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Domain-specific languages raise the level of abstraction in software development. While it is evident
that programmers can more easily reason about very high-level programs, the same holds for com-
pilers only if the compiler has an accurate model of the application domain and the underlying target
platform. Since mapping high-level, general-purpose languages to modern, heterogeneous hardware
is becoming increasingly difficult, DSLs are an attractive way to capitalize on improved hardware
performance, precisely by making the compiler reason on a higher level. Implementing efficient
DSL compilers is a daunting task however, and support for building performance-oriented DSLs is
urgently needed. To this end, we present the Delite Framework, an extensible toolkit that drastically
simplifies building embedded DSLs and compiling DSL programs for execution on heterogeneous
hardware. We discuss several building blocks in some detail and present experimental results for the
OptiML machine-learning DSL implemented on top of Delite.

1 Introduction

Generic high-level programming languages are no longer compiled efficiently to modern hardware,
which is increasingly parallel and often consists of heterogeneous processing elements, i.e. multiple
CPUs and GPUs [26) [34) [33] [38]]. Without adequate support from their favorite high-level language,
programmers wishing to fully exploit today’s hardware have no choice but to utilize low-level, hardware-
specific programming models, such as Pthreads for multi-core, CUDA or OpenCL for GPUs, and MPI
for clusters. Not only does a programmer have to understand how to use all of these disparate low-level
programming models individually, he or she must understand how best to combine them for a given
application. These decisions are in general not straightforward and often depend on variables such as
dataset size. Furthermore, having to make these choices and commit to specific programming models
severely limits the portability and maintainability of the application. Overall, the result is that developing
performance-oriented applications greatly diminishes programmer productivity.

Domain-specific languages (DSLs) provide an attractive alternative. DSLs have a long history of
increasing programmer productivity by providing extremely high-level, in a sense “ideal”, abstractions
tailored to a particular domain. Performance-oriented DSLs strive to also make the compiler more pro-
ductive (producing better code) by enabling it to reason on a higher level as well. Interestingly, while
productivity and performance are often at odds in general-purpose languages, the higher level of ab-
straction provided by DSLs and willingness to sacrifice generality makes it feasible for a DSL compiler
and runtime system to generate high performance code, including code targeting parallel heterogeneous
architectures, from high-level, single-source application code [12].

Fitting a compiler with intimate knowledge about domain operations, data structures, and other con-
structs is in stark contrast to general-purpose languages which focus on primitives for abstraction and
composition, such that programmers can build large systems from few and relatively simple but versatile
parts. Consequently, general-purpose compilers do not understand the semantics of the complex oper-
ations performed within an application. Reasoning across domain constructs, however, enables more
powerful and aggressive optimizations that are infeasible otherwise. General-purpose languages impose
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very few restrictions on programmers which in turn requires the compiler to perform non-trivial analyses
to prove that optimizations are safe. Unfortunately, safety of optimizations often cannot be determined
and therefore the compiler must be conservative and not apply the optimization to guarantee correctness
of the generated code. This ultimately leads to programmers having to perform a large amount of obscure
performance debugging that can require reverse-engineering the compiler’s algorithms to determine why
a certain piece of code runs slowly. Slight changes in the input program can have large effects on per-
formance so performance debugging effort is not a one-time effort but a continuous one. The situation
is complicated further if multiple layers of compilation (and possibly profile-driven re-compilation) are
involved as is the case for managed runtimes such as the Java Virtual Machine (JVM). Performance-
oriented DSLs can take the opposite approach to the problem, namely restrict the programmer from
writing code that would prevent the compiler from generating an efficient implementation. The compiler
is then able to perform very aggressive optimizations with much simpler or even without safety analyses,
providing the programmer with efficient code for significantly less effort.

While the promise of creating performance-oriented DSLs capable of targeting emerging heteroge-
neous architectures is high, building these DSLs remains a significant challenge. The first and most
obvious challenge is constructing a new language and compiler from scratch. While much of the novelty
and usefulness of DSLs lies in the domain-specific aspects of the language and compiler, a non-trivial
portion of the work for the developer lies in re-implementing more general-purpose features (e.g., pars-
ing, type checking, performing generic optimizations, etc.). Furthermore, the DSL developer must be not
only a domain expert, but also an expert in parallelism and architecture to properly optimize for modern
heterogeneous hardware. Rather than starting afresh for each new DSL, a DSL developer should be able
to construct a new language from building blocks that are common across a variety of DSLs and focus
on adding domain-specific constructs on top of these general building blocks. One way to achieve this
goal is to embed new DSLs within a highly expressive general-purpose host language.

In essence, we want to obtain the flexibility and performance achievable with external (stand-alone)
DSLs while maintaining the modest effort required in creating purely-embedded internal (library-based)
DSLs, a notion we have termed language virtualization [11]]. From this principle we have developed
lightweight modular staging (LMS) [3/]] as a means of building new embedded DSLs in Scala [34] and
creating optimizing domain-specific compilers at the library level. LMS is a multi-stage programming
[41]] approach, i.e. a disciplined form of runtime code generation. Unlike dedicated multi-stage languages
such as MetaML [43]], LMS does not employ syntactic annotations to designate staged expressions but
instead relies on type signatures, very similar to and inspired by finally tagless 9] or polymorphic em-
bedding of DSLs [25]]. Furthermore, LMS uses overloaded operators to combine staged code fragments
in a semantic way unlike quasi-quotation approaches that are merely syntactic expanders. Overloading
of operators thus provides a natural and principled interface for generic and domain-specific optimiza-
tions. LMS also comes with strong well-formedness and typing guarantees, most of them inherited from
the finally tagless [9] embedding of typed object languages into types metalanguages. Any well-typed
program generator will produce well-formed and well-typed code, unless maliciously subverted through
explicit type casts, Java reflection, or other inherently unsafe mechanisms. On top of LMS we have de-
veloped Delite, which provides compilation and runtime support for execution on heterogeneous targets
(i.e., multi-core CPU and GPU) to the DSL developer.

The rest of this paper is organized as follows. In Section[2]we discuss how LMS aids in creating a new
domain-specific language and optimizing compiler through the use of extensible, composable building
blocks. We then discuss how Delite extends LMS to provide structured parallel patterns and code genera-
tion support to make creating a performance-oriented DSL targeting heterogeneous parallel architectures
only incrementally more difficult than targeting a traditional uniprocessor. In Section 3| we illustrate how
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we can use DSLs and the LMS/Delite framework to perform various kinds of optimizations. Section []
presents a case study of the OptiML machine learning DSL, including performance evaluation. We then
discuss related work in Section[3]and conclude in Section [6l

2 An End-to-End System for Embedded Parallel DSLs

This section gives an overview of our approach to developing and executing embedded DSLs in parallel
and on heterogeneous devices. We have built reusable infrastructure to alleviate the burden of building
a high performance DSL. We embed our DSLs in Scala using Lightweight Modular Staging [37]], and
provide a common intermediate representation (IR) and basic facilities for optimization and code gen-
eration. On top of this layer, we have developed Delite, a toolbox for creating parallel DSLs. Delite is
structured into a framework and a runtime component. The framework provides primitives for parallel
operations such as map or reduce that DSL authors can use to define higher-level operations. Once a
DSL author uses Delite operations, Delite handles code generating to multiple platforms (e.g. Scala and
CUDA), and handles difficult but common issues such as device communication and synchronization.
These capabilities are enabled by exploiting the domain-specific knowledge and restricted semantics of
the DSL compiler.

2.1 Building an IR using Lightweight Modular Staging

On the surface, DSLs implemented on top of Delite appear very similar to purely-embedded (i.e. library
only) Scala-based DSLs. However, a key aspect of LMS and hence Delite is that DSLs are split in
two parts, interface and implementation. Both parts can be assembled from components in the form of
Scala traits. DSL programs are written in terms of the DSL interface, agnostic of the implementation.
Part of each DSL interface is an abstract type constructor Rep[_] that is used to wrap types in DSL
programs. For example, DSL programs use Rep[Int] wherever a regular program would use Int. The
DSL operations defined in the DSL interface (most of them are abstract methods) are all expressed in
terms of Rep types.

The DSL implementation provides a concrete instantiation of Rep as expression trees (or graphs).
The DSL operations left abstract in the interface are implemented to create an expression representation
of the operation. Thus, as a result of executing the DSL program, we obtain an analyzable representation
of the very DSL program which we will refer to as IR (intermediate representation).

To substantiate the description, let us consider an example step by step. A simple (and rather point-
less) program that calculates the average of 100 random numbers, written in a prototypical DSL MyDSL
that includes numeric vectors and basic console IO could look like this:

object HelloWorldRunner extends MyDSLApplicationRunner with HelloWorld
trait HelloWorld extends MyDSLApplication {
def main() = {
val v = Vector.rand(100)
println("today’s lucky number is: ")
println(v.avg)
}
}
Programs in our sample DSL live within traits that inherit from MyDSLApplication, with method main
as the entry point. In Scala, traits are similar to classes but can participate in mixin-composition [34].
Scala’s mixin composition is a restricted form of multiple inheritance that resolves super calls according
to an inheritance-preserving linearization of all the receiver’s base traits and classes.
MyDSLApplication is a trait provided by the DSL that defines the DSL interface. In addition to the
actual DSL program, there is a singleton object that inherits from MyDSLApplicationRunner and mixes
in the trait that contains the program. As the name implies, this object will be responsible for directing
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the staged execution of the DSL application.
Here is the definition of MyDSL’s components encountered so far:

trait MyDSLApplication extends DeliteApplication with MyDSL
trait MyDSLApplicationRunner extends DeliteApplicationRunner with MyDSLExp

trait MyDSL extends ScalaOpsPkg with VectorOps
trait MyDSLExp extends ScalaOpsPkgExp with VectorOpsExp with MyDSL
MyDSLApplicationRunner inherits the mechanics for invoking code generation from DeliteAppli-

cation. We discuss how Delite provides these facilities in section [2.3] We observe a structural split in
the inheritance hierarchy that is rather fundamental: MyDSL defines the DSL inferface, MyDSLExp the
implementation. A DSL program is written with respect to the interface but it knows nothing about
the implementation. The main reason for this separation is safety. If a DSL program could observe its
own structure, optimizing rewrites that maintain semantic but not structural equality of DSL expressions
could no longer be applied safelyE] Our sample DSL includes a set of common Scala operations that are
provided by the core LMS library as trait ScalaOpsPkg. These operations include conditionals, loops,
variables and also println. On top of this set of generic things that are inherited from Scala, the DSL
contains vectors and associated operations. The corresponding interface is defined as follows:

trait VectorOps extends Base {

abstract class Vector[T] // placeholder ("phantom") type
object Vector {
def rand(n: Rep[Int]) = vector_rand(n) // invoked as: Vector.rand(n)
}
def vector_rand(n: Rep[Int]): Rep[Vector[Double]]
def infix_length[T](v: Rep[Vector[T]]): Rep[Int] // invoked as: v.length
def infix_sum[T:Numeric] (v: Rep[Vector[T]]): Rep[T] // invoked as: v.sum

def infix_avg[T:Numeric](v: Rep[Vector[T]]): Rep[T] // invoked as: v.avg

There is an abstract class Vector [T] for vectors with element type T. The notation T :Numeric means
that T may only range over numeric types such as Int or Double. Operations on vectors are not declared
as instance methods of Vector[T] but as external functions over values of type Rep[Vector[T]]. Like-
wise, when referring to primitive values, Rep[Int] is used instead of Int. This wrapping of types is the
core LMS abstraction. An expression of type Rep[T] denotes an expression that represents the compu-
tation of a value of type T, i.e. will produce a value of type T in the next computation stage, when the
generated code is executed. The root of the interface hierarchy, trait Base from the core LMS library,
defines Rep as an abstract type constructor:

trait Base {
type Rep[T]
}

An instance of a Rep[T] can be constructed by a DSL factory method directly, or lifted from a
concrete instance using an implicit conversion. Concrete instances (such as an integer) are constants in
the IR, since they already existed before being passed to a staged DSL method.

The corresponding implementation counterpart, trait BaseExp, defines the concrete intermediate rep-
resentation (IR) that is used by the core LMS library and consequently Delite:

trait BaseExp extends Base with Expressions {
type Rep[T] = Exp[T]
3

trait Expressions {

UIn fact, this is the main reason why MSP languages do not allow inspection of staged code at all [42]].
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// expressions (atomic)

abstract class Exp[T]

case class Const[T](x: T) extends Exp[T]
case class Sym[T](n: Int) extends Exp[T]

// definitions (composite, subclasses provided by other traits)
abstract class Def[T]

// bind definitions to symbols automatically
implicit def toAtom[T](d: Def[T]): Exp[T] = ...

In contrast to other approaches based on abstract type constructors [25] we do not use multiple DSL
representations but a single, extensible one. Subtraits of BaseExp are free to add subclasses of Def.
This model allows generic optimizers to view the IR in terms of its base nodes (Exp,Def), while DSL
subclasses can extend these nodes with richer semantic information and use them at a higher level.

Returning to our sample DSL, this is the definition of VectorOpsExp, the implementation counterpart
to the interface defined above in VectorOps:

trait VectorOpsExp extends DeliteOpsExp with VectorOps {
case class VectorRand[T](n: Exp[Int]) extends Def[Vector[Double]]
case class VectorLength[T](v: Exp[Vector[T]]) extends Def[Int]

case class VectorSum[T:Numeric] (v: Exp[Vector[T]]) extends DeliteOpLoop[Exp[T]] {
val range = v.length
val body = DeliteReduceElem[T](v) (_ + _) // scalar addition (impl not shown)

}

def vector_rand(n: Rep[Int]) = VectorRand(n)

def infix_length[T](v: Rep[Vector[T]]) = VectorLength(v)

def infix_sum[T:Numeric](v: Rep[Vector[T]]) = VectorSum(v)

def infix_avg[T:Numeric] (v: Rep[Vector[T]]) = v.sum / v.length

}

The constructor rand and the function length are implemented as new plain IR nodes (extending Def).
Operation avg is implemented directly in terms of sum and length whereas sum is implemented as
a DeliteOpLoop with a DeliteReduceElem body. These special classes of structured IR nodes are
provided by the Delite framework and are inherited via DeliteOpsExp.

A closing note on type safety is in order. Since all DSL operations are expressed as typed Scala
methods, the Scala type system ensures that DSL operations are used in a type-safe way in DSL pro-
grams. Trying to invoke v.sum where v is is a vector of Strings (type Rep[Vector[String]]) would be
a compile-time type error, since String is not a numeric type (there is no instance of Numeric for type
String). On the implementation side, the Scala type system makes sure that infix_sum creates a typed
IR node that corresponds to the declared return type Rep[Vector[T]] = Exp[Vector[T]]. Thus, the
types of the IR nodes correspond to the types in the DSL program. Transformations on the IR need to
ensure that the types of IR nodes are preserved. Again, the typed embedding helps because the Scala
type system ensures that the result of a transformation conforms to the given method signatures (i.e. by
implying that a transformation maps Exp[T] to Exp[T] for all types T).

2.2 Code Generation

The LMS framework provides a code generation infrastructure that includes a program scheduler and a
set of base code generators. The program scheduler uses the data and control dependencies encoded by
IR nodes to determine the sequence of nodes that should be generated to produce the result of a block.
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After the scheduler has determined a schedule, it invokes the code generator on each node in turn. There
is one code generator object per target platform (e.g. Scala, CUDA, C++) that mixes together traits that
describe how to generate platform-specific code for each IR node. This organization makes it easy for
DSL authors to modularly extend the base code generators; they only have to define additional traits to
be mixed in with the base generator.

To be more concrete, consider the following definition of GenericCodegen, which all code generators
extend:
trait GenericCodegen extends Scheduling {
val IR: Expressions
import IR._
def emitBlock(y: Exp[Any]) (implicit stream: PrintWriter): Unit = {
val deflist = buildScheduleForResult(y)
for (TP(sym, rhs) <- deflist) {
emitNode(sym, rhs)
}
}
def emitNode(sym: Sym[Any], rhs: Def[Any]) (implicit stream: PrintWriter): Unit = {
throw new GenerationFailedException("don’t know how to generate code for: " + rhs)
3
}

A more sophisticated version extends GenericCodegen to maintain a scope, which allows emitBlock
to be called in a nested fashion. The code generator is not part of the program object that contains the DSL
IR definitions. This separation allows multiple code generators to be invoked on a particular program,
but requires a mechanism to inject the definition of Rep and the IR nodes into the code generator object.
We handle this using the IR value, which represents a path-dependent type. The IR value is instantiated
when the code generator is created. Given the VectorOpsExp definition from section[2.1] we could inject
the IR as follows:

val myCodeGenerator = new GenericCodegen { val IR: VectorOpsExp.this.type = VectorOpsExp.this }

Continuing the VectorOps example, we can extend the LMS base Scala generator to generate field
lookups on a Vector instance:
trait ScalaGenVectorOps extends ScalaGenBase {

val IR: VectorOpsExp
import IR._

override def emitNode(sym: Sym[Any], rhs: Def[Any]) (implicit stream: PrintWriter) = rhs match {
case VectorLength(x) => emitValDef(sym, quote(x) + ".length")
case _ => super.emitNode(sym, rhs)
}
}

Now we can compose this together with the Scala code generators provided by LMS:

trait MyDSLGen extends ScalaCodeGenPkg with ScalaGenVectorOps {
val IR: MyDSLOpsExp
}

Therefore, DSL designers only have to add code generators for their own domain-specific types.
They inherit the common functionality of scheduling and callbacks to the generation methods, and can
also build on top of code generator traits that have already been defined. In many cases, though, DSL
authors do not have to write code generators at all; the next section describes how Delite takes over this
responsibility for most operations.
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2.3 The Delite Compiler Framework and Runtime

On top of the LMS framework that provides the basic means to construct IR nodes for DSL opera-
tions, the Delite Compiler Framework provides high-level representations of execution patterns through
DeliteOp IR, which includes a set of common parallel execution patterns (e.g. map, zipWith, reduce).

DeliteOp extends Def, and DSL operations may extend one of the DeliteOps that best describes the
operation. For example, since VectorSum has the semantics of iterating over the elements of the input
Vector and adding them to reduce to a single value, it can be implemented by extending DeliteOpLoop
with a reduction operation as its body. This significantly reduces the amount of work in implementing
a DSL operation since the DSL developers only need to specify the necessary fields of the DeliteOp
(range and body in the case of DeliteOpLoop) instead of fully implementing the operation.

DeliteOpLoops are intended as parallel for-loops. Given an integer index range, the runtime guar-
antees to execute the loop body exactly once for each index but does not guarantee any execution order.
Mutating global state from within a loop is only safe at disjoint indexes. There are specialized constructs
to define loop bodies for map and reduce patterns (DeliteCollectElem, DeliteReduceElem) that trans-
form a collection of elements point-wise or perform aggregation. An optional predicate can be added
to perform filter-style operations, i.e. select or aggregate only those elements for which the predicate is
true. All loop constructs can be fused into DeliteOpLoops that do several operations at once.

Given the relaxed ordering guarantees, the framework can automatically generate efficient parallel
code for DeliteOps, targeting heterogeneous parallel hardware. Therefore, DSL developers can easily
implement parallel DSL operations by extending one of the parallel DeliteOps, and only focus on the
language design without knowing the low-level details of the target hardware. Below is the code snip-
pet for the DeliteOpLoop Scala target generator. The code is simplified to focus on the case where the
body of DeliteOpLoop is of type DeliteReduceElem. The generated kernel creates an object of type
generated.scala.DeliteOpLoop that defines methods for creating the output object (alloc) and pro-
cessing the element of the input collection (process, combine). Those methods will be called by the
runtime during execution.

trait ScalaGenDeliteOps extends BaseGenDeliteOps {
import IR._
override def emitNode(sym: Sym[Any], rhs: Def[Any]) (implicit stream: PrintWriter) = rhs match {
case DeliteOpSingleTask[_] =>
case op@eliteOpLoop[_] =>
stream.println("val " + kernelName + " = new generated.scala.DeliteOpLoop[" + actType + "] {")
stream.println("def size = " + quote(op.range)) // input size
stream.println("def alloc: + actType + " = {") // output allocation
stream.println("val __act = new " + actType) // activation record (environment)
(symList zip op.body) foreach {
case (sym, elem: DeliteCollectElem[_,_]) => ...
case (sym, elem: DeliteReduceElem[_]) =>

stream.println("__act." + quote(sym) + " = " + quote(elem.zero))

}
stream.println("__act")
stream.println("}")

// generate reduction method
stream.println("def combine(__act:
(symList zip op.body) foreach {
case (sym, elem: DeliteCollectElem[_,_]) => ...
case (sym, elem: DeliteReduceElem[_]) =>
stream.println("val " + quote(elem.rV._1) +
stream.println("val " + quote(elem.rV._2) +
emitBlock(elem.rFunc)

+ actType + ", rhs:

+ actType + "): Unit = {")

+ "__act.
+ "rhs."

+ quote(sym))
+ quote(sym))
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stream.println("__act." + quote(sym) + " = " + quote(getBlockResult(elem.rFunc)))
}

stream.println("}")

case _ => super.emitNode(sym, rhs)
}
}

It is important to note that emitNode is the very last step in the program generation process and until
then, everything is well-typed. The use of strings to assemble an (untyped) source code representation of
the generated program is unavoidable if the final target is source code and does not limit the overall safety
in any way. Strings are used “write-only” for output, they are never stored or manipulated otherwise.

The Delite Compiler Framework currently supports Scala, C++, and CUDA targets. The framework
provides code generators for each target in addition to a main generator (Delite generator) that controls
them. The Delite generator iterates over the list of available target generators to emit the target-specific
kernels. By generating multiple target implementations of the kernels and deferring the decision of which
one to use, the framework provides the runtime with enough flexibility in scheduling the kernels based
on dynamic information such as resource availability and input size. In addition to the kernels, the Delite
generator also generates the Delite Execution Graph (DEG) of the application. The DEG is a high-level
representation of the program that encodes all necessary information for its execution, including the list
of inputs, outputs, and interdependencies of all kernels.

After all the kernels are generated, the Delite Runtime starts analyzing the DEG and emits execution
plans for each target hardware, taking the machine status (e.g. number of available CPUs and GPUs)
into account. An execution plan consists of a series of kernel calls and necessary synchronizations with
the kernels in other execution plans. When two targets share data but have separate address spaces, the
runtime scheduler inserts data transfer operations whenever necessary. Since the DEG encodes all the
dependencies of the kernels, the scheduler can statically determine the only places where data transfers
are needed through liveness analysis. The scheduler also uses a heuristic based on a clustering algorithm
[39]] to minimize the communication between targets. When the scheduling decisions are made and
execution plans are emitted, the runtime finally invokes the target compilers to generate executables for
each target.

3 Performance Building-Blocks

In this section we take a closer look at some aspects of the approach outlined in Section [2] that work
together in new or interesting ways to support the development of performance-oriented DSLs. Broadly,
the important aspects fall into two categories:

Artifacts: Reusable pieces of software provided by the Delite and LMS framework. These include
‘standard’ compiler optimizations, a generic facility for pattern rewrites, DeliteOps and other IR defi-
nitions for generic functionality and easy parallelization, loop fusion (see Section [3.5), and a scheduler
that tracks data and control dependencies.

Concepts: Design pattern and practices that aid the development of DSLs. Among these are the
use of multi-stage programming, i.e. viewing DSL programs as program generators and using abstrac-
tion in the generator instead of abstraction in the DSL implementation. Another pattern is the overall
organization into independent component, such that IR nodes, optimizations and code generators can be
composed in a modular way.

Discussing all of these items in sufficient depth would be beyond the scope of a single paper. There-
fore the following sections are to be understood as a selection.
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3.1 Regular Compiler Optimizations

Many classic compiler optimizations can be applied to the IR generated from DSL programs in a straight-
forward way. Among the generic optimizations that are applied by default are common subexpression
elimination, dead code elimination, constant folding and code motion. Due to the structure of the IR,
these optimizations all operate in an essentially global way, at the level of domain operations. An impor-
tant difference to regular general-purpose compilers is that IR nodes carry information about effects they
incur (see below). This allows to use quite precise dependency tracking that provides the code genera-
tor with a lot of freedom to group and rearrange operations. Consequently, optimizations like common
subexpression elimination and dead code elimination will easily remove complex DSL operations that
contain internal control-flow and may span many lines of source code. The same holds for code motion.
Consider the following user-written code:
vl map { x =
val s = sum(v2.length) { i = v2() }
X/s
}
This snippet scales elements in a vector v1 relative to the sum of v2’s elements. Without any extra work,
the generic code motion transform places the calculation of s (which is itself a loop) outside the loop
over v1 because it does not depend on the loop variable x.
val s = sum(v2.length) { i => v2(i) }
vl map { x =>
X/s
}

To ensure that operations can be safely moved around (and for other optimizations as well), a com-
piler needs to reason about their possible side effects. Of particular interest is the treatment of mutable
data structures. Our current model, which works reasonably well for the applications we have been study-
ing so far (but might be overly restrictive for others) is to make DSL authors annotate IR nodes with the
kind of effects they incur and prohibit sharing and aliasing between mutable objects. Furthermore, read
and write operations must unambiguously identify the allocation site of the object being accessed.

By default, DSL operations are assumed pure (i.e. side-effect free). DSL developers designate ef-
fectful operations using one of several reflect methods. Console output, for example is implemented
like this:

def print(x: Exp[String]): Exp[Unit] = reflect(Print(x))

The call to reflect adds the passed IR node to a list of effects for the current block. Effectful expres-
sions will have dependency edges between them to ensure serialization. A compound expression such
as a loop will internally use reflect’s counterpart, called reifyEffects, to access the effectful expres-
sions of its loop body. Effectful statements are tagged with an effect summary that further describes the
effect. The summary can be extracted via summarizeEffects, and there are some operations on sum-
maries (orElse, andThen) to combine effects. As an example consider the definition of conditionals,
which computes the compound effect from the effects of the two branches:
def __ifThenElse[T](cond: Exp[Boolean], thenp: => Rep[T], elsep: => Rep[T]) {

val a = reifyEffects(thenp)

val b = reifyEffects(elsep)

val ae = summarizeEffects(a) // get summaries of the branches

val be = summarizeEffects(b)

val summary = ae orElse be // compute summary for whole expression

reflectEffect (IfThenElse(cond, a, b), summary) // reflect compound expression
// (effect might be none, i.e. pure)
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Up to here, we have encountered only binary effects: Either an operation has a global effect (like
print) or not. For reasoning about mutable data we clearly need something more fine grained. To that
end, we add further reflect methods:

reflect // a ’simple’ effect: serialized with other simple effects
reflectMutable // an allocation of a mutable object. result guaranteed unique
reflectWrite(v) // a write to v: must refer to a mutable allocation (reflectMutable IR node)

reflectRead(v) // a read of allocation v (not used by programmer, inserted implicitly)
reflectEffect(s) // provide explicit summary s, specify may/must info for multiple reads/writes

The framework will serialize reads and writes so to respect data and anti-dependency with respect to
the referenced allocations. To make this work we also need to keep track of sharing and aliasing. DSL
authors can provide for their IR nodes a list of input expressions which the result of the IR node may
alias, contain, extract from or copy from. These four pieces of information correspond to the possible
pointer operations X = y, *x = y,x = *yand *x = *y. Using this knowledge, the framework prohibits
sharing between mutable objects and keeps track of immutable objects that point to mutable data. This is
to make sure the right serialization dependencies and reflectRead calls are inserted for operations that
may indirectly reference mutable state.

This system seems to work well for programs that use a dominantly functional style but the no-
sharing policy might be too restrictive for programs that make more extensive use of mutation. Effect
systems and analyses are a large research topic on their own so we expect that further research is needed
and more DSLs and applications need to be studied. Fortunately, Delite is not inherently tied to this
particular effect system.

3.2 DSL Programs are Program Generators

LMS is a dynamic multi-stage programming approach: We have the full Scala language at our disposal
to compose fragments of DSL code. In fact, DSL programs are program generators that produce the
DSL IR when run. DSL authors and application programmers can exploit this multi-level nature to
perform computations explicitly at staging time, so that the generated program does not pay a runtime
cost. Multi-stage programming thus shares some similarities with partial evaluation [27]], but instead of
an automatic binding-time analysis, the programmer makes binding times explicit in the program. LMS
uses Rep types for this purpose:

val s: Int = ... // a static value: computed at staging time
val d: Rep[Int] = ... // a dynamic value: computed when generated program is run

Unlike with automatic partial evaluation, the programmer obtains a guarantee about which expres-
sions will be evaluated at staging time.

While moving computations from run time to staging time is an interesting possibility, many com-
putations actually depend on dynamic input and cannot be done before the input is available (we will
consider optimization of dynamic expressions below in Section [3.3). Nonetheless, explicit staging can
be used to combine dynamic computations more efficiently. Modern programming languages provide
indispensable constructs for abstracting and combining program functionality. Without higher-order fea-
tures such as first-class functions or object and module systems, software development at scale would
not be possible. However, these abstraction mechanisms have a cost and make it much harder for the
compiler to generate efficient code.

Using explicit staging, we can use abstraction in the generator stage to remove abstraction in the
generated program. This holds both for control (e.g. functions, continuations) and data abstractions (e.g.
objects, boxing).
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3.2.1 Leveraging Higher-Order Functions in the Generator

Higher-order functions are extremely useful to structure programs but also pose a significant obstacle
for compilers, recent advances on higher-order control-flow analysis notwithstanding [46, [22]]. While we
would like to retain the structuring aspect for DSL programs, we would like to avoid higher-order control
flow in generated code. Fortunately, we can use higher-order functions in the generator stage to compose
first-order DSL programs.

Consider the following program that prints the number of elements greater than 7 in some vector:

val xs: Rep[Vector[Int]] = ...
println(xs.count(x => x > 7))

The program makes essential use of a higher-order function count to count the number of elements
in a vector that fulfill a predicate given as a function object. Ignoring for the time being that we would
likely want to use a DeliteOp for parallelism, a good and natural way to implement count would be to
first define a higher-order function foreach to iterate over vectors:

def infix_foreach[A] (v: Rep[Vector[A]]) (f: Rep[A] => Rep[Unit]) = {
var i: Rep[Int] = 0
while (i < v.length) {
£(v(i)
i+=1
3
}

The actual counting can then be implemented in terms of the traversal:

def infix_count[A] (v: Rep[Vector[A]]) (f: Rep[A] => Rep[Boolean]) = {

var c: Rep[Int] = 0

v foreach { x = if (X)) c +=11}

C

}

It is important to note that infix_foreach and infix_count are static methods, i.e. calls will happen
at staging time and result in inserting the computed DSL code in the place of the call. Likewise, while
the argument vector v is a dynamic value, the function argument f is again static. However, f operates
on dynamic values, as made explicit by its type Rep[A] => Rep[Boolean]. By contrast, a dynamic
function value would have type Rep[A => B].

This means that the code generated for the example program will look roughly like this, assuming
that vectors are represented as arrays in the generated code:

val v: Array[Int] = ...
var c = 0
var i = 0
while (i < v.length) {
val x = v(i)
if x>7)
c+=1
i+=1
}
println(c)

All traces of higher-order control flow have been removed and the program is strictly first-order.
Moreover, the programmer can be sure that the DSL program is composed in the desired way.

This issue of higher-order functions is a real problem for regular Scala programs executed on the
JVM. The Scala collection library uses essentially the same foreach and count abstractions as above
and the JVM, which applies optimizations based on per-call-site profiling, will identify the call site within
foreach as a hot spot. However, since the number of distinct functions called from foreach is usually
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large, inlining or other optimizations cannot be applied and every iteration step pays the overhead of a
virtual method call [16].

3.2.2 Using Continuations in the Generator to Implement Backtracking

Apart from pure performance improvements, we can use functionality of the generator stage to enrich
the functionality of DSLs without any work on the DSL-compiler side. As an example we consider
adding backtracking nondeterministic computation to a DSL using a simple variant of McCarthy’s amb
operator [32]]. Here is a nondeterministic program that uses amb to find pythagorean triples from three
given vectors:
val u,v,w: Rep[Vector[Int]] = ...
nondet {
val a = amb(u)
val b = amb(v)
val ¢ = amb(w)
require(a*a + b*b == c*c)
println("found:")
println(a,b,c)

We can use Scala’s support for delimited continuations [36] and the associated control operators
shift and reset [20,19] to implement the necessary primitives. The scope delimiter nondet is just the
regular reset. The other operators are defined as follows:

def amb[T] (xs: Rep[Vector[T]]): Rep[T] @cps[Rep[Unit]] = shift { k =>
xs foreach k

}

def require(x: Rep[Boolean]): Rep[Unit] @cps[Rep[Unit]] = shift { k =>
if (x) kQ else O

}

Since the implementation of amb just calls the previously defined method foreach, the generated
code will be first-order and consist of three nested while loops:

val u,v,w: Rep[Vector[Int]] = ... val ¢ = w(k)
var i = 0 val c2 = c*c
while (i < u.length) { if (a2b2 == c2) {
val a = u(d) println("found:")
val a2 = a*a println(a,b,c)
var j = 0 }
while (j < v.length) { k+=1
val b = v(j) }
val b2 = b*b j+=1
val a2b2 = a2+bh2 }
var k = 0 i+=1
while (k < w.length) { }

Besides the advantage of not having to implement amb as part of the DSL compiler, all common
optimizations that apply to plain while loops are automatically applied to the unfolded backtracking
implementation. For example, note how loop invariant hoisting has moved the computation of a*a and
b*b out of the innermost loop.

The given implementation of amb is not the only possibility, though. For situations where we know
the number of choices (but not necessarily the actual values) for a particular invocation of amb at staging
time, we can implement an alternative operator that takes a (static) list of dynamic values and unfolds
into specialized code paths for each option at compile time:
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def bam[T] (xs: List[Rep[T]]): Rep[T] @cps[Rep[Unit]] = shift { k =>
xs foreach k

}

Here, foreach is not a DSL operation but a plain traversal of the static argument list xs. The bam
operator must be employed with some care because it incurs the risk of code explosion. However, static
specialization of nondeterministic code paths can be beneficial if it allows aborting many paths early
based on static criteria or merging computation between paths.

val u: Rep[Vector[Int]] = ...
nondet {
val a = amb(u)
val b = bam(List(x1), List(x2))
val ¢ = amb(v)
require(a + ¢ = £f(b)) // assume f(b) is expensive to compute
println("found:")
println(a,b,c)

If this example was implemented as three nested loops, £(x1) and £(x2) would need to be computed
repeatedly in each iteration of second loop as they depend on the loop-bound variable b. However, the
use of bam will remove the loop over x1,x2 and expose the expensive computations as redundant so that
code motion can extract them from the loop:

val fx1 = £(x1)
val fx2 = f(x2)
while (...) { // iterate over u
while (...) { // iterate over v
if (a + ¢ == fx1) // found
}
while (...) { // iterate over v
if (a + ¢ == fx2) // found
3

}

In principle, the two adjacent inner loops could be subjected to the loop fusion optimization discussed
in Section [3.5] This would remove the duplicate traversal of v. In this particular case fusion is currently
not applied since it would change the order of the side-effecting println statements.

3.3 Data Objects

Besides control abstraction, the overhead of data abstraction is a major concern for performance oriented
programs. As a running example we consider adding a complex number datatype to our DSL. The usual
approach of languages executed on the JVM is to represent every non-primitive value as a heap-allocated
reference object. The space overhead, reference indirection as well as the allocation and garbage collec-
tion cost are a burden for performance critical code. Thus, we want to be sure that our complex numbers
can be manipulated as efficiently as two individual doubles. In the following, we explore different ways
to achieve that.

3.3.1 Variant A: Static Data Structure

The simplest approach is to implement complex numbers as a fully static data type, that only exists at
staging time. Only the actual Doubles that constitute the real and imaginary components of a complex
number are dynamic values:

case class Complex(re: Rep[Double], im: Rep[Double])
def infix +(a: Complex, b: Complex) = Complex(a.re + b.re, a.im + b.im)
def infix_*(a: Complex, b: Complex) = Complex(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re)
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Given two complex numbers c1,c2, an expression like

cl +5 * c2 // assume implicit conversion from Int to Complex

will generate code that is free of Complex objects and only contains arithmetic on Doubles.
However the ways we can use Complex objects are rather limited. Since they only exists at staging
time we cannot, for example, express dependencies on dynamic conditions:
val test: Rep[Boolean] = ...
val c3 = if (test) cl else c2 // type error: cl/c2 not a Rep type
It is worthwhile to point out that nonetheless, purely static data structures have important use cases.
To give an example, the fast fourier transform (FFT) [17] is branch-free for a fixed input size. The
definition of complex numbers given above can be used to implement a staged FFT that computes the
well-known butterfly shaped computation circuits from the textbook Cooley-Tukey recurrences (31, 37].
To make complex numbers work across conditionals, we have have to split the control flow explicitly
(another option would be using mutable variables). There are multiple ways to achieve this splitting. We
can either duplicate the test and create a single result object:
val test: Rep[Boolean] = ...
val c3 = Complex(if(test) cl.re else c2.re, if(test) cl.im else c2.im)
Alternatively we can use a single test and duplicate the rest of the program:

val test: Rep[Boolean] = ...
if (test) {
val c3 =cl
// rest of program
} else {
val c3 = c2
// rest of program
}

While it is awkward to apply this transformation manually, we can use continuations (much like for
the bam operator) to generate two specialized computation paths:

def split[A](c: Rep[Boolean]) = shift { k: (Boolean => A) =>
if (c) k(true) else k(false) // "The Trick"

}
val test: Rep[Boolean] = ...
val c3 = if (split(test)) cl else c2

The generated code will be identical to the manually duplicated, specialized version above.
3.3.2 Variant B: Dynamic Data Structure with Partial Evaluation

We observe that we can increase the amount of statically possible computation (in a sense, applying
binding-time improvements) for dynamic values with domain-specific rewritings:

val s: Int = ... // static

val d: Rep[Int] = ... // dynamic

val x1 = s + s +d // left assoc: s + s evaluated statically, one dynamic addition
val x2 = s + (d + s) // naively: two dynamic additions, using pattern rewrite: only one

In computing x1, there is only one dynamic addition because the left associativity of the plus operator
implies that the two static values will be added together at staging time. Computing x2 will incur two
dynamic additions, because both additions have at least one dynamic summand. However we can add
rewriting rules that first replace d+c (c denoting a dynamic value that is know to be a static constant, i.e.
an IR node of type Const) with c+d and then c+(c+d) with (c+c)+d. The computation c+c can again be
performed statically.

In a similar spirit, we can define a framework for data structures:
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trait StructExp extends BaseExp {
case class Struct[T](tag: String, elems: Map[String,Rep[Any]]) extends Def[T]
case class Field[T](struct: Rep[Any], index: String) extends Def[T]

def field[T](struct: Rep[Any], index: String): Rep[T] = struct match {
case Def(Struct(tag, elems)) => elems(index).asInstanceOf[Rep[T]]
case _ => Field[T](struct, index)
}
}

There are two IR node types, one for structure creation and one for field access. The structure creation
node contains a hash map that holds (static) field identifiers and (dynamic) field values. The interface for
field accesses is method field, which pattern matches on its argument and, if that is a Struct creation,
looks up the desired value from the embedded hash map.

An implementation of complex numbers in terms of Struct could look like this:

trait ComplexOps extends ComplexBase with ArithOps {
def infix +(x: Rep[Complex], y: Rep[Complex]): Rep[Complex] = Complex(x.re + y.re, X.im + y.im)
def infix_ *(x: Rep[Complex], y: Rep[Complex]): Rep[Complex] = Complex(a.re*b.re - ...)
}
trait ComplexBase extends Base {
class Complex
def Complex(re: Rep[Double], im: Rep[Double]): Rep[Complex]
def infix_re(c: Rep[Complex]): Rep[Double]
def infix_im(c: Rep[Complex]): Rep[Double]
}
trait ComplexStructExp extends ComplexBase with StructExp {
def Complex(re: Rep[Double],im: Rep[Double])=Struct[Complex]("Complex", Map('re"->re, "im"->im))
def infix_re(c: Rep[Complex]): Rep[Double] = field[Double](c, "re")
def infix_im(c: Rep[Complex]): Rep[Double] = field[Double](c, "im")
}

Note how complex arithmetic is defined completely within the interface trait ComplexOps, which
inherits double arithmetic from ArithOps. Access to the components via re and im is implemented
using Struct.

In contrast to the completely static implementation of complex numbers presented in Section [3.3.1]
above, complex numbers are a fully dynamic DSL type now. The previous restrictions are gone and we
can write the following code without compiler error:

val c3 = if (test) cl else c2
println(c3.re)

However there is still one ingredient missing. Taking only the implementation of Struct seen so far,
the conditional that computes c¢3 would need to create some kind of a StructDyn object at runtime, from
which the invocation of re would then need to retrieve the stored data. After all, the implementation of
field can only lookup the field statically if the argument is a Struct, not an IfThenElse node. What is
missing is thus a rule that makes the result of a conditional a Struct if the branches return Struct:

override def ifThenElse[T](cond: Rep[Boolean], a: Rep[T], b: Rep[T]) = (a,b) match {

case (Def(Struct(tagA,elemsA)), Def(Struct(tagB, elemsB))) =>

assert(tagA == tagB)

assert(elemsA.keySet == elemsB.keySet)

Struct(tagA, for (k <- elemsA.keySet) yield (k -> ifThenElse(cond, elemsA(k), elemsB(k))))
case _ => super.ifThenElse(cond,a,b)

}

Similar rules are added for many of the other core IR node types.
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There is another particularly interesting use case: Let us assume we want to create a vector of com-
plex numbers. Just as with the if then else example above, we can override the vector constructors such
that a Vector[Complex] is represented as a struct that contains two separate arrays, one for the real
and one for the imaginary components. In fact, we have expressed our conceptual array of structs as a
struct of arrays. This data layout is beneficial in many cases. Consider for example calculating complex
conjugates (i.e. swapping the sign of the imaginary compoents) over a vector of complex numbers. All
the real parts remain unchanged so the array holding them need not be touched at all. Only the imaginary
parts have to be transformed, cutting the total required memory bandwidth in half. Moreover, uniform
array operations like this are a much better fit for SIMD execution.

We conclude this section by taking note that we can actually guarantee that no dynamic Complex or
Struct object is ever created just by not implementing code generation logic for Struct and Field IR
nodes and signaling an error instead. This is a good example of a performance-oriented DSL compiler
rejecting a program as ill-formed because it cannot be executed in the desired, efficient way.

3.4 Extending the Framework

A framework for building DSLs must be easily extensible in order for the DSL developer to exploit
domain knowledge starting from a general-purpose IR design. Consider a simple DSL for linear alge-
bra with a Vector type. Now we want to add norm and dist functions to the DSL. The first possible
implementation is to simply implement the functions as library methods.

def norm[T:Numeric] (v: Rep[Vector[T]]) = {
sqrt(v.map(j => j*j).sum)

}

def dist[T:Numeric](vl: Rep[Vector[T]], v2: Rep[Vector[T]]) = {
norm(vl - v2)

}

Whenever the dist method is called the implementation will be added to the application IR in terms
of vector subtraction, vector map, vector sum, etc. (assuming each of these methods is built-in to the
language rather than also being provided as a library method). This version is very straightforward to
write but the knowledge that the application wishes to find the distance between two vectors is lost.

By defining norm explicitly in the IR implementation trait (where Rep[T] = Exp[T]) we gain ability
to perform pattern matching on the IR nodes that compose the arguments.

override def norm[T:Numeric](v: Exp[Vector[T]]) = v match {

case Def(ScalarTimesVector(s,u)) => s * norm(u)

case Def(ZeroVector(n)) => 0

case _ => super.norm(v)

}

In this example there are now three possible implementations of norm. The first case factors scalar-
vector multiplications out of norm operations, the second short circuits the norm of a ZeroVector to be
simply the constant 0, and the third falls back on the default implementation defined above. With this
method we can have a different implementation of norm for each occurrence in the application.

An even more powerful alternative is to implement norm and dist as custom IR nodes. This enables
the DSL to include these nodes when optimizing the application via pattern matching and IR rewrites
as illustrated above. For example, we can add a rewrite rule for calculating the norm of a unit vector:
if vi = m then ||vi|| = 1. In order to implement this optimization we need to add cases both for the
new norm operation as well as to the existing scalar-times-vector operation to detect the first half of the
pattern.

case class VectorNorm[T](v: Exp[Vector[T]]) extends Def[T]
case class UnitVector[T](v: Exp[Vector[T]]) extends Def[Vector[T]]
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override def scalar_times_vector[T:Numeric](s: Exp[T], v: Exp[Vector[T]]) = (s,v) match {
case (Def(Divide(Const(1l), Def(VectorNorm(v1)))), v2) if vl == v2 => UnitVector(v)

case _ => super.scalar_times_vector(s,v)

iverride def norm[T:Numeric] (v: Exp[Vector[T]]) = v match {
case Def(UnitVector(vl)) => 1
case _ => super.norm(v)

}

In this example the scalar-times-vector optimization requires vector-norm to exist as an IR node to
detectﬁ and short-circuit the operation to simply create and mark unit vectors. The vector-norm optimiza-
tion then detects unit vectors and short circuits the norm operation to simply add the constant 1 to the IR.
In every other case it falls back on the default implementation, which is to create a new VectorNorm IR
node.

When these domain-specific IR nodes (ScalarTimesVector, Norm, etc.) are created by extending
DeliteOp nodes parallel code generation, generic optimizations, and parallel optimizations are performed
automatically by the framework. In the case of norm and dist, an extremely useful performance optimiza-
tion that the framework provides is fusing the individual operations so that the distance is computed with
a single pass over the two vectors rather than the three passes that would occur with a straightforward
generation of dist as written. We will now look at the loop fusion support provided by the framework in
more detail.

3.5 Fusion

Building complex bulk operations out of simple ones often leads to inefficient generated code. For
example consider the simple vector code

val a: Rep[Double] = ...
val x: Rep[Vector[Double]]
val y: Rep[Vector[Double]]

a*x+y
Assuming we have provided the straightforward loop-based implementations of scalar-times-vector
and vector-plus-vector, the resulting code for this program will perform two loops and allocate a tempo-
rary vector to store a*x. A more efficient implementation will only use a single loop (and no temporary
vector allocations) to compute a*x(i)+y(1i).
In addition to operations that are directly dependent as illustrated above, side-by-side operations also
appear frequently. As an example, consider a DSL that provides mean and variance methods.

def mean(x: Rep[Vector[Double]]) =
sum(x.length) { i => x(i) } / x.length
def variance(x: Rep[Vector[Double]]) =
sum(x.length) { i => square(x(i)) } / x.length - square(mean(x))

val data = ...
val m = mean(data)
val v = variance(data)

The DSL developer wishes to provide these two functions separately, but many applications will
compute both the mean and variance of a dataset together. In this case we again want to perform all
the work with a single pass over data. In both of the above example situations, fusing the operations

2The == operator tests structural equality of IR nodes. The test is cheap because we only need to look at symbols, one level
deep. Value numbering/CSE ensures that intensionally equal IR nodes get assigned the same symbol.
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into a single loop greatly improves cache behavior and reduces the total number of loads and stores
required. It also creates coarser-grained functions out of fine-grained ones, which will likely improve
parallel scalability.

Our framework handles all situations like these two examples uniformly and for all DSLs. Any non-
effectful IR node that extends DeliteOpLoop is eligible for fusing with other DeliteOpLoops. In order to
handle all the interesting loop fusion cases, the fusing algorithm uses a simple and general criterion: It
fuses all pairs of loops where either both loops have the exact same size or one loop iterates over a data
structure the other loop creates, as long as fusing will not create any cyclic dependencies. When it finds
two eligible loops the algorithm creates a new loop with a body composed of both of the original bodies.
Merging loop bodies includes array contraction, i.e. the fusing transform modifies dependencies so that
all results produced within a loop iteration are consumed directly rather than by reading an output data
structure. Whenever this renders an output data structure unnecessary (it does not escape the fused loop)
it is removed automatically by the dead code elimination system. All DeliteOpLoops are parallel loops,
which allows the fused loops to be parallelized in the same manner as the original loops.

The general heuristic is to apply fusion greedily wherever possible. For dominantly imperative code
more refined heuristics might be needed [4]. However, loop abstractions in Delite are dominantly func-
tional and many loops create new data structures. Removing intermediate data buffers, which are poten-
tially large and many of which are used only once is clearly a win, so fusing seems to be beneficial in
almost all cases.

Our fusion mechanism is similar but not identical to deforestation [50] and related approaches [18]].
Many of these approaches only consider expressions that are directly dependendent, whereas we are able
to handle both dependent and side-by-side expressions with one general mechanism. This is critical for
situations such as the mean and variance example, where the only other efficient alternative would be to
explicitly create a composite function that returns both results simultaneously. This solution additionally
requires the application writer to always remember to use the composite version when appropriate. It
is generally difficult to predict all likely operation compositions as well as onerous to provide efficient,
specialized implementations of them. Therefore fusion is key for efficient compositionality in both
applications and DSL libraries.

4 Case Study: OptiML

OptiML is an embedded DSL for machine learning (ML) that we have developed on top of LMS and
Delite. It provides a MATLAB-like programming model with ML-specific abstractions. OptiML is a
prototypical example of how the techniques described in this paper can be used to construct productive,
high performance DSLs targeted at heterogeneous parallel machines.

4.1 Downsampling in Bioinformatics

In this example, we will demonstrate how the optimization and code generation techniques discussed in
previous sections come together to produce efficient code in real applications. SPADE is a bioinformatics
application that builds tree representations of large, high-dimensional flow cytometry datasets. Consider
the following small but compute-intensive snippet from SPADE (C++):

std::fill(densities, densities+obs, 0);
#pragma omp parallel for shared(densities)
for (size_t i=0; i<obs; i++) {
if (densities[i] > ®)
continue;
std: :vector<size_t> apprxs; // Keep track on observations we can approximate
Data_t *point = &data[i*dim];
Count_t c = 0;
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for (size_t j=0; j<obs; j++) {
Dist_t d = distance(point, &data[j*dim], dim);
if (d < apprx_width) {
apprxs.push_back(j);
C++;
} else if (d < kernel_width) c++;
}
// Potential race condition on other density entries, use atomic
// update to be safe
for (size_t j=0; j<apprxs.size(); j++)
__sync_bool_compare_and_swap(densities+apprxs[j],0,c); //densities[apprxs[j]] = c;
densities[i] = c;

This snippet represents a downsampling step that computes a set of values, densities, that represents
the number of samples within a bounded distance (kernel_width) from the current sample. Furthermore,
any distances within apprx_width of the current sample are considered to be equivalent, and the density
for the approximate group is updated as a whole. Finally, the loop is run in parallel using OpenMP.
This snippet represents hand-optimized, high performance, low-level code. It took a systems and C++
expert to port the original MATLAB code (written by a bioinformatics researcher) to this particular
implementation. In contrast, consider the equivalent snippet of code, but written in OptiML:

val distances = Stream[Double] (data.numRows, data.numRows){ (i,j) => dist(data(i),data(j)) }?
val densities = Vector[Int] (data.numRows, true)

for (row <- distances.rows) {
if(densities(row.index) == 0) {
val neighbors = row find { _ < apprxWidth }
densities(neighbors) = row count { _ < kernelWidth }
}
}

densities

This snippet is expressive and easy to write. It is not obviously high performance. However, because
we have abstracted away implementation detail, and built-in high-level semantic knowledge into the
OptiML compiler, we can generate code that is essentially the same as the hand-tuned C++ snippet.
Let’s consider the OptiML code step by step.

Line 1 instantiates a Stream, which is an OptiML data structure that is buffered; it holds only a chunk
of the backing data in memory at a time, and evaluates operations one chunk at a time. Stream only
supports iterator-style access and bulk operations. These semantics are necessary to be able to express
the original problem in a more natural way without adding overwhelming performance overhead. The
foreach implementation for stream.rows is:

def stream foreachrow[A:Manifest] (x: Exp[Stream[A]], block: Exp[StreamRow[A]] => Exp[Unit]) = {
var i = 0
while (i < numChunks) {
val rowsToProcess = stream_rowsin(x, i)

val in = (0::rowsToProcess)
val v = fresh[Int]

// fuse parallel initialization and foreach function
reflectEffect (StreamInitAndForeachRow(in, v, x, i, block)) // parallel
i+=1
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This method constructs the IR nodes for iterating over all of the chunks in the Stream, initalizing
each row, and evaluating the user-supplied foreach anonymous function. We first obtain the number of
rows in the current chunk by calling a method on the Stream instance (stream_rowsin). We then call
the StreamInitAndForeachRow op, which is a DeliteOpForeach, over all of the rows in the chunk. Op-
tiML unfolds the foreach function and the stream initialization function while building the IR, inside
StreamInitAndForeachRow. The stream initialization function ((i,j) => dist(data(i),data(j))
constructs a StreamRow, which is the input to the foreach function. The representation of the foreach
function consists of an IfThenElse operation, where the then branch contains the VectorFind, Vector-
Count, and VectorBulkUpdate operations from lines 6-7 of the OptiML SPADE snippet. VectorFind and
VectorCount both extend DeliteOpLoop. Since they are both DeliteOpLoops over the same range with
no cyclic dependencies, they are fused into a single DeliteOpLoop. This eliminates an entire pass (and
the corresponding additional memory accesses) over the row, which is a non-trivial 235,000 elements in
one typical dataset.

Fusion helps to transform the generated code into the iterative structure of the C++ code. One im-
portant difference remains: we only want to compute the distance if it hasn’t already been computed
for a neighbor. In the streaming version, this corresponds to only evaluating a row of the Stream if the
user-supplied if-condition is true. In other words, we need to optimize the initialization function together
with the anonymous function supplied to the foreach. LMS does this naturally since the foreach imple-
mentation and the user code written in the DSL are all uniformly represented with the same IR. When
the foreach block is scheduled, the stream initialization function is pushed inside the user conditional
because the StreamRow result is not required anywhere else. Furthermore, once the initialization func-
tion is pushed inside the conditional, it is then fused with the existing DeliteOpLoop, eliminating another
pass. We can go even further and remove all dependencies on the StreamRow instance by bypassing field
accesses on the row, using the pattern matching mechanism described earlier:

trait StreamOpsExpOpt extends StreamOpsExp {
this: OptiMLExp with StreamImplOps =>

override def stream_numrows[A:Manifest](x: Exp[Stream[A]]) = x match {
case Def(Reflect(StreamObjectNew(numRows, numCols, chunkSize, func, isPure),_,_)) => numRows
case _ => super.stream_numrows(x)
}
// similar overrides for other stream fields
}
trait VectorOpsExpOpt extends VectorOpsExp {
this: OptiMLExp with VectorImplOps =>
// accessing an element of a StreamRow directly accesses the underlying Stream
override def vector_apply[A:Manifest](x: Exp[Vector[A]], n: Exp[Int]) = x match {
case Def(StreamChunkRow(x, i, offset)) => stream_chunk_elem(x,i,n)
case _ => super.vector_apply(x,n)
}
}

Now as the row is computed, the results of VectorFind and VectorCount are also computed in a
pipelined fashion. All accesses to the StreamRow are short-circuited to their underlying data structure
(the Stream), and no StreamRow object is ever allocated in the generated code. The following listing
shows the final code generated by OptiML for the ’then’ branch (comments and indentation added for
clarity):
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// ... initialization code omitted ... val x246 = x186 < 22.296759870000002
// -- FOR EACH ELEMENT IN ROW --
while (x155 < x61) { // -- VECTOR FIND --
val x168 = x155 * x64 if (x245) x201.insert(x201.length, x155)
var x185: Double = 0
var x180 = 0 // -- VECTOR COUNT --
if (x246) {
// -- INIT STREAM VALUE (dist(i,j)) -- val x207 = x208 + 1
while (x180 < x64) { x208 = x207
val x248 = x164 + x180 }
val x249 = x55(x248) x155 +=1
val x251 = x168 + x180 }
val x252 = x55(x251)
val x254 = x249 - x252 // —-- VECTOR BULK UPDATE --
val x255 = java.lang.Math.abs(x254) var forIdx = 0
val x184 = x185 + x255 while (forIdx < x201.size) {
x185 = x184 val x210 = x201(forIdx)
x180 += 1 val x211 = x133(x210) = x208
} x211
val x186 = x185 forIdx += 1
val x245 = x186 < 6.689027961000001 }

This code, though somewhat obscured by the compiler generated names, closely resembles the hand-
written C++ snippet shown earlier. It was generated from a simple, 9 line description of the algorithm
written in OptiML, making heavy use of the building blocks we described in previous sections to produce
the final result.

4.2 Performance Measurements

W CH++ N C++ mCPU mGPU

OptiML Fusing ® OptiML No Fusing

OptiML

1.3

1.0
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S
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(a) Normalized execution time of
SPADE in C++ and OptiML with and
without fusing optimizations, for 1 to 8
CPU cores. Speedup relative to 1-core
OptiML with fusing on top of each bar.

(b) Normalized execution time of tem-
plate matching in C++ and OptiML, for
1 to 8 CPU cores. Speedup numbers rel-
ative to 1-core OptiML shown on top of
each bar.

(c) Normalized execution time of 8-core
CPU and 1 GPU for a selection of ap-
plications in OptiML. Speedup numbers
relative to 1-core CPU shown on top of
each bar.

Figure 1: Performance results for the OptiML DSL running on Delite

Figures [I(a)|and [I(b)]show how OptiML performs relative to hand-optimized C++ versions for two
real-world applications: SPADE (discussed in the previous section) and a template matching application
[6] used for object recognition in robotics. For each experiment, we ran each application 10 times and
report the mean execution time of the final 5 executions (not counting initialization). The experiments
were run on a Dell Precision T7500n with two quad-core Intel Xeon X5550 2.67 GHz processors, 24GB
of RAM, and an NVidia Tesla C2050. Our CPU results use generated Scala code, compiled and executed
with Oracle’s Java SE Runtime Environment 1.7.0-b133 and the HotSpot 64-bit server VM with default
options.

The results show that OptiML generates code that performs comparably to, and can even outper-
form, a hand-tuned C++ implementation. For SPADE, prior to applying the optimizations discussed in
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the previous section, the code generated by OptiML is three times slower than the C++ version. This
overhead comes from the extra memory allocations and loops over the data that are required in the naive
implementation. The naive version also does more computation than the C++, because it always initial-
izes a StreamRow even when it is not needed. By applying fusion and code motion as we described,
the OptiML code becomes a tight loop with no intermediate allocation. The small improvement over the
C++ version might be due to the JVM JIT producing slightly better native code and from the removal of
an atomic update, which is unnecessary on 64-bit platforms.

The OptiML version of the template mapping (TM) application is much shorter and performs bet-
ter than the C++ version, mostly due to removing a substantial amount of low-level bit-manipulating
optimizations from the application code that did not perform as well on our platform. The C++ code
also reused some data structures in ways that made parallelizing non-trivial, while the OptiML code was
implicitly parallel from extending Delite Ops. Because the C++ TM is sequential, we report only the
single-threaded execution time; the OptiML version scales efficiently to multiple processors. This ap-
plication clearly demonstrates that low-level implementation details in application code is a liability to
performance portability.

Finally, Figure [I(c) shows our GPU performance for three selected machine learning applications:
Riemann Boltzmann Machine (RBM), Naive Bayes (NB), and Gaussian Discriminant Analysis (GDA).
The results shown are relative to single-threaded OptiML performance. These results show that a hetero-
geneous programming model is required to achieve best performance on these applications; neither the
CPU nor the GPU is best for all cases. The OptiML code can run on either the CPU or GPU without any
changes to the source code. In previous work, we compared OptiML performance to MATLAB across
a wider range of applications, and found that we outperform MATLAB’s CPU performance and GPU
performance in most cases [40].

5 Related Work

Lightweight Modular Staging and Delite build upon previously published work in multiple areas, includ-
ing DSLs, multi-stage compilation, and parallel programming.

DSLs and multi-stage compilation: DSLs fall into two broad categories, namely external DSLs
which are completely independent languages, and internal DSLs, which borrow functionality from a host
language. We use Hudak’s model of embedded DSLs [26]. Previous work has shown some of the ben-
efits of domain-specific optimizations. Guyver et al. present significant performance improvements by
annotating library methods with domain-specific knowledge [24], and CodeBoost [2] uses user-defined
rules to transform programs using domain knowledge.

Multi-stage programming languages include MetaML [43]] and MetaOCaml [8]]. Several other static
metaprogramming methods exist, including C++ templates [45]] and Template Haskell [38]. Expression
Templates [47] can produce customized generation, and are used by Blitz++ [48]]. Veldhuizen introduced
active libraries [49]], which are libraries that participate in compilation. Kennedy introduced telescoping
languages [30], efficient DSLs created from annotated component libraries. TaskGraph [3] is a meta-
programming library that sports run-time code generation in C++. Lightweight Modular Staging is built
on the idea of embedding typed languages by Carette et al. [9] and Hofer et al. [25]. Many existing
program generators such as FFTW [23]], ATLAS [51] and SPIRAL [35] took enormous efforts to build.
LMS and Delite aim to make generative facilities more easily accessible.

Heterogeneous parallel programming: Systems such as OpenCL [44] provide abstractions that
allow the programmer to explicitly manage and target any available accelerator, eliminating the need to
use vendor APIs for each device. Data-parallel programming models hide the complexity of the underly-
ing hardware through an abstract data-parallel API. Recent work in this area includes Copperhead [10],
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which automatically generates Cuda code from a data- parallel subset of Python, and FlumeJava [14]],
which is a Java library that targets Google’s MapReduce [21]] and optimizes the pipeline of MapReduce
operations based on the data-flow graph. Intel’s Array Building Blocks [33] executes data-parallel pat-
terns across processor cores and targets multiple architectures (e.g., different vector units) from a single
application source. Concurrent Collections (CnC) [7] shares some similarities with the Delite task graph.
Computation steps in CnC are separate and opaque to the scheduling, whereas Delite produces optimized
kernels that are well-integrated with the schedule. Recent work used embedded DSLs combined with a
common parallel runtime to enable implicit task and data parallelism via deferred execution [12]. The
DSLs, however, were unable to perform analyses and transformations of the applications.

Several parallel programming languages exist, include Chapel [13]], Fortress [29], and X10 [15].
These languages require explicit control over locations and concurrency. In contrast, the Delite runtime
manages locations and concurrency transparently. Implicit parallelism in languages is often based on
data-parallel operations on parallel collections. Languages with this feature include Chapel, Data-Parallel
Haskell [28]], Fortress, High Performance Fortran [[1]], NESL [5], and X10. DSLs which utilize the Delite
framework are able exploit implicit data parallelism as well as implicit task parallelism.

6 Conclusions

DSLs provide productivity, portability, and performance by raising the level of abstraction in the lan-
guage syntax and semantics, and therefore are a potential solution to the problem of parallel program-
ming. However, implementing a high performance DSL from scratch is not a trivial task, especially
when targeting parallel heterogeneous systems. To address this issue, we implemented the Delite Com-
piler Framework that drastically reduces the effort of building a DSL by providing an extensible common
infrastructure for heterogeneous target code generation and general/domain-specific optimizations. We
presented the building blocks of the framework and described how they can be easily extended to build
a DSL that runs on heterogeneous hardware. We demonstrated the benefits of using the framework with
examples from OptiML, a machine learning DSL implemented with Delite, and showed the performance
of OptiML applications running on a system with multi-core CPUs and a GPU.
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