
V. Castiglioni and O. Dardha (Eds.): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2021)
EPTCS 339, 2021, pp. 27–42, doi:10.4204/EPTCS.339.5

© B. Bisping & L. Montanari
This work is licensed under the
Creative Commons Attribution License.

A Game Characterization for Contrasimilarity

Benjamin Bisping Luisa Montanari
Technische Universtiät Berlin

Berlin, Germany
benjamin.bisping@tu-berlin.de, luisa.montanari@campus.tu-berlin.de

We present the first game characterization of contrasimilarity, the weakest form of bisimilarity. The
game is finite for finite-state processes and can thus be used for contrasimulation equivalence check-
ing, of which no tool has been capable to date. A machine-checked Isabelle/HOL formalization
backs our work and enables further use of contrasimilarity in verification contexts.

1 Introduction

Contrasimilarity is the weakest equivalence for systems with internal τ-transitions in Rob van Glabbeek’s
linear-time–branching-time spectrum [10] that instantiates to bisimilarity if there is no internal behav-
ior. It differs from the more commonly used weak bisimilarity in granting the additional equalities
CS : τ.(τ.X +Y) = τ.X +Y , which it shares with coupled similarity, and C : a.(τ.X +τ.Y) = a.X +a.Y .
Contrasimilarity is about “as weak as one can get” with respect to τ-steps without losing the distinguish-
ing powers of strong bisimilarity with respect to visible behavior.

Although this position “on the edge” makes contrasimilarity (and the contrasimulation preorder)
particularly interesting, there has been only little research into it. It has been investigated as an equiva-
lence notion justifying parallelizing transformations in compilers by Bell [2], as a strong way of relating
context-free processes to their encodings as push-down automata by Baeten et al. [1, 13], and as the limit
of arbitrarily-nested statements about impossible futures by Voorhoeve and Mauw [20].

In this paper, we give the first game characterization of the contrasimulation preorder and prove
its correctness. All the stronger (branching-time) notions of the linear-time–branching-time spectrum
with internal steps already have game characterizations [8, 4]. All the weaker (linear-time) notions
can readily be characterized by slightly adapting the games [7, 5] of the linear-time–branching-time
spectrum without internal steps [11]. So, our contribution inserts the last puzzle piece to have game
characterizations for the whole linear-time–branching-time spectrum with internal steps of [10].

Contributions and Structure. This paper makes the following contributions:

• We assemble a concise overview of the bisimulation-like properties of contrasimilarity in Section 2.

• In Section 3, we present a new game for the contrasimulation preorder based on subset construc-
tions, which is finite (albeit exponential) for finite-state processes.

• Section 4 proves the correctness of the game characterization by relating defender winning strate-
gies and contrasimulations, which turns out to be slightly trickier than for stronger equivalences.

• Section 5 links our contributions to other research and hints at the relationship to modal-logical
characterizations.

• All definitions and proofs of this paper have been formalized in the interactive proof assistant
Isabelle/HOL [21]. Each lemma comes with a footnote pointing to its Isabelle proof at https:
//concurrency-theory.org/contrasimulation-game/Contrasimulation/.

http://dx.doi.org/10.4204/EPTCS.339.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0637-0171
http://orcid.org/0000-0002-5270-0290
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/

28 A Game Characterization for Contrasimilarity

2 Contrasimilarity: The Weakest Bisimilarity

Notions of equivalence formalize when two process models can be considered indistinguishable given
a certain model of communication or observation. The most famous such notion is bisimilarity, which
holds if two processes can match each other’s transitions repeatedly. Contrasimilarity is a reformulation
of this, saying that every transition sequence by one process can be matched by the other process in such
a way that they could continue with their roles swapping each time. This section explains systems with
internal behavior (Subsection 2.1) and gives a formal definition of contrasimilarity (Subsection 2.2). We
then show that contrasimilarity and bisimilarity actually are the same concept unless there is internal
behavior (Subsection 2.3) and briefly look at systems that are not contrasimilar (Subsection 2.4). For this
section, we omit the proofs; the Isabelle proofs can be found via the footnotes.

2.1 Systems with Internal Steps

In order to illustrate what kinds of systems contrasimilarity equates, we start with an example of two
systems with internal communication behavior that are equivalent with respect to contrasimilarity, but
not with respect to weak bisimilarity. (The example behaves similarly to the one in [2]. Its transition
system will be given in Figure 1.)

Example 1 (Dining Hall Philosophers). Two philosophers A and B want to eat pasta. They can get their
spaghetti (sp) once the dining hall counter opens (op). However, there is only one plate (pl), which must
be taken before picking up the spaghetti (regardless of whether the counter has opened). We are waiting
for them in the dining area outside; so we only observe whether the counter has opened and who eats,
whereas the plate and spaghetti grabbing are invisible to us.

The following CCS structure models the situation of the philosophers waiting at the counter Pc in the
notation of Milner [15]. The resources correspond to sending actions like sp (which can be consumed
only once) and obtaining the resources corresponds to receiving actions like sp. The subprocesses run in
parallel (. . . | . . .) and internal communication is hidden from the outside (. . . \ {sp}).

Pc
def
=

(
pl.sp.aEats | pl.sp.bEats | pl | op.sp

)
\ {pl,sp}

With sp being hidden: Does it make a difference to the observer if it is not the spaghetti counter waiting
for the opening event before handing out pasta, but rather the philosophers waiting for the event before
grabbing the pasta? This would amount to the following model of patient philosophers Pp.

Pp
def
=

(
pl.op.sp.aEats | pl.op.sp.bEats | pl | sp

)
\ {pl,sp}

If one’s application needs to abstract over “where exactly” internal waiting is happening, and thus equate
Pc and Pp, one has to pick contrasimilarity (or a weaker equivalence) for the semantics.

B. Bisping & L. Montanari 29

Pc Pp

◦

◦

A

◦

◦

B

0

AB

τ

op

τ

aEats

τ

op

τ

bEats

op

τ τ

τ

τ

Rcp

Figure 1: The reflexive closure of Rcp is a contrasimulation on the philosopher system from Example 1.

Definition 1. A labeled transition system, or LTS for short, (S,Actτ ,−→) consists of a set of states S, of
a set Actτ = Act ∪{τ} of visible actions Act and a special internal action τ /∈ Act, and of a transition
relation −→⊆ S×Actτ ×S.

The transition system for Example 1 is depicted as the black part in Figure 1. All deadlocks are combined
into the state 0. The transitions where communication internal to the system happens are labeled by τ ,
which denotes internal behavior. Where there are multiple internal transitions originating from the same
process state, the system performs an internal choice. In process Pp, the internal choice happens at the
start, whereas in Pc, the choice is interleaved with the observable occurrence of op.

Definition 2. We employ the following notation for transitions in the system (with p, p′,q∈ S; α ∈ Actτ):

• Strong steps: p α−→ p′ iff (p,α, p′) ∈ −→.

• Internal steps: p =⇒ p′ iff p τ−→∗ p′.

• Delay steps: p α
==. p′ iff α = τ with p =⇒ p′ or α ∈ Act with p =⇒ α−→ p′.

• Weak steps: p α̂
=⇒ p′ iff p α

==.=⇒ p′.

• Weak word steps: p
#‰w
=⇒ p′ iff p

ŵ0=⇒ ŵ1=⇒ ...
ŵn=⇒ p′ with #‰w = w0w1 . . .wn ∈ Act∗ or p =⇒ p′ for the

empty word #‰w = ε .

• Absence of steps: p 6α−→, p 6α̂=⇒ and p 6
#‰w
=⇒ to denote that certain transitions are not possible from p.

p is called stable iff p 6 τ−→.

• Lifting of steps to sets: P α−→ P′ iff P′ = {p′ | ∃p ∈ P : p α−→ p′}, and P α−→ p′ iff there is a p ∈ P
with p α−→ p′; analogously for =⇒, α

==., α̂
=⇒, and

#‰w
=⇒.

Note that delay steps a
==. differ from the more common weak steps â

=⇒ (a ∈ Act) in that the step ends
in the strong a−→-transition with no trailing internal behavior. Also note that P α−→ {p′} is stronger than
P α−→ p′ in that it rules out possible other α−→-transitions.

30 A Game Characterization for Contrasimilarity

strong bisimulation

strong simulation

weak bisimulation

coupled simulation

weak simulationcontrasimulation

impossible futures

weak traces

Figure 2: Hierarchy of equivalences. Arrows denote implications of preordering. Thinner arrows col-
lapse into bi-implication for systems without internal steps.

2.2 Defining Contrasimilarity

It is common to define notions of behavioral equivalence and behavioral preorders in terms of relations
between process states that fulfill certain properties. For instance, weak similarity is defined in terms of
weak simulation relations, which also induce a weak simulation preorder. Contrasimilarity is obtained
by making a subtle change to the weak simulation property.

Definition 3. A weak simulation is a relation R where, for all (p,q) ∈R with p α−→ p′, there is a q′ with
q α̂
=⇒ q′ and (p′,q′) ∈R. We say that p is weakly simulated by q, written p �WS q, iff there is a weak

simulation R with (p,q) ∈R. If p �WS q �WS p, the two are weakly similar, written p ∼WS q. If R is
a symmetric weak simulation, the processes are called weakly bisimilar (∼WB), which implies all of the
above.

On the processes of Example 1, {(p, p) | p ∈ S}∪ {(Pp,Pc)} is a weak simulation, because the steps
from Pp are a subset of the steps from Pc. This implies Pp �WS Pc.

However, there is no weak simulation in the opposite direction, because Pc can op-step to a state
where aEats and bEats are weakly enabled, while Pp cannot. Thus, weak similarity and hence also weak
bisimilarity distinguish the two systems.

Due to its inherent recursiveness, Definition 3 can also be rephrased in terms of words instead of
single actions:

Lemma 1. R is a weak simulation precisely if, for all (p,q) ∈R with #‰w ∈ Act∗ and p
#‰w
=⇒ p′, there is a

q′ with q
#‰w
=⇒ q′ and (p′,q′) ∈R.1

This observation motivates why the following definition with p′ and q′ swapping sides at the end has
been named contra-simulation:

1 lemma Weak_Relations.weak_sim_word

https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Weak_Relations.html#weak_sim_word

B. Bisping & L. Montanari 31

Definition 4. A contrasimulation is a relation R where, for all (p,q) ∈R with #‰w ∈ Act∗ and p
#‰w
=⇒ p′,

there is a q′ with q
#‰w
=⇒ q′ and (q′, p′) ∈R. The contrasimulation preorder �C and contrasimilarity ∼C

are defined analogously to Definition 3.

The reflexive closure of the relation in Figure 1, Rcp∪{(p, p) | p ∈ S}, is a contrasimulation. Hence, Pc

and Pp are contrasimilar, Pc ∼C Pp.
Let us quickly stress that the contrasimulation preorder indeed is a sensible behavioral preorder

(which is not true for its intransitive neighbors eventual simulation [2] and stability-coupled simula-
tion [16]):

Lemma 2. Properties of �C:

• �C is transitive,2 as the interleaved concatenation R1R2 ∪R2R1 of two contrasimulations R1
and R2 is itself a contrasimulation.3

• �C is reflexive.4 (More generally: p =⇒ p′ implies p′ �C p.5)

• �C is itself a contrasimulation6 (and thus the greatest contrasimulation7).

2.3 Relationship of Contra- and Bi-similarity

Like the weak simulation preorder, the contrasimulation preorder is not symmetric for most systems.
Like with weak simulation, the contrasimulation property can be used to characterize weak bisimulation:

Lemma 3 (Bisimulation characterization). If a contrasimulation R is symmetric, then R moreover is a
weak simulation. (Meaning that, in this case, (p,q) ∈R implies p∼WB q.)8

Unlike weak simulations, contrasimulations are “symmetric up to internal steps.” We call this property
coupling, as it differentiates coupled simulations from weak simulations [6]:

Lemma 4 (Coupling). If R is a contrasimulation, then (p,q) ∈R implies there is a q′ such that q =⇒ q′

and (q′, p) ∈R.9

On stable states, coupling equates to local symmetry. This is nice for systems without internal behavior:

Lemma 5 (Contra/Bi-simulation). If −→ contains no τ-steps, and R is a contrasimulation, then R is
symmetric and thus a bisimulation.10

Accordingly,�C =∼WB =∼SB for systems without internal steps. In this sense, contrasimilarity is closer
to bisimilarity than weak similarity: A weak simulation on a τ-free system is just a strong simulation but
does not need to be a bi-simulation. The hierarchy is depicted in Figure 2.

2 lemma Contrasimulation.contrasim_trans
3 lemma Contrasimulation.contrasim_trans_constructive
4 lemma Contrasimulation.contrasim_refl
5 lemma Contrasimulation.contrasim_tau_step
6 lemma Contrasimulation.contrasim_preorder_is_contrasim
7 lemma Contrasimulation.contrasim_preorder_is_greatest
8 lemma Contrasimulation.symm_contrasim_is_weak_bisim
9 lemma Contrasimulation.contrasim_coupled

10 lemma Contrasimulation.contrasim_weakest_bisim

https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#contrasim_trans
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#contrasim_trans_constructive
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#contrasim_refl
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#contrasim_tau_step
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#contrasim_preorder_is_contrasim
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#contrasim_preorder_is_greatest
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#symm_contrasim_is_weak_bisim
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#contrasim_coupled
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#contrasim_weakest_bisim

32 A Game Characterization for Contrasimilarity

Pc Pl

◦

◦

A

◦

◦

B

0

AB

τ

op

τ

aEats

τ

op

τ

bEats

op

τ τ

op

(a) The philosopher system from
Example 2.

Pab

Pb◦

◦

0

op

aEats

op

bEats

τ

(b) Transitions of Example 3 with
a de-committing τ-transition.

P′ab

P′b◦

◦

◦

◦

◦

◦

0

op

op

op

aEats

op

op

op

bEats

τ

τ

τ

(c) Generalization of Example 3 to
fool 3-step “contrasimulation.”

Figure 3: Processes that are not contrasimilar.

2.4 No Shortcuts

We already mentioned that contrasimilarity grants the equality a.(τ.X +τ.Y) = a.X +a.Y . However, this
does not mean that internal choice may commute over actions: The equality a.(τ.X + τ.Y) = τ.a.X +
τ.a.Y is not sound for contrasimilarity, as the following example illustrates:
Example 2 (Locked-out Philosophers). Consider this slight modification of Pc, where already the scarce
plate pl is guarded by the opening op:

Pl
def
=

(
pl.sp.aEats | pl.sp.bEats | op.pl | sp

)
\ {pl,sp}

As depicted in Figure 3a, the result of this change is that the decision between philosophers A and B can
happen only after op.

The change is noticed by contrasimilarity, i.e. Pc 6�C Pl. The reason is that Pc �C Pl with the left
process resolving its choice would imply Pl �C op.τ.aEats. But this does not hold because Pl

op,bEats
=====⇒ 0

but not op.τ.aEats
op,bEats
=====⇒ 0.

It is also worthwhile to observe that, in general, the definition of contrasimulation (Definition 4) cannot
straight-forwardly be simplified to use single steps α̂

=⇒ instead of words
#‰a
=⇒, as is the case with its finer

siblings like weak bisimulation. Such a simplification is used by de Hoop [13]. However, this is not
sound for general systems due to the alternating sides in the definition.

Example 3 (Instable choice). Consider Pab
def
= op.(aEats+ τ.bEats) and Pb

def
= op.bEats whose transi-

tions can be found in Figure 3b. The processes are clearly not even weakly trace equivalent. But single-
step “contrasimulation” cannot tell them apart, as neither Pab

ôp
=⇒ aEats+ τ.bEats nor Pab

ôp
=⇒ bEats

(matched by Pb
ôp
=⇒ bEats) lead to a situation that would not (contra-)simulate bEats.

The counter-example can be generalized as hinted at in Figure 3c, which would need at least a word
length of four to distinguish the named processes.

B. Bisping & L. Montanari 33

(p,q)a (#‰w, p′,q)d (q′, p′)a
[p

#‰w
=⇒ p′] [q

#‰w
=⇒ q′]

Figure 4: Schematic basic contrasimulation game. Boxes denote attacker positions, circles denote de-
fender positions and arrows denote game moves. Each game move is only possible if the condition in
square brackets is satisfied. Dashed boxes are attacker positions with a new variable assignment and
admit analogous moves to the solid boxes.

3 The Contrasimulation Game

The contrasimulation preorder can be characterized by a game between two opposing players, the at-
tacker and the defender. For a given p,q ∈ S, the attacker seeks to disprove p �C q, while the defender
seeks to maintain p�C q. We first introduce some general thoughts about such games in Subsection 3.1,
and then present the contrasimulation game at the core of our contribution in Subsection 3.2.

3.1 Preliminaries

For this paper, we use Gale-Stewart-style games in the tradition of Stirling [19] where the attacker wins
by getting the defender stuck, and the defender wins by not getting stuck.

Definition 5 (Games). A simple reachability game G [g0] = (G,Gd ,�,g0) consists of

• a set of game positions G, partitioned into

– a set of defender positions Gd ⊆ G
– and attacker positions Ga := G\Gd ,

• a graph of game moves �⊆ G×G, and

• an initial position g0 ∈ G.

Definition 6 (Plays and wins). We call the infinite and finite paths g0g1 . . . ∈G∞ with gi � gi+1 plays of
G [g0]. The defender wins infinite plays. If a finite play g0 . . .gn 6� is stuck, the stuck player loses: The
defender wins if gn ∈ Ga, and the attacker wins if gn ∈ Gd . Equivalently, the defender wins precisely
those plays in which the defender is not stuck.

Definition 7 (Strategies and winning strategies). A defender strategy is a partial mapping from initial
play fragments to next moves f ⊆ {(g0 . . .gn,gn+1) | gn ∈ Gd ∧gn � gn+1}. A play g is consistent with
a defender strategy f iff, for each move gi � gi+1 with gi ∈ Gd where f (g0 . . .gi) is defined, we have
gi+1 = f (g0 . . .gi). We denote the set of plays g consistent with f by G∞

f [g0] for the initial game position
g0. If every stuck or infinite play g ∈ G∞

f [g0] is won by the defender, then f is a winning strategy for the
defender. The player with a winning strategy for G [g0] is said to win G [g0].

All simple games are determined, that is, either the defender or the attacker wins. The winning regions of
finite simple games can be computed in linear time in the number of game moves (cf. [12]). Therefore,
it is desirable to find finite game characterizations of equivalences. For many weak equivalences, such
characterizations can be obtained directly from their standard coinductive characterization.

For contrasimilarity, this direct route is less helpful due to its word-based definition. That is why we
only briefly discuss it here, and then move on to a different approach in the next subsection.

34 A Game Characterization for Contrasimilarity

(p,Q)a

Sim(a, p′,Q)d

Swap(p′,Q)d

(p′,Q′)a

(q′,{p′})a

[p a
==. p′]

[p =⇒ p′]

[Q a
==. Q′]

[Q =⇒ q′]

Figure 5: Schematic contrasimulation set game (Definition 8).

If we directly transfer Definition 4 into a game, we arrive at the following game alternating between
attacker and defender: The attacker may challenge p �C q by selecting a word #‰w ∈ Act∗ and a p′ ∈ S
with p

#‰w
=⇒ p′, to which the defender has to name a q′ ∈ S with q

#‰w
=⇒ q′. The sides of the game then swap,

and the attacker can go on to question q′ �C p′. The attacker wins if the defender is unable to answer
with an appropriate q′, and the defender wins if the play goes on forever.

A schematic model of the basic contrasimulation game is given in Figure 4. We proved its correctness
in the Isabelle formalization.11 Unfortunately, in finite-state processes with cycles, the attacker can
challenge with infinitely many words. So, such games will have an infinite number of game positions,
even for finite systems. Therefore, we decided not to devote more space to this game in this paper and
rather move on to a different game in the following subsection.

3.2 The Game

Let us now turn to the contrasimulation game that is the core contribution of this paper. The idea is to
restrict the players’ moves to single actions α ∈ Actτ . This means breaking the attacker’s word challenge
for p�C q into a simulation phase and a swap request. During the simulation phase, the defender plays
a set of states:

Definition 8 (�C game). For a transition system (S,Actτ ,−→), the contrasimulation set game GC[g0] =
(G,Gd ,�,g0) consists of

• attacker positions (p,Q)a ∈ Ga with p ∈ S,Q⊆ S,

• defender simulation positions Sim(a, p,Q)d ∈ Gd with a ∈ Act, p ∈ S,Q⊆ S, and

• defender swapping positions Swap(p,Q)d ∈ Gd with p ∈ S,Q⊆ S

and the following game moves

• simulation challenges (p,Q)a � Sim(a, p′,Q)d if p a
==. p′,

• swap challenges (p,Q)a � Swap(p′,Q)d if p =⇒ p′,

• simulation answers Sim(a, p′,Q)d � (p′,Q′)a if Q a
==. Q′, and

• swap answers Swap(p′,Q)d � (q′,{p′})a if Q =⇒ q′.12

11 theorem Basic_Contrasim_Game.winning_strategy_in_basic_game_iff_contrasim
12 locale Contrasim_Set_Game.c_set_game

https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Basic_Contrasim_Game.html#winning_strategy_in_basic_game_iff_contrasim
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasim_Set_Game.html#c_set_game

B. Bisping & L. Montanari 35

To check whether p�C q holds we play the contrasimulation set game from the initial attacker position
(p,{q})a. A schematic model of the game is given in Figure 5.

In each simulation phase, the attacker challenges the defender to successively simulate the actions wi

of a word #‰w = w0 . . .wn. Here, the defender does not play a single state, but rather the set of all states
reachable by the known prefix w0 . . .wk of #‰w . When the attacker is done choosing #‰w in p

#‰w
=⇒ p′, they

request a swap. The defender must then select a specific state q′ with q
#‰w
=⇒ q′ from their state set. The

players then change sides and the attacker may now challenge q′ �C p′. Hence, the defender postpones
the decision of how exactly to simulate the challenged word until a swap is requested.

Example 4 (Contrasimulation game on Pc, Pp). A possible play of GC for the philosopher transition
system from Example 1 would be: (Pc,{Pp})a � Sim(op,AB,{Pp})d � (AB,{τ.aEats,τ.bEats})a �
Swap(τ.aEats,{τ.aEats,τ.bEats})d�(τ.aEats,{τ.aEats})a � Sim(aEats,0,{τ.aEats})d�(0,{0})a
� Swap(0,{0})d � The play ends in an infinite loop of swaps and is thus won by the defender. The
crucial point of this game is the defender move highlighted in blue, where the defender answers a swap
challenge by matching the processes on both sides. After this, it becomes impossible for the attacker
to win. If the defender picked τ.bEats instead, they would lose. However, the defender has a winning
strategy no matter which moves the attacker chooses for GC[(Pc,{Pp})a].

There are no easy ways of switching to single-action moves without using the subset construction: The
defender does not know the full word #‰w that the attacker will choose, but only the word prefix w0 . . .wk
challenged thus far up to a point k ≤ n. Deciding for single states early would thus put the defender at a
disadvantage: There might be several states q′ with q

‰w0...wk====⇒ q′ for every such k, of which only some also
satisfy q

‰w0...wk====⇒ q′
‰wk+1...wn
=====⇒ q′′ for any q′′ ∈ S. Dually, forcing early swapping would be disadvantageous

to the attacker when the attack has to pass through instable states as seen in Example 3.
Crucially, this construction yields a finite game for any finite-state process. As with the well-known

subset construction when transforming nondeterministic into deterministic finite automata, the game size
is exponential in the size of the state space S.

We chose to present the game as an alternating game where attacker and defender take turns. Several
modifications could be made to simplify some aspects of the game: Note, for example, that the Sim(. . .)d-
positions are not strictly necessary, as the defender has exactly one move originating from each such
position. Additionally, parts of the game moves could be broken up into smaller steps on−→ instead of ==..
However, both changes would make the game non-alternating. For the purpose of this paper, especially
for intuitive proofs like in the following section, we consider the alternating formulation superior.

4 Correctness of the Contrasimulation Game

Let us now demonstrate that the �C game does indeed correspond to the contrasimulation preorder
in the sense that the defender wins the game GC[(p,{q})a] precisely if p �C q. In Subsection 4.1,
we first establish soundness of the characterization, that is, defender winning strategies in the game
imply contrasimulations on the LTS. Subsection 4.2 then shows completeness of the characterization by
constructing a defender winning strategy from the greatest contrasimulation.

Our proofs must bridge the gap between the single-action game and the word-transition definition of
the contrasimulation property. While transition relations on single actions usually are non-deterministic,
the transitions lifted to sets of states are deterministic. In order to exploit this in proofs, we first define
the word successor function from delay steps:

36 A Game Characterization for Contrasimilarity

Definition 9. We define the word successor function succs : Act∗×2S→ 2S recursively as follows:13

succs(ε,Q) = Q

succs(#‰wa,Q) = {q′ | succs(#‰w,Q)
a
==. q′}

Intuitively, succs computes the set of states reachable with a given word #‰w from a starting set Q. Thus,
we can use succs to compute the state set of defender simulation positions in the contrasimulation set
game. Note that succs(#‰w,Q) will return the empty set if no state in Q admits a

#‰w
=⇒-transition.

Lemma 6. Let #‰w ∈Act∗ be a word and let q,q′ be states in S. Then q
#‰w
=⇒ q′ implies succs(#‰w,{q})=⇒ q′.14

Furthermore, q′ ∈ succs(#‰w,{q}) implies q
#‰w
=⇒ q′.15

4.1 Soundness of the Contrasimulation Game

Let us first prove that the�C game is sound with respect to the contrasimulation preorder, that is, p�C q
holds if the defender wins GC[(p,{q})a]. To this end, we first prove an intermediate result stating that the
defender is always able to answer simulation challenges over the prefix #‰v of a nonempty word #‰w = #‰v wn

in p
#‰w
=⇒ p′.

Lemma 7 (Word challenge building). Let f be a defender strategy on GC[g0] for some g0 ∈ G and let
(p,{q})a be an attacker position in a play consistent with f . Let #‰w = #‰v wn ∈ Act∗ be a nonempty word
and assume p

#‰w
=⇒ p′ for some p′ ∈ S. Then there exist p0, p1 ∈ S with p

#‰v
=⇒ p0

wn===. p1 =⇒ p′ such that
the defender position Sim(wn, p1, succs(#‰v ,{q}))d can be reached in some play consistent with f .16

Proof. We will prove this by nonempty induction on #‰w = #‰v wn ∈ Act∗:

• Base Case: #‰w = wn = εwn.
From p wn=⇒ p′ we know there exists a p1 such that p wn===. p1 =⇒ p′. Hence, the attacker can move
from (p,{q})a to Sim(wn, p1,{q})d = Sim(wn, p1, succs(ε,{q}))d. This play is still consistent
with f as f is only defined for defender moves.

• Induction step: #‰w = #‰v wn for some nonempty word #‰v ∈ Act∗.
Then there exists a #‰u ∈Act∗ such that #‰v = #‰u wn−1 and p

#‰u
=⇒ p0

wn−1
===⇒ p1

wn=⇒ p′ for some p0, p1 ∈ S.
We assume the lemma holds for #‰v , i.e. there exists a p01 ∈ S with p0

wn−1
====. p01 =⇒ p1 such that

the position Sim(wn−1, p01, succs(#‰u ,{q}))d can be reached in some play consistent with f .

Because there always exists a (potentially empty) set Q′ with succs(#‰u ,{q}) wn−1
====.Q′, the defender

is not stuck at Sim(wn−1, p01, succs(#‰u ,{q}))d. There must therefore exist a position (p01,Q′)a =
f (g0 . . .Sim(wn−1, p01, succs(#‰u ,{q}))d that the defender can move to. For Q′ we have

Q′ = {q′ | succs(#‰u ,{q}) wn−1
====. q′}= succs(#‰u wn−1,{q}) = succs(#‰v ,{q}).

From our assumptions p01 =⇒ p1 and p1
wn=⇒ p′ we can infer the existence of a p′1 with p01 =⇒

p1
wn===. p′1 =⇒ p′, which we can shorten to p01

wn===. p′1 =⇒ p′. Hence, the attacker can move from
(p01,Q′)a to Sim(wn, p′1,Q

′)d = Sim(wn, p′1, succs(#‰v ,{q}))d, and therefore the defender position

13 primrec Weak_Transition_Systems.dsuccs_seq_rec
14 lemma Weak_Transition_Systems.word_reachable_implies_in_dsuccs
15 lemma Weak_Transition_Systems.in_dsuccs_implies_word_reachable
16 lemma Contrasim_Set_Game.def_sim_pos_with_prefix_in_play

https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Weak_Transition_Systems.html#dsuccs_seq_rec
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Weak_Transition_Systems.html#word_reachable_implies_in_dsuccs
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Weak_Transition_Systems.html#in_dsuccs_implies_word_reachable
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasim_Set_Game.html#def_sim_pos_with_prefix_in_play

B. Bisping & L. Montanari 37

Sim(wn, p′1, succs(#‰v ,{q}))d is reachable in a play consistent with f . Furthermore, the second
implication p

#‰v
=⇒ p01

wn===. p′1 =⇒ p′ follows immediately from p
#‰u
=⇒ p0

wn−1
====. p01

wn===. p′1 =⇒ p′

and #‰v = #‰u wn−1.

With this result, we are now able to prove the soundness of the �C game.

Lemma 8 (Soundness). Let f be a winning strategy for the defender on GC[(p0,{q0})a] for some p0,q0 ∈
S. Then we have p0 �C q0. 17

Proof. We construct a relation R ⊆ S×S where

R = {(p0,q0)}∪{(q, p) | ∃g∈G∞
f [(p0,{q0})a] : ∃k∈N : ∃Q⊆ S : gk = Swap(p,Q)d∧gk+1 = (q,{p})a}.

Informally, R contains the states p0,q0 of the initial position (p0,{q0})a and the states of all attacker
positions following a defender swap position in any play consistent with f . We aim to prove that R is a
contrasimulation:

Let p, p′,q ∈ S be states and assume (p,q) ∈R and p
#‰w
=⇒ p′ for some #‰w ∈ Act∗. We shall prove that

a state q′ ∈ S exists such that q
#‰w
=⇒ q′ and (q′, p′) ∈R.

Since (p,q) ∈R, there exists a g ∈ G∞
f [(p0,{q0})a] and a k ∈ N∪{−1} such that gk+1 = (p,{q})a

is an attacker position in g. We will distinguish between empty and nonempty words #‰w:

• Case 1: #‰w = ε .
By assumption, we have p ε

=⇒ p′ and thus p =⇒ p′. Hence, the attacker can move from (p,{q})a
to a defender position Swap(p′,{q})d. Because f is a winning strategy, the defender is not stuck
at Swap(p′,{q})d; there must therefore exist a state q′ ∈ S such that the defender can move to
the position f (g0 . . .Swap(p′,{q})d) = (q′,{p′})a. It follows that q =⇒ q′ and that there exists a
play g ∈ G∞

f [(p0,{q0})a] in which (q′,{p′})a can be reached. Since the last position played is a
Swap(. . .)d node, we therefore have (q′, p′) ∈R by our construction of R.

• Case 2: #‰w = #‰v wn for some #‰v ∈ Act∗ and wn ∈ Act.
By application of Lemma 7, we know there exist p0, p1 with p

#‰v
=⇒ p0

wn===. p1 =⇒ p′ such that the
position Sim(wn, p1, succs(#‰v ,{q}))d can be reached in some play g ∈G∞

f [(p0,{q0})a]. Because f
is a winning strategy, the defender is not stuck at Sim(wn, p1, succs(#‰v ,{q})d; there must therefore
exist a set Q1 allowing the defender to move to a position f (g0 . . .Sim(wn, p1, succs(#‰v ,{q}))d) =
(p1,Q1)a. For Q1 we have

Q1 = {q1 | succs(#‰v ,{q}) wn===. q1}= succs(#‰v wn,{q}) = succs(#‰w,{q}).

By our assumption p1 =⇒ p′, the attacker can keep moving to a defender position Swap(p′,Q1)d.
Again, the defender is not stuck, and there exists a q′ ∈ S allowing the defender to move to the
position f (g0 . . .Swap(p′,Q1)d) = (q′,{p′})a. It follows that Q1 =⇒ q′. For q′ we have

q′ ∈ {q′ | ∃q1 ∈ Q1 : q1 =⇒ q′}
= {q′ | ∃q1 ∈ succs(#‰w,{q}) : q1 =⇒ q′}
⊆ {q′ | ∃q1 ∈ succs(#‰w,{q}) : q

#‰w
=⇒ q1∧q1 =⇒ q′} (Lemma 6)

⊆ {q′ | q
#‰w
=⇒ q′}.

17 lemma Contrasim_Set_Game.set_contrasim_game_sound

https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasim_Set_Game.html#set_contrasim_game_sound

38 A Game Characterization for Contrasimilarity

Hence, there exists a q′ satisfying q
#‰w
=⇒ q′. Because the defender moves according to f from a

position (p,{q})a in a play g ∈ G∞
f [(p0,{q0})a], the position (q′,{p′})a must also be reachable

in a play consistent with f . Then we also have (q′, p′) ∈R, since the last played position was a
Swap(. . .)d node.

Thus, R is a contrasimulation by Definition 4. From (p0,q0) ∈R then follows p0 �C q0.

4.2 Completeness of the Contrasimulation Game

Let us now prove that the �C game is complete with respect to the contrasimulation preorder, that is, the
defender wins GC[(p,{q})a] if p�C q. To this end, we define an auxiliary function F with which we are
able to construct a defender strategy fC from the contrasimulation preorder �C. We will prove that if
p�C q, then fC is a winning strategy for the defender on GC[(p,{q})a].

We define the function F : 2S×2S → 2S×2S
as follows:18

F(R) = {(p′, succs(#‰w,Q)) | ∃p ∈ S : (p,Q) ∈ R∧ p
#‰w
=⇒ p′}

Furthermore, we define a type-congruent relation C ⊆ S× 2S from the contrasimulation preorder with
C = {(p,{q}) | p�C q}.

This yields a relation F(C) ⊆ S× 2S which we will use extensively in the following proofs. The
motivation behind C and F(C) becomes clear when we consider a play in the game GC[(p0,{q0})a]
with p0 �C q0: Here, C contains tuples (p,{q}) of attacker positions after the word challenge has been
completed, i.e. positions (p,{q})a following a Swap(. . .)d node. The relation F(C) then expands C
to also include attacker positions in the simulation phase of the word challenge, i.e. positions (p,Q)a
following a Sim(. . .)d node. Thus, using F(C) we can construct a defender strategy that is well-defined
for both Sim(. . .)d and Swap(. . .)d positions.

Lemma 9. We have R⊆ F(R) for all R⊆ S×2S.19

Lemma 10. Let a ∈ Act and let p, p′ ∈ S be states and Q⊆ S be a set of states such that (p,Q) ∈ F(C).

• If p a
==. p′, then there exists a set Q′ ⊆ S such that Q a

==. Q′ and (p′,Q′) ∈ F(C),20 and

• if p =⇒ p′, then there exists a state q′ ∈ S such that Q =⇒ q′ and (q′,{p′}) ∈ F(C).21

Proof. By construction of F and our assumption (p,Q) ∈ F(C), we know there exist states p0,q0 ∈ S
such that (p0,{q0}) ∈ C, p0

#‰w
=⇒ p and Q = succs(#‰w,{q0}) for some #‰w ∈ Act∗. Hence, we also have

p0 �C q0. We will distinguish between τ-steps and delay steps:

• For p a
==. p′, we have p0

#‰w
=⇒ p a

==. p′ and thus p0
#‰w a
==⇒ p′. With p0 �C q0, there must then

exist a q′ ∈ S such that q0
#‰w a
==⇒ q′. It follows from Lemma 6 that succs(#‰wa,{q0}) =⇒ q′. For

Q′ := succs(#‰wa,{q0}), we then have (p′,Q′) ∈ F(C) by our construction of F and Q a
==. Q′ by

Definition 9.

• For p=⇒ p′, we have p0
#‰w
=⇒ p=⇒ p′ and thus p0

#‰w
=⇒ p′. With p0�C q0, there must then exist a q′ ∈ S

such that q0
#‰w
=⇒ q′ and q′ �C p′. Thus, we have (q′,{p′})∈C⊆ F(C) and q′ ∈ succs(#‰w,{q0}) = Q

by application of Lemma 6. It follows immediately that Q =⇒ q′.
18 definition Contrasimulation.F
19 lemma Contrasimulation.R_is_in_F_of_R
20 lemma Contrasimulation.F_of_C_guarantees_action_succ
21 lemma Contrasimulation.F_of_C_guarantees_tau_succ

https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#F
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#R_is_in_F_of_R
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#F_of_C_guarantees_action_succ
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasimulation.html#F_of_C_guarantees_tau_succ

B. Bisping & L. Montanari 39

We can now construct a positional defender strategy fC using F(C).
Definition 10 (Defender strategy fC on GC). Wherever possible, a defender strategy fC derived from
F(C) maps the current play fragment g0 . . .gk to next positions as follows:

• If the last played position gk is a swap node Swap(p′,Q)d, move to some attacker position (q′,{p′})a
with (q′,{p′}) ∈ F(C) and Q =⇒ q′, and

• if the last played position gk is a simulation node Sim(a, p′,Q)d, move to the attacker position
(p′,Q′)a where Q a

==. Q′.22

Where there are no applicable moves, we leave fC undefined. Note that there may exist several strate-
gies satisfying these conditions. In the following, fC is one of these defender strategies—it makes no
difference which one.23

Lemma 11 (F invariant). Let p0,q0 ∈ S be states and let g be a play of GC[(p0,{q0})a] consistent with
fC. If p0 �C q0, then we have (p,Q) ∈ F(C) for all attacker positions (p,Q)a in g.24

Proof. This follows immediately from C ⊆ F(C) for the initial position (p0,{q0})a. All other attacker
positions can only be reached if the defender moves to them, and, following fC, the defender always
moves in accordance with F(C).

Lemma 12 (Completeness). Let p0,q0 ∈ S be states with p0 �C q0. Then fC is a winning strategy on
GC[(p0,{q0})a].25

Proof. We show by induction on g∈G∞
fC [(p0,{q0})a] that the defender is never stuck. Let g = g0g1 . . .gk

be the current play fragment on GC[(p0,{q0})a].
At the initial position g0 = (p0,{q0})a, the defender cannot be stuck, since g0 is an attacker position.

We will assume the lemma holds for the current play fragment g0...gk. For gk+1 we have the cases:

• gk+1 is an attacker position. Then the defender cannot be stuck by the same reasoning as for the
base case.

• gk+1 is a defender position. Then there exists a position gk = (p,Q)a from which the attacker has
moved to gk+1, therefore (p,Q) ∈ F(C) must hold by Lemma 11. We will distinguish between
types of defender positions for gk+1:

– gk+1 = Sim(a, p′,Q)d is a simulation position. Then we have p a
==. p′. It follows from

(p,Q) ∈ F(C) and Lemma 10 that there is a set Q′⊆ S such that Q a
==.Q′ and (p′,Q′)∈F(C).

Thus, the defender can move to (p′,Q′)a with fC and is therefore not stuck.
– gk+1 = Swap(p′,Q)d is a swapping position. Then we have p =⇒ p′. From (p,Q) ∈ F(C) and

Lemma 10, it follows that there exists a state q′ ∈ S such that Q =⇒ q′ and (q′,{p′}) ∈ F(C).
Thus, the defender can move to (q′,{p′})a with fC and is therefore not stuck.

Hence, the defender is never stuck in a play consistent with fC, and thus fC is a winning strategy for the
defender.

Combining Lemma 8 and Lemma 12, we get:
Theorem 13. The defender wins GC[(p,{q})a] precisely if p�C q.26

22 fun Contrasim_Set_Game.strategy_from_F_of_C
23In our Isabelle/HOL formalization, we used its Hilbert’s choice operator SOME.
24 lemma Contrasim_Set_Game.set_game_strategy_retains_F
25 lemma Contrasim_Set_Game.set_contrasim_game_complete
26 theorem Contrasim_Set_Game.winning_strategy_in_set_game_iff_contrasim

https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasim_Set_Game.html#strategy_from_F_of_C
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasim_Set_Game.html#set_game_strategy_retains_F
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasim_Set_Game.html#set_contrasim_game_complete
https://concurrency-theory.org/contrasimulation-game/Contrasimulation/Contrasim_Set_Game.html#winning_strategy_in_set_game_iff_contrasim

40 A Game Characterization for Contrasimilarity

5 Discussion and Related Work

The presented game closes the last interesting gap in the landscape of game characterizations for equiv-
alences in the linear-time–branching-time spectrum with internal steps [10]. De Frutos Escrig et al.’s
games for branching, delay, η and weak bisimulation [8] and ours for coupled simulation [6] are poly-
nomial in the size of the system state space. Due to the subset construction, the presented contrasim-
ulation game needs exponentially many game positions. Compared to defining the equivalence games
on words as Chen and Deng [7], the subset construction is still preferable, as it yields finite games for
finite-state systems. Our group has used the same subset approach in [5]. There, the virtue of the single-
action construction lay in making attacker strategies correspond closely with all relevant distinguishing
Hennessy–Milner logic formulas.

A side-effect of our work is that we have formalized contrasimilarity (and its characterizing games)
in Isabelle/HOL, based on our prior work in [3]. This is not the first such formalization. Peters and van
Glabbeek [17, 18] provided an Isabelle theory of contrasimilarity tailored to reduction semantics and
to the analysis of encodings between formalisms. Moreover, Bell [2] developed a Coq formalization to
support the verification of compilers using contrasimilarity, still available at http://people.csail.
mit.edu/cj/par/.

Voorhoeve and Mauw [20] examined a modal-logical characterization of contrasimilarity consist-
ing of >, ⊥, conjunction ϕ ∧ψ , disjunction ϕ ∨ψ and a special necessity operator on paths with
immediate negation �W¬ϕ , which is true at p iff ϕ is true at all p′ with p

#‰w
=⇒ p′ and ~w ∈W . Al-

though this paper has not been about modal logic, there is a strong link between games and modal
logic. One can read our game in Figure 5 as a way of enumerating possible distinguishing Hennessy–
Milner logic (HML) formulas (with 〈ε〉 denoting points of possible internal behavior). Then, the Sim-
branch corresponds to a delayed observation 〈ε〉〈a〉ϕ and the Swap-branch to a delayed logical nor
〈ε〉¬(ϕ1∨ϕ2∨ . . .).27 For instance, a distinguishing formula for the non-contrasimilar systems of Exam-
ple 2 would be 〈ε〉¬〈ε〉〈op〉〈ε〉〈aEats〉.

Observation 〈a〉ϕ and logical nor ¬(ϕ1 ∨ ϕ2 ∨ . . .) form a functionally complete set of operators
for HML and thus characterize (strong) bisimilarity. So it is aesthetically pleasing that “weakening”
this observation language by alternating its constructs and 〈ε〉, thereby allowing internal behavior “in
between the connectives” leads precisely to contrasimilarity. This view provides further evidence why
contrasimilarity is a quite sensible way of generalizing bisimilarity to systems with internal steps as
discussed in Section 2.

Contrasimilarity is an only slightly coarser sibling of coupled similarity [16]. For coupled similarity,
our group has been able to prove that it can be decided in cubic time, and cannot be cheaper than deciding
weak similarity [4]. The exponential game of the present paper induces an exponential algorithm for de-
ciding contrasimilarity. We have integrated the contrasimilarity algorithm into our prototypical coupled
similarity checker on https://coupledsim.bbisping.de. So, a side effect of the work presented
here is to provide the first tool support for checking contrasimilarity.

It seems strange that deciding contrasimilarity, which coincides with coupled similarity in many
cases, should be so much more expensive. We have not yet thought of a decisive argument for the com-
plexity of contrasimilarity checking. Due to the results for the spectrum without internal steps [14], one
may presume the coarser siblings of contrasimilarity from weak impossible futures down to weak trace
equivalence to all be PSPACE-hard. But while deciding weak possible futures and nestings of possible

27For more on why focusing the defender on one position is conjunction and swapping sides is negation (which together
amounts to NOR), see our group’s recent paper on linear-time–branching-time spectroscopy [5].

http://people.csail.mit.edu/cj/par/
http://people.csail.mit.edu/cj/par/
https://coupledsim.bbisping.de

B. Bisping & L. Montanari 41

futures equivalence is PSPACE, deciding its arbitrarily nested limit, weak bisimilarity, is PTIME. So
how come that the arbitrarily nested limit of impossible futures equivalence, contrasimilarity, seems to
be beyond PTIME?

The possibility of fooling depth-restricted approximations of contrasimilarity using instable external
choice points as in Example 3 suggests that one indeed must cater for the complexity of handling words.
We would very much like to be proven wrong with regard to this. Also, not every formalism is expressive
enough to raise this issue. In order to avoid the problem, it might suffice to ensure that all observations
are committed, which would rule out Example 3. Fournet and Gonthier [9] showed that parts of the
hierarchy of equivalences around contrasimilarity collapse for reduction semantics if transient barbs are
excluded. Then, however, cheaper algorithms for easier predicates such as coupled simulation should
also be applicable right away. More research would be needed in order to pinpoint where exactly one
cannot do without arbitrary-length word contrasimulation.

For this, and all the other nice things one could do using contrasimilarity, everyone is welcome to
use our Isabelle/HOL formalization.28

Acknowledgments. We are thankful to the members of the TU Berlin research group Modelle und Theorie Verteil-
ter Systeme, especially Uwe Nestmann, for supporting us in the preparation of this paper. Many thanks also to the
EXPRESS/SOS reviewers!

References

[1] J. C. M. Baeten, P. J. L. Cuijpers & P. J. A. van Tilburg (2008): A Context-Free Process as a Pushdown
Automaton. In Franck van Breugel & Marsha Chechik, editors: CONCUR 2008 - Concurrency Theory,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 98–113, doi:10.1007/978-3-540-85361-9 11.

[2] Christian J. Bell (2013): Certifiably sound parallelizing transformations. In Georges Gonthier & Michael
Norrish, editors: Certified Programs and Proofs, 8307, Springer International Publishing, pp. 227–242,
doi:10.1007/978-3-319-03545-1 15.

[3] Benjamin Bisping (2019): Isabelle/HOL proof and Apache Flink program for TACAS 2019 paper: Comput-
ing Coupled Similarity, doi:10.6084/m9.figshare.7831382.v1.

[4] Benjamin Bisping & Uwe Nestmann (2019): Computing coupled similarity. In: Proceedings of TACAS,
LNCS, Springer, pp. 244–261, doi:10.1007/978-3-030-17462-0 14.

[5] Benjamin Bisping & Uwe Nestmann (2021): A Game for Linear-time–Branching-time Spectroscopy. In
Jan Friso Groote & Kim Guldstrand Larsen, editors: Tools and Algorithms for the Construction and Analysis
of Systems, Springer International Publishing, Cham, pp. 3–19, doi:10.1007/978-3-030-72016-2 1.

[6] Benjamin Bisping, Uwe Nestmann & Kirstin Peters (2020): Coupled similarity: the first 32 years. Acta
Informatica 57(3), pp. 439–463, doi:10.1007/s00236-019-00356-4.

[7] Xin Chen & Yuxin Deng (2008): Game characterizations of process equivalences. In G. Ramalingam, editor:
Programming Languages and Systems, 5356, Springer Berlin Heidelberg, pp. 107–121, doi:10.1007/978-3-
540-89330-1 8.

[8] David De Frutos Escrig, Jeroen J. A. Keiren & Tim A. C. Willemse (2017): Games for bisimulations and
abstraction. Logical Methods in Computer Science 13(4), pp. 1–40, doi:10.23638/LMCS-13(4:15)2017.

[9] Cédric Fournet & Georges Gonthier (2005): A hierarchy of equivalences for asynchronous calculi. The
Journal of Logic and Algebraic Programming 63(1), pp. 131–173, doi:10.1016/j.jlap.2004.01.006.

[10] Rob J. van Glabbeek (1993): The linear time–branching time spectrum II. In: International Conference on
Concurrency Theory, Springer, pp. 66–81, doi:10.1007/3-540-57208-2 6.

28Available from https://github.com/luisamontanari/ContrasimGame.

http://dx.doi.org/10.1007/978-3-540-85361-9_11
http://dx.doi.org/10.1007/978-3-319-03545-1_15
http://dx.doi.org/10.6084/m9.figshare.7831382.v1
http://dx.doi.org/10.1007/978-3-030-17462-0_14
http://dx.doi.org/10.1007/978-3-030-72016-2_1
http://dx.doi.org/10.1007/s00236-019-00356-4
http://dx.doi.org/10.1007/978-3-540-89330-1_8
http://dx.doi.org/10.1007/978-3-540-89330-1_8
http://dx.doi.org/10.23638/LMCS-13(4:15)2017
http://dx.doi.org/10.1016/j.jlap.2004.01.006
http://dx.doi.org/10.1007/3-540-57208-2_6
https://github.com/luisamontanari/ContrasimGame

42 A Game Characterization for Contrasimilarity

[11] Rob J. van Glabbeek (2001): The linear time–branching time spectrum I. The semantics of concrete, sequen-
tial processes. In: Handbook of Process Algebra, Elsevier, pp. 3–99, doi:10.1016/B978-044482830-9/50019-
9.

[12] Erich Grädel (2007): Finite model theory and descriptive complexity. In: Finite Model Theory and its
Applications, Springer, pp. 125–230, doi:10.1007/3-540-68804-8 3.

[13] Zeno de Hoop (2017): Context-Free Processes and Push-Down Processes. Master’s thesis, Universiteit van
Amsterdam. Available at https://eprints.illc.uva.nl/id/eprint/1561.

[14] Hans Hüttel & Sandeep Shukla (1996): On the Complexity of Deciding Behavioural Equivalences and Pre-
orders. A Survey. BRICS Report Series 3(39), doi:10.7146/brics.v3i39.20021.

[15] Robin Milner (1989): Communication and Concurrency. PHI Series in computer science, Prentice Hall
Englewood Cliffs.

[16] Joachim Parrow & Peter Sjödin (1994): The complete axiomatization of Cs-congruence. In: Annual Sympo-
sium on Theoretical Aspects of Computer Science, Springer, pp. 555–568, doi:10.1007/3-540-57785-8 171.

[17] Kirstin Peters & Rob J. van Glabbeek (2015): Analysing and Comparing Encodability Criteria. In: Proceed-
ings of the Combined 22th International Workshop on Expressiveness in Concurrency and 12th Workshop on
Structural Operational Semantics, and 12th Workshop on Structural Operational Semantics, EXPRESS/SOS,
pp. 46–60, doi:10.4204/EPTCS.190.4.

[18] Kirstin Peters & Rob J. van Glabbeek (2015): Analysing and Comparing Encodability Criteria for Pro-
cess Calculi. Archive of Formal Proofs. https://isa-afp.org/entries/Encodability_Process_

Calculi.html, Formal proof development.
[19] Colin Stirling (1999): Bisimulation, modal logic and model checking games. Logic Journal of IGPL 7(1),

pp. 103–124, doi:10.1093/jigpal/7.1.103.
[20] Marc Voorhoeve & Sjouke Mauw (2001): Impossible futures and determinism. Information Processing

Letters 80(1), pp. 51–58, doi:10.1016/S0020-0190(01)00217-4.
[21] Makarius Wenzel et al. (2021): The Isabelle/Isar Reference Manual. Available at https://isabelle.in.

tum.de/doc/isar-ref.pdf.

http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1007/3-540-68804-8_3
https://eprints.illc.uva.nl/id/eprint/1561
http://dx.doi.org/10.7146/brics.v3i39.20021
http://dx.doi.org/10.1007/3-540-57785-8_171
http://dx.doi.org/10.4204/EPTCS.190.4
https://isa-afp.org/entries/Encodability_Process_Calculi.html
https://isa-afp.org/entries/Encodability_Process_Calculi.html
http://dx.doi.org/10.1093/jigpal/7.1.103
http://dx.doi.org/10.1016/S0020-0190(01)00217-4
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf

	1 Introduction
	2 Contrasimilarity: The Weakest Bisimilarity
	2.1 Systems with Internal Steps
	2.2 Defining Contrasimilarity
	2.3 Relationship of Contra- and Bi-similarity
	2.4 No Shortcuts

	3 The Contrasimulation Game
	3.1 Preliminaries
	3.2 The Game

	4 Correctness of the Contrasimulation Game
	4.1 Soundness of the Contrasimulation Game
	4.2 Completeness of the Contrasimulation Game

	5 Discussion and Related Work

