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The concurrent logical framework CLF is an extension of the logical framework LF designed to
specify concurrent and distributed languages. While it canbe used to define a variety of formalisms,
reasoning about such languages within CLF has proved elusive. In this paper, we propose an exten-
sion of LF that allows us to express properties of CLF specifications. We illustrate the approach with
a proof of safety for a small language with a parallel semantics.

1 Introduction

Due to the widespread availability of multi-core architectures and the growing demands of web appli-
cations and cloud-based computation models, primitives for programming concurrent and distributed
systems are becoming essential features in modern programming languages. However, their semantics
and meta-theory are not as well understood as those of sequential programming languages. This limits
our assurance in the correctness of the systems written in them. Thus, just as in the case of sequential
languages 40 years ago, there has been increasing interest in defining formal semantics that isolate and
explain their quintessential features. Just as for sequential languages, such semantics hold the promises
of developing, for example, provably-correct compilers and optimizations for such languages, as well as
verification frameworks for concurrent applications written using them.

Logical frameworks are formalisms designed to specify and reason about the meta-theory of pro-
gramming languages and logics. They are at the basis of toolssuch as Agda [10], Coq [7], Isabelle [9],
and Twelf [12]. The current generation of logical frameworks were designed to study sequential pro-
gramming languages, and specifying concurrent systems using these tools requires a large effort, as the
user is forced to define ad-hoc concurrency models that are difficult to reuse and automate.

One way to deal with this problem is to design a logical framework that natively embeds a general-
purpose concurrency model. This then provides native support for describing parallel execution and
synchronization, for example, thus freeing the user from the delicate task of correctly encoding them
and proving properties about them. One example of this approach is the concurrent logical framework
CLF [4,13,15], an extension of the logical framework LF [6] designed for specifying concurrent, parallel,
and distributed languages. One of its distinguishing features is its support for expressing concurrent
traces, i.e., computations where independent steps can be permuted. For example, traces can represent
sequences of evaluation steps in a parallel operational semantics, where executions that differ only in the
order of independent steps are represented by the same object (modulo permutation). CLF has been used
to encode a variety of systems such as Concurrent ML, theπ-calculus, and Petri nets in a natural way [4].

However, unlike LF which permits specifying a system and itsmeta-theory within the same frame-
work, CLF is not expressive enough for proving meta-theoretical properties about CLF specifications

∗This work was supported by the Qatar National Research Fund under grant NPRP 09-1107-1-168.

http://dx.doi.org/10.4204/EPTCS.120.2


I. Cervesato & J.L. Sacchini 3

(e.g., type preservation, or the correctness of program transformations). The main reason is that traces
are not first-class values in CLF, and therefore cannot be manipulated. In this work we propose a log-
ical framework that supports meta-reasoning over parallel, concurrent, and distributed specifications.
Specifically, the main contributions of this paper are the following:

• We define an extension of LF, called Meta-CLF, that allows meta-reasoning over a CLF speci-
fication. It enriches LF with a type for concurrent traces andthe corresponding constructor and
destructors (via pattern-matching). This permits a directmanipulation of traces. Meta-theorems
can be naturally represented as relations, similar to the way sequential programming languages are
analyzed in LF.

• We illustrate the use of Meta-CLF by proving safety for a CLF specification of a small program-
ming language with a parallel semantics.

The rest of the paper is organized as follows: in Sect. 2 we recall CLF and use it to define the operational
semantics of a simple parallel language. In Sect. 3 we present Meta-CLF and use it to express a proof of
safety for this language. We discuss related work in Sect. 4 and outline directions of future research in
Sect. 5.

2 CLF

We begin by defining some key elements of CLF. For conciseness, we omit aspects of CLF that are not
used in our examples. The results of this paper extend to the full language, however. The presentation
given here follows the template proposed in [3] rather than the original definition of CLF [4, 15]; see
also [13].

2.1 Syntax and Typing Rules

CLF is an extension of LF, or more precisely of the linear logical framework LLF [1], with a lax modality
from lax logic [5] used to encapsulate the effects of concurrent computations. The introduction form of
lax modality are witnessed by a form of proof term calledtraces. A trace is a sequence of computational
steps where independent steps can be permuted.

The syntax of CLF is given by the following grammar:

K ::= type |Π!x:T.K (Kinds)

P ::= a· !S| {∆} (Base types)

T ::= Π x:T.T | P (Types)

N ::= λ x:T.N | H ·S| {ε} (Terms)

ε ::= ⋄ | ε1;ε2 | {∆}�c·S (Traces)

S::= · | N;S (Spines)

∆ ::= · | ∆, x : T (Contexts)

::= ↓ | ! (Modalities)

In this paper, we only consider CLF’s persistent (!) and linear (↓) substructural modalities. CLF also
includes an affine modality, omitted here for space reasons.
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Kinds are as in LF. Note that the argument in product kinds must be persistent. Base types are either
atomic(a·!S) which are formed by a constant applied to a persistent spine[2], or monadicwhich are a
context enclosed in the lax modality, denoted with{ }.

A type is either a product or a base type. We consider two different products: a persistent product,
Π!x:TU, as in LF, and a linear product,Π↓x:TU, from LLF. Note, however, that the typing rules pre-
vent dependencies on linear products. We usually writeT →U andT ⊸U for Π!x:TU andΠ↓x:TU,
respectively, whenx is not free inU .

A term is either an abstraction (persistent and linear), an atomic termH ·S formed by a variableH
applied to a list of arguments given by the spineS, or a trace{ε}.

A trace is either the empty trace (⋄), a composition of traces (ε1;ε2) or an individual step of the
form {∆}�c·S, wherec is a constant defined in the signature applied to a spineS, whose type must be
monadic. This stepconsumesthe linear variables inSandproducesthe linear and persistent variables in
∆. A step binds the variables defined in∆ in any trace that follows it.

Concurrent computation is expressed by endowing traces with a monoidal structure: the empty trace
is the unit, and trace composition is associative. Furthermore, it allows permutation of independent steps.
Step independence is defined on the basis of the notion oftrace interface. Theinput interfaceof a trace,
denoted•ε , is the set of variables used byε , i.e., its free variables. Theoutput interfaceof a trace,
denotedε•, is the set of variables defined byε . They are given by the following equalities:

•(⋄) = /0 (⋄)• = /0

•({∆}�c·S) = FV(S) ({∆}�c·S)• = dom(∆)
•(ε1;ε2) = •ε1∪ (•ε2\ ε1•) (ε1;ε2)• = ε2•∪ (ε1•\•ε2)∪ !(ε1•)

where FV(S) is the set of free variables inS, and dom(∆) is the set of variables declared in∆. In a trace
composition, the output interface contains all the persistent variables introduced inε1, even ifε2 uses
them. In other words, persistent facts cannot be removed from the output once they are introduced. On
the other hand, linear facts are effectively removed ifε2 uses them.

Two tracesε1 andε2 areindependent, denotedε1 ‖ ε2, if •ε1∩ε2•= /0 andε1•∩•ε2 = /0. Independent
traces do not share variables and can therefore be executed in any order.

Equality. We denote with≡ the equality relation on kinds, types, terms, spines, and contexts. It is
defined asα-equality extended with trace equality, also denoted with≡, defined by the following rules:

ε ;⋄ ≡ ε ε ≡ ε ;⋄ ε1;(ε2;ε3)≡ (ε1;ε2);ε3

ε1 ‖ ε2

ε1;ε2≡ ε2;ε1

ε1≡ ε ′1
ε1;ε2≡ ε ′1;ε2

ε2≡ ε ′2
ε1;ε2≡ ε1;ε ′2

These rules state that traces form a monoid and that independent steps can be permuted.

Typing. The typing rules of CLF rely on some auxiliary meta-level operators. We say that a context∆
splits into ∆1 and∆2, denoted∆ = ∆1 ⊲⊳ ∆2, if each persistent declaration in∆ appears in both∆1 and∆2,
and each linear declaration in∆ appears in exactly one of∆1 and∆2.

We write X[N/x] for the hereditary substitutionof variablex by termN in X (whereX belongs to
one of the CLF syntactic classes). Hereditary substitutions [16] normalizes a terms as the substitution is
carried out, thereby allowing us to restrict the definition of CLF to canonical terms (inβη-normal form).
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Its definition is type-directed and therefore terminating.The interested reader can find an exhaustive
account in [16].

The typing rules of CLF are displayed in Fig. 1. We assume a fixed signatureΣ of global declarations
for kinds and types. Typical of type theories, we use bidirectional typing rules where types of variables
are inferred from the context, while terms are checked against a type.

The rules for kinds, types, spines and terms are standard [16]. Note that only persistent variables are
dependent in types. The typing rules for traces show the intuition that a trace is a context transformer: we
can read the judgment∆ ⊢ ε : ∆′ as “ε transform the context∆ into ∆′ ”. Note that the trace typing rules
imply a form of the frame rule: in fact, it is easy to prove thatif ∆1 ⊢ ε : ∆2, then∆0 ⊲⊳ ∆1 ⊢ ε : ∆0 ⊲⊳ ∆2.
The empty trace does not change the context, while traces canbe composed if the internal interface
matches. For a single step, part of the context is transformed: the spineSconsumes∆1 and generates the
context∆′ (or equivalently,∆2).

2.2 Substructural Operational Semantics in CLF

In this section, we show how to use CLF to define a substructural operational semantics (SSOS) for a
programming language. As a case study, we illustrate the approach on the simply-typed lambda calculus
with an operational semantics that evaluates functions andtheir arguments in parallel.

SSOS specifications have two main features. The first is compositionality: extending a program-
ming language with a new feature does not invalidate the SSOSalready developed [14]. Second, SSOS
specifications can naturally express parallel and concurrent semantics of a programming language [11].

The language of expressions and types for the simply-typed lambda calculus,λ→, is given by the
following grammar:

e ::= x | λx.e | ee (Expressions)

τ ::= o | τ→ τ (Types)

Expressions are either variables, abstractions or applications; types are either base types or function
types. Typing is defined by the judgmentΓ ⊢ e : τ , given by the following rules:

x : τ ∈ Γ
Γ ⊢ x : τ

Γ,x : τ1 ⊢ e : τ2

Γ ⊢ λx.e : τ1→ τ2

Γ ⊢ e1 : τ2→ τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1

Evaluation is given byβ -reduction:(λx.e1)e2 e1[e2/x].
In CLF (and LF as well), we can represent this language and itstyping rules using a higher-order

abstract syntax encoding as follows. For clarity, we use implicit arguments (which can be reconstructed):

exp : type of : exp→ tp→ type

lam : (exp→ exp)→ exp of/app : of (app e1 e2) t1
app : exp→ exp→ exp ← of e1 (arr t2 t1)

tp : type ← of e2 t2
arr : tp→ tp→ tp of/lam : of (lam e2) (arr t1 t2)

value : exp→ type ← (Πx : exp. of x t1→ of (e2 x) t2)

value/lam : value (lam λx.e x)
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Contexts: !∆ ⊢ ∆′

!∆ ⊢ ·
!∆ ⊢ T : type !(∆, x:T) ⊢ ∆′

!∆ ⊢ x:T,∆′

Kinds: !∆ ⊢ K : kind

!∆ ⊢ type : kind

!∆ ⊢ T : type !∆, !x:T ⊢ K : kind

!∆ ⊢ Π!x:T.K : kind

Base types:!∆ ⊢ P : K

a : Π!∆′.type !∆ ⊢ S: !∆′

!∆ ⊢ a·S: type

!∆ ⊢ ∆′

!∆ ⊢ {∆′}

Types: !∆ ⊢ T : K

!∆ ⊢ T : type !∆, !x:T ⊢ T : type

!∆ ⊢ Π!x:T.T : type

!∆ ⊢ T : type !∆ ⊢U : type x fresh

!∆ ⊢ T⊸U : type

Terms: ∆ ⊢ N⇐ T

∆, x:T ⊢ N⇐U

∆ ⊢ λ x:.N⇐Π x:T.U

∆ ⊢ ε : ∆′

∆ ⊢ {ε}⇐ {∆′}

!x:T ∈ ∆ ∆ ⊢ S: T >U U ≡U ′

∆ ⊢ x·S⇐U ′
∆0,∆1 ⊢ S: T >U U ≡U ′

∆0,↓x:T,∆1 ⊢ x·S⇐U ′

c:T ∈ Σ ∆ ⊢ S: T >U U ≡U ′

∆ ⊢ c·S⇐U ′

Traces: ∆ ⊢ ε : ∆′

∆ ⊢ ⋄ : ∆
∆ ⊢ ε1 : ∆1 ∆1 ⊢ ε2 : ∆2

∆ ⊢ ε1;ε2 : ∆2

c:T ∈ Σ ∆1 ⊢ S: T > {∆′} ∆2≡ ∆′

∆0 ⊲⊳ ∆1 ⊢ {∆2}�c·S: ∆0,∆2

Spines: ∆ ⊢ S: T > T ′

∆ ⊢ · : T > T

!∆1 ⊢ N⇐ T ∆0 ⊢ S: T2[N/x]> T ′

∆0 ⊲⊳ !∆1 ⊢ (!N;S) : Π!x:TU > T ′
↓∆1 ⊢ N⇐ T ∆0 ⊢ S: U > T ′

∆0 ⊲⊳ ↓∆1 ⊢ (↓N;S) : T⊸U > T ′

Figure 1: CLF typing rules
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We denote this signature withΣλ→ . The syntax ofλ→ is defined by the typeexp with construc-
tors app (representing function application) andlam (representing abstraction). The typetp encodes
types fromλ→ with arr being the function type fromλ→. Variables are implicitly defined using CLF
variables. Similarly, there is no explicit representationof the context for typing; instead, we use CLF’s
(persistent) context for this purpose. The typing relationis expressed by the CLF type familyof relating
λ→ expressions and types. We also define the predicatevalue stating that abstractions are values.

In the following, we define a SSOS forλ→ evaluation using destination-passing style [11]. The
SSOS is given by a state and a set of rewriting rules. The stateis a multiset whose elements have one of
the following forms:

• eval e d: evaluate expressione in destinationd. Destinations are virtual locations that store ex-
pressions to be evaluated and results.

• ret e d: the resulte of an evaluation is stored atd. An invariant of the semantics ensures thate is
always a value.

• fapp d1 d2 d: an application frame expecting the result of evaluating a function ind1, its argument
in d2, and storing the result ind.

The rewriting rules encoding expression evaluation are as follows:

eval e d  ret e d if value(e)

eval (e1 e2) d  eval e1 d1, eval e2 d2, fapp d1 d2 d d1,d2 fresh

ret (λx.e1) d1, ret e2 d2, fapp d1 d2 d  eval (e1[e2/x]) d

The first rule says that evaluating a value expression immediately returns the result. The second rule
says that to evaluate an application, we evaluate the function and argument in two fresh destinations, and
create a frame that connects the results. Evaluation of function and argument can proceed in parallel.
The third rule computes the application once we have the values of the function and argument connected
by a frame.

A complete evaluation of an expressione to a valuev is given by a sequence of multisets of the form:

A0 = {eval e d} A1 . . .  An−1 An = {ret v d}

where at each stepAi  Ai+1 part ofAi is rewritten using one of the evaluation rules given above.
This semantics can be faithfully represented in CLF using the linear context to represent the multiset

state, where each element is a linear fact, and destinationsare represented by persistent facts. The
semantics is given by the following CLF signature:

dest : type

eval : exp→ dest→ type

ret : exp→ dest→ type

fapp : dest→ dest→ dest→ type

step/eval : eval e d⊸ value e→{↓x:ret e d}

step/app : eval (app e1 e2) d⊸ {!d1:dest, !d2:dest,↓x1:eval e1 d1,↓x2:eval e2 d2,↓x3:fapp d1 d2 d}

step/beta : ret (lam e1) d1⊸ ret e2 d2⊸ fapp d1 d2 d⊸ {↓x:eval (e1 e2) d}

We denote withΣstep the signature containing the declarations of the evaluation rules. Rulestep/eval
is effectively a conditional rewriting rule. In rulestep/app, new destinations (d1 andd2) are created to
evaluate function and argument; these evaluations can proceed in parallel.
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Safety. Safety for this language is proven by giving a suitable notion of what a valid state looks
like [14]. Note that not all multisets are valid state. For example, the singleton{fapp d1 d2 d} is
not valid, since there is no expression to evaluate atd1 or d2; similarly {eval e1 d,eval e2 d} is not valid
since there are two expressions evaluating on the same destination.

In a valid state, the elements should form a tree whose nodes are linked by destinations. Internal
nodes have the formfapp d1 d2 d, with two children (corresponding tod1 andd2) and the leaves are of
the formeval e dor ret v d (wherev is a value). Furthermore, the types of the expressions should match.

Following Simmons [14], we define well-typed states by rewriting rules. The idea is to create the
treetop-downstarting at the root. We can write these rules in CLF as follows:

gen : tp→ dest→ type

gen/eval : gen t d⊸ of e t→{↓x:eval e d}

gen/ret : gen t d⊸ of e t→ value e → {↓x:ret e d}

gen/fapp : gen t d⊸ {!d1:dest, !d1:dest,↓x0:fapp d1 d2 d,↓x1:gen (arr t1 t) d1,↓x2:gen t1 d2}

gen/dest : {!d:dest}

We denote withΣgen the signature containing these generation rules. A fact of the formgen t d is read
as“generate a tree with root at destination d and type t”. We have three ways to do this: by generating
a leaf of either the formeval e dor ret e d (for aneof the appropriate type), or by generating an internal
nodefapp d1 d2 d and then generating trees rooted atd1 andd2. Rulegen/dest is necessary to keep
track of destinations that were created during evaluation (by rule step/app) but are not used anymore
(after the application is reduced usingstep/beta, the destinations created to evaluate the function and
the argument are not needed anymore; see Sect. 3.2).

A generic tree is built by a sequence of rewriting steps starting from a singlegen t d: A0 =
{gen t d} A1 . . .  An, whereAn does not contain facts of the formgen t d.

This kind ofgenerative rulesfor describing valid states generalizes context-free grammars, withgen
being a non-terminal, andeval, ret, andfapp are terminal symbols [14]. Generative rules (also called
generative grammars) are very powerful allowing to expressa wide variety of invariants.

With this definition of a well-typed state, we can prove that the language is safe. Safety is given by
two properties: type preservation (i.e., evaluation preserves well-typed states), and progress (i.e., either
the state contains the final result, or it is possible to make astep), as stated in the following theorem. We
write A  

∗
Σ A

′ to mean amaximalrewrite sequence fromA to A
′ using the rules inΣ. The sequence

is maximal in the sense thatA
′ does not contain non-terminal symbols. We writeA  

1
Σ A

′ to mean a
stepfrom A to A

′ using one of the rules inΣ.

Theorem 1. The language defined by the signaturesΣλ→ , Σstep and Σgen is safe, i.e., it satisfies the
following properties:

Preservation If {gen t d} ∗Σgen
∆ and∆ 1

Σstep
∆′, then{gen t d} ∗Σgen

∆′.

Progress If {gen t d} ∗Σgen
∆, then either∆ is of the form{ret v d} with value v, or there exists∆′ such

that ∆ Σstep
∆′.

Proof sketch.(See [14] for details.) Preservation proceeds by case analysis on the rewriting step and
inversion on the generated trace. Let us consider the casestep/eval. We have that∆ must be of the
form ∆0,eval e d, and∆′ must be of the form∆0, ret e d, wherevalue e. Then, the generation trace for∆
must contain a step usinggen/eval to constructeval e d. The generation trace for∆′ is constructed by
replacing this step with agen/ret step.
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Progress proceed by induction on the length of the generating trace and case analysis on the first step.
The interesting case is when this step isgen/fapp. The rest of the trace can be split in two parts, one
generating trace for each child of thefapp generated in the first step. The proof follows by induction on
these subtraces.

3 Meta-CLF

Meta-theorems such as preservation and progress cannot be expressed in CLF, since it lacks primitives
for manipulating traces as first-class objects. For example, we cannot talk about the type of generated
traces of the form

{∆} ∗Σgen
{∆′}

which is essential to express preservation.
Furthermore, CLF lacks abstractions over context, which prevents us from defining a trace type that

is parametric over its interface. For example, in CLF we can define a relation on traces

rel : (A⊸ {↓x:B})→ (A⊸ {↓x:B})→ type

that relates two traces that transform anA into aB. However, we cannot define the type of traces as a
transformation between two generic contexts∆1 and∆2. For this, we need to quantify over contexts.
With a dependent product that takes contexts as arguments, we can define of all traces that generate valid
states starting from a seed:

Πt : tp.Πψ : ctx. (Π!d:dest.gen d t⊸ {ψ})

We use these ideas for designing a logical framework that permits meta-reasoning on CLF specifi-
cations. The resulting framework, which we call Meta-CLF, is an extension of LF with trace types and
quantification over contexts. Trace types have the form

{∆}Σ{∆′}

where∆ and∆′ are CLF contexts andΣ is a CLF signature that contains (monadic) rewriting rules (e.g.,
Σgen andΣstep). A term of this type is a trace of the form:

δ1; . . . ;δn

where each stepδi is either{∆i}�ci ·Si with ci declared inΣ, or xi ·Si wherexi is a (Meta-CLF) variable
that, applied toSi , returns a trace. The interface of the whole trace is given by∆ and∆′.

Meta-CLF includes two different trace types:{∆}Σ∗ {∆′} and{∆}Σ1{∆′}. The former defines max-
imal traces, while the latter defines traces of exactly one step. We write{∆}Σ{∆′} to refer to either of
these types.

3.1 Syntax and Typing Rules

Meta-CLF is an extension of LF with trace and context types, parameterized over a CLF signature,
denotedΣ0. The kinds, types, and contexts of Meta-CLF are given by the following grammar:

K ::= type |Πx:A.K |Πψ :ctx.K | Π̂x:T.K | ∇x.K (Kinds)

A ::= a·S|Πx:A.A |Πψ :ctx.A | Π̂x:T.A | ∇x.A
(Types)

| {∆}Σ∗ {∆} | {∆}Σ1{∆}
∆ ::= · | ψ ,∆ | ↓x:A,∆ | !x:A,∆ (Contexts)
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Kinds include, besides the constructions derived from LF, products over contexts (Πψ :ctx.K), products
over CLF types from the signatureΣ0 (Π̂x:TK), and products over names (∇x.K). In Π̂x:TK, the type
T must be well-typed in the signatureΣ0, using the CLF typing rules. Quantification over names is
necessary for composing traces, to ensure that names declared in the interface match. The notation is
taken from [8].

Types in Meta-CLF include the analogous kinds contructors applied to the type level, with the addi-
tion of the trace types{∆}Σ∗ {∆′} and{∆}Σ1{∆′}. Contexts are sequences consisting of linear declara-
tions, persistent declarations, and context variables, whose types are CLF types checked in the signature
Σ0. Names of declared variables must be introduced using∇.

Type preservation for the language described in Sect. 2.2 can then be stated in Meta-CLF as follows:

Π̂t:tp. ∇d. ∇g. Πψ1:ctx. Πψ2:ctx.

{!d : dest,↓g : gen d t}Σ∗gen {ψ1} → {ψ1}Σ1
step {ψ2} → {!d : dest,↓g : gen d t}Σ∗gen {ψ2} → type

This type family can be read functionally as follows: given atrace that generatesψ1 (usingΣgen), and a
step fromψ1 to ψ2, we can obtain a trace that generatesψ2 (usingΣgen).

Terms, spines, and traces in Meta-CLF are defined by the following grammar:

N ::= λx.N | H ·S| λψ .N | λ̂x.N | {ε} (Terms)

H ::= x | c (Heads)

S::= · | N;S| ∆;S| #;S| 〈M〉 (Spines)

ε ::= ⋄ | ε1;ε2 | {∆}�c·S| x·S (Traces)

Terms include the introduction forms of Meta-CLF type (λx.N), contexts (λψ .N), CLF types (̂λ x.N),
as well as atomic terms (a variable applied to a spine) and traces ({ε}). Spines are sequence formed by
terms (N), contexts (∆), CLF terms (〈M〉), and fresh names (#).

A trace is either empty (⋄), a composition of two traces (ε1;ε2), a single step ({∆}�c·S) wherec is
defined in the CLF signatureΣ0, or a (Meta-CLF) trace variable applied to a spine (x·S).

Typing rules. Typing judgments are parameterized by the CLF signatureΣ0. The typing rules are
defined by the following judgments:

Σ;Γ;Ξ ⊢Σ0 K : kind (Kinds)

Σ;Γ;Ξ ⊢Σ0 A : K (Types)

Σ;Γ;Ξ ⊢Σ0 ∆ ctx (Contexts)

Σ;Γ;Ξ ⊢Σ0 M : A (Terms)

Σ;Γ;Ξ ⊢Σ0 S: A′ > A (Spines)

Σ;Γ;Ξ ⊢Σ0 ε : {∆}Σ{∆′} (Traces)

The signatureΣ is a Meta-CLF signature, whileΣ0 is a CLF signature. We usually omit them for clarity.
The contextΓ contains the declarations of Meta-CLF variables, contexts, and CLF variables. The context
Ξ contains name declarations.

These contexts are defined by the following grammar:

Γ ::= · | Γ,x:A | Γ,ψ :ctx | Γ, x̂:T

Ξ ::= · | Ξ,x
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The typing rules are defined in Fig. 2. We only show the rules related to the new constructions. We
use the typing judgments from CLF to check products over CLF types. We also need a filtering operation
on contexts, denoted| | that keeps declarations of CLF types. It is defined by|·|= ·, |Γ, x̂:T|= |Γ|, !x:T,
and|Γ,γ |= |Γ| for declarationsγ of Meta-CLF types and contexts.

3.2 Safety for SSOS Specifications

We illustrate the use of Meta-CLF by stating and proving safety for the language introduced in Sect. 2.2.
We use Meta-CLF over the signatureΣλ→ defining the languageλ→ and its static semantics.

Let us recall the type family expressing preservation of types in Meta-CLF:

tpres : Π̂t:tp. ∇d. ∇g. Πψ1:ctx. Πψ2:ctx.

{!d : dest,↓g : gen d t}Σ∗gen {ψ1} → {ψ1}Σ1
step {ψ2} → {!d : dest,↓g : gen d t}Σ∗gen {ψ2} → type

The proof proceeds by case analysis on the type{ψ1}Σ1
step {ψ2} (we follow essentially the same

reasoning as described in the proof sketch of Theorem 1). We have three cases, one case for each rule in
Σstep. For each case, we apply inversion on the trace of type{!d : dest,↓g : gen d t}Σ∗gen {ψ1}.

Consider the casestep/eval; in this caseψ1 must be of the form∆,x:eval e d0 andψ2 must be of the
form ∆,y:ret e d0, for some value expressione. By inversion, in the trace generatingψ1, there must be a
step that usesgen/eval to generate the declaration ofx. That is, the generating trace has the form

X1;{↓x}�gen/eval e d0 g0 H;X2

whereg0:gen d0 t0 for some typet0 is generated byX1 andH is a proof thatehas typet0 (i.e.H : of e t0).
Note thatX2 cannot consumex, sinceeval is a terminal in the grammar defined byΣgen. Then, the step
generatingx can be permuted towards the end of the trace, so thatX2 can be taken to be the empty trace
⋄. To construct the trace that generatesψ2, we only need to replace this last step by agen/ret step.

In Meta-CLF, we can write this case of the proof as follows, where we omit the dependent arguments
for clarity (like in LF and CLF, we expect that implicit arguments can be reconstructed):

tpres/ret : tpres (X1;{↓x}�gen/eval e d0 g0 H)

({↓y}�step/eval e d0 x Hv)

(X1;{↓y}�gen/ret e d0 g0 H Hv)

whereX1 : {!d : dest,↓g : gen d t}Σ∗gen {ψ ′1, !d0 : dest,↓g0 : gen d0 t0} andHv:value e. The full type mak-
ing explicit all arguments is the following:

tpres/ret : ∇x.∇y.∇d.∇g.∇d0.∇g0.Πψ ′1 : ctx.Π̂e : exp.Π̂t : tp.Π̂t0 : tp.

ΠX : {!d : dest,↓g : gen d t}Σ∗gen {ψ ′1, !d0 : dest,↓g0 : gen d0 t0}.

ΠH:of e t0.ΠHv:value e.

tpres t d g (ψ ′1, !d0 : dest,↓x : eval e d0) (ψ ′1, !d0 : dest,↓y : ret e d0)

(X1;{↓x : eval e d0}�gen/eval e d0 g0 H)

({↓y : ret e d0}�step/eval e d0 x Hv)

(X1;{↓y : ret e d0}�gen/ret e d0 g0 H Hv)



12 Towards Meta-Reasoning in CLF

Kinds: Σ;Γ;Ξ ⊢Σ0 K : kind

Γ,ψ :ctx;Ξ ⊢ K : kind

Γ;Ξ ⊢ Πψ :ctx.K : kind

Γ;Ξ,x⊢ K : kind

Γ;Ξ ⊢ ∇x.K : kind

Σ0; |Γ| ⊢CLF T : type Γ,x:T;Ξ ⊢ K : kind

Γ;Ξ ⊢ Π̂x:T.K : kind

Types: Σ;Γ;Ξ ⊢Σ0 A : K

Γ,ψ :ctx;Ξ ⊢ A : type

Γ;Ξ ⊢ Πψ :ctx.A : type

Γ;Ξ,x⊢ A : K

Γ;Ξ ⊢ ∇x.A : K

Γ;Ξ ⊢ ∆1 ctx Γ;Ξ ⊢ ∆2 ctx |Γ| ⊢CLF Σ
Γ;Ξ ⊢ {∆1}Σ{∆2} : type

|Γ| ⊢CLF T : type Γ,x:T;Ξ ⊢ A : type

Γ;Ξ ⊢ Π̂x:T.A : type

Contexts: Σ;Γ;Ξ ⊢Σ0 ∆ ctx

Γ;Ξ ⊢ · ctx

Γ;Ξ ⊢ ∆ ctx
x∈ Ξ\dom(∆) Σ0; |Γ|, !∆ ⊢CLF A : type

Γ;Ξ ⊢ ∆, x:A ctx

Γ;Ξ ⊢ ∆ ctx ψ :ctx ∈ Γ
Γ;Ξ ⊢ ∆,ψ ctx

Terms: Σ;Γ;Ξ ⊢Σ0 M : A

Γ,x : A;Ξ ⊢ M : B

Γ;Ξ ⊢ λx.M : Πx : A.B

c:B∈ Σ Γ;Ξ ⊢ S: B> A

Γ;Ξ ⊢ c·S: A

x:B∈ Γ Γ;Ξ ⊢ S: B> A

Γ;Ξ ⊢ x·S: A

Γ,ψ :ctx;Ξ ⊢ N : A

Γ ⊢ λψ .N : Πψ :ctx.A

Γ, x̂:T;Ξ ⊢ N : A

Γ;Ξ ⊢ λ̂x.N : Π̂x:T.A

Γ;Ξ ⊢ ε : {∆1}Σ{∆2}

Γ;Ξ ⊢ {ε} : {∆1}Σ{∆2}

Spines: Σ;Γ;Ξ ⊢Σ0 S: A′ > A

Γ;Ξ ⊢ · : A> A

Γ;Ξ ⊢ ∆ ctx Γ;Ξ ⊢ S: A[∆/ψ ]> B

Γ;Ξ ⊢ ∆;S: Πψ :ctx.A> B

α fresh Γ;Ξ ⊢ S: A[α/x]> B

Γ;Ξ ⊢ #;S: ∇x.A> B

Γ;Ξ ⊢ N : A1 Γ;Ξ ⊢ S: A2[N/x]> B

Γ;Ξ ⊢ N;S: Πx:A1.A2 > B

Σ0; |Γ| ⊢CLF M : T Γ;Ξ ⊢ S: A[〈M〉c/x] > B

Γ;Ξ ⊢ 〈M〉;S: Πx:T.A> B

Traces: Σ;Γ;Ξ ⊢Σ0 ε : {∆}Σ∗ {∆′}

Γ;Ξ ⊢ ⋄ : {∆}Σ∗ {∆}
Γ;Ξ ⊢ ε1 : {∆1}Σ∗ {∆} Γ;Ξ ⊢ ε2 : {∆}Σ∗ {∆2}

Γ;Ξ ⊢ ε1;ε2 : {∆1}Σ∗ {∆2}

c:A∈ Σ Σ0; !|Γ|,∆1 ⊢CLF S: A> ∆1

Γ;Ξ ⊢ {∆2}�c·S: {∆0 ⊲⊳ ∆1}Σ{∆0,∆2}

x:A∈ Σ Γ;Ξ ⊢ S: A> {∆1}Σ∗ {∆2}

Γ;Ξ ⊢ x·S: {∆1}Σ∗ {∆2}

Figure 2: Typing rules for terms and traces in Meta-CLF
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Although we do not treat implicit argument inference in thispaper, we expect that we can infer implicit
arguments by extending the LF type reconstruction algorithm. As we see from the case above, implicit
arguments greatly increase the usability of the system, allowing to write more concise and clear proofs.

The other two cases of the proof, corresponding tostep/app andstep/beta, are given below:

tpres/app : tpres (X1;{↓x}�gen/eval (app e1 e2) d0 g0 H)

({!d1, !d2,↓x1,↓x2,↓ f }�step/app e1 e2 d0 x)

(X1;{!d1, !d2,↓ f ,↓g1,↓g2}�gen/fapp d0 g0;

{↓x1}�gen/eval e1 d1 g1 H1; {↓x2}�gen/eval e2 d2 g2 H2)

tpres/beta : tpres (X1;{!d1, !d2,↓ f ,↓g1,↓g2}�gen/fapp d0 g0;

{↓x1}�gen/ret (lam e1) d1 g1 H1 Hv1; {↓x2}�gen/ret e2 d2 g2 H2 Hv2)

({↓y}�step/beta e1 e2 d1 d2 d x1 x2 f )

(X1;{↓y}�gen/eval (e1 e2) d0 g0 H;{!d1}�gen/dest;{!d2}�gen/dest)

The latter case is the most interesting. By inversion, the generated stateψ1 must be of the form

X1; {!d1, !d2,↓g1,↓g2,↓ f}�gen/fapp d0 g0; X2;
{↓x1}�gen/ret (lam e1) d′1 g′1 H1 Hv1; X3;
{↓x2}�gen/ret e2 d′2 g′2 H2 Hv2; X4

for some tracesX1, X2, X3, X4. It must be thatd1 = d′1 andd2 = d′2, and alsog1 = g′1 andg2 = g′2. Note
thatX2, X3, andX4 cannot useg1 andg2, so the trace can be reordered as

X1;X2;X3;X4; {!d1, !d2,↓g1,↓g2,↓ f}�gen/fapp d0 g0;
{↓x1}�gen/ret (lam e1) d1 g1 H1 Hv1;
{↓x2}�gen/ret e2 d2 g2 H2 Hv2)

andX1, X2, X3, andX4 can be collapsed into one trace variable. In the generated trace after the rewriting
step, we simply replace the generation offapp and the tworets with a singleeval fact. We also need two
gen/dest steps for the destinationsd1 andd2 which are not used anymore.

For proving progress, we first need to define a sum type that encodes the result: either we are at a
final state or we can take a step.

result : ctx→ type

res/final : {!d:dest,↓x:gen d t}Σ∗gen {ψ , !d:dest,↓x:ret e d}→ result (ψ ,↓x:ret e d)

res/step : {ψ1}Σ1
step {ψ2} → result ψ1

Note inres/final that the generated trace has only oneret fact containing the final value at destinationd,
while ψ contains only destinations (obtained fromgen/dest steps) that are not used anymore. These are
destinations that were generated during the evaluation of an expression by thestep/app rule.

The progress theorem relates a well-typed state with a result:

progress : ∇d.∇g.Π̂t : tp.Πψ : ctx.{!d : dest,↓g : gen d t}Σ∗gen {ψ} → result ψ → type

We proceed by case analysis on the first step of the trace. If itis gen/ret, then we are at a final state:

p/ret : progress ({↓x}�gen/ret e d g H Hv;X) (res/final ({↓x}�gen/ret e d g H Hv;X))
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If the trace starts with agen/eval step, then we can make a step depending on which expression
is generated. If the expression generated is an abstraction, we can make a step usingstep/eval since
abstractions are values. If the expression generated is an application, we can make a step usingstep/app.

p/ev-lam : progress ({↓x}�gen/eval (lam e) d H;X)

(res/step ({↓x}�step/eval (lam e) d x (value/lam e)))

p/ev-app : progress ({↓x}�gen/eval (app e1 e2) d H;X)

(res/step ({!d1, !d2,↓x1,↓x2,↓ f}�step/app e1 e2 x H))

Finally, we consider the case where the first step isgen/fapp. The generated trace has the form:

{!d1, !d2,↓ f ,↓g1,↓g2}�gen/fapp d g;X1 d1 g1;X2 d2 g2

where the tracesX1 andX2 generate trees rooted atd1 andd2 respectively. Note that, becauseΣgen is a
generative grammar, these traces are independent.

We have three subcases: eitherX1 andX2 generate final states (in which case we can make a step
usingstep/beta, or we can make a step in eitherX1 or X2:

p/fapp1 : progress ({!d1, !d2,↓ f ,↓g1,↓g2}�gen/fapp d g;

{↓x1}�gen/ret (lam e1) d1 g1 H1 Hv1;

{↓x2}�gen/ret e2 d2 g2 H2 Hv2)

(res/step ({↓y}�step/beta e1 e2 d1 d2 d x1 x2 f ))

p/fapp2 : progress ({!d1, !d2,↓ f ,↓g1,↓g2}�gen/fapp d g;X1 d1 g1;X2 d2 g2)

(res/step z)

← progress (X1 d1 g1) (res/step z)

p/fapp3 : progress ({!d1, !d2,↓ f ,↓g1,↓g2}�gen/fapp d g;X1 d1 g1;X2 d2 g2)

(res/step z)

← progress (X2 d2 g1) (res/step z)

Totality. We showed how to encode, in Meta-CLF, proofs of safety for a small programming language
with a parallel semantics. A natural question is: are these valid proofs? This amounts to check totality,
which is the conjunction of two properties: coverage (i.e.,all cases are considered) and termination.
While we do not give a formal treatment of totality for Meta-CLF (which we leave for future work), we
can show, informally, that both proofs given above are total.

It is easy to see that both proofs are terminating: in the caseof preservation, the proof is not recursive,
while for progress, recursive calls are performed on smaller traces.

Checking coverage is trickier, since it encompasses checking coverage for traces, which is a difficult
problem because trace equality allows permuting steps.

In our proof of preservation, coverage checking manifests itself in the use of inversion: for each case
of the step relation from contextψ1 to ψ2 we apply inversion to obtain a pattern that covers the generation
of ψ1. As we explained above, we only need one pattern for each case.

Note that coverage in the proof of preservation depends on the fact thatΣgen is a generative grammar.
In particular, that terminal symbols are not removed from the context once they are produced, and that
fresh destinations are created for each non-terminal (thisproperty is used instep/beta case).
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In the proof of progress, coverage checking is directly performed over the generated trace. The
interesting case isgen/fapp, since this case involves splitting the trace between the trees generated for
each of the children offapp. Again, this is possible because each non-terminal is associated with a fresh
destination, so generated traces from starting from different non-terminals are independent.

While coverage checking for traces in general is a difficult problem, by restricting to traces generated
using grammars, we expect to obtain a relatively simple algorithm to solve this problem.

It is important to note that these proofs would be similar if we consider a sequential semantics.
Viewed in a different direction, having a parallel semantics does not change the proof with respect to
the sequential case. The reason is the use of SSOS and trace equality, and the same holds true when
considering other programming constructions [14]. The burden of the proof is shifted to the coverage
checker. However, the use of generative grammars makes it possible to automate coverage checking.

4 Related Work

The original reports that introduced CLF [4, 15] include many applications, including SSOS of several
programming languages features. However, no meta-reasoning is developed.

Attempts to perform meta-reasoning within CLF have proved to be unsatisfactory. Watkins et al. [17]
define an encoding of theπ-calculus and correspondence assertions for it in CLF. Theydefine an ab-
straction relation that relates a concurrent computation with a sequence of events. However, due to lack
of trace types, it is not possible to state the abstraction relation. This means also that coverage is difficult
to establish. Schack-Nielsen [13] discusses the limitations of CLF to prove the equivalence between
small-step and big-step semantics of MiniML.

Simmons [14] introduced the notion of generative grammar that generalizes both context-free gram-
mars and regular worlds used in LF. He describes in detail theuse generative grammars and SSOS.
However, the proofs of safety are done only “on paper” since his framework is not expressive enough for
this task. This work is an attempt to define a logical framework to carry out the proofs described in [14].

Finally, let us mention our previous work on matching tracesin CLF [3] which provides the basis for
defining a moded operational semantics for Meta-CLF. We expect to strengthen the results given in [3]
by restricting the matching problem to traces produced using generative grammars.

5 Conclusions

We have developed a logical framework for meta-reasoning about specifications written in CLF. We
show a typical use of this framework by proving type preservation and progress for a small programming
language with a parallel semantics. Trace equality simplifies the proof as we do not have to worry about
proving properties about step interleavings during the parallel execution. However, the downside of this
approach is that coverage checking is more complicated thanin the sequential case.

For future work, an immediate objective is to complete the meta-theoretical study of Meta-CLF
itself. This involves proving the existence of canonical forms, type reconstruction of implicit arguments,
and totality checking (coverage and termination). Then, ofcourse, implementation is another obvious
objective.

This framework is well suited for the kind of proofs of safetywe developed in this paper and we
expect it to perform well for other concurrent and parallel programming constructions (e.g., futures,
communication). It will be interesting to see in what other domain we can use it. For example, semantics
of relaxed memory models, or correctness of program transformations in the presence of threads.
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