
G. Caltais and C. A. Mezzina (Eds): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2023).
EPTCS 387, 2023, pp. 42–58, doi:10.4204/EPTCS.387.5

© Van Glabbeek, Groote & De Vink
This work is licensed under the
Creative Commons Attribution License.

A Cancellation Law for Probabilistic Processes

Rob van Glabbeek*

University of Edinburgh

University of New South Wales

rvg@stanford.edu

Jan Friso Groote
Eindhoven University of Technology

j.f.groote@tue.nl

Erik de Vink
Eindhoven University of Technology

evink@win.tue.nl

We show a cancellation property for probabilistic choice. If µ ⊕ρ and ν ⊕ρ are branching proba-
bilistic bisimilar, then µ and ν are also branching probabilistic bisimilar. We do this in the setting of
a basic process language involving non-deterministic and probabilistic choice and define branching
probabilistic bisimilarity on distributions. Despite the fact that the cancellation property is very ele-
gant and concise, we failed to provide a short and natural combinatorial proof. Instead we provide
a proof using metric topology. Our major lemma is that every distribution can be unfolded into an
equivalent stable distribution, where the topological arguments are required to deal with uncountable
branching.

1 Introduction

A familiar property of the real numbers R is the additive cancellation law: if x+ z = y+ z then x = y.
Switching to the Boolean setting, and interpreting + by ∨ and = by ⇔, the property becomes (x∨ z)⇔
(y∨z) implies x⇔ y. This is not generally valid. Namely, if z is true, nothing can be derived regarding the
truth values of x and y. Algebraically speaking, the reals provide an ‘additive inverse’, and the Booleans
do not have a ‘disjunctive’ version of it.

A similar situation holds for strong bisimilarity in the pure non-deterministic setting vs. strong bisim-
ilarity in the mixed non-deterministic and probabilistic setting. When we have E + G ↔ F + G for
the non-deterministic processes E +G and F +G, it may or may not be the case that E ↔ F . How-
ever, if P 1/2⊕ R ↔ Q 1/2⊕ R for the probabilistic processes P 1/2⊕ R and Q 1/2⊕ R, with probabilistic
choice 1/2⊕ , we can exploit a semantic characterization of bisimilarity as starting point of a calculation.
The characterization reads

P↔Q iff ∀C ∈ E /↔: µ[C] = ν [C] (1)

where the distributions µ,ν ∈ Distr(E ) are induced by P and Q. To spell out the above, two probabilistic
processes P and Q are strongly bisimilar iff the distributions µ and ν induced by P and Q, respectively,
assign the same probability to every equivalence class C of non-deterministic processes modulo strong
bisimilarity. In the situation that P 1/2⊕ R ↔ Q 1/2⊕ R we obtain from (1), for equivalence classes
C ∈ E /↔ and distributions µ , ν , and ρ induced by the processes P, Q, and R, that

P 1/2⊕ R ↔ Q 1/2⊕ R =⇒ ∀C ∈ E /↔: 1
2 µ[C]+ 1

2 ρ[C] = 1
2 ν [C]+ 1

2 ρ[C] =⇒
∀C ∈ E /↔: 1

2 µ[C] = 1
2 ν [C] =⇒ ∀C ∈ E /↔: µ[C] = ν [C] =⇒ P↔Q

relying on the arithmetic of the reals.
We are interested in whether the cancellation law also holds for weaker notions of process equiva-

lence for probabilistic processes, especially for branching probabilistic bisimilarity as proposed in [16].
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We find that it does but the proof is involved. A number of initial attempts were directed towards finding
a straightforward combinatorial proof, but all failed. A proof in a topological setting, employing the
notion of sequential compactness to deal with potentially infinite sequences of transitions is reported in
this paper. We leave the existence of a shorter, combinatorial proof as an open question.

Our strategy to prove the above cancellation law for probabilistic processes and branching proba-
bilistic bisimilarity is based on two intermediate results: (i) every probabilistic process unfolds into a
so-called stable probabilistic process, and (ii) for stable probabilistic processes a characterization of the
form (1) does hold. Intuitively, a stable process is a process that cannot do an internal move without
leaving its equivalence class.

In order to make the above more concrete, let us consider an example. For the ease of presentation
we use distributions directly, rather than probabilistic processes. Let the distributions µ and ν be given
by

µ = 1
2 δ (a .∂ (0))⊕ 1

2 δ (b.∂ (0))
ν = 1

3 δ (τ .(∂ (a .∂ (0)) 1
2
⊕ ∂ (b.∂ (0))))⊕ 1

3 δ (a .∂ (0))⊕ 1
3 δ (b.∂ (0))

with a and b two different actions. The distribution µ assigns probability 0.5 to a .∂ (0), meaning an
a-action followed by a deadlock with probability 1, and probability 0.5 to b.∂ (0), i.e. a b-action fol-
lowed by deadlock with probability 1. The distribution ν assigns both these non-deterministic processes
probability 1

3 and assigns the remaining probability 1
3 to τ .(∂ (a .∂ (0)) 1

2
⊕ ∂ (b.∂ (0))), where a τ-action

precedes a 50-50 percent choice between the processes mentioned earlier. Below, we show that µ and ν

are branching probabilistic bisimilar, i.e. µ ↔b ν . However, if C1, C2 and C3 are the three different
equivalence classes of τ .(∂ (a .∂ (0)) 1

2
⊕ ∂ (b.∂ (0)), a .∂ (0) and b.∂ (0), respectively, we have

µ[C1] = 0 ̸= 1
3 = ν [C1], µ[C2] =

1
2 ̸= 1

3 = ν [C2], and µ[C3] =
1
2 ̸= 1

3 = ν [C3].

Thus, although µ ↔b ν , it does not hold that µ[C] = ν [C] for every equivalence class C. Note that the
distribution ν is not stable, in the sense that it allows an internal transition to the branchingly equivalent ν .

As indicated, we establish in this paper a cancellation law for branching probabilistic bisimilarity in
the context of mixed non-deterministic and probabilistic choice, exploiting the process language of [6],
while dealing with distributions of finite support over non-deterministic processes for its semantics. We
propose the notion of a stable distribution and show that every distribution can be unfolded into a stable
distribution by chasing its (partial) τ-transitions. Our framework, including the notion of branching
probabilistic bisimulation, builds on that of [19, 16].

Another trait of the current paper, as in [19, 16], is that distributions are taken as semantic foundation
for bisimilarity, rather than seeing bisimilarity primarily as an equivalence relation on non-deterministic
processes, which is subsequently lifted to an equivalence relation on distributions, as is the case for the
notion of branching probabilistic bisimilarity of [27, 26] and also of [2, 1]. The idea to consider distribu-
tions as first-class citizens for probabilistic bisimilarity stems from [11]. In the systematic overview of
the spectrum [3], also Baier et al. argue that a behavioral relation on distributions is needed to properly
deal with silent moves.

Metric spaces and complete metric spaces, as well as their associated categories, have various uses
in concurrency theory. In the setting of semantics of probabilistic systems, metric topology has been
advocated as underlying denotational domain, for example in [5, 21, 25]. For quantitative comparison
of Markov systems, metrics and pseudo-metric have been proposed for a quantitative notion of behavior
equivalence, see e.g. [10, 13, 7]. The specific use of metric topology in this paper to derive an existential
property of a transition system seems new.
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The remainder of the paper is organized as follows. Section 2 collects some definitions from metric
topology and establishes some auxiliary results. A simple process language with non-deterministic and
probabilistic choice is introduced in Section 3, together with examples and basic properties of the opera-
tional semantics. Our definition of branching probabilistic bisimilarity is given in Section 4, followed by
a congruence result with respect to probabilistic composition and a confluence property. The main con-
tribution of the paper is presented in Sections 5 and 6. Section 5 shows in a series of continuity lemmas
that the set of branching probabilistic bisimilar descendants is a (sequentially) compact set. Section 6
exploits these results to argue that unfolding of a distribution by inert τ-transitions has a stable end point,
meaning that a stable branchingly equivalent distribution can be reached. With that result in place, a
cancellation law for branching probabilistic bisimilarity is established. Finally, Section 7 wraps up with
concluding remarks and a discussion of future work.

2 Preliminaries

For a non-empty set X , we define Distr(X) as the set of all probability distributions over X of finite
support, i.e., Distr(X) = { µ : X → [0,1] | ∑x∈X µ(x) = 1, µ(x)> 0 for finitely many x ∈ X }. We use
spt(µ) to denote the finite set { x ∈ X | µ(x) > 0 }. Often, we write µ =

⊕
i∈I pi ·xi for an index set I,

pi ⩾ 0 and xi ∈ X for i ∈ I, where pi > 0 for finitely many i ∈ I. Implicitly, we assume ∑ i∈I pi = 1. We
also write rµ ⊕ (1− r)ν and, equivalently, µ r⊕ ν for µ,ν ∈ Distr(X) and 0 ⩽ r ⩽ 1. As expected, we
have that (rµ ⊕(1−r)ν)(x) = (µ r⊕ ν)(x) = rµ(x)+(1−r)ν(x) for x ∈ X . The Dirac distribution on x,
the unique distribution with support x, is denoted δ (x).

The set Distr(X) becomes a complete1 metric space when endowed with the sup-norm [14], given
by d(µ,ν) = supx∈X |µ(x)−ν(x)|. This distance is also known as the distance of uniform convergence
or Chebyshev distance.

Theorem 1. If Y ⊆ X is finite, then Distr(Y ) is a sequentially compact subspace of Distr(X). This means
that every sequence in Distr(Y ) has a convergent subsequence with a limit in Distr(Y ).

Proof. Distr(Y ) is a bounded subset of Rn, where n := |Y | is the size of Y . It also is closed. For Rn

equipped with the Euclidean metric, the sequential compactness of closed and bounded subsets is known
as the Bolzano-Weierstrass theorem [23]. When using the Chebyshev metric, the same proof applies.

In Section 5 we use the topological structure of the set of distributions over non-deterministic processes
to study unfolding of partial τ-transitions. There we make use of the following representation property.

Lemma 2. Suppose the sequence of distributions (µi)
∞
i=0 converges to the distribution µ in Distr(X).

Then a sequence of distributions (µ ′
i )

∞
i=0 in Distr(X) and a sequence of probabilities (ri)

∞
i=0 in [0,1] exist

such that µi = (1− ri)µ ⊕ ri µ
′
i for i ∈N and lim i→∞ ri = 0.

Proof. Let i ∈N. For x ∈ spt(µ), the quotient µi(x)/µ(x) is non-negative, but may exceed 1. However,

0 ⩽ min{ µi(x)
µ(x) | x ∈ spt(µ) } ⩽ 1, since the numerator cannot strictly exceed the denominator for all

x ∈ spt(µ). Let ri = 1−min{ µi(x)
µ(x) | x ∈ spt(µ)} for i ∈N. Then we have 0 ⩽ ri ⩽ 1.

1A Cauchy sequence is a sequence of points in a metric space whose elements become arbitrarily close to each other as the
sequence progresses. The space is complete if every such sequence has a limit within the space.
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For i ∈ N, define µ ′
i ∈ Distr(X) as follows. If ri > 0 then µ ′

i (x) = 1/ri ·
[
µi(x)− (1 − ri)µ(x)

]
for x ∈ X ; if ri = 0 then µ ′

i = µ . We verify for ri > 0 that µ ′
i is indeed a distribution: (i) For x /∈ spt(µ) it

holds that µ(x) = 0, and therefore µ ′
i (x) = 1/ri ·µi(x)⩾ 0. For x ∈ spt(µ),

µ
′
i (x) = 1/ri ·

[
µi(x)− (1− ri)µ(x)

]
= µ(x)/ri ·

[µi(x)
µ(x)

− µi(xmin)

µ(xmin)

]
⩾ 0

for xmin ∈ spt(µ) such that µi(xmin)/µ(xmin) is minimal. (ii) In addition,

∑{µ ′
i (x) | x ∈ X }= 1/ri ·∑{µi(x) | x /∈ spt(µ)}+1/ri ·∑{µi(x)− (1− ri)µ(x) | x ∈ spt(µ)}=
1/ri ·∑{µi(x) | x ∈ X }− (1− ri)/ri ·∑{µ(x) | x ∈ spt(µ)}= 1/ri − (1− ri)/ri = ri/ri = 1.

Therefore, 0 ⩽ µ ′
i (x)⩽ 1 and ∑{µ ′

i (x) | x ∈ X }= 1.
Now we prove that µi = (1− ri)µ ⊕ ri µ

′
i . If ri = 0, then µi = µ , µ ′

i = µ , and µi = (1− ri)µ ⊕ ri µ
′
i .

If ri > 0, then µi(x) = (1 − ri)µ(x)⊕ ri µ
′
i (x) by definition of µ ′

i (x) for all x ∈ X . Thus, also µi =
(1− ri)µ ⊕ ri µ

′
i in this case.

Finally, we show that lim i→∞ ri = 0. Let x′min ∈ spt(µ) be such that µ(x′min) is minimal. Then we
have

ri = 1−min{ µi(x)

µ(x)
| x ∈ spt(µ)}= max{ µ(x)−µi(x)

µ(x)
| x ∈ spt(µ), µ(x)⩾ µi(x)}⩽

d(µ,µi)

µ(x′min)

By assumption, lim i→∞ d(µ,µi) = 0. Hence also lim i→∞ ri = 0, as was to be shown.

The following combinatorial result is helpful in the sequel.

Lemma 3. Let I and J be finite index sets, pi,q j ∈ [0,1] and µi,ν j ∈ Distr(X), for i ∈ I and j ∈ J,
such that

⊕
i∈I piµi =

⊕
j∈J q jν j. Then ri j ⩾ 0 and ρi j ∈ Distr(X) exist such that ∑ j∈J ri j = pi and

pi ·µi =
⊕

j∈J ri j ·ρi j for all i ∈ I, and ∑ i∈I ri j = q j and q j ·ν j =
⊕

i∈I ri j ·ρi j for all j ∈ J.

Proof. Let ξ =
⊕

i∈I pi ·µi =
⊕

j∈J q j ·ν j. We define ri j = ∑x∈spt(ξ )
pi µi(x) ·q j ν j(x)

ξ (x)
for all i ∈ I and

j ∈ J. In case ri j = 0, choose ρi j ∈ Distr(X) arbitrarily. In case ri j ̸= 0, define ρi j ∈ Distr(X), for i ∈ I
and j ∈ J, by

ρi j(x) =


pi µi(x) ·q j ν j(x)

ri j ξ (x)
if ξ (x)> 0,

0 otherwise

for all x ∈ X . By definition of ri j and ρi j it holds that ∑{ρi j(x) | x ∈ X }= 1. So, ρi j ∈ Distr(X) indeed.
We verify ∑ j∈J ri j = pi and pi ·µi =

⊕
j∈J ri j ·ρi j for i ∈ I.

∑ j∈J ri j = ∑ j∈J ∑x∈spt(ξ ) pi µi(x) ·q j ν j(x)/ξ (x)

= ∑x∈spt(ξ ) pi µi(x) ·∑ j∈J q j ν j(x)/ξ (x)

= ∑x∈spt(ξ ) pi µi(x) (since ξ =
⊕

j∈J q j ·ν j)

= pi ∑x∈spt(ξ ) µi(x)

= pi .

Next, pick y ∈ X and i ∈ I. If ξ (y) = 0, then pi µi(y) = 0, since ξ (y) = ∑ i∈I pi µi(y), and ri j = 0 or
ρi j(y) = 0 for all j ∈ J, by the various definitions, thus ∑ j∈J ri j ρi j(y) = 0 as well.
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Suppose ξ (y)> 0. Put Ji = { j ∈ J | ri j > 0}. If j ∈ J\Ji, i.e. if ri j = 0, then pi µi(y)q j ν j(y)/ξ (y) = 0
by definition of ri j. Therefore we have

∑ j∈J ri jρi j(y) = ∑ j∈Ji ri j ρi j(y)

= ∑ j∈Ji ri j pi µi(y) ·q j ν j(y)/(ri j ξ (y))

= ∑ j∈Ji pi µi(y) ·q j ν j(y)/ξ (y)

= ∑ j∈J pi µi(y) ·q j ν j(y)/ξ (y) (summand zero for j ∈ J\Ji)

= pi µi(y)/ξ (y) ·∑ j∈J q j ν j(y)

= pi µi(y) (since ξ =
⊕

j∈J q j ·ν j).

The statements ∑i∈I ri j = q j and q j ·ν j =
⊕

i∈I ri j ·ρi j for j ∈ J follow by symmetry.

3 An elementary processes language

In this section we define a syntax and transition system semantics for non-deterministic and probabilistic
processes. Depending on the top operator, following [6], a process is either a non-deterministic pro-
cess E ∈ E , with constant 0, prefix operators α . and non-deterministic choice +, or a probabilistic
process P ∈ P , with the Dirac operator ∂ and probabilistic choices r⊕ .

Definition 4 (Syntax). The classes E and P of non-deterministic and probabilistic processes, respec-
tively, over the set of actions A , are given by

E ::= 0 | α .P | E +E P ::= ∂ (E) | P r⊕ P

with actions α from A and where 0 ⩽ r ⩽ 1.

We use E,F, . . . to range over E and P,Q, . . . to range over P . The probabilistic process P1 r⊕ P2 behaves
as P1 with probability r and behaves as P2 with probability 1− r.

We introduce a complexity measure c : E ∪P →N for non-deterministic and probabilistic processes
based on the size of a process. It is given by c(0) = 0, c(a .P) = c(P)+ 1, c(E +F) = c(E)+ c(F),
and c(∂ (E)) = c(E)+1, c(P r⊕ Q) = c(P)+ c(Q).

Examples As illustration, we provide the following pairs of non-deterministic processes, which are
branching probabilistic bisimilar in the sense of Definition 9.

(i) H1 = a .
(
P 1

4
⊕ (P 1

3
⊕ Q)

)
and H2 = a .

(
P 1

2
⊕ (Q 1

2
⊕ Q)

)
(ii) G1 = a .(P 1

2
⊕ Q) and G2 = a .

(
∂
(
τ .(P 1

2
⊕ Q)

)
1
3
⊕(P 1

2
⊕ Q)

)
(iii) I1 = a .∂ (b.P+ τ .Q) and I2 = a .∂ (τ .∂ (b.P+ τ .Q)+b.P+ τ .Q)

The examples H1 and H2 are taken from [22], and G1 and G2 are taken from [16]. The processes G2
and I2 contain a so-called inert τ-transition.

As usual, the SOS semantics for E and P makes use of two types of transition relations [20, 6, 16].
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Definition 5 (Operational semantics).
(a) The transition relations →⊆ E ×A ×Distr(E ) and 7→ ⊆ P ×Distr(E ) are given by

P 7→ µ

α .P α−→ µ
(PREF)

E1
α−→ µ1

E1 +E2
α−→ µ1

(ND-CHOICE 1)
E2

α−→ µ2

E1 +E2
α−→ µ2

(ND-CHOICE 2)

∂ (E) 7→ δ (E)
(DIRAC)

P1 7→ µ1 P2 7→ µ2

P1 r⊕ P2 7→ µ1 r⊕ µ2
(P-CHOICE)

(b) The transition relation →⊆Distr(E )×A ×Distr(E ) is such that µ
α−→ µ ′ whenever µ =

⊕
i∈I pi ·Ei,

µ ′ =
⊕

i∈I pi ·µ ′
i , and Ei

α−→ µ ′
i for all i ∈ I.

In rule (DIRAC) of the relation 7→ we have that the syntactic Dirac process ∂ (E) is coupled to the semantic
Dirac distribution δ (E). Similarly, in (P-CHOICE), the syntactic probabilistic operator r⊕ in P1 r⊕ P2 is
replaced by semantic probabilistic composition in µ1 r⊕ µ2. Thus, with each probabilistic process P∈P
we associate a distribution [[P]]∈ Distr(E ) as follows: [[∂ (E)]] = δ (E) and [[P r⊕ Q]] = [[P]] r⊕ [[Q]], which
is the distribution r[[P]]⊕ (1− r)[[Q]].

The relation −→ for non-deterministic processes is finitely branching, but the relation −→ for proba-
bilistic processes is not. Following [27, 26], the transition relation → on distributions as given by Def-
inition 5 allows for a probabilistic combination of non-deterministic alternatives resulting in a so-called
combined transition. For example, for the process E = a .(P 1

2
⊕ Q)+a .(P 1

3
⊕ Q) of [6], we have that the

Dirac process ∂ (E) = ∂ (a .(P 1
2
⊕ Q)+ a .(P 1

3
⊕ Q)) provides an a-transition to [[P 1

2
⊕ Q]] as well as an

a-transition to [[P 1
3
⊕ Q]]. So, since we can represent the distribution δ (E) by δ (E) = 1

2 δ (E)⊕ 1
2 δ (E),

the distribution δ (E) also has a combined transition

δ (E) = 1
2 δ (E)⊕ 1

2 δ (E) a−→ 1
2 [[P 1

2
⊕ Q]]⊕ 1

2 [[P 1
3
⊕ Q]] = [[P 5

12
⊕ Q]].

As noted in [28], the ability to combine transitions is crucial for obtaining transitivity of probabilistic
process equivalences that take internal actions into account.

Example Referring to the examples of processes above, we have, e.g,

H1 : δ (a .(P 1
4
⊕ (P 1

3
⊕ Q)))

a−→ [[P 1
4
⊕ (P 1

3
⊕ Q)]] = 1

2 [[P]]⊕
1
2 [[Q]]

H2 : δ (a .(P 1
2
⊕ (Q 1

2
⊕ Q)))

a−→ [[P 1
2
⊕ (Q 1

2
⊕ Q)]] = 1

2 [[P]]⊕
1
2 [[Q]]

G2 : a .
(
∂
(
τ .(P 1

2
⊕ Q)

)
1
3
⊕(P 1

2
⊕ Q)

) a−→ δ
(
τ .(P 1

2
⊕ Q)

)
1
3
⊕(P 1

2
⊕ Q).

Because a transition of a probabilistic process yields a distribution, the a-transitions of H1 and H2 have
the same target. It is noted that G2 doesn’t provide a further transition unless both its components P
and Q do so to match the transition of τ .(P 1

2
⊕ Q).

In preparation to the definition of the notion of branching probabilistic bisimilarity in Section 4 we
introduce some notation.
Definition 6. For µ,µ ′ ∈Distr(E ) and α ∈A we write µ

(α)−−→ µ ′ iff (i) µ
α−→ µ ′, or (ii) α = τ and

µ ′ = µ , or (iii) α = τ and there exist µ1,µ2,µ
′
1,µ

′
2 ∈ Distr(E ) such that µ = µ1 r⊕ µ2, µ ′ = µ ′

1 r⊕ µ ′
2,

µ1
τ−→ µ ′

1 and µ2 = µ ′
2 for some r ∈ (0,1).

Cases (i) and (ii) in the definition above correspond with the limits r = 1 and r = 0 of case (iii). We use
=⇒ to denote the reflexive transitive closure of (τ)−−→. A transition µ

(τ)−−→ µ ′ is called a partial transition,
and a transition µ ⇒ µ ′ is called a weak transition.
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Example
(a) According to Definition 6 we have

1
3 δ (τ .(P 1

2
⊕ Q))⊕ 2

3 [[P 1
2
⊕ Q]]

(τ)−−→ 1
3 [[P 1

2
⊕ Q]]⊕ 2

3 [[P 1
2
⊕ Q]] = [[P 1

2
⊕ Q]].

(b) There are typically multiple ways to construct a weak transition ⇒. Consider the weak transition
1
2 δ (τ .∂ (τ .P))⊕ 1

3 δ (τ .P)⊕ 1
6 [[P]] =⇒ [[P]] which can be obtained, among uncountably many other

possibilities, via

1
2 δ (τ .∂ (τ .P))⊕ 1

3 δ (τ .P)⊕ 1
6 [[P]]

(τ)−−→
1
2 δ (τ .P))⊕ 1

3 δ (τ .P)⊕ 1
6 [[P]] =

5
6 δ (τ .P)⊕ 1

6 [[P]]
(τ)−−→ [[P]],

or via

1
2 δ (τ .∂ (τ .P))⊕ 1

3 δ (τ .P)⊕ 1
6 [[P]]

(τ)−−→ 1
2 δ (τ .∂ (τ .P))⊕ 1

3 δ (P)⊕ 1
6 [[P]] =

1
2 δ (τ .∂ (τ .P))⊕ 1

2 δ (P) (τ)−−→ 1
2 δ (τ .P)⊕ 1

2 [[P]]
(τ)−−→ 1

2 [[P]]⊕
1
2 [[P]] = [[P]].

(c) The distribution 1
2 δ (τ .∂ (a .∂ (0)+b.∂ (0)))⊕ 1

2 δ (a .∂ (c .∂ (0))) doesn’t admit a τ-transition nor
an a-transition. However, we have

1
2 δ (τ .∂ (a .∂ (0)+b.∂ (0)))⊕ 1

2 δ (a .∂ (c .∂ (0))) (τ)−−→
1
2 ∂ (a .∂ (0)+b.∂ (0))⊕ 1

2 δ (a .∂ (c .∂ (0))) a−→ 1
2 δ (0)⊕ 1

2 δ (c .∂ (0)).

The following lemma states that the transitions α−→, (α)−−→, and ⇒ of Definitions 5 and 6 can be proba-
bilistically composed.

Lemma 7. Let, for a finite index set I, µi,µ
′
i ∈ Distr(E ) and pi ⩾ 0 such that ∑i∈I pi = 1.

(a) If µi
α−→ µ ′

i for all i ∈ I, then
⊕

i∈I pi ·µi
α−→

⊕
i∈I pi ·µ ′

i .

(b) If µi
(τ)−−→ µ ′

i for all i ∈ I, then
⊕

i∈I pi ·µi
(τ)−−→

⊕
i∈I pi ·µ ′

i .

(c) If µi =⇒ µ ′
i for all i ∈ I, then

⊕
i∈I pi ·µi =⇒

⊕
i∈I pi ·µ ′

i .

Proof. Let µ =
⊕

i∈I pi ·µi and µ ′ =
⊕

i∈I pi ·µ ′
i . Without loss of generality, we may assume that pi > 0

for all i ∈ I.
(a) Suppose µi

α−→ µ ′
i for all i ∈ I. Then, by Definition 5, µi =

⊕
j∈Ji

pi j ·Ei j, µ ′
i =

⊕
j∈Ji

pi j ·ηi j,
and Ei j

α−→ ηi j for j ∈ Ji for a suitable index set Ji, pi j > 0 and ηi j ∈ Distr(E ). Define the index set K
and probabilities qk for k ∈ K by K = { (i, j) | i ∈ I, j ∈ Ji } and q(i, j) = pi pi j for (i, j) ∈ K, so that
∑k∈K qk = 1. Then we have µ =

⊕
k∈K qk ·Ei j and µ ′ =

⊕
k∈K qk ·ηi j. Therefore, by Definition 5, it

follows that µ
α−→ µ ′.

(b) Let µi
(τ)−−→ µ ′

i for all i ∈ I. Then, for all i ∈ I, by Definition 6, there exists ri ∈ [0,1] and
µ

stay
i ,µ

go
i ,µ ′′

i ∈Distr(E ), such that µi = µ
stay
i ri⊕ µ

go
i , µ ′

i = µ
stay
i ri⊕ µ ′′

i , and either ri = 1 or µ
go
i

τ−→ µ ′′
i .

In case ri = 0 for all i ∈ I, we have that µi
τ−→ µ ′

i for all i ∈ I, and thus µ
τ−→ µ ′ by the first claim of

the lemma, and µ
(τ)−−→ µ ′ by Definition 6(i). In case ri = 1 for all i ∈ I, we have µ ′ = µ and thus

µ
(τ)−−→ µ ′ by Definition 6(ii). Otherwise, let I′ := { i ∈ I | ri < 1}, r =∑ i∈I pi ·ri, µstay :=

⊕
i∈I

pi ·ri
r ·µstay

i ,
µgo :=

⊕
i∈I′

pi ·(1−ri)
1−r ·µgo

i and µ ′′ :=
⊕

i∈I′
pi ·(1−ri)

1−r ·µ ′′
i . Then µgo τ−→ µ ′′ by the first claim of the lemma.

Moreover, µ = µstay
r⊕ µgo, µ ′ = µstay

r⊕ µ ′′ and r ∈ (0,1). So µ
(τ)−−→ µ ′ by Definition 6(iii).

(c) Let µi =⇒ µ ′
i for all i ∈ I. As I is finite and =⇒ is reflexive, there exists an n ∈ N such that

µi = µ
(0)
i

(τ)−−→ µ
(1)
i

(τ)−−→ . . .
(τ)−−→ µ

(n)
i = µ ′

i for all i ∈ I. Now µ =⇒ µ ′ follows by n applications of the
second statement of the lemma.
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Likewise, the next lemma allows probabilistic decomposition of transitions α−→, (α)−−→ and =⇒.

Lemma 8. Let µ,µ ′ ∈ Distr(E ) and µ =
⊕

i∈I pi ·µi with pi > 0 for i ∈ I.

(a) If µ
α−→ µ ′, then there are µ ′

i for i ∈ I such that µi
α−→ µ ′

i for i ∈ I and µ ′ =
⊕

i∈I pi ·µ ′
i .

(b) If µ
(τ)−−→ µ ′, then there are µ ′

i for i ∈ I such that µi
(τ)−−→ µ ′

i for i ∈ I and µ ′ =
⊕

i∈I pi ·µ ′
i .

(c) If µ =⇒ µ ′, then there are µ ′
i for i ∈ I such that µi ⇒ µ ′

i for i ∈ I and µ ′ =
⊕

i∈I pi ·µ ′
i .

Proof. (a) Suppose µ
α−→ µ ′. By Definition 5 µ =

⊕
j∈J q j ·E j, µ ′ =

⊕
j∈J q j ·η j, and E j

α−→ η j for all
j ∈ J, for suitable index set J, q j > 0, E j ∈ E , and η j ∈ Distr(E ). By Lemma 3 there are ri j ⩾ 0 and
ρi j ∈ Distr(E ) such that ∑ j∈J ri j = pi and pi µi =

⊕
j∈J ri jρi j for i ∈ I, and ∑ i∈I ri j = q j and q j ·δ (E j) =⊕

i∈I ri jρi j for all j ∈ J. Hence, ρi j = δ (E j) for i ∈ I, j ∈ J.
For all i ∈ I, let µ ′

i =
⊕

j∈J (ri j/pi)η j. Then µi
α−→ µ ′

i , for all i ∈ I, by Lemma 7(a). Moreover, it
holds that

⊕
i∈I pi µ

′
i =

⊕
i∈I pi ·

⊕
j∈J (ri j/pi)η j =

⊕
j∈J

⊕
i∈I ri j ·η j =

⊕
j∈J q j ·η j = µ ′.

(b) Suppose µ
(τ)−−→ µ ′. By Definition 6, either (i) µ

τ−→ µ ′, or (ii) µ ′ = µ , or (iii) there exist
ν1,ν2,ν

′
1,ν

′
2 ∈ Distr(E ) such that µ = ν1 r⊕ ν2, µ ′ = ν ′

1 r⊕ ν ′
2, ν1

τ−→ ν ′
1 and ν2 = ν ′

2 for some r ∈ (0,1).
In case (i), the required µ ′

i exist by the first statement of this lemma. In case (ii) one can simply take
µ ′

i := µi for all i ∈ I. Hence assume that case (iii) applies. Let J := {1,2}, q1 := r and q2 := 1− r. By
Lemma 3 there are ri j ∈ [0,1] and ρi j ∈ Distr(E ) with ∑ j∈J ri j = pi and µi =

⊕
j∈J

ri j
pi
·ρi j for all i ∈ I,

and ∑i∈I ri j = q j and ν j =
⊕

i∈I
ri j
q j
·ρi j for all j ∈ J.

Let I′ := {i ∈ I | ri1 > 0}. Since ν1 =
⊕

i∈I′
ri1
r ·ρi1

τ−→ ν ′
1, by the first statement of the lemma,

for all i ∈ I′ there are ρ ′
i1 such that ρi1

τ−→ ρ ′
i1 and ν ′

1 =
⊕

i∈I′
ri1
r ·ρ ′

i1. For all i ∈ I\I′ pick ρ ′
i1 ∈

Distr(E ) arbitrarily. It follows that µi = ρi1 ri1
pi
⊕ ρi2

(τ)−−→ ρ ′
i1 ri1

pi
⊕ ρi2 =: µ ′

i for all i ∈ I. Moreover,⊕
i∈I pi ·µ ′

i =
⊕

i∈I pi ·(ρ ′
i1 ri1

pi
⊕ ρi2) = (

⊕
i∈I

ri1
r ·ρ ′

i1) r⊕ (
⊕

i∈I
ri2

1−r ·ρi2) = ν ′
1 r⊕ ν2 = µ ′ .

(c) The last statement follows by transitivity from the second one.

4 Branching probabilistic bisimilarity

In this section we recall the notion of branching probabilistic bisimilarity [16]. The notion is based on a
decomposability property due to [9] and a transfer property.

Definition 9 (Branching probabilistic bisimilarity).
(a) A relation R ⊆ Distr(E )×Distr(E ) is called weakly decomposable iff it is symmetric and for all

µ,ν ∈ Distr(E ) such that µ R ν and µ =
⊕

i∈I pi ·µi there are ν̄ ,νi ∈ Distr(E ), for i ∈ I, such that

ν =⇒ ν̄ , µ R ν̄ , ν̄ =
⊕

i∈I pi ·νi, and µi R νi for all i ∈ I.

(b) A relation R ⊆ Distr(E )×Distr(E ) is called a branching probabilistic bisimulation relation iff it is
weakly decomposable and for all µ,ν ∈Distr(E ) with µ R ν and µ

α−→ µ ′, there are ν̄ ,ν ′ ∈Distr(E )
such that

ν =⇒ ν̄ , ν̄
(α)−−→ ν ′, µ R ν̄ , and µ ′R ν ′.

(c) Branching probabilistic bisimilarity ↔b ⊆ Distr(E )×Distr(E ) is defined as the largest branching
probabilistic bisimulation relation on Distr(E ).

Note that branching probabilistic bisimilarity is well-defined following the usual argument that any union
of branching probabilistic bisimulation relations is again a branching probabilistic bisimulation relation.
In particular, (weak) decomposability is preserved under arbitrary unions. As observed in [15], branching
probabilistic bisimilarity is an equivalence relation.
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Two non-deterministic processes are considered to be branching probabilistic bisimilar iff their Dirac
distributions are, i.e., for E,F ∈ E we have E ↔b F iff δ (E)↔b δ (F). Two probabilistic processes are
considered to be branching probabilistic bisimilar iff their associated distributions over E are, i.e., for
P,Q ∈ P we have P ↔b Q iff [[P]]↔b [[Q]].

For a set M ⊆ Distr(E ), the convex closure cc(M) is defined by

cc(M) = {
⊕

i∈I piµi | ∑i∈I pi = 1, µi ∈ M, I a finite index set}.

For a relation R ⊆ Distr(E )×Distr(E ) the convex closure of R is defined by

cc(R) = { ⟨
⊕

i∈I piµi,
⊕

i∈I piνi⟩ | µiRνi, ∑i∈I pi = 1, I a finite index set}.

The notion of weak decomposability has been adopted from [22, 24]. The underlying idea stems
from [9]. Weak decomposability provides a convenient dexterity to deal with combined transitions as
well as with sub-distributions. For example, regarding sub-distributions, to distinguish the probabilis-
tic process 1

2 ∂ (a .∂ (0))⊕ 1
2 ∂ (b.∂ (0)) from ∂ (0) a branching probabilistic bisimulation relation relat-

ing 1
2 δ (a .∂ (0))⊕ 1

2 δ (b.∂ (0)) and δ (0) is by weak decomposability also required to relate δ (a .∂ (0))
and δ (b.∂ (0)) to subdistributions of a weak descendant of δ (0), which can only be δ (0) itself. Since
δ (a .∂ (0)) has an a-transition while δ (0) has not, and similar for a b-transition of δ (b.∂ (0)), it follows
that 1

2 ∂ (a .∂ (0))⊕ 1
2 ∂ (b.∂ (0)) and ∂ (0) are not branching probabilistic bisimilar.

By comparison, on finite processes, as used in this paper, the notion of branching probabilistic bisim-
ilarity of Segala & Lynch [27] can be defined in our framework exactly as in (b) and (c) above, but taking
a decomposable instead of a weakly decomposable relation, i.e. if µ R ν and µ =

⊕
i∈I piµi then there

are νi for i ∈ I such that ν =
⊕

i∈I piνi and µi R νi for i ∈ I. This yields a strictly finer equivalence.

Example

(a) The distributions δ (G1) = δ (a .(P 1
2
⊕ Q)) and δ (G2) = δ (a .(∂ (τ .(P 1

2
⊕ Q)) 1

3
⊕ (P 1

2
⊕ Q))) both

admit at the top level an a-transition only:

δ (a .(P 1
2
⊕ Q))

a−→ 1
2 [[P]]⊕

1
2 [[Q]]

δ (a .(∂ (τ .(P 1
2
⊕ Q)) 1

3
⊕ (P 1

2
⊕ Q)))

a−→ 1
3 δ (τ .(P 1

2
⊕ Q))⊕ 1

3 [[P]]⊕
1
3 [[Q]].

Let the relation R contain the pairs

⟨δ (τ .(P 1
2
⊕ Q)), 1

2 [[P]]⊕
1
2 [[Q]]⟩ and ⟨µ,µ⟩ for µ ∈ Distr(E ).

The symmetric closure R† of R is clearly a branching probabilistic bisimulation relation. We claim
that therefore also its convex closure cc(R†) is a branching probabilistic bisimulation relation. Con-
sidering that ⟨δ (τ .(P 1

2
⊕ Q)), 1

2 [[P]]⊕
1
2 [[Q]]⟩ and ⟨1

2 [[P]]⊕
1
2 [[Q]], 1

2 [[P]]⊕
1
2 [[Q]]⟩ are in R, we have

that

⟨1
3 δ (τ .(P 1

2
⊕ Q)⊕ 2

3(
1
2 [[P]]⊕

1
2 [[Q]]), 1

3(
1
2 [[P]]⊕

1
2 [[Q]])⊕ 2

3(
1
2 [[P]]⊕

1
2 [[Q]]))⟩ ∈ cc(R†).

Adding the pair of processes ⟨δ (a .(P 1
2
⊕ Q)),δ (a .(∂ (τ .(P 1

2
⊕ Q)) 1

3
⊕ (P 1

2
⊕ Q)))⟩ and closing for

symmetry, then yields a branching probabilistic bisimulation relation relating δ (G1) and δ (G2).
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(b) The a-derivatives of I1 and I2, i.e. the distributions I′1 = δ (b.P+τ .Q) and I′2 = δ (τ .∂ (b.P+τ .Q)+
b.P + τ .Q) are branching probabilistic bisimilar. A τ-transition of I′2 partially based on its left
branch, can be simulated by I′1 by a partial transition:

I′2 = r·[[I′2]]⊕ (1− r)·[[I′2]]
τ−→ r·δ (b.P+ τ .Q)⊕ (1− r)·[[Q]]

I′1 = r·[[I′1]]⊕ (1− r)·[[I′1]]
(τ)−−→ r·[[I′1]]⊕ (1− r)·[[Q]] = r·δ (b.P+ τ .Q)⊕ (1− r)·[[Q]].

A τ-transition of I′1 can be directly simulated by I′2 of course. It follows that the relation R =
{⟨δ (I1),δ (I2)⟩,⟨I′1, I′2⟩}† ∪ { ⟨µ,µ⟩ | µ ∈ Distr(E ) }, the symmetric relation containing the pairs
mentioned and the diagonal of Distr(E ), constitutes a branching probabilistic bisimulation relation
containing I1 and I2.

In the sequel we frequently need that probabilistic composition respects branching probabilistic bisimi-
larity of distributions, i.e. if, with respect to some index set I, we have distributions µi and νi such that
µi ↔b νi for i ∈ I, then also µ ↔b ν for the distributions µ =

⊕
i∈I piµi and ν =

⊕
i∈I piνi. The property

directly follows from the following lemma, which is proven in [15].

Lemma 10. Let distributions µ1,µ2,ν1,ν2 ∈Distr(E ) and 0⩽ r ⩽ 1 be such that µ1 ↔b ν1 and µ2 ↔b ν2.
Then it holds that µ1 r⊕ µ2 ↔b ν1 r⊕ ν2.

We apply the above property in the proof of the next result. In the sequel any application of Lemma 10
will be done tacitly.

Lemma 11. Let µ,ν ∈ Distr(E ) such that µ ↔b ν and µ =⇒ µ ′ for some µ ′ ∈ Distr(E ). Then there are
ν ′ ∈ Distr(E ) such that ν =⇒ ν ′ and µ ′ ↔b ν ′.

Proof. We check that a partial transition µ
(τ)−−→ µ ′ can be matched by ν given µ ↔b ν . So, suppose µ =

µ1 r⊕ µ2, µ1
τ−→ µ ′

1, and µ ′= µ ′
1 r⊕ µ2. By weak decomposability of ↔b we can find distributions ν̄ ,ν1,ν2

such that ν =⇒ ν̄ = ν1 r⊕ ν2 and µ ↔b ν̄ , ν1 ↔b µ1, ν2 ↔b µ2. Choose distributions ν̄1, ν̄
′
1 such that

ν1 =⇒ ν̄1
(τ)−−→ ν ′

1 and ν̄1 ↔b µ1, ν ′
1 ↔b µ ′

1. Put ν ′ = ν ′
1 r⊕ ν2. Then ν =⇒ ν ′, using Lemma 7c, and we

have by Lemma 10 that ν ′ = ν ′
1 r⊕ ν2 ↔b µ ′

1 r⊕ µ2 = µ ′ since ν ′
1 ↔b µ ′

1 and ν2 ↔b µ2.

5 Branching probabilistic bisimilarity is continuous

Fix a finite set of non-deterministic processes F ⊆E that is transition closed, in the sense that if E ∈ F
and E α−→

⊕
i∈I pi·Fi then also Fi ∈F . Consequently, if µ ∈Distr(F ) and µ

(α)−−→ µ ′ then µ ′ ∈Distr(F ).
Also, if µ ∈Distr(F ) and µ =⇒ µ̄ then µ̄ ∈Distr(F ). By Theorem 1 Distr(F ) is a sequentially compact
subspace of the complete metric space Distr(E ), meaning that every sequence (µi)

∞
i=0 in Distr(F ) has

a subsequence (µik)
∞
k=0 such that limk→∞ µik = µ for some distribution µ ∈ Distr(F ). In particular, if

lim i→∞ µi = µ and µi ∈ Distr(F ), then also µ ∈ Distr(F ), i.e. Distr(F ) is a closed subset of Distr(E ).
Due to the finitary nature of our process algebra, each distribution µ ∈ Distr(E ) occurs in Distr(F ) for
some such F , based on spt(µ).

In the following three lemmas we establish a number of continuity results. Assume lim i→∞ νi = ν .
Then Lemma 12 states that, for a Dirac distribution δ (E), if δ (E) α−→ νi for i ∈N then also δ (E) α−→ ν .
Lemma 13 extends this and shows that, for a general distribution µ , if µ

α−→ νi for i ∈N then µ
α−→ ν .

Finally, Lemma 14 establishes the limit case: if lim i→∞ µi = µ and µi
α−→ νi for i ∈N then µ

α−→ ν .

Lemma 12. Let E ∈ F be a non-deterministic process, α ∈ A an action, (νi)
∞
i=0 ∈ Distr(F )∞ an

infinite sequence in Distr(F ), and ν ∈ Distr(F ) a distribution satisfying lim i→∞ νi = ν . If, for all
i ∈N, δ (E) (α)−−→ νi then it holds that δ (E) (α)−−→ ν .
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Proof. For E ∈ F and α ∈ A , define E↾α = cc({ µ | E α−→ µ}), pronounced E ‘after’ α , to be the
convex closure in Distr(E ) of all distributions that can be reached from E by an α-transition. Then
δ (E) α−→ ν iff ν ∈ E↾α . Recall that transitions for non-deterministic processes are not probabilistically
combined. See Definition 5. Since E↾α ⊆ Distr(F ) is the convex closure of a finite set of distributions,
it is certainly closed in the space Distr(F ). Since it holds that δ (E) α−→ νi for all i ∈N, one has νi ∈ E↾α
for i ∈N. Hence, lim i→∞ νi = ν implies that ν ∈ E↾α , i.e. δ (E) α−→ ν .

For E ∈ F , define E↾(τ) := cc({µ | E τ−→ µ} ∪ {E}). Then δ (E) (τ)−−→ ν iff ν ∈ E↾(τ). The set
E↾(τ)⊆ Distr(F ) is closed, and thus νi ∈ E↾(τ) implies ν ∈ E↾(τ), which means δ (E) (τ)−−→ ν .

The above result for Dirac distributions holds for general distributions as well.
Lemma 13. Let µ,ν ∈ Distr(F ), α ∈ A , (νi)

∞
i=0 ∈ Distr(F )∞, and assume lim i→∞ νi = ν . If it holds

that µ
(α)−−→ νi for all i ∈N, then also µ

(α)−−→ ν .

Proof. Suppose µ
(α)−−→ νi for all i ∈ I. Let µ =

⊕k
j=1 p j ·E j. By Lemma 8, for all i ∈N and 1 ⩽ j ⩽ k

there are νi j such that δ (E j)
(α)−−→ νi j and νi =

⊕k
j=1 p j ·νi j. The countable sequence (νi1,νi2, . . . ,νik)

∞
i=0

of k-dimensional vectors of probability distributions need not have a limit. However, by the sequential
compactness of Distr(F ) this sequence has an infinite subsequence in which the first components νi1
converge to a limit η1. That sequence in turn has an infinite subsequence in which also the second
components νi2 converge to a limit η2. Going on this way, one finds a subsequence (νih1,νih2, . . . ,νihk)

∞
h=0

of (νi1,νi2, . . . ,νik)
∞
i=0 for i0 < i1 < .. . that has a limit, say limh→∞(νih1,νih2, . . . ,νihk) = (η1,η2, . . . ,ηk).

Using that limh→∞ νih = ν , one obtains ν =
⊕k

j=1 p j ·η j. For each j = 1, . . . ,k, by Lemma 12, since
δ (E j)

(α)−−→ νi j for all i ∈ I and limh→∞ νih j = η j, we conclude that δ (E j)
(α)−−→ η j. Thus, by Lemma 7,

µ =
⊕k

j=1 p j ·E j
(α)−−→

⊕k
j=1 p j ·η j = ν .

Next, we consider a partial transition over a convergent sequence of distributions.
Lemma 14. Let (µi)

∞
i=0,(νi)

∞
i=0 ∈ Distr(F )∞ such that lim i→∞ µi = µ and lim i→∞ νi = ν . If it holds that

µi
(α)−−→ νi for all i ∈N, then also µ

(α)−−→ ν .

Proof. Since lim i→∞ µi = µ , we can write µi = (1− ri)µ ⊕ ri µ
′′
i , for suitable µ ′′

i ∈ Distr(F ) and ri ⩾ 0
such that lim i→∞ ri = 0, as guaranteed by Lemma 2. Because µi

(α)−−→ νi, by Lemma 8 there are distribu-
tions ν ′

i ,ν
′′
i ∈ Distr(F ) for i ∈N such that νi = (1− ri)ν

′
i ⊕ riν

′′
i , µ

(α)−−→ ν ′
i , and µ ′′

i
(α)−−→ ν ′′

i . We have
lim i→∞ ν ′

i = ν as well, since lim i→∞ ri = 0. Thus, lim i→∞ ν ′
i = ν and µ

(α)−−→ ν ′
i for i ∈N. Therefore, it

follows by Lemma 13 that µ
(α)−−→ ν .

For µ,ν ∈ Distr(F ), we write µ ⇒n ν if there are η0,η1, . . . ,ηn ∈ Distr(F ) such that µ = η0
(τ)−−→

η1
(τ)−−→ . . .

(τ)−−→ ηn = ν . Clearly, it holds that µ ⇒n ν for some n ∈N in case µ ⇒ ν , because ⇒ is the
transitive closure of (τ)−−→.

We have the following pendant of Lemma 14 for ⇒n.
Lemma 15. Let (µi)

∞
i=0,(νi)

∞
i=0 ∈ Distr(F )∞, lim i→∞ µi = µ and lim i→∞ νi = ν . If µi ⇒n νi for all i ∈N

then µ ⇒n ν .

Proof. By induction on n. Basis, n= 0: Trivial. Induction step, n+1: Given (µi)
∞
i=0,(νi)

∞
i=0 ∈Distr(F )∞,

µ = lim i→∞ µi, and ν = lim i→∞ νi, suppose µi ⇒n+1 νi for all i ∈N. Let (ηi)
∞
i=0 ∈ Distr(F )∞ be such

that µi
(τ)−−→ ηi ⇒n νi for all i ∈ N. Since Distr(F ) is sequentially compact, the sequence (ηi)

∞
i=0 has

a convergent subsequence (ηik)
∞
k=0; put η = limk→∞ ηik . Because µik

(τ)−−→ ηik for all k ∈ N, one has
µ

(τ)−−→ η by Lemma 14. Since ηik ⇒n νik for k ∈N, the induction hypothesis yields η ⇒n ν . It follows
that µ ⇒n+1 ν .
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We adapt Lemma 15 to obtain a continuity result for weak transitions =⇒.

Lemma 16. Let (µi)
∞
i=0,(νi)

∞
i=0 ∈ Distr(F )∞, lim i→∞ µi = µ and lim i→∞ νi = ν . If µi ⇒ νi for all i ∈N,

then µ ⇒ ν .

Proof. Since F contains only finitely many non-deterministic processes, which can do finitely many
τ-transitions only, a global upperbound N exists such that if µ ⇒ ν then µ ⇒k ν for some k ⩽ N.

Moreover, as each sequence µ = η0
(τ)−−→ η1

(τ)−−→ . . .
(τ)−−→ ηk = ν with k < N can be extended to a

sequence µ = η0
(τ)−−→ η1

(τ)−−→ . . .
(τ)−−→ ηN = ν , namely by taking ηi = ν for all k < i ⩽ N, on F the

relations ⇒ and ⇒N coincide. Consequently, Lemma 16 follows from Lemma 15.

The following theorem says that equivalence classes of branching probabilistic bisimilarity in Distr(F )
are closed sets of distributions.

Theorem 17. Let µ̂, ν̂ ∈ Distr(F ) and (νi)
∞
i=0 ∈ Distr(F )∞ such that µ̂ ↔b νi for all i ∈N and ν̂ =

lim i→∞ νi. Then it holds that µ̂ ↔b ν̂ .

Proof. Define the relation R on Distr(F ) by

µ R ν ⇐⇒ ∃(µi)
∞
i=0,(νi)

∞
i=0 ∈ Distr(F )∞ :

lim i→∞ µi = µ ∧ lim i→∞ νi = ν ∧∀i∈N : µi ↔b νi

As µ̂ R ν̂ (taking µi := µ̂ for all i∈ I), it suffices to show that R is a branching probabilistic bisimulation.
Suppose µ R ν . Let (µi)

∞
i=0,(νi)

∞
i=0 ∈Distr(F )∞ be such that lim i→∞ µi = µ , lim i→∞ νi = ν , and

µi ↔b νi for all i∈N. Since lim i→∞ µi =µ , there exist (µ ′
i )

∞
i=0 ∈Distr(F )∞ and (ri)

∞
i=0 ∈R∞ such that

µi = (1− ri)µ ⊕ ri µ
′
i for all i ∈N and lim i→∞ ri = 0.

(i) Towards weak decomposability of R for µ vs. ν , suppose µ =
⊕

j∈J q j · µ̄ j. So, for all i∈N, we
have that µi = (1− ri)

(⊕
j∈J q j · µ̄ j

)
⊕ ri µ

′
i . By weak decomposability of ↔b, there exist ¯̄νi, ν ′

i and νi j

for i∈N and j∈J such that νi =⇒ ¯̄νi, µi ↔b ¯̄νi, ¯̄νi = (1−ri)
(⊕

j∈J q j ·νi j
)
⊕ riν

′
i , µ ′

i ↔b ν ′
i , and µ̄ j ↔b νi j

for j∈ J.
The sequences (νi j)

∞
i=0 for j ∈ J may not converge. However, by sequential compactness of Distr(F )

(and successive sifting out for each j ∈ J) an index sequence (ik)∞
k=0 exists such that the sequences

(νik j)
∞
k=0 converge, say limk→∞ νik j = ν̄ j for j ∈ J. Put ν̄ =

⊕
j∈J q j · ν̄ j. Then it holds that

lim
k→∞

¯̄νik = lim
k→∞

(1− rik)
(⊕

j∈J q j ·νik j
)
⊕ rik ν ′

ik = limk→∞

⊕
j∈J q j ·νik j =

⊕
j∈J q j · ν̄ j = ν̄

as limk→∞ rik = 0 and probabilistic composition is continuous. Since νik =⇒ ¯̄νik for all k ∈ N, one has
limk→∞ νik =⇒ limk→∞

¯̄νik , i.e. ν =⇒ ν̄ , by Lemma 16. Also, µik ↔b ¯̄νik for all k ∈ N. Therefore, by
definition of R, we obtain µ R ν̄ . Since µ̄ j ↔b νik j for all k ∈ N and j ∈ J, it follows that µ̄ j R ν̄ j

for j ∈ J. Thus, ν =⇒ ν̄ =
⊕

j∈J q j · ν̄ j, µ R ν̄ , and µ̄ j R ν̄ j for all j ∈ J, as was to be shown. Hence the
relation R is weakly decomposable.

(ii) For the transfer property, suppose µ
α−→ µ ′ for some α ∈ A . Since, for each i∈N, µi ↔b νi and

µi = (1− ri)µ ⊕ ri µ
′
i , it follows from weak decomposability of ↔b that distributions ν̄i, ν ′

i and ν ′′
i exist

such that νi =⇒ ν̄i, µi ↔b ν̄i, ν̄i = (1− ri)ν ′
i ⊕ riν

′′
i and µ ↔b ν ′

i . By the transfer property for ↔b, for
each i ∈N exist η̄i,η

′
i ∈ Distr(E ) such that

ν
′
i =⇒ η̄i, η̄i

(α)−−→ η
′
i , µ ↔b η̄i, and µ

′ ↔b η
′
i .

We have ν̄ ′
i ∈ Distr(F ) for i ∈ N. Also, η̄i,η

′
i ∈ Distr(F ) for i ∈ N, since F is assumed to be

transition closed. Therefore, by sequential compactness of Distr(F ), the sequences (ν̄ ′
i )

∞
i=0, (η̄i)

∞
i=0,
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(η̄ ′
i )

∞
i=0 have converging subsequences (ν̄ ′

ik)
∞
k=0, (η̄ik)

∞
k=0, and (η̄ ′

ik)
∞
k=0, respectively. Put ν̄ = limk→∞ ν ′

ik ,
η̄ = limk→∞ η̄ik , and η ′ = limk→∞ η ′

ik . As limk→∞ rik = 0, one has limk→∞ ν̄ik = limk→∞ ν ′
ik = ν̄ .

Since νik =⇒ ν̄ik for k ∈N, we obtain limk→∞ νik =⇒ limk→∞ ν̄ik by Lemma 16, thus ν =⇒ ν̄ . Likewise,
as ν ′

ik =⇒ η̄ik for all k ∈ N, one has ν̄ =⇒ η̄ , and therefore ν =⇒ η̄ . Furthermore, because η̄ik
(α)−−→ η ′

ik
for k ∈ N, it follows that η̄

(α)−−→ η ′, now by Lemma 14. From µ ↔b η̄ik for all k ∈ N, we obtain
µ R η̄ by definition of R. Finally, µ ′ ↔b η ′

ik for all k ∈N yields µ ′R η ′. Thus ν =⇒ η̄
(α)−−→ η ′, µ R η̄ ,

and µ ′R η̄ ′, which was to be shown.

The following corollary of Theorem 17 will be used in the next section.

Corollary 18. For each µ ∈ Distr(E ), the set Tµ = {ν ∈Distr(E ) | ν ↔b µ ∧µ ⇒ν } is a sequentially
compact set.

Proof. For µ =
⊕

i∈I pi ·Ei, the set of processes F = {E ∈ E | E occurs in Ei for some i ∈ I } is finite
and closed under transitions. Clearly, µ ∈ Distr(F ). Moreover, Distr(F ) is a sequentially compact
subset of Distr(E ). Taking µi = µ for all i ∈ N in Lemma 16 yields that { ν | µ =⇒ ν } is a closed
subset of Distr(F ). Similarly, the set { ν | ν ↔b µ } is a closed subset of Distr(F ) by Theorem 17.
The statement then follows since the intersection of two closed subsets of Distr(F ) is itself closed, and
hence sequentially compact.

6 Cancellativity for branching probabilistic bisimilarity

With the results of Section 5 in place, we turn to stable processes and cancellativity. In the introduction
we argued that in general it doesn’t need to be the case that two branching probabilistic bisimilar distri-
butions assign the same weight to equivalence classes. Here we show that this property does hold when
restricting to stable distributions. We continue to prove the announced unfolding result, that for every
distribution µ there exists a stable distribution σ such that µ ⇒ σ and µ ↔b σ . That result will be pivotal
in the proof of the cancellation theorem, Theorem 22.

Definition 19. A distribution µ ∈ Distr(E ) is called stable if, for all µ̄ ∈ Distr(E ), µ =⇒ µ̄ and µ ↔b µ̄

imply that µ̄ = µ .

Thus, a distribution µ is called stable if it cannot perform internal activity without leaving its branching
bisimulation equivalence class. By definition of (τ)−−→ it is immediate that if

⊕
i∈I pi·µi is a stable distri-

bution with pi > 0 for i ∈ I, then also each probabilistic component µi is stable. Also, because two stable
distributions µ and ν don’t have any non-trivial partial τ-transitions, weak decomposability between
them amounts to decomposability, i.e. if µ ↔b ν and µ =

⊕
i∈I piµi then distributions νi for i ∈ I exist

such that ν =
⊕

i∈I piνi and µi ↔b νi for i ∈ I.

The next result states that, contrary to distributions in general, two stable distributions are branching
bisimilar precisely when they assign the same probability on all branching bisimilarity classes of E .

Lemma 20. Let µ,ν ∈ Distr(E ) be two stable distributions. Then it holds that µ ↔b ν iff µ[C] = ν [C]
for each equivalence class C of branching probabilistic bisimilarity in E .

Proof. Suppose µ =
⊕

i∈I pi ·Ei, ν =
⊕

j∈J q j ·Fj, and µ ↔b ν . By weak decomposability, ν =⇒ ν̄ =⊕
i∈I pi·νi for suitable νi ∈ Distr(E ) for i ∈ I with νi ↔b δ (Ei) and ν̄ ↔b µ . Hence, ν̄ ↔b µ ↔b ν .

Thus, by stability of ν , we have ν̄ = ν . Say, νi =
⊕

j∈J qi j ·Fj with qi j ⩾ 0, for i ∈ I, j ∈ J. Since
νi ↔b δ (Ei), we have by weak decomposability, δ (Ei) =⇒

⊕
j∈J qi j·µ ′

i j such that δ (Ei) ↔b
⊕

j∈J qi j·µ ′
i j
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and µ ′
i j ↔b δ (Fj) for suitable µ ′

i j ∈ Distr(E ). Since µ is stable, so is δ (Ei). Hence δ (Ei) =
⊕

j∈J qi j·µ ′
i j,

µ ′
i j = δ (Ei), and Ei ↔b Fj if qi j > 0. Put pi j = piqi j, Ei j = Ei if qi j > 0, and Ei j = 0 otherwise, Fi j = Fj

if qi j > 0, and Fi j = 0 otherwise, for i ∈ I, j ∈ J. Then it holds that

µ =
⊕

i∈I pi ·Ei =
⊕

i∈I pi·
(⊕

j∈J qi j ·Ei
)
=

⊕
i∈I

⊕
j∈J piqi j ·Ei =

⊕
i∈I

⊕
j∈J pi j ·Ei j

ν =
⊕

i∈I pi·νi =
⊕

i∈I pi·
(⊕

j∈J qi j ·Fj
)
=

⊕
i∈I

⊕
j∈J piqi j ·Fj =

⊕
i∈I

⊕
j∈J pi j ·Fi j .

Now, for any equivalence class C of E modulo ↔b, it holds that Ei j ∈ C ⇔ Fi j ∈ C for all indices
i ∈ I, j ∈ J. So, µ[C] = ∑i∈I, j∈J : Ei j∈C pi j = ∑i∈I, j∈J : Fi j∈C pi j = ν [C].

For the reverse direction, suppose µ =
⊕

i∈I pi ·Ei, ν =
⊕

j∈J q j ·Fj, with pi,q j > 0, and µ[C] = ν [C]
for each equivalence class C ∈ E /↔.

For i ∈ I and j ∈ J, let Ci and Dj be the equivalence class in E of Ei and Fj modulo ↔b. Define
ri j = δi j piq j/µ[Ci], for i ∈ I, j ∈ J, where δi j = 1 if Ei ↔b Fj and δi j = 0 otherwise. Then it holds that

∑ j∈J ri j = ∑ j∈J
δi j piq j

µ[Ci]
=

pi

µ[Ci]
∑ j∈J δi j q j =

piν [Ci]

µ[Ci]
= pi.

Since δi j piq j/µ[Ci] = δi j piq j/ν [Dj] for i ∈ I, j ∈ J, we also have ∑ i∈I ri j = q j. Therefore, we can write
µ =

⊕
i∈I

⊕
j∈J ri j ·Ei j and ν =

⊕
i∈I

⊕
j∈J ri j ·Fi j for suitable Ei j and Fi j such that Ei j ↔b Fi j. Calling

Lemma 10 it follows that µ ↔b ν .

Next, in Lemma 21, we are about to prove a crucial property for our proof of cancellativity, the proof of
Theorem 22 below. Generally, a distribution may allow inert partial transitions. However, the distribution
can be unfolded to reach via inert partial transitions a stable distribution, which doesn’t have these by
definition. To obtain the result we will rely on the topological property of sequential compactness of the
set Tµ = {µ ′ | µ ′ ↔b µ ∧µ =⇒ µ ′ } introduced in the previous section.

Lemma 21. For all µ ∈ Distr(E ) there is a stable distribution σ ∈ Distr(E ) such that µ ⇒ σ .

Proof. Define the weight of a distribution by wgt(µ)=∑E∈E µ(E) · c(E), i.e., the weighted average of the
complexities of the states in its support. In view of these definitions, E α−→ µ implies wgt(µ)<wgt(δ (E))
and µ

α−→ µ ′ implies wgt(µ ′)< wgt(µ). In addition, µ =⇒ µ ′ implies wgt(µ ′)⩽wgt(µ).
For a distribution µ ∈Distr(E ), the set Tµ is given by Tµ = {µ ′ | µ ′ ↔b µ ∧µ =⇒ µ ′ }. Consider the

value inf{wgt(µ ′) | µ ′ ∈ Tµ }. By Corollary 18, Tµ is a sequentially compact set. Since the infimum over
a sequentially compact set will be reached, there exists a distribution σ such that µ =⇒ σ , σ ↔b µ , and
wgt(σ) = inf{wgt(µ ′) | µ ′ ∈ Tµ }. By definition of Tµ , the distribution σ must be stable.

We have arrived at the main result of the paper, slightly more general formulated compared to the descrip-
tion in the introduction. The message remains the same: if two distributions are branching probabilistic
bisimilar and have components that are branching probabilistic bisimilar, then the components that re-
main after cancelling the earlier components are also branching probabilistic bisimilar. As we see, the
previous lemma is essential in the proof as given.

Theorem 22 (Cancellativity). Let µ,µ ′,ν ,ν ′ ∈ Distr(E ) and 0 < r ⩽ 1 be such that µ r⊕ ν ↔b µ ′
r⊕ ν ′

and ν ↔b ν ′. Then it holds that µ ↔b µ ′.

Proof. Choose µ , µ ′, ν , ν ′, and r according to the premise of the theorem. By Lemma 21, a stable
distribution σ exists such that µ r⊕ ν =⇒ σ and σ ↔b µ r⊕ ν . By weak decomposability, we can find
distributions µ̄ and ν̄ such that σ =⇒ µ̄ r⊕ ν̄ , µ̄ ↔b µ , and ν̄ ↔b ν . By stability of σ we have σ = µ̄ r⊕ ν̄ .
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Thus µ̄ r⊕ ν̄ is stable. Symmetrically, there are distributions µ̄ ′ and ν̄ ′ such that µ̄ ′ ↔b µ ′, ν̄ ′ ↔b ν ′ and
such that µ̄ ′

r⊕ ν̄ ′ is stable. Note, µ̄ r⊕ ν̄ ↔b µ r⊕ ν ↔b µ ′
r⊕ ν ′ ↔b µ̄ ′

r⊕ ν̄ ′.
Let C ⊆ E be an equivalence class of E /↔b. The distributions µ̄ r⊕ ν̄ and µ̄ ′

r⊕ ν̄ ′ are stable and
µ̄ r⊕ ν̄ ↔b µ̄ ′

r⊕ ν̄ ′. From Lemma 20 we obtain that (µ̄ r⊕ ν̄)[C] = (µ̄ ′
r⊕ ν̄ ′)[C]. Since ν and ν̄ are stable

and ν̄ ↔b ν̄ ′, we have ν̄ [C] = ν̄ ′[C] for the same reason. Because (µ̄ r⊕ ν̄)[C] = r · µ̄[C]+ (1−r) · ν̄ [C]
and (µ̄ ′

r⊕ ν̄ ′)[C] = r · µ̄ ′[C]+ (1−r) · ν̄ ′[C], we calculate

r · µ̄[C] = (µ̄ r⊕ ν̄)[C]− (1−r) · ν̄ [C] = (µ̄ ′
r⊕ ν̄

′)[C]− (1−r) · ν̄ ′[C] = r · µ̄
′[C].

Since r ̸= 0, it follows µ̄[C] = µ̄ ′[C]. Since µ̄ and µ̄ ′ are stable it follows by Lemma 20 that µ̄ ↔b µ̄ ′.
Consequently, µ ↔b µ̄ ↔b µ̄ ′ ↔b µ ′. In particular µ ↔b µ ′, as was to be shown.

7 Concluding remarks

We have shown a cancellation law for distributions with respect to branching probabilistic bisimilarity.
The result rests on the notion of a stable distribution. Stable distributions enjoy two properties that have
been essential to our set-up. (i) Every distribution has a weak unfolding towards a stable distribution
that is branching probabilistic bisimilar. (ii) Branching probabilistic bisimilarity for stable distributions
is determined by their summed probability for equivalence classes of non-deterministic processes. Tech-
niques from metric topology have been used to establish the first result.

We used the cancellativity result in [16] in order to obtain a complete axiomatisation of branching
probabilistic bisimilarity. The technical report [15] contains a proof sketch in line with this paper. Yet,
as cancellativity is such a fundamental property, and the notion of branching probabilistic bisimulation
is mathematically quite involved, we regard it necessary to provide a full, detailed proof.

The continuity results of Section 5, as well as the argumentation from metric topology at other
places, are exploited to deal with the uncountable number of inert transitions that arise from combined
transitions. One may wonder if the main theorems of the paper can be achieved based on combinatorial
arguments. Intuitively, transitions span a convex polyhedron and the uncountability of the branching of
transitions may be reduced to the finiteness of the transitions spanning the polyhedron. Despite a number
of attempts, we have been forced to leave the question of a simpler combinatorial proof open.

We leave it as open question for future research weather cancellativity holds for larger classes of
probabilistic processes, as could be obtained, for instance, by adding recursion, uncountable choice
and/or parallel composition to the syntax. A further topic for future research is the study of cancellativity
for other weak variants of probabilistic bisimulation, in particular weak probabilistic bisimulation.

Other future work is to be devoted to the construction of an efficient decision algorithm for branching
probabilistic bisimilarity. A decision procedure for strong probabilistic bisimilarity based on so-called
extended ordered binary trees has been proposed in [4]. An improved algorithm based on partition
refinement is presented in [18]. Partition refinement algorithms for weak and branching probabilistic
bisimilarity on states are proposed in [29]. Reduction of weak probabilistic bisimilarity checking of the
state-based approach of [8] to linear programming is studied in [12]. Although it is currently not clear
how to construct an algorithm deciding branching probabilistic bisimilarity as put forward in this paper,
it is likely that the procedures of [17] and [29] can serve as a starting point.
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