program, it could be ¢hee that sbaz did not find the latest
release of ScalaCheck. Then you have to do some work by hamdiéridhe directory

.../scala-2.9.0.final/1lib

place the file you find under
http://scalacheck.googlecode.com/files/scalacheck2.9.0-1.9. jar

with the namescalacheck.jar

2 A Simple Function

Consider the following programming task: write a functibatttakes two integers and returns the larger
of the two. Even though this is a simple problem, it can be usdtlistrate a wide range of best practices
and concepts relating to software development.

2.1 Examples as a communication tool

Mastering accurate programming requires awareness ofadeets that are quite simple but at the
same time of tremendous importance in practice. One of tfaese is the exceptionally important role
that concrete exampleglay in effective communication. A concrete example is amavhich all the
details have been spelled out, and nothing is left to imdigineor intuition. Here, we also use the
word communicatiorin the broadest sense to include writing a letter, giving @esp or presentation,
discussing an insurance policy, or talking about computegiams.

There are several reasons why concrete examples are impoiae first is that as humans we
experience the world primarily through a small set of basitses. Yet we think about the world and
communicate about the world in much more general terms theat aur primary experiences are made
of. Our beliefs about primary experiences are much easiesrtumunicate than more abstract thoughts
about them. For example, it is much easier to reach an agreesbeut what is a “hot tea pot” than
what is a “pretty tea pot”, because the first relates diretilpur senses, while the latter is a much
more sophisticated and context-dependent notion. The &arde of difficulties arise when we try to
communicate about programs.

The second is that using concrete examples reduces ounael@n imagination or intuition, both
of which can actually be hard to communicate, especiallyualsomplex objects such as programs.
Programs are generally deceptively more complex than thpgax at first. This makes it particularly
important to spell out concrete examples that communicaterete facts about how we expect such
programs to behave.

The third and final reason is that it is too often the case thagrams are built with too few test
cases. Making a habit of starting the process of creatingrpros by first creating concrete examples is
not only a good way to start understanding the problem thaneerying to solve but also to ensure that
there will always be a minimal set of test cases that we caltyes® in the future to make sure that our
program continues to work correctly as we update it, upgiadeodify it, or attempt to improve it in
any other way.

2.2 Use cases, use-case analysis, and test-driven develeptn

The reader may be somewhat surprised by the emphasis we thisatea. However, it is the key idea
behind important methods in software engineering, suchsesddse Analysis [6] and Specification by

242 Accurate Programming

Example[[2]. The idea of using examples is very simple, bpeeence repeatedly demonstrates that they
are one of the most important ingredients of successfulrproglevelopment. Not only are examples
useful for accurately understanding the functionalityt thha are being asked to program, but they are
also extremely helpful in checking that we have attainedraathtained the functionality that we think
we have attained. This observation is the basis for widatgessful methods @ést-driven development
including techniques such asit testingandextreme programmingTest-driven development promotes
the idea of starting development with building an apprdprset of tests for the functionality we want to
develop. Unit testing pushes this idea a bit further to emaijzleathat it is most effective when applied at
a fine granularity, so that tests are made when implementiagrnallest possible unit of functionality.
This idea of improving the quality of software from the grdwrp is very important, whether we simply
want to make sure that we have a high-quality test suite forcode or we want to go all the way to
prove our programs correct.

2.3 Examples as properties

It is easy to put these ideas to work. For the most part, itssgumatter of making it into a habit. We
will do this consistently in this tutorial. For theax problem, we may be able to solicit the following
concrete use-cases:

max (1,5) ==5
max (1,1) == 1
max (3,2) == 3
max (3,-1) == 3
max (1,-3) == 1

With these concrete examples in hand, we get a more spe@ficatiwhat is required. The last ex-
ample above is actually particularly useful, because ituglas the possibility that the customer actually
meant us to return the value with the greatasgnituderather than simply the greatest value. Naturally,
language is very expressive, and much of its expressivitlyesofrom the fact that the meaning of any
one sentence can be highly context dependent. Concretepiecanan be very helpful in making sure
that we are not making any false assumptions about the dontex

We can now confidently write out code for an implementatiothdaf function:

def max (x : Int, y : Int) : Int = if (x>y) x else y

2.4 Use cases as properties

ScalaCheck is a Scala library that allows us to explicitlgcfy and test a wide range of program prop-
erties, including specific test cases. To capture the behaxpressed in the above examples, all we have
to write is the following:

property ("Use cases for max") =

(max (1,5) == 5) &&
(max (1,1) == 1) &&
(max (3,2) == 3) &&

(max (3,-1) == 3) &&
(max (1,-3) == 1)

W. Taha, V. Gaspes & R. Page 243

This statement is executable test code. When we run the atoolee(both definition and property
statement), we get the following output when we run our pogr

+ SmallExamples.Use cases: 0K, proved property.

Not only is this a comforting confirmation that our code atsteaorks on the examples that were
discussed with our customer, it means we have an executsilthat we can keep in our test harness so
that we can always easily detect if any future changes todte break functionality that we had already
gotten right. The idea of keeping such test cases aroundeaithg them as an integral part of the code
that we developed is an essential part of test-driven appesato software design.

At this point we can stop, declare victory, and hand back odedo the customer and say that we
are done. While this could be a reasonable thing to do for dl $omection such as this one, for many
problems we may want to study our own code a bit further to nsake that we really understand what it
is doing. Reading the code and giving it to other people td iealways useful. But this short example
also suggests that we and the other readers may feel that mtengoessarily know everything about
the primitive operations used in this one-line program,tse uiseful to produce more test cases to test
some general properties that we expect to hold for this foncAn example of such a property could be
that we expect that this function is symmetric-that is, @duces the same answer even if we switch the
arguments around. We can use concrete numbers to testehishdt it would be even better if we can
just write that down in a more general way.

2.5 Universal quantification

Mathematics provides a great way to make but still very geestatements like the ones we are looking
for. For example, we can express the symmetry property teabguire here as saying that we want that
for all x and y that are Int values it will be the case that maR(produces the same number as max (y,x).
Using more concise mathematical notation, we can writestaitement as follows:

VX, y € Int. max(X,y) = max(Yy,X)

Technically, in a statement like the above we are leavingutlicit where the definition ofnt andmax
are being looked up from, but the formulation above capttiregist of what we are trying to get at.

2.6 Random testing of universally quantified properties
A universally quantified property such as the one above caxpeessed as follows:

property("Symmetry") =
forAll ((x:Int, y:Int) =>
max(x,y) == max(y,x))

The above statement is just a Scala program which makes sfenerrce to primitives defined in the
ScalaCheck library. When we run this program, the systemesdmack and gives us a more interesting
response than the first one:

+ SmallExamples.Symmetry: 0K, passed 100 tests.

Here, ScalaCheck generated 100 different pairs of valuesdnd y and used them to test the validity
of our property. ScalaCheck gets the hint that we will ne¢d generate some test integers for us when

244 Accurate Programming

it sees the “forAll” operator. The convenience of the forAperator comes from the fact that it can
alleviate the need for us to actually come up with 100 difieggairs of numbers to write down such a
test, not to mention writing them down explicitly. Of coursleere are many occasions when it is useful
for us to write down individual test cases, but there are alsmy occasions when it is useful to have
them be generated automatically. In this case, it is alsfulfe® us to document the symmetry property
in our code, and in a manner that can be easily executed whenevwant to check the correctness of
our code (which is virtually any time we make any change to it)

We can continue to study our one-line program by considesthgr properties that it may have. In
this respect, it can be useful to think about how such a fanatbuld be used. For example, we may use
this two-argument max function to keep track of the largeshber that we have seen as we go down
a list. From this point of view, if the next number we look athe same as the maximum number we
have seen so far, we'd like to keep the maximum the same. Tlog/fog property tells us that the max
function can do this for us automatically:

property("max(x,x)=x") =
forAll ((x:Int) =>
max(x,x) == x)

This last property illustrates how understanding the prtigee of the code that we have written well
can often help us fully appreciate the behavior it provides i@ke full advantage of its functionality to
simplify the way we use it.

Another important property of this function is that the rédreturns is an upper bound for the two
values that it takes as argument. This property can be esqutess follows:

property("Upper bound (2)") =
forAll ((x:Int, y:Int) =>

x <= max(x,y) &&

y <= max(x,y))

Note that if we take into account the first property that wéest@about max, symmetry, then the prop-
erty above can actually be simplified to consider only onei@ent. That is, when we have symmetry
the property above is implied by the following, more conlsisgated property:

property("Upper bound (1)") =
forAll ((x:Int, y:Int) =>
x <= max(x,y))

2.7 Properties that completely characterize a function

Often, it is useful to consider whether we have been able press the simplest property that fully
characterizes the behavior of the code that we wrote. Istiegdy, the above property (and, in fact, even
all the properties that we have written above combined) ddully characterize our max function. In
particular, the last property says that the result of manigpper bound, and not necessarily a particular
upper bound. In fact, max computes tleast upper bound of two numbers, in the sense that max
produces théeastnumber satisfying the above property. This additional traitg can be expressed as
follows:

property("Least upper bound") =
forAll ((x:Int, y:Int, u:Int) =>
(x<=u && y<=u) ==> max(x,y) <= u)

W. Taha, V. Gaspes & R. Page 245

Together, these two seemingly very generic propertiesafigtiully characterize the intended behav-
ior of the maximum function.

Exercise 2.1 Consider the following function:

def mad_maz (z : Int, y : Int) : Int =
if (z==42 689 y==42) 43
else if (z>y) z else y
Which of the properties considered above would break if veal ukis function in place of max?
First, write down your answers when you check the propekieksand. Then, run all the tests using this
function, and note any differences between what you exgppaaie what you got from running the tests.

3 Programs as a Special Type of Properties

It is instructive to note that certain properties can beeant, in the sense that they capture the same
concept or behavior. It is also useful to note that progrdmselves can be viewed as properties. To
see this in the case of the max example, we can consider tbwiiad property:

property("Our implementation (A)") =
forAll ((x:Int, y:Int) =>
if (x>y) max(x,y)==x else max(x,y)==y)

It looks remarkably similar to the way we have implementes iex function. The body of the if
statement is not quite the same, but this is only a cosmétereince. We can express the same property
as follows:

property("Our implementation (B)") =
forAll ((x:Int, y:Int) =>
max(x,y) == (if (x>y) x else y))

This property essentially gives us the code for our implesateon. This is a very useful connection
between properties and programs, and there are numeraasiagits in which converting one property
into another equivalent property that has a different foem e a very useful method for deriving pro-
grams that implement the properties that we are interestedate, however, that this generally requires
that we have spelled out a set of properties that we want @mgram to have. In many instances, how-
ever, we need to both develop the code and spell out its fiepeat the same time. It is also interesting
to note that this means that code/property code designassémse, just property design. The useful dis-
tinction in that case is that we are generally cross-tegstirigthings against each other, and even though
they are both properties, we are generally cross-testifgyeint properties against each other.

3.1 Properties as relations

It is reasonable to consider whether there are certain clegistics that make some properties closer to
being programs than others. One way to draw this distinétiomrecognize that properties are generally
mathematical relations between different sets. For exejmpthe case of max, we wrote many properties
that relate two or three sets of integers at the same timeitiily, we can view properties as executable
when they provide relations that are actually functionsi¢is a special kind of relation) from elements
of a set that we consider to be the input to the computatianfinite elements of another set that we
consider to be the output of the computation.

246 Accurate Programming

3.2 Programs as functions

Often an implementation is the best specification that weesgummess for a function. This observation
has a very real and concrete practical implication, whicth@ for some programs it is hard to write a
specification without spelling out the code of the prograselft This is a mixed blessing. On the one
hand, it means that we (either set out to or discover afteliatttehat what we just did is to) first write the
code, and then we start thinking about other, “extra-coatparial” properties about it that we may want
it to have. This can seem strange at first, but it is somethiagdan arise naturally in many situations,
and that often produces very useful programs to have arohd. means is that the program that you
are describing has computational content that can be dlgghascribed, and you managed to find it.

On the other hand, this deep observation should be apprdavitie care. In particular, it does not
mean thagll programs are elegant descriptions of their functionafityite the contrary. Given that most
programs in the world are buggy, it is highly unlikely thag¢yrare an elegant description of anything, or
that there are any other properties that characterize Iblediavior and that could be viewed as elegant.
It only means that particular programs also happen to bet gmecifications of their own behavior.
Examples of such programs include definitional interpsefer programming languages and insertion
sort as a prototype for sorting.

3.3 Functions as “The Reference Implementations”

Usually, such self-evident programs are not simultangotig best implementations in terms of perfor-
mance. Often, one still has to do a substantial amount of wwodgo from an implementation that is a
nice specification to an implementation that is efficientr &le, if we are talking about languages,
compilers are generally more efficient implementations théerpreters. If we are talking about sorting,
there are numerous implementations of sorting that are muark efficient than the elegantly described
insertion sort. Yet, in all of these cases, the self-evideneference implementations are an invaluable
tool for developing and testing the correctness of moreieffitdmplementation. For novel algorithms,
however, the challenge lies in producing the first such esfeg implementation in the first place. Thus,
emphasis on code vs. property development while develamrgjgorithm that was not previously spec-
ified varies dramatically from the emphasis when we alrealyela reference implementation and we
are trying to build a more efficient one.

It is also useful to note that having the programming languagd the property language be syntac-
tically close is also a mixed blessing. On one hand, it caititte turning an expression from being a
program into a property and vice versa. On the other handnthitive meaning of the expression can
also change in subtle ways when we do that, depending on tiiexto

4 Functions on Numbers

Themax functions illustrate that even a one-line program can haterésting properties and deserves
a reasonable degree of analysis. Maybe more interestimgtitieafact that it is a one- line program is
the fact that it only involved arithmetic (comparisons) andonditional statement. In practice, many
interesting programs involve iteration or recursion, aagaesult both perform more computation per
line of code and also exhibit more interest properties.

W. Taha, V. Gaspes & R. Page 247

4.1 An iterative program

As a simple example of a problem that requires iterationsictan the following problem: Write down
a function that takes one argument, call it n, and computestim of the numbers counting up from 0
to n.

Before we start writing out examples, it is useful to notet tiere is implicit information in this
problem statement that is useful to spell out. Because thielgm says “count up from 0 to n”, it is
reasonable to assume that our customer is assuming thatitiigen n is either more than or (at least)
not less than 0. This also means that we are left with the thdktermining what the function should
do if the input is less than 0. Now we can start creating sonaengkes to convince ourselves that we
understand the function required. We will write it as a prtypso that it it is easy for us to just run the
test when we have written the code.

property ("Use cases for sum") =
(sum (-1) == 0) &&

(sum (0) == 0) &&
(sum (1) == 1) &&
(sum (2) == 3) &&
(sum (3) == 6) &&
(sum (4) == 10)

If we are in a hurry, we can decide that we have satisfied thairegents of due diligence, hav-
ing written out some examples, and then just write down arldmpntation of this simple function as
follows:

def sum (n:Int) : Int = {
var temp = 0
for (i <- 1 to n)
temp = temp + i
temp
3

4.2 Extracting general properties from use cases

If we have a little more time, we can productively think a bioma carefully about this problem and
about the code. In fact, just by listing these examples, tamasting pattern emerges. It's actually easy
to compute the next value in this list of examples when we ftam O (or below) because the resultis O
until we reach 1, and from that point on the result is the amguinadded to the result of the previous one.
For many problems in which we take a positive integer as inghig is an extremely helpful pattern to
recognize when we want to write out code that solves a ceptaiblem. The two parts of what we have
observed here can be expressed as the following two pregerti

property ("Non-positive (A)") =
forAll ((n:Int) =>
(n<1) ==> (sum(n) == 0))

property ("Positive (A)") =
forAll ((n:Int) =>
n>=1 ==> (sum(n) == n + sum (n-1)))

248 Accurate Programming

These two properties are quite interesting because thigychairacterize the sum function. Not only
that, but they can also be naturally rewritten in a stepibp-snanner tguideus to executable code that
captures the intuitions that we drew from the examples. tedarihis is an extremely simple function
that we are being asked to write, but it is useful to reflecth@ngrocess of writing, as it were, in “slow
motion”. And the point is not that this is precisely how albptems should be approached, but rather
that the connections between all of these different viewthefproblems exist, and that these different
views are in fact themselves properties with strong comorestamong them.

4.3 Reasoning about properties

The two properties above can be rewritten to look a bit mdwe tiode and less like a mathematical
property. In particular, we can rewrite them into :

property ("Non-positive (B)") =
forAll ((n:Int) =>
if (n<1) sum(n) == 0 else true)

property ("Positive (B)") =
forAll ((n:Int) =>
if (n>=1) sum(n) == n + sum (n-1) else true)

All we did here is replace any implication of the form==> B into an (if (A) B else true).
Having true in the else branch of the if is consistent with Wey mathematical implication works.
When the thing before the implication is not true, we can hawghing after the implication and the
whole property is still true.

Next, we note that these conditions in the two if statemantsach property are complementary. In
fact, we can rewrite the first property so that there is evererabignment between the two properties,
and so that they can be combined into one:

property ("Non-positive (C)") =
forAll ((n:Int) =>
if (n<1) sum(n) == 0 else true)

property ("Positive (C)") =
forAll ((n:Int) =>
if (n<1) true else sum(n) == n + sum (n-1))

Only the second property was changed, and all that was ddnaeplace the conditioin >= 1)
with the dual condition(n < 1) and then flip the else and then branches. Note that it is eametthat
both properties have the form of an if statement with exatiysame condition. Furthermore, each one
has alternatively “true” in one branch and a more intergstiondition in the other branch. In fact, true
is the least interesting condition to have in any properggduse it is a trivial condition that makes no
statements about any variables by itself. Thus, what we oda tb combine both properties into one,
keeping only the interesting branch of each property in ésalt.

property ("Sum (A)") =
forAll ((n:Int) =>
if (n<1) sum(n) == 0 else sum(n) == n + sum (n-1))

W. Taha, V. Gaspes & R. Page 249

At this point, we are very close to having the exact code famatutable program for computing the
sum. All we need is to note that both branches start with tipeession sum(n) ==, and to reformulate
our property one more time to take this equatitytsidethe if statement:

property ("Sum (B)") =
forAll ((n:Int) =>
sum(n) == (if (n<1) 0 else n + sum (n-1)))

Not only does this leave us with a shorter description of tmes property, but we also have an
equality test where on one side we have just the term sunt{d)pmthe other side we have an expression
that can be viewed as a perfectly valid inductive definitidrsam(n). In particular, the if statement
simply returns O for all non-positive values, and for pesitvalues, it can compute a result by adding n
to sum(n-1).

Our original sum function, in fact, passes all the propesrtieat we have seen so far. These tests
actually take a substantial amount of time to run, but thépads. We could indeed declare victory at
this point and either go back to the customer and hand overame or start thinking about other things,
like optimizing our implementation.

Exercise 4.1 The following definition for sum can be viewed as more effi¢clean the one above:
def sum2 (n:Int) : Int = ¢f (n<1) O else (n+1) *n / 2
Use ScalaCheck to check whether or not it satisfied all of thpasties discussed above.

But we can also continue to study our problem and its solutipionsidering more properties that
we expect to hold about the function.

4.4 Why working with numbers requires special care

Often, continuing to think carefully about the propertibattshould hold for a given program requires
stepping back to identify what should be the most obvioup@nties that it should enjoy. One such
property is monotonicity-that is, the result of the funatishould grow (or at least not decrease) as the
argument is increased. This property can be expressedasdol

property("Monotonicity") =
forAll ((x:Int, y:Int) =>
x<=y ==> (sum(x) <= sum(y)))

This property actually fails for our implementation. In fewlar, we get the following output from
ScalaCheck:

I SmallExamples.Monotonicity: Falsified after O passed tests.
> ARG_O: 0 (orig arg: -2147483648)
> ARG_1: 65536 (orig arg: 660619302)

ScalaCheck is saying that the property fails, and in pddictinat values 0 and 65536 for x and y
demonstrate that this property fails. We can get a bettaraflevhat this test has uncovered by inspecting
the results that our sum function returns for these values:

println (sum(0)) // prints 0
println (sum(65536)) // prints -2147450880

250 Accurate Programming

By stating our monotonicity property, we have uncovered\arftow problem. The test points us to
the fact that the Int type is finite and uses a fixed number eftbitepresent just a subset of the integers.
When we add one too many numbers, the result is a value that igpresentable, and we get instead
another, meaningless value.

It is highly instructive to note that we had already exprdsseveral properties up to this point, and
they all passed the test and were all valid. But they were ealtyr enough to help us realize that our
implementation had limitations that we may have not thougjhtefore. This example also illustrates
that the properties we express may not always be sayingsphgaivhat we thought they were saying
when we wrote them. In this instance, part of the problem cofr@n the fact that we used the same
language for both the program and the properties, and bolidimg reference to the finite type Int and
the same definitions for the arithmetic and comparison apesaefined on that type.

Exercise 4.2 A smart programming language that supports recursion walllalv us to use a definition
like ("Sum (B)”) directly as code, and so we can define our tiort simply by copying the above if
statement into its body as follows:

def sum3 (n:Int) : Int = if (n<1) O else n + sum3 (n-1)

This is a reasonable solution for the problem that we set@sbtve. However, while the reasoning
with which we arrived at this solution is perfectly valid wndhe right assumptions, the fact that we have
expressed the various intermediate properties that leaflisosolution in an executable form allows us
to use ScalaCheck to reveal to us that our assumptions wenapletely valid.

Use ScalaCheck to test that the above recursive definitiosufm actually satisfies all of the proper-
ties that we described. If any of the properties break, erphdy, and show how to solve this problem.

5 Functions on Aggregate Types ()

The way we develop and think about programs is affected byyibe of data structures on which they
operate. So, when we work with Int values, many of our pragenvill look a lot like the kinds of
properties that we see in traditional math courses, sucynasstry, monotonicity, and so on. When we
work with other data structures, such as lists for exampileret will still be interesting patterns to the
mathematical properties that we use to describe the bahafvguch programs, but these patterns may
seem different from the ones that we have seen in high schathl olasses. As we see more examples
of using properties to describe and reason about progrdess, matterns will definitely emerge.

5.1 Surface syntax for lists

Aggregates or collections are data structures that brigeth@r several small units of data. A basic data
structure is the list. In Scala, we construct lists by wgtsomething like List (1,2,3) to represent a list
of three elements, all integers, and in this case consisfitige elements 1, 2, and 3.

5.2 Deeper structure and inductive nature of lists

Aggregate types, including lists, are often inductivelfimked. Knowing that a type is inductively defined
is very helpful both for writing programs that take valuegto$ type as input and for thinking about the
kinds of properties that such programs should have. Wrige (1i,2,3) is in fact syntactic sugar for the
more primitive list constructors, which would express thene list as 1::(2::(3::Nil)), where Nil is the

W. Taha, V. Gaspes & R. Page 251

empty list, and the operator (::) is the constructor for mompty lists, which takes an element and a list
as an argument. Knowing the names of these primitive cartstsifor lists allows us to use the Scala
match statement to write a function that checks whethet &lempty or not:

def isEmpty (list : List[Int]) =
list match { case Nil => true
case number :: listRest => false }

The match statement not only allows us to check which coctrwas last used to build the list
but also allows us to refer to the components of the non-ermmtgtructor (by the names “number” and
“listRest” in the second branch of the case if we want to).

5.3 Use cases for a function on lists

With these primitives in hand, we can approach our first @ogning task relating to lists: develop a
function “count” that takes an integer and a list of integamsl returns a count of the number of times
this integer occurs in the list.

To check our understanding of the required functionalitg,write down several examples. In prac-
tice, writing down examples is a useful thing to do whilel stith the customer discussing requirements,
and also at the start of programming to make sure that we helemaunderstanding of the task at hand.

property ("Use cases for count") =
(count (7, List()) == 0) &&
(count (7, List (7)) == 1) &&
(count (7, List (1,7)) == 1) &&
(count (7, List (7,1,7)) == 2)

5.4 Defining a function on lists

To think clearly about a new function that we have been askedite, it is actually very useful to keep
in mind the properties of the type of value it takes as ingithd input type is inductively defined, which
is the case for lists, this generally means that we shouldausatch statement for case analysis and
recursion that (often directly) mimics the pattern of restom in the inductive definition of the type itself.
In the case of this task, we can implement the function cosifibléows:

def count (number : Int, list : List [Int]) : Int =

list match
{case Nil => 0
case number?2 :: listRest
=> if (number == number2) 1 + count (number, listRest)

else count (number, listRest)}

The code above passes our test examples, so we can turnkmghabout some deeper properties
that can give us further assurance about our implementation

5.5 A non-defining property

One property of this function is that count for a number in &ppended lists should be the same as the
sum of the count in each of the two lists individually. Theatimn for appending lists is simply (++), so
we can express this property as follows:

252 Accurate Programming

property ("Count/append") =
forAll((number: Int,
listl : List[Int],
list2 : List[Int]) =>
count (number,listl) + count(number,list?2)
== count (number, listil++1list2))

While the above property is highly generic, it can be satisfig an implementation that is certainly
not correct. In particular, if we used a faulty implemerdatithat always returns zero, it would also
satisfy the property above. To avoid this kind of problenis iiseful to add a property that captures our
intuition that adding another instance of the number we @okihg for into the list increases the count
by one. The following is an example of a property that cattiné fact:

property ("Instance at start") =
forAll ((number: Int,
list : List[Int]) =>
count (number,list) + 1
== count (number, number :: list))

Adding this property to our specification of the functiohalof the counting function gives us much
more information about our implementation. But it is usdtutealize that it is not aompletespecifica-
tion of counting.

Exercise 5.1 Check that the following function satisfies both the “Coappend” and the “Instance at
start” properties:

def mad_count (number : Int, list : List [Int]) : Int =
list match
{case Nil => 0
case number2 :: listRest =>
1 + mad_count (number, listRest)l}

If the function above satisfies those two properties, sugdésast one new function that also satisfies
these two properties.

One thing that the “Instance at start” property does notwapis that if the instance added to the
start of the list immotthe same number, then the total count should not change.

property ("Non-instance at start (A)") =
forAll ((numberi: Int,
number2: Int,
list : List[Int]) =>
numberl !=number?2
==> (count (numberi,list)
== count (numberl, number2 :: list)))

If we rewrite this property to replace the implication with i statement, it will be easier to see that
this and the “Instance at start” property can in fact be cowdbi

W. Taha, V. Gaspes & R. Page 253

property ("Non-instance at start (B)") =
forAll((numberi: Int,
number2: Int,
list : List[Int]) =>
if (numberl !=number?2)
(count (number1,list)
== count (numberl, number2 :: list))
else true)

And now we can replace the “true” branch with the propertyt tha expect to hold when the two
numbers are equal, and we have:

property ("Something at start (A)") =
forAll((numberi: Int,
number2: Int,
list : List[Int]) =>
if (numberl !=number?2)
(count (number1,1list)

== count (numberl, number2 :: list))
else (count(numberl,list) + 1
== count (numberl, number2 :: list)))

We note well that we have “+ 1” in the statement in the secomadin of the if statement.

Clearly, this property combines the power of our two paspprties about what happens when we
add an element to the list. However, it still does not realiyyfspecify the behavior of the counting
functionality. It may be surprising to the reader, but itl $8aves an unbounded amount of freedom in
the behavior of the function “count”. In particular, theléaing function would actually satisfy all of
the properties that we have expressed so far:

def dracula (number : Int, list : List [Int]) : Int =

list match
{case Nil => 1
case number2 :: listRest
=> if (number == number?2)

1 + dracula (number, listRest)
else dracula (number, listRest)}

And, in fact, any version of the above function with any irdegalue in the case of the empty list
(Nil) would have satisfied all of the properties that we haxpressed so far. We can incorporate this
final, additional requirement into the last property by adincing an additional check for the case in
which (list = Nil) and rewriting it as follows:

property ("Count specification (A)") =
forAll ((numberl: Int,
number2: Int,
list : List[Int]) =>
(if (1list == Nil)
count (numberl, list) ==
else true)

254 Accurate Programming

&&
(if (numberl !'=number2)
(count (number1,list) ==

count (numberl, number2 :: list))
else (count(numberil,list) + 1 ==
count (numberl, number2 :: list))))

An interesting feature of this property is that it is a contlspecification of our counting function.

In fact, it is surprisingly close in what it says to what theuat code of our implementation says in its
text.

Exercise 5.2 Explain the justification for equivalence of the followirggsience of the properties to the
last property stated above (“Count specification (A)”):
property ("Count specification (B)") =
forAll ((numberl: Int,
list : List[Int]) =>
ltst match
{case Nil => count (numberl, list) == 0
case number2::ltstRest =>
if (numberl !=number2)
(count (numberl, listRest)
== count (numberl, list))
else (count(numberl,listRest) + 1
== count (numberl, 1list))})

property ("Count spectification (C)") =
forAll((numberl: Int,
list : List[Int]) =>
list match
{case Nil => count (numberl, list) ==
case number2::listRest =>
if (numberl == number2)
(count (numberl, listRest) + 1
== count (numberl, list))
else (count(numberl,listRest)
== count (numberl, list))})

property ("Count specification (D)") =
forAll ((numberl: Int,
list : List[Int]) =>
count (numberl, list) ==
(list match

{case Nil => 0

case number2::listRest =>
if (numberl == number2)

count (numberl, listRest) + 1

else count(numberl,listRest)}))

W. Taha, V. Gaspes & R. Page 255

It is both a good thing and a bad thing when the most intuitiaerties that we can think of for our
functions are essentially the same as the program that we urs@lement it. It's a good thing because it
increases the chances that our implementation has thegserfies. It can be a bad thing for a couple of
reasons. First, it could mean that we have not identified gmather properties of our function to allow
us to double-check the core set of properties that we arg dairdefining this property. Second, it can
mean that we may have made the same mistake twice in botlydpgend implementing our function.
The solution to the first problem is to continue thinking atyawperties that we would like our function
to have. An example of such a property is the “Count/appemdpgrty that came across at the start of
this example. The solution to the second problem can be émgerfor another team member who has
not seen the code or solution to independently come up wélspiecification of the properties that they
would like this function to have.

6 Functions with an inverse

While we have barely scratched the surface of specifyinggnt@s of single functions, it is important to
move on and to consider what happens when we are developiligletunctions that have interrelated
properties. There are numerous patterns of such intenactio this section, we will consider a simple
example of a very common pattern, namely that of functioashlve an inverse. One of the nice features
of this pattern is that it is easy to intuitively identify inamy areas of computer science. Intuitively,
anything that we can view as a kind of “encoding” is an examopluch a property because we generally
do not use that word unless there is both an encoding and alidgcfunction, and where the second
function serves as an inverse to the first.

6.1 Encoding integers as bits

As a simple example of this kind of pattern, we will considee toroblem of converting from non-
negative integers (natural numbers) into binary and badks fproblem can be informally specified as
follows: if we are convertinglecimalnumerals then we would be turning a value like 125 into Li&t(D).
We actually reverse the order and have the least significgittcdme first in the list because that makes
the functions just a bit more convenient to write. In any cadeat we want here is binary encoding.
So, for an integer like 6 that is represented in binary by 1&0m¥l want to get back the List(0,1,1). In
fact, because with binary digits we only have two choicesigit,dwve want the result to use bools and
represent 0 with false and 1 with true, so that the resultfereixample above is List(false, true, true).

6.2 Use cases for encoding

As usual, we start with writing down examples, and we caneathie function immediately after writing
the examples. In both of the following cases, ScalaChedtk tsl that both functions have passed our
tests with flying colors:

property("Use cases for encode") =
(encode (0) == List ()) &&
(encode (1) == List (true)) &&
(encode (2) List (false, true)) &&
(encode (3) == List (true, true)) &&
(encode (8) List (false, false, false, true))

256 Accurate Programming

def encode (n : BigInt) : List[Boolean] =
if (n <= 0)
List O

else ((n % 2) == 1) :: (encode (n / 2))

property("Use cases for decode") =
(decode (List ()) == 0) &&
(decode (List (true)) == 1) &&
(decode (List (false, true)) == 2) &&
(decode (List (true, true)) == 3) &&
(decode (List (false, false, false, true)) == 8)

def decode (list : List[Boolean]) : Biglnt =
list match
{case Nil => 0
case b::listRest =>
(decode (listRest)) * 2 + (if (b) 1 else 0)}

In the case of the two functions above, the encoding and degdanctions seem so simple that it is
hard to imagine that anything can be wrong with them. Howeaxeen if the functions appear to provide
precisely the functionality that we need, it is useful tolex the properties of these functions to make
sure that we also understand the functionality that we hasegrovided. As a first example, we will
state the property that encoding followed by decoding preduhe same value we started with. That is,

property ("n>=0 ==> d(e(n)) == n") =
forAll ((n : BigInt) =>
n>=0 ==> (decode (encode (n)) == n))

While this property holds for this function, it is useful tote that the dual property does not hold.
That is, decoding following by encoding does not producestimae binary digit. This may seem a bit
curious, but in fact this is a common situation for many ergfdecoding pairs.

6.3 The asymmetry of invertible functions

Expressing this property in ScalaCheck allows us to find at@yexample:

property ("e(d(1)) == 1 (false!)") =
forAll ((1 : List[Boolean]) =>
encode (decode(l)) == 1)

Testing this property quickly returns a counter examplé givzes us a good idea of why it does not
hold:

! SmallExamples.e(d(1)) == 1 (false!): Falsified after 6 passed tests.
> ARG_O: List("false")

What has happened is that in our encoding the number 0 issemtiexd by the empty list. Decoding
works fine on the empty list to produce 0. Moreover, it willafgoduce that same value for any list that

W. Taha, V. Gaspes & R. Page 257

is all zeros. But for all such lists, the encoding functiodl aiways be only the empty list, which is not
really the same list as all the lists of all zeros. In fact, @angral, applying our decoding and encoding
functions will always have the effect of removing all leagliperos. And so they don't always give us
back exactly what we started with, which is what the propaligve says.

It is useful to note that decoding followed by encoding doee gs back what we started with
what we started with was produced by the encoding functidns Gan be expressed as follows:

property ("n>=0 ==> e(d(e(n))) == e(@)") =
forAll ((n : BigInt) =>
n>=0 ==> (encode (decode (encode (n))) == encode (n)))

Thus, the key property of such encoding systems is that thedamgy function is an inverse of the
decoding function, which is what is captured by the first propp This is a pattern that we will see in
other computing applications that go by names such as etimnygerialization, parsing, and others.

Exercise 6.1 Explain why it may not be particularly surprising if the peny:
"m>=0 ==> d(e(n)) == n"
then the property
"m>=0 ==> e(d(e(n))) == e(n)"

also holds.

Exercise 6.2 (Lab) While itis the case that an encoding function is not alwayisaerse to the decoding
function, it is worthwhile to note that this can be a usefuperty when it holds. In particular, it means
that every target representation is a unique encoding ofralmer in our source for the encoding.

Write the code and properties for an encoding/decoding frain integers to lists of booleans and
where this symmetry does hold. Hint: Treat the empty listaays holding an implicit true at the most
significant digit, and subtract one from the interpretatmmthat 0 is still representable.

Exercise 6.3 (Lab) Define an addition function on the original encoding of irtey State its correct-
ness property, and check it using ScalaCheck.

Acknowledgments

We would like to thank the participants of the summer schioal tvas organized at Halmstad University
from May 30th to June 1st. A special thanks also goes to theHf@peaker the summer school, Prof.
John Hughes. The goals of the workshop would not have beadavachwithout the active efforts of the
faculty of Halmstad University that worked closely with taethors to incorporate these ideas into the
undergraduate and graduate curricula, especially Nigdllansson, Elisabeth Uhlemann, Ulf Holmberg,
Tony Larsson, and Thorsteinn (Denni) Rognvaldsson. HRafje’s visit to Halmstad was greatly facili-
tated by the hard work of Eva Nestius, Magnus Jonnson, BRréhsson, and Magnus Larsson. Finally,
Paul Brauner kindly provided us with helpful comments onaftdsf these notes.

Rex’s visit would have not been possible without the genemsupport of the U.S. Department of
State through the Fullbright Scholar program, as well asthpport of Halmstad University.

258 Accurate Programming

References

[1] Accuracy and PrecisianWikipedia, The Free Encyclopedia. Available online fretkipedia.org. Viewed
May 2011.

[2] Gojko Adzic (2011):Specification by Example: How Successful Teams Deliveritite Roftware Manning,
Greenwich, CT.

[3] Robert Cartwright (1981)Formal Program Testingln: Principles of Programming Languagep. 125-132,
doi{10.1145/567532.567546.

[4] Koen Claessen & John Hughes (200QuickCheck: A Lightweight Tool for Random Testing of HddRel-
grams In: International Conference on Functional Programmppgy 268-279, doi:10.1145/351240.351266.

[5] ScalaCheck TutorialAvailable online fronhttp://code.google.com/p/scalacheck/wiki/UserGuide.
Viewed May 2011.

[6] Use-case AnalysisVikipedia, The Free Encyclopedia. Available online fretikipedia.org. Viewed May
2011.

A Broader Educational Context

The seed for this tutorial was planted when Rex organizedrikshiop on Teaching Software Correctness
in May 2008. Walid attended the workshop and was struck byuthesual effectiveness of property-
based testing in helping programmers develop a program gmdperty that can actually be verified
mathematically by a theorem prover. While it was impressivsee the theorem prover used in the
workshop (ACL2) to automatically prove a host of sophigedaproperties, what was most impressive
was the effect that the combination of property-basedrngdiadon the programmerproperty-based
testing guided the programmer to a correct program, whiokally the only plausible candidate for even
starting to think about the completely independent, nasiatr and often quite labor-intensive task of
provinga program correct.

As luck would have it, two years later, in May 2010, Rex wasaoiging the Symposium on Trends
in Functional Programming, which Walid attended. At thaetmag, Walid mentioned to Rex that he was
moving to Halmstad University, which is in the process oftgtg up an independent Ph.D. program, and
many of the faculty are genuinely interested in curriculewelopment. Thanks to a Fulbright Scholar-
ship, exactly one year later, Halmstad University hostexl fRea one-month visit aimed at introducing
his ideas into the Embedded and Intelligent Systems clariauboth the graduate and undergraduate
levels.

Working on exploring how this can be achieved started by kdffaneeting that was organized the
first week of the visit, which was well attended by facultyintluded a presentation of the bachelor’s
program (three years) by Nicolina Mansson and of the magt@gram (two years) by Jorgen Carlsson,
followed by a presentation by Rex of the key ideas in his apgimo Both in terms of research and
education, the strengths of Halmstad University’s prograonsidered to be:

e Multicore architectures

e Real-time communications

Cooperative embedded systems

DSLs and program generation

Modeling and simulation of cyberphysical systems

http://dx.doi.org/10.1145/567532.567546
http://dx.doi.org/10.1145/351240.351266

W. Taha, V. Gaspes & R. Page 259

The effectiveness of both research and education of thess arould be strengthened if students were
more capable of producing high-quality software. It wagef@re instructive to learn of the results of
the careful analysis that Rex had conducted of a wide rangmaérgraduate curricula in the U.S., as
well as his varied efforts to introduce more “property-twh@nking” into various courses. For example,
it seemed that students tend to find that introducing tedtasged methods into math classes makes them
easier. On the other hand, introducing these ideas intevadt engineering gets students’ attention
primarily because of its novelty. Potential employers oflsits seem to easily appreciate the value of
getting students who are trained to rigorously test thedgmms, and who are capable of producing
high-quality software. It was also interesting to learnnir&kex that there are studies that show that
testing techniques based on analysis of the code itselfearerglly much more economically viable than
ones based solely on behavior.

Two general problems with computer science curricula waeatified. The first is that the theory
classes, such as discrete math classes, tend to be distmhfieon the artifacts that students in this
discipline are most interested in, such as software andi@aed The other problem is that the courses
that teach important theoretical tools, such as logic fangxle, tend to focus on the meta-theory of such
tools rather than on how to use them in relation to concrétiaets that students are interested in (again,
software and hardware). In what class do we learn how to ggedlbstatements to state mathematical
properties of programs, not to mention learn to reason girmgirams in terms of such properties?

It was suggested that the most practical and possibly mfesitiee approach will be to incorporate
Rex’s ideas into the curriculum by injection into a variefydifferent courses. Also, it was suggested
that using property-based testing could be an effectivéciefor introducing a wide range of concepts
relating to software correctness and logic. With such adation, students are prepared to read books or
follow courses that are more mathematically oriented,eeitin their own or in the context of advanced
courses offered at the university.

Several candidate areas for introducing these ideas witenéfied. In the master's degree program,
where books and instruction are in English:

e Embedded systems programming course (using ScalaChechaytte ACL2)

Cooperating intelligent systems course

Discrete math course

Cyber-physical systems (CPS)

Several specific ideas were discussed for CPS. Naturaldatediincluded scheduling problems. Some
specific ideas: 1. number of steps in a computation (e.girugehandler), 2. model interrupt handler as
an ACL2 computation + step count, 3. prove bound on the numie&eps, 4. example: moving window
algorithms, 5. bounded work to update, and 6. d.s. maintngsvariant. All that would be needed
would be two examples of this, and to create material for autect homework. This can be packaged
as a one-week module, which may also be usable in other ®urse

In the bachelor’'s program, where books and notes are in Erigls instruction is in Swedish:

Programming |, teaching specifications together with paotg.

Programming Il, teaching contracts

Switching theory and digital control.

Algorithms and data structures

Computer systems organization

260 Accurate Programming

This suggested that there should be no shortage of oppieifor introducing Rex’s ideas at Halmstad.
With this, it was agreed that Veronica, Rex, and Walid wowolcls on preparing materials for the work-
shop that would serve as practical starting points for thelfg at Halmstad to explore these possibilities
more concretely. These are the notes presented in this aéatum

The rest of the story will depend on how well we succeed agnating these ideas into various
courses in the Halmstad curriculum!

	1 Introduction
	1.1 Why are program properties such an important concept?
	1.2 Properties as a tool for the serious hacker
	1.3 What you can expect to learn from this tutorial
	1.4 What you will NOT learn in this tutorial
	1.5 Practicalities: Using Scala and ScalaCheck for exercise problems

	2 A Simple Function
	2.1 Examples as a communication tool
	2.2 Use cases, use-case analysis, and test-driven development
	2.3 Examples as properties
	2.4 Use cases as properties
	2.5 Universal quantification
	2.6 Random testing of universally quantified properties
	2.7 Properties that completely characterize a function

	3 Programs as a Special Type of Properties
	3.1 Properties as relations
	3.2 Programs as functions
	3.3 Functions as ``The Reference Implementations''

	4 Functions on Numbers
	4.1 An iterative program
	4.2 Extracting general properties from use cases
	4.3 Reasoning about properties
	4.4 Why working with numbers requires special care

	5 Functions on Aggregate Types (I)
	5.1 Surface syntax for lists
	5.2 Deeper structure and inductive nature of lists
	5.3 Use cases for a function on lists
	5.4 Defining a function on lists
	5.5 A non-defining property

	6 Functions with an inverse
	6.1 Encoding integers as bits
	6.2 Use cases for encoding
	6.3 The asymmetry of invertible functions

	Bibliographic References
	A Broader Educational Context

