A Lean-Congruence Format for EP-Bisimilarity

Rob van Glabbeek*® Peter Hofner Weiyou Wang
School of Informatics School of Computing
University of Edinburgh, UK Australian National University

School of Computer Science and Engineering Canberra, Australia

University of New South Wales peter.hoefner@anu.edu.au

Sydney, Australia weiyou.wang@anu.edu.au

rvgQcs.stanford.edu

Enabling preserving bisimilarity is a refinement of strong bisimilarity that preserves safety as well as
liveness properties. To define it properly, labelled transition systems needed to be upgraded with a
successor relation, capturing concurrency between transitions enabled in the same state. We enrich
the well-known De Simone format to handle inductive definitions of this successor relation. We
then establish that ep-bisimilarity is a congruence for the operators, as well as lean congruence for
recursion, for all (enriched) De Simone languages.

1 Introduction

Recently, we introduced a finer alternative to strong bisimilarity, called enabling preserving bisimilarity.
The motivation behind this concept was to preserve liveness properties, which are not always preserved
by classical semantic equivalences, including strong bisimilarity.

Example 1.1 ([13]) Consider the following two programs, and assume that all variables are initialised
to0

while (true) do x:=1 while (true) do || x := 1;
choose y = y+1;
if true then y := y+1; od
if x = 0 then x := 1;
end — —
od yi=y+1 y:=y+1

The code on the left-hand side presents a non-terminating while-loop offering an internal nondetermin-
istic choice. The conditional if x = 0 then x := I describes an atomic read-modify-write operation.'
Since the non-deterministic choice does not guarantee to ever pick the second conditional, this example
should not satisfy the liveness property ‘eventually x=1".

The example on the right-hand side is similar, but here two different components handle the variables
x and y separately. The two programs should be considered independent — by default we assume they are
executed on different cores. Hence the property ‘eventually x=1" should hold.

The two programs behave differently with regards to (some) liveness properties. However, it is
easy to verify that they are strongly bisimilar, when considering the traditional modelling of such code
in terms of transition systems. In fact, their associated transition systems, also displayed above, are
identical. Hence, strong bisimilarity does not preserve all liveness properties.

Enabling preserving bisimilarity (ep-bisimilarity) — see next section for a formal definition — distin-
guishes these examples and preserves liveness. In contrast to classical bisimulations, which are relations
of type States x States, this equivalence is based on triples. An ep-bisimulation additionally maintains

*Supported by Royal Society Wolfson Fellowship RSWF\R1\221008
"https://en.wikipedia.org/wiki/Read-modify-write

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2023).

EPTCS 387, 2023, pp. 59-75, doi:10.4204/EPTCS.387.6

© R.J. van Glabbeek, P. Hofner & W. Wang
This work is licensed under the
Creative Commons Attribution License.

http://dx.doi.org/10.4204/EPTCS.387.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4712-7423
https://orcid.org/0000-0002-2141-5868
https://en.wikipedia.org/wiki/Read-modify-write

60 A Lean-Congruence Format for EP-Bisimilarity

for each pair of related states p and g a relation R between the transitions enabled in p and ¢, and this
relation should be preserved when matching related transitions in the bisimulation game. When formal-
ising this, we need transition systems upgraded with a successor relation that matches each transition ¢
enabled in a state p to a transition ¢’ enabled in p’, when performing a transition from p to p’ that does
not affect . Intuitively, ¢’ describes the same system behaviour as ¢, but the two transitions could be
formally different as they may have different sources. It is this successor relation that distinguishes the
transition systems in the example above.

In [13], we showed that ep-bisimilarity is a congruence for all operators of Milner’s Calculus of Com-
munication Systems (CCS), enriched with a successor relation. We extended this result to the Algebra of
Broadcast Communication with discards and Emissions (ABCdE), an extension of CCS with broadcast
communication, discard actions and signal emission. ABCdE subsumes many standard process algebras
found in the literature.

In this paper, we introduce a new congruence format for structural operational semantics, which is
based on the well-known De Simone Format and respects the successor relation. This format allows us
to generalise the results of [13] in two ways: first, we prove that ep-bisimilarity is a congruence for all
operators of any process algebras that can be formalised in the De Simone format with successors. Ap-
plicable languages include CCS and ABCdE. Second, we show that ep-bisimilarity is a lean congruence
for recursion [9]. Here, a lean congruence preserves equivalence when replacing closed subexpressions
of a process by equivalent alternatives.

2 Enabling Preserving Bisimilarity

To build our abstract theory of De Simone languages and De Simone formats, we briefly recapitulate the
definitions of labelled transition systems with successors, and ep-bisimulation. A detailed description
can be found in [13].

A labelled transition system (LTS) is a tuple (S, Tr, source, target,{) with S and Tr sets of states and
transitions, source,target : Tr — S and (: Tr — &, for some set .Z of transition labels. A transition
t € Tr of an LTS is enabled in a state p € S if source(t) = p. The set of transitions enabled in p is en(p).
Definition 2.1 (LTSS [13]) A labelled transition system with successors (LTSS) is a tuple (S, Tr, source,
target, {,~) with (S, Tr, source,target,f) an LTS and ~» C Tr x Tr x Tr the successor relation such that
if (t,u,v) € ~ (also denoted by ¢ ~, v) then source(t) = source(u) and source(v) = target(u).
Example 2.2 Remember that the ‘classical’ LTSs of Example 1.1 are identical. Let #; and #, be the two
transitions corresponding to y:=y+1 in the first and second state, respectively, and let u be the transition
for assignment x:=1. The assignments of x and y in the right-hand program are independent, hence
t; ~, tr and u ~»;, u. For the other program, the situation is different: as the instructions correspond to a
single component (program), all transitions affect each other, i.e. ~ = 0.

Definition 2.3 (Ep-bisimilarity [13]) Let (S, Tr, source, target,{,~) be an LTSS. An enabling preserv-
ing bisimulation (ep-bisimulation) is a relation Z C S x S x Z(Tr x Tr) satisfying

1. if (p,q,R) € Z then R C en(p) x en(q) such that

a. Vt€en(p). Jucen(q).t Ru,
b. Yu € en(q). 3t € en(p). t Ru, and
c. if t Ruthen £(t) = {(u); and
2. if (p,q,R) € Z and v R w, then (target(v),target(w),R’") € % for some R’ such that
a. iftRuandt~»,t then 3u'. u~s, ' A\t R/, and
b. ift Ruand u~», u' then 3¢'. t ~, ' Nt R' v/,

).
).

R.J. van Glabbeek, P. Hofner & W. Wang

Table 1: Structural operational semantics of CCS

61

a. a .y
a X —>x y—>y
—a__ L a L a
ax—x x+y—x x+y—y
x5 x x-S x y Sy y 1y
ni |L T e n |R
xly = x|y xly — x|y x|y — x[y’
x5 ¥ (0¢ LUL) x5 ¥ (Sx|S) %5 y
; \L 0 f] ———g— recau
AL —\L A f] = ¥ [f] XIS) =y

Two states p and ¢ in an LTSS are enabling preserving bisimilar (ep-bisimilar), denoted as p £, g, if
there is an enabling preserving bisimulation % such that (p,q,R) € % for some R.

Without Items 2.a and 2.b, the above is nothing else than a reformulation of the classical definition of
strong bisimilarity. An ep-bisimulation additionally maintains for each pair of related states p and g a
relation R between the transitions enabled in p and ¢. Items 2.a and 2.b strengthen the condition on
related target states by requiring that the successors of related transitions are again related relative to
these target states. It is this requirement which distinguishes the transition systems for Example 1.1. [13]

Lemma 2.4 [Proposition 10 of [13]] £, is an equivalence relation.

3 An Introductory Example: CCS with Successors

Before starting to introduce the concepts formally, we want to present some motivation in the form
of the well-known Calculus of Communicating Systems (CCS) [17]. In this paper we use a proper
recursion construct instead of agent identifiers with defining equations. As in [3], we write (X|S) for the
X-component of a solution of the set of recursive equations S.

CCS is parametrised with set ¢ of handshake communication names. € := {¢ | c € €'} is the set of
handshake communication co-names. Actees =€ \JE {7} is the set of actions, where 7 is a special
internal action. Complementation extends to ¢’ % by ¢ = c.

Below, ¢ ranges over & % and a, ¢, N over Actccs. A relabelling is a function f : 4 — % it
extends to Actces by f(€) = f(c), f(1) = 1.

The process signature ¥ of CCS features binary infix-written operators + and |, denoting choice
and parallel composition, a constant 0 denoting inaction, a unary action prefixing operator o._ for each
action o € Actccs, a unary restriction operator _\L for each set L C ¢, and a unary relabelling operator
_[f] for each relabelling f : € — €.

The semantics of CCS is given by the set R of transition rules, shown in Table 1. Here L= {¢ | c €
L}. Each rule has a unique name, displayed in blue.? The rules are displayed as templates, following the
standard convention of labelling transitions with label variables c, o, ¢, etc. and may be accompanied
by side conditions in green, so that each of those templates corresponds to a set of (concrete) transition
rules where label variables are “instantiated” to labels in certain ranges and all side conditions are met.
The rule names are also schematic and may contain variables. For example, all instances of the transition

. o .
rule template +; are named + , whereas there is one rule name — for each action & € Actccs.

2Qur colourings are for readability only.

62 A Lean-Congruence Format for EP-Bisimilarity

The transition system specification (X,R) is in De Simone format [22], a special rule format that
guarantees properties of the process algebra (for free), such as strong bisimulation being a congruence
for all operators. Following [13], we leave out the infinite sum Y ;c;x; of CCS [17], as it is strictly
speaking not in De Simone format.

In this paper, we will extend the De Simone format to also guarantee properties for ep-bisimulation.
As seen, ep-bisimulation requires that the structural operational semantics is equipped with a successor
relation ~». The meaning of y ~+¢ x' is that transition y is unaffected by — denoted * { — and that
when doing { instead of), afterwards a variant ' of y is still enabled. Table 2 shows the successor rules
for CCS, which allow the relation ~ to be derived inductively. It uses the following syntax for transitions
X, which will be formally introduced in Section 6. The expression ¢+ Q refers to the transition that is
derived by rule -+ of Table 1, with ¢ referring to the transition used in the unique premise of this rule, and
Q referring to the process in the inactive argument of the +-operator. The syntax for the other transitions
is analogous. A small deviation of this scheme occurs for recursion: recs(X,S,t) refers to the transition
derived by rule reca., out of the premise #, when deriving a transition of a recursive call (X|S).

In Table 2 each rule is named, in orange, after the number of the clause of Definition 20 in [13], were
it was introduced.

The primary source of concurrency between transition ¥ and { is when they stem from opposite
sides of a parallel composition. This is expressed by Rules 7a and 7b. We require all obtained successor
statements x ~»¢ x' to satisfy the conditions of Definition 2.1 — this yields Q' = target(w) and P’ =
target(v); in [13] Q' and P’ were written this way.

In all other cases, successors of x are inherited from successors of their building blocks.

When ¢ stems from the left side of a + via rule - of Table 1, then any transition y stemming from
the right is discarded by &, so x 2 . Thus, if ¥ — { then these transitions have the form y = ¢+ Q and
{ = v+ 0, and we must have 7 = v. So 7 ~», ¢’ for some transition #’. As the execution of { discards the
summand Q, we also obtain y ~¢ t'. This motivates Rule 3a. Rule 4a follows by symmetry.

In a similar way, Rule 8a covers the case that y and { both stem from the left component of a parallel
composition. It can also happen that y stems form the left component, whereas { is a synchronisation,
involving both components. Thus y = ¢t|,Q and { = v|.w. For x - { to hold, it must be that 7 = v,
whereas the w-part of { cannot interfere with ¢. This yields the Rule 8b. Rule 8c is explained in a similar
vain from the possibility that { stems from the left while x is a synchronisation of both components.
Rule 9 follows by symmetry. In case both y and { are synchronisations involving both components, i.e.,
X = t|.u and § = v|.w, it must be that # — v and u — w. Now the resulting variant ' of x after { is
simply #'|u’, where t ~+, t" and u ~,, «’. This underpins Rule 10.

If the common source O of x and { has the form P[f], ¥ and { must have the form ¢[f] and v[f].
Whether ¢ and v are concurrent is not influenced by the renaming. So # —* v. The variant of ¢ that remains
after doing v is also not affected by the renaming, so if 7 ~», ' then x ~+¢ ¢'[f]. The case that O = P\L
is equally trivial. This yields Rules 11a and 11b.

In case O = (X|S), x must have the form reca.(X,S,t), and { has the form reca.(X,S,v), where ¢
and v are enabled in (Sx|S). Now x = { only if # —*v, so t~»,¢’ for some transition ¢’. The recursive call
disappears upon executing £, and we obtain y ~+¢ t'. This yields Rule 11c.

Example 3.1 The programs from Example 1.1 could be represented in CCS as P:= (X|S) where

S = { ;(: a.;(—i—b.Y and Q := (Z|{Z = a.Z})|b.0. Here a,b € Actccs are the atomic actions in-
=a.

crementing y and x. The relation matching P with Q and (Y,S) with (Z|{Z = a.Z})|0 is a strong bisim-

ulation. Yet, P and Q are not ep-bisimilar, as the rules of Table 2 derive u ~;, u (cf. Example 2.2)

R.J. van Glabbeek, P. Hofner & W. Wang 63

Table 2: Successor rules for CCS

troy ! U~y
—V/ 3a —w/ 4a
t+LQ ’\/?VJrIQt P+RM ’\/'>P+Rw u
trop ' U~y
- Ta . 10 — b
t], 0 '\”P\th‘LQ t]cu ~ylew I |cu P|RuMV‘LQP 7
t~s, t t~s, t t~s, t
; 8a Y 8D — 8c
t’LQ'\”vlLQt ‘LQ t|LQ Mv\cwt ‘LQ t‘cu'\”v\LQt |C”
/ / /
U~y U u~->y, U u~>y, U
- - 9a Y — 9% ———— 9
Plu Plpw Plyu Plu ,\/)V‘CWP 7 tfcu “’)P\th|c”
/ / /
£ Aoy t £~y t Aoyt
5 lla —/llb /l]('
t\L ~L \L t[f} ~if) [f} reCAct(XaSat) M recae(X,S,v)

where u = (Z|{Z = a.Z}>|R£>0 and 1| = reca(Z,{Z=a.Z},~%Q)|,b.0. This cannot be matched by P,
thus violating condition 2.b. of Definition 2.3.

In this paper we will introduce a new De Simone format for transition systems with successors (TSSS).
We will show that <, is a congruence for all operators (as well as a lean congruence for recursion) in
any language that fits this format. Since the rules of Table 2 fit this new De Simone format, it follows
that €, is a congruence for the operators of CCS.

Informally, the conclusion of a successor rule in this extension of the De Simone format must have the
form § ~+¢ ¢’ where £, & and {' are open transitions, denoted by transition expressions with variables,
formally introduced in Section 6. Both { and £ must have a leading operator R and S of the same type,
and the same number of arguments. These leading operators must be rule names of the same type. Their
arguments are either process variables P, Q, ... or transition variables ¢, u, ..., as determined by the trigger
sets Iy and I5 of R and S. These are the sets of indices listing the arguments for which rules R and S have
a premise. If the i arguments of R and S are both process variables, they must be the same, but for the
rest all these variables are different. For a subset I of Ir N, the rule has premises #; ~,, t! for i € I,
where #; and u; are the i/ arguments of R and s, and 1] is a fresh variable. Finally, the right-hand side of
the conclusion may be an arbitrary univariate transition expression, containing no other variables than:

o thet/ foriel,

* at; occurring in §, with i ¢ I,

» a fresh process variable P/ that must match the target of the transition u; for i € I;\/,

* or a fresh transition variable whose source matches the target of u; for i € Is\/, and

e any P occurring in both { and &, or any fresh transition variable whose source must be P.

The rules of Table 2 only feature the first three possibilities; the others occur in the successor relation of
ABCdE - see Section 8.

4 Structural Operational Semantics

Both the De Simone format and our forthcoming extension are based on the syntactic form of the op-
erational rules. In this section, we recapitulate foundational definitions needed later on. Let Vp be an
infinite set of process variables, ranged over by X, Y, x,y, x;, etc.

64 A Lean-Congruence Format for EP-Bisimilarity

Definition 4.1 (Process Expressions [8]) An operator declaration is a pair (Op,n) of an operator sym-
bol Op ¢ Vp and an arity n € N. An operator declaration (c,0) is also called a constant declaration. A
process signature is a set of operator declarations. The set P"(X) of process expressions over a process
signature X is defined inductively by:

 Vp CP(Y),

 if (Op,n) € Xand py,...,p, € P"(X) then Op(p1,...,pn) € P"(X), and

¢ if Vg CVp,S: Vs — P (X) and X € Vg, then (X|S) € P"(X).
A process expression c() is abbreviated as ¢ and is also called a constant. An expression (X|S) as appears
in the last clause is called a recursive call, and the function S therein is called a recursive specification. It
is often displayed as {X = Sx | X € Vis}. Therefore, for a recursive specification S, Vs denotes the domain
of S and Sx represents S(X) when X € V. Each expression Sy for Y € Vg counts as a subexpression of
(X|S). An occurrence of a process variable y in an expression p is free if it does not occur in a subex-
pression of the form (X|S) with y € V. For an expression p, var(p) denotes the set of process variables
having at least one free occurrence in p. An expression is closed if it contains no free occurrences of
variables. Let P"(X) be the set of closed process expressions over X.

Definition 4.2 (Substitution) A X-substitution o is a partial function from Vp to P"(X). It is closed if
it is a total function from Vp to P"(X).

If p € P"(X) and o a E-substitution, then p[c] denotes the expression obtained from p by replacing,
for x in the domain of o, every free occurrence of x in p by o(x), while renaming bound process vari-
ables if necessary to prevent name-clashes. In that case p[o] is called a substitution instance of p. A
substitution instance p[c] where o is given by o (x;) = g; for i € I is denoted as p[q;/x;]ics, and for S a
recursive specification (p|S) abbreviates p[(Y[S) /Y]yevs.

These notions, including “free” and “closed”, extend to syntactic objects containing expressions, with
the understanding that such an object is a substitution instance of another one if the same substitution
has been applied to each of its constituent expressions.

We assume fixed but arbitrary sets .Z and N of transition labels and rule names.

Definition 4.3 (Transition System Specification [16]) Let X be a process signature. A X-(transition)
literal is an expression p —s g with p,q € P"(X) and a € Z. A transition rule over X is an expression
of the form % with H a finite list of X-literals (the premises of the transition rule) and A a X-literal (the
conclusion). A transition system specification (TSS) is a tuple (£,R,N) with R a set of transition rules
over X, and N : R — N a (not necessarily injective) rule-naming function, that provides each rule r € R
with a name N(r).

Definition 4.4 (Proof) Assume literals, rules, substitution instances and rule-naming. A proof of a lit-
eral A from a set R of rules is a well-founded, upwardly branching, ordered tree where nodes are labelled
by pairs (i, R) of a literal y and a rule name R, such that
* the root is labelled by a pair (4,S), and
o if (u,R) is the label of a node and (u;,Ry),..., (Un, Ry) is the list of labels of this node’s children
then #1=-K2 is a substitution instance of a rule in R with name R.

Definition 4.5 (Associated LTS [12]) The associated LTS of a TSS (X,R,N) is the LTS (S, Tr, source,
target, () with S := P"(X) and Tr the collection of proofs 7 of closed Z-literals p —— ¢ from R, where
source(m) = p, {(7) = a and target(mw) = q.

Above we deviate from the standard treatment of structural operational semantics [16, 8] on four counts.
Here we employ CCS to motivate those design decisions.

R.J. van Glabbeek, P. Hofner & W. Wang 65

In Definition 4.5, the transitions 77 are taken to be proofs of closed literals p —=+ ¢ rather than
such literals themselves. This is because there can be multiple a-transitions from p to ¢ that need to be
distinguished when taking the concurrency relation between transitions into account. For example, if
p:=(X|{X=aX+cX})and g:= (Y|{Y = a.Y}) then p|q has three outgoing transitions:

a c

a - c
a.p—p cp—>p a
a L c R -
a.p+cp—p a.p+cp—p a.q—q
(g l'CAc —— reCAu — l'eCAc
p—p p—p q—q
— L — L ——k
pla — pla pla — plg pla — plg

The rightmost transition is concurrent with the middle one, whereas the leftmost one is not.
A similar example can be used to motivate why in Definition 4.4 the nodes are labelled not only by
the inferred literal, but also by the name of the applied rule.

ap—p N c.p—rp N a.p—rp
- a4 - ¢ Mm® - a4
a.p—i—c.pi)p a.p—i—c.p%p a.p+c.pi>p
g leCAa ——— le€CAu g Te€CAc
p—p | p—p | p—p |
L : L R
plp == plp plp == plp plp == plp

The rightmost transition is concurrent with the middle one, but the leftmost one is not. If we were to
erase the rule names, the difference between these two transitions would disappear.

In Definition 4.3 we require the premises of rules to be lists rather than sets, and accordingly in
Definition 4.4 we require proof trees to be ordered. This is to distinguish transitions/proofs in which a
substitution instance of a rule has two identical premises (corresponding to different arguments of the
leading operator) with different proofs. This phenomenon does not occur in CCS, but we could have
illustrated it with CSP [5] or ABCdE [13].

Finally, suppose that in Definition 4.3 we had chosen the rule-naming function N to be the identity.
This is equivalent to not having a rule-naming function at all, instead labelling nodes in proofs with rules
rather than names of rules. Then in the transition

a0-%0
X|{X =a.0) %0

reCAcr

we should replace the generic name recy, of a recursion rule with the specific rule employed. This could

be the rule a.O——>Za Lza
(XHX =a0}) —z) XX =y}) =2) _
sends y to a.0. To avoid the resulting unnecessary duplication of transitions, we give both recursion rules

the same name.

, but just as well the rule , when employing a substitution that

5 De Simone Languages

The syntax of a De Simone language is specified by a process signature, and its semantics is given as
a TSS over that process signature of a particular form [22], nowadays known as the De Simone format.
Here, we extend the De Simone format to support indicator transitions, as occur in [11, 10, 13]. These
are transitions p N q for which it is essential that p = g. They are used to convey a property of the state
p rather than model an action of p. To accommodate them we need a variant of the recursion rule whose
conclusion again is of the form r L 7. This variant will be illustrated in Section 8.

As for ., we fix a set Act C £ of actions.

66 A Lean-Congruence Format for EP-Bisimilarity

Definition 5.1 (De Simone Format) A TSS (X, R,N) is in De Simone format if for every recursive call
(X|S) and every a € Act and ¢ € £ \Act, it has transition rules

Wxls) —=y (Sx|S) i>y
(x]8) % y (X|S) —= (x]S)

recy, forsome y ¢ var((Sx|S)),

and each of its other transition rules (De Simone rules) has the form

{x,‘i>y,‘|i61}

0p(x17...,xn)i>q

where (Op,n) € X, I C{1,...,n}, a,a; € £, x; (for 1 <i < n) and y; (for i € I) are pairwise distinct
process variables, and ¢ is a univariate process expression containing no other free process variables than
xi (1 <i<nAi¢lI) andyj; (i €I), having the properties that

yi ifiel

x; otherwise.

* each subexpression of the form (X|S) is closed, and
e ifae L \Actthena; € L\Act (i € I) and g = Op(zy,...,z,), Where z; := {

Here univariate means that each variable has at most one free occurrence in it. The last clause above
guarantees that for any indicator transition ¢, one with £(¢) € £ \Act, we have rarget(t) = source(t). For
a De Simone rule of the above form, n is the arity, (Op,n) is the type, a is the label, q is the target, I is
the rrigger set and the tuple (¢;,...,¢,) with {; = a; if i € I and ¢; = otherwise, is the trigger. Transition
rules in the first two clauses are called recursion rules.

We also require that if N(r) =N(#/) for two different De Simone rules r,7 € R, then r,7 have the
same type, target and trigger set, but different triggers. The names of the recursion rules are as indicated
in blue above, and differ from the names of any De Simone rules.

Many process description languages encountered in the literature, including CCS [17] as presented in
Section 3, SCCS [18], ACP [3] and MEUJE [2], are De Simone languages.

6 Transition System Specifications with Successors

In Section 4, a process is denoted by a closed process expression; an open process expression may contain
variables, which stand for as-of-yet unspecified subprocesses. Here we will do the same for transition
expressions with variables. However, in this paper a transition is defined as a proof of a literal p —— ¢
from the operational rules of a language. Elsewhere, a transition is often defined as a provable literal
p — ¢, but here we need to distinguish transitions based on these proofs, as this influences whether two
transitions are concurrent.

It turns out to be convenient to introduce an open proof of a literal as the semantic interpretation
of an open transition expression. It is simply a proof in which certain subproofs are replaced by proof
variables.

Definition 6.1 (Open Proof) Given definitions of literals, rules and substitution instances, and a rule-
naming function N, an open proof of a literal A from a set R of rules using a set V of (proof) variables is
a well-founded, upwardly branching, ordered tree of which the nodes are labelled either by pairs (i,R)
of a literal u and a rule name R, or by pairs (i, px) of a literal y and a variable px € V such that

* the root is labelled by a pair (A,),
* if (u,px) is the label of a node then this node has no children,

R.J. van Glabbeek, P. Hofner & W. Wang 67

* if two nodes are labelled by (i,px) and (i, px) separately then yt = ', and
e if (1,R) is the label of a node and (u1, 1), - - -, (Un, Xn) is the list of labels of this node’s children
then TR is a substitution instance of a rule named R.

Let V7 be an infinite set of transition variables, disjoint from Vp. We will use tx, ux, vx,ty, tx;, etc. to
range over V1.

Definition 6.2 (Open Transition) Fix a TSS (X, R,N). An open transition is an open proof of a X-literal
from R using V7. For an open transition 7, var,(f) denotes the set of transition variables occurring in 7;
if its root is labelled by (p —— g, x) then src,(7) = p, £o(f) = a and tar,(f) = q. The binding function B;
of 7 from vary(f) to X-literals is defined by B;(rx) = u if tx € var,(f) and (u,zx) is the label of a node
in 7. Given an open transition, we refer to the subproofs obtained by deleting the root node as its direct
subtransitions.

All occurrences of transition variables are considered free. Let T" (X, R,N) be the set of open transi-
tions in the TSS (X, R,N) and T"(X, R,N) the set of closed open transitions. We have T (X, R,N) = Tr.

Let en,(p) denote {7 | src.(f) = p}.

Definition 6.3 (Transition Expression) A transition declaration is a tuple (R,n,I) of a transition con-
structor R, an arity n € N and a trigger set I C {1,...,n}. A transition signature is a set of transition
declarations. The set TIE" (Xp, X7) of transition expressions over a process signature p and a transition
signature X7 is defined inductively as follows.
e if &x € V7 and U is a X-literal then (tx :: u) € TE" (Xp,X7),
« if E € TE"(Sp,X7), S: Vp — P'(Zp) and X € dom(S)
then recac(X,S,E),reci,(X,S,E) € TE"(Xp,X7), and
« if(R,n,I) € X7, E; € TE (Xp,X7) foreachi €1, and E; € P"(Xp) foreachi € {1,...,n}\ I, then
R(El,. .. ,En) S ?IIE’(Zp,ZT).
Given a TSS (X, R,N) in De Simone format, each open transition 7 € T”(X,R) is named by a unique
transition expression in TE"(X,X7); here X7 = {(N(r),n,I) | r € R is a De Simone rule, n is its arity
and [is its trigger set}:
* if the root of 7 is labelled by (i, 2x) where fx € V- then 7 is named (£x == 1),
« if the root of 7 is labelled by ((X|S) —= ¢,R) where a € Act then 7 is named reca;(X,S, E) where
E is the name of the direct subtransition of 7,
o if the root of 7 is labelled by ((X|S) LN (X|S),R) where ¢ € £ \Act then { is named recy,(X,S,E)
where E is the name of the direct subtransition of 7, and
« if the root of 7 is labelled by (Op(p1,...,pn) — ¢,R) then 7 is named R(E}, ..., E,) where, letting
n and [be the arity and the trigger set of the rules named R, E; for each i € I is the name of the
direct subtransitions of 7 corresponding to the index i, and E; = p; for eachi € {1,...,n}\ 1.

We now see that the first requirement for the rule-naming function in Definition 5.1 ensures that every
open transition is uniquely identified by its name.

Definition 6.4 (Transition Substitution) Let (X,R,N) be a TSS. A (X, R)-substitution is a partial
function o : (Vp — P"(2)) U (Vr — T"(X,R)). Itis closed if it is a total function o : (Vp —
P(Z)U(Vr =T (X,R)). A (X, R)-substitution 6, matches all process expressions. It matches an open
transition 7 whose binding function is f3; if for all (#x,) € B;, o,(tx) being defined and u = (p —% q)
implies /(0 (tx)) = a and src. (07 (1x)), tar, (0 (tx)) being the substitution instances of p, g respectively
by applying o, [Vp.

If E € P"(X)UT"(X,R) and o7 is a (£, R)-substitution matching E, then E[o;]| denotes the expres-
sion obtained from E by replacing, for tx € V7 in the domain of o, every subexpression of the form

68 A Lean-Congruence Format for EP-Bisimilarity

(tx : p) in E by o7 (x), and for x € Vp in the domain of o, every free occurrence of x in E by o (x),
while renaming bound process variables if necessary to prevent name-clashes. In that case E [0] is called
a substitution instance of E.

Note that a substitution instance of an open transition can be a transition expression not representing an
open transition. For example, applying a (X, R)-substitution 6, given by 6,(1y) == (tx 1 y = y/) to the
open transition (fx : x —— ') | (ty 1y — y) results in (tx : x —— x) | (tx :: y = y/) which is not an
open transition because the transition variable zx is used for two different X-literals. This will not happen
if o is closed.

Observation 6.5 Given a TSS (X, R,N), if 7 € en,(p) is a open transition and o is a closed (£, R)-
substitution which matches 7 then 7[6;] € Tr, source(f[or]) = srco(f)[o7], £(i[or]) = £5(f) and
target(f[or]) = tar,(f)[oF].
Definition 6.6 (Transition System Specification with Successors) Let (£,R,N) be a TSS. A (£,R)-
(successor) literal is an expression { ~»; ¥ with 7,1, € T"(X,R), srco(f) = sreq (i) and sreo (V) = tars (ii).
A successor rule over (£,R) is an expression of the form % with H a finite list of (X, R)-literals (the
premises of the successor rule) and A a (X, R)-literal (the conclusion). A transition system specification
with successors (TSSS) is a tuple (£,R,N,U) with (£,R,N) a TSS and U a set of successor rules over
(Z,R).
Definition 6.7 (Associated LTSS) For a TSSS (X,R,N,U), the associated LTSS is the LTSS (S,Tr,
source, target,{,~) with § := P"(X), Tr the collection of proofs 7 of closed Z-literals p —— g from
R, where source(n) = p, {(w) = a and target(w) = ¢, and

~» = {(t,u,v) | a proof of closed (X, R)-literal r ~», v from U exists}.

7 De Simone Languages with Successors

We have enriched standard definitions such as transitions systems and specifications with successors.
This allows up to add successors to the De Simone format to define a new congruence format.

Definition 7.1 (De Simone Format) A TSSS (X, R,N,U) is in De Simone format if (£,R,N) is in De
Simone format, for every recursive call (X|S) and xa, ya,za € . it has a successor rule

R

o

.. xa /
recy(X,S,tx : Sy — x') N enen (X SutySx 2yr) B
where i = (tz::y = 7') if ya € Act and i = rec (X, S, tx :: Sy —— x') otherwise, recy = reca; if xa € Act
and rec, = recy, otherwise, x’,y’,z’ are pairwise distinct process variables not occurring in (X|S), and
tx, ty, tz are pairwise distinct transition variables. Moreover, each of its other successor rules has the form

{(ox 2 x 225 X))~ (Y, =5 7)|iel}

(tyi::xiﬁ)y;)
R(xel yeo - 7xen) ~S(yeys...,ye,) v
such that
e IC{1,...,n},

* x;,x},y;,z; for all relevant i are pairwise distinct process variables,
* tx;,ty;,1z; for all relevant i are pairwise distinct transition variables,

R.J. van Glabbeek, P. Hofner & W. Wang 69

e if i € I then xe; = (x; = x; —> x}) and ye; = (ty; = x; — y!),
« if i ¢ I then xe; is either x; or (£x; @ x; —% x}), and ye; is either x; or (zy; : x; RN),
* R and S are n-ary transition constructors such that the open transitions R(xey,...,xe,),

S(vey,...,ye,) and v satisfy

sreo(R(xeq, ... xe,)) = sreo(S(vey, ..., ve,))

and srco (V) = taro(S(yey,...,ve,)),

* ¥ is univariate and contains no other variable expressions than
- x;or (1z; = x; LN 7)) (1 <i<nAxe; =ye; =x),

- (tx; o xg ﬂncf) (1 <i<nAxe; #xi\ye; =x;),
) 24

- Yior(tzinyl—=2) (1 <i<nAi¢INye; # x)),

;7 Z4i

- (tziny, —>z}) (i € 1), and

o if o(S(yey,...,ye,)) € L \Act then fori € I, ya;, € L \Act; for i ¢ I, either xe; = x; or ye; = x;; and
v =R(zey,...,ze,), where .
(zet-. zen) (tziny) =5 2) ifiel
ze; = xe; ifi ¢ 1andye; =x;
v otherwise.

The last clause above is simply to ensure that if 7 ~»,, v for an indicator transition u, that is, with ¢(u) ¢ Act,
then v =1.

The other conditions of Definition 7.1 are illustrated by the Venn diagram of Figure 1. The outer
circle depicts the indices 1,...,n numbering the arguments of the operator Op that is the common type
of the De Simone rules named R and S; Iz and /s are the trigger sets of R and S, respectively. In line
with Definition 6.3, xe = x; for i € Iy, and xe = (x; = x; a, x}) for i ¢ Iy. Likewise, ye = x; for i € I,
and ye = (ty; : x; —% y}) for i ¢ Is. So the premises of any rule named s are {x; -y |i € Is}. By
Definition 5.1 the target of such a rule is a univariate process expression g with no other variables than
Z1,...,2n, Where z; :=x; for i € Is and z; :=y! for i ¢ Is. Since src,(V) = g, the transition expression v
must be univariate, and have no variables other than ze; for i = 1,...,n, where ze; is either the process
variable z; or a transition variable expression (z; :: z; LN zi)

8ay 9ay
zej=ye;=xe;

{1,..,n}

Tay
zej=xe;

3aby 4aby
8abc1 9abey 1
107 10, 11abd
Thy 8ca 9cy 1 I

Figure 1: Inclusion between index sets I, Ix, Is, I+, I C {1,..,n}. One has (I N Ig)\Is C I;.
The annotations 7; show the location of index i (suppressed for unary operators) of rule 7.

70 A Lean-Congruence Format for EP-Bisimilarity

1 is the set of indices i for which the above successor rule has a premise. Since this premise involves
the transition variables #x; and ty;, necessarily I C Iy NIs. Let I be the set of indices for which ze; occurs
in v, and I+ C I; be the subset where ze; is a transition variable. The conditions on v in Definition 7.1
say that INIg C Iy and (Ix N1Ig)\Is C Ir. For i € INIg, the transition variable rz; is inherited from the
premises of the rule, and for i € (I NIg)\/s the transition variable rz; is inherited from its source.

In order to show that most classes of indices allowed by our format are indeed populated, we indicated
the positions of the indices of the rules of CCS and (the forthcoming) ABCdE from Tables 2 and 5.

Any De Simone language, including CCS, SCCS, ACP and MEIJE, can trivially be extended to a
language with successors, e.g. by setting &/ = (0. This would formalise the assumption that the parallel
composition operator of these languages is governed by a scheduler, scheduling actions from different
components in a nondeterministic way. The choice of U/ from Table 2 instead formalises the assumption
that parallel components act independently, up to synchronisations between them.

We now present the main theorem of this paper, namely that ep-bisimulation is a lean congruence for
all languages that can be presented in De Simone format with successors. A lean congruence preserves
equivalence when replacing closed subexpressions of a process by equivalent alternatives. Being a lean
congruence implies being a congruence for all operators of the language, but also covers the recursion
construct.

Theorem 7.2 (Lean Congruence) Ep-bisimulation is a lean congruence for all De Simone languages
with successors. Formally, fix a TSSS (X, R,N,U) in De Simone format. If p € P"(X) and p, v are two
closed X-substitutions with Vx € Vp. p(x) £, v(x) then p[p] <, p[v].

The proof can be found in Appendix A of the full version of this paper [15].

In contrast to a lean congruence, a full congruence would also allow replacement within a recursive
specification of subexpressions that may contain recursion variables bound outside of these subexpres-
sions. As our proof is already sophisticated, we consider the proof of full congruence to be beyond the
scope of the paper. In fact we are only aware of two papers that provide a proof of full congruence via a
rule format [21, 9].

We carefully designed our De Simone format with successors and can state the following conjecture.
Conjecture 7.3 Ep-bisimulation is a full congruence for all De Simone languages with successors.

8 A Larger Case Study: The Process Algebra ABCdE

The Algebra of Broadcast Communication with discards and Emissions (ABCdE) stems from [13]. It
combines CCS [17], its extension with broadcast communication [20, 11, 10], and its extension with
signals [4, 6, 7, 10]. Here, we extend CCS as presented in Section 3.

ABCdE is parametrised with sets ¢ of handshake communication names as used in CCS, % of
broadcast communication names and . of signals. ./ := {5 | s € '} is the set of signal emissions. The
collections B!, Z? and Z: of broadcast, receive, and discard actions are given by At = {bt | b € A}
forf € {!,2,:}. Act =€ UEC U{1} UB!IJAB?J.Y is the set of actions, with T the internal action, and
& = Act\J B:\J.7 is the set of transition labels. Complementation extends to € W% .7 U.¥ by & :=c.

Below, ¢ ranges over € U6 U U, N over € UE U {1} U.7U.7, a over Act, £ over £, ¥ over
In =2 \Act, b over A, 4,41, over {!,?,:}, s over ., S over recursive specifications and X over Vs. A
relabelling is a function f : (¢ — €)W (B — B)J(S — 7); itextends to £ by f(¢) = f(c), f(1) =1
and f(bt) = F(b):.

Next to the constant and operators of CCS, the process signature ¥ of ABCdE features a unary
signalling operator _"s for each signal s € ..

R.J. van Glabbeek, P. Hofner & W. Wang 71

Table 3: Structural operational semantics of ABCdE

b: b:
o £ b? x—x, y—y
—— b0 %b:a. LRARRSANS
0—0 o.x — 0. x+y—x+y
of1 2
by by
x—]>xlay—2>yl (thjZZﬁ#J’
bi ¢
Xy — X'y
x5 ¥ yi>y’
ﬁ(ﬂs) ——th K
xs — x7s x+y—x+y x+y—x+y
xS xLx (Sx|s) Ly
o S 5 Sm 7 recr,
xXs —x' xX's == x'"s (X|8)y — (X|S)

The semantics of ABCdE is given by the transition rule templates displayed in Tables 1 and 3. The
latter augments CCS with mechanisms for broadcast communication and signalling. The rule | presents
the core of broadcast communication [20], where any broadcast-action b! performed by a component in
a parallel composition needs to synchronise with either a receive action b? or a discard action b: of any
other component. In order to ensure associativity of the parallel composition, rule |. also allows receipt
actions of both components (§; = ff, = ?), or a receipt and a discard, to be combined into a receipt action.

A transition p LN q is derivable only if ¢ = p. It indicates that the process p is unable to receive
a broadcast communication »! on channel . The Rule 5:0 allows the nil process (inaction) to discard
any incoming message; in the same spirit b:¢¢. allows a message to be discarded by a process that cannot
receive it. A process offering a choice can only perform a discard-action if both choice-options can
discard the corresponding broadcast (Rule +.). Finally, by rule recy,, a recursively defined process (X|S)
can discard a broadcast iff (Sx|S) can discard it. The variant recy, of reca., is introduced to maintain the
property that rarget(0) = source(0) for any indicator transition 6.

A signalling process p”s emits the signal s to be read by another process. A typically example is a
traffic light being red. Signal emission is modelled as an indicator transition, which does not change the
state of the emitting process. The first rule (7*) models the emission § of signal s to the environment.
The environment (processes running in parallel) can read the signal by performing a read action s. This
action synchronises with the emission §, via rule | of Table 1. Reading a signal does not change the state
of the emitter.

Rules 4 and -+ describe the interaction between signal emission and choice. Relabelling and restric-
tion are handled by rules \L and [f] of Table 1, respectively. These operators do not prevent the emission
of a signal, and emitting signals never changes the state of the emitting process. Signal emission p”s does
not block other transitions of p.

It is trivial to check that the TSS of ABCdE is in De Simone format.

The transition signature of ABCdE (Table 4) is completely determined by the set of transition rule
templates in Tables 1 and 3. We have united the rules for handshaking and broadcast communication by
assigning the same name | to all their instances. When expressing transitions in ABCdE as expressions,
we use infix notation for the binary transition constructors, and prefix or postfix notation for unary ones.
For example, the transition b:0() is shortened to b:0, > (p) to 5 p, \L(¢) to £\L, and | (¢, p) to 1|, p.

72 A Lean-Congruence Format for EP-Bisimilarity

Table 4: Transition signature of ABCdE

Constructor |5 | () |b:0|bra.| + |+ | 4 | =1+ L1 e | e | \L LU | Sact| St
Arity 1{ 1 (0] 1]2]2 2 212 |2 2 2111 1 1

TrigeerSet| 0| 0 | 0| 0 |{1}|{2}| {12} {(1}] {2} (1} {123 |23 | {0y (03 0} |03

Table 5: Successor rules for ABCdE

() e {p7,b:} | (L) e B:US | 0(t) € {b2,b:} b
Z>P«f>m ¢ xX~c X b:a.P~a,t
—P
t~s, t t~os, t U~y i Uy, U
— 3a - 3b e > 4a > 4b
140~y ot I+~ ot PH{u~spy it tHel ~py g U
L)y =Db? L) e {b2,b:} b l(u) =b? (') € {b2,b:} o
: O
tHQ~pywtt Phyu~syy ot
t—l—ZQ 7 PApw W P+Re” v+ 0 t
troy t troy t
il e v id
recy, (X,S,l) M recae (X,S,v) 1t U SAct ~kpy T
t’sp, B ¢

) Meta | Variable Expression

Table 5 extends the successor relation of CCS (Table 2) to P x|
ABCdE. P, Q are process variables, ¢, v transition variables enabled 0 X
at P, u,w transition variables enabled at Q, P’, Q' the targets of v, w, P N
respectively and ¢/, transitions enabled at P, Q', respectively. To 104 ¥
express those rules in the same way as Definition 7.1, we replace t (tx1 5 xp ar, X))
the metavarlaples P, O, t, u, etc. with variable expressmns as indi- u (tx2 1 X2 xaz, X))
cated on the right. Here xa;, ya;, za; are label variables that should . ya.

. : i . . v (tyy =x1 —)
be instantiated to match the trigger of the rules and side conditions. ‘ yay
As ABCdE does not feature operators of arity >2, the index i from Mj 1y, : x/2 z71> Y /2)
Definition 7.1 can be 1 or 2 only. t (121 20 ZT; z1)

. . / / /
To save duplication of rules 8b, 8c, 9b, 9c and 10 we have as- u (tz2 Yo — 2)

signed the same name |.. to the rules for handshaking and broadcast
communication. The intuition of the rules of Table 5 is explained in detail in [13].

In the naming convention for transitions from [13] the sub- and superscripts of the transition con-
structors +, | and “s, and of the recursion construct, were suppressed. In most cases that yields no
ambiguity, as the difference between |, and |, for instance, can be detected by checking which of its
two arguments are of type transition versus process. Moreover, it avoids the duplication in rules 3a, 4a,
5, 6, 11c and 11d. The ambiguity between +; and + (or +; and) was in [13] resolved by adorning
rules 3-6 with a side condition £(v) ¢ .% or £(w) ¢ ., and the ambiguity between reca., and recy, (or
“Sacr and “sz,) by adorning rules 1 1c and 11d with a side condition £(v) € Act; this is not needed here.

It is easy to check that all rules are in the newly introduced De Simone format, except Rule 1.
However, this rule can be converted in to a collection of De Simone rules by substituting R(xey, ..., xe,)
for x and S(yey,...,ye,) for {, adding a premise in the form of xe; ~»y, (tz; =y, — 2})) if i € LN,

R.J. van Glabbeek, P. Hofner & W. Wang 73

for each pair of rules of the same type named R and S.> The various occurrences of | in Figure 1 refer to
these substitution instances. It follows that <, is a congruence for the operators of ABCdE, as well as
a lean congruence for recursion.

9 Related Work & Conclusion

In this paper we have added a successor relation to the well-known De Simone format. This has allowed
us to prove the general result that enabling preserving bisimilarity — a finer semantic equivalence relation
than strong bisimulation — is a lean congruence for all languages with a structural operational semantics
within this format. We do not cover full congruence yet, as proofs for general recursions are incredible
hard and usually excluded from work justifying semantic equivalences.

There is ample work on congruence formats in the literature. Good overview papers are [1, 19]. For
system description languages that do not capture time, probability or other useful extensions to standard
process algebras, all congruence formats target strong bisimilarity, or some semantic equivalence or
preorder that is strictly coarser than strong bisimilarity. As far as we know, the present paper is the first
to define a congruence format for a semantic equivalence that is finer than strong bisimilarity.

Our congruence format also ensures a lean congruence for recursion. So far, the only papers that
provide a rule format yielding a congruence property for recursion are [21] and [9], and both of them
target strong bisimilarity.

In Sections 3 and 8, we have applied our format to show lean congruence of ep-bisimilarity for the
process algebra CCS and ABCdE, respectively. This latter process algebra features broadcast communi-
cation and signalling. These two features are representative for issues that may arise elsewhere, and help
to ensure that our results are as general as possible. Our congruence format can effortlessly be applied to
other calculi like CSP [5] or ACP [3].

In order to evaluate ep-bisimilarity on process algebras like CCS, CSP, ACP or ABCdE, their seman-
tics needs to be given in terms of labelled transition systems extended with a successor relation ~». This
relation models concurrency between transitions enabled in the same state, and also tells what happens
to a transition if a concurrent transition is executed first. Without this extra component, labelled transi-
tion systems lack the necessary information to capture liveness properties in the sense explained in the
introduction.

In a previous paper [13] we already gave such a semantics to ABCdE. The rules for the successor
relation presented in [13], displayed in Tables 2 and 5, are now seen to fit our congruence format. We
can now also conclude that ep-bisimulation is a lean congruence for ABCdE. In [14, Appendix B] we
contemplate a very different approach for defining the relation ~». Following [10], we understand each
transition as the synchronisation of a number of elementary particles called synchrons. Then relations
on synchrons are proposed in terms of which the ~»-relation is defined. It is shown that this leads to the
same ~»-relation as the operational approach from [13] and Tables 2 and 5.

3This yields 1242-14+5-3+3-2+2-1=26rules of types (0,0), (a._, 1), (+,2), (s, 1) and (X|S) not included in Tables 2
and 5.

74

A Lean-Congruence Format for EP-Bisimilarity

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L. Aceto, W. Fokkink & C. Verhoef (2000): Structural Operational Semantics. In J. Bergstra, A. Ponse &
S. Smolka, editors: Handbook of Process Algebra, chapter 3, Springer, pp. 197-292.

D. Austry & G. Boudol (1984): Algebre de Processus et Synchronisation. Theoretical Computer Science 30,
pp- 91-131, doi:10.1016/0304-3975(84)90067-7.

J.C.M. Baeten & W.P. Weijland (1990): Process Algebra. Cambridge Tracts in Theoretical Computer Science
18, Cambridge University Press, doi:10.1017/CB0O9780511624193.

J.A. Bergstra (1988): ACP with signals. In J. Grabowski, P. Lescanne & W. Wechler, editors: Proc. Interna-
tional Workshop on Algebraic and Logic Programming, LNCS 343, Springer, pp. 11-20, doi:10.1007/3-540-
50667-5_53.

S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential processes. Jour-
nal of the ACM 31(3), pp. 560-599, doi:10.1145/828.833.

F. Corradini, M.R. Di Berardini & W. Vogler (2009): Time and Fairness in a Process Algebra with Non-
blocking Reading. In M. Nielsen, A. Kucera, P.B. Miltersen, C. Palamidessi, P. Tuma & F.D. Valencia,
editors: Theory and Practice of Computer Science, SOFSEM’09, LNCS 5404, Springer, pp. 193-204,
doi:10.1007/978-3-540-95891-8_20.

V. Dyseryn, R.J. van Glabbeek & P. Hofner (2017): Analysing Mutual Exclusion using Process Algebra
with Signals. In K. Peters & S. Tini, editors: Proceedings Combined 24th International Workshop on Ex-
pressiveness in Concurrency and 14th Workshop on Structural Operational Semantics, Berlin, Germany, 4th
September 2017, Electronic Proceedings in Theoretical Computer Science 255, Open Publishing Association,
pp. 18-34, doi:10.4204/EPTCS.255.2.

R.J. van Glabbeek (1994): On the expressiveness of ACP (extended abstract). In A. Ponse, C. Ver-
hoef & S.F.M. van Vlijmen, editors: Proceedings First Workshop on the Algebra of Communicating Pro-
cesses, ACP’94, Utrecht, The Netherlands, May 1994, Workshops in Computing, Springer, pp. 188-217,
doi:10.1007/978-1-4471-2120-6_8.

R.J. van Glabbeek (2017): Lean and Full Congruence Formats for Recursion. In: Proceedings 32 An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, IEEE Computer Society Press,
doi:10.1109/LICS.2017.8005142.

R.J. van Glabbeek (2019): Justness: A Completeness Criterion for Capturing Liveness Properties (extended
abstract). In M. Bojafczyk & A. Simpson, editors: Proceedings 22st International Conference on Foun-
dations of Software Science and Computation Structures (FoSSaCS’19); held as part of the European Joint
Conferences on Theory and Practice of Software (ETAPS’19), Prague, Czech Republic, April 2019, LNCS
11425, Springer, pp. 505-522, doi:10.1007/978-3-030-17127-8_29.

R.J. van Glabbeek & P. Hofner (2015): Progress, Fairness and Justness in Process Algebra. Technical Report
8501, NICTA, Sydney, Australia. Available at http://arxiv.org/abs/1501.03268.

R.J. van Glabbeek & P. Hofner (2019): Progress, Justness and Fairness. ACM Computing Surveys 52(4):69,
doi:10.1145/3329125.

R.J. van Glabbeek, P. Hofner & W. Wang (2021): Enabling Preserving Bisimulation Equivalence. In
S. Haddad & D. Varacca, editors: Proceedings 32nd International Conference on Concurrency Theory, CON-
CUR’21, Leibniz International Proceedings in Informatics (LIPIcs) 203, Schloss Dagstuhl-Leibniz-Zentrum
fiir Informatik, doi:10.4230/LIPIcs. CONCUR.2021.33.

R.J. van Glabbeek, P. Hofner & W. Wang (2021): Enabling Preserving Bisimulation Equivalence. Available
athttps://arxiv.org/abs/2108.00142. Full version of [13].

R.J. van Glabbeek, P. Hofner & W. Wang (2023): A Lean-Congruence Format for EP-Bisimilarity.
arXiv:2308.16350. Full version of this paper.

J.E. Groote & F.W. Vaandrager (1992): Structured Operational Semantics and Bisimulation as a Congruence.
Information and Computation 100(2), pp. 202-260, doi:10.1016/0890-5401(92)90013-6.

https://doi.org/10.1016/0304-3975(84)90067-7
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1145/828.833
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1007/978-1-4471-2120-6_8
https://doi.org/10.1109/LICS.2017.8005142
https://doi.org/10.1007/978-3-030-17127-8_29
http://arxiv.org/abs/1501.03268
https://doi.org/10.1145/3329125
https://doi.org/10.4230/LIPIcs.CONCUR.2021.33
https://arxiv.org/abs/2108.00142
https://arxiv.org/abs/2308.16350
https://doi.org/10.1016/0890-5401(92)90013-6

R.J. van Glabbeek, P. Hofner & W. Wang 75

[17]

[18]

[19]

(20]

[21]

[22]

R. Milner (1990): Operational and algebraic semantics of concurrent processes. In J. van Leeuwen, editor:
Handbook of Theoretical Computer Science, chapter 19, Elsevier Science Publishers B.V. (North-Holland),
pp- 1201-1242. Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989,
of which an earlier version appeared as A Calculus of Communicating Systems, LNCS 92, Springer, 1980,
doi:10.1007/3-540-10235-3.

R. Milner (1983): Calculi for Synchrony and Asynchrony. Theoretical Computer Science 25, pp. 267-310,
doi:10.1016/0304-3975(83)90114-7.

M.R. Mousavi, M.A. Reniers & J.F. Groote (2007): SOS formats and meta-theory: 20 years after. Theoretical
Computer Science 373(3), pp. 238-272, doi:10.1016/j.tcs.2006.12.019.

K.V.S. Prasad (1991): A Calculus of Broadcasting Systems. In S. Abramsky & T.S.E. Maibaum, editors:
Proceedings of the International Joint Conference on Theory and Practice of Software Development, TAP-
SOFT’91, Volume 1: Colloquium on Trees in Algebra and Programming, CAAP’91, LNCS 493, Springer,
pp- 338-358, doi:10.1007/3-540-53982-4_19.

A. Rensink (2000): Bisimilarity of Open Terms. Information and Computation 156(1-2), pp. 345-385,
doi:10.1006/inc0.1999.2818.

R. de Simone (1985): Higher-level synchronising devices in MEIJE-SCCS. Theoretical Computer Science
37, pp. 245-267, doi:10.1016/0304-3975(85)90093-3.

http:dx.doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(83)90114-7
https://doi.org/10.1016/j.tcs.2006.12.019
https://doi.org/10.1007/3-540-53982-4_19
https://doi.org/10.1006/inco.1999.2818
https://doi.org/10.1016/0304-3975(85)90093-3

	Introduction
	Enabling Preserving Bisimilarity
	An Introductory Example: CCS with Successors
	Structural Operational Semantics
	De Simone Languages
	Transition System Specifications with Successors
	De Simone Languages with Successors
	A Larger Case Study: The Process Algebra ABCdE
	Related Work & Conclusion

