Towards Meta-Reasoning in the Concurrent Logical
Framework CLF *

lliano Cervesato Jorge Luis Sacchini
Carnegie Mellon University

iliano@cmu.edu sacchini@qatar.cmu.edu

The concurrent logical framework CLF is an extension of thgidal framework LF designed to
specify concurrent and distributed languages. While itlmansed to define a variety of formalisms,
reasoning about such languages within CLF has proved elukithis paper, we propose an exten-
sion of LF that allows us to express properties of CLF spatifins. We illustrate the approach with
a proof of safety for a small language with a parallel sencanti

1 Introduction

Due to the widespread availability of multi-core architees and the growing demands of web appli-
cations and cloud-based computation models, primitivegpfogramming concurrent and distributed
systems are becoming essential features in modern progrgmamguages. However, their semantics
and meta-theory are not as well understood as those of sijymogramming languages. This limits
our assurance in the correctness of the systems writterem.tflhus, just as in the case of sequential
languages 40 years ago, there has been increasing intedsfining formal semantics that isolate and
explain their quintessential features. Just as for se@ldanhguages, such semantics hold the promises
of developing, for example, provably-correct compilerd aptimizations for such languages, as well as
verification frameworks for concurrent applications venittusing them.

Logical frameworks are formalisms designed to specify aabon about the meta-theory of pro-
gramming languages and logics. They are at the basis ofsaols as Agda [10], Co@[[7], Isabelle [9],
and Twelf [12]. The current generation of logical framewsxkere designed to study sequential pro-
gramming languages, and specifying concurrent systemg tisese tools requires a large effort, as the
user is forced to define ad-hoc concurrency models that Hreudtito reuse and automate.

One way to deal with this problem is to design a logical frameuithat natively embeds a general-
purpose concurrency model. This then provides native stifpodescribing parallel execution and
synchronization, for example, thus freeing the user fromdalicate task of correctly encoding them
and proving properties about them. One example of this &gprés the concurrent logical framework
CLF [4[13.15], an extension of the logical framework LF [@kigned for specifying concurrent, parallel,
and distributed languages. One of its distinguishing festus its support for expressing concurrent
traces, i.e., computations where independent steps caarbeifed. For example, traces can represent
sequences of evaluation steps in a parallel operationarsirs, where executions that differ only in the
order of independent steps are represented by the sam¢ @bgtulo permutation). CLF has been used
to encode a variety of systems such as Concurrent MLUtbalculus, and Petri nets in a natural waly [4].

However, unlike LF which permits specifying a system andritta-theory within the same frame-
work, CLF is not expressive enough for proving meta-thecméfproperties about CLF specifications

*This work was supported by the Qatar National Research Fodérigrant NPRP 09-1107-1-168.

J. Borgstrom and B. Luttik (Eds.): Combined Workshop on
Expressiveness in Concurrency and Structural Operational
Semantics (EXPRESS/SOS 2013)

EPTCS 120, 2013, pp. B=16, doi:10.4204/EPTCS.120.2

http://dx.doi.org/10.4204/EPTCS.120.2

I. Cervesato & J.L. Sacchini 3

(e.g., type preservation, or the correctness of progransfoamations). The main reason is that traces
are not first-class values in CLF, and therefore cannot bapukated. In this work we propose a log-
ical framework that supports meta-reasoning over paratehcurrent, and distributed specifications.
Specifically, the main contributions of this paper are thefang:

e We define an extension of LF, called Meta-CLF, that allowsaaretsoning over a CLF speci-
fication. It enriches LF with a type for concurrent traces #mal corresponding constructor and
destructors (via pattern-matching). This permits a direahipulation of traces. Meta-theorems

can be naturally represented as relations, similar to theseguential programming languages are
analyzed in LF.

e We illustrate the use of Meta-CLF by proving safety for a Clpedfication of a small program-
ming language with a parallel semantics.

The rest of the paper is organized as follows: in Séct. 2 wallr€¢.F and use it to define the operational
semantics of a simple parallel language. In 9éct. 3 we prédeta-CLF and use it to express a proof of
safety for this language. We discuss related work in $&chddaaitline directions of future research in
Sect[5.

2 CLF

We begin by defining some key elements of CLF. For concisemnassmit aspects of CLF that are not
used in our examples. The results of this paper extend tauthkafiguage, however. The presentation
given here follows the template proposed/ih [3] rather thandriginal definition of CLF[[4, 15]; see
also [13].

2.1 Syntax and Typing Rules

CLF is an extension of LF, or more precisely of the linear dadjframework LLF[1], with a lax modality
from lax logic [B] used to encapsulate the effects of corentrcomputations. The introduction form of
lax modality are witnessed by a form of proof term calletes A trace is a sequence of computational
steps where independent steps can be permuted.

The syntax of CLF is given by the following grammar:

K ::=type | MIxT.K (Kinds)
P:=a-!S|{A} (Base types)
T:=nUxT.T|P (Types)
N:=AUxT.N|H- S| {e} (Terms)
gr=o| &8 | {A}<cC-S (Traces)
S:=-|lUN;S (Spines)
Az=-|AX:T (Contexts)
Uo=1]! (Modalities)

In this paper, we only consider CLF’s persistent (!) andding) substructural modalities. CLF also
includes an affine modality, omitted here for space reasons.

4 Towards Meta-Reasoning in CLF

Kinds are as in LF. Note that the argument in product kindstipepersistent. Base types are either
atomic(a-!S) which are formed by a constant applied to a persistent §@Jp@r monadicwhich are a
context enclosed in the lax modality, denoted wjith.

A type is either a product or a base type. We consider tworediffieproducts: a persistent product,
Mx:TU, as in LF, and a linear produdfl|x:TU, from LLF. Note, however, that the typing rules pre-
vent dependencies on linear products. We usually Write U andT — U for MN!x:TU andM{x:TU,
respectively, whem is not free inU.

A term is either an abstraction (persistent and linear),tami& termH - Sformed by a variabled
applied to a list of arguments given by the spBer a trace{¢}.

A trace is either the empty trace)(a composition of tracese{; &,) or an individual step of the
form {A}«<c- S, wherec is a constant defined in the signature applied to a sBimehose type must be
monadic. This steponsumeshe linear variables i andproduceghe linear and persistent variables in
A. A step binds the variables defineddnn any trace that follows it.

Concurrent computation is expressed by endowing tracésanitonoidal structure: the empty trace
is the unit, and trace composition is associative. Furtlegrit allows permutation of independent steps.
Step independence is defined on the basis of the notitnace interface Theinput interfaceof a trace,
denotedecg, is the set of variables used lay i.e., its free variables. Theutput interfaceof a trace,
denotedee, is the set of variables defined gy They are given by the following equalities:

o(0) =0 (c)e =0
o({A}cC-S) = FV(9 ({A}+~c-S)e = dom(A)
o(&1;&) = o1 U (082 £r0) (e1,82)0 = g0l (€10)\ 0&2) U!(£r0)

where F\(S) is the set of free variables B and donfA) is the set of variables declaredin In a trace
composition, the output interface contains all the pegsistariables introduced igy, even if & uses
them. In other words, persistent facts cannot be removend fhe output once they are introduced. On
the other hand, linear facts are effectively removeds ifises them.

Two tracess; ande; areindependentdenotede; || &, if eg1Neye =0 andejeNeg, = 0. Independent
traces do not share variables and can therefore be exeouaeg brder.

Equality. We denote withe the equality relation on kinds, types, terms, spines, amtiexts. It is
defined asr-equality extended with trace equality, also denoted witldefined by the following rules:

go0=¢€ E=¢€0 €1, (&2;,63) = (€1, 82); €3
— & — &
81 H 82 81:81 82:82
=88 E,0=68 @ E,0=6,&

These rules state that traces form a monoid and that indepestéps can be permuted.

Typing. The typing rules of CLF rely on some auxiliary meta-level @pers. We say that a contekt
splitsinto A; andA,, denoted) = A1 <1 Ay, if each persistent declarationAappears in both; andAy,
and each linear declaration Anappears in exactly one éf andA,.

We write X[N/x] for the hereditary substitutiorof variablex by termN in X (whereX belongs to
one of the CLF syntactic classes). Hereditary substitst{@8] normalizes a terms as the substitution is
carried out, thereby allowing us to restrict the definitidiCaF to canonical terms (if8 7-normal form).

I. Cervesato & J.L. Sacchini 5

Its definition is type-directed and therefore terminatinthe interested reader can find an exhaustive
account in[[16].

The typing rules of CLF are displayed in Fig. 1. We assume a fsignaturez of global declarations
for kinds and types. Typical of type theories, we use bidioaal typing rules where types of variables
are inferred from the context, while terms are checked agaitype.

The rules for kinds, types, spines and terms are standafdNibée that only persistent variables are
dependent in types. The typing rules for traces show théimithat a trace is a context transformer: we
can read the judgmettt € : A as “e transform the contexh into A’”. Note that the trace typing rules
imply a form of the frame rule: in fact, it is easy to prove thah; - € : Ay, thenAga Ay F €1 Ag i Ay.
The empty trace does not change the context, while tracebeammposed if the internal interface
matches. For a single step, part of the context is transfdriie spineSconsumed\; and generates the
contextA’ (or equivalentlyA,).

2.2 Substructural Operational Semantics in CLF

In this section, we show how to use CLF to define a substructyrerational semantics (SSOS) for a
programming language. As a case study, we illustrate theapp on the simply-typed lambda calculus
with an operational semantics that evaluates functiongfaidarguments in parallel.

SSOS specifications have two main features. The first is ceitiquality: extending a program-
ming language with a new feature does not invalidate the S8@8dy developed [14]. Second, SSOS
specifications can naturally express parallel and consus@mantics of a programming langualge [11].

The language of expressions and types for the simply-tyastbdla calculus) —, is given by the
following grammar:

erl=X|Axe|ee (Expressions)
Ti=0|T—>T (Types)

Expressions are either variables, abstractions or apipinsa types are either base types or function
types. Typing is defined by the judgmdnt-e: 1, given by the following rules:

X:terl Mx:nke:n MN-e:n—-mn MN-e:1m

M=x:t FrEAXe: 11— 1 NFee:n

Evaluation is given by3-reduction:(Ax.e;) e, ~ ej[ex/X].
In CLF (and LF as well), we can represent this language anypisg rules using a higher-order
abstract syntax encoding as follows. For clarity, we usdigiiarguments (which can be reconstructed):

exp : type of : exp — tp — type
lam : (exp — exp) — exp of /app : of (appe1 &) 11
app : exp — exp — exp +—of ey (arrtaty)
tp : type —of ety
arr i tp — tp — tp of /lam: of (lam &) (arr tg tp)
value : exp — type + (Mx: exp. of Xty — of (&2 X) t2)

value/lam : value (lam Ax.e X)

6 Towards Meta-Reasoning in CLF

Contexts :

IAF T type V(AIXT)FA
IAF - IAF OxT,A

Kinds:|!A+ K : kind

IAFT : type IA !XT - K :kind
IAF type : kind IAFTIxT.K : kind

Base types

a:MA type IAF S 1A IA- A
IA-a-S:type IA- {0}

Typesi1AF T:K]

IAET :type IAIXCT E T type IAFT :type IAFU :type x fresh
IAFTIXT.T : type IAFT —U :type

Terms:

AUxXTHN<«U A-g: N
A+ Alx.N < NdxT.U A+ {e} = {0}
IXT €A AFS:T>U Uu=uU’ Do, A FS:T>U u=u’
A x-S<=U’ Do, IXT,A1FXx-S<=U’
cTes AFS:T>U u=u’
AFc-S<U’

Traces:

A& All—EQZAz
AFo: A A &1,6 0
cTes MFESIT>{A} N=N
Ao[><]A1|— {Ag}(—C-SZAo,AQ

Spines]AFS: T > T’

IMEN<T DFSITIN/X>T IMEN<T Ag-S:UST
AF-T>T Do !By (IN;S) : MIXTU > T’ Dov<a AL F (IN;S): T U > T

Figure 1: CLF typing rules

I. Cervesato & J.L. Sacchini 7

We denote this signature with,—. The syntax ofA ” is defined by the typexp with construc-
tors app (representing function application) afen (representing abstraction). The tyfye encodes
types fromA~ with arr being the function type from ~. Variables are implicitly defined using CLF
variables. Similarly, there is no explicit representatajrthe context for typing; instead, we use CLF’s
(persistent) context for this purpose. The typing relattexpressed by the CLF type famiyy relating
A~ expressions and types. We also define the predicéte stating that abstractions are values.

In the following, we define a SSOS far~ evaluation using destination-passing stylel [11]. The
SSOS is given by a state and a set of rewriting rules. Theistatenultiset whose elements have one of
the following forms:

e eval e d evaluate expressioain destinationd. Destinations are virtual locations that store ex-
pressions to be evaluated and results.

e ret e d: the resulte of an evaluation is stored dt An invariant of the semantics ensures that
always a value.

e fapp d; dz d: an application frame expecting the result of evaluatingrecfion indy, its argument
in dy, and storing the result id.

The rewriting rules encoding expression evaluation ar®ksis:

evaled ~ reted if value(e)
eval (e1&)d ~» evaley d;, evaleydp, fappdidyd dy,d; fresh
ret (Ax.e;) di, retex dp, fappdidpd ~~ eval (e1]ex/X]) d
The first rule says that evaluating a value expression imabelgli returns the result. The second rule
says that to evaluate an application, we evaluate the fumetid argument in two fresh destinations, and
create a frame that connects the results. Evaluation otibtmand argument can proceed in parallel.
The third rule computes the application once we have theegadfithe function and argument connected

by a frame.
A complete evaluation of an expressieto a valuev is given by a sequence of multisets of the form:

o= {eval e d} ~ @A ~ ...~ o1~ oy = {ret vd}

where at each step} ~ o7 1 part of.of is rewritten using one of the evaluation rules given above.

This semantics can be faithfully represented in CLF usirgittear context to represent the multiset
state, where each element is a linear fact, and destinatimnsepresented by persistent facts. The
semantics is given by the following CLF signature:

dest : type
eval : exp — dest — type
ret : exp — dest — type

fapp : dest — dest — dest — type
step/eval : eval e d —o value e — {|xret e d}
step/app : eval (app €1 &) d —o {!d;:dest,!dy:dest, | X3 :eval e di,|X:eval & dy, | X3:fapp di dp d}
step/beta : ret (lam €1) d; — ret €, dy —o fapp dj dp d —o {|x:eval (e; &) d}

We denote withg., the signature containing the declarations of the evalnatites. Rulestep/eval

is effectively a conditional rewriting rule. In ruktep/app, new destinationsdf andd,) are created to
evaluate function and argument; these evaluations car@daa parallel.

8 Towards Meta-Reasoning in CLF

Safety. Safety for this language is proven by giving a suitable motid what a valid state looks
like [14]. Note that not all multisets are valid state. Foaewple, the singletodfapp d; dy d} is
not valid, since there is no expression to evaluaid air dy; similarly {eval e; d,eval e, d} is not valid
since there are two expressions evaluating on the sameakasti.

In a valid state, the elements should form a tree whose nadekniied by destinations. Internal
nodes have the forfapp d; d, d, with two children (corresponding iy andd,) and the leaves are of
the formeval e dor ret v d (wherev is a value). Furthermore, the types of the expressions ghoatch.

Following Simmons[[14], we define well-typed states by réwgi rules. The idea is to create the
treetop-downstarting at the root. We can write these rules in CLF as fatow

gen : tp — dest — type
gen/eval i gentd— of et— {|xeval e d}
gen/ret :gentd — of et— valuee — {|xret e d}
gen/fapp : gent d —o {!dj:dest, !d;:dest, | Xo:fapp dy da d, | x1:gen (arr t; t) di,{x2:gen t; da}
gen/dest : {!d:dest}

We denote withb ., the signature containing these generation rules. A fadtefarmgent d is read
as“generate a tree with root at destination d and type tVe have three ways to do this: by generating
a leaf of either the fornaval e dor ret e d (for ane of the appropriate type), or by generating an internal
nodefapp d; dy; d and then generating trees rooteddatand d,. Rule gen/dest is necessary to keep
track of destinations that were created during evaluatignrqle step/app) but are not used anymore
(after the application is reduced usisgp/beta, the destinations created to evaluate the function and
the argument are not needed anymore; see Sett. 3.2).

A generic tree is built by a sequence of rewriting steps isgrfrom a singlegen t d: o =
{gentd} ~ & ~ ... ~ o, Wheregs, does not contain facts of the forgant d.

This kind ofgenerative rulesor describing valid states generalizes context-free gnars, withgen
being a non-terminal, anelal, ret, andfapp are terminal symbols [14]. Generative rules (also called
generative grammars) are very powerful allowing to expeesgde variety of invariants.

With this definition of a well-typed state, we can prove theg language is safe. Safety is given by
two properties: type preservation (i.e., evaluation presewell-typed states), and progress (i.e., either
the state contains the final result, or it is possible to masie), as stated in the following theorem. We
write o/ ~3 o/’ to mean anaximalrewrite sequence from¥ to <7’ using the rules irt. The sequence
is maximal in the sense that’ does not contain non-terminal symbols. We write~1 <7’ to mean a
stepfrom .« to ./’ using one of the rules i&.

Theorem 1. The language defined by the signatuigs., Zs.p, and Zg, is safe, i.e., it satisfies the
following properties:

Preservation If {gentd} ~5 AandA w%step A, then{gentd} ~5 A

gen
Progress If {gent d} 3. O then eithed is of the form{ret v d} with value v, or there existd’ such
thatA ~s A

step

Proof sketch.(See [14] for details.) Preservation proceeds by case sisaty the rewriting step and
inversion on the generated trace. Let us consider the tasgeval. We have that\ must be of the
form A, eval e d, andA” must be of the fornd\y, ret e d, wherevalue e. Then, the generation trace far
must contain a step usingn/eval to constructeval e d. The generation trace f&' is constructed by
replacing this step with gen/ret step.

I. Cervesato & J.L. Sacchini 9

Progress proceed by induction on the length of the gengrtttigce and case analysis on the first step.
The interesting case is when this stegés /fapp. The rest of the trace can be split in two parts, one
generating trace for each child of thpp generated in the first step. The proof follows by induction on
these subtraces. O

3 Meta-CLF

Meta-theorems such as preservation and progress cannaplessed in CLF, since it lacks primitives
for manipulating traces as first-class objects. For exanwpdecannot talk about the type of generated
traces of the form

{a} 3, {07}
which is essential to express preservation.
Furthermore, CLF lacks abstractions over context, whigvgmts us from defining a trace type that
is parametric over its interface. For example, in CLF we ozfing a relation on traces
rel : (A— {{x:B}) = (A— {{x:B}) — type

that relates two traces that transformAamto aB. However, we cannot define the type of traces as a
transformation between two generic conteiXtsandA,. For this, we need to quantify over contexts.
With a dependent product that takes contexts as argumeatsanvdefine of all traces that generate valid
states starting from a seed:

Mt tp.MY: ctx. (M'd:dest.gen d t — {Y})

We use these ideas for designing a logical framework thahiemeta-reasoning on CLF specifi-
cations. The resulting framework, which we call Meta-Cld=an extension of LF with trace types and
quantification over contexts. Trace types have the form

{a}z{a’}
whereA andA’ are CLF contexts anB is a CLF signature that contains (monadic) rewriting rukeg.(
Zgen ANdZgiep). A term of this type is a trace of the form:

O1;.--30n
where each stef) is either{A; }«c; - § with ¢; declared irZ, or x; - § wherex; is a (Meta-CLF) variable
that, applied td§, returns a trace. The interface of the whole trace is giveh hpdA'.
Meta-CLF includes two different trace typel} =* {A'} and{A} =1 {A'}. The former defines max-

imal traces, while the latter defines traces of exactly oap.stVe write{A} > {A’} to refer to either of
these types.

3.1 Syntax and Typing Rules

Meta-CLF is an extension of LF with trace and context typesameterized over a CLF signature,
denotedxy. The kinds, types, and contexts of Meta-CLF are given bydhewing grammar:
K == type | IXAK | Myictx.K | AxT.K | Ox.K (Kinds)
Az=a-S|NxAA|NY:ctxA| MxT.A| OXA
RUNPARVNSRVN221Y;
A= |P,A IXAA|IXAA (Contexts)

(Types)

10 Towards Meta-Reasoning in CLF

Kinds include, besides the constructions derived from lkédpcts over contextd(y: ctx. K), products
over CLF types from the signatudg (I'Ix TK), and products over nameSx.K). In AxTK, the type

T must be well-typed in the signatud®), using the CLF typing rules. Quantification over names is
necessary for composing traces, to ensure that namesetbatathe interface match. The notation is
taken from[[8].

Types in Meta-CLF include the analogous kinds contructpgied to the type level, with the addi-
tion of the trace type$A} =* {A'} and{A} =1 {A’}. Contexts are sequences consisting of linear declara-
tions, persistent declarations, and context variablesseltypes are CLF types checked in the signature
2. Names of declared variables must be introduced using

Type preservation for the language described in $edt. 2 2hem be stated in Meta-CLF as follows:

Mt:tp. Od. Og. Ninictx. Mykictx.
{1d: dest,|g: gen d t} Ty, {Uyn} — {Yn} Thep {Wa} — {!d : dest, |g: gen d t} Ty, {U} — type

This type family can be read functionally as follows: givetrace that generateg; (usingZ,e,), and a
step fromy; to Y, we can obtain a trace that generajegusingZgen).
Terms, spines, and traces in Meta-CLF are defined by theafimlgpgrammar:

N:=AxN|H-S|Ag.N \XX.N | {e} (Terms)
H:=x|c (Heads)
S:=-|N;S|A;S|#;S| (M) (Spines)
gn=o|€&;&|{A}<c-S|x-S (Traces)

Terms include the introduction forms of Meta-CLF typex(N), contexts 4 ¢.N), CLF types ﬁx.N),
as well as atomic terms (a variable applied to a spine) awcedr@e}). Spines are sequence formed by
terms (), contexts 4), CLF terms (M)), and fresh names (#).

A trace is either empty, a composition of two tracegq; £;), a single step{A}«c-S) wherec is
defined in the CLF signatur®,, or a (Meta-CLF) trace variable applied to a spireS).

Typing rules. Typing judgments are parameterized by the CLF signaligre The typing rules are
defined by the following judgments:

2 =Fs, K:kind (Kinds)
M=k, AK (Types)
2 =Fs, Actx (Contexts)
M=k, MIA (Terms)
SMZks, SIA >A (Spines)
M Eks, e {0} Z{A"} (Traces)

The signature is a Meta-CLF signature, whilgy is a CLF signature. We usually omit them for clarity.
The contexf” contains the declarations of Meta-CLF variables, confextd CLF variables. The context
= contains name declarations.

These contexts are defined by the following grammar:

M= |FxA| T getx | TLXET
=X

=

I. Cervesato & J.L. Sacchini 11

The typing rules are defined in F[g. 2. We only show the rulésted to the new constructions. We
use the typing judgments from CLF to check products over GpEs. We also need a filtering operation
on contexts, denoteld| that keeps declarations of CLF types. Itis defined-py: -, |, XT| = |[|,!x:T,
and|l",y| = |I'| for declarationsg of Meta-CLF types and contexts.

3.2 Safety for SSOS Specifications

We illustrate the use of Meta-CLF by stating and proving tyafier the language introduced in Sdct.12.2.
We use Meta-CLF over the signaturg- defining the languagé— and its static semantics.
Let us recall the type family expressing preservation oésym Meta-CLF:

tpres : ﬁt:tp. Od. Og. M :ctx. Myp:ctx.
{112 dest, 1 gen 0t} S {2} — {1} Shep (W2} — {1l dest, 1 gen 0 t} Ty, {2} — type

The proof proceeds by case analysis on the tjgpe} Zitep{wz} (we follow essentially the same
reasoning as described in the proof sketch of Theddem 1).ae three cases, one case for each rule in
Zstep- FOr €ach case, we apply inversion on the trace of {yfe dest,|g: gen d t} 23 {Un}.

Consider the casgep/eval; in this casep; must be of the fornd\, x:eval e ¢h and, must be of the
form A y:ret e ty, for some value expressian By inversion, in the trace generatigg, there must be a
step that usegen /eval to generate the declarationxfThat is, the generating trace has the form

X1, {¢X}<—gen/eva| et go H; X2

wheregp:gen dp to for some typdy is generated b); andH is a proof that has typdy (i.e. H : of e {).
Note thatX, cannot consumg, sinceeval is a terminal in the grammar defined by.,. Then, the step
generatingk can be permuted towards the end of the trace, soxthean be taken to be the empty trace
o. To construct the trace that generates we only need to replace this last step byea/ret step.

In Meta-CLF, we can write this case of the proof as followsevehwe omit the dependent arguments
for clarity (like in LF and CLF, we expect that implicit arg@mts can be reconstructed):

tpres/ret : tpres (Xy; {I{x}<gen/eval e dh go H)
({ly}«step/eval e ch x Hy)
(X1 {Jy}<gen/rete chgo H Hy)

whereX; : {!d : dest,|g:gen dt} 27, {(;,!do: dest,|go: gen do to} andHy:value e. The full type mak-
ing explicit all arguments is the following:

tpres/ret : Ox.Oy.0d.0g.0do.Ogo.My, < ctx.Me: exp.Mt : tp.Mty : tp.
MX: {!d:dest,|g:gendt}3;. {(;,do: dest,|go: gen doto}.
MH:of e tp.MNMH,:value e.
tprest d g ((7,!do : dest, [X : eval € cb) ((7,'do : dest, |y : ret e db)
(Xq;{Ix:eval e th}«gen/evale hgo H)
({ly:rete th}«step/eval e th x Hy)
(X1;{ly:rete th}«<gen/rete chgo H Hy)

12 Towards Meta-Reasoning in CLF

Kinds:| ;T = F5, K : kind

I, Y:ctx;=F K : kind I =,xFK:kind 20;|F| FeLe T : type IMxT;=F K : kind
M=+ M:ctx.K : kind M =F Ox.K : kind r;EI—ﬁx:T.K:kind

Types:| ;I =5, AT K

I Q.ctx; = Az type H=xFA:K
M=+ Mictx. A type M=FOxA:K

M =F Aq ctx M =F A ctx M FolrZ IT|FcLe T : type MxT;=F A:type
Mk {22 {02} : type M=F AxT.A: type

Contexts] Z; =5, A ctx‘

M=FActx
xe =\ domA) 20;||,!AtcLe A type M =F Actx Yictx el
M=F - ctx M= F AXA ctx M=FA Yctx
Terms:| Z; =5, M :A‘
MNx:A=Z=FM:B cBeZ M=Z=FS:B>A xBel M=Z=FS:B>A
M=FAXM:TIx:AB MN=Fc-S:A M=Fx-S:A
M g:ctx;=-N:A MXT;ZFN:A M=k e {A1}Z{Ax}

FCEAYN:MOY:ctx.A HZFAXN:AxTA TEF{e}:{A}2{Az}

Spines]Z;M;=+5, S:A' > A

M=k Actx M=FS:AA/y] >B afresh T;=ZFS:Ala/x >B
M=F-:A>A M=FAS: MYy:.ctx. A>B MNM=F#S:0OxA>B

MH=FN:A; M=FS:AN/x >B 20;|F FeLeM: T M=FS:A[(M)c/x >B
M=FN;S: MxAL.A> > B M=+ (M);S:MxT.A>B

Traces]Z; ;= k5, € {A}ZF {A'}

M=k &g {A 27 {A} M=k & {AZ {Ax}
M=k o {AYZ{A} M=k &8 {01} 27 {2}

CAcX oM, Arbclp S:A> A XAeZ M=FS:A> {01} 27 {Ay}
M2k {As)c-S: {Do>a A1} 5 {Do, A} M2 x-S:{A} 35 {A)

Figure 2: Typing rules for terms and traces in Meta-CLF

I. Cervesato & J.L. Sacchini 13

Although we do not treat implicit argument inference in thaper, we expect that we can infer implicit

arguments by extending the LF type reconstruction algoritAs we see from the case above, implicit

arguments greatly increase the usability of the systemwvalh to write more concise and clear proofs.
The other two cases of the proof, correspondingtép/app andstep/beta, are given below:

tpres/app : tpres (Xi; {{X}«<gen/eval (appe1 &) dogo H)
({!d1,!dz, X1, %2,) f }<step/app €1 € do X)
(Xa;{tda,!d, | f, 101,102} gen/fapp do Go;
{Ix1}<gen/eval & di g1 Hi; {IX2}+gen/eval & dz g2 Hp)

tpres/beta : tpres (Xy; {!ds,!d2, | f, 101,192} <gen/fapp do Qo;
{Ix1}<gen/ret (lame1) d1 g1 H1 Hy,; {IX2}<gen/ret &2 d2 g2 Ha Hy,)
({1y}«step/betae; e dy da d X X)
(Xa; {ly}<gen/eval (e; &) do go H; {!d; }<gen/dest; {!dy} <gen/dest)

The latter case is the most interesting. By inversion, theegeed statg, must be of the form

Xl; {!d17 !d27\l/gl7\l/927\Lf}<_gen/fapp do Jo; X2|
{Ix1}<gen/ret (lamey) d; gy Hi Hy,; Xs;
{Ix2}gen/ret & dj g, Hz Hy,; X4

for some traceXy, X, X3, Xa. It must be thath, = d; andd, = d;, and alsay; = ¢; andg, = g,. Note
that Xy, X3, andX, cannot usey; andgy, so the trace can be reordered as

X1; X0; X3; Xa; {1d1,!do, 101,102, T} —gen/fapp do Qo;
{Ix1}gen/ret (lam er) dy g1 Hy Hy,;
{Ix2}<gen/ret & dp g2 Hz Hy,)

andXz, Xp, X3, andX4 can be collapsed into one trace variable. In the genereaaed after the rewriting
step, we simply replace the generatiorfafp and the twaets with a singlesval fact. We also need two
gen/dest steps for the destinatiorts andd, which are not used anymore.

For proving progress, we first need to define a sum type thatdescthe result: either we are at a
final state or we can take a step.

result : ctx — type
res/final : {!d:dest, {x'gen d t} T, {(,!d:dest, | Xret € d} — result (Y, |Xret € d)

res/step : {l,Ul}Z_ljtep {¢o} — result Yn

Note inres/final that the generated trace has only egefact containing the final value at destination
while @ contains only destinations (obtained frgen /dest steps) that are not used anymore. These are
destinations that were generated during the evaluation ekpression by thetep/app rule.

The progress theorem relates a well-typed state with atresul

progress : Dd.Dg.ﬁt ttp. M s ctx.{!d: dest,|g:gendt} 2., {Y} — result Y — type
We proceed by case analysis on the first step of the tracesigéh /ret, then we are at a final state:

p/ret : progress ({|x}<gen/ret ed g H H;X) (res/final ({/x}<gen/reted gH H; X))

14 Towards Meta-Reasoning in CLF

If the trace starts with gen/eval step, then we can make a step depending on which expression
is generated. If the expression generated is an abstragti®man make a step usingep/eval since
abstractions are values. If the expression generated jgidication, we can make a step uskigp/app.

p/ev-lam : progress ({]X}«gen/eval (lam e) d H;X)

(res/step ({Ix}<step/eval (lam €) d x (value/lam €)))
p/ev-app : progress ({/X}«gen/eval (app €1 &) d H;X)

(res/step ({!dy,!dp,|X1,%2, | f}<step/app €1 € X H))

Finally, we consider the case where the first stegeig/fapp. The generated trace has the form:

{!d1,'d2, 4 f, 101,192} <gen/fapp d g; X1 di 91; X2 d2 Q2

where the traceX; and X, generate trees rooted @t andd, respectively. Note that, becausg., is a
generative grammar, these traces are independent.

We have three subcases: eith@rand X, generate final states (in which case we can make a step
usingstep/beta, or we can make a step in eith¥éy or X,:

p/fappl: progress ({!dy,!dz, | f,]}01,102}<gen/fapp d g;
{I{x1}—gen/ret (lame1) di g1 H1 Hy,;
{Ix2}+gen/ret & dz g2 H2 Hy,)
(res/step ({ly}<step/betae; e di dr d X X2 f))

p/fapp2 : progress ({!d1,!dz, 4 f,{01,l02}<gen/fapp d g/ X1 di G1; Xz d2 O2)
(res/step z)
< progress (X1 di g1) (res/step 2)

p/fapp3 : progress ({!d1,!d>, | f, 101,192}« gen/fapp d g X1 d1 91; X2 d2 02)
(res/step 2)
< progress (Xz dz 01) (res/step 2)

Totality. We showed how to encode, in Meta-CLF, proofs of safety for allspnogramming language
with a parallel semantics. A natural question is: are thediel yroofs? This amounts to check totality,
which is the conjunction of two properties: coverage (iadl.,cases are considered) and termination.
While we do not give a formal treatment of totality for Met&f(which we leave for future work), we
can show, informally, that both proofs given above are total

Itis easy to see that both proofs are terminating: in the obgeeservation, the proof is not recursive,
while for progress, recursive calls are performed on smabees.

Checking coverage is trickier, since it encompasses chgaaverage for traces, which is a difficult
problem because trace equality allows permuting steps.

In our proof of preservation, coverage checking manifastdfiin the use of inversion: for each case
of the step relation from conteyt; to »» we apply inversion to obtain a pattern that covers the géinera
of 1. As we explained above, we only need one pattern for each case

Note that coverage in the proof of preservation dependsefatt that ., is a generative grammar.
In particular, that terminal symbols are not removed from ¢bntext once they are produced, and that
fresh destinations are created for each non-terminal tioigerty is used intep/beta case).

I. Cervesato & J.L. Sacchini 15

In the proof of progress, coverage checking is directly qrened over the generated trace. The
interesting case igen/fapp, since this case involves splitting the trace between #westgenerated for
each of the children dapp. Again, this is possible because each non-terminal is &gsdowith a fresh
destination, so generated traces from starting from @iffenon-terminals are independent.

While coverage checking for traces in general is a diffictotypemn, by restricting to traces generated
using grammars, we expect to obtain a relatively simplerélgun to solve this problem.

It is important to note that these proofs would be similar & wonsider a sequential semantics.
Viewed in a different direction, having a parallel semasmtitoes not change the proof with respect to
the sequential case. The reason is the use of SSOS and trzdye@nd the same holds true when
considering other programming constructions! [14]. Thedbarof the proof is shifted to the coverage
checker. However, the use of generative grammars makessitpe to automate coverage checking.

4 Related Work

The original reports that introduced CLE [4]15] include mapplications, including SSOS of several
programming languages features. However, no meta-regsmdeveloped.

Attempts to perform meta-reasoning within CLF have proweloe unsatisfactory. Watkins et al. [17]
define an encoding of tha-calculus and correspondence assertions for it in CLF. Tediye an ab-
straction relation that relates a concurrent computatitth &sequence of events. However, due to lack
of trace types, it is not possible to state the abstractitatioa. This means also that coverage is difficult
to establish. Schack-Nielsen [13] discusses the limitatiof CLF to prove the equivalence between
small-step and big-step semantics of MiniML.

Simmons|[14] introduced the notion of generative grammat generalizes both context-free gram-
mars and regular worlds used in LF. He describes in detailffeegenerative grammars and SSOS.
However, the proofs of safety are done only “on paper” sinsérmework is not expressive enough for
this task. This work is an attempt to define a logical framéwtorcarry out the proofs described In[14].

Finally, let us mention our previous work on matching traiceSLF [3] which provides the basis for
defining a moded operational semantics for Meta-CLF. We @xpestrengthen the results given fin [3]
by restricting the matching problem to traces producedgugenerative grammars.

5 Conclusions

We have developed a logical framework for meta-reasonirautabpecifications written in CLF. We
show a typical use of this framework by proving type presgoweand progress for a small programming
language with a parallel semantics. Trace equality sineglifiie proof as we do not have to worry about
proving properties about step interleavings during thalperexecution. However, the downside of this
approach is that coverage checking is more complicatedithidue sequential case.

For future work, an immediate objective is to complete theaatkeoretical study of Meta-CLF
itself. This involves proving the existence of canonicahis, type reconstruction of implicit arguments,
and totality checking (coverage and termination). Thergafrse, implementation is another obvious
objective.

This framework is well suited for the kind of proofs of safety developed in this paper and we
expect it to perform well for other concurrent and parallsdgszamming constructions (e.g., futures,
communication). It will be interesting to see in what othentain we can use it. For example, semantics
of relaxed memory models, or correctness of program tramsftoons in the presence of threads.

16 Towards Meta-Reasoning in CLF

References

[1] lliano Cervesato & Frank Pfenning (2002K Linear Logical Framework Information & Computation
179(1), pp. 19-75, d6i:10.1006/inc0.2001.2951.

[2] lliano Cervesato & Frank Pfenning (2003 Linear Spine Calculus Journal of Logic and Computation
13(5), pp. 639-688, doi:10.1093/logcom/13.5/639.

[3] lliano Cervesato, Frank Pfenning, Jorge Luis Sacchi@rsten Schirmann & Robert J. Simmons (2012):
Trace Matching in a Concurrent Logical Frameworka Adam Chlipala & Carsten Schirmann, editorgh
International Workshop on Logical Frameworks and Metaylaages: Theory and Practice — LFMTP,12
Copenhagen, Denmark, doi:10.1145/2364406.2364408.

[4] lliano Cervesato, Frank Pfenning, David Walker & Keviratkins (2003):A Concurrent Logical Frame-
work II: Examples and Applicationgechnical Report CMU-CS-02-102, Department of Computéerge,
Carnegie Mellon University, Pittsburgh, PA.

[5] Matt Fairtlough & Michael Mendler (1997 Propositional Lax Logic Information and Computatiot37(1),
pp. 1-33, d0i:10.1006/inc0.1997.2627.
[6] Robert Harper, Furio Honsell & Gordon Plotkin (1993): framework for defining logics Journal of the
ACM 40(1), pp. 143-184, d0i:10.1145/138027.138060.
[7]1 INRIA (2010): The Coq Proof Assistant Reference Manual — Version. 8.3 Available at
http://coq.inria.fr/refman/.
[8] Dale Miller & Alwen Fernanto Tiu (2003)A Proof Theory for Generic Judgments: An extended abstract
In: LICS, IEEE Computer Society, pp. 118-127, doi:10.1109/LIC820210051.
[9] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (200&abelle/HOL - A Proof Assistant for Higher-
Order Logic LNCS2283, Springer, d0i:10.1007/3-540-4594.9-9.
[10] UIf Norell (2007): Towards a practical programming language based on depetrtgpa theory Ph.D. thesis,
Chalmers University of Technology.
[11] Frank Pfenning (2004)Substructural Operational Semantics and Linear DestomatPassing Style (Invited
Talk). In Wei-Ngan Chin, editorAPLAS, LNCS3302, PUB-SP, p. 196, doi:10.1007/978-3-540-3042487

[12] Frank Pfenning & Carsten Schirmann (199%ystem Description: Twelf - A Meta-Logical Frame-
work for Deductive Systemsin Harald Ganzinger, editorCADE, LNCS 1632, Springer, pp. 202-206,
doi{10.1007/3-540-48660-T4.

[13] Anders Schack-Nielsen (2011nplementing Substructural Logical Framework$.D. thesis, IT University
of Copenhagen.

[14] Robert J. Simmons (2012%ubstructural Logical SpecificationBh.D. thesis, Carnegie Mellon University.

[15] Kevin Watkins, Iliano Cervesato, Frank Pfenning & Ddw\alker (2003):A Concurrent Logical Frame-

work |: Judgments and PropertiesTechnical Report CMU-CS-02-101, Department of Computzerge,
Carnegie Mellon University, Pittsburgh, PA.

[16] Kevin Watkins, lliano Cervesato, Frank Pfenning & DéWalker (2004)A Concurrent Logical Framework:
The Propositional Fragmentn Stefano Berardi, Mario Coppo & Ferruccio Damiani, editd YPES LNCS
3085, PUB-SV, pp. 355-377, d0i:10.1007/978-3-540-24823-

[17] Kevin Watkins, Iliano Cervesato, Frank Pfenning & DéWalker (2008)Specifying Properties of Concur-
rent Computations in CLFENTCS199, pp. 67-87, d0i:10.1016/j.entcs.2007.11.013.

http://dx.doi.org/10.1006/inco.2001.2951
http://dx.doi.org/10.1093/logcom/13.5.639
http://dx.doi.org/10.1145/2364406.2364408
http://dx.doi.org/10.1006/inco.1997.2627
http://dx.doi.org/10.1145/138027.138060
http://coq.inria.fr/refman/
http://dx.doi.org/10.1109/LICS.2003.1210051
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/978-3-540-30477-7_13
http://dx.doi.org/10.1007/3-540-48660-7_14
http://dx.doi.org/10.1007/978-3-540-24849-1_23
http://dx.doi.org/10.1016/j.entcs.2007.11.013

	1 Introduction
	2 CLF
	2.1 Syntax and Typing Rules
	2.2 Substructural Operational Semantics in CLF

	3 Meta-CLF
	3.1 Syntax and Typing Rules
	3.2 Safety for SSOS Specifications

	4 Related Work
	5 Conclusions

