
V. Castiglioni and O. Dardha (Eds.): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2021)
EPTCS 339, 2021, pp. 76–92, doi:10.4204/EPTCS.339.8

On Decidability of the Bisimilarity on Higher-order Processes
with Parameterization*

Xian Xu
East China University of Science and Technology

xuxian@ecust.edu.cn

Wenbo Zhang
Shanghai Ocean University

Shanghai Key Laboratory of Trustworthy Computing
wbzhang@shou.edu.cn

Abstract Higher-order processes with parameterization are capable of abstraction and application
(migrated from the lambda-calculus), and thus are computationally more expressive. For the minimal
higher-order concurrency, it is well-known that the strong bisimilarity (i.e., the strong bisimulation
equality) is decidable in absence of parameterization. By contrast, whether the strong bisimilarity is
still decidable for parameterized higher-order processes remains unclear. In this paper, we focus on
this issue. There are basically two kinds of parameterization: one on names and the other on pro-
cesses. We show that the strong bisimilarity is indeed decidable for higher-order processes equipped
with both kinds of parameterization. Then we demonstrate how to adapt the decision approach to
build an axiom system for the strong bisimilarity. On top of these results, we provide an algorithm
for the bisimilarity checking.

Keywords: Decidability, Strong bisimilarity, Parameterization, Higher-order, Processes

2000 MSC: 68Q05, 68Q10, 68Q85

1 Introduction

Bisimulation is a most important concept for comparing the behaviour of computing systems, partic-
ularly concurrent systems. An accompanying vital question is to check whether two given systems are
equal in terms of bisimulation, hence the bisimilarity checking. Bisimilarity checking is an important
topic in concurrency theory and formal verification. Basically there are two directions for this topic. One
is to adopt an abstract manner, using process rewrite systems [13]. An advantage of this direction is that
some core techniques can be extracted and potentially adapted to various models. The other is to work
directly on concrete models [18]. An edge of this direction is that some well-defined operators can be
harnessed thoroughly to guide the checking. We focus on the second direction in this work.

The bisimilarity checking, including checking bisimulation equalities, simulations, and preorders,
has been attracting tremendous attention in the past few decades [9, 11–13, 23]. In contrast to the fruit-
ful work of bisimilarity checking on first-order models, checking bisimulation equalities for higher-order
processes has been more challenging. Much fewer results have been known in higher-order process mod-
els. Indeed, a major reason is that higher-order processes communicate in the fashion of process-passing
(i.e., program-passing), and have the innate capability of encoding recursion. Besides, the standard
bisimulation for higher-order processes, i.e., the context bisimulation, is strikingly different from those
for first-order processes. It requires the matching of two output processes to be compared in arbitrary
contexts. To this point, simplifying the context bisimilarity has also been a significant topic [19, 20].

*This work is supported by ANR 12IS02001 PACE, NSF of China (61872142, 62072299, 61772336, 61572318,
61261130589), Shanghai Sailing Program (21YF1417000) and the Open Project of Shanghai Key Laboratory of Trustwor-
thy Computing.

http://dx.doi.org/10.4204/EPTCS.339.8


Xian Xu & Wenbo Zhan 77

To this day, the best known result of bisimilarity checking for higher-order processes is reported in
[15], to our knowledge. In that work, Lanese et al. show that the strong bisimilarity checking of HOcore
processes is decidable. As a matter of fact, they show that all known strong bisimilarities in HOcore
are decidable. HOcore is a minimal higher-order process model that only has the input, (asynchronous)
output, and the concurrency operator (i.e., the parallel composition). HOcore is also proven to be Turing
complete, and this result is somehow refined toward a more implementable interpretation [3], in the
manner of encoding lambda-calculus in HOcore through abstract machines.

That HOcore is Turing complete renders its process-termination problem undecidable. This fact
adds to the contrast that the strong bisimilarity is decidable, which in turn implies the decidability of
the barbed congruence. Technically, the decidability is achieved by showing all the strong bisimilarities
to be coincident with a very special strong bisimilarity, called IO-bisimilarity, which is decidable by its
definition in the first place. On the basis of this decidability outcome, a complete axiom system is also
established, as well as an algorithm with acceptable complexity. It is then possible to implement the
algorithm for bisimilarity checking HOcore processes in software systems [1]. Intuitively, the essential
element making the strong bisimilarity decidable is that HOcore does not have the restriction operator,
and thus the capability of expressing recursion is weakened. It is also shown that if restriction is recov-
ered, i.e., if at least four static (i.e., top concurrency level) restrictions are included in HOcore, then the
strong bisimilarity immediately becomes undecidable. The undecidability is proven through a reduction
from the PCP; similar reductions are also used in other settings, e.g., the Ambient calculus [8]. Building
upon [10, 15] further studies the possibility of making the termination decidable, in the setting of a frag-
ment of HOcore where nested higher-order outputs are disabled. Specifically, it is shown that in such a
setting the termination of processes becomes decidable (though convergence is still undecidable), due to
the reason that the Minsky machines are no longer expressible. Technically, such decidability is achieved
using the well-structured transition systems employed in [7]. Following [10, 18] shows that termination
turns back to be undecidable if such a fragment of HOcore is enriched with a passivation operator [22],
because Turing completeness is retained with the help of passivation.

In [6], Bundgaard et al. study the decidable fragments of Homer [5], a higher order process model
with the capacity of expressing locations. They show that two subcalculi of Homer have decidable barbed
bisimilarity, in both the strong and weak forms. Intuitively, Homer supports certain kind of pattern match-
ing of name sequences that model the locations of resources, and this plays a central role in enhancing
the expressiveness. For this reason, Homer can encode first-order processes and is computationally com-
plete, leaving little hope for the decidability of bisimilarities. Therefore, to obtain decidability, some
constraints have to be devised. Technically, such constraints are imposed through a finite control prop-
erty. That is, some finite reachability criterion is excerpted on the semantics of Homer processes. Such
a criterion is the key reason for the decidability of barbed bisimilarities. The approach of [6] provides a
valuable reference for acquiring decidability sub-models from a more powerful full model.

However, there is still much space one can exploit concerning bisimilarity checking for higher-order
processes, as mentioned in [15]. HOcore is a minimal model, with somewhat low modelling capacity.
It would be interesting to quest for a more expressive model by adding certain constructs, while still
maintaining the decidability result. Parameterization has been known to be an effective approach of
promoting the expressiveness of higher-order processes, that is, abstraction-passing is strictly more ex-
pressive than mere process-passing [14]. In this work, we focus on the minimal higher-order processes
with parameterization, notation Πmp, basically HOcore extended with parameterization. This minimal
model contains solely the most elementary parts to formalize higher-order concurrency, with extension
of the abstraction and application, two operations originating from the lambda-calculus [2]. We will
show that in such a calculus, the strong bisimilarity remains decidable. Similar result is only conjectured



78 On Decidability of the Bisimilarity on Higher-order Processes with Parameterization

in [15]. To this point, we go beyond that conjecture in two respects. Firstly, although our general ap-
proach resembles that of [15], the technical route has some key lemmas with essentially different proof
structures, due to the complication brought by the parameterization. Secondly, we consider two kinds
of parameterization, i.e., both on names and on processes themselves, rather than only one kind. Thus
we are working on a potentially more expressive model. This is evidenced by the following two facts.
(1) Parameterization, in particular process parameterization, brings strictly more expressiveness to the
higher-order process model [14]. (2) Moreover, name parameterization is more expressive than process
parameterization [27]. Intuitively, this is true because we can somehow encode process parameterization
with name parameterization, using an idea akin to that of encoding process-passing into name-passing.
To the best of our knowledge, there has been little work about the decidability of bisimilarities in such
a model. The decidability result of this work not only pushes outward the boundary of higher-order
processes with decidable bisimilarity, but also digs more into the realm of bisimilarity checking more
challenging behavioural equalities, such as weak or branching bisimilarity.

Contribution Now we summarize the main contribution of this paper.
• We show that in the minimal higher-order process model with parameterization, the strong bisimilar-
ities, including the standard context bisimilarity together with other well-known bisimulation equalities,
are all decidable. We borrow and revamp the ideas from [15], i.e., defining a bisimilarity decidable from
the very beginning and then showing that the bisimilarities of interest coincide with it. The major novel
parts are those tackling the parameterization. Due to the presence of the parameterization, we have a
completely new design of the key bisimilarities, particularly those defined directly over open processes
(i.e., those processes carrying free variables), as well as the normal bisimulation that needs new forms of
triggers for the two kinds of parameterizations. In turn, the congruence proofs must take these changes
into consideration. Moreover, some crucial properties for establishing the coincidence of the bisimilar-
ities have entirely new proof methods, in particular, among others, the preservation of substitution that
claims the closure of variable substitutions with respect to the strong bisimilarity (since now a variable
can take an abstraction). Indeed, the discussion of the mutual inclusion of various bisimilarities calls
for more rigorous and fine-grained investigation in the setting of parameterization. More explanation is
given in Sections 2, 3.
• With the decidability in place, we design an axiom system and a checking algorithm, in roughly
the same vein as those in [15], with the following differences. (1) For the axiom system, the core part
amounts to reducing the deduction of the strong bisimilarity to the extended structural congruence. Pre-
viously, such extension includes a distribution law. Now with parameterization in the game, we have
to further extend the structural congruence with the laws for the application operation. (2) For the
bisimilarity-checking algorithm, the core is to transform a term (possibly with parameterization) into
certain normal form with the help of a tree representation of the process, and then the bisimilarity check-
ing can be readily done almost syntactically on the normal form. In presence of parameterization, we
extend the tree to accommodate abstractions and applications, as well as the normalization procedure. In
such an extended procedure, we execute applications as many times any possible, and operate the tree in
a bottom-up fashion so as to improve on performance. The algorithm has linear space complexity and
polynomial time complexity slightly better than available ones. More details are given in Sections 4, 5.
An extended version of this paper with more details is available [26].
Organization The remainder of this paper is organized as follows. Section 2 gives the definitions of the
process model and the strong bisimilarities. Section 3 presents the decidability of the strong bisimilari-
ties, with detailed proofs. Section 4 does the axiomatization and proves its correctness. In Section 5, we
demonstrate an algorithm for the bisimilarity checking, and analyses its complexity. Section 6 concludes
this paper and points to some future work.



Xian Xu & Wenbo Zhan 79

2 Preliminary

In this section, we first define Πmp, the minimal higher-order process model extended with parame-
terization. Then we introduce the strong bisimilarities to be discussed.
Syntax Calculus Πmp has the following syntax.

P,Q := 0
∣∣∣X ∣∣∣m(X).P

∣∣∣m(Q)
∣∣∣P |Q ∣∣∣〈X〉P ∣∣∣P〈Q〉 ∣∣∣〈x〉P ∣∣∣P〈n〉

Πmp expressions (or terms, processes) are represented by capital letters. For the sake of convenience,
we divide names (ranged over by m,n,u,v...) into two groups: one for name constants (ranged over by
a,b,c,d,e...) and the other for name variables (ranged over by x,y,z...). The elements of the calculus
have their standard meaning. One notices that the output is non-blocking, i.e., asynchronous. Sometimes
we write m[Q] for output. Input m(X).P and process abstraction 〈X〉P bind the process variable X , and
name abstraction 〈x〉P binds the name variable x. Otherwise, a process or name variable is free. Bound
variables can be replaced subject to α-conversion, and the resulting term is deemed as the same. A term
is closed if it does not have free process variables. Otherwise it is open. Operations fpv(·), bpv(·), pv(·),
fnv(·), bnv(·), nv(·), nc(·), n(·) respectively return the free process variables, bound process variables,
process variables, free name variables, bound name variables, name variables, name constants, and names
of a set of terms. A variable or name is fresh if it does not appear in the terms under examination. We
use ·̃ for a tuple, for example, a tuple of terms P̃ and a tuple of names m̃. Process substitution P{Q/X}
(respectively name substitution P{m/x}) denotes the replacement of process variable X (respectively
name variable x) with the process Q (respectively name m). Substitutions can be extended to tuples in
the expected way, i.e., pairwise replacement.

Parameterization refers to abstraction and application, and sometimes parameterization and abstrac-
tion are used interchangeably. Intuitively the process abstraction 〈X〉P (respectively name abstraction
〈x〉P) abstracts in P the process variable X (respectively name variable x), which is supposed to be
instantiated by a concrete process Q (respectively name d) in the application (〈X〉P)〈Q〉 (respectively
(〈x〉P)〈d〉); then in turn the application gives rise to an applied form P{P/X} (respectively P{d/x}). The
constructs of abstract and application stem from the counterpart in the lambda-calculus, and somehow
extend the domain of the lambda-calculus to a concurrent setting. To ensure correct use of abstraction and
application, a type system was designed by Sangiorgi in his seminal thesis [19]. The typing rules in the
type system effect to exclude badly formed expressions, such as (〈x〉P)〈A〉 and 〈A〉P in which A is a (non-
variable) term, P | 〈X〉Q (dangling abstraction), and so on. That type system is important but not essential
for our work here, so we do not present it and always assume that terms are well-formed subject to typ-
ing; interested readers can refer to [19,21] and reference thereof for more details. Term P1 |P2 | · · · |Pk is
abbreviated as Πk

i=1Pi. We also have some CCS-like operations defined as follows: a.P def
= a(X).P where

X /∈ pv(P); a def
= a.0; a def

= a0. A context C[·] is an expression with some sub-expression replaced by the
hole [·], and C[A] means substituting the hole with A.

Semantics We denote by≡ the standard structural congruence extended by the rules for application, i.e.,
the smallest congruence meeting the following laws among which the last two formulate the application.
(P |Q) |R≡ P |(Q |R), P |Q≡ Q |P, P |0≡ P, (〈X〉P)〈Q〉 ≡ P{Q/X}, (〈x〉P)〈m〉 ≡ P{m/x}

Calculus Πmp has the following operational semantics on open terms, with symmetric rules skipped.
In the third rule, we assume bpv(λ ) ∩ fpv(Q) = /0.

m(X).P
m(X)−−−→P mQ

m(Q)−−−→0

P λ−→P′

P |Q λ−→P′ |Q
P

m(A)−−−→P′ Q
m(X)−−−→Q′

P |Q τ−→P′ |Q′{A/X}

Q≡ P P λ−→P′ P′ ≡ Q′

Q λ−→Q′



80 On Decidability of the Bisimilarity on Higher-order Processes with Parameterization

The semantics grant a term three kinds of actions: input P
a(X)−−→P′ means that P can receive a term on

channel a to replace the variable X acting as a place-holder in P (here we have a late instantiation style);

output P
a(Q)−−→P′ means that P can send a term Q (which could be an abstraction) on channel a in an

asynchronous fashion; interaction P τ−→P′ means that P makes a communication of some term between
concurrent components. Actions are ranged over by α,λ . Operations fpv(·), bpv(·), pv(·), fnv(·), bnv(·),
nv(·), nc(·), n(·) and also substitutions can be extended to actions in the expected way accordingly. We

sometimes write P λ−→· to represent the transition P λ−→P′ for some P′ if P′ is not important. Modelling
application as part of the structural congruence follows the line of reduction in lambda-calculus, though
there are other options (see [19, 21]). Thus up-to ≡, a term can be somehow turned into an equivalent
one by applying applications as many times as possible, ending up with a term containing only those
application of the form X〈A〉. As in [19], we ensure that applications (substitutions) are bound to end
(i.e., normalized), so as to avoid Ω-like terms such as O〈O〉 in which O def

= 〈X〉(X〈X〉). Said another
way, in the sense of order, we focus on abstractions with finite order, not ω order. See [19, 21] for more
discussion about this. We further notice that if infinite application were to be admitted (though this is a bit
strange), then essentially one would retrieve replication, e.g., !P def

= O′〈O′〉 in which O′ def
= 〈X〉(P |X〈X〉).

This would probably lead to a drastically different situation, which we do not tackle in this work. Before
moving on, we give an example to illustrate the modelling capability of Πmp. We define two processes P
and Q executing a simple protocol, making good use of the parameterization.

P def
= aA |b(X).(X〈B〉 |O), Q def

= a(X).(X〈c〉 |c(Y ).R), A def
= 〈x〉(b[〈Z〉xZ])

P |Q τ−→ ≡ b(X).(X〈B〉 |O) |A〈c〉 |c(Y ).R ≡ b(X).(X〈B〉 |O) |b[〈Z〉cZ] |c(Y ).R
τ−→ ≡ (〈Z〉cZ)〈B〉 |O |c(Y ).R ≡ cB |O |c(Y ).R
τ−→ ≡ R{B/Y}|O

The protocol goes as follows: (1) P sends Q an abstraction A over channel a (which is agreed upon
beforehand); (2) Q instantiates the name abstraction carried by A with a name c chosen by Q alone (not
necessarily negotiated with P before starting the protocol); (3) Part of the code of A, i.e., 〈Z〉cZ is sent
back to P over channel b chosen by P alone; (4) Process B, e.g., some computational resource or data, is
sent to Q over channel c, so as to be used in R. In the entire protocol, P and Q only agree on the channel
name a, and initially do not disclose on which channel the resource is to be transmitted.

Below we give the notion of “guarded” and some relevant properties.

Definition 1. A variable X is guarded in P if X merely occurs in the following two situations. (1)
X occurs in P’s subexpressions of the form m(Y ).P′ (in which Y could be the same as X), or Y 〈P′〉 (in
which Y is not X). (2) X occurs free in P’s subexpressions of the form mP′. A term P is guarded if any
free variable of it is guarded.

In what follows, we have the abbreviations: Trm
def
= m, TrD

m
def
= 〈Z〉mZ, TrD,d

m
def
= 〈z〉m[〈Z〉(Z〈z〉)]. The

proofs of the coming two lemmas are by transition induction.

Lemma 2. We have the following transition properties.

(1) If P λ−→P′, then P{R/X} λ{R/X}−−−−→P′{R/X} for every R with fpv(R)∩ (pv(P)∪pv(λ )∪{X}) = /0.

(2) If P{R/X} λ ′−→P1 with X guarded in P and fpv(R)∩ (pv(P)∪{X}) = /0, then P λ−→P′, P1 ≡ P′{R/X},
and λ ′ is λ{R/X} with fpv(R)∩pv(λ ) = /0.

(3) If P{Trm/X} λ ′−→P1 with m fresh and not in λ ′, then P λ−→P′, P1 ≡ P′{Trm/X}, and λ ′ is λ{Trm/X}.



Xian Xu & Wenbo Zhan 81

(4) If P{TrD
m/X} λ ′−→P1 with m fresh and not in λ ′, then P λ−→P′, P1 ≡ P′{TrD

m/X}, and λ ′ is λ{TrD
m/X}.

(5) If P{TrD,d
m /X} λ ′−→P1 with m fresh and not in λ ′, then P λ−→P′, P1≡P′{TrD,d

m /X}, and λ ′ is λ{TrD,d
m /X}.

(6) If P λ−→P′, then P{g/m} λ{g/m}−−−−→P′{g/m}.
(7) If P{g/m} λ ′−→P1 and λ ′ is not τ , then P λ−→P′ in which λ ′ is λ{g/m}, and P1 ≡ P′{g/m}.
(8) If P{g/m} τ−→P1, then there are several possibilities: (a) P τ−→P′ and P1 ≡ P′{g/m}. (b) P mA−→· and

P
g(Y )−−→·. That is, P ≡ mA |g(Y ).P2 |P3, and P1 ≡ (P2{A/Y}|P3){g/m}. (c) P

gA−→· and P
m(Y )−−−→·. That is,

P≡ gA |m(Y ).P2 |P3, and P1 ≡ (P2{A/Y}|P3){g/m}.

Lemma 3. Assume that P is a term and X is a process variable. There are P′ in which X is guarded and
natural number k > 0 such that one of the following cases is true. (1) P ≡ P′ |Πk

i=1X, and P{R/X} ≡
P′{R/X}|Πk

i=1R for every R. (2) P ≡ P′ |Πk
i=1X〈Ai〉, and P{R/X} ≡ P′{R/X}|Πk

i=1R〈Ai{R/X}〉 for
every R. (3) P≡ P′ |Πk

i=1X〈mi〉, and P{R/X} ≡ P′{R/X}|Πk
i=1R〈mi〉 for every R.

The strong bisimilarities In the following, we first present a provably decidable strong bisimilarity,
named strong HO-IO bisimilarity. Then we go head to define the various strong bisimilarities, including
the strong context bisimilarity and other strong bisimilarities of concern. These strong bisimilarities turn
out to be equal.

Strong HO-IO bisimilarity We define a bisimulation called strong HO-IO bisimulation, with the
corresponding equality called strong HO-IO bisimilarity. As will be seen, the most desirable properties
we want from this bisimilarity is that it is decidable. The definition needs to take into account the
abstractions, because the terms transmitted to be compared may be abstractions. Jumping ahead, the
other strong bisimulations to be defined also have this requirement for abstractions.

Definition 4 (Strong HO-IO bisimilarity). A symmetric binary relation R over Πmp terms is a strong
HO-IO bisimulation, if whenever PR Q the following properties hold.
(1) If P is a non-abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉A, then Q is a process-
abstraction 〈Y 〉B, and AR B. (3) If P is a name-abstraction 〈y〉A, then Q is a name-abstraction 〈y〉B,

and AR B. (4) If P aA−→P′, then Q aB−→Q′ with AR B and P′R Q′. (5) If P
a(X)−−→P′, then Q

a(X)−−→Q′ and
P′R Q′. (6) If P ≡ X |P′, then Q ≡ X |Q′ and P′R Q′. (7) If P ≡ X〈A〉 |P′, then Q ≡ X〈B〉 |Q′,
and AR B and P′R Q′. (8) If P ≡ X〈d〉 |P′, then Q ≡ X〈d〉 |Q′ and P′R Q′. The strong HO-IO
bisimilarity, notation ∼◦hoio , is the largest strong HO-IO bisimulation.

Strong HO bisimilarity The concept of strong HO bisimilarity is due to Thomsen [24].

Definition 5 (Strong HO bisimilarity). A symmetric binary relation R over closed Πmp terms is a strong
HO bisimulation, if whenever PR Q the following properties hold.
(1) If P is a non-abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉P′, then Q is a process-
abstraction 〈Y 〉Q′, and P′{A/Y}R Q′{A/Y} for every closed A. (3) If P is a name-abstraction 〈y〉A, then
Q is a name-abstraction 〈y〉B, and AR B. (4) If P aA−→P′, then Q aB−→Q′ with AR B and P′R Q′. (5) If

P
a(X)−−→P′, then Q

a(X)−−→Q′ and for every closed A, it holds that P′{A/X}R Q′{A/X}. (6) If P τ−→P′, then
Q τ−→Q′ and P′R Q′. The strong HO bisimilarity, notation ∼ho , is the largest strong HO bisimulation.

Strong context bisimilarity We denote by E(X) a process E possibly with X appearing free in it, i.e.,
fpv(E)⊆ {X}. Accordingly, E(A) denotes E(X){A/X}. As a nearly standard version of the bisimilarity
for higher-order processes, the context bisimulation was proposed by Sangiorgi [19].



82 On Decidability of the Bisimilarity on Higher-order Processes with Parameterization

Definition 6 (Strong context bisimilarity). A symmetric binary relation R over closed Πmp terms is
a strong context bisimulation, if whenever PR Q the following properties hold. (1) If P is a non-
abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉P′, then Q is a process-abstraction 〈Y 〉Q′,
and P′{A/Y}R Q′{A/Y} for every closed A. (3) If P is a name-abstraction 〈y〉A, then Q is a name-

abstraction 〈y〉B, and AR B. (4) If P
a(X)−−→P′, then Q

a(X)−−→Q′ and for every closed A, it holds that
P′{A/X}R Q′{A/X}. (5) If P aA−→P′ in which A is a non-abstraction, process-abstraction , or name-
abstraction, then Q aB−→Q′ for some B that is respectively a non-abstraction, process-abstraction , or
name-abstraction, and for every E(X), it holds that E(A) |P′R E(B) |Q′. (6) If P τ−→P′, then Q τ−→Q′

and P′R Q′. The strong context bisimilarity, notation ∼ctx , is the largest strong context bisimulation.

We note that ∼ctx can be extended to open process terms, similar for ∼ho. That is, for open terms P
and Q with fpv(P,Q) = X̃ , P ∼ctx Q if and only if P{R̃/X̃} ∼ctx Q{R̃/X̃} for any closed R̃.

Strong normal bisimilarity Higher-order process expressions here may be parameterized over pro-
cesses themselves or names. Accordingly, abstractions can be transmitted in communications, and thus
process variables have three types: non-abstraction, process-abstraction, and name-abstraction. We refer
the reader to [19] for the detailed formalization of types. To cater for our need, knowing which of the
three types a process variable belongs to is sufficient for our work. For convenience, we may simply say
that a process variable is a non-abstraction, process-abstraction, or name-abstraction.

Before presenting the definition of the strong normal bisimilarity, we give the definition of triggers:
Trm

def
= m, TrD

m
def
= 〈Z〉mZ, TrD,d

m
def
= 〈z〉m[〈Z〉(Z〈z〉)]. These triggers correspond to the three types of process

variables represented above, and will be used to handle abstractions bound to instantiate these process
variables. The concept of triggers was proposed by Sangiorgi and plays a prevalent role in the manipu-
lation of higher-order processes; see [19] [25]. We stress that the design of the normal bisimulation in
this work requires new forms of triggers due to the presence of parameterization. The work in [15] only
needs the simplest form of triggers acting as synchronizers sending handshaking signals, i.e., m. How-
ever in contrast, in the setting of parameterization, triggers should bear the responsibility of relocating
the parameters for an abstraction. This design is non-trivial in general, and we harness the results in the
previous work [25] to devise different forms of triggers used by the parameterization. It is not hard to
prove that the strong normal bisimilarity is a congruence [19].

Definition 7 (Strong normal bisimilarity). A symmetric binary relation R over closed Πmp terms is a
strong normal bisimulation, if whenever PR Q the following properties hold.
(1) If P is a non-abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉P′, then Q is a process-
abstraction 〈Y 〉Q′, and for every closed A it holds for fresh m that:
(a) P′{Trm/Y}R Q′{Trm/Y}, if Y is a non-abstraction. (b) P′{TrD

m/Y}R Q′{TrD
m/Y}, if Y is a process-

abstraction. (c) P′{TrD,d
m /Y}R Q′{TrD,d

m /Y}, if Y is a name-abstraction.
(3) If P is a name-abstraction 〈y〉A, then Q is a name-abstraction 〈y〉B, and AR B.

(4) If P
a(X)−−→P′, then Q

a(X)−−→Q′ and for every closed A, it holds for fresh m that:
(a) P′{Trm/X}R Q′{Trm/X}, if X is a non-abstraction. (b) P′{TrD

m/X}R Q′{TrD
m/X}, if X is a process-

abstraction. (c) P′{TrD,d
m /X}R Q′{TrD,d

m /X}, if X is a name-abstraction.

(5) If P aA−→P′, there are three possibilities: (a) If A is not an abstraction, then Q aB−→Q′ for non-abstraction
B, and it holds for fresh m that m.A |P′R m.B |Q′. (b) If A is a process-abstraction 〈Y 〉A1, then Q aB−→Q′

for process-abstraction B that is 〈Y 〉B1, and it holds for fresh m that m(Z).A〈Z〉 |P′R m(Z).B〈Z〉 |Q′. (c)
If A is a name-abstraction 〈y〉A1, then Q aB−→Q′ for name-abstraction B that is 〈y〉B1, and it holds for fresh
m that m(Z).Z〈A〉 |P′R m(Z).Z〈B〉 |Q′.



Xian Xu & Wenbo Zhan 83

(6) If P τ−→P′, then Q τ−→Q′ and P′R Q′. The strong normal bisimilarity, notation ∼nr , is the largest
strong normal bisimulation.

We can also extend ∼nr to open terms. For open terms P and Q with fpv(P,Q) = {X̃1, X̃2, X̃3}, P ∼nr

Q if and only if P{T̃rm1
/X̃1}{T̃rD

m2
/X̃2}{T̃rD,d

m3
/X̃3} ∼nr Q{T̃rm1

/X̃1}{T̃rD
m2
/X̃2}{T̃rD,d

m3
/X̃3}, where each

variable in X̃1, X̃2 and X̃3 is respectively a non-abstraction, process-abstraction and name-abstraction, and
is replaced with the corresponding trigger for that variable type. The corresponding tuples of triggers are

respectively denoted by T̃rm1
, T̃rD

m2
and T̃rD,d

m3
, where the names of all the triggers are fresh.

Open strong normal bisimilarity The following bisimilarity is a variant of the strong normal bisimi-
larity on open terms. It is basically an extension of the same bisimilarity in [15].

Definition 8 (Open strong normal bisimilarity). A symmetric binary relation R over Πmp terms is an
open strong normal bisimulation, if whenever PR Q the following properties hold.
(1) If P is a non-abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉A, then Q is a process-
abstraction 〈Y 〉B, and AR B. (3) If P is a name-abstraction 〈y〉A, then Q is a name-abstraction 〈y〉B, and
AR B. (4) If P aA−→P′ or P τ−→P′, then Q matches P in the same way as in strong normal bisimilarity. (5)
If P

a(X)−−→P′, then Q
a(X)−−→Q′ and P′R Q′. (6) If P≡ X |P′, then Q≡ X |Q′ and P′R Q′.

(7) If P≡ X〈A〉 |P′, then Q≡ X〈B〉 |Q′ and moreover the following is valid for fresh m.
(a) If A is not an abstraction, then so is B and m.A |P′R m.B |Q′. (b) If A is a process-abstraction,
then so is B and m(Z).A〈Z〉 |P′R m(Z).B〈Z〉 |Q′. (c) If A is a name-abstraction, then so is B and
m(Z).Z〈A〉 |P′R m(Z).Z〈B〉 |Q′.
(8) If P≡ X〈d〉 |P′, then Q≡ X〈d〉 |Q′ and P′R Q′.

The open strong normal bisimilarity, notation ∼◦nr , is the largest open strong normal bisimulation.

3 Deciding the strong bisimilarity for Πmp

In this section, we first establish the decidability of the strong HO-IO bisimilarity. This is the cor-
nerstone of the decidability for other bisimilarities. Then we discuss the relationship between the strong
bisimilarities, and eventually obtain the coincidence between them. As such, all of the strong bisimilari-
ties are decidable.

3.1 The decidability and properties of ∼◦hoio

To facilitate discussion on decidability, we need a metric of the syntactical structure of a term.

Definition 9 (Depth of a term). The depth depth(P) of a term P is a mapping from terms to natural
numbers defined as follows.
depth(0) = 0, depth(X) = 1, depth(m(X).P1) = depth(P1)+1, depth(m(P1)) = depth(P1)+1,
depth(P1 |P2) = depth(P1)+depth(P2), depth(〈X〉P1) = depth(P1)+1, depth(X〈P1〉) = depth(P1)+1,
depth(P1〈P2〉) = depth(P3{P2/Y}) (where P1 is 〈Y 〉P3), depth(〈x〉P1) = depth(P1)+1,
depth(X〈n〉) = 1, depth(P1〈n〉) = depth(P3{n/y}) (where P1 is 〈y〉P3)

An immediate property is that both of P≡ Q and P∼◦hoio Q implies depth(P) = depth(Q). The proof
of this property is by induction over the depth of P. The details can be found in [26].

Lemma 10. If P≡ Q or P∼◦hoio Q, then depth(P) = depth(Q).

Strong HO-IO bisimulation up-to ≡ Bisimulation up-to ≡ is a useful technique to establish bisim-
ulations. Its definition is obtained by replacing R with ≡ R ≡ in every clause of Definition 4. The



84 On Decidability of the Bisimilarity on Higher-order Processes with Parameterization

advantage of the up-to technique is that if R is a strong HO-IO bisimulation up-to ≡, then R ⊆∼◦hoio.
See [16, 21] for a thorough introduction and discussion.
Congruence Through standard state-diagram-chasing argument, one can prove that ∼◦hoio is an equiva-
lence relation. It is also a congruence, as the follow-up lemma reveals. See [15, 19] for a reference of
proof; we also provide a proof in [26]. .

Lemma 11 (Congruence). On Πmp terms, ∼◦hoio is congruence. That is, suppose P and Q are Πmp terms,
then P ∼◦hoio Q implies: (1) a(X).P ∼◦hoio a(X).Q; (2) a(P) ∼◦hoio a(Q); (3) P |R ∼◦hoio Q |R; (4) 〈X〉P ∼◦hoio

〈X〉Q; (5) 〈x〉P ∼◦hoio 〈x〉Q; (6) Y 〈P〉 ∼◦hoio Y 〈Q〉.

Decidability We now establish the decidability of ∼◦hoio. As a premise, we have the following structural
property, whose proof is a simple induction over the semantic rules.

Lemma 12. Suppose P is a Πmp term. Then: (1) If P
a(A)−−→P′, then P ≡ a(A) |P′. (2) If P

a(X)−−→P′, then
P≡ a(X).P1 |P2 and P′ ≡ P1 |P2.

Lemma 13 (Decidability). On Πmp terms, ∼◦hoio is decidable.
Proof of Lemma 13. We decide whether P∼◦hoio Q by induction on depth(P).
Induction basis. In this case depth(P) is 0 or 1. The case depth(P) is 0, i.e., P is 0, is trivial because no
action is possible from P and it has no free variables. If depth(P) is 1, i.e., P is X or X〈d〉, then no action
is possible from P. One simply checks that Q is also X or X〈d〉 respectively.
Induction step. We perform a (finite) check of each clause of ∼◦hoio in an inductive way.
(1) If P is a non-abstraction, then check that Q is also a non-abstraction.
(2) If P is a process-abstraction 〈X〉A, then check that Q is also a process-abstraction 〈X〉B (up-to α-
conversion), and continue with checking A ∼◦hoio B using induction hypothesis since the depth of A de-
creases with respect to P, i.e., depth(A)< depth(P).
(3) If P is a name-abstraction 〈x〉A, then check that Q is also a name-abstraction 〈x〉B (up-to α-conversion),
and continue with checking A ∼◦hoio B using induction hypothesis since the depth of A decreases with re-
spect to P, i.e., depth(A)< depth(P).

(4) If P
a(X)−−→P′, we check that Q

a(X)−−→Q′ and P′ ∼◦hoio Q′. There might be a few (but finite) possibilities
concerning Q′. If all such checks fail, then we conclude that P and Q are not strong HO-IO bisimilar. For
each possible check, we know by Lemma 12 that P≡ a(X).P1 |P2 and P′ ≡ P1 |P2. Since the depth of the
terms decrease, i.e., depth(P′)< depth(P), we use induction hypothesis to continue checking P′ ∼◦hoio Q′.

(5) If P
a(A)−−→P′, we check that Q

a(B)−−→Q′ with A∼◦hoio B and P′ ∼◦hoio Q′. There might be a few (but finite)
possibilities concerning B and Q′. If all such checks fail, then we conclude that P and Q are not strong
HO-IO bisimilar. For each possible check, we know by Lemma 12 that P≡ a(A) |P′. Since the depth of
the terms decrease, i.e., depth(P′)< depth(P) and depth(A)< depth(P), we use induction hypothesis to
continue checking A∼◦hoio B and P′ ∼◦hoio Q′.
(6) If P≡ X |P′, we check that Q≡ X |Q′ and P′ ∼◦hoio Q′. There might be a few (but finite) possibilities
concerning Q′. If all such checks fail, then we conclude that P and Q are not strong HO-IO bisimilar. For
each possible check, since the depth of the terms decrease, i.e., depth(P′)< depth(P), we use induction
hypothesis to continue checking P′ ∼◦hoio Q′.
(7) If P ≡ X〈A〉 |P′, we check that Q ≡ X〈B〉 |Q′ with A ∼◦hoio B and P′ ∼◦hoio Q′. There might be a
few (but finite) possibilities concerning B and Q′. If all such checks fail, then we conclude that P and
Q are not strong HO-IO bisimilar. For each possible check, since the depth of the terms decrease,
i.e., depth(P′) < depth(P) and depth(A) < depth(P), we use induction hypothesis to continue checking
A∼◦hoio B and P′ ∼◦hoio Q′.



Xian Xu & Wenbo Zhan 85

(8) If P ≡ X〈d〉 |P′, we check that Q ≡ X〈d〉 |Q′ and P′ ∼◦hoio Q′. There might be a few (but finite)
possibilities concerning Q′. If all such checks fail, then we conclude that P and Q are not strong HO-IO
bisimilar. For each possible check, since the depth of the terms decrease, i.e., depth(P′)< depth(P), we
use induction hypothesis to continue checking P′ ∼◦hoio Q′.

Bisimilarity Preservation To connect the strong HO-IO bisimilarity with the strong context bisimilarity
and other bisimilarities, we need some preparation. In what follows, we show that the strong HO-IO
bisimilarity preserves substitutions and τ simulation, as stated in the following two lemmas in a sequel.

Lemma 14 (Name-substitution-preserving). Assume P∼◦hoio Q. Then P{g/m} ∼◦hoio Q{g/m} for all g,m.

We note that to keep well-formed, substitutions should not (and are always assumed not to) break
the legality of the terms under operation. The following lemma states that ∼◦hoio is invariant with respect
to process substitution. As mentioned, the proof of this lemma (i.e., the process substitution preserving
property) is entirely different from the counterpart in [15], in that we are obliged to conduct an induction
on the sizes of the terms because a term in the position of application, say the term A in X〈A〉, may
introduce extra structures. That is, the proof of the preservation of process substitution becomes much
more involved due to the process parameterization. In the current setting, a process variable can be
instantiated by a process abstraction which is in turn fed with a process from the context. This would
give rise to certain circular arguments, so the original proof method of [15] no longer works. To work
around this difficulty, one has to use induction based approach. This approach somewhat reminds one of
the difficulty in proving the congruence properties for higher-order processes.

Lemma 15 (Process-substitution-preserving). Let P∼◦hoio Q. Then P{R/X} ∼◦hoio Q{R/X} for all R,X.

The proofs of Lemmas 14 and 15 are referred to [26]. An observation as a corollary from these two
lemmas is that ∼◦hoio is closed under abstraction, both name abstraction and process-abstraction.

Corollary 16. Assume P∼◦hoio Q. It holds that 〈X〉P ∼◦hoio 〈X〉Q and 〈x〉P ∼◦hoio 〈x〉Q.

The following lemma is important and directly attributed to the open-style nature of ∼◦hoio .

Lemma 17 (τ-preserving). Assume P∼◦hoio Q. If P τ−→P′, then Q τ−→Q′ and P′ ∼◦hoio Q′.

Proof of Lemma 17. The proof is by induction on the derivation of P τ−→P′.

(1) P τ−→P′ comes from the interaction of components of P. That is, P
a(A)−−→·, P

a(X)−−→·, and P τ−→P′. One

can assume X to be fresh as it is bound. So this can be rewritten as P
a(A)−−→ · a(X)−−→P1 where P1{A/X}≡ P′.

Because P∼◦hoio Q, Q can simulate by Q
a(B)−−→ · a(X)−−→Q1 ∼◦hoio P1, where A ∼◦hoio B, and Q1{B/X} def

= Q′.
Now since the higher-order output is non-blocking, the two consecutive actions can contribute to forming
a τ action, i.e., Q τ−→Q′, and we are left with showing P′ ∼◦hoio Q′. From P1 ∼◦hoio Q1, Lemma 15, we know

P′ ≡ P1{A/X} ∼◦hoio Q1{A/X} def
= Q′′. By the congruence properties, we can derive due to A ∼◦hoio B that

Q′′ ≡ Q1{A/X} ∼◦hoio Q1{B/X} ≡ Q′. Hence we conclude P′ ∼◦hoio Q′.
(2) P τ−→P′ comes from a component of P alone. That is, P ≡ P1 |P2, P1

τ−→P′1, and P′ ≡ P′1 |P2. Then we
conclude by induction hypothesis.

3.2 Relating the strong bisimilarities

We represent detailed relationship between the strong bisimilarities defined so far. Such relationship
will be established step by step. Eventually, as our ultimate goal, it will be demonstrated that all these
strong bisimilarities coincide with each other. This coincidence immediately entails that every and each



86 On Decidability of the Bisimilarity on Higher-order Processes with Parameterization

of them is decidable, and moreover paves way for further discussion on the axiomatization and algorithm.
We first establish the coincidence between ∼ho and ∼◦hoio, and then move on to the remainder parts.

∼ho and ∼◦hoio coincide The following lemma gives a characteristic of the strong HO bisimilarity. Its
proof is a standard bisimulation deduction, with details in [26].

Lemma 18. Suppose fpv(P,Q)=X̃=X1, ...,Xn. For fresh h and any closed R̃, it holds that P{R̃/X̃} ∼ho

Q{R̃/X̃} if and only if h(X1). · · · .h(Xn).P ∼ho h(X1). · · · .h(Xn).Q.

As Lemma 19 states, the strong HO bisimilarity and the strong HO-IO bisimilarity are actually
coincident. With the help of Lemma 18, and Lemmas 14, 15, 17 as well, we can prove the mutual
inclusion of the two strong bisimilarities. The details are provided in [26].

Lemma 19. On Πmp terms, ∼ho =∼◦hoio.

Relating ∼ho and the other strong bisimilarities We now tackle the relationship between the strong
HO bisimilarity and other strong bisimilarities, including the strong context bisimilarity (∼ctx), strong
normal bisimilarity (∼nr), and open strong normal bisimilarity (∼◦nr), as well as the remaining part of
the overall picture of coincidence. To do this, we need some preparation. The following lemma will be
useful. The proof employs the usual bisimulation-establishing method. The details can be found in [26].

Lemma 20. Assume that m is fresh with respect to P1, Q1, P and Q, said otherwise m /∈ fn(P1,Q1,P,Q).
(1) If m.P1 |P ∼◦nr m.Q1 |Q, then P1 ∼◦nr Q1 and P ∼◦nr Q. (2) If m(Z).P1〈Z〉 |P ∼◦nr m(Z).Q1〈Z〉 |Q, then
P1 ∼◦nr Q1 and P ∼◦nr Q. (3) If m(Z).Z〈P1〉 |P ∼◦nr m(Z).Z〈Q1〉 |Q, then P1 ∼◦nr Q1 and P ∼◦nr Q.

Using a similar proof strategy as Lemma 20, one can prove similarly the result for ∼nr.

Corollary 21. The result of Lemma 20 also holds if one replaces ∼◦nr with ∼nr in the statement.

Next in Lemma 22, we present the first two implications about the strong bisimilarities. Basically,
the proof of Lemma 22(1) utilizes the congruence of∼ho and the proof of Lemma 22(2) uses the fact that
the requirements of ∼nr are actually special cases of ∼ctx. The details can be found in [26].

Lemma 22. (1) ∼ho implies ∼ctx on Πmp processes. (2) ∼ctx implies ∼nr on Πmp processes.
We now demonstrate, in Lemma 23, the two last inclusions about the strong bisimilarities, so as to

finalize the jigsaw. The proofs of them use the usual bisimulation construction approach, by exploiting
Lemmas 2,20 and Corollary 21. The details are referred to [26].

Lemma 23. (1) ∼nr implies ∼◦nr on Πmp processes. (2) ∼◦nr implies ∼◦hoio on Πmp processes.

The follow-up lemma essentially fills what is left in the relationship between the strong bisimilarities.

Lemma 24. ∼ho, ∼◦nr, and ∼ctx coincide on open and closed Πmp processes.

Proof of Lemma 24. The following circular implications prove this lemma.

∼◦hoio
Lemma 19 //ii

Lemma 23(2)

∼ho
Lemma 22(1) // ∼ctx

Lemma 22(2) // ∼nr
Lemma 23(1) // ∼◦nr

The main theorem From Lemma 24 and Lemma 13, we now have the main result of this section.

Theorem 25. All the strong bisimilarities, that is, ∼◦hoio, ∼ho, ∼ctx, ∼nr, and ∼◦nr, coincide on open and
closed Πmp processes, and are all decidable.



Xian Xu & Wenbo Zhan 87

4 Axiomatization
In this section, we make an axiom system for the strong bisimilarities based on the decidability re-

sult. For simplicity, we denote by ∼ the strong bisimilarity, since all the strong bisimilarities coincide.
Basically, the equation set of the axiom system is composed of the extended structural congruence. Com-
pared with the setting without parameterization [15], we have extra equations describing the application
operation. We use a similar approach to prove the correctness of the axiom system.

The axiom system of [15] consists of the basic structural congruence laws and an extended distribu-
tion law DIS: a(x).

(
P |∏k−1

1 a(x).P
)
= ∏

k
1 a(x).P. Recall that the rules for application are modeled as a

part of the structural congruence. To admit parameterization, we introduce the following two more laws
APP1 and APP2: (〈X〉P)〈Q〉 = P{Q/X}, (〈x〉P)〈m〉 = P{m/x}. We will show that the basic laws for
the structural congruence, together with law DIS and moreover laws APP1 and APP2, are sufficient for a
complete axiom system. More specifically, we first prove that any term P has a unique prime decompo-
sition ∏

k
i=1 Pi, and then that any term can be simplified to a normal form (denoted as nf(P)) by the laws

above. By the soundness of the laws, we infer P∼ nf(P). Finally we prove that for any P and Q, P∼ Q
if and only if nf(P)≡ nf(Q).

Let A be the axiom system containing DIS, APP1, APP2 and the commutative monoid laws for
parallel composition. We will prove the completeness of A in the remainder of this section. We start
by the cancellation property. The point of proving this property is to deem ∼ as ∼◦hoio [15], and the most
involved cases are those concerning the abstractions. We provide the details in [26].

Proposition 26 (Cancellation). For all P,Q and R, if P |R∼ Q |R then P∼ Q.

The notion of prime processes is due to [15,17]. A process P is prime if P 6∼ 0 and P∼ P1 |P2 implies
P1 ∼ 0 or P2 ∼ 0. If P ∼∏

n
i=1 Pi where each Pi is prime, we call ∏

n
i=1 Pi is a prime decomposition of P.

The following proposition states that for any process, there is a unique prime decomposition up to the
strong bisimilarity and permutation of indices. Instantiating∼ as∼◦hoio, one can prove this proposition by
induction on the size of the given process. We give the proof in [26].

Proposition 27 (Unique prime decomposition). Given a process P, if there are two prime decompositions
P ∼ ∏

n
i=1 Pi and P ∼ ∏

m
j=1 Q j, then n = m and there is a permutation σ : {1,2, . . . ,n} → {1,2, . . . ,n},

such that Pi ∼ Qσ(i) for each i ∈ {1,2, . . . ,n}.

We write P Q if there are P′ and Q′ such that P≡ P′, Q≡ Q′, and Q′ can be obtained from P′ by
rewriting a subterm of P′ by laws DIS, APP1, APP2 from left to right. A process P is in normal form if
it cannot be simplified by using . Any process P has a unique normal form up to ≡, denoted as nf(P).
It is not hard to derive the following property.

Lemma 28. If P Q, then P∼ Q. For any P, P∼ nf(P).

Next we give a lemma crucial for the completeness proof. Its counterpart in non-parameterization
setting was first presented in [15]. The proof of Lemma 29 can be found in [26].

Lemma 29. If a(X).P∼Q |Q′ (Q,Q′� 0), then a(X).P∼∏
k
i=1 a(X).A (k>1) with a(X).A in normal form.

Now we can prove the completeness of the axiom system A . Basically, the proof of the complete-
ness uses a similar approach as that of [15]. The main novelty here is to accommodate the parameteriza-
tion in the equation system and the corresponding parts in the induction, i.e., those parts concerning the
abstraction and application for names and processes.

Lemma 30 (Completeness). For any P,Q, if P∼ Q then nf(P)≡ nf(Q).



88 On Decidability of the Bisimilarity on Higher-order Processes with Parameterization

Proof of Lemma 30. We first show the following two properties simultaneously: 1. If A is a prefixed
process in normal form, then A is prime; 2. For any A,B in normal form, A ∼ B implies A ≡ B. We
proceed by induction on depth(A). The case depth(A) = 0 is immediate as the only term of this size is 0.
Suppose the property holds for all depth(A)< n with n≥ 1.
(1) Assume A is of the form a(X).A′. Suppose A is not prime, A∼P1 |P2. By Lemma 29, A∼∏

k
i=1 a(X).B

with k > 1 and a(X).B in normal form. Then A′ ∼ B |∏k−1
i=1 a(X).B. By ind. hyp. for 2, we have

A′ ≡ B |∏k−1
i=1 a(X).B. Then A≡ a(X).(B |∏k−1

i=1 a(X).B), a contradiction to that A is in normal form.
(2) Suppose A∼ B, we proceed by a case analysis on the structure of A.
• A is X . We have that B should be the same variable X .
• A is m(X).P. Assume B is not prime, B∼ P1 |P2. By Lemma 29, we know A∼∏

k
i=1 a(X).Q with k > 1

and a(X).Q in normal form. But according to property 1, A is prime, a contradiction. We thus have B is
m(X).Q with P∼ Q. By ind. hyp., P≡ Q. We thus have A≡ B.
• A is m(Q). We have that B is m(Q′) with Q∼ Q′. By ind. hyp., Q≡ Q′. We thus have A≡ B.
• A is 〈X〉P. We have that B is 〈X〉Q and P∼ Q. By ind. hyp., P≡ Q. We thus have A≡ B.
• A is X〈Q〉. We have that B is X〈Q′〉 and Q∼ Q′. By ind. hyp., Q≡ Q′. We thus have A≡ B.
• A is 〈x〉P. We have that B is 〈x〉Q and P∼ Q. By ind. hyp., P≡ Q. We thus have A≡ B.
• A is X〈n〉. We have that B is X〈n〉, and then A≡ B.
• A is ∏

k
i=1 Pi with k > 1 and Pi is not a parallel composition. We discuss over the possible shape of Pi.

- If there exists j s.t. Pj = X , then B≡ X |B′. Thus A≡ B follows by ind. hyp. on ∏1≤i≤k,i 6= j Pi and B′.
- If there exists j s.t. Pj = X〈Q〉, then B≡ X〈Q′〉 |B′ with Q∼ Q′ and B′ ∼∏1≤i≤k,i6= j Pi. By ind. hyp.,

A≡ B.
- If there exists j s.t. Pj = X〈n〉, then B≡ X〈n〉 |B′ with B′ ≡∏1≤i≤k,i 6= j Pi. By ind. hyp., A≡ B.
- If there exists j s.t. Pj = m(Q), then B must contain an output component on the same channel. We

thus have B = m(Q′) |B′ with Q′ ∼Q and B′ ∼∏1≤i≤k,i6= j Pi. By ind. hyp., Q′ ≡Q and B′ ≡∏1≤i≤k,i 6= j Pi,
which implies A≡ B.

- The last case is A = ∏
k
i=1 mi(Xi).Pi. According to property 1, each component mi(Xi).Pi is prime.

Similarly, B ≡ ∏
l
i=1 ni(Yi).Qi and each component ni(Yi).Qi is prime. By Proposition 27, k = l and

mi(Xi).Pi ∼ ni(Yi).Qi for 1≤ i≤ k (up to a permutation of indices). By ind. hyp. Pi ≡ Qi for all i, which
finally implies A≡ B.

Now for P,Q, assume P ∼ Q. Let A def
= nf(P) and B def

= nf(Q). By Lemma 28, A ∼ P ∼ Q ∼ B. As
A,B are in normal form, have A≡ B, and then nf(P)≡ nf(Q), as needed.

5 Algorithm for the bisimilarity checking
In this section, based on the results in the previous sections, we develop an algorithm for checking

the strong bisimilarity. We utilize the tree approach proposed in [15], i.e., encoding a Πmp process as a
tree, normalizing this tree to be compared up-to syntax. Differently now, the tree and the normalization
takes parameterization into consideration. We define a function db that assigns De Bruijn indices to
variables [4, 15]. Here the variables include the ones introduced by input prefixed processes, name
abstraction and process abstraction. Following [15], we introduce the representation of a term by a tree.
We write t[m1, . . . ,mk] for a tree with label t and subtrees m1, . . . ,mk.
Definition 31 (Tree representation). The tree representation of P is defined inductively as follows.
(1) Tree(0) = 0[ ], (2) Tree(X) = db(X)[ ], (3) Tree(a(X).P) = a[Tree(P)],
(4) Tree(a(Q)) = aO[Tree(Q)], (5) Tree(x(X).P) = db(x)[Tree(P)], (6) Tree(x(Q)) = db(x)O[Tree(Q)],
(7) Tree(∏n

i=1 Pi) = par[Tree(P1), . . . ,Tree(Pn)], (8) Tree(〈X〉P) = abs[Tree(P)], (9) Tree(〈P〉Q) =
app[Tree(P),Tree(Q)], (10) Tree(〈x〉P) = abs[Tree(P)], (11) Tree(〈P〉n) = app[Tree(P),n[ ]].



Xian Xu & Wenbo Zhan 89

The algorithm deciding the strong bisimilarity depends on the following 3 normalization steps:
Normalization: (1) In the first step, the term is rewritten by the application rules APP1, APP2 if
possible. (2) The second step focuses on the normalization of parallel composition. W.l.o.g., we can
assume that the children of parallel composition nodes are not parallel composition nodes. After this
step, every parallel composition node has at least two sorted child nodes, and none of them is 0. (3) The
last step aims to apply DIS from left to right if possible.

Now we explain the detailed algorithms given as pseudocodes below. A tree node n has the following
attributes: n.type for the type of corresponding process, the values can be zero, var, inp, out, par, abs,
app; n.label for the label of the tree node; n.numChildren for the number of children nodes; n.children
for the lists of all child nodes. The algorithm App realizes the application operation. It requires three
parameters: nraw, ind, and neval . The tree is traversed top-down and all variables from term nraw are
replaced with process neval if the De Bruijn index matches ind. In the process of application, if there are
more than one occurrence of an abstracted variable, say X , to be replaced, there will be more than one
duplications of neval . The nests of application may result in an exponential explosion on the number of
tree nodes. However, we can make optimization by reusing neval , that is, each occurrence of X points to
the same tree of neval . Then it is guaranteed that the space cost for normalized terms is still linear, leading
to acceptable time complexity of the algorithm.

Algorithm NS1 deals with terms for application. The tree is traversed bottom-up. Every term in
the form of 〈X〉P)〈Q〉 or 〈x〉P)〈m〉 are rewritten as P{Q/X} or P{m/x} respectively. Terms in the form
of X〈Q〉 and X〈n〉 remain unchanged. Algorithm NS2 deals with parallel composition. First all zero
processes are removed. Then, if attribute numChildren is 0, the tree is collapsed to a zero node. If
attribute numChildren is 1, the tree is collapsed to its single child. After this, all children nodes are
sorted. In algorithm NS3, the tree is traversed bottom-up to find subtrees which can apply DIS from left
to right. Lines 11-24 decides if node n matches the pattern with the left-hand side of DIS. It harnesses
the property that all children nodes have been sorted in normalization step 2. If it fails to match the
pattern, the node n remains unchanged and the function returns in line 18 or 22. Otherwise, the term
is rewritten at lines 25-26. As a consequence of Lemma 30, the following lemma shows that, if two
terms are strongly bisimilar, they can be normalized to the same tree by the three normalization steps.
By checking the equalities of the two trees, we can decide the strong bisimilarity between Πmp terms.

Lemma 32. Let P,Q be two terms. Let TP, TQ be the tree representations of P,Q respectively. Assume
that T ′P, T ′Q are the normalized trees after the normalization steps 1-3. Then P∼Q if and only if T ′P = T ′Q.

We now analyze the complexity of the algorithm. Given processes P and Q, let n be the sum of the
number of nodes in the tree representations of P and Q. The algorithm App and NS1 traverse the tree
for one time and can be done in O(n) time. The most time-consuming part of NS2 is sorting, which can
be done in O(n log(n)) time. The algorithm NS3 can be performed in O(n) time. Therefore, bisimilarity
checking takes in O(n log(n)) time in total. As explained above, the space complexity is O(n).

Application App(nraw,ind,neval)

Require: Tree nodes nraw, neval , an integer ind.
1: if (nraw.type == ‘var’ or nraw.type == ‘inp’) and

nraw.label == ind then
2: nraw = neval
3: end if
4: if nraw.type == ‘out’ and nraw.label == indO then
5: nraw = neval
6: nraw.label = (nraw.label)O

7: end if
8: if nraw.type == ‘inp’ or nraw.type == ‘abs’ then
9: ind = ind +1

10: end if
11: for i = 1 to n.numChildren do
12: App(nraw.children[i], ind , neval)
13: end for



90 On Decidability of the Bisimilarity on Higher-order Processes with Parameterization

Normalization Step 1 NS1(n)

Require: A tree node n
1: for i = 1 to n.numChildren do
2: NS1(n.children[i])
3: end for
4: if n.type == ‘app’ then

5: if n.children[1].type == ‘abs’ then
6: App(n.children[1].children[1], 1, n.children[2])
7: end if
8: end if

Normalization Step 2 NS2(n)

Require: A tree node n
1: for i = 1 to n.numChildren do
2: NS2(n.children[i])
3: end for
4: if n.type == ‘par’ then
5: j = 1
6: for i = 1 to n.numChildren do
7: if n.children[i].type 6= ‘zero’ then
8: n.children[ j] = n.children[i]
9: j = j + 1

10: end if

11: end for
12: n.numChildren = j - 1
13: if n.numChildren == 0 then
14: n.type = ‘zero’
15: end if
16: if n.numChildren == 1 then
17: n = n.children[1]
18: end if
19: end if
20: sortChildren(n)

Normalization Step 3 NS3(n)

Require: A tree node n
1: for i = 1 to n.numChildren do
2: NS3(n.children[i])
3: end for
4: if n.type == ‘inp’ then
5: p = n.children[1]
6: if p.type == ‘par’ then
7: smallIndex=-1
8: small,big=null
9: pc1=p.children[1]

10: pc2=p.children[p.numChildren]
11: if pc1.type == ‘inp’ and pc1.label == n.label and

pc1.children[1] == pc2 then
12: small = pc2, big = pc1,
13: smallIndex = p.numChildren
14: else if pc2.type==‘inp’ and pc2.label == n.label and

pc2.children[1]==pc1 then
15: small = pc1, big = pc2
16: smallIndex = 1
17: else
18: return
19: end if
20: for i = 2 to n.numChildren-1 do
21: if p.children[i] 6= big then
22: return
23: end if
24: end for
25: p.children[smallIndex] = big
26: n = n.children[1]
27: end if
28: end if

6 Conclusion
In this paper, we have exhibited that even in presence of parameterization, which can increase the

expressiveness of higher-order processes, the strong bisimilarity is still decidable for Πmp. The proving
approach extends the previous one for HOcore, with several significant distinctions due to parameteriza-
tion. This decidability result comes with the more powerful modelling capability of the process model,
and is thus of both fundamental and practical importance to some extent. Besides, an axiom system and
an algorithm are provided. They can be used as an intermediate prototype for potential application of the
higher-order process model, in particular the bisimilarity checking. A further work is to try expanding the
model to allow more convenient modelling capability, e.g., locations, while maintaining the decidability
result. A far more challenging job is to consider the decidability of the weak bisimilarity.

Acknowledgements We are grateful to the anonymous referees for their useful comments on this paper.



Xian Xu & Wenbo Zhan 91

References

[1] G. Ambal, S. Lenglet & A. Schmitt (2021): HOπ in Coq. Journal of Automated Reasoning 65, pp. 75–124,
doi:10.1007/s10817-020-09553-0.

[2] H. P. Barendregt (1984): The Lambda Calculus—Its Syntax and Semantics. North-Holland.

[3] M. Biernacka, D. Biernacki, S. Lenglet, P. Polesiuk, D. Pous & A. Schmitt (2017): Fully Abstract Encodings
of λ -Calculus in HOcore through Abstract Machines. In: Proceedings of the 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2017), pp. 1–12, doi:10.1109/LICS.2017.8005118.

[4] N.G. De Bruijn (1972): Lambda Calculus Notation with Nameless Dummies: A Tool for Automatic Formula
Manipulation, with Application to the Church-Rosser Theorem. Indagationes Mathematicae 34, pp. 381–392,
doi:10.1016/1385-7258(72)90034-0.

[5] M. Bundgaard, J. C. Godskesen & T. Hildebrandt (2004): Bisimulation Congruences for Homer ? A Calculus
of Higher Order Mobile Embedded Resources. Technical Report, IT University of Copenhagen.

[6] M. Bundgaard, J. Chr. Godskesen, B. Haagensen & H. Hüttel (2009): Decidable Fragments of a Higher
Order Calculus with Locations. In: Proceedings of the 15th International Workshop on Expressiveness in
Concurrency (EXPRESS 2008), Electronic Notes in Theoretical Computer Science 242(1), pp. 113–138,
doi:10.1016/j.entcs.2009.06.016.

[7] N. Busi, M. Gabbrielli & G. Zavattaro (2009): On the Expressive Power of Recursion, Replication
and Iteration in Process Calculi. Mathematical Structures in Computer Science 19, pp. 1191–1222,
doi:10.1017/S096012950999017X.

[8] W. Charatonik & J.-M. Talbot (2001): The Decidability of Model Checking Mobile Ambients. In: In Proceed-
ings of the 15th International Workshop on Computer Science Logic (CSL 2001), Lecture Notes in Computer
Science 2142, pp. 339–354, doi:10.1007/3-540-44802-0 24.

[9] S. Christensen, Y. Hirshfeld & F. Moller (1994): Decidable Subsets of CCS. The Computer Journal 37, pp.
233–242, doi:10.1093/comjnl/37.4.233.

[10] C. Di Giusto, J. A. Pérez & G. Zavattaro (2009): On the Expressiveness of Forwarding in Higher-Order Com-
munication. In: In Proceedings of the 6th International Colloquium on Theoretical Aspects of Computing
(ICTAC 2009), Lecture Notes in Computer Science 5684, pp. 155–169, doi:10.1007/978-3-642-03466-4 10.

[11] P. Jančar (1995): Undecidability of Bisimilarity for Petri Nets and Some Related Problems. Theoretical
Computer Science 148, pp. 281–301, doi:10.1016/0304-3975(95)00037-W.

[12] V. Koutavas & M. Hennessy (2012): First-order Reasoning for Higher-order Concurrency. Computer Lan-
guages, Systems and Structures 38, pp. 242–277, doi:10.1016/j.cl.2012.04.003.

[13] A. Kučera & P. Jančar (2006): Equivalence-checking on Infinite-state Systems: Techniques and Results.
Theory and Practice of Logic Programming 6, pp. 227–264, doi:10.1017/S1471068406002651.

[14] I. Lanese, J. A. Pérez, D. Sangiorgi & A. Schmitt (2010): On the Expressiveness of Polyadic and Synchronous
Communication in Higher-order Process Calculi. In: In Proceedings of 37th International Colloquium on
Automata, Languages and Programming (ICALP 2010), Lecture Notes in Computer Science 6199, pp. 442–
453, doi:10.1007/978-3-642-14162-1 37.

[15] I. Lanese, J. A. Pérez, D. Sangiorgi & A. Schmitt (2011): On the Expressiveness and Decidability of Higher-
Order Process Calculi. Information and Computation 209(2), pp. 198–226, doi:10.1016/j.ic.2010.10.001.

[16] R. Milner (1989): Communication and Concurrency. Prentice Hall.

[17] R. Milner & F. Moller (1993): Unique Decomposition of Processes. Theoretical Computer Science 107(2),
pp. 357–363, doi:10.1016/0304-3975(93)90176-t.

[18] J.A. Pérez (2010): Higher-Order Concurrency: Expressiveness and Decidability Results. Phd thesis, Univer-
sity of Bologna, Italy.

[19] D. Sangiorgi (1992): Expressing Mobility in Process Algebras: First-order and Higher-order Paradigms.
Phd thesis, University of Edinburgh.

http://dx.doi.org/10.1007/s10817-020-09553-0
http://dx.doi.org/10.1109/LICS.2017.8005118
http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://dx.doi.org/10.1016/j.entcs.2009.06.016
http://dx.doi.org/10.1017/S096012950999017X
http://dx.doi.org/10.1007/3-540-44802-0_24
http://dx.doi.org/10.1093/comjnl/37.4.233
http://dx.doi.org/10.1007/978-3-642-03466-4_10
http://dx.doi.org/10.1016/0304-3975(95)00037-W
http://dx.doi.org/10.1016/j.cl.2012.04.003
http://dx.doi.org/10.1017/S1471068406002651
http://dx.doi.org/10.1007/978-3-642-14162-1_37
http://dx.doi.org/10.1016/j.ic.2010.10.001
http://dx.doi.org/10.1016/0304-3975(93)90176-t


92 On Decidability of the Bisimilarity on Higher-order Processes with Parameterization

[20] D. Sangiorgi (1996): Pi-calculus, Internal Mobility and Agent-Passing Calculi. Theoretical Computer Sci-
ence 167(2), doi:10.1016/0304-3975(96)00075-8. Extracts of parts of the material contained in this paper
can be found in the Proceedings of TAPSOFT’95 and ICALP’95.

[21] D. Sangiorgi & D. Walker (2001): The Pi-calculus: a Theory of Mobile Processes. Cambridge Universtity
Press.

[22] A. Schmitt & J. B. Stefani (2004): The Kell Calculus: a Family of Higher-order Distributed Process Calculi.
In: In IST/FET International Workshop on Global Computing, Lecture Notes in Computer Science 3267, pp.
146–178, doi:10.1007/978-3-540-31794-4 9.

[23] P. Schnoebelen (2001): Bisimulation and Other Undecidable Equivalences for Lossy Channel Systems. In:
In Proceedings of 4th International Symposium on Theoretical Aspects of Computer Software (TACS?01),
Lecture Notes in Computer Science 2215, pp. 385–399, doi:10.1007/3-540-45500-0 19.

[24] B. Thomsen (1993): Plain CHOCS, a Second Generation Calculus for Higher-Order Processes. Acta Infor-
matica 30(1), pp. 1–59, doi:10.1007/BF01200262.

[25] Xian Xu (2020): Parameterizing Higher-order Processes on Names and Processes. RAIRO - Theoretical
Informatics and Applications 53(3-4), pp. 153–206, doi:10.1051/ita/2019005.

[26] Xian Xu & Wenbo Zhang (2021): On Decidability of the Bisimilarity on Higher-order Processes with Param-
eterization (long version). Available at http://basics.sjtu.edu.cn/~xuxian/main_HO_DEC_with_
appendix.pdf.

[27] Qiang Yin, Xian Xu & Huan Long (2017): On Parameterization of Higher-order Processes. International
Journal of Computer Mathematics 94(7), pp. 1451–1478, doi:10.1080/00207160.2016.1210793.

http://dx.doi.org/10.1016/0304-3975(96)00075-8
http://dx.doi.org/10.1007/978-3-540-31794-4_9
http://dx.doi.org/10.1007/3-540-45500-0_19
http://dx.doi.org/10.1007/BF01200262
http://dx.doi.org/10.1051/ita/2019005
http://basics.sjtu.edu.cn/~xuxian/main_HO_DEC_with_appendix.pdf
http://basics.sjtu.edu.cn/~xuxian/main_HO_DEC_with_appendix.pdf
http://dx.doi.org/10.1080/00207160.2016.1210793

	1 Introduction
	2 Preliminary
	3 Deciding the strong bisimilarity for mp
	3.1 The decidability and properties of hoio 
	3.2 Relating the strong bisimilarities

	4 Axiomatization
	5 Algorithm for the bisimilarity checking
	6 Conclusion

