EPTCS 322

Proceedings of the
Combined 27th International Workshop on
Expressiveness in Concurrency

and 17th Workshop on
Structural Operational Semantics

Online, 31 August 2020

Edited by: Ornela Dardha and Jurriaan Rot

Published: 27th August 2020
DOI: 10.4204/EPTCS.322
ISSN: 2075-2180

Open Publishing Association

Table of Contents
Table Of CONENLSottt ettt et et e e e e e e e e e e e e i
Preface . . oo 1l

Ornela Dardha and Jurriaan Rot

Invited Presentation: Quantitative Algebraic Reasoning: an Overview.......................... 1
Giorgio Bacci

Invited Presentation: Divergence-Preserving Branching Bisimilarity 3
Bas Luttik
Invited Presentation: Multiparty Session Programming with Global Protocol Combinators. 12

Rumyana Neykova

Can determinism and compositionality coexistin RML?o .. 13
Davide Ancona, Angelo Ferrando and Viviana Mascardi

A process algebra with global variables. 33
Mark Bouwman, Bas Luttik, Wouter Schols and Tim A.C. Willemse

Reactive Temporal LOgiCttt et e e 51
Rob van Glabbeek

Substructural Observed Communication SEMANtICSttt ittt et et 69
Ryan Kavanagh

Correctly Implementing Synchronous Message Passing in the Pi-Calculus By Concurrent Haskell’s
MV arS .o 88
Manfred Schmidt-Schauf3 and David Sabel

ii

Preface

This volume contains the proceedings of EXPRESS/SOS 2020, the Combined 27th International Work-
shop on Expressiveness in Concurrency and the 17th Workshop on Structural Operational Semantics.
Following a long tradition, EXPRESS/SOS 2020 was held as one of the affiliated workshops of the 31st
International Conference on Concurrency Theory (CONCUR 2020), originally planned to be held in
Vienna, Austria. Due to the covid-19 pandemic, it was instead held online as a virtual workshop.

The EXPRESS/SOS workshop series aims at bringing together researchers interested in the formal
semantics of systems and programming concepts, and in the expressiveness of computational models. In
particular, topics of interest for the workshop include (but are not limited to):

e expressiveness and rigorous comparisons between models of computation (process algebras, event
structures, Petri nets, rewrite systems);

e expressiveness and rigorous comparisons between programming languages and models (distributed,
component-based, object-oriented, service-oriented);

e logics for concurrency (modal logics, probabilistic and stochastic logics, temporal logics and re-
source logics);

e analysis techniques for concurrent systems;

e theory of structural operational semantics (metatheory, category-theoretic approaches, congruence
results);

e comparisons between structural operational semantics and other formal semantic approaches;

e applications and case studies of structural operational semantics;

software tools that automate, or are based on, structural operational semantics.

This year, the Program Committee selected 6 submissions for inclusion in the scientific program -
five full papers and the following short paper:

e Process, Systems and Tests: Three Layers in Concurrent Computation, by Clément Aubert and
Daniele Varacca.

This volume contains revised versions of the given full papers, as well as (extended) abstracts asso-
ciated to the following three invited presentations, which nicely complemented the scientific program:

e Quantitative Algebraic Reasoning: an Overview, by Giorgio Bacci (Aalborg University, Denmark)
e Divergence-Preserving Branching Bisimilarity, by Bas Luttik (TU Eindhoven, The Netherlands)

o Multiparty Session Programming with Global Protocol Combinators, by Rumyana Neykova (Brunel
University London, UK)

We would like to thank the authors of the submitted papers, the invited speakers, the members of the
program committee, and their subreviewers for their contribution to both the meeting and this volume.
We also thank the CONCUR 2020 organizing committee for hosting the workshop. Finally, we would
like to thank our EPTCS editor Rob van Glabbeek for publishing these proceedings and his help during
the preparation.

Ornela Dardha and Jurriaan Rot,
August 2020

Program Committee

e Pedro R. D’ Argenio, University of Cordoba, Argentina

e Stephanie Balzer, Carnegie Mellon University, US

e Valentina Castiglioni, Reykjavik University, Iceland

e Ornela Dardha (co-chair), University of Glasgow, UK

e Mariangiola Dezani-Ciancaglini, University of Torino, Italy
e Rob van Glabbeek, Data61, CSIRO, Australia

e Sophia Knight, University of Minnesota Duluth, US

e Uwe Nestmann, TU Berlin, Germany

e Catuscia Palamidessi, Inria and Ecole Polytechnique, France
e Marco Peressotti, University of Southern Denmark

e Jorge A. Pérez, University of Groningen, The Netherlands

e Jurriaan Rot (co-chair), Radboud University, The Netherlands

e Ivano Salvo, Sapienza, Rome, Italy

Additional reviewers

e Johannes Aman Pohjola

e Frank Valencia

Quantitative Algebraic Reasoning: an Overview

Giorgio Bacci
Aalborg University, Denmark
Department of Computer Science

grbacci@cs.aau.dk

Some Context and Motivations. Moggi’s approach [6, 7] of incorporating computational effects in
higher-order functional programming languages via the use of monads posed the basis for a unified
category theoretic semantics for computational effects such as nondeterminism, probabilistic nonde-
terminism, side-effects, exceptions, etc. His semantics makes a careful systematic distinction between
computational effects and values. A computation may be pure, in which case it terminates and returns a
value, or effectful, in which case it performs a side-effect encapsulated into a monad structure.

The first programming language integrating this idea was Haskell, offering pre-built definitions in
its core library; but with the influence of functional programming into other paradigms, formulations of
monads (in spirit if not in name) can be found also in popular languages such as Python, Scala, and F#.

Moggi’s work was followed up by the program of Plotkin and Power [9, 8, 10] on understanding com-
putational effects as arising from operations and equations (see also the survey of Hyland and Power [3]).
The original insight by Plotkin and Power was that many computational effects are naturally described
by algebraic theories, and that computations should be described as operations on an algebra. The most
profound result in [9] is a generalisation of the correspondence between finitary monads and Lawvere
theories from Set to a category with finite products 4 and a strong monad 7 on %. This result char-
acterises generic algebraic effects, that is, computational effects described by operations and equations
and interpreted on categories possibly richer than Set. A key motivating example from [8] shows how
one is allowed to consider computational effects resulting from the solutions of recursive operations by
interpreting them in the category of w-cpo’s.

With the emergence of probabilistic programming, which is characterised by the use of probabilistic
nondeterminism as build-in computational effect, more emphasis has been put on quantitative reasoning.
One thinks in terms of “how close are two programs?” rather than “are they completely indistinguish-
able?”. This concept is captured by a metric and was first advocated in [2]. To address this need, Mardare
et al. [4] proposed a version of equational reasoning, which they call quantitative equational logic, that
captures such metric reasoning principles and, crucially, characterises algebraic effects on the category
of metric spaces.

Abstract. In this talk I will review the basic definitions, constructions and key results presented in
three works, [4, 5, 1], which constitute the first steps of the more ambitious the program of understanding
the algebraic properties of computational effects on categories enriched over (extended) metric spaces.
During the talk I will provide several motivating examples to offer a general pragmatic picture of how
algebraic reasoning works and how it can be used. Finally, I will conclude by presenting a list of open
problems and initial ideas on how to address them.

O. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in © G. Bacci
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020). This work is licensed under the
EPTCS 322, 2020, pp. 1-2, doi:10.4204/EPTCS.322.1 Creative Commons Attribution License.

Quantitative Algebraic Reasoning: an Overview

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Giorgio Bacci, Radu Mardare, Prakash Panangaden & Gordon D. Plotkin (2018): An Algebraic Theory of
Markov Processes. In: LICS, ACM, pp. 679-688, doi:10.1145/3209108.3209177.

Alessandro Giacalone, Chi-Chang Jou & Scott A. Smolka (1990): Algebraic Reasoning for Probabilistic
Concurrent Systems. In: Programming Concepts and Methods, IFIP TC2, North-Holland, pp. 443-458.
Martin Hyland & John Power (2007): The Category Theoretic Understanding of Universal Algebra: Lawvere
Theories and Monads. Electron. Notes Theor. Comput. Sci. 172, pp. 437-458, doi:10.1016/j.entcs.
2007.02.019.

Radu Mardare, Prakash Panangaden & Gordon D. Plotkin (2016): Quantitative Algebraic Reasoning. In:
LICS, ACM, pp. 700-709, doi:10.1145/2933575.2934518.

Radu Mardare, Prakash Panangaden & Gordon D. Plotkin (2017): On the axiomatizability of quantitative
algebras. In: LICS, IEEE Computer Society, pp. 1-12, d0i:10.1109/LICS.2017.8005102.

Eugenio Moggi (1988): The Partial Lambda Calculus. Ph.D. thesis, University of Edinburgh. College of
Science and Engineering. School of Informatics.

Eugenio Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 55-92, d0i:10.1016/
0890-5401(91)90052-4.

Gordon D. Plotkin & John Power (2001): Adequacy for Algebraic Effects. In: FoSSaCS, Lecture Notes in
Computer Science 2030, Springer, pp. 1-24, d0i:10.1007/3-540-45315-6_1.

Gordon D. Plotkin & John Power (2001): Semantics for Algebraic Operations. In: MFPS, Electronic Notes
in Theoretical Computer Science 45, Elsevier, pp. 332-345, doi:10.1016/S1571-0661(04)80970-8.

Gordon D. Plotkin & John Power (2002): Notions of Computation Determine Monads. In: FoSSaCS, Lecture
Notes in Computer Science 2303, Springer, pp. 342-356, d0i:10.1007/3-540-45931-6_24.

Divergence-Preserving Branching Bisimilarity

Bas Luttik

Eindhoven University of Technology
The Netherlands

s.p.luttik@tue.nl

This note considers the notion of divergence-preserving branching bisimilarity. It briefly surveys
results pertaining to the notion that have been obtained in the past one-and-a-half decade, discusses
its role in the study of expressiveness of process calculi, and concludes with some suggestions for
future work.

1 Introduction

Branching bisimilarity was proposed by van Glabbeek and Weijland as an upgrade of (strong) bisimilar-
ity that facilitates abstraction from internal activity [16]. It preserves the branching structure of processes
more strictly than Milner’s observation equivalence [21], which, according to van Glabbeek and Weij-
land, makes it, e.g., better suited for verification purposes. A case in point is the argument by Graf and
Sifakis that there is no temporal logic with an eventually operator that is adequate for observation equiv-
alence in the sense that two processes satisfy the same formulas if, and only if, they are observationally
equivalent [17]. The crux is that observation equivalence insufficiently takes into account the intermedi-
ate states of an internal computation. Indeed, branching bisimilarity requires a stronger correspondence
between the intermediate states of an internal computation.

Branching bisimilarity is also not compatible with a temporal logic that includes an eventually op-
erator, because it abstracts to some extent from divergence (i.e., infinite internal computations). Thus,
a further upgrade is necessary, removing the abstraction from divergence. De Nicola and Vaandrager
show that divergence-sensitive branching bisimilarity coincides with the equivalence induced by satis-
faction of formulas of the temporal logic CTL* y [6]. (CTL* [8] is an expressive state-based logic that
includes both linear time and branching time modalities; CTL* y refers to the variant of CTL* obtained
by omitting the next-state modality, which is incompatible with abstraction from internal activity.)

Divergence-sensitive branching bisimilarity still has one drawback when it comes to verification:
it identifies deadlock and livelock and, as an immediate consequence, is not compatible with parallel
composition. It turns out that the notion of divergence-preserving branching bisimilarity!, which is the
topic of this note, has all the right properties: it is the coarsest equivalence that is compatible with parallel
composition, preserves CTL* y formulas, and distinguishes deadlock and livelock [15]. Moreover, on
finite processes divergence-preserving branching bisimilarity can be decided efficiently [18].

In [16], a coloured-trace characterisation of divergence-preserving branching bisimilarity is provided.
In [13], relational and modal characterisations of the notion are given. For some time it was simply as-
sumed that these three characterisations of the notion coincide, but this was only proved in [14]. To
establish that the relational characterisation coincides with the coloured-trace and modal characterisa-
tions, it needs to be proved that the relational characterisation yields an equivalence relation that satisfies

IFor stylistic reasons we prefer the term “divergence-preserving branching bisimilarity” over “branching bisimilarity with
explicit divergence”, which is used in earlier articles on the topic.

O. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in © B. Luttik
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020). This work is licensed under the
EPTCS 322, 2020, pp. 3-11, doi:10.4204/EPTCS.322.2 Creative Commons Attribution License.

4 Divergence-Preserving Branching Bisimilarity

the so-called stuttering property, and this is surprisingly involved. A similar phenomenon is observed
in the proof that a rooted version of divergence-preserving branching bisimilarity is compatible with the
recursion construct X ._ [12]. Due to the divergence condition, Milner’s ingenious argument in [23] that
strong bisimilarity is compatible with recursion required several novel twists.

In this note we shall give a survey of results pertaining to divergence-preserving branching bisim-
ilarity that were obtained in the past one-and-a-half decade. in Section 2 we shall present and discuss
a relational characterisation of the notion. In Section 3 we comment on modal characterisations of the
notion, and discuss the relationship with the temporal logic CTL* y. In Section 4 we briefly discuss to
what extent the notion is compatible with familiar process algebraic operators. In Section 5, we explain
how it plays a role in expressiveness results. In Section 6 we arrive at some conclusions and mention
some ideas for future work.

2 Relational characterisation

We presuppose a set o7 ; of actions including a special element 7, and we presuppose a labelled transition
system (S, —) with labels from .27 ¢, i.e., S is a set of states and —> C S x .o ; X S is a transition relation
onS. Lets,s’ € S and o € o/ ;; we write s 25§ for (s,0,8") € —> and we abbreviate the statement
‘s %y s or(=7and s =) by s - s'. We denote by — the transitive closure of the binary relation
%5, and by — its reflexive-transitive closure. A process is given by a state s in a labelled transition
system, and encompasses all the states and transitions reachable from s.

Definition 1. A symmetric binary relation & on S is a branching bisimulation if it satisfies the following
condition for all 5,7 € S and @@ € &7 ;:

(T) ifs Ztand s -5 s’ for some state s’, then there exist states ¢’ and £/ such that t —» " “%5 ¢/, s Z 1"
and s’ Z 1.
We say that a branching bisimulation % preserves (internal) divergence if it satisfies the following con-
dition for all 5,7 € S:

(D) if s Z t and there is an infinite sequence of states (si)req such that s = sg, s SN Skr1 and sy Zt
for all k € w, then there is a state ¢’ such that t — 1 ¢/, and s, Z ¢’ for some k € ®.

States s and ¢ are divergence-preserving branching bisimilar (notation: s ﬁﬁ t) if there is a divergence-
preserving branching bisimulation & such that s % ¢.

The divergence condition (D) in the definition above is slightly weaker than the divergence condition

used in the relation characterisation of divergence-preserving branching bisimilarity presented in [13],
which actually requires that admits an infinite sequence of T-transitions and every state on this sequence
is related to some state on the infinite sequence of 7-transitions from s. Nevertheless, as is established
n [14], the notion of divergence-preserving branching bisimilarity defined here is equivalent to the one
defined in [13]. In [14] it is also proved that ﬁ? is an equivalence, that the relation ﬁ? is itself a
divergence-preserving branching bisimulation, and that it satisfies the so-called stuttering property: if
to SN -~-tn,sﬁ§toandsﬁﬁtn,thensﬁﬁtiforallogign.

Let us say that a state s is divergent if there exists an infinite sequence of states (sy)rce such that
s = so and s —> sk+1 for all k € @. It is a straightforward consequence of the definition that divergence-
preserving branching bisimilarity relates divergent states to divergent states only, i.e., that we have the
following proposition.

Proposition 2. Ifs ﬁﬁ t, then s is divergent only if t is divergent.

B. Luttik 5

Proof. Suppose that s ﬁﬁ t and s is divergent. Then there exists an infinite sequence of states (sx)kcw
such that s = sy and s — sk for all k € . We inductively construct an infinite sequence of states
(t¢)rcw such that t = to, t; SN tr+1, together with a mapping 0 : @ — @ such that s4 () ﬁﬁ t; for all
! € w;
e We define #) =7 and o(0) = 0; note that S(0) =S ﬁ% r=1.
e Suppose that the sequence (#/) ¢ and the mapping ¢ have been defined up to £. Then, in particular,
S (0) ﬁﬁ ty. We distinguish two cases:
If SG(0)+k ﬁﬁ t; for all k € w, then by (D) there exists 7,41 such that z, S to4+1 and SG(0)+k ﬁﬁ try1
for some k € @; we can then define o(¢/+1) =k.
Otherwise, there exists some k € @ such that s5(¢) 4« ﬁﬁ tr and Sg(p) 1kt 1 jﬁﬁ f. SINCe S (p) 4k SN
Sa(¢)+k+1 it follows by (T) that there exist #," and #;, | such that ¢, —»#," LN So(0)-+k ﬁﬁ t"

and $¢(¢) 441 <8 141. Clearly, we have that t; £t 1, s0 ty— " #,;1 and we can define 6({+1) =

c(l)+k+1.
From the existence of an infinite sequence of states (#;)¢c, such that =ty and # AN tp1 it follows that
t is divergent, as was to be shown. U

As the following example illustrates, however, a symmetric binary relation on S relating states that
satisfies (T) of Definition 1 and relates divergent states to divergent states only is not necessarily included
in a divergence-preserving branching bisimulation relation. In other words, a symmetric binary relation
on S that satisfies (T) and only relates divergent states to divergent states may relate states that are not
divergence-preserving branching bisimilar.

2 AN
- -

Figure 1: An example transition system illustrating that (D) cannot be replaced by the requirement that
Z relates divergent states to divergent states.

Example 3. Consider the transition system depicted in Figure 1. The symmetric closure of the relation
Z = {(s,1),(s1,t2),(s2,12)} satisfies (T) and it relates divergent states to divergent states only. It does
not, however, satisfy (D), for s % ¢ and defining s;, = s for all kK € @ we get an infinite sequence of states
(Sk)kew such that s 5 511 and s; Z 1 for all k € o, while there does not exist a #' such that t —* ¢ and
sk Z t' for some k € @. Note that s admits a complete path at which a is continuously (weakly) enabled,
whereas ¢ does not admit such a complete path.

3 Modal characterisations

As shown in [13], to get an (action-based) modal logic that is adequate for branching bisimilarity one
could take an adaptation of standard Hennessy-Milner logic replacing, for all actions o € &7; in the

6 Divergence-Preserving Branching Bisimilarity

usual unary may and must modalities (a) and [a] by a binary just-before modality a. A state s satisfies
the formula @ a v if, and only if, there exist states s” and s’ such that s —» s” = s’, @ holds in s” and ¥
holds in s’. To get an adequate logic for divergence-preserving branching bisimilarity, it suffices to add
a unary divergence modality A such that s satisfies A if, and only if, there exists an infinite sequence of
states (Sk)kee such that s — sp, sg SN Sk+1 and @ holds in sy for all k € ®.

Let & be the class of formulas generated by the following grammar:

p:=—¢ | N® | pag | Ap (e pc® & CD) .

We then have that states s and ¢ are divergence-proving branching bisimilar if, and only if, s and ¢
satisfy exactly the same formula in @ [14]. We may restrict the cardinality of @ in conjunctions to the
cardinality of the set of states S.

Example 4. Consider again the transition system depicted in Figure 1. States s and ¢ are not divergence-
preserving branching bisimilar. The formula A(T a T) (in which T abbreviates /\ 0) expresses the exis-
tence of a divergence on which the action a is continuously enabled. It is satisfied by state s, but not by
t.

There is also an intuitive correspondence between branching bisimilarity and the state-based temporal
logic CTL* y (CTL* without the next-state modality) [7]. The standard semantics of CTL* y is, however,
with respect to Kripke structures, in which states rather than transitions have labels and the transition
relation is assumed to be total. To formalise the correspondence, De Nicola and Vaandrager devised a
framework of translations between labelled transition systems and Kripke structures [6]. The main idea
of the translation from labelled transition systems to Kripke structures is that

1. every transition s —s 7 (a # T) is replaced by two transitions s —» 7, and t, —» 1, where 7, is a

fresh state that is labelled with {a};

.. T
2. every transition s —> ¢ gives rise to a transition s — ¢; and

3. for every state s without outgoing transitions (i.e., every deadlock state of the labelled transition
system) a transition s — s is added to satisfy the totality requirement of Kripke structures.

(7 t
S/\{a} /\t{a}

Cs Ju |

O O

Figure 2: Result of apply De Nicola and Vaandrager’s translation to the labelled transition system in
Figure 1.

Example 5. If we apply the translation sketched above to the labelled transition system depicted in
Figure 1, then we get the Kripke structure depicted in Figure 2. Note that by clause 3 of the translation
state s, gets a transition to itself, whereas it is a deadlock state in the orginal transition system. Clearly,
there is no CTL_y formula that distinguishes, e.g., between s; and s;, although in the labelled transition
system depicted in Figure 1 these states are not divergence-preserving branching bisimilar.

B. Luttik 7

De Nicola and Vaandrager propose a notion of divergence-sensitive branching bisimilarity on finite
LTSs and establish that two states in an LTS are divergence-sensitive branching bisimilar if, and only
if, in the Kripke resulting from the translation sketched above they satisfy the same CTL” y formulas.
Divergence-sensitive branching bisimilarity coincides with divergence-preserving branching bisimilarity
on deadlock-free LTSs. In fact, the only difference between divergence-sensitive branching bisimilarity
and divergence-preserving branching bisimilarity is that the latter distinguishes between deadlock and
livelock states, whereas the former does not.

To preserve the distinction between deadlock and livelock, a modified translation is proposed in [15],
obtained from the translation sketched above by replacing clause 3 by

3’. add a fresh state d labelled with {5}, and for every state s without outgoing transitions a transition
s —d.

Q I3
Sl/ N {a) tl/ \tz{a}

s J O
Sz\{z}/[2
)

Figure 3: Result of apply the deadlock preserving translation to the labelled transition system in Figure 1.

Example 6. Applying the modified translation on the labelled transition in Figure 1, we get the Kripke
structure in Figure 3. Note that s; does not satisfy the CTL* ,, formula EF §, while s, does.

Two states in a labelled transition system are divergence-preserving branching bisimilar if they satisfy
the same CTL* y formulas in the Kripke structure that results from the modified transition [15].

4 Congruence

An important reason to prefer divergence-preserving branching bisimilarity over divergence-sensitive
branching bisimilarity is that the former is compatible with parallel composition, whereas the latter is
not.

st t s1 I s :) T
al aJ U al
) Hl‘ 52 Sz”t/ :) T

Figure 4: Divergence-sensitive branching bisimilarity is not compatible with parallel composition.

8 Divergence-Preserving Branching Bisimilarity

Example 7. Consider the transition system in Figure 4. States s; |7 and s, || # represent the parallel
compositions of states s and ¢, and of states s, and ¢, respectively. Similarly, states sy || 7" and s, || 7/
represent the parallel compositions of states s; and ¢/, and of states s, and ', respectively. Recall that
divergence-sensitive branching bisimilarity does not distinguish deadlock (state #) and livelock (state
t"), so we have that ¢ and ¢ are divergence-sensitive branching bisimilar. States sy |7 and s || 7 are,
however, not divergence-sensitive branching bisimilar. Note that sy ||’ has a complete path on which a is
continuously enabled, whereas s; ||t does not have such a complete path, and so these two states do not
satisfy the same CTL” y formulas.

Divergence-preserving branching bisimilarity is the coarsest equivalence included in divergence-
sensitive branching bisimilarity that is compatible with parallel composition [15]. Hence, it is also the
coarsest congruence for parallel composition relating only processes that satisfy the same CTL” 5 for-
mulas.

It is well-known that branching bisimilarity is not compatible with non-deterministic choice, and
that the coarsest behavioural equivalence that is included in branching bisimilarity and that is compatible
with non-deterministic choice, is obtained by adding a so-called root condition. The same holds for
divergence-preserving branching bisimilarity.

Definition 8. Let % be a divergence-preserving branching bisimulation. We say that & satisfies the root
condition for s and t if, whenever

(R1) if s -% s’ for some state s’, then there exists a state ¢’ such that =+ ¢ and s’ Z '.
(R2) if t -5 ¢ for some state 7, then there exists a state s” such that s — s" and s’ Z 1.

States s and t are rooted divergence-preserving branching bisimilar if there is a divergence-preserving
branching bisimulation relation Z satisfying the root condition for s and ¢ such that that s % t.

In [11], formats for transition system specifications are presented that guarantee that divergence-
preserving branching bisimilarity and its rooted variant are compatible with the operators defined by the
transition system specification. These formats relax the requirements of the branching bisimulation and
rooted branching bisimulation formats of [10]. The relaxation of the formats is meaningful: the process-
algebraic operations for priority [1] and sequencing [5, 4, 3], with which (rooted) branching bisimilarity
is not compatible, are in the rooted divergence-preserving branching bisimulation format. So, in contrast
to its divergence-insensitive variant, rooted divergence-preserving branching bisimilarity is compatible
with priority and sequencing.

The structural operational rule for the recursion operator uX._, which was considered in the context
of observation equivalence by Milner [22] and in the context of divergence-sensitive variants of observa-
tion equivalence by Lohrey, D’ Argenio and Hermanns [19], is not in the format for rooted divergence-
preserving branching bisimilarity. Nevertheless, rooted divergence preserving branching bisimilarity is
compatible also with this operator [12]. The proof of this fact requires an adaption of the up-to technique
used by Milner in his argument that (strong) bisimilarity is compatible with recursion [23].

S Expressiveness of process calculi

Phillips showed that abstraction from divergence can be exploited to prove that every recursively enu-
merable transition system is branching bisimilar to a boundedly branching computable transition sys-
tem [25]%. In contrast, there exist recursively enumerable transition systems that are not divergence-

ZPhillips actually claimed the correspondence modulo observation equivalence, but it is easy to see that his proof also works
modulo branching bisimilarity.

B. Luttik 9

preserving branching bisimilar to a computable transition system (cf., e.g., Example 3.6 in [2]). Hence,
in a theory that aims to integrate computability and concurrency, divergence preservation is important.

In [2], interactivity is added to Turing machines by associating an action with every computation
step. This so-called reactive Turing machine has a transition system semantics and can be studied from
a concurrency-theoretic perspective. A transition system is called executable if it is behaviourally equiv-
alent to the transition system associated with a reactive Turing machine. The notion of executability
provides a way to characterise the absolute expressiveness of a process calculus. If every transition
system that can be specified in the calculus is executable, then the calculus is said to be executable. Con-
versely, if every executable transition system can be specified in the calculus, then the calculus is said to
be behaviourally complete.

A calculus with constants for deadlock and successful termination, unary action prefixes, binary
operations for non-deterministic choice, sequencing and ACP-style parallel composition, iteration and
nesting is both executable and behaviourally complete up to divergence-preserving branching bisimilarity
[3]. The m-calculus is also behaviourally complete up to divergence-preserving branching bisimilarity.
Since it allows the specification of transition systems with unbounded branching, it is, however, not
executable up to divergence-preserving branching bisimilarity; it is nominally orbit-finitely executable
up to the divergence-insensitive variant of branching bisimilarity [20].

The aforementioned results illustrate the role of divergence in the consideration of the absolute ex-
pressiveness of process calculi. Preservation of divergence is also widely accepted as an important crite-
rion when comparing the relative expressiveness of process calculi [24].

6 Conclusions

We have discussed ther relational and modal characterisations of divergence-preserving branching bisim-
ilarity, commented on its compatibility with respect to process algebraic operations and on its role in the
study of the absolute expressiveness. We conclude by briefly mentioning some directions for future work.

Sound and complete axiomatisations for the divergence-sensitive spectrum of observation congru-
ence for basic CCS with recursion are provided in [19]. The congruence result in [12] can serve as
a stepping stone for providing similar sound and complete axiomatisations for divergence-preserving
branching bisimilarity. Then, it would also be interesting to consider the axiomatisation of divergence-
preserving branching bisimilarity for full CCS with recursion, although that would first require a non-
trivial extension of the congruence result.

Ad hoc up-to techniques for divergence-preserving branching bisimilarity have already been used,
e.g., in the congruence proof in [12] and in proof that the m-calculus is behaviourally complete [20].
Recently, several more generic up-to techniques for branching bisimilarity were proved sound [9]. An in-
teresting direction for future work would be to consider extending those up-to techniques for divergence-
preserving branching bisimilarity too.

References

[1] J. C. M. Baeten, J. A. Bergstra & J. W. Klop (1986): Syntax and defining equations for an interrupt mecha-
nism in process algebra. Fundamenta Informaticae 9(2), pp. 127-167.

[2] J.C. M. Baeten, B. Luttik & P. van Tilburg (2013): Reactive Turing machines. Inf. Comput. 231, pp. 143-166,
doi:10.1016/j.1c.2013.08.010.

10

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Divergence-Preserving Branching Bisimilarity

J. C. M. Baeten, B. Luttik & F. Yang (2017): Sequential Composition in the Presence of Intermediate Ter-
mination (Extended Abstract). In K. Peters & S. Tini, editors: Proceedings Combined 24th International
Workshop on Expressiveness in Concurrency and 14th Workshop on Structural Operational Semantics, EX-
PRESS/SOS 2017, Berlin, Germany, 4th September 2017, EPTCS 255, pp. 1-17,doi:10.4204/EPTCS . 255.
1.

A. Belder, B. Luttik & J. C. M. Baeten (2019): Sequencing and Intermediate Acceptance: Axiomatisation
and Decidability of Bisimilarity. In M. Roggenbach & A. Sokolova, editors: 8th Conference on Algebra
and Coalgebra in Computer Science, CALCO 2019, June 3-6, 2019, London, United Kingdom, LIPIcs 139,
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, pp. 11:1-11:22, do0i:10.4230/LIPIcs.CALC0.2019.
11.

B. Bloom (1994): When is Partial Trace Equivalence Adequate? Formal Asp. Comput. 6(3), pp. 317-338,
doi:10.1007/BF01215409.

R. De Nicola & F. W. Vaandrager (1995): Three Logics for Branching Bisimulation. Journal of the ACM
42(2), pp- 458-487,d0i:10.1145/201019.201032.

E. A. Emerson & E. M. Clarke (1982): Using Branching Time Temporal Logic to Synthesize Synchronization
Skeletons. Science of Computer Programming 2(3), pp. 241-266, doi:10.1016/0167-6423(83)90017-5.

E. A. Emerson & J.Y. Halpern (1986): ‘Sometimes’ and ‘Not Never’ revisited: on branching time versus
linear time temporal logic. Journal of the ACM 33(1), pp. 151-178, d0i:10.1145/4904 .4999.

R. Erkens, J. Rot & B. Luttik (2020): Up-to Techniques for Branching Bisimilarity. In A. Chatzigeorgiou,
R. Dondi, H. Herodotou, C. A. Kapoutsis, Y. Manolopoulos, G. A. Papadopoulos & F. Sikora, editors: SOF-
SEM 2020: Theory and Practice of Computer Science - 46th International Conference on Current Trends in
Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020, Proceedings,
Lecture Notes in Computer Science 12011, Springer, pp. 285-297, doi:10.1007/978-3-030-38919-2_24.

W. J. Fokkink, R. J. van Glabbeek & P. de Wind (2012): Divide and congruence: From decomposition of
modal formulas to preservation of branching and n-bisimilarity. Inf. Comput. 214, pp. 59-85, do0i:10.1016/
j.1c.2011.10.011.

W. J. Fokkink, Glabbeek R. J. van & B. Luttik (2019): Divide and congruence II1: From decomposition of
modal formulas to preservation of stability and divergence. Inf. Comput. 268, doi:10.1016/j.1c.2019.
104435.

R. J. van Glabbeek, B. Luttik & L. Spaninks (2020): Rooted Divergence-Preserving Branching Bisimilarity
is a Congruence. CoRR abs/1801.01180. Available at http://arxiv.org/abs/1801.01180. Submitted.

R. J. van Glabbeek (1993): The Linear Time — Branching Time Spectrum II; The semantics of sequential
systems with silent moves (extended abstract). In E. Best, editor: Proceedings 4” International Conference
on Concurrency Theory, CONCUR’93, Hildesheim, Germany, August 1993, LNCS 715, Springer, pp. 6681,
doi:10.1007/3-540-57208-2_6.

R. J. van Glabbeek, B. Luttik & N. Trcka (2009): Branching Bisimilarity with Explicit Divergence. Funda-
menta Informaticae 93(4), pp. 371-392, d0i:10.3233/FI-2009-109.

R.J. van Glabbeek, B. Luttik & N. Tré¢ka (2009): Computation Tree Logic with Deadlock Detection. Logical
Methods in Computer Science 5(4), doi:10.2168/LMCS-5(4:5)2009.

R. J. van Glabbeek & W. P. Weijland (1996): Branching time and abstraction in bisimulation semantics.
Journal of the ACM 43(3), pp. 555-600, doi:10.1145/233551 .233556.

S. Graf & J. Sifakis (1987): Readiness Semantics for Regular Processes with Silent Actions. In T. Ottmann,
editor: Automata, Languages and Programming, 14th International Colloquium, ICALP87, Karlsruhe, Ger-
many, July 13-17, 1987, Proceedings, Lecture Notes in Computer Science 267, Springer, pp. 115-125,
doi:10.1007/3-540-18088-5_10.

J. F. Groote, D. N. Jansen, J. J. A. Keiren & A. J. Wijs (2017): An O(m log n) Algorithm for Computing Stut-
tering Equivalence and Branching Bisimulation. ACM Trans. Comput. Logic 18(2), doi:10.1145/3060140.

B. Luttik 11

[19]

(20]

(21]

(22]

(23]

(24]

[25]

M. Lohrey, P. R. D’Argenio & H. Hermanns (2005): Axiomatising divergence. Inf. Comput. 203(2), pp.
115-144, doi:10.1016/j.1c.2005.05.007.

B. Luttik & F. Yang (2020): The w-Calculus is Behaviourally Complete and Orbit-Finitely Executable. CORR
abs/1410.4512v8. Available at http://arxiv.org/abs/1410.4512.

R. Milner (1980): A Calculus of Communicating Systems. Lecture Notes in Computer Science 92, Springer,
doi:10.1007/3-540-10235-3.

R. Milner (1989): A Complete Axiomatisation for Observational Congruence of Finite-State Behaviors. Inf.
Comput. 81(2), pp. 227-247,doi:10.1016/0890-5401 (89) 90070-9.

R. Milner (1990): Operational and Algebraic Semantics of Concurrent Processes. In Jan van Leeuwen,
editor: Handbook of Theoretical Computer Science (Vol. B), MIT Press, Cambridge, MA, USA, pp. 1201-
1242. Available at http://dl.acm.org/citation.cfm?id=114891.114910.

K. Peters (2019): Comparing Process Calculi Using Encodings. InJ. A. Pérez & J. Rot, editors: Proceedings
Combined 26th International Workshop on Expressiveness in Concurrency and 16th Workshop on Structural
Operational Semantics, EXPRESS/SOS 2019, Amsterdam, The Netherlands, 26th August 2019, EPTCS 300,
pp. 19-38, doi:10.4204/EPTCS .300.2.

I. Phillips (1993): A Note on Expressiveness of Process Algebra. In G. L. Burn, S. J. Gay & M. Ryan, edi-
tors: Proceedings of the First Imperial College Department of Computing Workshop on Theory and Formal
Methods, Isle of Thorns Conference Centre, Chelwood Gate, Sussex, UK, 29-31 March 1993, Workshops in
Computing, Springer, pp. 260-264.

Multiparty Session Programming with Global Protocol
Combinators

Rumyana Neykova

Brunel University London

Multiparty Session Types (MPST) is a typing discipline for communication protocols. It ensures
the absence of communication errors and deadlocks for well-typed communicating processes. The
state-of-the-art implementations of the MPST theory rely on (1) runtime linearity checks to ensure
correct usage of communication channels and (2) external domain-specific languages for specifying
and verifying multiparty protocols.

In this talk I will present a library for programming with global combinators — a set of func-
tions for writing and verifying multiparty protocols in OCaml, that overcomes the above limitations.
Local behaviours for all processes in a protocol are inferred at once from a global combinator. We
formalise global combinators and prove a sound realisability of global combinators — a well-typed
global combinator derives a set of local types, by which typed endpoint programs can ensure type
and communication safety. Our approach enables fully-static verification and implementation of the
whole protocol, from the protocol specification to the process implementations, to happen in the
same language.

I will show the implementation in OCaml and will discuss its expressive power and performance.
Our work has several distinctive features. It is the first fully-static MPST implementation; it realises
multiparty communication over binary channels; it is lightweight — verification of protocols is re-
duced to type checking; and expressive — we have implemented a plethora of protocols (e.g OAuth,
DNS, SMTP). This talk is based on a joint work with Keigo Imai, Nobuko Yoshida, and Shoji Yuen.

O. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in © R.Neykova
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020). This work is licensed under the
EPTCS 322, 2020, pp. 12-12, doi:10.4204/EPTCS.322.3 Creative Commons Attribution License.

Can determinism and compositionality coexist in RML?

Davide Ancona Viviana Mascardi Angelo Ferrando
DIBRIS, University of Genova, Italy University of Manchester, UK
{Davide.Ancona,Viviana.Mascardi}@unige.it angelo.ferrando@manchester.ac.uk

Runtime verification (RV) consists in dynamically verifying that the event traces generated by single
runs of a system under scrutiny (SUS) are compliant with the formal specification of its expected
properties. RML (Runtime Monitoring Language) is a simple but expressive Domain Specific Lan-
guage for RV; its semantics is based on a trace calculus formalized by a deterministic rewriting system
which drives the implementation of the interpreter of the monitors generated by the RML compiler
from the specifications. While determinism of the trace calculus ensures better performances of the
generated monitors, it makes the semantics of its operators less intuitive. In this paper we move
a first step towards a compositional semantics of the RML trace calculus, by interpreting its basic
operators as operations on sets of instantiated event traces and by proving that such an interpretation
is equivalent to the operational semantics of the calculus.

1 Introduction

RV [35, 27, 13] consists in dynamically verifying that the event traces generated by single runs of a SUS
are compliant with the formal specification of its expected properties.

The RV process needs as inputs the SUS and the specification of the properties to be verified, usually
defined with either a domain specific (DSL) or a programming language, to denote the set of valid event
traces; RV is performed by monitors, automatically generated from the specification, which consume
the observed events of the SUS, emit verdicts and, in case they work online while the SUS is executing,
feedback useful for error recovery.

RV is complimentary to other verification methods: analogously to formal verification, it uses a
specification formalism, but, as opposite to it, scales well to real systems and complex properties and it
is not exhaustive as happens in software testing; however, it also exhibits several distinguishing features:
it is quite useful to check control-oriented properties [2], and offers opportunities for fault protection
when the monitor runs online. Many RV approaches adopt a DSL language to specifiy properties to
favor portability and reuse of specifications and interoperability of the generated monitors and to provide
stronger correctness guarantees: monitors automatically generated from a higher level DSL are more
reliable than ad hoc code implemented in a ordinary programming language to perform RV.

RML! [28] is a simple but expressive DSL for RV which can be used in practice for RV of complex
non Context-Free properties, as FIFO properties, which can be verified by the generated monitors in
time linear in the size of the inspected trace; the language design and implementation is based on previ-
ous work on trace expressions and global types [7, 17, 4, 9], which have been adopted for RV in several
contexts. Its semantics is based on a trace calculus formalized by a rewriting system which drives the im-
plementation of the interpreter of the monitors generated by the RML compiler from the specifications; to
allow better performances, the rewriting system is fully deterministic [11] by adopting a left-preferential
evaluation strategy for binary operators and, thus, no monitor backtracking is needed and exponential

Ihttps://rmlatdibris.github.io

0. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in © D. Ancona, A. Ferrando, and V. Mascardi
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020). This work is licensed under the
EPTCS 322, 2020, pp. 13-32, doi:10.4204/EPTCS.322.4 Creative Commons Attribution License.

14 Can determinism and compositionality coexist in RML?

explosion of the space allocated for the states of the monitor is avoided. A similar strategy is followed
by mainstream programming languages in predefined libraries for regular expressions for efficient incre-
mental matching of input sequences, to avoid the issue of Regular expression Denial of Service (ReDoS)
[24]: for instance, given the regular expression a?(ab)? (optionally a concatenated with optionally ab)
and the input sequence ab, the Java method lookingAt () of class java.util.regex.Matcher matches
a instead of the entire input sequence ab because the evaluation of concatenation is deterministically
left-preferential.

As explained more in details in Section 5, with respect to other existing RV formalisms, RML has
been designed as an extension of regular expressions and deterministic context-free grammars, which
are widely used in RV because they are well-understood among software developers as opposite to other
more sophisticated approaches, as temporal logics. As shown in previous papers [7, 17, 4, 9], the calculus
at the basis of RML allows users to define and efficiently check complex parameterized properties and it
has been proved to be more expressive than LTL [8].

Unfortunately, while determinism ensures better performances, it makes the compositional semantics
of its operators less intuitive; for instance, the example above concerning the regular expression a? (ab) ?
with deterministic left-preferential concatenation applies also to RML, which is more expressive than
regular expressions: the compositional semantics of concatenation does not correspond to standard lan-
guage concatenation, because a? and (ab) ? denote the formal languages {A,a} and {1, ab}, respectively,
where A denotes the empty string, while, if concatenation is deterministically left-preferential, then the
semantics of a?(ab)? is {A,a,aab} which does not coincide with the language {A,a,ab,aab} obtained
by concatenating {A,a} with {1,ab}. In Section 4 we show that the semantics of left-preferential con-
catenation can still be given compositionally, although the corresponding operator is more complicate
than standard language concatenation. Similar results follow for the other binary operators of RML
(union, intersection and shuffle); in particular, the compositional semantics of left-preferential shuffle is
more challenging. Furthermore, the fact that RML supports parametricity makes the compositional se-
mantics more complex, since traces must be coupled with the corresponding substitutions generated by
event matching. To this aim, as a first step towards a compositional semantics of the RML trace calculus,
we provide an interpretation of the basic operators of the RML trace calculus as operations on sets of
instantiated event traces, that is, pairs of trace of events and substitutions computed to bind the variables
occurring in the event type patterns used in the specifications and to associate them with the data values
carried by the matched events. Furthermore we prove that such an interpretation is equivalent to the
original operational semantics of the calculus based on the deterministic rewriting system.

The paper is structured as follows: Section 2 introduces the basic definitions which are used in the
subsequent technical sections, Section 3 formalizes the RML trace calculus and its operational semantics,
while Section 4 introduces the semantics based on sets of instantiated event traces and formally proves its
equivalence with the operational semantics; finally, Section 5 is devoted to the related work and Section 6
draws conclusions and directions for further work. For space limitations, some proof details can be found
in the extended version [10] of this paper.

2 Technical background
This section introduces some basic definitions and propositions used in the next technical sections.

Partial functions: Let f: D — C be a partial function; then dom(f) C D denotes the set of elements
d € Ds.t. f(d) is defined (hence, f(d) € C).

D. Ancona, A. Ferrando, and V. Mascardi 15

A partial function over natural numbers f:N — N, with N C N, is strictly increasing iff for all
ni,ny € dom(f), n; < ny implies f(n;) < f(n2). From this definition one can easily deduce that a strictly
increasing partial function over natural numbers is always injective, and, hence, it is bijective iff it is
surjective.

Proposition 2.1 Let f:N — N, with N C N, be a strictly increasing partial function. Then for all
ni,ny € dom(f), if f(m) < f(n2), then ny < ny.

Proposition 2.2 Let f:N — N, with N C N, be a strictly increasing partial function satisfying the fol-
lowing conditions:

1. f is surjective (hence, bijective);
2. foralln €N, ifn+1 € dom(f), then n € dom(f);
3. forallneN, ifn+1€N, thenn € N;
Then, for alln € N, if n € dom(f), then f(n) = n, hence f is the identity over dom(f), and dom(f) = N.

Event traces: Let & denotes a possibly infinite set & of events, called the event universe. An event
trace over the event universe & is a partial function : N — & s.t. foralln € N, if n4 1 € dom(é), then
n € dom(é). We call ¢ finitelinfinite iff dom(e) is finite/infinite, respectively; when é is finite, its length ||
coincides with the cardinality of dom(¢é), while |é| is undefined for infinite traces €. From the definitions
above one can easily deduce that if € is finite, then dom(e) = {n € N | n < |e|}. We denote with A the
unique trace over & s.t. |A| = 0; when not ambiguous, we denote with e the trace € s.t. |e] = 1 and
e(0) =e.

For simplicity, in the rest of the paper we implicitly assume that all considered event traces are
defined over the same event universe.

Concatenation: The concatenation é; - &, of event trace &, and é, is the trace e s.t.
e if 21 is infinite, then & = &y;
e if &) is finite, then é(n) = &;(n) for all n € dom(e,), é(n+|e,|) = ex(n) for all n € dom(é,), and if
&, is finite, then dom(é) = {n | n < |&|| +|e2|}.
From the definition above one can easily deduce that A is the identity of -, and that &, - &, is infinite iff
) or &, is infinite. The trace &) is a prefix of &, denoted with &; <1 &, iff there exists € s.t. &) -&=¢&,. If

T and T, are two sets of event traces over &, then T - T is the set {e€; - &, | &| € T1,e, € T,}. We write
€1 < T to mean that there exists &, € T s.t. &; < é.

Shuffle: The shuffle €| | &, of event trace €; and &, is the set of traces T s.t. € € T iff dom(é) can be
partitioned into N; and N, in such a way that there exist two strictly increasing and bijective? partial
functions fi :dom(e;) — Ny and f, :dom(é;) — N; s.t.
el (n1) = é(f] (I’l])) and e_z(nz) = e_(fz(l’lz)), for all n; € dom(é1), np € dom(éz).
From the definition above, the definition of A and Proposition 2.2 one can deduce that A |¢ =¢é|A = {¢é};
it is easy to show that for all € € €, | @,, € is infinite iff €; or &; is infinite, and |e| = n iff |é,| = n;,
and n = n; +ny.
If 71 and T are two sets of event traces over &, then T; | T3 is the set Uy, c7y 5,e17, (€1 | 2).

6_2‘ =np

2 Actually, the sufficient condition is surjectivity, but bijectivity can be derived from the fact that the functions are strictly
increasing over natural numbers.

16 Can determinism and compositionality coexist in RML?

Left-preferential shuffle: The left-preferential shuffle €; .| &, of event trace ¢, and & is the set of
traces T C ;| &, s.t. € € T iff dom(€) can be partitioned into N; and N, in such a way that there exist
two strictly increasing and bijective partial functions f| :dom(e;) — N; and f> :dom(é;) — Ny s.t.

e 2 (nl) = é(f] (I’l])) and e_z(nz) = e_(fz(l’lz)), for all n; € dOI’n(é]), np € dom(e‘z);
o for all ny € dom(e,), if m = min{n; € dom(e) | f2(n2) < fi(n1)}, then &, (m) # é(ny).

In the definition above, if® {n| € dom(&)) | fo(n2) < fi(n1)} = 0, then the second condition trivially
holds.

As an example, if we have two traces of events &, = e; - e, and &, = e; - e3, by applying the left-
preferential shuffle we obtain the set of traces &) .|, = {e;-ex-ex-e3,e2-€3-€1-€2,e2-€1-€3-€2,€3 -
e1 - ey -e3}. With respect to €| | &, the trace e - e - €3 - e has been excluded, since this can be obtained
only when the first occurrence of e, belongs to &;; formally, this correponds to the functions f;: {0,1} —
{0,3} and f,:{0,1} — {1,2} s.t. £1(0) =0, f1(1) =3, £(0) =1, f2(1) = 2, which satisfy the first item
of the definition, but not the second, because min{n; € {0,1} | /2(0) =1< fi(n)} =1ande;(1) =e, =
,(0); the functions f] and f} s.t. f{(0) =0, f{(1) =1, f3(0) = 3, f3(1) = 2 satisfy both items, but f} is
not strictly increasing.

Generalized left-preferential shuffle: Given a set of event traces 7', the generalized left-preferential
shuffle €, .| &, of event trace €| and &, w.r.t. T is the set of traces T’ C & .| &, s.t. & € T" iff dom(é) can
be partitioned into N; and N, in such a way that there exist two strictly increasing and bijective partial
functions f; :dom(e;) — N; and f; :dom(é;) — N; s.t.

e ¢ (nl) = E(fl (I’Ll)) and e_z(nz) = e_(fz(nz)), for all n; € dom(él), np € dom(e_z);

e for all ny € dom(e,), if m = min{n; € dom(e) | f>(n2) < fi(n1)}, then & (m) # é&;(ny) for all
¢ €T st.méedom(e).

From the definitions of the shuffle operators above one can easily deduce that €; . |p e, = €; | &, and
el e|{e'1} @, = €] | &, for all event traces €;, €. This generalisation of the left-preferential shuffle is
needed to define the compositional semantics of the shuffle in Section 4. Let us consider 71 = {e; - €2, €3 -
es} and Tr = {e; - es}; one might be tempted to define 77 | T> asthe set {¢ | &) € T1,é; € Tr,e € &) | ér},
WhiChCOI‘I‘CSpOHdS to {81 c€)°€1°€5,61°€1°€2°€65,61°€1°€5-€2,63:€4°€1°€5,3°€1°€4°€5,63-€1-€5-€4,€]"
es-e3-eq4,e1-€3-€4-€5,€] - €3-es-eq4}. But, the last three traces, where e; is consumed from 7, as first
event, are not correct, because the event e; in 77 must take the precedence. Thus, the correct definition is
givenby {e | e, € T1,é; € Tr,é € €| |1, e}, which does not contain the three traces mentioned above.

3 The RML trace calculus

In this section we define the operational semantics of the trace calculus on which RML is based on.
An RML specification is compiled into a term of the trace calculus, which is used as an Intermediate
Representation, and then a SWI-Prolog* monitor is generated; its execution employs the interpreter of
the trace calculus, whose SWI-Prolog implementation is directly driven by the reduction rules defining
the labeled transition system of the calculus.

Syntax. The syntax of the calculus is defined in Figure 1. The main basic building block of the calculus

3This happens iff in € all events of &, precede position n,, hence, event &, (1,).
“http://www.swi-prolog.org/

D. Ancona, A. Ferrando, and V. Mascardi 17

v ou= kv, keved | v va) (data value)
b = x|l|{ki:b1,...,kn:by} | [b1,...,by] (basic data expression)
0 == t(by,...,b,) (event type pattern)
t = € (empty trace)
7] (single event)
|t -t (concatenation)
|t Atp (intersection)
|t Vi (union)
|t | (shuffle)
| {let x; 1} (parametric expression)

Figure 1: Syntax of the RML trace calculus: 0 is defined inductively, ¢ is defined coinductively on the
set of cyclic terms.

is provided by the notion of event type pattern, an expression consisting of a name 7 of an event type,
applied to arguments which are basic data expressions denoting either variables or the data values (of
primitive, array, or object type) associated with the events perceived by the monitor. An event type is a
predicate which defines a possibly infinite set of events; an event type pattern specifies the set of events
that are expected to occur at a certain point in the event trace; since event type patterns can contain
variables, upon a successful match a substitution is computed to bind the variables of the pattern with the
data values carried by the matched event.

RML is based on a general object model where events are represented as JavaScript object literals;
for instance, the event type open(fd) of arity 1 may represent all events stating ‘function call fs.open
has returned file descriptor fd’ and having shape {event: >func_post’, name:’fs.open’, res:fd}. The
argument fd consists of the file descriptor (an integer value) returned by a call to fs.open. The definition
is parametric in the variable fd which can be bound only when the corresponding event is matched with
the information of the file descriptor associated with the property res; for instance, open(42) matches
all events of shape {event:’func_post’, name:’fs.open’, res:42}, that is, all returns from call to
fs.open with value 42.

Despite RML offers to the users the possibility to define the event types that are used in the specifi-
cation, for simplicity the calculus is independent of the language used to define event types; correspond-
ingly, the definition of the rewriting system of the calculus is parametric in the relation match assigning
a semantics to event types (see below).

A specification is represented by a trace expression ¢ built on top of the constant € (denoting the
singleton set with the empty trace), event type patterns 6 (denoting the sets of all traces of length 1
with events matching), the binary operators (able to combine together sets of traces) of concatenation
(juxtaposition), intersection (A), union (V) and shuffle (|), and a let-construct to define the scope of
variables used in event type patterns.

Differently from event type patterns, which are inductively defined terms, trace expressions are as-
sumed to be cyclic (a.k.a. regular or rational) [23, 29, 5, 6] to provide an abstract support to recursion,
since no explicit constructor is needed for it: the depth of a tree corresponding to a trace expression is
allowed to be infinite, but the number of its different subtrees must be finite. This condition is proved to
be equivalent [23] to requiring that a trace expression can always be defined by a finite set® of possibly
recursive syntactic equations.

5The internal representation of cyclic terms in SWI-Prolog is indeed based on such approach.

18 Can determinism and compositionality coexist in RML?

o e FE(t) FE@m) o} oorD FE(t) corn FE(t)
e- e-al ope{|,, e-or-l) ———— e-or-r)——————
FE(S) |—E(I1 0pt2> |—E(I1\/t2) I—E(ll\/l‘z)
- E(r) n5to b hSto
(e-par) ——————— (single) ——5—— o=match(e,0) (or-1) z (or-r) z
= E({letx; 1}) 06— &0 nVt —1;0 nVt —th;o
Hh 5t S0 HSt)0 HhA hSto
(and) - 6=01U0y (shuffle-) ———————— (shuffle-n) ——————=—
nAL =1 Aty 0 t|n =t |n;o n|n—=t|to
nsto n4 nstio t 510
(cat—l)le—l’ (cat—r)# FE(r;) (par-t) Z ’ xEdom(o)
t -ty —=1]-0;0 -ty >0 {letx; t} — o0,
e e e
t—t;0 t t
(par-f) z x¢dom(c) (n-€) 7 (n-single) — match(e,0) undef (n—or)M
{letx;t} = {letx; #'}; 0 £ 6 A H Vit A
e e e e
t t 1 —=1;01 b —15;,0,
(n—and—l)liﬂ (n—and—r)277ée (n-and) 1 ” 2 01Uoy undef
[1/\t274> tl/\t27/-> t1/\l274>
e, e e e e e
hrA b as hrA b 17
(n-shuffle) e — (n-cat-1) 7 FE(t;) (n-cat-r) EE— (n-par) I ———
|t A ty -t ty-th {letx;1} 4

Figure 2: Transition system for the trace calculus.

Since event type patterns are inductive terms, the definition of free variables for them is standard.

Definition 3.1 The set of free variables pfv(0) occurring in an event type pattern 0 is inductively defined
as follows:

pfv(x)={x} pH(l)=0
pf(t(bi,....bn)) = pf({ki:b,... .kn:bn}) = pfo([b1,. .., ba]) = Uiz .2V (i)

Given their cyclic nature, a similar inductive definition of free variables for trace expressions does
not work; for instance, if t =open (fd) -¢, a definition of fv given by induction on trace expressions would
work only for non-cyclic terms and would be undefined for fv(¢). Unfortunately, neither a coinductive
definition could work correctly since the set S returned by fv(¢) has to satisfy the equation S = {fd} US
which has infinitely many solutions; hence, while an inductive definition of fv leads to a partial function
which is undefined for all cyclic terms, a coinductive definition results in a non-functional relation fv;
luckily, such a relation always admits the “least solution” which corresponds to the intended semantics.

Fact 3.1 Let p be the predicate on trace expressions and set of variables, coinductively defined as fol-

lows:
p(,S) p(t1,81) p(12,82)
A o) fv(e):S €{|,~,A,V}
p(e.0) p(6.5)" p({letxt}.S\{x}) plhiopn, 5108y 7
Then, for any trace expression t, if L= \{S | p(¢,S) holds}, then p(t,L) holds.
Proof: By case anaysis on 7 and coinduction on the definition of p(z,S). (]

Definition 3.2 The set of free variables fv(t) occurring in a trace expression is defined by fv(t) = ({S |
p(t,S) holds}.

D. Ancona, A. Ferrando, and V. Mascardi 19

Semantics. The semantics of the calculus depends on three judgments, inductively defined by the
inference rules in Figure 2. Events e range over a fixed universe of events &. The judgment - E(r)
is derivable iff ¢ accepts the empty trace A and is auxiliary to the definition of the other two judgments
11 = ;0 and 1 -; the rules defining it are straightforward and are independent from the remaining
judgments, hence a stratified approach is followed and - E(¢) and its negation [#E(¢) are safely used in
the side conditions of the rules for #; SN t;0 and ¢ 764 (see below).

The judgment 7, < 1,; & defines the single reduction steps of the labeled transition system on which
the semantics of the calculus is based; #; — 1,; 0 is derivable iff the event e can be consumed, with the
generated substitution &, by the expression ¢1, which then reduces to #,. The judgment 7 - is derivable iff
there are no reduction steps for event e starting from expression ¢ and is needed to enforce a deterministic
semantics and to guarantee that the rules are monotonic and, hence, the existence of the least fixed-point;
the definitions of the two judgments are mutually recursive.

Substitutions are finite partial maps from variables to data values which are produced by successful
matches of event type patterns; the domain of ¢ and the empty substitution are denoted by dom(c) and 0,
respectively, while 0|, and o\, denote the substitutions obtained from ¢ by restricting its domain to {x}

and removing x from its domain, respectively. We simply write #; — #, to mean #; — 1,;0. Application
of a substitution ¢ to an event type patter 0 is denoted by 60, and defined by induction on 0:

ox = o(x) if x € dom(o), 6x = x otherwise ol=1
G{klibl,...,knibn} = {k]iGb],...,kanbn} G[b],...,bn] = [Gb],...,Gbn]
ot(by,...,by) =1(0by,...,0by)

Application of a substitution ¢ to a trace expression ¢ is denoted by o, and defined by coinduction
ont:
ceE=¢ 00 =o1(by,...,b,)if 0 =1(by,...,by)
o(tyopty) = oty op ot forop € {-,A\,V, |} o{letx;t} = {letx; o\, }

Since the calculus does not cover event type definitions, the semantics of event types is parametric in the
auxiliary partial function match, used in the side condition of rules (prefix) and (n-prefix): match(e,)
returns the substitution o iff event e matches event type ¢ 0 and fails (that is, is undefined) iff there is
no substitution o for which e matches 06. The substitution is expected to be the most general one and,
hence, its domain to be included in the set of free variables in 0 (see Def. 3.1).

As an example of how match could be derived from the definitions of event types in RML, if we
consider again the event type open(fd) and e={event:’func_post’, name:’fs.open’, res:42}, then
match(e,open(£d)) = {£d— 42}, while match(e,open(23)) is undefined.

Except for intersection, which is intrinsically deterministic since both operands need to be reduced,
the rules defining the semantics of the other binary operators depend on the judgment 7 % to force
determinism; in particular, the judgment is used to ensure a left-to-right evaluation strategy: reduction of
the right operand is possible only if the left hand side cannot be reduced.

The side condition of rule (and) uses the partial binary operator U to merge substitutions: o7 U 0,
returns the union of o] and Gy, if they coincide on the intersection of their domains, and is undefined
otherwise.

Rule (cat-r) uses the judgment E(z;) in its side condition: event e consumed by , can also be con-
sumed by 7, - 1> only if ¢ is not consumed by 7, (premise t; - forcing left-to-right deterministic reduction),
and the empty trace is accepted by #; (side condition - E(t7)).

Rule (par-t) can be applied when variable x is in the domain of the substitution ¢ generated by the
reduction step from ¢ to ¢: the substitution oj, restricted to x is applied to 7', and x is removed from the

20 Can determinism and compositionality coexist in RML?

domain of &, together with its corresponding declaration. If x is not in the domain of o (rule (par-f)), no
substitution and no declaration removal is performed.

The rules defining r + are complementary to those for # < ¢/, and the definition of 7 % depends
on the judgment r < ¢’ because of rule (n-and): there are no reduction steps for event e starting from
expression t; Aty, even when #; SN t{ 01 and 1, > té; 0, are derivable, if the two generated substitutions
o1 and o, cannot be successfully merged together; this happens when there are two event type patterns
that match event e for two incompatible values of the same variable.

Let us consider an example of a cyclic term with the let-construct: r = {let fd; open(fd) - close(fd) -t }.
The trace expression declares a local variable fd (the file descriptor), and requires that two immediately
subsequent open and close events share the same file descriptor. Since the recursive occurrence of ¢
contains a nested let-construct, the subsequent open and close events can involve a different file de-
scriptor, and this can happen an infinite number of times. In terms of derivation, starting from ¢, if the
event {event:’func_post’, name:’fs.open’, res:42} is observed, which matches open(42), then
the substitution {fd — 42} is computed. As a consequence, the residual term close(42) -t is obtained, by
substituting fd with 42 and removing the let-block. After that, the only valid event which can be observed
is {event:’func_pre’,name:’close’,args: [42]}, matching close(fd). Thus, after this rewriting step
we get ¢ again; the behavior continues as before, but a different file descriptor can be matched because
of the let-block which hides the outermost declaration of fd; indeed, the substitution is not propagated
inside the nested let-block. Differently from #, the term {let fd; '} witht’ = open(fd) - close(fd) -t would
require all open and close events to match a unique global file descriptor. As further explained in Sec-
tion 5, such example shows how the let-construct is a solution more flexible than the mechanism of trace
slicing used in other RV tools to achieve parametricty.

The following lemma can be proved by induction on the rules defining r % ¢/; .

Lemma 3.1 Ift 5 t'; 0 is derivable, then dom(c) Ufu(t') C fo(t).

Since trace expressions are cyclic, they can only contain a finite set of free variables, therefore the
domains of all substitutions generated by a possibly infinite sequence of consecutive reduction steps
starting from 7 are all contained in fv(r).

3.1 Semantics based on the transition system

The reduction rules defined above provide the basis for the semantics of the calculus; because of com-
puted substitutions and free variables, the semantics of a trace expression is not just a set of event traces:
every accepted trace must be equipped with a substitution specifying how variables have been instanti-
ated during the reduction steps. We call it an instantiated event trace; this can be obtained from the pairs
of event and substitution traces yield by the possibly infinite reduction steps, by considering the disjoint
union of all returned substitutions. Such a notion is needed® to allow a compositional semantics. The
notion of substitution trace can be given in an analogous way as done for event traces in Section 2. By
the considerations related to Lemma 3.1, the substitution associated with an instantiated event trace has
always a finite domain, even when the trace is infinite; this means that the substitution is always fully
defined after a finite number of reduction steps.

Definition 3.3 A concrete instantiated event trace over the event universe & is a pair (€,6) of event
traces over &, and substitution traces s.t. either € and G are both infinite, or they are both finite and have
the same length, all the substitutions in G have mutually disjoint domains and | J{dom(c') | 6’ € &} is
finite.

6See the example in Section 4.

D. Ancona, A. Ferrando, and V. Mascardi 21

An abstract instantiated event trace (instantiated event trace, for short) over & is a pair (€,0) where
¢ is an event trace over & and © is a substitution. We say that (é,0) is derived from the concrete
instantiated event trace (€, &), written (&,6) ~ (e,0), iff c = U{o’ | 0’ € 6}.

In the rest of the paper we use the meta-variable .# to denote sets of instantiated event traces. We
use the notations .| and .¥ |, to denote the two projections {¢ | (¢,0) € .} and {0 | (¢,0) € £},
respectively; we write € <.# to mean € <.# ;. The notation .# |, denotes the set {(¢,0) | (¢,0) €
& e infinite} restricted to infinite traces.

We can now define the semantics of trace expressions.

Definition 3.4 The concrete semantics [t]. of a trace expression t is the set of concrete instantiated event
traces coinductively defined as follows:

o (A, A) € [t]e iff b E(2) is derivable;
e (e-¢,6-6) € [t]. ifft >1';0 is derivable and (¢,6) € [ot']..

The (abstract) semantics [t] of a trace expression t is the set of instantiated event traces {(e,0) | (¢,6) €
[7].,(¢,6) ~ (2,0)}.

The following propositions show that the concrete semantics of a trace expression ¢ as given in
Definition 3.4 is always well-defined.

Proposition 3.1 If (¢,6) € [t]. and é is finite, then |é| = |5]|.
Proposition 3.2 If (¢,6) € [t]. and é is infinite, then & is infinite as well.
Proposition 3.3 If (¢,6) € [t]., then for all n,m € N, n # m implies dom(G(n)) Ndom (& (m)) = 0.

Proposition 3.4 If (¢,6) € [t]., then for all n € N dom(G(n)) C fu(z).

4 Towards a compositional semantics

In this section we show how each basic trace expression operator can be interpreted as an operation
over sets of instantiated event traces and we formally prove that such an interpretation is equivalent to
the semantics derived from the transition system of the calculus in Definition 3.4, if one considers only
contractive terms.

4.1 Composition operators

-
Left-preferential union: The left-preferential union .#; \/ .%, of sets of instantiated event traces .#]

and .#; is defined as follows: .# Vﬂz =S U{(e,o)e AH|ée=Aor(e=e-&,ed.H)}.

In the deterministic left-preferential version of union, instantiated event traces in .#, are kept only if
they start with an event which is not the first element of any of the traces in .#] (the condition vacuously
holds for the empty trace); since reduction steps can involve only one of the two operands at time, no
restriction on the substitutions of the instantiated event traces is required.

22 Can determinism and compositionality coexist in RML?

Left-preferential concatenation: The left-preferential concatenation .7 < 4 of sets of instantiated
event traces .#| and .%, is defined as follows: .# ffz = AleU{(e1-&,0)|(e1,01) € A,(2,00) €
H,0 =0y UGQ,(E_Q =Aor (6_2 = €~€_3,(€_1 -e) ﬁf]))}

The left operand .7 of the union corresponds to the fact that in the deterministic left-preferential
version of concatenation, all infinite instantiated event traces in .#; belong to the semantics of concate-
nation. The right operand of the union specifies the behavior for all finite instantiated event traces €
in .#1; in such cases, the trace in .#] < &, can continue with e, in .%, if &; is not allowed to continue
in . with the first event e of &, ((€; - e) 4 .#), the condition vacuously holds if &, is the empty trace).
Since the reduction steps corresponding to &, follow those for &1, the overall substitution ¢ must meet
the constraint ¢ = 07 U 0, ensuring that 67 and 6, match on the shared variables of the two operands.

Intersection: The intersection .#; A % of sets of instantiated event traces .#; and .%, is defined as
follows: %1 A\ % = {(6_, G) ‘ (6_, 61) € 9, (6_, 02) € %,0=0 UGQ}.
Since intersection is intrinsically deterministic, its semantics throws no surprise.

-
Left-preferential shuffle: The left-preferential shuffle .#; | % of sets of instantiated event traces
—

4 and ., is defined as follows: %) | % = {(¢,0) | (é1,01) € A1,(€2,02) € #H,06 =01 U0y,¢é €
e %‘flil 6_2}'

The definition is based on the generalized left-preferential shuffle defined in Section 2; an event in
€ at a certain position n can contribute to the shuffle only if no trace in .#;]; could contribute with the
same event at the same position n. Since the reduction steps corresponding to €; and é; are interleaved,
the overall substitution o must meet the constraint ¢ = o7 U 0, ensuring that o7 and 6, match on the
shared variables of the two operands.

Variable deletion: The deletion 4, of x from the set of instantiated event traces .# is defined as
follows: A, = {(e,0\,) | (¢,0) € J}.

As expected, variable deletion only affects the domain of the computed substitution.

The definitions above show that instantiated event traces are needed to allow a compositional se-
mantics; let us consider the following simplified variation of the example given in Section 3: ¢ =
{let fd; open(fd) - close(fd) }. If we did not keep track of substitutions, then the compositional semantics
of open(fd) and close(fd) would contain all traces of length 1 matching open(fd) and close(fd), respec-
tively, for any value fd, and, hence, the semantics of open(fd) - close(fd) could not constrain open and
close events to be on the same file descriptor. Indeed, such a constraint is obtained by checking that the
substitution of the event trace matching open(fd) can be successfully merged with the substitution of the
event trace matching close(fd), so that the two substitutions agree on fd.

4.2 Contractivity

Contractivity is a condition on trace expressions which is statically enforced by the RML compiler; such
a requirement avoids infinite loops when an event does not match the specification and the generated
monitor would try to build an infinite derivation. Although the generated monitors could dynamically
check potential loops dynamically, a syntactic condition enforced statically by the compiler allows mon-
itors to be relieved of such a check, and, thus, to be more efficient.

Contractivity can be seen as a generalization of absence of left recursion in grammars [37]; loops
in cyclic terms are allowed only if they are all guarded by a concatenation where the left operand ¢

D. Ancona, A. Ferrando, and V. Mascardi 23

cannot contain the empty trace (that is, *E(¢) holds), and the loop continues in the right operand of the
concatenation. If such a condition holds, then it is not possible to build infinite derivations for #| N .

Interestingly enough, such a condition is also needed to prove that the interpretation of operators as
given in Section 4.1 is equivalent to the semantics given in Definition 3.4. Indeed, the equivalence result
proved in Theorem 4.1 is based on Lemma 4.1 stating that for all contractive term #; and event e, there
exist 7, and O s.t. ; — ;0 is derivable if and only if 7ei> is not derivable; such a claim does not hold
for a non contractive term as t = ¢ \V ¢, because for all e, ¢’ and o, t 5S¢ ;0 and ¢ 764 are not derivable.
This is due to the fact that both judgments are defined by an inductive inference system. Intuitively, from
a contractive term we cannot derive a new term without passing through at least one concatenation. For
instance, considering the term t = e -, we have contractivity because we have to consume e before going
inside the loop. But, if we swap the operands, we obtain instead t = 7 - e, where contractivity does not
hold; in fact, deriving the concatenation we go first inside the head, but it is cyclic. Since the — and
- judgements are defined inductively, both are not derivable because a finite derivation tree cannot be
derived for neither of them.

Definition 4.1 Syntactic contexts € are inductively defined as follows:
¢ = 0O|FCopt|top¥ |{letx; €} withope{NV,|,-}

Definition 4.2 A syntactic context € is contractive if one of the following conditions hold:

¢ = {letx; €'} and €' is contractive;

o ¢ =%"opt, €' is contractive and op € {-,\,V,

)
)

€ =top€', ¢ is contractive and op € {\,V,
o ¢ =1t-%' - E(t)and €' is contractive;
o ¢ =t-¢" and VE(1).

Definition 4.3 A term is part of t iff it belongs to the least set partof (t) matching the following definition:

partof (€) = partof (0) =0 partof ({let x; t}) = {t} Upartof (t)
partof (t; opty) = {t1,t2} Upartof (t) Upartof (t2) for op € {|,-,A\,V}

Because trace expressions can be cyclic, the definition of partof follows the same pattern adopted for fv.
One can prove that a term 7 is cyclic iff there exists ¢’ € partof (t) s.t. ' € partof (t').

Definition 4.4 A term t is contractive iff the following conditions old:
e for any syntactic context 6, if t = € [t| then € is contractive;

e foranytermt, ift' € partof (t), thent' is contractive.

4.3 Main Theorem
We first list all the auxiliary lemmas used to prove Theorem 4.1.

Lemma 4.1 For all contractive term t| and event e, there exist t, and G s.t. 1 4 ty; © is derivable if and
only if t| 5 is not derivable.

Lemma 4.2 If (¢,6) ~ (,0), then (&,6\,) ~ (&,0\y).

24 Can determinism and compositionality coexist in RML?

Where G\, denotes the substitution sequence where x is removed from the domain of each substitution
in &.

Lemma 4.3 Given a substitution function 6 and a term t, we have that Gt = 0\ 0|t = 0|0\ 1, for every
x € dom(0).

Lemma 4.4 Let t be a term, 0} be a substitution function s.t. dom(o)) = {x}; we have that:
Y(e,0)e[]- (01U 02 is defined) = (é,02\,) € [o11])
Lemma 4.5 Let t be a term, 0} be a substitution function s.t. dom(oy) = {x}; we have that:
V(e,00)e[on]-((01U 02 is defined) = (€,0,) € [t])

Lemma 4.6 1 /4 < e#A[t].

Lemma 4.7 If (¢,0) € [t], then (¢,0) € [o1].

(e
Lemma 4.8 If (¢,5) € [t]. and é is infinite, then (¢,6) € [t -] for everyt'.

Lemmad4.9 [fe-eceé) |ré thene; =e-&|, oréy=e-& andede.
Lemma 4.10 If (¢,6) € [t]. and E(t'), then (&,6) € [t -]

Lemma 4.11 Given (6_1,51) € [[l‘]]]c, I5) 2 t21;621 and (6_2,522) € [[Gzltzl]]c with 6, = 621 . (_722. If e =
ey -...-ey IS finite, SN tll;Gll, tll 2, tlz;crlz, o t?_l SN t}; 01, with 01 = 611 -...-of and t} %, then

(6_1 -ey-€7,0] - (_72) S [[tl 'tz]]c.

In Theorem 4.1 we claim that for every operator of the trace calculus, the compositional semantics is
equivalent to the abstract semantics. To prove such claim, we need to show that, for each operator, every
trace belonging to the compositional semantics belongs to the abstract semantics, which means we only
consider correct traces (soundness); and, every trace belonging to the abstract semantics belongs to the
compositional semantics, which means we consider all the correct traces (completeness).

Each operator requires a customised proofs, but in principle, all the proofs follow the same reason-
ing. Both soundness and completeness proof start expanding the compositional semantics definition in
terms of its concrete semantics, which in turn is rewritten in terms of the operational semantics. At this
point, the compositional operator’s operands can be separately analysed in order to be recombined with
the corresponding trace calculus operator. Finally, the proofs are concluded going backwards from the
operational semantics to the abstract one, through the concrete semantics. For all the operators, except V
and A, the proofs are given by coinduction over the terms structure. In every proof which is not analysed
separately (<= cases), we implicitly apply Lemma 4.1.

Theorem 4.1 The following claims hold for all contractive terms t; and ty:
—
o [nvn]=[n]V[e]
[l =[nl" []

o [nAn]=[u]Ale]
o [ti]n]= [[n]]T[[fz]]
o [{letx; ni}] =[]\,

D. Ancona, A. Ferrando, and V. Mascardi 25

The proofs for the union, intersection, shuffle and let cases are omitted and can be found in the ex-
tended version [10]. We decided not to report them due to space constraints. In the proofs that follow, we
prove composed implications such as A; V...VA, = B, by splitting them into n separate implications
A = 'B,..,A, = "B.

The first operator we are going to analyse is the concatenation, where we are going to show that
(2,0) € [t-1] = (2,0) €[] [n].

The proof for the empty trace is trivial, and is constructed on top of the definition of the E predicate.

(A,0) € [t - 12] (A, A) €t1- 2] AN(A,A) ~ (A,0) (by definition of [t])

E(t) - 1) is derivable (by definition of [¢].)

E(t1) is derivable A E(z,) is derivable (by definition of E(7))

(A, A) et1]e A(ALA) € [t2]e A (A, A) ~» (A,0) (by definition of [t].)
(A,0) € [ti] A(A,0) € [t2] (by definition of [¢])

(1,0) € ([u] - [r2]) (by definition of “)

[

When the trace is not empty, we present the procedure to prove completeness (=) and soundness
(<=), separately.

Let us start with completeness. To prove it, we have to show that the abstract semantics [z - 2] (based
on the original operational semantics) is included in the composition of the abstract semantics [#;] and
[£2]), using B operator. More specifically, in the first part of the proof (==), the first event of the trace
belongs to the head of the concatenation. Thus, the head is expanded through operational semantics,
causing the term to be rewritten into a concatenation, where the head is substituted with a new term.
Since the concrete semantics has been defined coinductively, we can conclude that the proof is satisfied
by the so derived concatenation by coinduction. Finally, the proof is concluded recombining the new
concatenation in terms of - . The second part of the proof (= 2) does not require coinduction, since
the trace belongs to the tail of the concatenation. Through the operational semantics, the concatenation is
rewritten into the new tail, and the proof is straightforwardly concluded following the abstract semantics.

(e-e,o)e[ti-n] = (e-e,6)€[ti-t2]cN(e-¢,6)~ (e-&,0) (by definition of [t])
— -1 > 1,0’ is derivable A (,6") € [6't']. (by definition of [¢].)
— (11 5 1];0' is derivable Aty -, <> 1] -12; 6" is derivable A
(€,6") € [o'(1; -)]e) v
(t1 5 NE(t1) At 5> ;0" is derivable Aty -1 = t); 0" is derivable A

(e,6') € [0'5].) (by operational semantics)

= H N l‘i;G/ is derivable At -t N ti -1p; 0" is derivable A
(e,0") e o' (t;)] A(e6")~ (e,06")No=0"Udc’
(by definition of [t])

=1 5 5 ti;G' is derivable At -t N ti -1y is derivable A

(2,6") € [0't] " [0'] A(2,6") ~ (6,6") Ao = 6" Ud’
(by coinduction over [¢])
— ! 11 51];0’ is derivable At;-1; 5] -1, is derivable A

26

I

I

L el

NN

Can determinism and compositionality coexist in RML?

(é1,07) € [o't]] A (é2,07) € [o'n]ne=é-e A

(Br=AV (&2 =¢ 2372 - #[0't]])) (by definition of)
11 5 t]; 0’ is derivable A (&1,61) € [o't]. A (&1,61) ~ (&1,06]) A
(62,07) € [o'h]rne=é;-& A

(G=AV(ea=¢-e3ne ¢ 4[c't]])) (by definition of [t])
(e-21,0'-61) € [t1]c N (&1,61) ~ (é1,0]) A

(e)E[Gtz]]/\e—el e N\

(G=AV(ea=¢-e3Ne - 4]o't]])) (by definition of [t].)
(e-e1,00) €o'n]N(er,05 Uc') €] Ne=é1-e N

(er =)L V(ey=é-e3Ne e 4]o't]))

(by definition of [¢] and Lemma 4.7)

(e-2,0) € [n] “ 2] (by definition of)

(e- 6) € [t]cA (A1) € [[tl]]c/\tl 4 (by definition of [].)
(e-é,0) € [] A(A,0) €[] Aty % (by definition of [¢])
(e-e,0) €[] N (A,0) €[ti]A(A-e)4[t;] (by Lemma 4.6)
(e-2,0) €[]~ [t2] (by definition of)

We now prove soundness. To prove it, we show that the composition of abstract semantics [¢1] and

[£2] using the . operator is included in the abstract semantics of the related concatenation term [t1 - 2]
The resulting proof is splitted in four separated cases. When the trace belongs to [[t;] is infinite (=).
The proof is based on the fact that an infinite trace concatenated to another trace is always equal to itself.
In all the other cases, the proof can be fully derived by a direct application of the operational semantics.

(e-2,0)€[n]"]

(e-e,0) € [ti][{w

—

e-e _) [t1]eV
e-e=é -erNe,o1) €n]n(e,o)] Noc=0c1UcmA
V(ey=é-e3Ne e #4[n]))) (by definition of)
[[tlﬂico

ANA,0) e [u]N(e-e,0) €[] Ned]n])V
A(e-e) €[] A (A,0) € [r])V
ey=e-@\Ney=¢-e3ne - An] N
e-é1,01) € [u]N(e-&) €] No=01Uo)

Lm
»»m»

(e-€,0) € [t1] Aé infinite (by definition of |4)
(e-,6) €[ti]cN(e-&,6)~ (e-&,0) A

¢ infinite (by definition of [¢])

11 5 t1; 0" is derivable A (e,6') € [o't]]. A

(e-€,6) ~ (e-&,0) Aeinfinite (by definition of [].)
11 5 t]; 0’ is derivable A (e,6”) € [0/ (1] -12)]c A

D. Ancona, A. Ferrando, and V. Mascardi 27

(e-€,6) ~ (e-&,0) Aéinfinite (by Lemma 4.8)

e

= ! 1.t 5 1] -1p;0" is derivable A (¢,6") € [o’(t] - 12)]c A

(e-e,6) ~ (e-e,0) Ae infinite (by operational semantics)
= ! (e-£,6)€[t1-n].N(e-&6)~ (e-&0) (by definition of [t].)
= ! (e-2,0) € [t; 1] (by definition of [])

(=2AN(A,0) € []A
(e-e,0) €[] nes[tn]) == % E(t) is derivable A (e-&,0) € [t2] A

e A[t1] (by definition of [¢])

— 2 E(t;) is derivable At 5 t5; 0" is derivable A
(2,6") € [0'B].NeA[t] A(e-&,6) ~ (e-&,0)
(by definition of [t].)

— 2 t1-1n 5 15,0’ is derivable A (€,6") € [o'55].
(by operational semantics)

= 2 (e-¢,6) €[t t]cN(e-&6)~ (e-&,0)
(by definition of [t].)

= 2 (e-&,0) € [t; - 1] (by definition of [¢])

(@a=AN(e-)e[i]A(X,0)€[r]) == 3 (e-&0)€ [t 1] (by Lemma 4.10)
(1 =e-&)Ney=¢ -&3N

3 -€/§ﬂ [[l]]]/\(e-él,Cﬁ) € [[tl]]/\
(6/-6_3,62> S [[lz]] NO = 01 U62> — 4 H SN t{;G{ is derivable A (é],C_)']) € HG{I]]]C/\

/
(¢1,61) ~ (&1,0]) Nt S th; 05 is derivable A

(23,63) € [oat3] A (82,65) ~ (&2,09) Aty % is derivable
Aoy = ojUo) Aoy, = o,Uoy (by operational semantics)
= 4 (6_1 '52,(_5) € [[tl -lz]]c (by Lemma 4.11)

5 Related Work

Compositionality, determinism and events-based semantics are topics very central to concurrent systems.
Winskel has introduced the notion of event structure [44] to model computational processes as sets of
event occurrences together with relations representing their causal dependencies. Vaandrager [43] has
proved that for concurrent deterministic systems it is sufficient to observe the beginning and end of
events to derive its causal structure. Lynch and Tuttle have introduced input/output automata [36] to
model concurrent and distributed discrete event systems with a trace semantics consisting of both finite
and infinite sequences of actions.

The rest of this section describes some of the main RV techniques and state-of-the-art tools and
compares them with respect to RML; more comprehensive surveys on RV can be found in literature
[25, 30, 35, 41, 26, 13, 31] which mention formalisms for parameterised runtime verification that have
not deliberately presented here for space limitation.

28 Can determinism and compositionality coexist in RML?

Monitor-oriented programming: Similarly as RML, which does not depend on the monitored system
and its instrumentation, other proposals introduce different levels of separation of concerns. Monitor-
oriented programming (MOP [19]) is an infrastructure for RV that is neither tied to any particular pro-
gramming language nor to a single specification language. In order to add support for new logics, one has
to develop an appropriate plug-in converting specifications to one of the format supported by the MOP
instance of the language of choice; the main formalisms implemented in existing MOP include finite
state machines, extended regular expressions, context-free grammars and temporal logics. Finite state
machines (or, equivalently, regular expressions) can be easily translated to RML, have limited expressive-
ness, but are widely used in RV because they are well-understood among software developers as opposite
to other more sophisticated approaches, as temporal logics. Extended regular expressions include inter-
section and complement; although such operators allow users to write more compact specifications, they
do not increase the formal expressive power since regular languages are closed under both. Determinis-
tic Context-Free grammars (that is, deterministic pushdown automata) can be translated in RML using
recursion, concatenation, union, and the empty trace, while the relationship with Context-Free grammars
(that is, pushdown automata) has not been fully investigated yet; as stated in the introduction, RML can
express several non Context-Free properties, hence RML cannot be less expressive than Context-Free
grammars, but we do not know whether Context-Free grammars are less expressive than RML.

Temporal logics: Since RV has its roots in model checking, it is not surprising that logic-based formal-
ism previously introduced in the context of the latter have been applied to the former. Linear Temporal
Logic (LTL) [38], is one of the most used formalism in verification.

Since the standard semantics of LTL is defined on infinite traces only, and RV monitors can only
check finite trace prefixes (as opposed to static formal verification), a three-valued semantics for LTL,
named LTL; has been proposed [15]. Beyond the basic “true” and “false” truth values, a third “inconclu-
sive” one is considered (LTL specification syntax is unchanged, only the semantics is modified to take
into account the new value). This allows one to distinguish the satisfaction/violation of the desired prop-
erty (“false”) from the lack of sufficient evidence among the events observed so far (“inconclusive”),
making this semantics more suited to RV. Differently from LTL, the semantics of LTLj3 is defined on
finite prefixes, making it more suitable for comparison with other RV formalisms. Further development
of LTLj3 led to RV-LTL [14], a 4-valued semantics on which RML monitor verdicts are based on.

The expressive power of LTL is the same as of star-free w-regular languages [39]. When restricted to
finite traces, RML is much more expressive than LTL as any regular expression can be trivially translated
to it; however, on infinite traces, the comparison is slightly more intricate since RML and LTLj3 have
incomparable expressiveness [8]. There exist many extensions of LTL that deal with time in a more
quantitative way (as opposed to the strictly qualitative approach of standard LTL) without increasing the
expressive power, like interval temporal logic [18], metric temporal logic [42] and timed LTL [15]. Other
proposals go beyond regularity [3] and even context-free languages [16].

Several temporal logics are embeddable in recHML [34], a variant of the modal u-calculus [33];
this allows the formal study of monitorability [1] in a general framework, to derive results for free
about any formalism that can be expressed in such calculi. It would be interesting to study whether the
RML trace calculus could be derivable to get theoretical results that are missing from this presentation.
Unfortunately, it is not clear whether our calculus and recHML are comparable at all. For instance,
recHML is a fixed-point logic including both least and greatest fixpoint operators, while our calculus
implicitly uses a greatest fixpoint semantics for recursion. Nonetheless, recHML does not include a
shuffle operator, and we are not aware of a way to derive it from other operators.

D. Ancona, A. Ferrando, and V. Mascardi 29

Regardless of the formal expressiveness, RML and temporal logics are essentially different: RML
is closer to formalisms with which software developers are more familiar, as regular expressions and
Context-Free languages, but does not offer direct support for time; however, if the instrumentation pro-
vides timestamps, then some time-related properties can still be expressed exploiting parametricity.

State machines: As opposite to the language-based approach, as RML, specifications can be defined
using state machines (a.k.a. automata or finite-state machines). Though the core concept of a finite set
of states and a (possibly input-driven) transition function between them is always there, in the field of
automata theory different formalizations and extensions bring the expressiveness anywhere from simple
deterministic finite automata to Turing machines.

An example of such formalisms is DATE (Dynamic Automata with Timers and Events [21]), an ex-
tension of the finite-state automata computational model based on communicating automata with timers
and transitions triggered by observed events. This is the basis of LARVA [22], a Java RV tool focused on
control-flow and real-time properties, exploiting the expressiveness of the underlying system (DATE).

The main feature of LARVA that is missing in RML is the support for temporized properties, as ob-
served events can trigger timers for other expected events. On the other hand, the parametric verification
support of RML is more general. LARVA scope mechanism works at the object level, thus parametricity
is based on trace slicing [31] and implemented by spawning new monitors and associating them with
different objects. The RML approach is different as specifications can be parametric with respect to any
observed data thanks to event type patterns and the let-construct to control the scope of the variables oc-
curring in them. Limitations of the parametric trace slicing approach described above, as well as possible
generalizations to overcome them, have been explored by [20, 12, 40].

Finally, the goals of the two tools are different: while RML strives to be system-independent, LARVA
is devoted to Java verification, and the implementation relies on Aspect] [32] as an “instrumentation”
layer allowing one to inject code (the monitor) to be executed at specific locations in the program.

6 Conclusion

We have moved a first step towards a compositional semantics of the RML trace calculus, by introducing
the notion of instantiated event trace, defining the semantics of trace expressions in terms of sets of
instantiated event traces and showing how each basic trace expression operator can be interpreted as
an operation over sets of instantiated event traces; we have formally proved that such an interpretation
is equivalent to the semantics derived from the transition system of the calculus if one considers only
contractive terms.

For simplicity, here we have considered only the core of the calculus, but we plan to extend our result
to the full calculus, which includes also the prefix closure operator and a top-level layer with constructs
to support generic specifications [28]. Another interesting direction for further investigation consists in
studying how the notion of contractivity influences the expressive power of the calculus and, hence, of
RML; although we have failed so far to find a non-contractive term whose semantics is not equivalent
to a corresponding contractive trace expression, we have not formally proved that contractivity does not
limit the expressive power of the calculus.

30

Can determinism and compositionality coexist in RML?

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(1]

(12]

[13]

[14]

L. Aceto, A. Achilleos, A. Francalanza, A. Ing6lfsdéttir & K. Lehtinen (2019): Adventures in Monitorability:
From Branching to Linear Time and Back Again. Proc. ACM Program. Lang. 3(POPL), pp. 52:1-52:29,
doi:10.1145/3290365.

Wolfgang Ahrendt, Jests Mauricio Chimento, Gordon J. Pace & Gerardo Schneider (2017): Verifying data-
and control-oriented properties combining static and runtime verification: theory and tools. Formal Methods
in System Design 51(1), pp. 200-265, doi:10.1007/s10703-017-0274-y.

Rajeev Alur, Kousha Etessami & P. Madhusudan (2004): A Temporal Logic of Nested Calls and Returns. In:
Tools and Algorithms for the Construction and Analysis of Systems, 10th International Conference, TACAS
2004, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings, pp. 467—481, doi:10.1007/978-3-540-24730-2_35.

Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou,
Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Vi-
viana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos
& Nobuko Yoshida (2016): Behavioral Types in Programming Languages. Foundations and Trends in Pro-
gramming Languages 3(2-3), pp. 95-230, doi:10.1561/2500000031.

Davide Ancona & Andrea Corradi (2014): Sound and Complete Subtyping between Coinductive Types for
Object-Oriented Languages. In: ECOOP 2014, pp. 282-307, doi:10.1007/978-3-662-44202-9_12.

Davide Ancona & Andrea Corradi (2016): Semantic subtyping for imperative object-oriented languages. In:
OOPSLA 2016, pp. 568-587, doi:10.1145/2983990.2983992.

Davide Ancona, Sophia Drossopoulou & Viviana Mascardi (2012): Automatic Generation of Self-monitoring
MASs from Multiparty Global Session Types in Jason. In: Declarative Agent Languages and Technologies
X - 10th International Workshop, DALT 2012, Valencia, Spain, June 4, 2012, Revised Selected Papers, pp.
76-95, doi:10.1007/978-3-642-37890-45.

Davide Ancona, Angelo Ferrando & Viviana Mascardi (2016): Comparing Trace Expressions and Linear
Temporal Logic for Runtime Verification. In: Theory and Practice of Formal Methods - Essays Dedicated to
Frank de Boer on the Occasion of His 60th Birthday, pp. 47-64, doi:10.1007/978-3-319-30734-3_6.

Davide Ancona, Angelo Ferrando & Viviana Mascardi (2017): Parametric Runtime Verification of Multiagent
Systems. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017, Sao Paulo, Brazil, May 8-12, 2017, pp. 1457-1459, doi:10.5555/3091125.3091328.

Davide Ancona, Angelo Ferrando & Viviana Mascardi (2020): Can determinism and compositionality coexist
in RML? (extende version). Available at https://arxiv.org/abs/2008.06453.

Davide Ancona, Luca Franceschini, Angelo Ferrando & Viviana Mascardi (2019): A Deterministic Event
Calculus for Effective Runtime Verification. In Alessandra Cherubini, Nicoletta Sabadini & Simone Tini,
editors: Proceedings of the 20th Italian Conference on Theoretical Computer Science, ICTCS 2019, Como,
Italy, September 9-11, 2019, CEUR Workshop Proceedings 2504, CEUR-WS.org, pp. 248-260. Available at
http://ceur-ws.org/Vol-2504/paper28.pdf.

Howard Barringer, Ylies Falcone, Klaus Havelund, Giles Reger & David E. Rydeheard (2012): Quantified
Event Automata: Towards Expressive and Efficient Runtime Monitors. In: FM 2012: Formal Methods - 18th
International Symposium, Paris, France, August 27-31, 2012. Proceedings, pp. 68—84, doi:10.1007/978-3-
642-32759-99.

Ezio Bartocci, Ylies Falcone, Adrian Francalanza & Giles Reger (2018): Introduction to Runtime Verification.
In: Lectures on Runtime Verification - Introductory and Advanced Topics, pp. 1-33, doi:10.1007/978-3-319-
75632-5_1.

Andreas Bauer, Martin Leucker & Christian Schallhart (2007): The Good, the Bad, and the Ugly, But How
Ugly Is Ugly? In Oleg Sokolsky & Serdar Tasiran, editors: Runtime Verification, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 126-138, doi:10.1007/978-3-540-77395-5_11.

D. Ancona, A. Ferrando, and V. Mascardi 31

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

[27]

(28]

(29]

(30]

Andreas Bauer, Martin Leucker & Christian Schallhart (2011): Runtime verification for LTL and
TLTL. ACM Transactions on Software Engineering and Methodology (TOSEM) 20(4), pp. 14:1-14:64,
doi:10.1145/2000799.2000800.

Benedikt Bollig, Normann Decker & Martin Leucker (2012): Frequency Linear-time Temporal Logic. In:
Sixth International Symposium on Theoretical Aspects of Software Engineering, TASE 2012, 4-6 July 2012,
Beijing, China, pp. 85-92, doi:10.1109/TASE.2012.43.

G. Castagna, M. Dezani-Ciancaglini & L. Padovani (2012): On Global Types and Multi-Party Session. Log-
ical Methods in Computer Science 8(1), doi:10.2168/LMCS-8(1:24)2012.

Antonio Cau & Hussein Zedan (1997): Refining Interval Temporal Logic Specifications. In: Transformation-
Based Reactive Systems Development, 4th International AMAST Workshop on Real-Time Systems and
Concurrent and Distributed Software, ARTS 97, Palma, Mallorca, Spain, May 21-23, 1997, Proceedings,
pp- 79-94, doi:10.1007/3-540-63010-4 6.

Feng Chen & Grigore Rosu (2007): Mop: an efficient and generic runtime verification framework. In:
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, pp. 569—
588, doi:10.1145/1297027.1297069.

Feng Chen & Grigore Rosu (2009): Parametric Trace Slicing and Monitoring. In: Tools and Algorithms
for the Construction and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, pp. 246-261, doi:10.1007/978-3-642-00768-2_23.

Christian Colombo, Gordon J. Pace & Gerardo Schneider (2008): Dynamic Event-Based Runtime Moni-
toring of Real-Time and Contextual Properties. In: Formal Methods for Industrial Critical Systems, 13th
International Workshop, FMICS 2008, L’ Aquila, Italy, September 15-16, 2008, Revised Selected Papers, pp.
135-149, doi:10.1007/978-3-642-03240-0_13.

Christian Colombo, Gordon J. Pace & Gerardo Schneider (2009): LARVA — Safer Monitoring of Real-Time
Java Programs. In: SEFM 2009, pp. 33-37, doi:10.1109/SEFM.2009.13.

Bruno Courcelle (1983): Fundamental Properties of Infinite Trees. Theor. Comput. Sci. 25, pp. 95-169,
doi:10.1016/0304-3975(83)90059-2.

James C. Davis, Christy A. Coghlan, Francisco Servant & Dongyoon Lee (2018): The impact of regular
expression denial of service (ReDoS) in practice: an empirical study at the ecosystem scale. In: Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018, pp. 246-256, doi:10.1145/3236024.3236027.

Nelly Delgado, Ann Q. Gates & Steve Roach (2004): A Taxonomy and Catalog of Runtime Software-Fault
Monitoring Tools. IEEE Trans. Software Eng. 30(12), pp. 859-872, doi:10.1109/TSE.2004.91.

Ylies Falcone, Klaus Havelund & Giles Reger (2013): A Tutorial on Runtime Verification. In: Engineering
Dependable Software Systems, pp. 141-175, doi:10.3233/978-1-61499-207-3-141.

Ylies Falcone, Srdan Krstic, Giles Reger & Dmitriy Traytel (2018): A Taxonomy for Classifying Runtime
Verification Tools. In: Runtime Verification - 18th International Conference, RV 2018, Limassol, Cyprus,
November 10-13, 2018, Proceedings, pp. 241-262, doi:10.1007/978-3-030-03769-7_14.

Luca Franceschini (March 2020): RML: Runtime Monitoring Language. Ph.D. thesis, DIBRIS - University
of Genova. Available at http://hdl.handle.net/11567/1001856.

A. Frisch, G. Castagna & V. Benzaken (2008): Semantic subtyping: Dealing set-theoretically with function,
union, intersection, and negation types. J. ACM 55(4), doi:10.1145/1391289.1391293.

Klaus Havelund & Allen Goldberg (2005): Verify Your Runs. In: Verified Software: Theories, Tools, Ex-
periments, First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10-13, 2005,
Revised Selected Papers and Discussions, pp. 374-383, doi:10.1007/978-3-540-69149-5_40.

32

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

Can determinism and compositionality coexist in RML?

Klaus Havelund, Giles Reger, Daniel Thoma & Eugen Zalinescu (2018): Monitoring Events that Carry Data.
In: Lectures on Runtime Verification - Introductory and Advanced Topics, pp. 61-102, doi:10.1007/978-3-
319-75632-5_3.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm & William G. Griswold (2001):
An Overview of AspectJ. In: ECOOP 2001 - Object-Oriented Programming, 15th European Conference,
Budapest, Hungary, June 18-22, 2001, Proceedings, pp. 327-353, doi:10.1007/3-540-45337-7_18.

Dexter Kozen (1983): Results on the Propositional mu-Calculus. Theor. Comput. Sci. 27, pp. 333-354,
doi:10.1016/0304-3975(82)90125-6.

Kim Guldstrand Larsen (1990): Proof Systems for Satisfiability in Hennessy-Milner Logic with Recursion.
Theor. Comput. Sci. 72(2&3), pp. 265288, doi:10.1016/0304-3975(90)90038-J.

Martin Leucker & Christian Schallhart (2009): A brief account of runtime verification. The Journal of Logic
and Algebraic Programming 78(5), pp. 293-303, doi:10.1016/].jlap.2008.08.004.

Nancy A. Lynch & Mark R. Tuttle (1987): Hierarchical Correctness Proofs for Distributed Algorithms.
In Fred B. Schneider, editor: Proceedings of the Sixth Annual ACM Symposium on Principles of Dis-
tributed Computing, Vancouver, British Columbia, Canada, August 10-12, 1987, ACM, pp. 137-151,
doi:10.1145/41840.41852.

RC Moore (2000): Removing left recursion from context-free grammars. NAACL 2000: Proceedings of
the 1st North American chapter of the Association for Computational Linguistics conference. Available at
https://www.aclweb.org/anthology/A00-2033.

Amir Pnueli (1977): The temporal logic of programs. In: 18th Annual Symposium on Foundations of
Computer Science, 1977, IEEE, pp. 46-57, doi:10.1109/SFCS.1977.32.

Amir Pnueli & Lenore D. Zuck (1993): In and Out of Temporal Logic. In: Proceedings of the Eighth Annual
Symposium on Logic in Computer Science (LICS ’93), Montreal, Canada, June 19-23, 1993, pp. 124135,
doi:10.1109/LICS.1993.287594.

Giles Reger, Helena Cuenca Cruz & David E. Rydeheard (2015): MarQ: Monitoring at Runtime with QFA.
In: Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings, pp. 596—610, doi:10.1007/978-3-662-46681-0_55.

Oleg Sokolsky, Klaus Havelund & Insup Lee (2012): Introduction to the special section on runtime verifica-
tion. STTT 14(3), pp. 243-247, doi:10.1007/s10009-011-0218-6.

Prasanna Thati & Grigore Rosu (2005): Monitoring Algorithms for Metric Temporal Logic Specifications.
Electr. Notes Theor. Comput. Sci. 113, pp. 145-162, doi:10.1016/j.entcs.2004.01.029.

Frits W. Vaandrager (1991): Determinism - (Event Structure Isomorphism = Step Sequence Equivalence).
Theor. Comput. Sci. 79(2), pp. 275-294, doi:10.1016/0304-3975(91)90333-W.

Glynn Winskel (1986): Event Structures. In Wilfried Brauer, Wolfgang Reisig & Grzegorz Rozenberg,
editors: Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part II, Proceedings
of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986, Lecture Notes in Computer Science
255, Springer, pp. 325-392, doi:10.1007/3-540-17906-2_31.

A process algebra with global variables

Mark Bouwman Bas Luttik Wouter Schols Tim A.C. Willemse

Eindhoven University of Technology
Eindhoven, The Netherlands

m.s.bouwman@tue.nl s.p.luttik@tue.nl w.r.m.schols@student.tue.nl t.a.c.willemse@tue.nl

In standard process algebra, parallel components do not share a common state and communicate
through synchronisation. The advantage of this type of communication is that it facilitates compo-
sitional reasoning. For modelling and analysing systems in which parallel components operate on
shared memory, however, the communication-through-synchronisation paradigm is sometimes less
convenient. In this paper we study a process algebra with a notion of global variable. We also pro-
pose an extension of Hennessy-Milner logic with predicates to test and set the values of the global
variables, and prove correspondence results between validity of formulas in the extended logic and
stateless bisimilarity and between validity of formulas in the extended logic without the set opera-
tor and state-based bisimilarity. We shall also present a translation from the process algebra with
global variables to a fragment of mCRL?2 that preserves the validity of formulas in the extended
Hennessy-Milner logic.

1 Introduction

Communication between parallel components in real world systems takes many forms: packets over
a network, inter-process communication, communication via shared memory, communication over a
bus, etcetera. Process algebras usually offer an abstract message passing feature. Not all forms of
communication fit well in a message passing paradigm, in particular, global variables and other forms of
shared memory do not fit in well. In some cases it would be desirable to have global variables as first
class citizens. To illustrate this we introduce a small example.

Example 1. Consider a traffic light and a car approaching a junction. If the light is green the car performs
an action drive and moves past the junction. If the light is red the car performs an action brake and stops.
Once the traffic light is green again the car performs the action drive. The specification should result in
the following LTS.

drive

chang €green | | C hange,.q chang €green | | C hange eq chang €green | | C hange eq
brake

It would be natural to model the car and the traffic light as two parallel components. The car and
the traffic light need to communicate so that the car can make a decision to drive or brake depending
on the current state of the traffic light. Typically, such global information is modelled by introducing
an extra parallel component that maintains the global information, in this case the colour of the traffic
light. However, taking that approach we obtain a different LTS, which has an extra transition modelling

O. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in © M.S. Bouwman, et al.
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020). This work is licensed under the
EPTCS 322, 2020, pp. 33-50, doi:10.4204/EPTCS.322.5 Creative Commons Attribution License.

34 A process algebra with global variables

the communication of car and traffic light with the extra component. Moreover, one must take care that
decisions to drive or brake are made on the basis of up-to-date information, e.g., by implementing a
protocol that locks the additional component. In many cases it is realistic that the observed value is no
longer up to date and in some cases we are also interested in analysing the consequences of this. In other
cases however, we might want to abstract from such complications. When the information is constantly
available to the observers, as is the case with a traffic light, we have even more reason to not introduce
separate transitions communicating the global information.

In some process algebras it is possible to define a communication function that specifies that a drive
action is the result of a communication between two actions of parallel components, e.g. a drive_if _green
action from the car and a signal_green action from the traffic light. This is somewhat unnatural as the
traffic light does not really actively participate in the driving of the car. Moreover, if we introduce a sec-
ond car that only wants to drive when the traffic light is red we would need to change the communication
function, even though the communication of information does not essentially change. It would be better
to let the colour of the traffic light be in a global variable. In that way the behaviour of the traffic light
and cars acting upon information from the traffic light is more separated, we obtain a better separation
of concerns.

In the early days of process algebra, doing away with global variables in favour of message pass-
ing and local variables was an important step to further develop the field [2]. Since then there have,
nevertheless, been some efforts to reintroduce notions of globally available data.

In [1] propositional signals and a state operator are presented. The state operator tracks the value of
some information. Based on the current value a number of propositions can be signalled to the rest of
the system. In the example of the traffic lights the process modelling the traffic light could track the state
of the light, emitting signals such as lightGreen and —lightRed, which can in turn be used as conditions
in the process modelling the car. In this approach the value of the global variable is not communicated
directly, which restricts conditions based on global variables to propositional logic.

Other approaches, such as the one presented in [11, Chapter 19], model global variables as separate
parallel processes and use a protocol to ensure only one process accesses a global variable at the time.
This approach introduces extra internal steps, which increase the statespace. Moreover, it introduces
divergence when a process locks a global variable, reads the value, concludes that it cannot make a step
and unlocks the variable again.

Formalisms based on Concurrent Constraint Programming (CCP) [12] have global data at their core.
In CCP a central store houses a set of constraints. Concurrent processes may fell a constraint, adding it to
the global store or ask a constraint, checking whether it is entailed by the constraints in the store. An ask
will block until other processes have added sufficient constraints to the store. Process calculi based on
the coordination language LINDA [10] also use global data. In these process calculi there is a global set
of data elements. Similarly to CCP, processes may tell a data element (adding it to the global set) or ask
a data element (checking whether it is in the set). Additionally, processes may get an element, removing
it from the data set. LINDA does not have a concept of variables, just a central set of data elements.
Generally, process calculi based on CCP or LINDA do not allow asking a constraint/data element and
acting upon the information in a single step.

The goal of our work is to propose and study (i) a process calculus with global variables (ii) a modal
logic that can refer to the values of global variables (iii) an encoding in an existing process calculus
and logic with tool support. In this paper we propose a simple process calculus where every component
of the system can access the current value of global variables directly. We define appropriate notions
of equivalence for our process calculus. Our first contribution is an extension of the Hennessy-Milner

M.S. Bouwman, et al. 35

Logic (HML) with two new operators that is strong enough to differentiate non-equivalent process ex-
pressions. Our second contribution is an encoding of our process algebra in mCRL2 and our extended
logic in standard HML. This encoding is such that the translated formula holds for the translated process
expression if and only if the original formula holds for the original process expression.

This paper is organised as follows. In Section 2 we define a simple process algebra with global
variables. In Section 3 we give appropriate notions of equivalence for our process algebra. We continue
by defining an extension of the Hennessy-Milner Logic in Section 4 and relating it to our equivalence
notions in Section 5. In Section 6 we show how our process algebra with global variables can be encoded
in mCRL2. Sections 7 and 8 discuss the results and conclude this work.

2 A simple process algebra with global variables

In this section we will introduce a process algebra with global variables and its semantics. For conve-
nience we will, in this paper, assume a single data domain D. We will use Var to denote the finite set of
global variable names.

We presuppose a set of actions Act and derive a set of transition labels 7L L ActuU {assign(v,d) | v €
Var Ad € D}. We also presuppose a set of process names PN. The set of process expressions & is gen-
erated by the following grammar containing action prefix, inaction, choice, parallelism, encapsulation,
recursion and conditionals:

P:=A.P|5|P+P|P|P|d(P)|X|(v=d)—P

where A € TL, B C Act, X € PN, v € Var and d € D. Inaction is similar to the process constant 0 in,
for example, CCS [8] and TCP [1]. Our process algebra supports recursion because we also define a
recursive specification E defining the process names. Let a recursive equation be an equation of the form

def
X =t with X € PN and r a process expression in &7. A recursive specification contains one recursive

equation X & for every X € PN. Every recursive specification should be guarded. This means that every
occurrence of X in ¢ is in the scope of an action prefix. For communication between parallel processes
we use an ACP style communication function. We presuppose a binary communication function on the
set of actions, i.e., a partial function 7y : Act X Act — Act that is commutative and associative. We only
allow handshakes (communication between two parties): if y(a,b) = c then ¥(c,d) is undefined for every
d.

Let 7 be the set of all functions Var — D, i.e. the set of all valuations. Let V € ¥; we denote by
V[v+ d] the assignment defined, for all v/ € Var by:

V[de](V'):{ il/(v') g::;‘v}

In Definition 2 we give the usual definition of Labelled Transition Systems (LTSs).
Definition 2. A Labelled Transition System (LTS) is a tuple (S,L,—,s), where

S is a set of states,

L is a set of transition labels,
e — C S x L xS is the transition relation,

s € S is the initial state.

36 A process algebra with global variables

(PREF) - (ASGN)
(a.P,VYy — (PV) (assign(v,d).P,V) a“ﬂ d) (Vv s d))
(cony — BV — PV vey—a ree) 2V V)
((v=d) = P.V) = (PV") X.V) 25 (PLV)
P = V) sonp) Q) 0V
(P+0Q.V) 2 (P V) (P+0,V) 25 (0, V)
(PAR-L) BY) = (PV) (Park) — V) = {0V
(PllQ,V) 25 (P Q,V") Plo.v) 2 P oV
(CoMM) (PV) = (PV) (@V) = <Q/ v) Y(a,b) =c
(Pllo.v) == (P Q'V) ’
A !
(ENO) (PV>7><P V) A B
(98(P),V) = (ds(P'),V")

Table 1: Structural operational semantics.

We now want to associate an LTS with the process algebra. As the behaviour of a process expression
depends on the valuation of global variables a state is a pair (P,V) of a process expression P and a
valuation function V. The set of states is & x #. The transition relation is the least relation on states
satisfying the rules of the structural operational semantics (see Table 1).

Note that we only allow processes to synchronise on actions and not on assignments. This design
decision was made since assignments change the valuation function, whereas actions cannot change the
valuation. When two processes synchronise on assignments then it is not clear what the resulting effect
on the value of the variable should be.

Example 3. Consider the interaction between a car and a traffic light controller (TLC). The TLC sets the
colour of a traffic light which the driver of the car acts upon. There is one global variable ¢ and the data
domain consists of two elements D = {green,red}. The recursive specification consists of two process
equations, given below.

CAR % ((t = green) — drive.8) + ((t = red) — brake.((t = green) — drive.5))
TLcY ((t = green) — assign(t,red).T LC)

+((t = red) — assign(t, green).T LC)

Using the SOS we can derive an LTS with (CAR||TLC,V) as initial state, where V (1) = green. Note that
this LTS is isomorphic to the LTS presented in Example 1. We only show the states reachable from the
initial state. The initial state is marked with an arrow pointing to it.

M.S. Bouwman, et al. 37

drive
> (carlrLey) [T2C.7) (srLe.v)
assign(t,red)
assign(t, _ . assign(t,
green) assign(t,green) | | assign(t,red) red)

assign(t,green)
brake ((t = green) — drive.8

(CAR||TLC,Vt + red]) ITLC, V[t — red])

(8||TLC, V[t — red])

3 Equivalence of process expressions

We will examine equivalence relations in the context of global variables. To start we note that we can
examine equivalence on two levels: on the level of process expressions and on the level of pairs of
process expression together with an initial valuation (from which we can derive an LTS). We begin by
exploring the equivalence of process expressions.

We require of the equivalence relation on process expressions that if P and Q are equivalent then we
can safely replace P with Q in any larger process expression. In other words, the equivalence relation on
process expressions should be a congruence for the process algebra.

Typically, equivalence of process expressions is established by a notion of bisimilarity. Most variants
of bisimulation only consider the labels on transitions. Strong bisimilarity (defined in Definition 4) is,
however, not a congruence for our process algebra, which we will demonstrate with an example.
Definition 4. Strong bisimilarity: A relation Z C S x S, where S is the set of states of an LTS, is a strong
bisimulation relation if and only if for all states s and ¢ and labels A we have (s,7) € # implies that

A . . . A
e for all states s': s = s implies there exists a state ¢’ such thatt = ¢’ and (s',¢") € %,

o for all states /s 7 2 ¢/ implies there exists a state s’ such that s 2 ¢ and (s',/') e A.
Two states s and ¢ are strongly bisimilar, denoted by s « ¢, if and only if there exists a strong bisimulation
relation Z such that (s,7) € Z.
Example 5. Consider process expressions P = (v = 0) — a.d and Q = a.8. Note that P and Q are
simply abbreviations of process expressions, not process names. Let V map a global variable v to 0 and
D = {0,1}. The reachable fragments of the LTSs with (P,V) and (Q,V) as initial state are shown in
Figure 1.

P: — (PV) (6,V)

Q: — (0,V)

(6,V)
Figure 1: Part of the transition system space of P and QO

Processes P and Q seem behaviourally equivalent looking at the reachable transitions, the states (P,V)
and (Q,V) are in fact strongly bisimilar. The problem arises when we add a parallel component that can

38 A process algebra with global variables

assign a different value to the global variable. Let us consider the process expression R = assign(v,1).6.
The reachable fragments of the LTSs with P||R and Q||R as initial state are shown in Figure 2. Clearly
P||R and Q||R are not strongly bisimilar and therefore strong bisimilarity is not a congruence for our
process algebra.

— (P|R,V) ——— > (6||R,V)
assign(v, 1) assign(v, 1)
P|R:
(P|8, Vv 1]) (8]|8, Vv 1])
— (Q|R,V) (8]IR,V)
(0]|6,V]v—1] (8]|8, Vv 1])

Figure 2: Part of the transition system space of P and Q

We will use the notion of stateless-bisimilarity, defined in [9], as an equivalence relation on process
expressions. In essence, stateless-bisimilarity relates process expressions that behave the same under any
valuation.

Definition 6. Stateless-bisimilarity: A relation Zy; C &2 x 2 is a stateless bisimulation relation if and
only if for all process expressions P and Q and labels A we have (P,Q) € % implies that

e for all process expressions P’ and valuation functions V,V' € ¥: (P,V) LN (P', V') implies there
exists a process expression Q' such that (Q,V) LN (@', V') and (P',Q') € ,@31,

e for all process expressions Q' and valuation functions v.viev: (0, V) (Q',V') implies there
exists a process expression P’ such that (P, V} = (PLV')and (P,Q') € Zy.

Two process expressions P and Q are stateless bisimilar, denoted by P < ; O, if and only if there exists
a stateless bisimulation relation %, such that (P,Q) € %Zy.

The deduction system of our process algebra is in process-tyft format from which it follows that
stateless-bisimilarity is a congruence [9].

In the case that global variables cannot be changed by the environment and we have a specific initial
valuation in mind we might not care about the behaviour under valuations that will never occur. To that
end we use state-based bisimilarity [9], which is defined on states rather than process expressions.

Definition 7. State-based bisimilarity: A relation Zg, C (2 X ¥') x (&2 x V') is a state-based bisimula-
tion relation if and only if for all states (P,V;) and (Q,V,) and labels A we have ((P,V}),(Q,V2)) € Zs»
implies that V; =V, and
e for all process expressions P’ and valuation functions V’: (P, V;) uN (P',V') implies there exists a
process expression Q' such that (Q,V,) A (Q', V'Y and ((P',V"),(Q',V")) € %,

M.S. Bouwman, et al. 39

> (Q', V') implies there exists a
< /, 14 >) € %sb
Vi) &

Two states (P,V;) and (Q,V,) are state-based bisimilar, denoted by (P,V}) < (Q,V,), if and only if
there exists a state-based bisimulation relation %y, such that ((P,V}),(Q,V2)) € Zg.

e for all process expressions Q' and valuation functions V': (Q,V,
Vo,

process expression P’ such that (P,V;) 2 (P', V") and ((P',

State-based bisimilarity is not a congruence for our process algebra, the problem shown in Example
5 applies.

There is a relation between stateless-bisimilarity and state-based bisimilarity. For any two process
expressions P and Q we have that if P <, Q then also (P,V) <, (Q,V) for all valuations V € ¥ [9].

State-based bisimilarity distinguishes LTSs on the valuation that is in a state: two states that are
strongly bisimilar may not be state-based bisimilar due to differences in valuations in reachable states.
This takes into account that the value of global variables may be essential to the modelled system and
may be visible to the environment.

4 Hennessy-Milner logic

In order to reason about properties of a process expression or system specification we define a logic.
Standard Hennessy-Milner Logic (HML) [7] is insufficient for our purpose, for two reasons. The first
reason is that we would like to conveniently refer to global variables in the logic. The second reason for
extending the logic is that we want a correspondence between the logic and stateless bisimilarity. Process
expressions a.6 and (v =0) — a.8 are not stateless bisimilar but in the case that we have a valuation
function V that maps v to O then states (a.6,V) and ((v =0) — a.8,V) cannot be distinguished using
HML.

We extend HML with two new operators. The first operator is the check operator (v = e). This
operator returns a boolean which is true if and only if a global variable v has value e. The second
operator is the set operator | (v := ¢). The set operator sets the value of a global variable v to e. This
results in the following syntax for our logic:

¢ :=true| false | (v=e) | =0 |9AQ [oV [(T)9[[T]9| | (v:=e)¢

where T is a nonempty finite set of transition labels. Depending on whether we include the check
operator, the set operator or both, we will refer to the logic with HML¢* | HML*¢' or HMLcheck+set,
respectively.

The formula frue holds in every state and false holds in no states. The operators —, A,V have their

usual meaning. The diamond operator (7')¢ is true in a state s if and only if a transition s 2, o exists
where ¢ holds in s’ and A € T. The box operator [T]¢ holds in a state s if and only if for every state s’

and transition label A € T we have s - s/ implies ¢ holds in s’.

The check operator (v = e) is true in a state (P, V) if and only if V (v) = e. The set operator |, indicates
that || (v:=e)¢ is true in all states (P,V) if and only if ¢ is true in (P,V[v — e]). Note that the set operator
allows us to reason about parts of an LTS that are not reachable from the initial state. Further note that
the set operator allows us to distinguish (a.8,V) and ((v =0) — a.8,V) even if V(v) = 0 the formula
1 (v:=1)({a})true distinguishes them. We will use the notation | (V), V € ¥, to set the value of all
global variables to the value specified by V. This is a shorthand for a sequence of regular set operations.
Note that the number of global variables is finite and the order of set operations is irrelevant in the
sequence of set operations as each sets a different variable.

40 A process algebra with global variables

4.1 Semantics

In this section we will define semantic rules to obtain all states that satisfy a HML¢*+5¢ formula. We
have obtained the semantics of standard HML from [6]. Let ¢ be a modal formula, let (S,L,—,s) be
an LTS. We inductively define the interpretation of ¢, notation [¢], where [@] contains all states u € S
where ¢ is true. Note that the check and set operators are only defined for LTSs where states consist of
both a process expression and a valuation.

[true] = S

[false] = 0

[v=e] = {(PV) €S|V(v)=e}

[-¢] = S\[¢]

[ono'] = [oln[e]

[ovel = [oluleT]

[(T) el = {ueS|We[PlAET ulu}

[[T]¢] = {u€S|Vu’€S,7L6T:(u£>u’)z>u’€[[¢]]}
[Lvi=e)¢] = {(RV)eS|(PVv—e])e[o]}

S Relation logic and bisimilarity

There is a nice correspondence between strong bisimilarity and HML: two states in an LTS are strongly
bisimilar if and only if they satisfy the same HML formulas [7]. This correspondence is often called
the Hennessy-Milner theorem. We would like a similar correspondence between process expressions
and states and the extended HML. First, we introduce the notion of an image-finite process. As an LTS
contains all possible process expressions (and valuations) we want to impose image-finiteness only for
reachable states and process expressions, so we start by defining reachability.

Definition 8. Reachability states: A state s’ is reachable from a state s if there exist states so, .. .,s, and

A An
labels Ay, ..., A, such that s = 5o Asog —= S] A= A Sy — Sy Asp = 5.

Definition 9. Reachability process expressions: Process expression P’ is reachable from a process ex-

pression P if there exist processes P, ..., P, and labels Ay,...,4, such that P = Py A Iy, v, (Po, Vo) i>
Mo

<P1,V1> JARERWA E!V,,,l,Vn<Pn71)Vn71> — <Pn,Vn> NP, = P

Definition 10. Image-finiteness: A state (P,V) is image finite if and only if the set {(P',V')|(P,V) LN
(P',V')} is finite for every label A. A process expression P is image finite if and only if for every process
expression P’ reachable from P and every valuation V the state (P',V) is image-finite.

. . . . f
An example of a state that is not image finite is (4,V), with A s [|A.
We can now prove the following two correspondences on the level of process expressions and states.

Theorem 11. Let P and Q be two image-finite process expressions. Then P <; Q if and only if for all
valuations V and all HML***+$¢! formulas ¢ we have that (P,V) € [¢] < (Q,V) € [¢].

Proof. We prove the two implications separately. To prove the implication from left to right assume
P+, Q. The proof that for some HML*+5¢ formula ¢ we have that (P,V) € [¢] if and only if
(Q,V) € [¢] is straightforward by induction on the structure of ¢.

M.S. Bouwman, et al. 41

For the implication from right to left we assume that (P,V) and (Q,V) satisfy exactly the same
formulae in HML¢“*+5¢' ' We shall prove that (P,V) «> (Q,V). To this end, note that it is sufficient to
show that the relation

Ry = {(T,U)|T,U € P and Vycy (T,V) and (U,V) satisfy the same HML"**5¢ formulae}

is a stateless bisimulation relation. Assume that T%,U and (T,V) 2 (T",V') for some valuation V.

We shall now argue that there is a process U’ such that (U,V) A (U, V'Y and T'%#,U’. Since Zy is
symmetric, this suffices to establish that Zj; is a stateless bisimulation relation.

Now assume, towards a contradiction, that there is no (U’, V') such that (U,V) A (U',V'"y and for
all valuations V € ¥, (U’, V) satisfies the same HML***5¢ formulas as (T’,V). Since (U, V) is image
finite, the set of processes that (U,V) can reach by performing a A-labelled transition is finite, say
{{U\,W),...,(Un,V,)} withn € N. Forevery i € {1...n}, there exist a formula ¢; and valuation V/ such
that (T7,V/) € [¢;]] and (U;,V/) ¢ [¢;] or valuations V; and V' differ for variable v.

We are now in a position to construct a formula that is satisfied by (7, V) but not by (U, V), contra-
dicting our assumption that (7, V) and (U,V) satisfy the same formulae.

: : N [A WDe (T V) € [oi] and (ULV)) ¢ [41]
We define for each i € {1...n} : refure(i) = { (v=V'(v)) if the valuations of V' and V/ differ for v

The formula (A)(refute(1) Arefute(2) A--- Arefute(n)) is satisfied by (T, V) but not by (U, V).
U

Theorem 12. Let (P,V) and (Q,V) be states in some LTS (S,TL,—,s) and let all states reachable from
(P,V) and (Q,V) be image-finite. Then (P,V) <, (Q,V) if and only if for all HML formulas ¢ we
have that (P,V) € [¢] < (Q,V) € [¢].

Proof. The proof is very similar to the one given for Theorem 11. We will only provide the distinguishing
formula.

Let (T,V) A (T',V') and let {(Uy,V1),...,{Un,V,)} be the set of states (U,V) can reach with a A-
labelled transition. For every i € {1...n}, there exists a formula ¢; such that (7', V') € [¢;] and (U;,V;) ¢
[¢] or valuations V; and V' differ for variable v.

, . N_ [& if (T',V') € [¢:] and (U,Vi) & [¢]
We define for cach 7 € {1...n} : refute(i) = { (v=V'(v)) if the valuations of V' and V; differ for v

The formula (1) (refute(1) Arefute(2) A--- Arefute(n)) is satisfied by (T, V) but not by (U,V). O

Note that for process expressions we need the set operator in the logic, whereas for states we can
only have the check operator on top of regular HML. Intuitively, we need the set operator on the level of
process expressions to say something about the behaviour of the process for any valuation.

6 Translation to mCRL2

For process algebras without global variables it might be the case that global variables can be modelled
using different language constructs. Modelling global variables then often requires a protocol to regu-
late the access to global variables. In this section we explore how a process expression in our process

42 A process algebra with global variables

algebra with global variables can be translated to mCRL2 without introducing extra internal activity.
The resulting mCRL2 specification induces an LTS that is isomorphic to the LTS of the original process
expression, save some selfloops signalling information on the valuation of that state. We also give a
translation from HML*“* to the modal p-calculus, which is the logic that is used in mCRL2 to express
properties. We show that a HML** formula holds for the original process expression if and only if the
translated formula holds for the translated process expression.

6.1 Introduction of mCRL2

We will introduce the syntax and semantics of the fragment of mCRL?2 that is needed to encode global
variables. In particular, we will introduce actions parametrised with data and multi-actions. We will not
go into the details of the data language itself. It suffices that there exists a semantic interpretation function
[.] that maps data expressions to elements of the data domain. We declare a set of data expressions &
and a set of Boolean expressions # of which the interpretation is an element of D or {true, false},
respectively. We also presuppose an equality relation ~ on data expressions. For more information on
the syntax and semantics of mCRL2 we refer the reader to [6]. Multi-actions in combination with the
allow operator were first proposed in [13].

We presuppose a set of action names A, each with an associated arity. An action label a(dy,...,d,)
consists of an action name a € A of arity n and a list of data parameters dj,...,d,. We denote by A the
set of action labels. If & € A, then we denote by « its name (e.g., a(2,3,true) = a).

The set of multi-actions M is generated by the following grammar:

a:=ala|t]|ald,...,d,),

where a(d,,...,d,) € A and d, to d, are data expressions or Boolean expressions. Also for each multi-
action o we define :
=1
a(dy,...,dy) =a
o|B = alp.

The set of multi-actions where each action label in the multi-action is in A is M.

We define a multi-set over A, (A,m), where m : A — N is a function assigning a multiplicity to each
element of A. We define a € (A,m) to be true if and only if m(a) > 0. As notation we use { § where
the elements are listed together with their multiplicity, e.g. {a:2,b:3§. Over multi-sets (A,m) and
(A,m’) we define a binary operator addition, denoted by +, that results in a multi-set (A, m"), where for
all a in A it is the case that m”(a) = m(a) 4+ m’(a). Similarly, we define a binary operator subtraction,
denoted by —, such that it results in a multi-set (A,m”), where for all a € A we have that m”(a) =
max(m(a) —m'(a),0). Furthermore, we define inclusion, denoted by C, to hold if and only if for all
a € A we have that m(a) < m/(a). For multi-sets over labels we define (A,m) = (A,m’), where for all
a € A it holds that m(a) = m'(a).

Given a multi-action o we inductively associate a semantic multi-action [a] with it:

[71=0

la(dy,....dn)] = {a([di], ... [da]) : 1§
[«|B] = [o] +[A]

M.S. Bouwman, et al. 43

The set of all semantic multi-actions is .#. The set &,,crr2 of process expressions of the fragment
of mCRL?2 that we need in the translation is generated by the following grammar:

P:=AP|8|P+P|P|P|Vu(P)|X(d,...d) | Y. P|u(P)|Tc(P),
d:D

where A € M, M a set of multi-action names, M C M, X is a process name, [is a set of action names,
I C A, and C is set of renamings from a set of multi-action names to an action name, notation a|...|b — c.
We introduce a function ¢ (@), where @ is a semantic multi-action that applies communications in
Ctoa,eg Tipoala:2,b:35=1{b:1,c:25. A communication can only be performed when the
parameters of action labels match. For the exact semantics of y-(a) we refer the reader to [6].
We define a function 6;((A,m)), such that it results in a multi-set (A,m’) such that

[0 ifael
Vaeam (a)—{ m(a) ifaé¢l

The sum operator facilitates a non-deterministic choice over a data domain. For example, in the case
the data domain D is the natural numbers, Y ,.pa(n).P can make an a(0) step to process Pln := 0], an
a(1) step to process P[n := 1], etcetera.

Pr5p ot

(PREF) —————— (PAR)
a.prl p Plo“E ¢
Pldyi=1.dyi=1;] % P' X(dy:Di,....dy:D,) =P
(REC) [dy:=1,....dy = ty] a(1:Dyq i Dy)
X(t1,.erty) — P’
o oy o /
(SUM-L) % (SUM-R) %
P+Q—P P+Q— (O
Pd:=1]-%P €9 a
(SUM) [d— — (HIDE) P9_>P/
/
YipP 5P o(P) %Y 4P
o o o /
(PAR-L) P—P (PAR-R) 0 — 0
Pllog—P|Q PlQ—P|Q
| P-%p
(CoMM) — (ALLOW) 7 [a] e M
Te(P) % re(p) Vi(P) % Vi (P')

Table 2: Structural operational semantics of our fragment of mCRL2.

An LTS (S,.#,—,P) can be associated to a process expression P. The set of states is the set of
process expressions, S = P, crr2. The set of transitions is generated by the proof system based on the
structural operation semantics (see Table 2).

44 A process algebra with global variables

6.2 Translation of process expressions and valuations

Recall that a specification in the process algebra with global variables consists of the following: a data
domain D, a set of variable names Var, a set of action labels Act, a set of process names PN and their
defining equations, a communication function ¥, and an initial state consisting of a process expression
and an initial valuation V. We consider a restricted grammar for the translation.

Sequential components The set of sequential process expressions Ps., is generated by the following
grammar (with v ranging over Var, d ranging over D, X ranging over PN and A ranging over TL):

Seq :=Seq+Seq | (v=d) = Seq | A.Seq | 6 | L.X.

. . ; . . . def , .
By a sequential recursive specification E we mean a set of defining equations X = ¢, with 7 a sequen-
tial process expression, including precisely one such equation for every X € PN.

Parallel-sequential processes Presupposing a sequential recursive specification E, the set of parallel-
sequential process expressions &p,, over E is generated by the following grammar (with X ranging over
PN and Seq ranging over sequential process expressions):

Par := Par||Par | X | Seq.

We assume that the recursive specification E is sequential and that the process expression under
consideration for translation is of the shape dg(P), where P is parallel-sequential process expression and
B C Act. For the sake of readability, in our explanations below we restrict our attention to the case that
there is one global variable g. In Section 7 we explain how to generalise the translation to any number of
variables. Now that the input for the translation is clear, we show how it is translated to mCRL2.

The value of global variables is tracked by a dedicated process Globs, defined below.
Globs(d : D) =

checkG(d,true).Globs(d)

+checkG(d,true)|checkG(d,true).Globs(d)

+Xew-n-checkG(d, true)|assignG (g, new).Globs(new)

+value(g,d).Globs(d);

The process can communicate the current value of the global variable with a checkG action, of which the
first parameter is of type D and the second a constant of type Bool. It can perform a checkG action twice
in a multi-action to facilitate informing two parallel processes in one step. Since our process algebra
with global variables only allows handshaking communication there can never be more than two parallel
processes that participate in a transition. It facilitates changing the value of the global variable with an
assignG action, with one parameter of type D carrying the new value. It can emit the current value of a
global variable with a value action, with a single parameter of type D.

We translate the recursive specification E to a recursive mCRL2 specification E’, which includes
defining equations for all the process names in PN and additionally a defining equation for Globs. Let
f(A) denote the powerset of A. We introduce a function ¥ : Psey X (D) — Pucri2, which we will

define shortly. For every defining equation X & in E there is a defining equation X &f x(2,0) in E'. The
function y is defined below, where € C D is a set of constraints on the global variable that is eventually
transformed into an appropriate checkP action.

M.S. Bouwman, et al. 45

X(Pi+ P €) = x(P,e)+x(Pye)

x((g=d)—Pe) = x(P,eu{d})

%(a'Pla'g) = (Zdl :Da|CheCkP(dla/\des d ~ d))'X(Plvw)
X(assign(g,d’).P1,€) = (Lq.passignP(g,d")|checkP(di, \gee di = d)).2(P1,0)
x(X,€) = X

x(8,¢) = 0

We define a set of communications Cy, such that a|lb — ¢ € Cy or bla — ¢ € Cyif and only if y(a,b) =c
(we should include only one of a|b — ¢ and bla — c in Cy to satisfy the requirement that the left-hand
sides of communications in Cy are disjoint). We define an extended set of communications that includes
communications with Globs: Cgy = CyU {assignP|assignG — assign, checkP|checkG — check}. Given
a set of encapsulated actions B we define a set of allowed actions Ap = (Act \ B) U {value,assign}. We
extend) to parallel-sequential process expressions in the following way.

X (P[P, 0) = x(P,0)||x(P2,0)
We translate the process expression dg(P), with an initial valuation V,V(g) = d, to the mCRL2
process expression Va, (T(creck} (Leg, (X (P,0)||Globs(d)))), which we abbreviate to ¥(P,V).

6.3 Translation of formula

The selfloops labelled with value provide information on the values of global variables in every state,
which we will exploit in the translation of HML** formulas. Given a HML*?* formula we eliminate
each occurrence of the check operator of the shape (v = ¢) by substituting it with (value(v,e))true. We
denote this substitution function with 6, which we define inductively:

0(true) = true,

O(false) = false,

0(v=e) = (value(v,e))true,
0(=9) = —0(9),

(o1 AP) = 6(¢1)N6(92),
O(o1Ve) = 6(¢1)VO(h)
o(T)e) = (T)6(9),
o([Tlg) = [T]6(9).

6.4 Correctness of translation

From here on, when we consider the translation of some state (P,V) to ¥(P,V) we assume that the context
of the process expression, such as the data domain D, the set of actions and a recursive specification have
been encoded in mCRL?2 as described in the previous section.

We will prove that a HML"** formula ¢ holds in a state (P, V) if and only if 8(¢) holds for ¥(P,V).
To achieve this we use a stepping stone. In Definition 13 we define a relation between LTSs with and
without a valuation function in the state, called variable consistency. We prove that the LTSs induced
by (P,V) and W(P,V) are variable consistent, which we use in Theorem 23 to prove that any HML*
formula ¢ holds for (P,V) if and only if 6(¢) holds for ¥(P,V)
Definition 13. Let .4 = (S1,TL;,—>1,s1) be an LTS such that S = & x ¥, and let % = (5,,TL,,—»
,52) be an LTS such that S, = &,,cr2. We say that % is variable-consistent with £} if there exists a
mapping £ : S| — S, such that whenever some state s’1 is reachable from s; in .%], then ¢ (5/1) is reachable
from £(s;) in % and

46 A process algebra with global variables

1. for all states s/, s, € S, reachable from s, and such that s} N s, we have that A € TLU{value(v,d) |
v e VarNd € D},

value(v,d)

2. forall (P,V) €S),s' € Sy,v € Var,d € D we have that £((P,V))
and (((P,V)) =¥,

s"if and only if V (v) = d

3. forall A € TL; and reachable states s,s5 € S we have that s/ UN sh if and only if ¢(s}) LNy, (s5).
For the first property of variable consistency we prove the following lemma.
Lemma 14. For all parallel-sequential process expressions P, process expression P’ € &, cgr2, valua-

tions V, o € M and B C Act we have that W(P,V) —= P’ implies @ € TLU {value(g,d) | d € D}.

Proof. This follows immediately from the allow operator in W(P,V'), which does not allow multi-actions
that are not in TLU {value(g,d) | d € D}. O
Towards proving the second property of variable consistency we prove the following lemma.

Lemma 15. For all parallel sequential process expressions P, process expression P’ € Z2,,cr12, valuation
V,d €D, BC Act we have that W(P,V) “““®%; p/ if and only if V(g) = d and W(P,V) = P'.

Proof. The process expression W (P,V') contains a parallel component Globs(d). The Globs process can
make a value(g,d) transition where V (g) = d. Moreover, all such value(g,d) transitions are self-loops.
Finally, the Globs process is the only sub process in (P, V) that is able to produce a value transition. [
Towards proving the third property of variable consistency we first provide a number of auxiliary lemmas.
Lemma 16. For all sequential process expressions P, process expression P’ € P, cri2, A € ActU

)
{assignP(g,d) | d € D}, dy € D we have that x(P,0) MeheckP(d true)
that y (P",0) = P'.

P’ implies that there exists P” such

Proof. From the definition of J it follows that if) (P,0) can make a A|checkP(d; ,true) labelled transition
then there exists some Q and P; such that Y (P,0) = Q+ (¥Ly,.p A|checkP(dy, Nyee di = d)).x(P1,0).
Hence after making the A|checkP(d, ,true) labelled transition we end up in x(P;,0). O

Lemma 17. For all parallel-sequential process expressions P, ot € M we have that W(P,V) 2 P’ implies
that there exists P” and V' such that ¥(P", V') = P'.

Proof. By Lemma 14 we conclude that & € TLU {value(g,d) | d € D}. In the case that ¢ is a value
transition it is a selfloop and ends in W(P,V). In any other case W(P,V) makes a step that includes
a contribution from one or more of the parallel components of P. From the definition of y it follows
that any contribution of a parallel component is of the shape A|checkP(d;,b), where d; € D and b €
{true, false}. The checkP must communicate with a checkG, otherwise the action will be blocked by
the allow operator. Hence b = true, enabling us to use Lemma 16 to conclude that for every parallel
component contributing to & there exists some process expression Py, such that the parallel component
ends in ¥ (Pyq,0). The parallel components of (P, V) that do not contribute to & remain in a shape such
that there exists some process expression Py, such that the parallel component is X (Picq,0). The Globs
process remains unchanged or its valuation is updated, in which case there exists some valuation V' that
reflects the updated value. The allow, hide and communication operators remain unchanged. Hence,
after any o step W(P,V) ends in a state ¥(P",V’). O

M.S. Bouwman, et al. 47

Lemma 18. For all sequential process expressions P,P', DD C 9, a € Act and assign(g,d') € TL we

(P',V) if and only if 3y,cpy (P,0) AL @),
assign(g,d’)
—

a

have that Vyey (Ayepp V(8) = [d]) = (P,V) —

X(P',0) A \yeppdi = [d] and we have ﬂ,lat Yer (AaeppV (8) =[d]) = (P.V)
&')) if and only if 3y, cpy (P,0) 2T NhAPL) o ot gy AN oo dy = [d]

(P'\V[g—

Proof. This can be proven by induction on the structure of P, the induction hypothesis is that the bi-
implication holds for every direct subprocess of P and for every defining equation of process names. The
key insight is the second field of the checkP action is only true when the condition for the data value in
the first field of checkP, constructed by ¥, is true. U

Lemma 19. For any parallel-sequential process expression P, process expression P/, A € TL and val-

uations V,V’ we have that (dg(P),V) LN (dp(P'),V') implies P’ is again a parallel-sequential process
expression.

Proof. Any step made from dg(P) leaves the dp operator and the parallel composition intact. One or
more of the parallel components make a step. By the structure of parallel-sequential process expressions
these parallel components are either a process name or a sequential process. Since we also assume
that the defining equations of every process name is a sequential process expression the process name
will make a step as such. By the structure of sequential process expressions they can make a step to a
sequential process expression or a process name. Hence, after any step P is again a parallel composition
with process names and sequential process expressions. U

Lemma 20. For all valuations V and V', A € TL, parallel-sequential process expressions P, B C Act we
have that (Jg(P),V) 2 (9p(P'),V") if and only if ¥(P,V) 2 ®(P', V).

Proof. Both directions of the bi-implication can be proven with a case distinction on the type of transition
using three cases: an action from Act stemming from one of the parallel components, a handshake
stemming from two parallel components and an assignment. To prove the implication from left to right
Lemma 18 can be used to prove that for each contribution by a parallel component of (dg(P),V) the step
can be matched with an appropriate step from a parallel component of ¥(P,V). Lemma 19 ensures that
after taking a transition we end in the translation of a parallel-sequential process again. To prove the
implication from right to left Lemma 16 and Lemma 18 can be used to prove that for each contribution
by a parallel component of W(P,V) the step can be matched with an appropriate step from a parallel
component of (dg(P),V). O

Theorem 21. For all parallel-sequential process expressions P, valuations V, we have that the LTSs
induced by (P,V) and (P, V) are variable consistent.

Proof. For every state (P',V') reachable from (P,V) we define £((P',V')) =¥ (P',V’). Lemma 14 proves
condition 1, Lemma 15 proves condition 2 and Lemma 20 together with Lemma 17 proves condition
3. O

Corollary 22. For all parallel-sequential process expressions P,Q and valuations V;,V, we have that
<P, V1> b <Q,V2> if and only if lP(P, Vl) e T(Q,Vz)

48 A process algebra with global variables

Proof. This follows immediately from the definition of variable consistency. The difference between
state-based bisimilarity and strong bisimilarity is only that state-based bisimilarity requires that the val-
uation in states is equal. By condition 2 of variable consistency the valuations V| and V, are equal if and
only if ¥(P,V;) and ¥(Q,V>) have the same value labelled self-loops on states. O

Theorem 23. Let (S,TL,—,s) be an LTS where S = & x ¥, let (§',TL',—',s") be an LTS where
S' = P,crin and let these two LTSs be variable consistent. A HML** formula ¢ holds in some state
(P,V) € S if and only if 6(¢) holds in £((P,V)) € §'.

Proof. The proof is by induction on the structure of ¢ with the induction hypothesis that any subformula
¢’ of ¢ holds for (P,V) € S if and only if 68(¢’) holds for £({P,V)). In the case ¢ = (v = ¢) condition 2 of
variable consistency is necessary to relate the valuation in a state and the value labelled selfloops. Con-
dition 3 of variable consistency is needed for the case ¢ = (T)¢’ and ¢ = [T]¢’ to show that transitions
can be mimicked. Furthermore, in the case ¢ = [T]¢’ we also need condition 1 of variable consistency
to show that ¢((P,V')) does not have more A labelled transitions. O

7 Discussion

For the encoding in mCRL?2 and subsequent correctness proofs we have made the assumption that there
is only one global variable, which is rather restrictive. To generalize the translation to handle any number
of global variables we would need to adjust the following. The Globs process should be adjusted to track
more global variables by making the parameter of the process a mapping from variable names to values.
Upon performing an assignG(v,d) action Globs should update the mapping such that v maps to d. To
communicate the values of global variables in a check(d,,...,d,,true) action we need an ordering on
the global variables: d; is given the value of variable one, d; is given the value of variable two, etcetera.
The condition determining the last parameter of the checkP action should also be adjusted to use this
ordering, e.g. when y gathers a requirement (v,d) and variable v is the ith variable then the condition in
checkP should include a conjunct d; ~ d.

We intend to continue researching process algebras with global variables. One research direction
is to extend mCRL2 with global variables. The simple process algebra presented in this paper only
allows for very simple conditions on global variables: checking whether a variable has a specific value.
If global variables could be integrated into mCRL2 we could use its powerful data language to specify
complex conditions. We would also like to research scoped shared variables, including creation and
scope extrusion.

8 Conclusion

In this paper we have presented a simple process calculus with global variables and studied various as-
pects of it. To start we examined appropriate notions of equivalence: stateless bisimulation for process
expressions and state-based bisimulation for states. Then, for our first contribution we presented a logic
extending HML with a check and a set operator and proved that HML*“* is strong enough to differen-
tiate states that are not state-based bisimilar and HML“**+5¢ is strong enough to differentiate process
expressions that are not stateless bisimilar. Finally, for our second contribution we give a translation to
mCRL2, using the multi-action concept, preserving HML**** formulas. Translating to mCRL2 allows
us to reuse the already existing tools. The translation mostly preserves the syntactic structure and, in
particular, the parallel composition (adding one extra parallel process).

M.S. Bouwman, et al. 49

When analysing whether a distributed system satisfies a liveness property, it is necessary to define
through a completeness criterion which runs of the system should be considered in the analysis. Recently,
Jjustness was proposed as a suitable completeness criterion that takes into account the component struc-
ture of the system [5] and excludes unrealistic runs. Modelling shared variables as separate components
hampers a straightforward definition of justness [4, 3]. Since global variables need not be modelled as
separate components in the process algebra proposed in Section 2, it may facilitate a more elegant analy-
sis of liveness properties under justness assumptions for distributed systems that rely on shared variables
for the communication between components.

Acknowledgements

For the presentation of the semantics of mCRL2, and in particular for the semantics of multi-actions,
we have benefited from work by Maurice Laveaux. We would also like to extend our gratitude to the
anonymous reviewers. Their comments led to Corollary 22.

References

[1] J. C. M. Baeten, T. Basten & M. A. Reniers (2009): Process Algebra: Equational Theories of Com-
municating Processes. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press,
doi:10.1017/CB0O9781139195003.

[2] J.C.M. Baeten (2005): A brief history of process algebra. Theoretical Computer Science 335(2-3), pp. 131-
146, doi:10.1016/j.tcs.2004.07.036.

[3] Mark Bouwman, Bas Luttik & Tim A. C. Willemse (2020): Off-the-shelf automated analysis of liveness
properties for just paths. Acta Informatica 57(3-5), pp. 551-590, doi:10.1007/s00236-020-00371-w.

[4] Victor Dyseryn, Rob J. van Glabbeek & Peter Hofner (2017): Analysing Mutual Exclusion using Process
Algebra with Signals. In Kirstin Peters & Simone Tini, editors: Proceedings Combined 24th International
Workshop on Expressiveness in Concurrency and 14th Workshop on Structural Operational Semantics and
14th Workshop on Structural Operational Semantics, EXPRESS/SOS 2017, Berlin, Germany, 4th September
2017., EPTCS 255, pp. 18-34, doi:10.4204/EPTCS.255.2.

[5] Rob J. van Glabbeek & Peter Hofner (2015): CCS: It’s not fair! - Fair schedulers cannot be implemented in
CCS-like languages even under progress and certain fairness assumptions. Acta Inf. 52(2-3), pp. 175-205,
doi:10.1007/s00236-015-0221-6.

[6] Jan Friso Groote & Mohammad Reza Mousavi (2014): Modeling and analysis of communicating systems.
MIT press, doi:10.7551/mitpress/9946.001.0001.

[7] Matthew Hennessy & Robin Milner (1985): Algebraic Laws for Nondeterminism and Concurrency. J. ACM
32(1), pp. 137-161, doi:10.1145/2455.2460.

[8] Robin Milner (1989): Communication and concurrency. PHI Series in computer science, Prentice Hall.

[9] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2005): Notions of bisimulation and
congruence formats for SOS with data. Inf. Comput. 200(1), pp. 107-147, doi:10.1016/j.ic.2005.03.002.

[10] Rocco De Nicola & Rosario Pugliese (1996): A Process Algebra Based on LINDA. In: COORDINATION,
Lecture Notes in Computer Science 1061, Springer, pp. 160-178, doi:10.1007/3-540-61052-9 45.

[11] A. W. Roscoe (2010): Understanding Concurrent Systems. Texts in Computer Science, Springer,
doi:10.1007/978-1-84882-258-0.

[12] Vijay A. Saraswat, Martin C. Rinard & Prakash Panangaden (1991): Semantic Foundations of Concurrent
Constraint Programming. In: POPL, ACM Press, pp. 333-352, doi:10.1145/99583.99627.

50 A process algebra with global variables

[13] Muck van Weerdenburg (2008): Process Algebra with Local Communication. Electron. Notes Theor. Com-
put. Sci. 215, pp. 191-208, doi:10.1016/j.entcs.2008.06.028.

Reactive Temporal Logic

Rob van Glabbeek
Data61, CSIRO, Sydney, Australia
School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

rvgQ@cs.stanford.edu

Whereas standard treatments of temporal logic are adequate for closed systems, having no run-time
interactions with their environment, they fall short for reactive systems, interacting with their envi-
ronments through synchronisation of actions. This paper introduces reactive temporal logic, a form
of temporal logic adapted for the study of reactive systems. I illustrate its use by applying it to formu-
late definitions of a fair scheduler, and of a correct mutual exclusion protocol. Previous definitions of
these concepts were conceptually much more involved or less precise, leading to debates on whether
or not a given protocol satisfies the implicit requirements.

1 Introduction

Labelled transition systems are a common model of distributed systems. They consist of sets of states,
also called processes, and transitions—each transition going from a source state to a target state. A
given distributed system & corresponds to a state P in a transition system T—the initial state of .
The other states of & are the processes in T that are reachable from P by following the transitions.
The transitions are labelled by actions, either visible ones or the invisible action 7. Whereas a 7-labelled
transition represents a state-change that can be made spontaneously by the represented system, a-labelled
transitions for a # T merely represent potential activities of &, for they require cooperation from the
environment in which & will be running, sometimes identified with the user of system Z. A typical
example is the acceptance of a coin by a vending machine. For this transition to occur, the vending
machine should be in a state where it is enabled, i.e., the opening for inserting coins should not be closed
off, but also the user of the system should partake by inserting the coin. p

Consider a vending machine that alternatingly accepts a coin (c) and produces
a pretzel (p). Its labelled transition system is depicted on the right. In standard "@
temporal logic one can express that each action c is followed by p: whenever a
coin is inserted, a pretzel will be produced. Aligned with intuition, this formula is valid for the depicted
system. However, by symmetry one obtains the validity of a formula saying that each p is followed by a
c: whenever a pretzel is produced, eventually a new coin will be inserted. But that clashes with intuition.

In this paper I enrich temporal logic judgements P |= ¢, saying that system P satisfies formula ¢,
with a third argument B, telling which actions can be blocked by the environment (by failing to act as
a synchronisation partner) and which cannot. When stipulating that the coin needs cooperation from a
user, but producing the pretzel does not, the two temporal judgements can be distinguished, and only
one of them holds. I also introduce a fourth argument CC—a completeness criterion—that incorporates
progress, justness and fairness assumptions employed when making a temporal judgement. This yields
statements of the form P =€ ¢.

Then I use the so obtained formalism to formalise the correctness requirements of mutual exclusion
protocols and of fair schedulers. Making these requirements precise helps in stating negative results
on the possibilities to render such protocols in a given setting. In the case of fair schedulers, reactive

0. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in © RJ. van Glabbeek
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020). This work is licensed under the
EPTCS 322, 2020, pp. 51-68, doi:10.4204/EPTCS.322.6 Creative Commons Attribution License.

52 Reactive Temporal Logic

temporal logic leads to a much easier to understand formalisation than the one in the literature. In the
case of mutual exclusion protocols it leads to more precise and less ambiguous requirements, that may
help to settle debates on whether or not some formalisation of a mutual exclusion protocol is correct.

2 Kripke Structures and Linear-time Temporal Logic

Definition 1 Let AP be a set of atomic predicates. A Kripke structure over AP is tuple (S, —, =) with S
a set (of states), — C S x S, the transition relation, and = C S X AP. s |= p says that predicate p € AP
holds in state s € S.

Here I generalise the standard definition [14] by dropping the condition of totality, requiring that for
each state s € S there is a transition (s,s’) € —. A path in a Kripke structure is a nonempty finite or
infinite sequence sg, 51, ... of states, such that (s;,s;11) € — for each adjacent pair of states s;,s;1 in that
sequence. A suffix ©' of a path 7 is any path obtained from 7 by removing an initial segment. Write
7w = 7' if 7’ is a suffix of 7; this relation is reflexive and transitive.

A distributed system & can be modelled as a state s in a Kripke structure K. A run of & then
corresponds with a path in K starting in s. Whereas each finite path in K starting from s models a partial
run of &, i.e., an initial segment of a (complete) run, typically not each path models a run. Therefore a
Kripke structure constitutes a good model of distributed systems only in combination with a completeness
criterion [9]: a selection of a set of paths as complete paths, modelling runs of the represented system.

The default completeness criterion, implicitly used in almost all work on temporal logic, classifies a
path as complete iff it is infinite. In other words, only the infinite paths, and all of them, model (complete)
runs of the represented system. This applies when adopting the condition of totality, so that each finite
path is a prefix of an infinite path. Naturally, in this setting there is no reason to use the word “complete”,
as “infinite” will do. As I plan to discuss alternative completeness criteria in Section 4, I will here already
refer to paths satisfying a completeness criterion as “complete” rather than “infinite”. Moreover, when
dropping totality, the default completeness criterion is adapted to declare a path complete iff it either is
infinite or ends in a state without outgoing transitions [1].

Linear-time temporal logic (LTL) [23, 14] is a formalism explicitly designed to formulate properties
such as the safety and liveness requirements of mutual exclusion protocols. Its syntax is

o vi=p|l-o|lory|Xe|Fo|Go|yUp

with p € AP an atomic predicate. The propositional connectives = and V can be added as syntactic sugar.
It is interpreted on the paths in a Kripke structure. The relation |= between paths and LTL formulae, with
T = @ saying that the path 7 satisfies the formula @, or that ¢ is valid on 7, is inductively defined by

e 7 = p, with p € AP, iff s = p, where s is the first state of 7,

o 1= —¢iff T~ @,

e TEQAVYIiff T |=@and 7 = v,

o 1 =Xgiff 7' = @, where 7’ is the suffix of 7 obtained by omitting the first state,

e = Foiff n’ = ¢ for some suffix 7’ of 7,

e 1 = Goiff ' |= ¢ for each suffix @’ of 7, and

o 1 EyUgiff ' = ¢ for some suffix 7’ of 7, and n” |= v for each path 1" # n’ with n = 7" = 7.

R.J. van Glabbeek 53

In [18], Lamport argues against the use of the next-state operator X, as it is incompatible with abstraction
from irrelevant details in system descriptions. Following this advice, I here restrict attention to LTL
without the next-state modality, LTL .

In the standard treatment of LTL [23, 14], judgements 7 |= ¢ are pronounced only for infinite paths
7. Here I apply the same definitions verbatim to finite paths as well. At this point I benefit from the
exclusion of the next-state operator X. In its presence I would have to decide what is the meaning of a
judgement 7 = X¢ when 7 is a path consisting of a single state.!

Having given meaning to judgements 7 |= ¢, as a derived concept one defines when an LTL y
formula @ holds for a state s in a Kripke structure, modelling a distributed system 2, notation s = ¢ or
2 |= . This is the case iff ¢ holds for all runs of 2.

Definition 2 s |= ¢ iff 7 |= ¢ for all complete paths 7 starting in state s.

Note that this definition depends on the underlying completeness criterion, telling which paths model
actual system runs. In situations where I consider different completeness criteria, I make this explicit by
writing s =CC ¢, with CC the name of the completeness criterion used. When leaving out the superscript
CC I here refer to the default completeness criterion, defined above.

Example 1 Alice, Bart and Cameron stand behind a bar, continuously ordering and drinking beer. As-
sume they do not know each other and order individually. As there is only one barman, they are served
sequentially. Also assume that none of them is served twice in a row, but as it takes no longer to drink a
beer than to pour it, each if them is ready for next beer as soon as another person is served.

A Kiripke structure of this distributed system & is drawn on the right.
The initial state of & is indicated by a short arrow. The other three states
are labelled with the atomic predicates A, B and C, indicating that Alice,
Bart or Cameron, respectively, has just acquired a beer. When assuming the
default completeness criterion, valid LTL y formulae are F(A V C), saying
that eventually either Alice or Cameron will get a beer, or G(A = F-A),
saying that each time Alice got a beer is followed eventually by someone else getting one. However, it is
not guaranteed that Bart will ever get a beer: & [~ FB. A counterexample for this formula is the infinite
run in which Alice and Cameron get a beer alternatingly.

Example 2 Bart is the only customer in a bar in London, with a single barman. He only wants one beer.
A Kripke structure of this system & is drawn on the right. When assuming

the default completeness criterion, this time Bart gets his beer: & = FB.
Example 3 Bart is the only customer in a bar in London, with a single barman. He only wants one beer.
At the same time, Alice and Cameron are in a bar in Tokyo. They drink

a lot of beer. Bart is not in contact with Alice and Cameron, nor is there . e

any connection between the two bars. Yet, one may choose to model the ‘ ‘
drinking in these two bars as a single distributed system. A Kripke structure

of this system .# is drawn on the right, collapsing the orders of Alice and Cameron, which can occur

before or after Bart gets a beer, into self-loops. When assuming the default completeness criterion, Bart
cannot count on a beer: .%# = FB.

0ne possibility would be to declare this judgement to be false, regardless of . However, this would invalidate the self-
duality of the X modality, stating that =X ¢ holds for the same paths as X—¢.

54 Reactive Temporal Logic

3 Labelled Transition Systems, Process Algebra and Petri Nets

The most common formalisms in which to present reactive distributed systems are pseudocode, process
algebra and Petri nets. The semantics of these formalisms is often given by translation into labelled
transition systems (LTSs), and these in turn can be translated into Kripke structures, on which temporal
formulae from languages such as LTL are interpreted. These translations make the validity relation =
for temporal formulae applicable to all these formalisms. A state in an LTS, for example, is defined to
satisfy an LTL._y formula ¢ iff its translation into a state in a Kripke structure satisfies this formula.

Process

Kripke
structures

= LTL

Figure 1: Formalisms for modelling mutual exclusion protocols

Figure 1 shows a commuting diagram of semantic translations found in the literature, from pseudocode,
process algebra and Petri nets via LTSs to Kripke structures. Each step in the translation abstracts from
certain features of the formalism at its source. Some useful requirements on distributed systems can be
adequately formalised in process algebra or Petri nets, and informally described for pseudocode, whereas
LTSs and Kripke structures have already abstracted from the relevant information. An example will be
FS1 on page 64. I also consider LTSs upgraded with a concurrency relation -— between transitions; these
will be expressive enough to formalise some of these requirements.

3.1 Labelled Transition Systems

Definition 3 Let A be a set of observable actions, and let Act := AU {7}, with T ¢ A the hidden action.
A labelled transition system (LTS) over Act is tuple (P, Tr, source, target,{) with P a set (of states or
processes), Tr a set (of transitions), source, target : Tr — P and £ : Tr — Act.

Write s -%» s’ if there exists a transition ¢ with source(t) = s € P, (t) = a € Act and target(t) = s’ € P.
In this case t goes from s to s, and is an outgoing transition of s. A path in an LTS is a finite or infinite
alternating sequence of states and transitions, starting with a state, such that each transition goes from
the state before it to the state after it (if any). A completeness criterion on an LTS is a set of its paths.
As for Kripke structures, a distributed system & can be modelled as a state s in an LTS upgraded with
a completeness criterion. A (complete) run of Z is then modelled by a complete path starting in s. As for
Kripke structures, the default completeness criterion deems a path complete iff it either is infinite or ends

R.J. van Glabbeek 55

in a deadlock, a state without outgoing transitions. An alternative completeness criterion could declare
some infinite paths incomplete, saying that they do not model runs that can actually occur, and/or declare
some finite paths that do not end in deadlock complete. A complete path 7 ending in a state models a
run of the represented system that follows the path until its last state, and then stays in that state forever,
without taking any of its outgoing transitions. A complete path that ends in a transition models a run in
which the action represented by this last transition starts occurring but never finishes. It is often assumed
that transitions are instantaneous, or at least of finite duration. This assumption is formalised through the
adoption of a completeness criterion that holds all paths ending in a transition to be incomplete.

The most prominent translation from LTSs to Kripke structures is from De Nicola & Vaandrager [1].
Its purpose is merely to efficiently lift the validity relation = from Kripke structures to LTSs. It simply
creates a new state halfway along any transition labelled by a visible action, and moves the transition
label to that state.
Definition 4 Let (P, 7r, source,target,) be an LTS over Act = AU{1}. The associated Kripke structure
(S,—, =) over A is given by

o S:=PU{reTr|i() #r1},

o — = {(source(t),t),(t,target(t)) |t € Tr NU(t) # T} U{(source(t),target(t)) |t € TrNL(t) = T}

e and = :={(¢,4(r)) |t € TrNL(t) # T}.
Ignoring paths ending within a 7-transition, which are never deemed complete anyway, this translation
yields a bijective correspondence between the paths in an LTS and the path in its associated Kripke
structure. Consequently, any completeness criterion on the LTS induces a completeness criterion on the
Kripke structure. Hence it is now well-defined when s =€ ¢, with s a state in an LTS, CC a completeness
criterion on this LTS and ¢ an LTL_y formula.

3.2 Petri Nets
Definition 5 A (labelled) Petri net over Act is a tuple N = (S, T, F, My, ¢) where
e Sand T are disjoint sets (of places and transitions),
F: (SXT UTxS) — N (the flow relation including arc weights) such that Vt € T3s€ S. F(s,t) >0,
e My :S — N (the initial marking), and

e (. T — Act (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as boxes, containing their
label. For x,y € SUT there are F (x,y) arrows (arcs) from x to y. When a Petri net represents a distributed
system, a global state of this system is given as a marking, a multiset of places, depicted by placing M(s)
dots (fokens) in each place s. The initial state is M. The behaviour of a Petri net is defined by the possible
moves between markings M and M’, which take place when a finite multiset G of transitions fires. In that
case, each occurrence of a transition 7 in G consumes F'(s,7) tokens from each place s. Naturally, this can
happen only if M makes all these tokens available in the first place. Next, each # produces F (¢, s) tokens
in each s. Definition 7 formalises this notion of behaviour.

A multiset over a set X is a function A: X — N, i.e. A € N* Object x € X is an element of A iff
A(x) > 0. A multiset is empty iff it has no elements, and finite iff the set of its elements in finite. For
multisets A and B over X I write A < B iff A(x) < B(x) for all x € X; A+ B denotes the multiset over
X with (A+B)(x) :=A(x) + B(x), A— B is given by (A — B)(x) := A(x) = B(x) = max(A(x) — B(x),0),
and for k € N the multiset k - A is given by (k-A)(x) := k-A(x). With {x,x,y} I denote a multiset A with
A(x)=2 and A(y) =1, rather than the set {x,y} itself.

56 Reactive Temporal Logic

Definition 6 Let N=(S,T,F,My,() be a Petri net and ¢ € T. The multisets *z, #* : S — N are given by
°t(s) = F(s,t) and t*(s) = F(t,s) for all s € S. The elements of ¢ and ¢* are called pre- and postplaces
of ¢, respectively. These functions extend to finite multisets G : T — N as usual, by *G := Y, G(¢) - *t
and G* :=Y,c7r G(1)-t°.

Definition 7 Let N = (S,T,F, My, () be a Petri net, G € N7, G non-empty and finite, and M, M’ € N5,
G is a step from M to M', written M -5y M', iff *G < M (G is enabled) and M' = (M —*G) + G°.

Write My —x M iff there are transitions t; € T and markings M; € N fori= 1,...,k, such that M;, = M
and M;_; ﬁ}m M; fori=1,...,k. Moreover, M —»-95 means that My —»y M -5y M for some M and M’

Definition 8 ([10]) N = (S,T,F,My,!) is a structural conflict net iff Vt,u.(My —»M) =°*tN°u=0.

Here I restrict myself to structural conflict nets, henceforth simply called nets, a class of Petri nets
containing the safe Petri nets that are normally used to give semantics to process algebras.

Given a net N = (S,T,F,My, /), its associated LTS (IP,Tr,source,target,l) is given by P := N5,
Tr:={(M,t) € N x Tr | *t < M}, source(M,t) := M, target(M,t) := (M —*t) +1* and (M) := £(t).
The net N maps to the state My in this LTS. A completeness criterion on a net is a completeness criterion
on its associated LTS. Now N =¢C ¢ is defined to hold iff My =€ ¢ in the associated LTS.

3.3 CCS

CCS [19] is parametrizg;i with sets JZ~ of agent identifiers and </ of names; each X € % comes with
a defining equation X = P with P being a CCS expression as defined below. Act := .o/ U.o/ U {1} is
the set of actions, where 7 is a special internal action and o/ := {a | a € o/} is the set of co-names.
Complementation is extended to . by setting @ = a. Below, a ranges over </ U .o/, & over Act, and X, Y

over % . A relabelling is a function f: .o/ — </ it extends to Act by f(a) = f(a) and f(7) := 7. The set
Tccs of CCS expressions or processes is the smallest set including:

Y.c;0i. P forl anindex set, @; €Act and P, € Tccs guarded choice

P|Q for P,Q € Tces parallel composition
P\L for L C & and P € Tccs restriction

P[f] for f arelabelling and P € Tccs relabelling

X forX e & agent identifier

The process Zie{LZ} «;.P; is often written as o .P; + 0.P>, and Y ;g @;.P; as 0. The semantics of CCS
is given by the transition relation — C Tccs X Act X (%) x Tecs, where transitions P %55 0 are
derived from the rules of Table 1. Ignoring the labels C € &?(%’) for now, such a transition indicates
that process P can perform the action & € Act and transform into process Q. The process Y ;c; 0;.P;
performs one of the actions ¢; for j € I and subsequently acts as P;. The parallel composition P|Q
executes an action from P, an action from Q, or a synchronisation between complementary actions ¢ and
¢ performed by P and Q, resulting in an internal action 7. The restriction operator P\ L inhibits execution
of the actions from L and their complements. The relabelling P[f] acts like process P with all labels o
replaced by f(a). Finally, the rule for agent identifiers says that an agent X has the same transitions as
the body P of its defining equation. The standard version of CCS [19] features a choice operator Y ;c; Pi;
here I use the fragment of CCS that merely features guarded choice.

The second label of a transition indicates the set of (parallel) components involved in executing this
transition. The set € of components is defined as {L,R}*, that is, the set of strings over the indicators
Left and Right, with € € %" denoting the empty string and D-C := {Dc | c €C} for D€ {L,R} and CC F.

R.J. van Glabbeek 57

Table 1: Structural operational semantics of CCS

Yie 0P -4 (e
P a,C P P a,C P Q a,D Q/ Q a,D Q/
P|Q a,LC P,|Q P|Q T,L-CUR-D P/’Q/ P|Q o ,R-D P|Q/
p-*Sp p-*Sp p-*Sp
o,C o, 0 ¢ L) fla),C a,C (Xdéfp)
P\L —= P'\L P[f] 2= P'[f] X —=p

Example 4 The CCS process P := (X|a.0)|a.b.0 with X “ 4.X has as outgoing transitions P ~-{LLy p,
p ALLRE (x|0)|a.b.0, P -8 (X(0)]a.b.0, P =R (X|7.0)[.0 and P -2 (X|a.0)|b.0.
These components stem from Victor Dyseryn [personal communication] and were introduced in [8].
They were not part of the standard semantics of CCS [19], which can be retrieved by ignoring them.

The LTS of CCS is (T, Tr,source, target,£), with Tr = {(P,at,C,Q) | P SUEIEN 0}, {(Pa,C,0) =a,
source(P,a,C,Q) = P and target(P,o,C,Q) = Q. Employing this interpretation of CCS, one can pro-
nounce judgements P =€ ¢ for CCS processes P.

3.4 Labelled Transition Systems with Concurrency

Definition 9 A labelled transition system with concurrency (LTSC) is a tuple (P, Tr, source, target £ ,—)
consisting of a LTS (IP, Tr, source, target,) and a concurrency relation — C Tr x Tr, such that:
t~Ltforallt € Tr, €))
if t € Tr and 7 is a path from source(t) to s € IP such that 7 ~— v for all transitions v @)
occurring in 7, then there is a u € Tr such that source(u) = s, {(u) = £(t) and t £ u.
Informally, # — v means that the transition v does not interfere with ¢, in the sense that it does not affect
any resources that are needed by ¢, so that in a state where ¢ and v are both possible, after doing v one
can still do a future variant u of 7.

LTSCs were introduced in [9], although there the model is more general on various counts. I do not
need this generality in the present paper. In particular, I only need symmetric concurrency relations —;
in [9] — is not always symmetric, and denoted .

The LTS associated with CCS can be turned into an LTSC by defining (P, a,C,P") — (Q,,D,Q’) iff
CND =0, that is, two transitions are concurrent iff they stem from disjoint sets of components [13, 8].

Example 5 Let the 5 transitions from Example 4 be ¢, u, v, w and x, respectively. Then ¢ -/ w because
these transitions share the component LL. Yet v — w.

The LTS associated with a Petri net can be turned into an LTSC by defining (M,t) — (M',u) iff
*tN°u =0, 1i.e., the two LTS-transitions stem from net-transitions that have no preplaces in common.
Naturally, an LTSC can be turned into a LTS, and further into a Kripke structure, by forgetting —.

4 Progress, Justness and Fairness

In this section I define completeness criteria CC € {SF(.7),WF(7),J,Pr, T | 7 € Z(Z(Tr))} on LTSs
(P, Tr, source, target, !), to be used in judgements P =€ ¢, for P € P and ¢ an LTL_y formula. These

58 Reactive Temporal Logic

criteria are called strong fairness (SF), weak fairness (SF), both parametrised with a set 7 C & (Tr) of
tasks, justness (J), progress (Pr) and the trivial completeness criterion (T). Justness is merely defined
on LTSCs. I confine myself to criteria that hold finite paths ending within a transition to be incomplete.

Reading Example 1, one could find it unfair that Bart might never get a beer. Strong and weak fair-
ness are completeness criteria that postulate that Bart will get a beer, namely by ruling out as incomplete
the infinite paths in which he does not. They can be formalised by introducing a set .7 of tasks, each
being a set of transitions (in an LTS or Kripke structure).

Definition 10 ([13]) A task T € .7 is enabled in a state s iff s has an outgoing transition from 7'. It is
perpetually enabled on a path 7 iff it is enabled in every state of 7. It is relentlessly enabled on 7, if
each suffix of 7 contains a state in which it is enabled.? It occurs in 7 if 7 contains a transition 7 € T

A path 7 is weakly fair if, for every suffix 7’ of 7, each task that is perpetually enabled on 7', occurs
in 7. Ttis strongly fair if, for every suffix 7’ of 7, each task that is relentlessly enabled on &', occurs in 7’.

As completeness criteria, these notions take only the fair paths to be complete. In Example 1 it suffices to
have a task “Bart gets a beer”, consisting of the three transitions leading to the B state. Now in any path
in which Bart never gets a beer this task is perpetually enabled, yet never taken. Hence weak fairness
suffices to rule out such paths. We have 2 =""(7) FB.

Local fairness [13] allows the tasks .7 to be declared on an ad hoc basis for the application at hand.
On this basis one can call it unfair if Bart doesn’t get a beer, without requiring that Cameron should get
a beer as well. Global fairness, on the other hand, distils the tasks of an LTS in a systematic way out
of the structure of a formalism, such as pseudocode, process algebra or Petri nets, that gave rise to the
LTS. A classification of many ways to do this, and thus of many notions of strong and weak fairness,
appears in [13]. In fairness of directions [5], for instance, each transition in an LTS is assumed to stem
from a particular direction, or instruction, in the pseudocode that generated the LTS; now each direction
represents a task, consisting of all transitions derived from that direction.

In [13] the assumption that a system will never stop when there are transitions to proceed is called
progress. In Example 2 it takes a progress assumption to conclude that Bart will get his beer. Progress
fits the default completeness criterion introduced before, i.e., =" is the same as |=. Not (even) assuming
progress can be formalised by the trivial completeness criterion T that declares all paths to be complete.
Naturally, & =" FB.

Completeness criterion D is called stronger than criterion C if it rules out more paths as incomplete.
So T is the weakest of all criteria, and, for any given collection .7, strong fairness is stronger than
weak fairness. When assuming that each transition occurs in at least one task—which can be ensured by
incorporating a default task consisting of all transitions—progress is weaker than weak fairness.

Justness [13] is a strong form of progress, defined on LTSCs.

Definition 11 A path 7 is just if for each transition ¢ with its source state s := source(t) occurring on 7,
the suffix of 7 starting at s contains a transition u with ¢ £ u.

Example 6 The infinite path 7 that only ever takes transition ¢ in Example 4/5 is unjust. Namely with
transition v in the rdle of the ¢ from Definition 11, 7 contains no transition y with v < y.

Informally, the only reason for an enabled transition not to occur, is that one of its resources is eventually
used for some other transition. In Example 3 for instance, the orders of Alice and Cameron are clearly
concurrent with the one of Bart, in the sense that they do not compete for shared resources. Taking ¢ to be
the transition in which Bart gets his beer, any path in which 7 does not occur is unjust. Thus .% =’/ FB.

2This is the case if the task is enabled in infinitely many states of 7, in a state that occurs infinitely often in 7, or in the last
state of a finite 7.

R.J. van Glabbeek 59

For most choices of .7 found in the literature, weak fairness is a strictly stronger completeness
criterion than justness. In Example 1, for instance, the path in which Bart does not get a beer is just.
Namely, any transition u giving Alice or Cameron a beer competes for the same resource as the transition
t giving Bart a beer, namely the attention of the barman. Thus ¢ £ u, and consequently & =’/ FB.

5 Reactive Temporal Logic

Standard treatments of temporal logic [23, 14] are adequate for closed systems, having no run-time
interactions with their environment. However, they fall short for reactive systems, interacting with their
environments through synchronisation of actions.

Example 7 Consider a vending machine that accepts a coin ¢ and produces a pretzel p. We assume that
accepting the coin requires cooperation from the user/environment, but producing the pretzel does not.

A CCS specification is
VM =c.p.VM .

In standard LTL_y (assuming progress) we have VM |= G(c = Fp). This formula says that whenever
a coin is inserted, eventually a pretzel is produced. This formula is intuitively true indeed. But we also
have VM |= G(p = Fc). This formula says that whenever a pretzel is produced, eventually a new coin
will be inserted. This formula is intuitively false. This example shows that standard LTL,_y is not suitable
to correctly describe the behaviour of this vending machine.

For this reason I here introduce reactive LTL . The syntax and semantics are unchanged, except that I
use a validity relation =g that is parametrised with a set B C A of blockable actions. Here A is the set of
all observable actions of the LTS on which LTL._y is interpreted. The intuition is that actions b € B may
be blocked by the environment, but actions a € A\B may not. The relation =5 can be used to formalise
the assumption that the actions in A\B are not under the control of the user of the modelled system, or
that there is an agreement with the user not to block them. Either way, it is a disclaimer on the wrapping
of our temporal judgement, that it is valid only when applying the involved distributed system in an
environment that may block actions from B only. The hidden action T may never be blocked.

The subscript B modifies the default completeness criterion, to call a path complete iff it is either
infinite or ends in a state of which all outgoing transitions have a label from B. Note that the standard
LTL interpretation = is simply =g, obtained by taking the empty set of blocking actions.

In Example 7 one takes B = {c}. This choice of B says that the environment may block the action c,
namely by not inserting a coin; however, the environment may not block p. As intuitively expected, we
have VM |=p G(c = Fp) but VM [~ G(p = Fc).

Naturally, reactive LTL_y can also be combined with a non-default completeness criterion, as dis-
cussed in Sections 2—4. When writing P }:gc ¢ the modifier B adapts the default completeness criterion
by declaring certain finite paths complete, and the modifier CC # T adapts it by declaring some infinite
paths incomplete. In the presence of the modifier B, Definition 11 and the first sentence of Definition 10
are adapted as follows:

Definition 12 A path 7 is just (or B-just) if for each transition ¢ € Tr with ¢(z) ¢ B and its source state
s := source(t) occurring on 7, the suffix of 7 starting at s contains a transition u with t £ u.

Note that it doesn’t matter whether ¢(u) € B or not.

Definition 13 A task 7 € 7 is enabled in a state s iff s has an outgoing transition r € T with £(t) ¢ B.

60 Reactive Temporal Logic

The above completes the formal definition of the validity of temporal judgements P =5¢ @ with ¢ an
LTL_y formula, B C A, and either

e CC = Pr and P a state in an LTS, a CCS expression or a Petri net,

e CC =J and P a state in an LTSC, a CCS expression or a Petri net,

e CC=WF(Z)orSF(Z)and P astate in an LTS (PP, Tr, source, target,{) with 7 € (P (Tr)), or

P a CCS expression or Petri net with associated LTS (IP, Tr, source, target,£) and .7 € (P (Tr)).
Namely, in case P is a state in an LTS, it is also a state in the associated Kripke structure K. Moreover, B
and CC combine into a single completeness criterion BC on that LTS, which translates as a completeness
criterion BC on K. Now Definition 2 tells whether P =5€ ¢ holds.

In case CC =J and P a state in an LTSC, B and J combine into a single completeness criterion BJ
on that LTSC, which is also a completeness criterion on the associated LTS; now proceed as above.

In case P is a Petri net or CCS expression, first translate it into a state in an LTS or LTSC, using the
translations at the end of Sections 3.2 or 3.3, respectively, and proceed as above.

Temporal judgements P =$¢ @, as introduced above, are not limited to the case that ¢ is an LTL
formula. In Section 10 I will show that allowing ¢ to be a CTL formula instead poses no additional
complications, and I expect the same to hold for other temporal logics.

Judgements P }ng ¢ get stronger (= less likely true) when the completeness criterion CC is weaker,
and the set B of blockable actions larger.

Most concepts of reactive temporal logic introduced above stem from [12]. The main novelty con-
tributed here is the annotated satisfaction relation |=$C. In [12] we simply wrote |=, expecting CC and B
to be determined once and for all in a given paper or application. Requirement specifications in which
different values for B are combined, such as FS 1-2 in Section 8, were not foreseen there.

6 The Mutual Exclusion Problem and its History

The mutual exclusion problem was presented by Dijkstra in [3] and formulated as follows:

“To begin, consider N computers, each engaged in a process which, for our aims, can be re-
garded as cyclic. In each of the cycles a so-called “critical section” occurs and the computers
have to be programmed in such a way that at any moment only one of these N cyclic pro-
cesses is in its critical section. In order to effectuate this mutual exclusion of critical-section
execution the computers can communicate with each other via a common store. Writing a
word into or nondestructively reading a word from this store are undividable operations; i.e.,
when two or more computers try to communicate (either for reading or for writing) simul-
taneously with the same common location, these communications will take place one after
the other, but in an unknown order.”

Dijkstra proceeds to formulate a number of requirements that a solution to this problem must satisfy, and
then presents a solution that satisfies those requirements. The most central of these are:
o (Safety) “no two computers can be in their critical section simultaneously”, and

o (Dijkstra’s Liveness) If at least one computer intends to enter its critical section, then at least one
“will be allowed to enter its critical section in due time”.

Two other important requirements formulated by Dijkstra are
o (Speed independence) “(b) Nothing may be assumed about the relative speeds of the N computers”,

e and (Optionality) “(c) If any of the computers is stopped well outside its critical section, this is not
allowed to lead to potential blocking of the others.”

R.J. van Glabbeek 61

A crucial assumption is that each computer, in each cycle, spends only a finite amount of time in its
critical section. This is necessary for the correctness of any mutual exclusion protocol.

For the purpose of the last requirement one can partition each cycle into a critical section, a non-
critical section (in which the process starts), an entry protocol between the noncritical and the critical
section, during which a process prepares for entry in negotiation with the competing processes, and an
exit protocol, that comes right after the critical section and before return to the noncritical section. Now
“well outside its critical section” means in the noncritical section. Requirement (c) can equivalently
be stated as admitting the possibility that a process chooses to remain forever in its noncritical section,
without applying for entry in the critical section ever again.

Knuth [16] proposes a strengthening of Dijkstra’s liveness requirement, namely

o (Liveness) If a computer intends to enter its critical section, then it will be allowed to enter in due
time.

He also presents a solution that is shown to satisfy this requirement, as well as Dijkstra’s requirements.>
Henceforth I define a correct solution of the mutual exclusion problem as one that satisfies both safety
and liveness, as formulated above, as well as optionality. I sometimes speak of “speed independent
mutual exclusion” when also insisting on requirement (b) above.

The special case of the mutual exclusion problem for two processes (N = 2) was presented by Dijkstra
in [2], three years prior to [3]. There Dijkstra presented a solution found by T.J. Dekker in 1959, and
shows that it satisfies all requirements of [3]. Although not explicitly stated in [2], the arguments given
therein imply straightforwardly that Dekker’s solution also satisfy the liveness requirement above.

Peterson [22] presented a considerable simplification of Dekker’s algorithm that satisfies the same
correctness requirements. Many other mutual exclusion protocols appear in the literature, the most
prominent being Lamport’s bakery algorithm [17] and Szymanski’s mutual exclusion algorithm [24].
These guarantee some additional correctness criteria besides the ones discussed above.

7 Fair Schedulers

In [11] a fair scheduler is defined as

“a reactive system with two input channels: one on which it can receive requests r; from
its environment and one on which it can receive requests r,. We allow the scheduler to
be too busy shortly after receiving a request r; to accept another request r; on the same
gs1 channel. However, the system will always return to a state where it remains ready to accept
the next request r; until r; arrives. In case no request arrives it remains ready forever. The
environment is under no obligation to issue requests, or to ever stop issuing requests. Hence
for any numbers n; and ny € N'U{eo} there is at least one run of the system in which exactly
that many requests of type r; and r, are received.
Every request r; asks for a task #; to be executed. The crucial property of the fair scheduler is
psp thatit will eventually grant any such request. Thus, we require that in any run of the system
each occurrence of r; will be followed by an occurrence of #;.”
Fs3 We require that in any partial run of the scheduler there may not be more occurrences of 7;
than of r;, fori =1,2.

31t can be argued, however, that Knuth’s mutual exclusion protocol is correct only when making certain assumptions on the
hardware on which it will be running [7]; the same applies to all other mutual exclusion protocols mentioned in this section.
This matter is not addressed in the present paper. However, the material presented in Section 9 paves the way for discussing it.

62 Reactive Temporal Logic

Fs4 The last requirement is that between each two occurrences of #; and ¢; for i, j € {1,2} an
intermittent activity e is scheduled.”

This fair scheduler serves two clients, but the concept generalises smoothly to N clients.

The intended applications of fair schedulers are for instance in operating systems, where multiple
application processes compete for processing on a single core, or radio broadcasting stations, where the
station manager needs to schedule multiple parties competing for airtime. In such cases each applicant
must get a turn eventually. The event e signals the end of the time slot allocated to an application process
on the single core, or to a broadcast on the radio station.

Fair schedulers occur (in suitable variations) in many distributed systems. Examples are First in First
out*, Round Robin, and Fair Queueing scheduling algorithms® as used in network routers [20, 21] and
operating systems [15], or the Completely Fair Scheduler,® which is the default scheduler of the Linux
kernel since version 2.6.23.

Each action r;, t; and e can be seen as a communication between the fair scheduler and one of
its clients. In a reactive system such communications will take place only if both the fair scheduler
and its client are ready for it. Requirement FS1 of a fair scheduler quoted above effectively shifts the
responsibility for executing r; to the client. The actions #; and e, on the other hand, are seen as the
responsibility of the fair scheduler. We do not consider the possibility that the fair scheduler fails to
execute #; merely because the client does not collaborate. Hence [11] assumes that the client cannot
prevent the actions #; and e from occurring. It is furthermore assumed that executing the actions r;, #; and
e takes a finite amount of time only.

A fair scheduler closely resembles a mutual exclusion protocol. However, its goal is not to achieve
mutual exclusion. In most applications, mutual exclusion can be taken for granted, as it is physically
impossible to allocate the single core to multiple applications at the same time, or the (single frequency)
radio sender to multiple simultaneous broadcasts. Instead, its goal is to ensure that no applicant is passed
over forever.

It is not hard to obtain a fair scheduler from a mutual exclusion protocol. For suppose we have a
mutual exclusion protocol M, serving two processes P; (i = 1,2). I instantiate the non-critical section of
process P; as patiently awaiting the request r;. As soon as this request arrives, P; leaves the noncritical
section and starts the entry protocol to get access to the critical section. The liveness property for mutual
exclusion guarantees that P; will reach its critical section. Now the critical section consists of schedul-
ing task ¢#;, followed by the intermittent activity e. Trivially, the composition of the two process P;, in
combination with protocol M, constitutes a fair scheduler, in that it meets the above four requirements.

One can not quite construct a mutual exclusion protocol from a fair scheduler, due to fact that in a
mutual exclusion protocol leaving the critical section is controlled by the client process. For this purpose
one would need to adapt the assumption that the client of a fair scheduler cannot block the intermittent
activity e into the assumption that the client can postpone this action, but for a finite amount of time only.
In this setting one can build a mutual exclusion protocol, serving two processes P; (i = 1,2), from a fair
scheduler F. Process i simply issues request r; at F' as soon as it has left the non-critical section, and
when F communicates the action #;, Process i enters its critical section. Upon leaving its critical section,
which is assumed to happen after a finite amount of time, it participates in the synchronisation e with F.
Trivially, this yields a correct mutual exclusion protocol.

4 Also known as First Come First Served (FCFS)
Shttp://en.wikipedia.org/wiki/Scheduling_(computing)
Shttp://en.wikipedia.org/wiki/Completely_Fair_Scheduler

R.J. van Glabbeek 63

8 Formalising the Requirements for Fair Schedulers in Reactive LTL

The main reason fair schedulers were defined in [11] was to serve as an example of a realistic class of
systems of which no representative can be correctly specified in CCS, or similar process algebras, or in
Petri nets. Proving this impossibility result necessitated a precise formalisation of the four requirements
quoted in Section 7. Through the provided translations of CCS and Petri nets into LTSs, a fair scheduler
rendered in CCS or Petri nets can be seen as a state F in an LTS over the set {r;,#;,e | i = 1,2} of visible
actions; all other actions can be considered internal and renamed into 7.

Let a partial trace of a state s in an LTS be the sequence of visible actions encountered on a path
starting in s [6]. Now the last two requirements (FS 3) and (FS4) of a fair scheduler are simple properties
that should be satisfied by all partial traces o of state F:

(FS3) o contains no more occurrences of ¢; than of r;, fori = 1,2,

(FS4) o contains an occurrence of e between each two occurrences of #; and ¢; for i, j € {1,2}.
FS4 can be conveniently rendered in LTL,_y:

(FS4) FEG(1;= (5U((—11 A—12)We)))

for i € {1,2}. Here the weak until modality yWe is syntactic sugar for Gy V (yU@). If I hadn’t lost
the X modality, I could write X for ;U in the above formula; on Kripke structures distilled from LTSs
the meaning is the same. The formula in FS4 is of a kind where the meaning of):gc is independent of B
and CC. This follows from the fact that FS4 merely formulates a property that should hold for all partial
runs. Hence one need not worry about which B and CC to employ here.

Unfortunately, FS3 cannot be formulated in LTL _y, due to the need to keep count of the difference
in the number of r; and ¢#; actions encountered on a path. However, one could strengthen FS3 into

(FS3’) o contains an occurrence of r; between each two occurrences of #;, and prior to the first
occurrence of #;, for i € {1,2}.

This would restrict the class of acceptable fair schedulers, but keep the most interesting examples. Con-
sequently, the impossibility result from [11] applies to this modified class as well. FS3 can be rendered
in LTL_y in the same style as FS4:

(FS3) F k= ((—)Wr) AG (1; = (6U((-:)Wr)))

forie {1,2}.
Requirement FS2 involves a quantification over all complete runs of the system, and thus depends
on the completeness criterion CC employed. It can be formalised as

(FS2) F ESC G(r; = Fy)

fori € {1,2}, where B={r,r2}. The set B should contain r; and r», as these actions are supposed to be
under the control of the users of a fair scheduler. However, actions 1, #; and e should not be in B, as they
are under the control of the scheduler itself. In [11], the completeness criterion employed is justness, so
the above formula with CC := J captures the requirement on the fair schedulers that are shown in [11]
not to exist in CCS or Petri nets. However, keeping CC a variable allows one to pose to the question
under which completeness criterion a fair scheduler can be rendered in CCS. Naturally, it needs to be a
stronger criterion than justness. In [11] it is shown that weak fairness suffices.

FS2 is a good example of a requirement that can not be rendered correctly in standard LTL. Writing
F =€ G(r; = Ft;) would rule out the complete runs of F that end because the user of F never supplies

the input ; € B. The CCS process
PUt’; P ngrl.m.tl.e.tz.e.F

64 Reactive Temporal Logic

for instance satisfies this formula, as well as FS3 and 4; yet it does not satisfy requirement FS2. Namely,
the path consisting of the r|-transition only is complete, since it ends in a state of which the only outgoing
transition has the label », € B. Yet on this path r; is not followed by #;.

Requirement FS1 is by far the hardest to formalise. In [11] two formalisations are shown to be
equivalent: one involving a coinductive definition of B-just paths that exploits the syntax of CCS, and the
other requiring that requirements FS2—4 are preserved under putting an input interface around process F.
The latter demands that also F := (I; | F[f] | L)\ {c1, c2 } should satisfy FS2—4; here f is a relabelling with
F(r) = ci, f(t;) =t: and f(e) = e fori=1,2, and I; ¥ r;.c.I; for i € {1,2}.

A formalisation of FS1 on Petri nets also appears in [11]: each complete path = with only finitely
many occurrences of r; should contain a state (= marking) M, such that there is a transition v with £(v) = r;
and *v < M, and for each transition u« that occurs in & past M one has *vN*u = 0.

When discussing proposals for fair schedulers by others, FS1 is the requirement that is most often
violated, and explaining why is not always easy.

In reactive LTL _y, this requirement is formalised as

J .
(FS1) F)., GFr

forie {1,2},or F):g\c{r,-} GFr; if one wants to discuss the completeness criterion CC as a parameter.
The surprising element in this temporal judgement is the subscript B\ {r;} = {rs_;}, which contrasts
with the assumption that requests are under the control of the environment. FS1 says that, although we
know that there is no guarantee that user i of F' will ever issue request r;, under the assumption that the
user does want to make such a request, making the request should certainly succeed. This means that the
protocol itself does not sit in the way of making this request.

The combination of requirements FS1 and 2, which use different sets of blockable actions as a
parameter, is enabled by reactive LTL _y as presented here.

The following examples, taken from [11], show that all the above requirements are necessary for the
result from [11] that fair schedulers cannot be rendered in CCS.

e The CCS process Fi|F, with F; 4 r;.t;.e.F; satisfies FS1, FS2 and FS3’. In FS1 and 2 one needs
to take CC :=J, as progress is not a strong enough assumption here.

e The process E |G|E; with E; “ ri.E;and G “ t.e.t.e.G satisfies FS 1, 2 and 4, again with CC:=J.
e The process E; |E; satisfies FS 1, 3’ and 4, again with CC:=J in FS1.

e The process Fy with Fy & r1.t1.e.Fo+ rp.ty.e.Fy satisfies FS 2—4. Here FS2 merely needs CC := Pr,
that is, the assumption of progress. Furthermore, it satisfies FS1 with CC := SF(.7), as long as
R1,Ry € 7. Here R; is the set of transitions with label ;.

The prﬂgjgess X given by X o nY+nz Y o n.t.eZ+t.(rn.eZ+eX)
andZ = ri.np.e.Y +1p.(r.e.Y +e.X), the gatekeeper, is depicted on the right.
The grey shadows represent copies of the states at the opposite end of the
diagram, so the transitions on the far right and bottom loop around. This pro-
cess satisfies FS3 and 4, FS2 with CC := Pr, and FS1 with CC := WF(.7),
thereby improving process Fp, and constituting the best CCS approximation
of a fair scheduler seen so far. Yet, intuitively FS 1 is not ensured at all, mean-
ing that weak fairness is too strong an assumption. Nothing really prevents
all the choices between r, and any other action a to be made in favour of a.

R.J. van Glabbeek 65

9 Formalising Requirements for Mutual Exclusion in Reactive LTL

Define a process i participating in a mutual exclusion protocol to cycle through the stages noncritical sec-
tion, entry protocol, critical section, and exit protocol, in that order, as explained in Section 6. Modelled
as an LTS, its visible actions will be en;, In;, ec; and c;, of entering and leaving its (non)critical section.
Put /n; in B to make leaving the critical section a blockable action. The environment blocking it is my
way of allowing the client process to stay in its noncritical section forever. This is the manner in which
the requirement Optionality is captured in reactive temporal logic. On the other hand, ec; should not be
in B, for one does not consider the liveness property of a mutual exclusion protocol to be violated simply
because the client process refuses to enter the critical section when allowed by the protocol. Likewise,
en; is not in B. Although exiting the critical section is in fact under control of the client process, it is
assumed that it will not stay in the critical section forever. In the models of this paper this can be simply
achieved by leaving /c; outside B. Hence B := {In; | i=1,...,N}.

My first requirement on mutual exclusion protocols P simply says that the actions en;, In;, ec; and Ic;
have to occur in the right order:

(ME1l) Pk ((ﬂacti)Wlni) NG (lni = (lniU((—'acti)Wec,-))) AG (ec,- = (ec,-U((ﬁacti)chi)))
NG (lc,- = (lc,-U((ﬁ act,-)Wen[))) NG (eni = (en,-U((ﬁ acti)Wln,-)))
fori=1,...,N. Here act; :== (In;Vec;Vlic;Ven;).

The second is a formalisation of Safety, saying that only one process can be in its critical section at
the same time:

(ME2) PG (ec;= ((—ec;)Wlc;))
fori,j=1,...,N withi# j. Both ME 1 and ME 2 would be unaffected by changing = into = or =5C.

Requirement Liveness of Section 6 can be formalised as

(ME3) P ESC G(In; = Fec))
Here the choice of a completeness criterion is important. Finally, the following requirements are similar
to Liveness, and state that from each section in the cycle of a Process i, the next section will in fact be
reached. In regards to reaching the end of the noncritical section, this should be guaranteed only when
assuming that the process wants to leave it critical section; hence /n; is excepted from B.

(ME4) P ESC G(ec; = Flc;)

(ME5) P [ESC G(lc; = Fen;)

(ME6) P }:B\{ln Fin; A G(en; = Fin;)
fori=1,...,N.

The requlrement Speed independence is automatically satisfied for models of mutual exclusion proto-
cols rendered in any of the formalisms discussed in this paper, as these formalisms lack the expressiveness
to make anything dependent on speed.

The following examples show that none of the above requirements are redundant.

e The CCS process Fi|F,|---|Fy with F ln, ec;.lc;.en;.F; satisfies all requirements, with CC :=J,

except for ME 2.

e The process R |Rz| - - |Ry with R; o In;.0 satisfies all requirements except for ME 3.

e In case N =2, the process [nj.ec;.lny.ecr.0+1ny.ecy.lny.ecy.0 satisfies all requirements except for
ME4. The case N > 2 is only notationally more cumbersome. In the same spirit one finds coun-
terexamples failing only on ME 5, or on the second conjunct of ME 6.

o The process 0 satisfies all requirements except for the first conjunct of ME 6.

e In case N =1, the process X with X ch ecy.lcy.eny.Iny.X satisfies all requirements but ME 1.

66 Reactive Temporal Logic

The process X, a gatekeeper variant, given by X = .Y +In.Z,

y ¥ Iny.ecy.lcy.eny.Z+ecy.(Iny.lcy.eny.Z+ ey .(Iny.eny) . Z + eny X))
z% Iny.ecy.lcy.eny.Y +ecy.(Iny.lcy.eny.Y +lco.(Ing.eny.Y +eny X))
is depicted on the right. It satisfies ME 1-5 with CC := Pr and ME 6
with CC:=WF(.7), where LN|,LN, € .7. It could be seen as a me-
diator that synchronises, on the actions In;, ec;, Ic; and en;, with the
actual processes that need to exclusively enter their critical sections.
Yet, it would not be commonly accepted as a valid mutual exclusion
protocol, since nothing prevents it to never choose /n, when an alter-
native is available. This means that merely requiring weak fairness in
ME 6 makes this requirement unacceptably weak. The problem with
this protocol is that it ensures Liveness by making it hard for processes to leave their noncritical sections.

10 Reactive CTL

This section presents a reactive version of Computation Tree Logic (CTL) [4]. This shows that the ideas
presented here are not specific to a linear-time logic. The syntax of CTL is

o, y:=p|-¢| oAy |EXe|AXe |EFg [AFp |[EGo |AGo |EyUg [AyUe

with p € AP an atomic predicate. The relation |= between states s in a Kripke structure, CTL formulae ¢
and completeness criteria CC is inductively defined by
e s =CC p, with p € AP, iff (s, p) € =,
s =CC - iff s £CC o,
s ECC o Ayiff s ECC @ and s =€ s,
s =CC EX¢ iff there is a state s’ with s — s” and s’ =¢C o,
s =CC AX ¢ iff for each state s’ with s — s’ one has s’ =¢C ¢,

s =CC EF ¢ iff some complete path starting in s contains a state s’ with s’ =€ @,

s =CC AF @ iff each complete path starting in s contains a state s’ with s’ =€ ¢,
s =CC EG ¢ iff all states s’ on some complete path starting in s satisfy s’ =€ ¢,

s =€ AG ¢ iff all states s’ on all complete paths starting in s satisfy s’ =€ ¢,

s EC€ EyUg iff some complete path 7 starting in s contains a state s’ with s’ =€ ¢, and each
state s” on 7t prior to s’ satisfies s” =€ v,

e 5 =€ AyUg iff each complete path 7 starting in s contains a state s’ with s’ =€ ¢, and each
state s” on 7 prior to s’ satisfies s” =C y.
Exactly as for LTL y, this allows the formulation of CTL judgements s =5¢ ¢.

11 Conclusion

I proposed a formalism for making temporal judgements P):gc @, with P a process specified in any
formalism that admits a translation into LTSs, ¢ a temporal formula from a logic like LTL or CTL,
CC a completeness criterion, stating which paths in the LTS model complete system runs, and B the
set of actions that may be blocked by the user or environment of a system. I applied this formalism to
unambiguously express the requirements defining fair schedulers and mutual exclusion protocols.

R.J. van Glabbeek 67

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

R. De Nicola & F.W. Vaandrager (1995): Three Logics for Branching Bisimulation. Journal of the ACM
42(2), pp. 458-487, doi:10.1145/201019.201032.

E.W. Dijkstra (1962 or 1963): Over de sequentialiteit van processbeschrijvingen. Available athttp://www.
cs.utexas.edu/users/EWD/ewd00xx/EWD35 . PDF.

E.W. Dijkstra (1965): Solution of a problem in concurrent programming control. Communications of the
ACM 8(9), p. 569, doi:10.1145/365559.365617.

E. Allen Emerson & Edmund M. Clarke (1982): Using Branching Time Temporal Logic to Synthesize Syn-
chronization Skeletons. Sci. Comput. Program. 2(3), pp. 241-266, doi:10.1016/0167-6423(83)90017-5.

N. Francez (1986): Fairness. Springer, New York, doi:10.1007/978-1-4612-4886-6.

R.J. van Glabbeek (1993): The Linear Time — Branching Time Spectrum II; The semantics of sequential
systems with silent moves. In E. Best, editor: Proceedings CONCUR 93, 4™ International Conference on
Concurrency Theory, Hildesheim, Germany, August 1993, LNCS 715, Springer, pp. 6681, doi:10.1007/3-
540-57208-2_6.

R.J. van Glabbeek (2018): Is Speed-Independent Mutual Exclusion Implementable? In S. Schewe &
L. Zhang, editors: Proceedings 29th International Conference on Concurrency Theory (CONCUR’18),
Beijing, China, September 2018, Leibniz International Proceedings in Informatics (LIPIcs) 118, Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, doi:10.4230/LIPIcs. CONCUR.2018.3.

R.J. van Glabbeek (2019): Ensuring liveness properties of distributed systems: Open problems. Journal of
Logical and Algebraic Methods in Programming 109:100480, doi:10.1016/j.jlamp.2019.100480. Available
athttp://arxiv.org/abs/1912.05616.

R.J. van Glabbeek (2019): Justness: A Completeness Criterion for Capturing Liveness Properties (extended
abstract). In M. Bojaficzyk & A. Simpson, editors: Proceedings 22st International Conference on Foun-
dations of Software Science and Computation Structures (FoSSaCS’19); held as part of the European Joint
Conferences on Theory and Practice of Software (ETAPS’19), Prague, Czech Republic, April 2019, LNCS
11425, Springer, pp. 505-522, doi:10.1007/978-3-030-17127-8_29.

R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2011): Abstract Processes of Place/Transition Systems.
Information Processing Letters 111(13), pp. 626-633, doi:10.1016/j.ipl.2011.03.013. Available at http:
//arxiv.org/abs/1103.5916.

R.J. van Glabbeek & P. Hofner (2015): CCS: It’s not fair! - Fair schedulers cannot be implemented in CCS-
like languages even under progress and certain fairness assumptions. Acta Informatica 52(2-3), pp. 175-205,
doi:10.1007/s00236-015-0221-6. Available at http://arxiv.org/abs/1505.05964.

R.J. van Glabbeek & P. Hofner (2015): Progress, Fairness and Justness in Process Algebra. Technical Report
8501, NICTA, Sydney, Australia. Available at http://arxiv.org/abs/1501.03268.

R.J. van Glabbeek & P. Hofner (2019): Progress, Justness and Fairness. ACM Computing Surveys 52(4):69,
doi:10.1145/3329125. Available at https://arxiv.org/abs/1810.07414.

M. Huth & M.D. Ryan (2004): Logic in Computer Science — Modelling and Reasoning about Systems, 2nd
edition. Cambridge University Press, doi:10.1017/CB0O9780511810275.

L. Kleinrock (1964): Analysis of A Time-Shared Processor. Naval Research Logistics Quarterly 11(1), pp.
59-73, doi:10.1002/nav.3800110105.

D.E. Knuth (1966): Additional comments on a problem in concurrent programming control. Communications
of the ACM 9(5), pp. 321-322, doi:10.1145/355592.365595.

L. Lamport (1974): A New Solution of Dijkstra’s Concurrent Programming Problem. Communications of
the ACM 17(8), pp. 453-455, doi:10.1145/361082.361093.

L. Lamport (1983): What good is temporal logic? In R.E. Mason, editor: Information Processing 83, North-
Holland, pp. 657-668.

68

[19]

(20]

(21]

(22]

(23]

[24]

Reactive Temporal Logic

R. Milner (1990): Operational and algebraic semantics of concurrent processes. In J. van Leeuwen, editor:
Handbook of Theoretical Computer Science, chapter 19, Elsevier Science Publishers B.V. (North-Holland),
pp. 1201-1242. Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989,
of which an earlier version appeared as A Calculus of Communicating Systems, LNCS 92, Springer, 1980,
doi:10.1007/3-540-10235-3.

J. Nagle (1985): On Packet Switches with Infinite Storage. RFC 970, Network Working Group. Available at
http://tools.ietf.org/rfc/rfc970.txt.

J. Nagle (1987): On Packet Switches with Infinite Storage. IEEE Trans. Communications 35(4), pp. 435438,
doi:10.1109/TCOM.1987.1096782.

G.L. Peterson (1981): Myths About the Mutual Exclusion Problem. Information Processing Letters 12(3),
pp- 115-116, doi:10.1016/0020-0190(81)90106-X.

Amir Pnueli (1977): The Temporal Logic of Programs. In: Foundations of Computer Science (FOCS ’77),
IEEE, pp. 46-57, doi:10.1109/SFCS.1977.32.

B.K. Szymanski (1988): A simple solution to Lamport’s concurrent programming problem with linear wait.

In J. Lenfant, editor: Proceedings of the 2nd international conference on Supercomputing, ICS 1988, Saint
Malo, France, July 4-8, 1988, ACM, pp. 621-626, doi:10.1145/55364.55425.

Substructural Observed Communication Semantics

Ryan Kavanagh

Computer Science Department
Carnegie Mellon University
Pittsburgh, Pennsylvania, 15213-3891, USA

rkavanagh@cs.cmu.edu

Session-types specify communication protocols for communicating processes, and session-typed
languages are often specified using substructural operational semantics given by multiset rewriting
systems. We give an observed communication semantics [2] for a session-typed language with recur-
sion, where a process’s observation is given by its external communications. To do so, we introduce
fair executions for multiset rewriting systems, and extract observed communications from fair process
executions. This semantics induces an intuitively reasonable notion of observational equivalence
that we conjecture coincides with semantic equivalences induced by denotational semantics [15],
bisimulations [13], and barbed congruences [16, 27] for these languages.

1 Introduction

A proofs-as-processes correspondence between linear logic and the session-typed m-calculus is the
basis of many programming languages for message-passing concurrency [4, 5, 26, 28]. Session types
specify communication protocols, and all communication with session-typed processes must respect these
protocols. If we take seriously the idea that we can only interact with processes through session-typed
communication, then the only thing we can observe about them is their communications. Indeed, timing
differences in communication are not meaningful due to the non-deterministic scheduling of process
reductions, and “forwarding” or “linking” of channels renders process termination meaningless, even in
the presence of recursion. It follows that processes should be observationally indistinguishable only if
they always send the same output given the same input.

These ideas underlie Atkey’s [2] novel observed communication semantics (OCS) for Wadler’s
Classical Processes [28]. Atkey’s OCS uses a big-step evaluation semantics to observe communications
on channels deemed “observable”. Processes are then observationally equivalent whenever they have the
same observed communications in all contexts.

Building on these ideas, we give an OCS for session-typed languages that are specified using sub-
structural operational semantics (SSOS), a form of multiset rewriting. Our work differs from Atkey’s
on several key points. First, we assume that communication is asynchronous rather than synchronous.
This assumption costs us nothing, for synchronous communication can be encoded in asynchronous
systems [20], and it simplifies the semantics by eliminating the need for “configurations” and ““visible”
cuts. More importantly, our OCS supports recursive and non-terminating processes. To do so, we
observe communications from process traces in (a conservative extension of) the usual SSOSs, instead of
defining a separate big-step semantics.

To ensure that observed communications are well-defined in the presence of non-termination, we
require that process executions be fair. Intuitively, fairness ensures that if a process can make progress,
then it eventually does so. Fairness is also motivated by ongoing efforts to relate existing SSOSs to
domain-theoretic semantics for this style of language [15]. There, processes denote continuous functions

0. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020). © R. Kavanagh
EPTCS 322, 2020, pp. 69-87, doi:10.4204/EPTCS.322.7

70 Substructural Observed Communication Semantics

between domains of session-typed communications, and fairness is built-in. To this end, we introduce
Jair executions of multiset rewriting systems (MRS) and give sufficient conditions for an MRS to have
fair executions. We also introduce a new notion of trace equivalence, union-equivalence, that is key to
defining our OCS.

We study fair executions of MRSs and their properties in section 2. In section 3, we give an SSOS for
a session-typed language arising from a proofs-as-processes interpretation of intuitionistic linear logic. It
supports recursive processes and types. Though it is limited, it represents the core of other SSOS-specified
session-typed languages [3, 13, 15, 20, 25], and the techniques presented in this paper scale to their richer
settings. In section 4, we give our observed communication semantics, where we use a coinductively
defined judgment to extract observations from fair executions.

2 Fair Executions of Multiset Rewriting Systems

In this section, we introduce fairness and fair executions for multiset rewriting systems. We begin by
revisiting (first-order) multiset rewriting systems, as presented by Cervesato et al. [9]. We present a notion
of fairness for sequences of rewriting steps, and constructively show that under reasonable hypotheses, all
fair sequences from the same multiset are permutations of each other. We introduce a new notion of trace
equivalence, “union-equivalence”, and give sufficient conditions for traces to be union-equivalent. Fairness
and union-equivalence will be key ingredients for defining the observed communication semantics of
section 4.

A multiset M is a pair (S,m) where S is a set (the underlying set) and m : S — N is a function. It
is finite if Y cgm(s) is finite. We say s is an element of M, s € M, if m(s) > 0. When considering
several multisets, we assume without loss of generality that they have equal underlying sets. The sum
My, M, of multisets M = (S,m;) and M, = (S,my) is the multiset (S,As € S.m;(s) 4+ ma(s)). Their
intersection M| N M, is the multiset (S,As € S.min(m;(s),m2(s))). Their difference M; \ M, is the
multiset (S,As € S.max(0,m;(s) —my(s))). We say that M, is included in M, written M; C M, if
my(s) < my(s) forall s € S.

Consider finite multisets M of first-order atomic formulas over some signature whose constants are
drawn from some countably infinite set. We call closed formulas judgments. Judgments represent facts,
some of which we may deem to be persistent. To this end, we partition formulas as persistent (indicated
by bold face, p) and ephemeral (indicated by sans serif face, p). We write M (X) to mean that the formulas
in M draw their variables from ¥. A multiset rewrite rule r is an ordered pair of multisets F(X) and
G(X,1), where the multiset (X) of persistent formulas in F(X) is included in G(X,7). We interpret the
variables X as being universally quantified and the variables 7 as being existentially quantified. This
relation is made explicit using the syntax

riVEF (%) — 3.G(X, 7).

In practice, we often elide Vx and do not repeat the persistent formulas 7 (X) C F(X) on the right side of
the arrow. A multiset rewriting system (MRS) is a set % of multiset rewrite rules.

Multiset rewrite rules describe localized changes to multisets of judgments. Given a rule r : VX.F (X) —
Fi.G(X, i) in Z and some choice of constants ¢ for X, we say that the instantiation r(¢) : F(¢) —
31.G(é,n) is applicable to a multiset M of judgments if there exists a multiset M’ such that M = F (¢),M'.
The rule r is applicable to M if r(¢) is applicable to M for some ¢. In these cases, the result of applying
r(?) to M is the multiset G(¢,d),M’, where d is a choice of fresh constants. In particular, we assume that
the constants d do not appear in M or in . We call 6 = [¢/] the matching substitution and & = [d /]

R. Kavanagh 71

the fresh-constant substitution. The instantiating substitution for r relative to M is the composite
substitution & = (6,). We capture this relation using the syntax

;6 o
F(¢),M), G(c,i),M' .
For conciseness, we often abuse notation and write r(6), F(6), and G(8, &) for r(c), F(Z), and G(Z,d).
We call F(c) the active multiset and M’ the stationary multiset.
Given an MRS % and a multiset M, a trace from M, is a countable sequence of steps

(r1:61) (r2:62) (r3:63) .

My M, M, (D
such that, where &; = (6;,&;),
1. for all i, & is one-to-one;
2. forall i < j, the constants in M; and &; are disjoint.
The notation (My, (r;; 6;)ic) abbreviates the trace (1), where I always ranges over Nt orn = {1,...,n}

for some n € N. An execution is a maximally long trace.

Example 1. We model queues using an MRS. Let the judgment que(q,$) mean that q is the empty queue,
and let que(q,v — ¢') mean that the queue q has value v at its head and that its tail is the queue q'. Then
the multiset Q = que(q,0 — ¢'),que(q’,$) describes a one-element queue containing 0. The following
two rules capture enqueuing values on empty and non-empty queues, respectively, where the formula
enq(q,v) is used to enqueue v onto the queue q:

e1:Vx,y.enq(x,y),que(x,$) — 3z.que(x,y — z),que(z,$),
e 1 Vx,y,z,w.enq(x,y),que(x,z — w) — que(x,z — w),enq(w,y).

The following sequence is an execution from Q,enq(q, 1), and it captures enqueuing 1 on the queue q:

) (e2:(1g,1,0,4' /x,y,2,w], (ers(lg's1/xy],[a/2]))

0)
0,enq(q’, 1) que(q,0—¢'),que(q’, 1 — a),que(a,$).

0,enq(q,1

The constants in fresh-constant substitutions are not semantically meaningful, so we identify traces up
to refreshing substitutions. A refreshing substitution for a trace T = (M, (r;;(6;,&;));) is a collection
of fresh-constant substitutions 1 = (7;); such that [n|T = (Mo, (r;; (6;,1m;:));) is also a trace. Explicitly,
we identify traces T and T’ if there exists a refreshing substitution 1 such that 7' = [n]T.

Given rules r; : VX;.F;(X;) — 31;.G;(X;,7;) and matching substitutions 6; for i = 1,2, we say that the
instantiations r(60;) and r,(6,) are equivalent, r;(6,) = r,(6,), if both F\(6;) = F>(6,) and (up to
renaming of bound variables) 3ii;.G(6,,7) = Jii1.G2(61,72); otherwise they are distinct. Application
does not distinguish between equivalent instantiations: if r;(60;) = r»(6,) are applicable to My, then
applying each to My gives the same result up to refreshing substitution.

Given an MRS Z, we say that an execution (Mo, (r;;8;)ics) is fair if for all i € I, r € #, and 0,
whenever r(0) is applicable to M;, there exists a j > i such that r;(6;) = r(0). Given a fair trace T, we
write @r(i,r, 0) for the least such j. In the case of MRSs specifying SSOSs of session-typed languages,
this notion of fairness implies strong process fairness [11, 12, 18], which guarantees that if a process can
take a step infinitely often, then it does so infinitely often. In particular, it implies that if a process can
take a step, then it eventually does so.

Example 2. The execution of example 1 is fair.

72 Substructural Observed Communication Semantics

Proposition 1 (Fair Tail Property). If (Mo, (;;;)icr) is fair, then so is (My, (t;; 6)n<iicr) for all n € I.

We consider various criteria that imply fairness. The first will be interference-freedom, which roughly
means that at any given point, the order in which we apply applicable rules does not matter. It will hold
whenever the rules do not “overlap”. In general, given an MRS % and a property P, we say P holds from
M, if for all traces (Mo, (r;; 6;)ier), P holds for My and for M; for alli € 1.

Write Sy for the group of bijections on /; its elements are called permutations. A permutation ¢ € S;
acts on a trace T = (M, (t;; 6;)ier) to produce a sequence 6 - T = (Mo, (t5(i); Os(i))icr)- This sequence
o - T is a permutation of T whenever it is also a trace. We adopt group-theoretic notation for cyclic
permutations and write (x,o0(x),0(o(x)),...) for a cyclic permutation ¢ : I — I; implicit is that all
elements not in the orbit of x are fixed by 6. Cycles of length two are called transpositions.

Consider an MRS & and let r1(6,),...,r,(6,) enumerate all distinct instantiations of rules in %
applicable to My. We say that % commutes on M, or is interference-free on M, if for all corresponding
pairwise-disjoint fresh-constant substitutions &;, the following diagram commutes for all permutations
O € Sy, and both paths around it are traces:

(Fz;(927§2)) (rnfl;(enfhénfl))
(r:(61,61)) M, M1 w
My M,
(rou);W’ M, (r6:(850) $0)) - (ro(-1):Ootn1) Sotn-1)) M (ro():(Bo(n)Eo(n)

We note that interference-freedom is only defined if the enumeration of distinct applicable instantiations
is finite. The following proposition is an immediate consequence of the definition of commuting rules:

Proposition 2. Let % commute on My, and let r;(6;) with 1 <i < n be the distinct instantiations applicable

;(61, .
on My. If My M M,, then r3(6,),...,r,(6,) are applicable to and commute on M.

Interference-freedom implies the existence of fair executions:

Proposition 3 (Fair Scheduler). Assume the axiom of countable choice. If Z is interference-free from My,
then there is a fair execution from M.

Proof (Sketch). Let Q be a queue of rule instantiations applicable to My. Given M,, dequeue a rule
n+1(6n41) from Q and use the axiom of countable choice to choose a suitably disjoint fresh-constant
substitution &, 1. By interference-freedom, it is applicable to M, and let M,,. | be the result of doing so.
Enqueue all newly-applicable rule instantiations. If Q is ever empty, then the trace is finite but maximally
long. In all cases, the trace gives a fair execution: every distinct applicable rule instantiation is enqueued
and then applied after some finite number of steps. O

Though interference-freedom simplifies fair scheduling, it is primarily of interest for reasoning about
executions. For example, it is useful for showing confluence properties. It also lets us safely permute
certain steps in a trace without affecting observations for session-typed processes (see section 4). This can
simplify process equivalence proofs, because it lets us assume that related steps in an execution happen
one after another.

Interference-freedom is a strong property, but it arises frequently in nature. This is because many
systems can be captured using rules whose active multisets do not overlap, and rules whose active multisets
are non-overlapping commute. In fact, even if their active multisets overlap, the rules do not disable each
other so long as they preserve these overlaps.

R. Kavanagh 73

To make this intuition explicit, consider multisets M; C M for 1 < i < n. Their overlap in M is
Qy(My,...,M,) =M,,...,M,\ M. Consider an MRS % and let r;(6;) : F;(6;) — 31;.G;(6;,7;), 1 <i<n,
enumerate all distinct instantiations of rules in & applicable to M. We say that % is non-overlapping on
M if for all 1 <i < n and fresh-constant substitutions &;, F;(6;) NQu(F1(61),...,F.(6,)) C Gi(6;,&:).

Example 3. The MRS given by example I is non-overlapping from any multiset of the form Q,E where Q
is a queue rooted at g, and E contains at most one judgment of the form enq(q,v).

Proposition 4 characterizes the application of non-overlapping rules, while proposition 5 characterizes
the relationship between commuting and non-overlapping rules.

Proposition 4. Let # be non-overlapping on My and let r;(6;) : F;(6;) — J1i;.G(6;,7;) with 1 <i<nbe

361, .
the distinct instantiations applicable to My. If My M My and ry,...,r, are non-overlapping on

My, then ry(62),...,r,(6,) are applicable to and non-overlapping on M.

In particular, set O = Qu,(F1,...,F,) NFi. There exist F| and G be such that F\ = O,F| and
G1 = O0,G), and there exists an M such that My = O,F|,M and M, = O,G,M. The instantiations
r2(62),...,r,(6,) are all applicable to O,M C M.

Proposition 5. An MRS commutes on My if it is non-overlapping on My; the converse is false.

For the remainder of this section, assume that if (M, (r;;0;);) is a fair trace, then its MRS is
interference-free from Mp. Interference-freedom implies the ability to safely permute finitely many
steps that do not depend on each other. However, it is not obvious that finite permutations, let alone
infinite permutations, preserve fairness. To show that they do, we use the following lemma to reduce
arguments about infinite permutations to arguments about finite permutations:

Lemma 1. For all n € N and permutations 6 : N — N, set xg(n) = sup;, 6~ (k). Then there exist
permutations T,p : N — N such that 6 = p o1, ©(k) =k for all k > xs(n), and p(k) =k for all k < n.

The following proposition shows that permutations of prefixes of traces preserve fairness. Its proof uses
a factorization of permutations into cycles permuting adjacent steps, where each cycle preserves fairness.

Proposition 6. Consider an MRS % that is interference-free from My and let T = (Mo, (r:;(6:,&;))icr) be
a trace, an execution, or a fair execution. Let 6 € Sy be such that for some n € I, 6(i) =i for all i > n.
Then o - T is respectively a trace, an execution, or a fair execution.

Corollary 1. Fairness is invariant under permutation, that is, if Z is interference-free from My, T is a
fair trace from My, and £ = o - T is a permutation of T, then X is also fair.

(to(1)305(1)) (to(2)305(2))

Proof. Let T = (My, (1;;6;);) and &; = (6;,&;), and let X be the trace My = X X
(8, . .
Consider some rule r € & such that ¥; Lé)% 2;. We must show that there exists a j such that

o(j) > o(i). to(j)(0o()) = r(6).

Let the factorization 6 = p o T be given by lemma 1 for n = &(i). By proposition 6, we get that 7-T is
fair. Moreover, by construction of 7, T- T and X agree on the first n steps and n + 1 multisets. By fairness,
there exists a k > o (i) such that the k-th step in 7- T is r(6). By construction of p, p(k) > o (i), so this
step appears after X; in ¥ as desired. We conclude that ¥ is fair. O

Corollary 1 established that permutations preserve fairness. Relatedly, all fair traces from a given
multiset are permutations of each other. To do show this, we construct a potentially infinite sequence of
permutations and use the following lemma to compose them:

74 Substructural Observed Communication Semantics

Lemma 2. Let (0,),¢; be a family of bijections on I such that for all m < n,
(Ono---001)(m) = (Ono---001)(m).

Let 6 : I — I be given by 6(m) = (G,y0---001)(m). Then o is injective, but need not be surjective.
Lemma 3. Let Z be interference-free from My. Consider a fair execution T = (My, (ri;(6;,&;))icr) and a

step My LECIIN M. Set n= ¢7(0,¢,7) (so t(T) = ry(6,)). Then (1,...,n)-T is a permutation of T with
(t;(7,&,)) as its first step, and it is a fair execution.

Proposition 7. If Z is interference-free from My, then all fair executions from My are permutations of
each other.

Proof (Sketch). Consider traces R = (Ry, (ri;(6;,&;))ier) and T = (Ty, (tj; (7}, ;) jes) where Ry = My =
Tp. We construct a sequence of permutations oy, Oy, ..., where ®y = R and the step ®,,+| = 0,41 - P,
is given by lemma 3 such that &, ; agrees with 7" on the first n 4 1 steps. We then assemble these
permutations 0, into an injection ¢ using lemma 2; fairness ensures that it is a surjection. We have
T = o - R by construction. U

Let the support of a multiset M = (S,m) be the set supp(M) = {s € S | m(s) > 0}. We say that two
traces T = (Mo; (r;, &;)1) and T’ are union-equivalent if 7’ can be refreshed to a trace (No; (s;,p;) ;) such
that the unions of the supports of the multisets in the traces are equal, i.e., such that

| supp(M;) = [J supp(N;)
i>0 >0

Lemma 4. Consider an MRS and assume T is a permutation of S. Then T and S are union-equivalent.

Proof. Consider a trace (Mg, (r;; 8;);). For all n, each judgment in M,, appears either in My or in the result
of some rule r; with i < n. Traces T and S start from the same multiset and have the same rules. It follows
that they are union-equivalent. O

Corollary 2 will be key in section 4 to showing that processes have unique observations.

Corollary 2. If Z is interference-free from M, then all fair executions from M are union-equivalent.

3 Session-Typed Processes

Session types specify communication protocols between communicating processes. In this section, we
present a session-typed language arising from a proofs-as-programs interpretation of intuitionistic linear
logic [4] extended to support recursive processes and recursive types.

We let A, B, C range over session types and a, b, ¢ range over channel names. A process P provides
a distinguished service Ay over some channel cp, and may use zero or more services A; on channels c;.
In this sense, a process P is a server for the service Ag, and a client of the services A;. The channels
c1:A1,...,cy Ay form a linear context A. We write A P :: ¢q : Ag to capture these data. We also allow P
to depend on process variables p; of type {b : B <— A}. Values of type {b : B <— A} are processes Q such
that A Q :: b : B. We write IT for structural contexts of process variables p; : {a; : A; < A;}. These data
are captured by the judgment IT; A+ P :: co: Ag, and we say that P is closed if IT is empty.

At any given point in a computation, communication flows in a single direction on a channel ¢ : A.
The direction of communication is determined by the polarity of the type A, where session types are

R. Kavanagh 75

partitioned as positive or negative [20]. Consider a process judgment IT; A+ P :: ¢o : Ag. Communication
on positively-typed channels flows from left-to-right in this judgment: if Ag is positive, then P can only
send output on ¢y, while if A; is positive for 1 <i < n, then P can only receive input on ¢;. Symmetrically,
communication on negatively-typed channels flows from right-to-left in the judgment. Bidirectional
communication arises from the fact that the type of a channel evolves over the course of a computation,
sometimes becoming positive, sometimes becoming negative.

Most session types have a polar dual, where the direction of communication is reversed. With one
exception, we only consider positive session types here. Negative session types pose no difficulty and
can be added by dualizing the constructions. To illustrate this dualization, we also consider the (negative)
external choice type &{/ : A;},.;, the polar dual of the (positive) internal choice type ©{/ : A; };cr.

The operational behaviour of closed processes is given by a substructural operational semantics
(SSOS) in the form of a multiset rewriting system. The judgment proc(c, P) means that the closed process
P provides a channel c¢. The judgment msg(c,m) means the channel ¢ is carrying a message m. Process
communication is asynchronous: processes send messages without synchronizing with recipients. To
ensure that messages on a given channel are received in order, the msg(c,m) judgment encodes a queue-like
structure similar to the queues of example 1, and we ensure that each channel name c is associated with at
most one msg(c,m) judgment. For example, the multiset msg(co,mo;co < c1),msg(c1,mp;c1 < ¢2), ...
captures the queue of messages mq,mp,... on cg. There is no global ordering on sent messages: messages
sent on different channels can be received out of order. We extend the usual SSOS with a new persistent
judgment, type(c : A), which means that channel ¢ has type A.

The initial configurationof - ;¢; : Ay,...,c, : Ay F P co: Ag is the multiset

proc(co, P), type(co : Ay), ..., type(c, : Ap).

A process trace is a trace from the initial configuration of a process, and a multiset in it is a configura-
tion. A fair execution of - ; A= P :: ¢ : A is a fair execution from its initial configuration.

We give the typing rules and the substructural operational semantics in section 3.1. In section 3.2,
we study properties of process traces and fair executions. In particular, we show that each step in these
traces preserves various invariants, that the MRS of section 3.1 is non-interfering from initial process
configurations, and that every process has a fair execution.

3.1 Statics and Dynamics

The process a — b forwards all messages from the channel a to the channel b; it assumes that both channel
have the same positive type. It is formed by (FWD™) and its operational behaviour is given by (2).

+
IM;a:Ara—b::b:A (Fwp™)

msg(a,m),proc(b,a — b) — msg(b,m) ()

Process composition a : A < P; Q spawns processes P and Q that communicate over a shared private

channel a of type A. It captures Milner’s “parallel composition plus hiding” operation [17, pp. 20f.]. To
ensure that the shared channel is truly private, we generate a globally fresh channel b for P and Q to
communicate over.
IM;A\FP:a:A Il;a:A,AMFQ:c:C
;A ,AylFa:A<P;Q::c:C
proc(c,a: A < P; Q) — 3b.proc(b,[b/a]P),proc(c, [b/a]Q),type(b: A) 3)

(Cur)

76 Substructural Observed Communication Semantics

The process close a closes a channel a of type 1 by sending the “close message” * over a. Dually, the
process wait a; P blocks until it receives the close message on the channel a, and then continues as P.

II;AFP:c:C
IT;-Fclosea::a:1 (1R) II;Aa:1Fwaita;P::c:C (1L)
proc(a,close a) — msg(a,) 4)
msg(a, *), proc(c,wait a; P) — proc(c, P) (5)

Processes can communicate channels over channels of type B ® A, where the transmitted channel
has type B and subsequent communication has type A. The process send a b; P sends a channel b over
channel a and then continues as P. To ensure a queue-like structure for messages on a, we generate a
fresh channel name d for the “continuation channel” that will carry subsequent communications. The
process b < recv a; P blocks until it receives a channel over a, binds it to the name b, and continues
as P. Operationally, we rename a in P to the continuation channel d carrying the remainder of the
communications.

II;AFP:a:A ;A a:Ab:B-P::c:C
II;A,b:BFsendab; P::a:B®A II;A,a:BRAFb<+recva, P::c:C
proc(a,send a b; P),type(a: B®A) — 3d.proc(d,[d/a]P),msg(a,send a b; a + d),type(d : A) (6)
msg(a,send a e; a < d),proc(c,b < recv a; P) — proc(c, [e,d/b,a]Q) (7)

(®R")

(®L)

The internal choice type @{/ : A;},¢1 offers a choice of services A;. The process a.k; P sends a label k
on a to signal its choice to provide the service A on a. The process case a {l = P,},.; blocks until it
receives a label k € L on a, and then continues as P;.

M;AFP:a:A; (keL) IM;Aa:AlFP:c:C (VIEL)
II;AFakPa: ®{l: A}, (©Re) IT;Aa:®{l:A1},c Feasea {I= P} ic:C
proc(a,a.k;P),type(a : &{l: A;}icr) — 3d.msg(a,a.k;a < d),proc(d,[d/a]P),type(d : Ax) (8)
msg(a,a.k;a < d),proc(c,case a {l = P},.;) — proc(c,|d/alPy))

(®L)

To illustrate the duality between positive and negative types, we consider the (negative) external choice
type. It is the polar dual of the (positive) internal choice type. The external choice type &{I: A;};cr
provides a choice of services A;. The process case a {I = P, },.; blocks until it receives a label k € L on
a, and then continues as P;. The process a.k; P sends a label k on a to signal its choice to use the service
Ay on a. Observe that, where a provider of an internal choice type sends a label in (8), a provider of the
external choice type receives a label in (10). Analogously, a client of an internal choice type receives
receives a label in (9), and a client of an external choice type sends a label in (11).

W AP :a:A (VIEL) Yi;Aa:ArFP:ic:C (kel)
WiAlcasea {I =P} a:&{l: A}, WiAa:&{l:A} e FakPic:C
msg(a,a.k;a < d),proc(a,case a {l = P,},.;) — proc(d,[d/a]P) (10)
proc(c,a.k; P),type(a: ®{l:A;}ier) — Id.msg(a,a.k;a + d),proc(c,[d/a]P),type(d : A;) (11)

(&R) (&Ly)

A communication of type pa.A is an unfold message followed by a communication of type [pa.A/o]A.
The process send a unfold; P sends an unfold message and continues as P. The process unfold < recv a; P

R. Kavanagh 77

blocks until it receives the unfold message on a and continues as P.
[I;AFP:a:[pa.A/alA N M;Aja:[paA/alAFP:c:C N
IT;AFsendaunfold;P::a:pa.A (p*R) II;Aa:pa.Atunfold <+ recva;P::c:C (p*L)
proc(a,send a unfold; P),type(a: pa.A) —
3d.msg(a,send a unfold;a < d),proc(d, [d/a]P),type(d : [pa.A/a]A)
msg(a,send a unfold;a < d), proc(c, unfold < recv a; P) — proc(c, [d /a]P) (13)

(12)

Finally, recursive processes are formed in the standard way. The SSOS is only defined on closed
processes, so there are no rules for process variables. Recursive processes step by unfolding.

Ip:{c:C+A};AFP:c:C
ILp:{c:C<«A};AFp:c:C II;A+fixp.P:c:C
proc(c, fix p.P) — proc(c, [fix p.P/p]P) (14)

(VAR)

(REC)

Example 4. The protocol conat = pa.(z: 1) & (s : &) encodes conatural numbers. Indeed, a communi-
cation is either an infinite sequence of successor labels s, or some finite number of s labels followed by
the zero label z and termination. The following process receives a conatural number i and outputs its
increment on o:

-;1:conatt send o unfold;s.o;o0 — i :: 0 : conat.

It works by outputting a successor label on o, and then forwarding the conatural number i to o. It has the

following fair execution, where we elide type(c : A) judgments and annotations on the arrows:

proc(o,send o unfold;s.o;0 — i) — msg(c,send o unfold;o < 0;), proc(o1,s.01;01 — i) —

msg(o,send o unfold;o < 01),msg(01,s.01;5 < 02),proc(02,07 < i).
The following recursive process outputs the infinite conatural number s(s(s(---))) on o:
-; - fix w.send o unfold;s.o; @ :: o0 : conat.

It has an infinite fair execution where for n > 1, the rules r3,_», r3,—1, and r3, are respectively instantia-

tions of (14), (12), and (8).

3.2 Properties of Process Traces

Let &2 be MRS given by the above rules. We prove various invariants maintained by process traces.
Let fc(P) be the set of free channel names in P. The following result follows by an induction on n and
a case analysis on the rule used in the last step:

Proposition 8. Let T = (My, (ri;;);) be a process trace. For all n, if proc(co, P) € My, then
1. ¢o € fc(P);
2. for all ¢; € fc(P), there exists an A; such that type(c; : A;) € M,,; and
3. where fc(P) = {co,...,cm}, we have - ;¢1 : Ay, ..., A P ¢ : Ap.
If msg(c,m) € My, then
e ifm=msg(c,x*), then type(c : 1) € M,,;

78 Substructural Observed Communication Semantics

o ifm=c.lj;c < d, then either type(c : ®{l; : Ai}ic1) € M, or type(c : &{l; : Ai}ic1) € M, for some
Ai (i €1), and type(d : A}) € M, for some j € I.
e ifm=send ca; c < b, then type(c : AQ B),type(a : A),type(b : B) € M,, for some A and B;
e ifm=send c unfold;c < d, then type(c: pa.A),type(d : [pa.A/alA) € M, for some poL.A.
The MRS &7 differs from the usual MRSs given for this style session-typed languages [13, 20, 25]
in the addition of type(c:A) judgments. Corollary 3 shows that their addition does not change the

operational behaviour of the semantics. Let |M|, | Z|, |T|, etc., be the result of erasing all type(c: A)
judgments.

bl)

Corollary 3. Consider a process - ; AF P :: ¢ : A with initial state My. If T is a trace from My under &2,
then |T | is a trace from |Mo| under | 2|. If T is a trace from |My| under | |, then there exists a trace T’
from My under & such that |T'| =T.

Proposition 8 showed that there were enough type(c : A) judgments in a trace. Proposition 9 shows
that there are not too many:

Proposition 9. Ler (My, (r;;8;);) be a process trace. For all channels ¢ and all i, j > 0, if type(c : A;)
appears in M; and type(c : A;) appears in M, then A; = A .

We show an analogous uniqueness result for msg(c,m) judgments. It implies that each channel name
in an execution carries at most one message. To prove it, we begin by partitioning a process’s free channels
into “input” and “output” channels and show that at all times, a channel is an output channel of at most
one process. Given a process P, let oc(P) be the subset of fc(P) recursively defined by:

oc(a — b) ={b} oc(a < P; Q) = (oc(P)Uoc(Q)) \ {a}
oc(close a) = {a} oc(wait a; P) = oc(P)

oc(a.k; P) = {a} Uoc(P) oc(casea (I = P)ieL) = < UOC(IDI)) \{a}

leL
oc(send a b; P) = {a}Uoc(P) oc(b < recv a; P) =oc(P)\ {a,b}
oc(send a unfold; P) = {a} Uoc(P) oc(unfold < recv a; P) = oc(P) \ {a}
oc(p)=10 oc(fix p.P) = oc(P)

Intuitively, ¢ € oc(P) if the next time P communicates on ¢, P sends a message on c. Given a configuration
%, let oc(%’) be the union of the sets oc(P) for proc(c,P) in €. Analogously, let ic(P) and ic(%’) be the
set of input channels of P and of %

Lemma 5. If F (k) (r(E—a))> G(k,d) by a rule r of section 3.1, then
e ifmsg(c,m) € F(k), then c € ic(F (k));
e ifmsg(c,m) € G(k,a), then ¢ € oc(F (k));
o ifmsg(c,m;c < d) € G(k,d@), then d € d and d € fc(G(k,d)); and

e oc(G(k,d)) C oc(F,k)Ud and ic(G(k,d)) C ic(F,k) Ud.
Proof. Immediate by a case analysis on the rules. O

An induction with lemma 5 implies the desired disjointness result:

R. Kavanagh 79

Lemma 6. Let (Mo, (r;;6;);) be a process trace. For all n, if proc(c, P) and proc(d, Q) appear in M, then
oc(P)Noc(Q) =0 and ic(P) Nic(Q) = 0.

The following lemma shows that processes do not send messages on channels c already associated
with a msg(c,m) judgment:

Lemma 7. Let (Mo, (r;;6;);) be a process trace. For all n <k, if msg(c,m) € M,, and proc(d,P) € M,
then ¢ ¢ oc(P).

The desired result then follows by induction and the above results:

Corollary 4. Let (Mo, (r;;6;);) be a process trace. For all channels ¢ and all i, j > 0, if msg(c,m;) appears
in M; and msg(c,m;) appears in M, then m; = m;.

We now turn our attention to showing that all well-typed, closed processes have fair executions. This
fact will follow easily from the following proposition:

Proposition 10. The MRS &7 is non-overlapping from the initial configuration of - ; A& P :: ¢ : A for all
3AFP:c: A

Proof. Consider a trace (M, (r;;(6;,&;))) from the initial configuration of - ; AF P :: ¢ : A and some
arbitrary n. It is sufficient to show that if s;(¢;) and s,(¢») are distinct instantiations applicable to
M, then F\(¢;) and F>(¢,) are disjoint multisets: Fy(¢;) N F>(¢) = 0. Indeed, if this is the case and
51(01),...,sk(¢) are the distinct rule instantiations applications to M,, then F;(6,),...,Fi.(¢) C M, so
Qu, (Fi (1), Fi(d)) = 0.

We proceed by case analysis on the possible judgments in Fy (¢;) N F>(¢,).

Case msg(c,m). Then ¢ € ic(Fi(¢)) and ¢ € ic(F2(¢2)) by lemma 5. This is a contradiction by lemma 6.

Case proc(c,P). Then s; = s, by a case analysis on the rules. We show that ¢; = ¢. If 51 is one of
(2) to (6), (8), (11), (12) and (14), then we have ¢; = ¢, because all constants matched by ¢,
and ¢, appear in proc(c,P). If s; is one of (7), (9), (10) and (13), then F;(¢;) contain a judgment
msg(d,m;) where there is a constant e¢; € m; that appears in ¢;, but not in proc(c, P) (explicitly, e;
is the name of the continuation channel). By corollary 4, m; = my, so e; = e>. All other channel
names in ¢; appear in proc(c, P), so ¢ = ¢,. So s1(¢;) and s, (¢,) are not distinct rule instantiations,
a contradiction.

Case type(c: A). By case analysis on the rules, s; = s, and there exist judgments proc(d;, P;) € F(¢;).
Suppose to the contrary that P, # P,. By case analysis on the rules, s; is one of (6), (8), (11)
and (12). This implies that ¢ € oc(P;) Noc(Ps), a contradiction of lemma 6. So P; = P». Because all
constants in @; and ¢, appear in Py, we conclude that ¢; = ¢,. So s1(¢;) and s,(¢) are not distinct
rule instantiations, a contradiction. OJ

Corollary 5. Every process - ; A= P :: c: A has a fair execution. Its fair executions are all permutations
of each other and they are all union-equivalent.

Proof. By proposition 10, &2 is non-overlapping from the initial configuration My of - ; AF P ::c: A. Ttis
then interference-free from My by proposition 5, so a fair execution exists by proposition 3. All of its fair
executions are permutations of each other by proposition 7. They are union-equivalent by corollary 2. [

80 Substructural Observed Communication Semantics

4 Observed Communications

Consider a closed process - ;¢ : Aq,...,cn : Ay P::co: Ag. In this section, we will define the observation
of P to be a tuple (¢; : v;)o<i<n, Where v; is the communication of type A; observed on channel ¢; in a fair
execution of P. We extract communications from fair executions using a coinductively defined judgment.
We colour-code the modes of judgments, where inputs to a judgment are in blue and outputs are in red.

We begin by defining session-typed communications. Let a communication v be a (potentially
infinite) tree generated by the following grammar, where k and /; range over labels. We explain these
communications v below when we associate them with session types. For convenience, we also give a
grammar generating the session types A of section 3.1. Session types are always finite expressions, and
we treat p.A as a binding operator.

vV = La|* | (k,v) | (v,V) | (unfold,v)
AAB=a|1|AQB|®(l:Ay,....L,: Ay) | &I 1 Ay, ..., 1, 1 Ay) | paA.

As in section 3.1, we abbreviate ®(/; : Ay,...,1, : A,) and &(I; : Ay,... .1, A,) by &{l: A;}icr and
&{l: A;}icr, respectively, where L is the finite set of labels.

Next, we associate communications with session types. The judgment v € A means that the syntactic
communication v has type A. It is coinductively defined by the following rules, where A is assumed to
have no unbound occurrences of . The rule forming (k,v;) € ®©{[: A;},c; has the side condition k € L.

veA VeB ve[paA/alA
1liel el lasp EA®B (vV)eA®B loasrepa.A (unfold,v) e pa.A

Vi € A Vi € Ag
Logaye €O Atvier (kovi) €D{1: Atk Laqiaye, €& Athier (k,vi) € &{1: Ar}ier

Every closed session type A has an empty communication | 4 representing the absence of communication
of that type. The communication * represents the close message. A communication of type ®&{l : A;}er
or &{l: A} is alabel k € L followed by a communication vy of type Ay, whence the communication
(k,vi). Though by itself the communication (k,v;) does not capture the direction in which the label k
travelled, this poses no problem to our development: we never consider communications without an
associated session type, and the polarity of the type specifies the direction in which k travels. We cannot
directly observe channels, but we can observe communications over channels. Consequently, we observe
a communication of type A ® B as a pair (v,v') of communications v of type A and V' of type B. A
communication of type pa.A is an unfold message followed by a communication of type [pa.A/a]A.

Given a trace T = (Mo, (r;;(6;,&;))i), we write .7 for the set-theoretic union of the M;, thatis, x € .7
if and only if x € supp(M;) for some i. Write 7 - ¢ : A if type(c : A) € 7. This judgment is defined on all
channel names c that appear in T by proposition 8 and it is a function by proposition 9.

Assuming the channel ¢ appears in T, the judgment 7 ~~ v € A / ¢ means that we observed a
communication v of type A on the channel ¢ during 7. We will show below that whenever 7 ~~ v €A / ¢,
we also have T'F ¢ : A and v € A. Fixing T, the judgment 7 ~~> v € A / ¢ is coinductively defined by the
following rules, i.e., T ~» v € A / ¢ is the largest set of triples (v,c,A) closed under the following rules.

We observe no communications on a channel c if and only if msg(c,m) does not appear in the trace
for any m. Subject to the side condition that for all m, msg(c,m) ¢ .7, we have the rule

ThHc:A

_tred (o-1
TWJ_ASA/C(O)

R. Kavanagh 81

We observe a close message on c¢ if and only if the close message was sent on c:

msg(c,*) € T

T~xegl/c (0-1)

We observe label transmission as labelling communications on the continuation channel. We rely on the
judgment T+ c: @{l:Aj}jepor T He: &{l:A;}ep to determine the type of c:

msg(c,clic<—d) e T T~veA /d Tre:d{l: A}

O0-@
TW(l,V)f:@{lIA]}]eL/C ()
msg(c,clsc<—d) e T T~veA /d Trce:&{l:A}er (0-&)

T ~~ ([,V)) &{1 :AI}IEL / c
As described above, we observe channel transmission as pairing of communications:

msg(c,sendca; c«d) €7 T~ueA/a T~veB/d

0O-
T~ (u,v) eA®B/c (0-8)
Finally, we observe the unfold message as an unfold message:
msg(c,send c unfold;c <~ d) € T T ~velpaA/alA/d (0-p)
T ~> (unfold,v) e pat.A / ¢ P

The following three propositions imply that for any 7', 7 ~» v € A / ¢ is a total function from channel
names c in T to session-typed communications v € A.

Proposition 11. IfT ~veA /¢, thenv € A.
Proof. Immediate by rule coinduction. O
Proposition 12. If T is a process trace, then for all ¢, if T - c: A, then T ~» v € A / ¢ for some v.

Proof (Sketch). Let S be the set of all triples (v,A, c) for session-typed communications v € A and channel
names c. Let @ : @(S) — £(S) be the rule functional defining 7 ~» v € A / c. Then the judgment
T ~~veA/cis given by the greatest fixed point gfp(®) of ® on the complete lattice $(S), where
T ~~veA /cifandonly if (v,A,c) € gfp(P). The functional ® is cocontinuous by [23, Theorem 2.9.4],
50 gfp(P) = ,50 D" (S) by [23, Theorem 2.8.5]. It is sufficient to show that if 7' - ¢ : A, then there exists
a v such that (c,v,A) € ®"(S) for all n. This v can be constructed using a coinductive argument and a case
analysis on msg(c,m) € 7. O

Proposition 13. If T is a trace from the initial configuration of a process, then for all ¢, if T ~>veEA [¢
and T ~~we€B /¢, thenv=wand A =B.

Proof (Sketch). Let R={(T ~veA/c,T ~weB/c)|Ivwc,AABT~veEA/cANT ~weB/c}.
We claim that R is a bisimulation. Indeed, let (7 ~veA /¢,T ~»w € B/ c) € R be arbitrary. By
corollary 4, at most one rule is applicable to form a judgment of the form 7'~ u € C / ¢ (with ¢ fixed), so
T~veA/cand T ~»w e B /¢ were both formed by the same rule. A case analysis shows on this rule
shows that R satisfies the definition of a bisimulation.

Consider arbitrary 7 ~» v €A / cand T ~» w € B / c. They are related by R, so they are bisimilar. By
[14, Theorem 2.7.2], bisimilar elements of the terminal coalgebra are equal, sov=w and A = B. O

82 Substructural Observed Communication Semantics

Corollary 6 gives the converse of proposition 12:
Corollary 6. If T is a process trace, then for all ¢, if T ~~v €A /¢, then T ¢ : A.

Proof. We show by case analysis on the rules that if 7 ~» v €A / ¢, then T I ¢ : B for some B. The case
(O-1) is obvious, while for each other case, if 7 ~> v € A / ¢, then msg(c,m) € .7 for some m. For each
of these cases, proposition 8 implies type(c : B) € .7 for some B, i.e., T c:B.

Assume 7' ~» v €A / c. By the claim, T I ¢ : B for some B. By proposition 12, there exists a w such
that 7 ~» w € B / c. By proposition 13,A=B,so T I ¢ : A. O

Theorem 1. Let T be a fair execution of - ;¢ : A1,...,cp Ayt P ¢y Ag. Forall 0 <i < n, there exist
unique v; such that v € A;and T ~ v; € A; / ¢;.

Proof. By definition of fair execution, we have type(c; : A;) € 7 forall0 <i<n,i.e., T F ¢ : A, forall
0 <i < n. By proposition 12, for all 0 < i < n, there exists a v; such that 7~ v; € A; / ¢;, and v; € A; by
proposition 11. Each v; is unique by proposition 13. g

The following theorem captures the confluence property typically enjoyed by SILL-style languages:

Theorem 2. Let T and T' be a fair executions of - ; ¢y : Ay,...,cp : Ap =P ::ico:Ag. Forall 0 <i<n, if
T ~>v; €A; / c; and T~ w; EA; / ¢, then Vi = W;.

Proof. Assume T ~~»v;€A; /c;and T’ ~~ w; € A; / ¢;. By corollary 5, traces T and T’ are union-equivalent,
ie., 7 =7’ It immediately follows that 77 ~ w; € A; / ¢; if and only if 7 ~» w; € A; / ¢;. So v; = w; by

proposition 13. O
We use theorems 1 and 2 to define the operational observation (- ;c; : Aj,...,c, : Ay P co: Ao)
of -5c1:AL,...,ch i Ay P ey Ap. It is the tuple of observed communications

(-5c1:A1,..,cn A Piico i Ao) = (co: v, yCni Vi)

where 7'~ v; € A; / ¢; for 0 < i < n for some fair execution 7 of - ; ¢y : Ay,...,c, : Ay P::co : Ap. Such
a T exists by corollary 5, and (- ; ¢; : Ay,...,cp : Ay E P co : Ag|) does not depend on the choice of T by
theorem 2. The v; such that 7 ~» v; € A; / ¢; exist by proposition 9, and they are unique by proposition 13.

Uniqueness of operational observations and theorem 2 crucially depend on fairness. Indeed, without
fairness a process can have infinitely many observations. To see this, let £ and B respectively be given by

oHfixwwia:l
-;a: 1+ fix p.send b unfold;b.l;p b pB.d{l: B}

Rule (3) is the first step of any execution of their composition - ;- Fa: 1+ Q; B b:pB.®{l: B}. It
spawns Q and B as separate processes. Without fairness, an execution could then consist exclusively of
applications of rule (14) to Q. This would give the observation (b : L). Alternatively, B could take finitely
many steps, leading to observations where b is a tree of correspondingly finite height. Fairness ensures that
B and Q both take infinitely many steps, leading to the unique observation (b : (unfold, (/, (unfold,...)))).

Operational observation does not take into account the order in which a process sends on channels.
For example, the following processes have the same operational observation (a : (I, L1),b: (r, L)), even
though they send on a and on b in different orders:

a:&{l:1}Fal;bria—b:b:@{r:1}
a:&{l:1}Fbralia—b:b:d{r:1}.

R. Kavanagh 83

The order in which channels are used does not matter for several reasons. First, messages are only ordered
on a per-channel basis, and messages sent on different channels can arrive out of order. Second, each
channel has a unique pair of endpoints, and the (CUT) rule organizes processes in a tree-like structure.
This means that two processes communicating with a process R cannot at the same time also directly
communicate with each other to compare the order in which R sent them messages. In other words, the
ordering cannot be distinguished by other processes.

Our notion of operational observation scales to support language extensions. Indeed, for each new
session type one first defines its corresponding session-typed communications. Then, one specifies how to
observe message judgments msg(c,m) in a trace as communications. Informally, it seems desirable to
ensure that if two message judgments msg(c,m) can be distinguished by a receiving process, then they
are observed as different session-typed communications.

A typed context - ;AFC Hﬁ:A :2b: Bis a context derived using the process typing rules of section 3.1,
plus exactly one instance of the axiom

A [-]HA:A vazA (HoLE)
Given a context - ; Al C[-]4, ::b: Band a process - ; A’ P::a: A, welet - ; Al C[P] :: b : B be the result
of “plugging” P into the hole, that is, of replacing the axiom (HOLE) by the derivation A’ P::a: A in
the derivation A+ C[-], :: b : B.

We say that processes - ; A-P::c:Cand-; Al Q::c:C are observationally congruent, P ~ Q,
if ((;A'FC[P)::b:B) =(;A'FC[Q] :: b: B) for all typed contexts - ; A’ - C[~]CA,:C :: b : B. Intuitively,
this means that no context C can differentiate processes P and Q.

To illustrate observational congruence, we show that process composition is associative:

Proposition 14. We have ¢ : Cy < Pi; (c2:Co < Po; P3) = ¢y :Cy < (c1: Cy + Py; Py); Ps for all
-;A1|—P1 eS| 2C1, all-;q 2C1,A2|—P222C22C2, al’ldall-;622C2,A3 |—P3iic3 2C3.

PrOOf(Skel‘Ch). Let L=1c:C| < Pp; ((,‘2 10— P P3) and R =c¢, : G + (Cl :C + P Pz); P;.
Consider some arbitrary observation context C|-] and a fair execution T of C[L]. It is sufficient to show
that T agrees on message judgments with a fair execution C[R]. Union-equivalence of process traces
is invariant under permutation, so we can assume without loss of generality that whenever proc(cs, L)
appears in some M,, of T, then the next two steps are applications (3) to decompose L:

proc(c3, L) — proc(cy, [c}/c1]P1), proc(cs, [c} /c1](ca : Cp < Po; P3)) —

proc(c'l, [Cll /Cl]Pl)a proc(c'z, [Cll) CIZ/CI) CZ]PZ)v proc(cga [C/Z/CZ]P?))

(For conciseness, we elide the type(c : A) judgments.) There exists a fair execution 7’ of C[R] that agrees
with T on all steps, except for those involving R, where we make the same assumption:

proc(c3,R) — proc(ch, [c3/ea](c1 : C1 = Pi; P2)), proc(cs, [¢ /2] Py) —

proc(cy, [/e1]Pr), proc(c), [c1, ¢/ c1, €2 P2), proc(cs, [c3 /c2] P3)

So traces T and T agree on all message judgments, whence (C[L]) = (C[R]). O

5 Related Work

Multiset rewriting systems with existential quantification were first introduced by Cervesato et al. [8].
They were used to study security protocols and were identified as the first-order Horn fragment of linear

84 Substructural Observed Communication Semantics

logic. Since, MRSs have modelled other security protocols, and strand spaces [7, 9]. Cervesato and
Scedrov [10] studied the relationship between MRSs and linear logic. These works do not explore fairness.

Weak and strong fairness were first introduced by Apt and Olderog [1] and Park [18] in the context
of do-od languages, and were subsequently adapted to process calculi, e.g., by Costa and Stirling [11]
for Milner’s CCS. Our novel notion of fairness for multiset rewriting systems in section 2 implies strong
process fairness (so also weak process fairness) for the session-typed processes of section 3. We conjecture
that this notion of fairness is stronger than required for many applications. In future work, we intend to
explore other formulations of fairness for MRSs and their impact on applications.

Substructural operational semantics [24] based on multiset rewriting are widely used to specify the
operational behaviour of session-typed languages arising from proofs-as-processes interpretations of linear
logic and adjoint logic. Examples include functional languages with session-typed concurrency [25],
languages with run-time monitoring [13], message-passing interpretations of adjoint logic [22], and
session-typed languages with sharing [3]. The fragment of section 3.1 illustrates some of the key ideas of
this approach, and extends to these richer settings.

Some of these languages are already equipped with observational equivalences. For example, Pérez
et al. [19] introduced typed context bisimilarity, a labelled bisimilarity for session-typed processes. It
does not support recursive processes or recursive session types. Toninho [27] explored barbed congruence
for session-typed processes and shows that it coincides with logical equivalence. Kokke, Montesi, and
Peressotti [16] showed that the usual notions of bisimilarity and barbed congruence carry over from the
n-calculus. They also gave a denotational semantics using Brzozowski derivatives to “hypersequent
classical processes” that built on Atkey’s denotational semantics for CP, and showed that all three notions
of equivalence agreed on well-typed programs. In future work, we intend to show that our observational
congruence agrees with barbed congruence. Gommerstadt, Jia, and Pfenning [13] define a bisimulation-
style observational equivalence on multisets in process traces. It deems two configurations equivalent if
whenever both configurations send an externally visible message, then the messages are equivalent. It is
easy to adapt this bisimulation to also require that one configuration sends an externally visible message if
and only if the other does. We conjecture that this modified observational equivalence coincides with the
one defined in section 4.

Session-typed languages enjoy other notions of process equivalence. Several session-typed languages
are equipped with denotational semantics, and denotational semantics induce a compositional notion of
program equivalence. For example, Castellan and Yoshida [6] gave a game semantics to a session-typed
n-calculus with recursion, where session types denote event structures that encode games, and processes
denote maps that encode strategies. Kavanagh [15] gave a domain-theoretic semantics to a full-featured
functional language with session-typed message passing concurrency, where session types denote domains
of communications and processes are continuous functions between these.

Atkey’s observed communication semantics [2] for Wadler’s CP [28] was motivated by two problems.
Because CP uses a synchronous communication semantics, processes need partners to communicate with
and get stuck if they try to communicate on a free channel. On the one hand, if processes have partners,
then their communication are hidden by the (CUT) rule and cannot be observed, while on the other hand,
if we leave the channels free, then we need to introduce reduction rules (“‘commuting conversions”) for
stuck processes, and these rules do not correspond to operationally justified communication steps. Atkey’s
elegant solution to this tension was to give communication partners to processes with free channels via
closing “configurations”, and then observing communications on these channels. Our task in section 4
is made easier by the fact that we use an asynchronous communication semantics. In our setting, a
process can send messages on free channels, and we can observe these without having to provide it with
communication partners via configurations. Atkey’s observational equivalence and ours suffer from the

R. Kavanagh 85

same weakness: to reason about observational equivalence, we must quantify over all observation contexts.
Atkey addresses this by relating his semantics to a denotational semantics for CP and showing that they
induce the same notion of equivalence. We are actively working on relating our OCS to Kavanagh’s
domain semantics [15]. Indeed, our OCS is largely motivated by efforts to relate denotational semantics of
session-typed languages to their existing substructural operational semantics. We believe that our results
on fair executions and their permutations should also simplify reasoning about observational equivalence.

6 Conclusion and Acknowledgements

We studied fair executions of multiset rewriting systems, and gave various conditions for an MRS to have
fair executions. We used these results to define an observed communication semantics for session-typed
languages that are defined by substructural operational semantics: the observation of a process is its
communications on its free channels. Processes are then observationally equivalent if they cannot be
distinguished through communication. We believe this work lays the foundation for future work on the
semantics of session-typed processes, and in particular, we hope that it will be useful for exploring other
notions of process equivalence.

The author thanks Stephen Brookes, Iliano Cervesato, Frank Pfenning, and the anonymous reviewers
for their helpful comments.

References

[1] Kirzysztof R. Apt & Ernst-Riidiger Olderog (1982): Proof Rules Dealing With Fairness. Extended
Abstract. In Dexter Kozen, editor: Logics of Programs, Logics of Programs Workshop, Lecture
Notes in Computer Science 131, Springer-Verlag Berlin Heidelberg, pages 1-8, doi: 10.1007/
BFb0025770.

[2] Robert Atkey (2017): Observed Communication Semantics for Classical Processes. In Hongseok
Yang, editor: Programming Languages and Systems, 26th European Symposium on Programming
(ESOP 2017), Lecture Notes in Computer Science 10201, Springer Berlin Heidelberg, Berlin,
pages 56-82, doi: 10.1007/978-3-662-54434-1.

[3] Stephanie Balzer & Frank Pfenning (2017): Manifest Sharing With Session Types. Proceedings of
the ACM on Programming Languages 1(ICFP):37, 29 pages, doi: 10.1145/3110281.

[4] Luis Caires & Frank Pfenning (2010): Session Types as Intuitionistic Linear Propositions. In Paul
Gastin & Francois Laroussinie, editors: CONCUR 2010 — Concurrency Theory, 21st International
Conference, CONCUR 2010, Lecture Notes in Computer Science 6269, Springer-Verlag Berlin
Heidelberg, pages 222-236, doi: 10.1007/978-3-642-15375-4_16.

[5] Luis Caires, Frank Pfenning & Bernardo Toninho (2016): Linear Logic Propositions As Session
Types. Mathematical Structures in Computer Science. Behavioural Types Part 2 26(3), pages 367—
423, doi: 10.1017/s0960129514000218. Luis Caires & Frank Pfenning (2010): Session Types
as Intuitionistic Linear Propositions. In Paul Gastin & Francois Laroussinie, editors: CONCUR
2010 — Concurrency Theory, 21st International Conference, CONCUR 2010, Lecture Notes in
Computer Science 6269, Springer-Verlag Berlin Heidelberg, pages 222-236, doi: 10.1007/978-
3-642-15375-4_16.

86

[6]

[7]

(8]

[9]

[10]

Substructural Observed Communication Semantics

Simon Castellan & Nobuko Yoshida (2019): Two Sides of the Same Coin: Session Types and
Game Semantics: A Synchronous Side and an Asynchronous Side. Proceedings of the ACM on
Programming Languages 3(POPL):27, 29 pages, doi: 10.1145/3290340.

L. Cervesato, N. Durgin, M. Kanovich & A. Scedrov (2000): Interpreting Strands in Linear Logic.
In 2000 Workshop on Formal Methods and Computer Security.

I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell & A. Scedrov (1999): A Meta-Notation
for Protocol Analysis. In Proceedings of the 12th IEEE Computer Security Foundations Workshop,
12th IEEE Computer Security Foundations Workshop (CSFW’99), IEEE Computer Society, Los
Alamitos, California, pages 55-69, doi: 10.1109/CSFW.1999.779762.

[liano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell & Andre Scedrov (2005):
A Comparison Between Strand Spaces and Multiset Rewriting for Security Protocol Analysis.
Journal of Computer Security 13(2), pages 265-316, doi: 10.3233/JCS-2005-13203.

Iliano Cervesato & Andre Scedrov (2009): Relating State-Based and Process-Based Concurrency
Through Linear Logic (full-Version). Information and Computation. 13th Workshop on Logic,
Language, Information and Computation (WoLLIC 2006) 207(10), pages 1044-1077, doi: 10.
1016/j.1c.2008.11.006.

Gerardo Costa & Colin Stirling (1987): Weak and Strong Fairness in CCS. Information and
Computation 73(3), pages 207-244, doi: 10.1016/0890-5401(87)90013-7.

Nissim Francez (1986): Fairness, xiii+295 pages. Texts and Monographs in Computer Science,
Springer-Verlag New York Inc. doi: 10.1007/978-1-4612-4886-6.

Hannah Gommerstadt, Limin Jia & Frank Pfenning (2018): Session-Typed Concurrent Contracts.
In Amal Ahmed, editor: Programming Languages and Systems, 27th European Symposium on
Programming (ESOP 2018), Lecture Notes in Computer Science 10801, Springer, Cham, pages 771-
798, doi: 10.1007/978-3-319-89884-1.

Bart Jacobs & Jan Rutten (2012): An Introduction to (Co)algebra and (Co)induction. In Davide
Sangiorgi & Jan Rutten, editors: Advanced Topics in Bisimulation and Coinduction, pages 38-99.
Cambridge Tracts in Theoretical Computer Science 52, Cambridge University Press, Cambridge,
United Kingdom, doi: 10.1017/CB09780511792588.003.

Ryan Kavanagh (2020): A Domain Semantics for Higher-Order Recursive Processes, arXiv: 2002.
01960v3 [cs.PL].

Wen Kokke, Fabrizio Montesi & Marco Peressotti (2019): Better Late Than Never: A Fully-
Abstract Semantics for Classical Processes. Proceedings of the ACM on Programming Languages
4(POPL):24, 29 pages, doi: 10.1145/3290337.

Robin Milner (1980): A Calculus of Communicating Systems, vi+171 pages. Lecture Notes in
Computer Science 92, Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-540-38311-6.
David Park (1982): A Predicate Transformer for Weak Fair Iteration. RIMS Kokyiiroku 454,
pages 211-228, 1SSN: 1880-2818, HDL: 2433/103001. Also appears in [21].

Jorge A. Pérez, Luis Caires, Frank Pfenning & Bernardo Toninho (2014): Linear Logical Relations
and Observational Equivalences for Session-Based Concurrency. Information and Computation
239, pages 254-302, doi: 10.1016/j.1c.2014.08.001.

Frank Pfenning & Dennis Griffith (2015): Polarized Substructural Session Types. In Andrew
Pitts, editor: Foundations of Software Science and Computation Structures, 18th International
Conference, FOSSACS 2015, Lecture Notes in Computer Science 9034, Springer-Verlag GmbH
Berlin Heidelberg, Berlin Heidelberg, pages 3—-32, doi: 10.1007/978-3-662-46678-0_1.

R. Kavanagh 87

[21]

[22]

(1981): Proceedings of the Sixth IBM Symposium on Mathematical Foundations of Computer
Science: Logic Aspects of Programs, 6th IBM Symposium on Mathematical Foundations of
Computer Science, Corporate & Scientific Programs, IBM Japan, Tokyo, Japan.

Klaas Pruiksma & Frank Pfenning (2019): A Message-Passing Interpretation of Adjoint Logic. In
Francisco Martins & Dominic Orchard, editors: Proceedings: Programming Language Approaches
to Concurrency- and Communication-cEntric Software, Programming Language Approaches
to Concurrency- and Communication-cEntric Software (PLACES), Electronic Proceedings in
Theoretical Computer Science 291, European Joint Conferences on Theory and Practice of Software,
pages 60-79, doi: 10.4204/EPTCS.291.6, arXiv: 1904.01290v1 [cs.PL].

Davide Sangiorgi (2012): Introduction to Bisimulation and Coinduction, xii+247 pages. Cambridge
University Press, Cambridge, United Kingdom, doi: 10.1017/CB09780511777110.

Robert J. Simmons (2012): Substructural Logical Specifications, PhD thesis, xvi+300 pages.
Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Bernardo Toninho, Luis Caires & Frank Pfenning (2013): Higher-Order Processes, Functions, and
Sessions: A Monadic Integration. In Matthias Felleisen & Philippa Gardner, editors: Programming
Languages and Systems, 22nd European Symposium on Programming, ESOP 2013, Lecture Notes
in Computer Science 7792, Springer Berlin Heidelberg, Berlin, Heidelberg, pages 350-369, doi:
10.1007/978-3-642-37036-6_20.

Bernardo Toninho, Luis Caires & Frank Pfenning (2011): Dependent Session Types Via Intuitionistic
Linear Type Theory. In PPDP’11, 13th International ACM SIGPLAN Symposium on Principles
and Practices of Declarative Programming (PPDP’11), Association for Computing Machinery, Inc.,
New York, New York, pages 161-172, doi: 10.1145/2003476.2003499.

Bernardo Parente Coutinho Fernandes Toninho (2015): A Logical Foundation for Session-based
Concurrent Computation, PhD thesis, xviii+178 pages. Universidade Nova de Lisboa.

Philip Wadler (2014): Propositions As Sessions. Journal of Functional Programming 24(2-3),
pages 384-418, doi: 10.1017/s095679681400001x.

Correctly Implementing Synchronous Message Passing in the
Pi-Calculus By Concurrent Haskell’s M Vars

Manfred Schmidt-Schauf3 David Sabel
Goethe-University, Frankfurt am Main, Germany LMU, Munich, Germany
schauss@ki.cs.uni-frankfurt.de david.sabel@ifi.lmu.de *

Comparison of concurrent programming languages and correctness of program transformations in
concurrency are the focus of this research. As criterion we use contextual semantics adapted to
concurrency, where may- as well as should-convergence are observed. We investigate the relation
between the synchronous pi-calculus and a core language of Concurrent Haskell (CH). The contex-
tual semantics is on the one hand forgiving with respect to the details of the operational semantics,
and on the other hand implies strong requirements for the interplay between the processes after
translation. Our result is that CH embraces the synchronous pi-calculus. Our main task is to find
and prove correctness of encodings of pi-calculus channels by CH’s concurrency primitives, which
are MVars. They behave like (blocking) 1-place buffers modelling the shared-memory. The first
developed translation uses an extra private MVar for every communication. We also automatically
generate and check potentially correct translations that reuse the MVars where one MVar contains
the message and two additional M Vars for synchronization are used to model the synchronized com-
munication of a single channel in the pi-calculus. Our automated experimental results lead to the
conjecture that one additional MVar is insufficient.

1 Introduction

Our goals are the comparison of programming languages, correctness of transformations, compilation
and optimization of programs, in particular of concurrent programs. We already used the contextual
semantics of concurrent (functional) programming languages to effectively verify correctness of trans-
formations [16, 23, 24], also under the premise not to worsen the runtime [30]. We propose to test may-
and should-convergence in the contextual semantics, since, in particular, it rules out transformations that
transform an always successful process into a process that may run into an error, for example a deadlock.
There are also other notions of program equivalence in the literature, like bisimulation based program
equivalences [27], however, these tend to take also implementation specific behavior of the operational
semantics into account, whereas contextual equivalence abstracts from the details of the executions.

In [28, 31] we developed notions of correctness of translations w.r.t. contextual semantics, and in
[32] we applied them in the context of concurrency, but for quite similar source and target languages.
In this paper we translate a synchronous message passing model into a shared memory model, namely a
synchronous m-calculus into a core-language of Concurrent Haskell, called CH.

The contextual semantics of concurrent programming languages is a generalization of the extension-
ality principle of functions. The test for a program P is whether C[P] —i.e. P plugged into a program
context — successfully terminates (converges) or not, which usually means that the standard reduction se-
quence ends with a value. For a concurrent program P, we use two observations: may-convergence (P|)

*This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA2908/3-1

0. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in © M. Schmidt-Schaufl & D. Sabel
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020). This work is licensed under the
EPTCS 322, 2020, pp. 88-105, doi:10.4204/EPTCS.322.8 Creative Commons Attribution License.

M. Schmidt-Schaul3 & D. Sabel 89

— at least one execution path terminates successfully, and should-convergence' (Pl}) —every intermediate
state of a reduction sequence may-converges. For two processes P and Q, P <. Q holds iff for all con-
texts C[]: (C[P]L = C[Q]]), and P and Q are contextually equivalent, P ~, Q, iff P <. Q and Q <. P.
Showing equal expressivity of two (concurrent) calculi by a translation 7 requires that may- and should-
convergence make sense in each calculus. Important properties are convergence-equivalence (may- and
should-convergencies are preserved and reflected by the translation) and adequacy (see Definition 4.4),
which holds if 7(P) <. cn 7(Q) implies P <.z Q, for all m-calculus processes P, Q. Full-abstraction, i.e.
VP,Q: 1(P) <. 7(Q) iff P <. Q, only holds if the two calculi are more or less the same.

Source and Target Calculi. The well-known 7m-calculus [15, 14, 27] is a minimal model for mobile
and concurrent processes. Dataflow is expressed by passing messages between them via named chan-
nels, where messages are channel names. Processes and links between processes can be dynamically
created and removed which makes processes mobile. The interest in the m-calculus is not only due to
the fact that it is used and extended for various applications, like reasoning about cryptographic proto-
cols [1], applications in molecular biology [21], and distributed computing [13, 7]. The mw-calculus also
permits the study of intrinsic principles and semantics of concurrency and the inherent nondeterministic
behavior of mobile and communicating processes. We investigate a variant of the z-calculus which is the
synchronous 7-calculus with replication, but without sums, matching operators, or recursion. To observe
termination of a process, the calculus has a constant Stop which signals successful termination.

The calculus CH, a core language of Concurrent Haskell, is a process calculus where threads eval-
uate expressions from a lambda calculus extended by data constructors, case-expressions, recursive let-
expressions, and Haskell’s seq-operator. Also monadic operations (sequencing and creating threads) are
available. The shared memory is modelled by MVars (mutable variables) which are one-place buffers
that can be either filled or empty. The operation takeMVar tries to empty a filled MVar and blocks if
the MVar is already empty. The operation putMVar tries to fill an empty MVar and blocks if the M Var
is already filled. The calculus CH is a variant (or a subcalculus) of the calculus CHF [23, 24] which
extends Concurrent Haskell with futures. A technical advantage of this approach is that we can reuse
studies and results on the contextual semantics of CHF also for CH.

Details and Variations of the Translation. One main issue for a correct translation from 7-processes
to CH-programs is to encode the synchronous communication of the 7-calculus. The problem is that the
MVars in CH have an asynchronous behavior (communication has to be implemented in two steps: the
sender puts the message into an MVar, which is later taken by the receiver). To implement synchronous
communication, the weaker synchronisation property of MVars has to be exploited, where we must be
aware of the potential interferences of the executions of other translated communications on the same
channel. The task of finding such translations is reminiscent of the channel-encoding used in [20], but,
however, there an asynchronous channel is implemented while we look for synchronous communication.

We provide a translation 7y which uses a private M Var per channel and per communication to ensure
that no other process can interfere with the interaction. A similar idea was used in [12, 3] for keeping
channel names private in a different scenario (see [10, 9] for recent treatments of these encodings). We
prove that the translation 7y is correct. Since we are also interested in simpler translations, we looked
for correct translations with a fixed and static number of M Vars per channel in the 7-calculus. Since this

'An alternative observation is must-convergence (all execution paths terminate). The advantages of equivalence notions
based on may- and should-convergence are invariance under fairness restrictions, preservation of deadlock-freedom, and equiv-
alence of busy-wait and wait-until behavior (see e.g. [32]).

90 Implementing Synchronous Message-Passing by M Vars

task is too complex and error-prone for hand-crafting, we automated it by implementing a tool to rule out
incorrect translations. Thereby we fix the MVars used for every channel: a single MVar for exchanging
the channel-name and perhaps several additional MVars of unit type to perform checks whether the
message was sent or received (we call them check-MVars, they behave like binary semaphores that are
additionally blocking for signal-operations on an unlocked semaphore). The outcomes of our automated
search are: a further correct translation that uses two check-MVars, where one is used as a mutex between
all senders or receivers on one channel, and further correct translations using three additional MVars
where the filling and emptying operations for each M Var need not come from the same sender or receiver.
The experiments lead to the conjecture that there is no translation using only one check-M Var.

Results. Our novel result is convergence-equivalence and adequacy of the open translation 7 (Theo-
rems 4.5 and 4.8), translating the 7-calculus into CH. The comparison of the 7-calculus with a concurrent
programming language (here CH) using contextual semantics for may- and should-convergence in both
calculi exhibits that the -calculus is embeddable in CH where we can prove that the semantical proper-
ties of interest are kept. The adaptation of the adequacy and full abstraction notions (Definition 4.4) for
open processes is a helpful technical extension of our work in [28, 31].

We further define a general formalism for the representation of translations with global names and
analyze different classes of such translations using an automated tool. In particular, we show correctness
of two particular translations in Theorems 5.9 and 5.12. The discovered correct translations look quite
simple and their correctness seems to be quite intuitive. However, our experience is that searching for
correct translations is quite hard, since there are apparently correct (and simple) translations which were
wrong. Our automated tool helped us to rule out wrong translations and to find potentially correct ones.

Discussion of Related Work on Characterizing Encodings. There are five criteria for valid trans-
lations resp. encodings proposed and discussed in [11, 9], which mainly restrict the translations w.r.t.
language syntax and reduction semantics of the source and target language, called: compositionality,
name invariance, operational correspondence, divergence reflection and success sensitiveness. Compo-
sitionality and name invariance restrict the syntactic form of the translated processes; operational cor-
respondence means that the transitive closure of the reduction relation is transported by the translation,
modulo the syntactic equivalence; and divergence reflection and success sensitiveness are conditions on
the semantics.

In our approach, we define semantical congruence (and precongruence) relations on the source and
target language. Thus the first two conditions are not part of our notion of contextual equivalence,
however, may be used as restrictions in showing non-encodability. We also omit the third condition
and only use stronger variants of the fourth and fifth condition. Convergence equivalence as a tool for
finding out may-and should-convergence is our replacement of Gorla’s divergence reflection and success
sensitiveness. We do not define an infinite reduction sequence as an error, which has as nice consequence
that synchronization could be implemented by busy-wait techniques.

Further Related Work. Encodings of synchronous communication by asynchronous communication
using a private name mechanism are given in [12, 3] for (variants of the) m-calculus. Our idea of the
translation 7y similarly uses a private M Var to encode the channel based communication, but our setting
is different, since our target language is Concurrent Haskell. Encodings between 7-calculi with syn-
chronous and with asynchronous communication were, for instance, already considered in [12, 3, 19, 18]

2The tool and some output generated by the tool are available via https://gitlab.com/davidsabel/refute-pi.

M. Schmidt-Schaul3 & D. Sabel 91

P,Q € lgeop:i=Vx.P|Xy.P | x(y).P|!P|P1Q|0]|Stop P=0Q,ifP=4,0

C € Hsopc =[] [X(y).Clx(y).C[CIP[PIC|IC|vxC PI(QIR)=(PI1Q)IR

D e PCtxtz =[] |DIP|PID|vxD. vx.(P1Q) =PI vx.Q,if x ¢ FN(P)
Figure 1: Syntax of processes Ilstop, process contexts I;)IC 8 i f))
Istop,c and reduction contexts PCtxt.,r where x,y are names. Vx.Stop = Stop
Interaction rule: (ia) x(y).P 1 2.0 % P[z/y] 1 Q VX.VY.P = Vy.vx.P
Closure: If P=D[P'],P' % @/, D[Q'| = Q, and D € PCixt, PIOQ=0QIP

then P = Q IP=P|!P
Figure 2: Reduction rule and standard reduction in Ig¢ep Figure 3: Structural congruence in Isgop

where encodability results are obtained for the w-calculus without sums [12, 3], while in [18, 19] the
expressive power of synchronous and asynchronous communication in the 7-calculus with mixed sums
was compared and non-encodability is a main result. Translations of the z-calculus into programming
calculi and logical systems are given in [2], where a translation into a graph-rewriting calculus is given
and soundness and completeness w.r.t. the operational behavior is proved. The article [33] shows a trans-
lation and a proof that the w-calculus is exactly operationally represented. There are several works on
session types which are related to the m-calculus, e.g., [17] studies encodings from a session calculus into
PCF extended by concurrency and effects and also an embedding in the other direction, mapping PCF
extended by effects into a session calculus. The result is a (strong) operational correspondence between
the two calculi. In [4] an embedding of a session 7-calculus into ReactiveML is given and operational
correspondence between the two languages is shown. Encodings of CML-events in Concurrent Haskell
using MVars are published in [22, 5]. This approach is more high-level than ours (since it considers
events, while we focus the plain 7-calculus). In [5] correctness of a distributed protocol for selective-
communication w.r.t. an excerpt of CML is shown and a correct implementation of the protocol in the
m-calculus is given. The protocol is implemented in Concurrent-Haskell, but no correctness of this part
is shown, since [5] focuses to show that CML-events are implementable in languages with first-order
message-passing which is different from our focus (translating the z-calculus into CH).

Outline. We introduce the source and target calculi in Sections 2 and 3, the translation using private
names in Section 4, and in Section 5 we treat translations with global names. We conclude and discuss
future work in Section 6. Due to space constraints most proofs are in the technical report [29].

2 The n-Calculus with Stop

We explain the synchronous m-calculus [15, 14, 27] without sums, with replication, extended with a
constant Stop [25], that signals successful termination. The 7m-calculus with Stop and the m-calculus
without Stop but with so-called barbed convergences [26] are equivalent w.r.t. contextual semantics
[29]. Thus, adding the constant Stop is not essential, but our arguments are easier to explain with Stop.

Definition 2.1 (Calculus Ilscop). Let A~ be a countable set of (channel) names. The syntax of processes
is shown in Fig. 1. Name restriction vx.P restricts the scope of name x to process P, P | Q is the parallel
composition of P and Q, the process Xy.P waits on channel x to output y over channel x and then becoming
P, the process x(y).P waits on channel x to receive input, after receiving the input z, the process turns

92 Implementing Synchronous Message-Passing by M Vars

into P[z/y] (where P|z/y] is the substitution of all free occurrences of name y by name z in process P), the
process P is the replication of process P, i.e. it behaves like an infinite parallel combination of process
P with itself, the process 0 is the silent process, and Stop is a process constant that signals success. We
sometimes write x(y) instead of x(y).0 as well as Xy instead of Xy.0.

Free names FN(P), bound names BN(P), and o-equivalence =g in Ilseop are as usual in the -
calculus. A process P is closed if FN(P) = 0. Let Hgeop e the closed processes in sgop. Structural
congruence = is the least congruence satisfying the laws shown in Fig. 3. Process contexts Ilg¢op c and
reduction contexts PCtxty are defined in Fig. 1. Let C[P] be the substitution of the hole [-] in C by P. The
reduction rule < performs interaction and standard reduction = is its closure w.r.t. reduction contexts
and = (see Fig. 2). Let I denote n “L-reductions and =5 denotes the reflexive-transitive closure of
5. A process P € s¢op is successful, if P = D[Stop| for some D € PCtxty.

Remark 2.2. We do not include “new” laws for structural congruences on the constant Stop, like
Stop | Stop equals Stop, since this would require to re-develop a lot of theory known from the m-
calculus without Stop. In our view, Stop is a mechanism for a notion of success that can be easily
replaced by other similar notions (e.g. observing an open input or output as in barbed testing). However,
it is easy to prove those equations on the semantic level. (i.e. w.r.t. ~ as defined below in Definition 2.5).

As an example for a reduction sequence, consider sending name y over channel x and then sending
name u over channel y: (x(z).zu.0 | Fy.y(x).0) 2 (zu.0[y/z] | y(x).0) = (y(x).0 1 5u.0) 2% (010) =0.

For the semantics of processes, we observe whether standard reductions successfully terminate or
not. Since reduction is nondeterministic, we test whether there exists a successful reduction sequence
(may-convergence), and we test whether all reduction possibilities are successful (should-convergence).
Definition 2.3. Let P be a llsiop-process. We say process P is may-convergent and write P, if and only
if there is a successful process P’ with P I P We say P is should-convergent and write Pl} if and only
if forall P': P iy implies P'|. If P is not may-convergent, then P we say is must-divergent (written
P1Y). If P is not should-convergent, then we say it is may-divergent (written P1).

Example 2.4. The process P := vx,y.(x(z).0 | Xy.Stop) is may-convergent (P)) and should-convergent
(Pl}), since P25 0 | Stop is the only s-sequence for P. The process P’ := vx,y.(x(z).0 | X.0) is may-
and must-divergent (i.e. Pt and P'1), since P' <5 0 is the only “-sequence for P'.

For P" := vx,y.(xy.0 | x(z).Stop | x(z).0), we have P" 5 vx,y.(Stop | x(z).0) and P" % vx,y.x(z).Stop.
The first result is successful, and the second result is not successful. Hence, for P" we have P"| and P"1.

Should-convergence implies may-convergence, and must-divergence implies may-divergence.
Definition 2.5. For P,Q € Issop and observation & € {1,{,1,1}, we define P <¢ Q iff P§ — Q8.
The &-contextual preorders <. and then & -contextual equivalences ~ ¢ are defined as

P Sc,é 0 lﬁ[vc € ITStop,C : C[P} S:ﬁ C[Q] and P ~c,& o lﬁcP Sc,é ONQ Sc,é P

Contextual equivalence of Ilstop-processes is defined as P~ Q iff P ~. | QAP ~ Q.
Example 2.6. For Q := vx,y.(Xy.0|x(z).Stop | x(z).0), we have Stop ~. | Q (which can be proved using
the methods in [25]), but Stop . Q, since Stopll and Q1 and thus Stop #.y Q. Note that <. = <,
holds in Ilgyep, since there is a context C such that for all processes P: C [P} <= P| (see [25]).
For instance, the equivalence 0 ~. | Q does not hold, since |01} and 'Q\} and thus the context C =![']
distinguishes 0 and Q w.r.t. should-convergence.

Contextual preorder and equivalence are (pre)-congruences. Contextual preorder remains unchanged
if observation is restricted to closing contexts:
Lemma 2.7. Let & € {], 1,4, 11}, P,Q be Msyop-processes. Then P <.¢ Q if, and only if VC € Tstopc
such that C[P] and C[Q] are closed: C[P] <¢ C[Q].

M. Schmidt-Schaul3 & D. Sabel 93

P Proccy:=Pi | P,) | <e|vx.P|xme|xm— |x=¢
e € Expreyi=x|Ax.e|(e1e2) | cep...equ) | letrec xj=ey,...,x,=e, ine | m|seqe; e;
| caser eof (cr,1 X1 -+ - Xur(e,) =>€1) - - (17 X1 -- Xar(ery)) ->e|r|)
m € MExprey :=returne | e »=¢' | forkIOe | takeMVare | newMVare | putMVaree’
t€ Dpey =10t (Tt ...t,) | MVart|t; > b
D e PCixtey =[] | DIP|PID|vx.D E € ECtxtcy::=[] | (Ee) | (seqEe) | (caseEof alts)
M € MCixtepy =[] | M>»=e F € FCtxtcy ::=E | (takeMVarE) | (putMVarEe)

Figure 4: Syntax of processes, expressions, types, and context classes of CH

Functional Evaluation:

(cpce) <=M[Fx]]lx=e <M[Fle]]lx=e

(mkbinds) < M][F[letrecx=ey,...,x,=e,ine]] 2> vx;...x,.(=M[F[e]] | xi=e; | ... | x,=e¢,)
ety =MIF[((Axer) e2)]) 2 <M[Flerfes/x]]

(case) <=M][F[caser (ce;...e,) of ...(cyi...yp=>e)...]] = <=M[Fle[ei /y1,-..,en/ya]]]
(seq) <=M][F[(seqve)]] &> <M]Fle]] where v is a functional value

Monadic Computations:

(lunit) <=M][return e; »= e;] -5 <=Mle; e/]

(tmvar) < M][takeMVar x] | xme 2 <=M][return e] | xm—

(pmvar) < M][putMVar x e] | xm— 25 <=MJreturn ()] | xme

(nmvar) < M][newMVar e] -5 vx.(<=M]return x] | xme)

(fork) <=M][forkI0 e] 7 <M][return ()] | <=e

Closure w.r.t. D-contexts and =: If P, = D[P[], P, = D[P;], and P| LU Pj then P, 4 p.

Capture avoidance: We assume capture avoiding reduction for all reductions.

Figure 5: Standard reduction rules of CH (call-by-name-version)

3 The Process Calculus CH

The calculus CH (a variant of the language CHF', [23, 24]) models a core language of Concurrent Haskell
[20]. We assume a partitioned set of data constructors ¢ where each family represents a type 7. The
data constructors of type T are cr1,... ,CT|T| where each cr; has an arity ar(cr;) > 0. We assume that
there is a type () with data constructor (), a type Bool with constructors True, False, a type List with
constructors Nil and : (written infix), and a type Pair with a constructor (,) written (a,b).

Processes P € Proccy in CH have expressions e € Exprqy as subterms. See Fig. 4 where u,w,x,y,z
are variables from an infinite set Var. Processes are formed by parallel composition “ | 7. The v-binder
restricts the scope of a variable. A concurrent thread <= e evaluates e. In a process there is (at most one)

unique distinguished thread, called main thread, written as <==¢. MVars are mutable variables which
are empty or filled. A thread blocks if it wants to fill a filled MVar xme or empty an empty MVar xm —.
Here x is called the name of the MVar. Bindings x = e model the global heap, of shared expressions,
where x is called a binding variable. If x is a name of an MVar or a binding variable, then x is called an
introduced variable. In Q | vx.P the scope of x is P. A process is well-formed, if all introduced variables

. . o e . . main
are pairwise distinct and there exists at most one main thread <—=ce.
Expressions Exprqy consist of functional and monadic expressions MExpry. Functional expres-

94 Implementing Synchronous Message-Passing by M Vars

sions are variables, abstractions Ax.e, applications (e; ey), seq-expressions (seq e e2), constructor
applications (c ey ... ey(s)), letrec-expressions (letrec x| = ej,...,X, = e, in e), and caser-
expressions for every type T. We abbreviate case-expressions as caser e of alts where alts are the
case-alternatives such that there is exactly one alternative (cz; x; .. Xar(er) = e;) for every constructor
cr,; of type T', where x1, ..., Xy (¢, (occurring in the pattern crj X1 ... Xy(c,,)) are pairwise distinct vari-
ables that become bound with scope ¢;. We often omit the type index 7" in caser. In letrec x| =ey,...,
Xn = e, in e the variables xp,...,x, are pairwise distinct and the bindings x; = e; are recursive, i.e. the
scope of x; is ey, ..., e, and e. Monadic operators newMVar, takeMVar, and putMVar are used to create,
to empty and to fill M Vars, the “bind”-operator >>= implements sequential composition of IO-operations,
the forkI0-operator performs thread creation, and return lifts expressions into the monad.

Monadic values are newMVar e, takeMVare, putMVare; e;, returne, e = ey, or forkIQe. Func-
tional values are abstractions and constructor applications. A value is a functional or a monadic value.

Abstractions, letrec-expressions, case-alternatives, and vx.P introduce variable binders. This in-
duces bound and free variables (dentoted by FV(-)), a-renaming, and a-equivalence =,. If FV(P) =0,
then we call process P closed. We assume the distinct variable convention: free variables are distinct
from bound variables, and bound variables are pairwise distinct. We assume that ¢¢-renaming is applied
to obey this convention. Structural congruence = of CH-processes is the least congruence satisfying the
laws LI P, =P | P, (PLIP) I Ps=P | (P | P3), vx;.vx2.P = vx.Vx).P, P = P, if P, =¢ P», and
(Vx.Pl) | P = Vx.(P1 | Pz) if x Q FV(Pz).

We assume expressions and processes to be well-typed w.r.t. a monomorphic type system: the typing
rules are standard (they can be found in [29]). The syntax of types is in Fig. 4 where (I0 t) is the type of
a monadic action with return type t, (MVar t) is the type of an MVar with content type t, and t; — t; is a
function type. We treat constructors like overloaded constants to use them in a polymorphic way.

We introduce a call-by-name small-step reduction for CH. This operational semantics can be shown
to be equivalent to a call-by-need semantics (see [23] for the calculus CHF). However, the equivalence
of the reduction strategies is not important for this paper. That is why we do not include it.

In CH, a context is a process or an expression with a (typed) hole [-]. We introduce several classes of
contexts in Fig. 4. They are used by the reduction rules.

Definition 3.1. The standard reduction ~» is defined by the rules and the closure in Fig. 5. It is only
permitted for well-formed processes which are not successful.

Functional evaluation includes B-reduction (beta), copying shared bindings into needed positions
(cpce), evaluating case- and seg-expressions (case) and (seq), and moving letrec-bindings into the
global bindings (mkbinds). For monadic computations, rule (lunit) implements the monadic evaluation.
Rules (nmvar), (tmvar), and (pmvar) handle the MVar creation and access. A takeMVar-operation can
only be performed on a filled M Var, and a putMVar-operation needs an empty MVar. Rule (fork) spawns
a new thread. A concurrent thread of the form <=return e is terminated (where e is of type ()).

Example 3.2. The process Zain) ewMVar ()>>=(Ay.forkIO(takeMVary))>»=A_.putMVary() creates
a filled MVar, that is emptied by a spawned thread, and then again filled by the main thread.

We say that a CH-process P is successful if P = vx .. xn(& returne | P) and if P is well-
formed. This captures Haskell’s behavior that termination of the main-thread terminates all threads.

Definition 3.3. Ler P be a CH-process. Then P may-converges (denoted as Pl), iff P is well-formed and
3P : P 5 P! such that P' is successful. If P does not hold, then P must-diverges and we write PA.
SFy%

Process P should-converges (written as P\}), iff P is well-formed and VP' : P — P' = P'|. If P is not
should-convergent, then we say P may-diverges written as P{.

M. Schmidt-Schaul3 & D. Sabel 95

o(P) = =220 4o {stop <— newMVar ();forkIO 7(P);putMVar stop ()}
(Xy.P) =do {checkx - newMVar ();putMVar (unchan x) (y,checkx);putMVar checkx ();T(P)}
(x(y).P)=do {(y,checkx) < takeMVar (unchan x);takeMVar checkx;T(P)}}
(P1Q) =do {forkI0 7(Q);t(P)}
7(vx.P) =do{chanx + newEmptyMVar;letrec x = Chanchanx in 7(P)}
(
(
(

Q

Q

0) =return ()
Stop) =takeMVar stop
IP) =letrec f =do {forkIO t(P);f} in f

A q

Figure 6: Translations 7y and T

Definition 3.4. Contextual approximation <. and equivalence ~. on CH-processes are defined as <., :=

C¢ﬁ<cu and ~. .= <.N >, where P| < <cl b iff VD € PCtxtcy : D[P]]\L S D[PQH, and P; < <cl
P, iff VD € PCtxtcy : D[P [{} = D[P|I}. For CH-expressions, let e; <. e; iff for all process-contexts
C with a hole at expression position: Cle;| <.Cles] and ey ~c ez iff e1 <, e2 Ney <, ey.

As an example, we consider the processes

P = vm.(<EZE takeMVar m | < takeMVar m | mm())
P, = & return ()
Py = L8 Jetrecx=xinx

Process P; is may-convergent and may-divergent (and thus not should-convergent), since either the main-
thread succeeds in emptying the MVar m, or (if the other threads empties the MVar m) the main-thread
is blocked forever. The process P, is sucessful. The process P; is must-divergent. The equivalence
P; ~ | P, holds, but P . P, since P, is should-convergent and thus P; 4., P>. As a further example, it
is easy to verify that P; ~. P; holds, since both processes are not should-convergent and a surrounding
context cannot change this. However, P; /4. | P, since Ps{.

Contextual approximation and equivalence are (pre)-congruences. The following equivalence will
help to prove properties of our translation.

Lemma 3.5. The relations in Definition 3.4 are unchanged, if we add closedness: for & € {],|}, let
Py < ¢ P, iff VD € PCtxtcy such that D[P;],D[Py] are closed: D[P\]§ = D[P,]&.

4 The Translation 7y with Private MVars

We present a translation 7y that encodes Ilg¢op-processes as CH-programs. It establishes correct syn-
chronous communication by using a private M Var, which is created by the sender and its name is sent to
the receiver. The receiver uses it to acknowledge that the message was received. Since only the sender
and the receiver know this MVar, no other thread can interfere the communication.The approach has
similarities with Boudol’s translation [3] from the 7-calculus into an asynchronous one, where a private
channel name of the m-calculus was used to guarantee safe communication between sender and receiver.

For translating 7-calculus channels into CH, we use a recursive data type Channel (with constructor
Chan), which is defined in Haskell-syntax as

data Channel = Chan (MVar (Channel, (MVar ())))

96 Implementing Synchronous Message-Passing by M Vars

We abbreviate (casechan € of (Chan m -> m)) as (unchan e).
We use a > b for a>=(A_.b) and also use Haskell’s do-notation with the following meaning:

do {x«+ej;ea} =e; »= Ax.(do {ez2}) do {e1;e2} = e1> (do {ez})
do {(x,y) < er;e2} = e1>>= Az.casepair z 0F (x,y)—>(do {e2}) do {e} =e

As a further abbreviation, we write y <— newEmptyMVar inside a do-block to abbreviate the sequence
y <— newMVar | ;takeMVar y, where L is a must-divergent expression. Our translation uses one M Var
per channel which contains a pair consisting of the (translated) name of the channel and a further M Var
used for the synchronization, which is private, i.e. only the sender and the receiver know it. Privacy is
established by the sender: it creates a new MVar for every send operation. Message y is sent over channel
x by sending a pair (y,check) where check is an MVar containing (). The receiver waits for a message
(y,check) by the sender. After sending the message, the sender waits until check is emptied, and the
receiver acknowledges by emptying the MVar check?

Definition 4.1. We define the translation Ty and its inner translation T from the Ug¢op-calculus into the
CH-calculus in Fig. 6. For contexts, the translations are the same where the context hole is treated like
a constant and translated as ©([-]) = [].

The translation 7y generates a main-thread and an MVar stop. The main thread is then waiting
for the MVar stop to be emptied. The inner translation 7 translates the constructs and constants of
the Ilg¢op-calculus into CH-expressions. Except for the main-thread (and using keyword let instead of
letrec), the translation 7 generates a valid Concurrent Haskell-program, i.e. if we write 7o(P) = L2,
asmain = e, we can execute the translation in the Haskell-interpreter.

Example 4.2. We consider the Ilgyop-process P := vx,y1,y2,2.(x(y1).0 | x(y2).Stop | X2.0) which is
may-convergent and may-divergent: depending on which receiver communicates with the sender, the re-
sult is the successful process vx,y1.(x(y1).0 | Stop) or the must-divergent process vVx,y,.(x(y2).Stop).
The CH-process Ty(P) reduces after several steps to the process

vstop,chanx,chanyy,chany,,chanz,checkx,x,y1,y2,z.(
chanxm (z,checkx) | chany; m — | chany, m — | chanzm — | checkxm() | stopm ()

| x=Chan chanx | z=Chan chanz | yy=Chan chany; | y=Chanchany, | <= putMVar stop ()
| <do {putMVar checkx ();return ()}

| <do {(y1,checkx) < takeMVar chanx;takeMVar checkx;return ()}

| <=do {(y2,checkx) < takeMVar chanx;takeMVar checkx;takeMVar stop})

Now the first thread (which is the translation of sender Xz.0) is blocked, since it tries to fill the full MVar
checkx. The second thread (the encoding of x(y1).0) and the third thread (the encoding of x(y,).Stop)
race for emptying the MVar chanx. If the second thread wins, then it will fill the MVar checkx which is
then emptied by the first thread, and all other threads are blocked forever. If the third thread wins, then it
will fill the MVar checkx which is then emptied by the first thread, and then the second thread will empty
the MVar stop. This allows the main-thread to fill it, resulting in a successful process.

For the following definition of 7 being compositional, adequate, or fully abstract, we adopt the view

that 7 is a translation from Ilg¢.p into the CH-language with a special initial evaluation context C7,,.

3 A variant of the translation would be to change the roles for the acknowledgement such that an empty MVar is created,
which is filled by the receiver and emptied by the sender. The reasoning on the correctness of the translation is very similar to
the one presented here.

M. Schmidt-Schaul3 & D. Sabel 97

Definition 4.3. Let CT .= vstop.£2=do {stop < newMVar ();forkIO0 [];putMVar stop ()}. Variants
0,40 of may- and should-convergence of expressions e within the context C},, in CH are defined as
elo iff Chileld and el iff CL,le]{. The relation ~ y, is defined by ~ z'=<c g, N >c r,, Where e; <. €2
iffVC : if FV(Cle1],Clea]) C {stop},then Clei]}y = Clez|ly and Cle1[{ly = Clea]{,.

Since <. cp is a subset of <. 7, we often can use the more general relations for reasoning.

Definition 4.4. Let Ilsop c be the contexts of Ilstop. We define the following properties for Ty and T (see
[31] for a general framework of properties of translations under observational semantics). For open
processes P,P', we say that translation T is

convergence-equivalent iff for all P € Ilg¢op: Pl <= T(P)lyand P} < t(P)|,,

compositional upto { |, o} iff for all P € Ngyop, all C € Msgopc, and all § € {1, o} :
if FV(CIP]) C {stop}, then T(CIP)E —— (C)[z(P)]E,

adequate iff for all processes P,P' € lgyop: T(P) <¢q T(P') = P <. P/, and

fully abstract iff for all processes P,P' € Igyop: P <. P' <= T(P) <1, T(P').

Convergence-equivalence of translation 7y for may- and should-convergence holds. For readability
the proof is omitted, but given in the technical report [29], where we show:

Theorem 4.5. Let P € Ilgop be closed. Then T is convergence-equivalent for | and |}, i.e. P| is
equivalent to To(P)|. and Pl is equivalent to t(P){l. This also shows convergence-equivalence of T
w.rt. 1o, g i.e. P} <= 1(P)ly and P} <= t(P)l,.

We show that the translation is adequate (see Theorem 4.8 below). The interpretation of this result is
that the m-calculus with the concurrent semantics is semantically represented within CH. This result is
on a more abstract level, since it is based on the property whether the programs (in all contexts) produce
values or may run into failure, or get stuck; or not. Since the 7-calculus does not have a notion of values,
also the translated processes cannot be compared w.r.t. values other than a single form of value.

The translation Ty is not fully abstract (see Theorem 4.9 below), which is rather natural, since it only
means that it is mapped into a subset of the CH-expressions and that this is a proper subset w.r.t. the
semantics. For proving both theorems, we first use a simple form of a context lemma:

Lemma 4.6. Let e,e¢’ be CH-expressions, where the only free variable in e, e’ is stop.
Then C,,le] <. C},,[€'] holds, if and only if C},,[e]l. = Cj,[¢'l} and Cj,[e]} = C7,,[e']V.
Proposition 4.7. The translation T is compositional upto {1, }-

We show that the translation 7 transports IIs¢op-processes into CH, such that adequacy holds. Thus
the translated processes also correctly mimic the behavior of the original Ilg¢.p-processes when plugged
into contexts. If the translated open processes cannot be distinguished by <. 7, i.e. there is no test that
detects a difference w.r.t. may- and should-convergence, then the original processes are equivalent in the
m-calculus. However, this open translation is not fully abstract, which means that there are CH-contexts
(not in the image of the translation) that can see and exploit too much of the details of the translation.

Theorem 4.8. The translation 7T is adequate.

Proof. We prove the adequacy for the preorder <. 7, for ~. ¢, and ~. the claim follows by symmetry. Let
P, P’ be Ig¢qp-processes, such that T(P) <., T(P'). We show that P <. P'. We use Lemma 3.5 to restrict
considerations to closed C[P],C[P’] below. Let C be a context in Ils¢op, such that C[P],C[P'] are closed
and C[P]|. Then 1y(C[P]) = C},[T(C[P])]. Closed convergence-equivalence implies C7,,[t(C[P])]{. By
Proposition 4.7. we have C7,,[7(C)[t(P)]]{. Now T(P) <., T(P') implies C},[t(C)[t(P")]]{, which is
the same as C},

[T(C[P'])]} using Proposition 4.7. Closed convergence-equivalence implies C[P’']}. The
same arguments hold for |} instead of |. In summary, we obtain P <. P’. O

98 Implementing Synchronous Message-Passing by M Vars

Theorem 4.9. The translation 7 is not fully abstract, but it is fully abstract on closed processes, i.e. for
closed processes Py, P € Iggop, we have Py <. P, <= T(P) <¢ 1, T(Ps).

Proof. The first part holds, since an open translation can be closed by a context without initializing
the v-bound MVars. For P = x(y).Stop | x(z).Stop, we have P ~. Stop but 7(P) 7.0 T(Stop): let
D be a context that does not initialize the MVars for x (as the translation does). Then D[t(P)]{},, but
D[t(Stop)]{y. Restricted to closed processes, full abstraction holds: P, <. P, = t(P1) <., T(P2)
follows from Lemma 4.6, since 7y produces closed processes in context C},,. Theorem 4.8 implies the
other direction. O

5 Translations with Global MVars

In this section we investigate translations that do not use private M Vars, but use a fixed number of global
MVars. We first motivate this investigation. The translation 7 is quite complex and thus we want to figure
out whether there are simpler translations. A further reason is that 7 is not optimal, since it generates one
MVar per communication which can be garbage-collected after the communication, however, generation
and garbage collection require resources and thus the translation T may be inefficient in practice.

To systematically search for small global translations we implemented an automated tool. It searches
for translations with global MVars (abstracting from a lot of other aspects of the translation) and tries to
refute the correctness. As we show, most of the small translations are shown as incorrect by our tool.
Analyzing correctness of the remaining translations can then be done by hand.

We only consider the aspect of how to encode the synchronous message passing of the m-calculus,
the other aspects (encoding parallel composition, replication and the Stop-constant) are not discussed
and we assume that they are encoded as before (as the translation 7 did). We also keep the main idea
to translate a channel of the 7m-calculus into CH by representing it as an object of a user-defined data
type Channel that consists of an MVar for transferring the message (which again is a Channel), and
additional MVars for implementing a correct synchronization mechanism. For the translation 7, we used
a private M Var (created by the sender, and transferred together with the message). Now we investigate
translations where this mechanism is replaced by one or several public MVars, which are created once
together with the channel object. To restrict the search space for translations, only the synchronization
mechanism of MVars (by emptying and filling them) is used, but we forbid to transfer specific data (like
numbers etc.). Hence, we restrict these M Vars (which we call check-MVars) to be of type MVar (). Such
M Vars are comparable to binary semaphores, where filling and emptying correspond to operations signal
and wait. In summary, we analyze translations of m-calculus channels into a CH-data type Channel
defined in Haskell-syntax as

data Channel =Chan (MVar Channel) (MVar ())...(MVar ())

A m-calculus channel x is represented as a CH-binding x = Chan content check;, ... check, where
content, checky,...,check, are appropriately initialized (i.e. empty) MVars. The MVars are public (or
global), since all processes which know x have access to the components of the channel. After fixing
this representation of a 7-channel in CH, the task is to translate the input- and output-actions x(y) and
Xz into CH-programs such that the interaction reduction is performed correctly and synchronously. We
call the translation of x(y), the receiver (program) and the translation of Xz the sender (program). As a
simplification, we restrict the allowed operations of the sender and receiver allowing only the operations:

M. Schmidt-Schaul3 & D. Sabel 99

main

¢o.r(P) =<=do {stop < newMVar ();forkI0 ¢r(P);putMVar stop ()}
xy.P) =do {T> ;:¢r(P)}

send ’

(

¢T (x(y) °) = dO {Treg)ewe’ (PT()}

¢r(P 1 Q) =do {forkI0 ¢r(Q);¢r(P)}

¢r(vx.P) =do{contx < newEmptyMVar;checkx| < newEmptyMVar;...;checkx, - newEmptyMVar;
letrec x = Chancontx checkx; ...checkx,in ¢r(P)}

¢r(0) =return ()
¢r(Stop) =takeMVar stop
¢or(!P) =letrec f =do {forkIO0 ¢r(P);f} in f

Figure 7: Induced translations ¢7 and @o 7 where T = (Tend, Trecieve) Uses n check-M Vars

putS: The sender puts its message into the contents-MVar of the channel. It represents the expression
casechamne1 X 0f (Chan caj ... a,—> putMVar ¢ z > ¢) in CH where e is the remaining program
of the sender. The operation occurs exactly once in the sender program. We write it as putS, z, or
as putS, if x and z are clear.

takeS: The receiver takes the message from the contents-MVar of channel x and replaces name y by
the received name in the subsequent program. The operation occurs exactly once in the receiver
program. We write it as takeS, y, or as takeS, if x and y are clear. It represents the CH-expression
casechamne1 X 0f (Chancay ... a,—> takeMVar ¢ = Ay.e) where e is the remaining program of
the receiver. In do-notation, we write do {y <— takeS,;e} to abbreviate the above CH-expression.

putC and takeC: The sender and the receiver may synchronize on a check-MVar check; by putting ()
into it or by emptying the MVar. These operations are written as putC’ and takeC, or also as
putC’, takeC' if the name x is clear. We write putC and takeC if there is only one check-M Var.
Let e be the remaining program of the sender or receiver. Then putC’. represents the CH-expression
Casechanne1 X of (Chan c a; ... a,-> putMVar a; () » e) and takeC! represents the expression
casechamne1 X of (Chancaj ... a,—> takeMVar a; >» e).

We restrict our search for translations to the case that the sender and the receiver programs are
sequences of the above operations, assuming that they are independent of the channel name x. With this
restriction, we can abstractly write the translation of the sender and the receiver as a pair of sequences,
where only put$, takeS,putC’ and takeC' operations are used. We make some more restrictions:

Definition 5.1. Let n > 0 be a number of check-MVars. A standard global synchronized-to-buffer transla-
tion (or gstb-translation) is a pair (Tsepd, Treceive) Of a send-sequence Tye,q and a receive-sequence Troceive
consisting of putS, takeS, putC’ and takeC' operations, where the send-sequence contains put$ once,
the receive-sequence contains takeS once, and for every putCi -action in (Tyend, Treceive), there is also a
takeCi-action in (Tyend Treceive)- W.l.0.g., we assume that in the send-sequence the indices i are ascend-
ing. Le. if putC’ or takeC' is before putC/ or takeC/, then i < j holds.

We often say translation instead of gstb-translation, if this is clear from the context.

Definition 5.2. Let T = (Tsend, Treceive) be a gstb-translation. We write TY o for the program Tsend instan-
tiated for Xy, i.e. putS is putS, y, and all other operations are indexed with x. We write T, mcewe for the
program Tyeceive instantiated for x(y), i.e. takeS is takeS, y, and all other operations are indexed with
x. The induced translations ¢ 7 and @1 of (Tsena, Treceive) are defined in Fig. 7.

100 Implementing Synchronous Message-Passing by M Vars

The induced translations are defined similar to the translations 7y and 7, where the differences are the
representations of the channel. The translation of vx, x(y), and Xy is different, but the other cases remain

the same. Since ¢y 7(P) = C},,[¢r (P)] and by the same arguments as in Theorem 4.8, we have:

Proposition 5.3. If ¢r is closed convergence-equivalent, then ¢r is adequate.

An execution of a translation (Tyeng, Treceive) for name x is the simulation of the abstract program,
i.e. a program that starts with empty MVars x, x1,...,x,, and is an interleaved sequence of actions from
the send and receive-sequence Ty.,s and Tjeceive, TESpECtively.

To speak about the translations we make further classifications: We say that a translation allows
multiple uses, if a check-MVar is used more than once, i.e. the sender or receiver may contain takeC! or
putC’ more than once for the same i. A translation has the interprocess check restriction, if for every i:
takeC’ and putCi do not occur both in T;,,4, and also not both in Tyeceive-

Definition 5.4. A translation T = (Tend, Treceive) according to Definition 5.1 is
e executable if there is a deadlock free execution of T;
e communicating, if Ty..q contains at least one takeC'-action;

e overlap-free if for a fixed name x, starting with empty MVars, every interleaved (concurrent)
execution of (Tsend, Treceive) cannot be disturbed by starting another execution of Tyenq and/or
Treceive- More formally, let ((s15...;5:);(r15....r;)) and ((sy5...381);(rj5....r%;)) be two copies of
(Tyend, Treceive) for a fixed name x. We call a command ay. from one of the four sequences, an
a-action for a € {s,s',r,r'}. The translation T is overlap-free if every execution of the four se-
quences has the property that it can be split into a prefix and a suffix (called parts in the following)
such that one of the following properties holds

1. One part contains only s- and r-actions, and the other part contains only s'- and r'-actions.

2. One part contains only s- and r'-actions and the other part contains only s'- and r-actions.

We implemented a tool to enumerate translations and to test whether each translation preserves and
reflects may- and should-convergence for a (given) finite set of processes. Hence, our tool can refute the
correctness of translations, but it can also output (usually small) sets of translations which are not refuted
and which are promising candidates for correct translations. The above mentioned parallel execution of
Tienag and Treceive 1S not sufficient to refute most of the translations, since it corresponds to the evaluation
of the m-program vx.(x(y) | X¥z) (which is must-divergent). Thus, we apply the translation to a subset
of m-processes, which we view as critical and for which we can automatically decide may- and should-
convergence (before and after the translation). We consider only 7-programs of the form (vxp,...,x,.P)
where P contains only 0, Stop, parallel composition, and input- and output-prefixes. These programs
are replication free and the v-binders are on the top, and hence terminate. In the following we omit the
v-binders, but always mean them to be present. We also implemented techniques to generates all such
programs until a bound on the size of the program is reached.

Our simulation tool* can execute all possible evaluations of those 7-processes and — since all eval-
uation paths are finite — the tool can check for may- and should-convergence of the m-program. For
the translated program, we do not generate a full CH-program, but generate a sequence of sequences
of takeS,, putS,, takeCl,putC. z and Stop-operations by applying the translation to all action prefixes
in the 7-program and by encoding Stop as Stop, 0 into an empty sequence. We get a sequence of se-
quences, since we have several threads and each thread is represented by one sequence. For executing
the translated program, we simulate the global store (of MVars) and execute all possible interleavings

4 Available via https://gitlab.com/davidsabel/refute-pi.

M. Schmidt-Schaul3 & D. Sabel 101

where we check for may- and should-convergence by looking whether the Stop eventually occurs at the
beginning of the sequence. This simulates the behavior of the real CH-program in a controllable manner.
With the encoding of the sender- and receiver program and a 7-calculus process P we

1. translate P with the encodings in the sequence of sequences consisting of takeS,, putS,, takeC!,
putC; z and Stop-operations;

2. simulate the execution on all interleavings;

3. test may- and should convergence of the original m-program P as well as the encoded program
(w.r.t. the simulation);

4. compare the convergence before and after the translation. If there is a difference in the convergence
behavior, then P is a counter-example for the correctness of the encodings.

Example 5.5. Ler us consider the gstb-translation (Tgeng, Treceive) = ([takeC,putS], [putC, takes]) and

the m-process P = vx,y,z,w(xy.x(z).Stop | x(w).0). Our tool recognizes that P1 and P{} holds, since P

reduces to the must-divergent process Vx,z.(x(z).Stop) and there are no other reduction possibilities.
Applying (Tsend, Treceive) to P yields the abstract program

q := [[takeCy,putSs, y,putC,,takeS, z,Stop|, [putC,, takeS, w]].
For g, our tool inspects all executions. Among them there is the sequence
putC,;takeC,;putS, y;putC,;takeS, z;Stop

which can be executed ending in Stop. Thus q is may-convergent, and thus the process P is a counter-
example that refutes the correctness of the translation.

The case that there is no check-M Var leads to one possible translation ([putS], [takeS|) which means
that Xz is translated into putS, y and x(y) is translated into takeS, y. This translation is not correct,
since for instance the m-process ¥z.x(y).Stop is neither may- nor should-convergent, but the translation
(written as an abstract program) is [[putS, z,takeS, y,Stop|]. Le., it consists of one process which
is may- and should-convergent (since putS, z;takeS, y;Stop is the only evaluation sequence and its
execution ends in Stop). Note that the translation into CH will generate two threads: the main threads
that will wait until the M Var stop is filled, and a concurrent thread that will do the above operations.

5.1 Translations with Interprocess Check Restriction

We consider translations with the interprocess check restriction (each takeC’ and putC’ must be dis-
tributed between the sender and the receiver). There are n!-2"- (n+ 1)? different translations (for n
check-MVars). For a single check-MVar, all 8 translations are rejected by our tool, Table 1 shows the
translations and the obtained counter examples. For 2 check-MVars, our tool refutes all 72 translations.
Compared to Table 1, there are two further w-programs used as counterexample. However, also the
programs Xy.Stop | x(y) and Xy.x(z).zg | x(z) | x(z) 1 Xz | y(u).Stop suffice to refute all 72 translations.

Theorem 5.6. There is no valid gstb-translation with the interprocess check restriction for less than
three check-MVars.

A reason for the failure of translations with less than three check-MVars may be:

Theorem 5.7. There is no executable, communicating, and overlap-free gstb-translation with the inter-
process check restriction for n < 3.

102

Implementing Synchronous Message-Passing by M Vars

Translation (sender,receiver) Counter-example (7-process) | before | || before | | after| | after
([putC, put$s], [takeC, takeS]) | Xy.x(y).Stop N N Y | Y
([putC,puts], [takeS, takeC|) | Xy.x(y).Stop N N Y Y
([putS, putCl, [takeC, takeS]) | Xy.x(y).Stop N N Y | Y
([putS,putCl, [takeS, takeC|) | Xy.x(y).Stop N N Y Y
([takeC,putS], [putC, takes]) | Xy.x(z).Stop | x(w) N N Y | N
([takeC,putS], [takeS,putC|) | Xy.Stop | x(y) Y Y N N
([puts,takeC], [putC, takes]) | Xy.x(z).Stop | x(w) N N Y | N
([putS,takeC|, [takeS,putC]) | Xz.za.Stop | xw.wa.Stop | x(y).y(u) | Y Y Y | N

Table 1: Translations using one check-M Var and with the interprocess check restriction

Proof. For n = 1, we check the translations in Table 1. The first four are non-communicating. For the
translation ([takeC,putS], [takeS,putC]) a deadlock occurs. For ([takeC, putS], [putC, takeS]), after
putC, takeC, we can execute putC again. For ([putS,takeC],[takeS,putC|), after executing putS,
takeS we can execute putS again. For ([putS,takeC],[putC,takes]), after putC,putS, takeC we
can execute putC again. For n = 2, the simulator finds no executable, communicating, and overlap-free
translation: 18 translations are non-communicating, 21 lead to a deadlock, and 33 may lead to an overlap.

g

For 3 MVars, our tool rejects 762 out of 768 translations (using the same counter examples as for 2
check-MVars) and the following 6 translations remain:

T) = ([putS, putC!, takeC? putC?], [takeC', putC?, takeC?, takes]
[takeC!,putS, takeC?, takeC?], [putC? putC!, takeS, putC?|
[putC! ,putS,takeCz,putC3], [takeS, putC?, takeC?, takeC']
[putC!, putC?, takeC?, puts], [takeC?, putC?, takeS, takeC!]
[takeC' putS,takeC?, takeC’], [putC!, putC?, takeS, putC’]
[putC!, takeC?, puts, takeC3]7 [takeC!,putC?, takeS, putC’]
Proposition 5.8. The translations ¥,%,,%3, and T4 are executable, communicating, and overlap-free,
whereas the translations Ts and T¢ are executable, communicating, but overlapping.

)

To=()
532()
=()

=()

=()

Proof. We only consider overlaps. For ¥y - T4, only if all 8 actions are finished, the next send or receive
can start. For Ts, Tg, after executing putC!, takeC!, we can again execute putC!. g

In [29] we argue that the induced translation ¢z, leaves may- and should-convergence invariant. The
main help in reasoning is that there is no unintended interleaving of send and receive sequences according
to Proposition 5.8. Application of Proposition 5.3 then shows:

Theorem 5.9. Translation ¢, is adequate.
For 4 MVars, our tool refutes 9266 and there remain 334 candidates for correct translations.

5.2 Dropping the Interprocess Check Restriction

We now consider gstb-translations without the interprocess check restriction, i.e. putC’ and takeC' both
may occur in the sender-program (or the receiver program, resp.). If we allow one check-M Var without
reuse, then there are 20 candidates for translations. All are refuted by our simulation. Allowing reuse of
the single check-M Var seems not to help to construct a correct translation: We simulated this for up to 6
uses, leading to 420420 candidates for a correct translation — our simulation refutes all of them.

M. Schmidt-Schaul3 & D. Sabel 103

Conjecture 5.10. We conjecture that there is no correct translation for one check-MVar where re-uses
are permitted and the interprocess check restriction is dropped, i.e., Tynq is a word over {putS,putC,
takeC} and Treceive @ word over {takeS, putC, takeC}, where putS, takeS occur exactly once. 5

For two MVars, one use and without the interprocess check restriction there are 420 translations.
Our tool refutes all except for two: T7 = ([putC', put$,takeC?, takeC'],[takeS,putC?]) and Ty =
([takeC!, puts], [putC?, putC!, takeS, takeC?]). In T7 the second check-MVar is used as a mutex for
the senders, ensuring that only one sender can operate at a time. Tg does the same on the receiver side.

Proposition 5.11. The translations T7,%g are executable, communicating, overlap-free.

Proof. The translations are executable and communicating. For T, putC',putS and takeS are per-
formed in this order. An additional sender cannot execute its first command before the original sender
performs takeC! and this again is only possible after the receiver program is finished. An additional
receiver can only be executed after a putS is performed, which cannot be done by the current sender
and receivers. For Tg, putC?,putC' and takeC' are performed in this order. An additional receiver can
only start after takeC> was executed by the original receiver, which can only occur after the original
sender and receiver program are fully evaluated. An additional sender can only start after putC! has
been executed again, but the current sender and receiver cannot execute this command. O

The induced translation ¢, is (closed) convergence-equivalent [29]. With Proposition 5.3 this shows:
Theorem 5.12. Translation ¢, is adequate.

We are convinced that the same holds for Tg. We conclude the statistics of our search for translations
without the interprocess restriction: For 3 MVars, there are 10080 translations and 9992 are refuted,
i.e. 98 are potentially correct. One is ([putC!,putS,takeC? takeC!'], [putC? takeS,putC?, takeC?])
which is quite intuitive: check-MVar 1 is used as a mutex for all senders on the same channel, check-
MVar 3 is used as a mutex for all receivers, and check-MVar 2 is used to send an acknowledgement. For
4 MVars, there are 277200 translations and 273210 are refuted, i.e. 3990 are potentially correct.

6 Discussion and Conclusion

We investigated translating the z-calculus into CH and showed correctness and adequacy of a transla-
tion Ty with private MVars for every translated communication. For translations with global names, we
started an investigation on exhibiting (potentially) correct translations. We identified several minimal
potentially correct translations and characterized all incorrect “small” translations. For two particular
global translations, we have shown that they are convergence-equivalent and we proved their adequacy
on open processes. The exact form of the translations were found by our tool to search for translations
and to refute their correctness. The tool showed that there is no correct gstb-translation with the inter-
process check restriction for less than 3 check-MVars. We also may consider extended variants of the
m-calculus. We are convinced that adding recursion and sums can easily be built into the translation,
while it might be challenging to encode mixed sums or (name) matching operators. For name matching
operators, our current translation would require to test usual bindings in CH for equality which is not
available in core-Haskell. Solutions may either use an adapted translation or a target language that sup-
ports observable sharing [6, 8]. The translation of mixed-sums into CH appears to require more complex
translations, where the send- and receive-parts are not linear lists of actions.

SWe already have a proof in the meantime, not yet published.

104 Implementing Synchronous Message-Passing by M Vars

Acknowledgments We thank the anonymous reviewers for their valuable comments. In particular, we
thank an anonymous reviewer for advises to improve the construction of translations, and for providing
the counter-example in the last row of Table 1.

References

[1] Martin Abadi & Andrew D. Gordon (1997): A Calculus for Cryptographic Protocols: The Spi Calculus. In:
CCS 1997, ACM, pp. 36-47, doi:10.1145/266420.266432.

[2] Richard Banach, J. Baldzs & George A. Papadopoulos (1995): A Translation of the Pi-Calculus Into MON-
STR. J.UCS 1(6), pp. 339-398, doi:10.3217/jucs-001-06-0339.

[3] Gérard Boudol (1992): Asynchrony and the Pi-calculus. Technical Report Research Report RR-1702,inria-
00076939, INRIA, France. Available at https://hal.inria.fr/inria-00076939.

[4] Mauricio Cano, Jaime Arias & Jorge A. Pérez (2017): Session-Based Concurrency, Reactively. In: FORTE
2017, LNCS 10321, Springer, pp. 74-91, doi:10.1007/978-3-319-60225-7 6.

Avik Chaudhuri (2009): A concurrent ML library in concurrent Haskell. In: ICFP 2009, ACM, pp. 269-280,
doi:10.1145/1596550.1596589.

[6] Koen Claessen & David Sands (1999): Observable Sharing for Functional Circuit Description. In: ASIAN
1999, LNCS 1742, Springer, pp. 62-73, doi:10.1007/3-540-46674-6_7.

[7] Cédric Fournet & Georges Gonthier (2002): The Join Calculus: A Language for Distributed Mobile Pro-
gramming. In: APPSEM 2000, LNCS 2395, Springer, pp. 268-332, doi:10.1007/3-540-45699-6_6.

[8] Andy Gill (2009): Type-safe observable sharing in Haskell. In: Haskell 2009, ACM, pp. 117-128,
doi:10.1145/1596638.1596653.

[9] Rob van Glabbeek, Ursula Goltz, Christopher Lippert & Stephan Mennicke (2019): Stronger Validity Criteria
for Encoding Synchrony. In: The Art of Modelling Computational Systems: A Journey from Logic and
Concurrency to Security and Privacy - Essays Dedicated to Catuscia Palamidessi on the Occasion of Her
60th Birthday, LNCS 11760, Springer, pp. 182-205, doi:10.1007/978-3-030-31175-9_11.

[10] RobJ. van Glabbeek (2018): On the validity of encodings of the synchronous in the asynchronous w-calculus.
Inf. Process. Lett. 137, pp. 17-25, doi:10.1016/;.ipl.2018.04.015.

[11] Daniele Gorla (2010): Towards a unified approach to encodability and separation results for process calculi.
Inf. Comput. 208(9), pp. 1031-1053, doi:10.1016/j.ic.2010.05.002.

[12] Kohei Honda & Mario Tokoro (1991): An Object Calculus for Asynchronous Communication. In: ECOOP
1991, Springer-Verlag, pp. 133-147, doi:10.1007/BFb0057019.

[13] Cosimo Laneve (1996): On testing equivalence: May and Must Testing in the Join-Calculus. Technical Re-
port UBLCS 96-04, University of Bologna. Available at https://www.cs.unibo.it/~laneve/papers/
laneve96may.pdf.

[5

—_

[14
[15

—

Robin Milner (1999): Communicating and mobile systems - the Pi-calculus. Cambridge University Press.

Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, I & II. Inform. and
Comput. 100(1), pp. 1-77, doi:10.1016/0890-5401(92)90008-4.

[16] Joachim Niehren, David Sabel, Manfred Schmidt-Schaufl & Jan Schwinghammer (2007): Observational
Semantics for a Concurrent Lambda Calculus with Reference Cells and Futures. Electron. Notes Theor.
Comput. Sci. 173, pp. 313-337, doi:10.1016/j.entcs.2007.02.041.

[17] Dominic A. Orchard & Nobuko Yoshida (2016): Effects as sessions, sessions as effects. In: POPL 2016,
ACM, pp. 568-581, doi:10.1145/2837614.2837634.

Catuscia Palamidessi (1997): Comparing the Expressive Power of the Synchronous and the Asynchronous
pi-calculus. In: POPL 1997, ACM Press, pp. 256265, doi:10.1145/263699.263731.

—_

[18

[}

M. Schmidt-Schaul3 & D. Sabel 105

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Catuscia Palamidessi (2003): Comparing The Expressive Power Of The Synchronous And Asynchronous
Pi-Calculi. Math. Structures Comput. Sci. 13(5), pp. 685-719, doi:10.1017/S0960129503004043.

Simon L. Peyton Jones, Andrew Gordon & Sigbjorn Finne (1996): Concurrent Haskell. In: POPL 1996,
ACM, pp. 295-308, doi:10.1145/237721.237794.

Corrado Priami (1995): Stochastic pi-Calculus. Comput. J. 38(7), pp. 578-589,
doi:10.1093/comjnl/38.7.578.

George Russell (2001): Events in Haskell, and How to Implement Them. In: ICFP 2001, ACM, pp. 157-168,
doi:10.1145/507635.507655.

David Sabel & Manfred Schmidt-Schau3 (2011): A contextual semantics for Concurrent Haskell with futures.
In: PPDP 2011, ACM, pp. 101-112, doi:10.1145/2003476.2003492.

David Sabel & Manfred Schmidt-Schauf} (2012): Conservative Concurrency in Haskell. In: LICS 2012,
IEEE, pp. 561-570, doi:10.1109/LICS.2012.66.

David Sabel & Manfred Schmidt-Schau3 (2015): Observing Success in the Pi-Calculus. In: WPTE 2015,
OASICS 46, pp. 31-46, doi:10.4230/0ASIcs.WPTE.2015.31.

Davide Sangiorgi & David Walker (2001): On Barbed Equivalences in pi-Calculus. In: CONCUR 200,
LNCS 2154, Springer, pp. 292-304, doi:10.1007/3-540-44685-0_20.

Davide Sangiorgi & David Walker (2001): The m-calculus: a theory of mobile processes. Cambridge univer-
sity press.

Manfred Schmidt-Schau3, Joachim Niehren, Jan Schwinghammer & David Sabel (2008): Adequacy of Com-
positional Translations for Observational Semantics. In: IFIP TCS 2008, IFIP 273, Springer, pp. 521-535,
doi:10.1007/978-0-387-09680-3_35.

Manfred Schmidt-Schaull & David Sabel (2020): Embedding the Pi-Calculus into a Concurrent Functional
Programming Language. Frank report 60, Institut fiir Informatik. Fachbereich Informatik und Mathematik. J.
W. Goethe-Universitidt Frankfurt am Main. Available at http://www.ki.informatik.uni-frankfurt.
de/papers/frank/frank-60v5.pdf.

Manfred Schmidt-Schauf3, David Sabel & Nils Dallmeyer (2018): Sequential and Parallel Improve-
ments in a Concurrent Functional Programming Language. In: PPDP 2018, ACM, pp. 20:1-20:13,
doi:10.1145/3236950.3236952.

Manfred Schmidt-SchauBl, David Sabel, Joachim Niehren & Jan Schwinghammer (2015): Observa-
tional program calculi and the correctness of translations. Theor. Comput. Sci. 577, pp. 98-124,
doi:10.1016/j.tcs.2015.02.027.

Jan Schwinghammer, David Sabel, Manfred Schmidt-Schaull & Joachim Niehren (2009): Correctly trans-
lating concurrency primitives. In: ML 2009, ACM, pp. 27-38, doi:10.1145/1596627.1596633.

Ping Yang, C. R. Ramakrishnan & Scott A. Smolka (2004): A logical encoding of the pi-calculus: model
checking mobile processes using tabled resolution. STTT 6(1), pp. 38—66, doi:10.1007/s10009-003-0136-3.

