Type-Based Termination, Inflationary Fixed-Points,
and Mixed Inductive-Coinductive Types

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich, Germany

andreas.abel@ifi.lmu.de

Type systems certify program properties in a compositiove). From a bigger program one can
abstract out a part and certify the properties of the resytibstract program by just using the type
of the part that was abstracted awagrminationand productivityare non-trivial yet desired pro-
gram properties, and several type systems have been puribtivat guarantee termination, com-
positionally. These type systems are intimately connetietthe definition of least and greatest
fixed-points by ordinal iteration. While most type systerae (conventional” iteration, we consider
inflationary iteration in this article. We demonstrate hiwgeads to a more principled type system,
with recursion based on well-founded induction. The typstesyy has a prototypical implementa-
tion, MiniAgda, and we show in particular how it certifies guwmtivity of corecursive and mixed
recursive-corecursive functions.

1 Introduction: Types, Compositionality, and Termination

While basic types likénteger, floating-point numberandmemory addresarise on the machine-level of
most current computers, higher types like function andeuypbes are abstractions that classify values.
Higher types serve to guarantee certain good program hmisavike the classic “don’t go wrong” ab-
sence of runtime error$/il78]. Such properties are usually not compositional, i. e. levaifunctionf
and its argumenrd might both be well-behaved on their own, their applicatfamight still go wrong.
This issue also pops up in termination proofs: tdke a = Ax.xx, then both are terminating, but their
application loops. To be compositional, the propderminatingneeds to be strengthened to what is of-
ten calledreducible[Gir72] or strongly computabl§Tai67], leading to a semantic notion of type. While
the bare properties are not compositioighingis.

Type polymorphismRey74 Gir72, Mil78] has been invented for compositionality in the opposite
direction: We want to decompose a larger program into smphets such that the well-typedness of
the parts imply the well-typedness of the whole program. ST (AXx.X) (Ax.X) true, a simply-typed
program which can be abstracteddoid = Ax.x in id id true. The two occurrences od have different
type, namelyBool — Bool and (Bool — Bool) — Bool — Bool, and the easiest way to type check
the new program is to just inline the definition idf This trick does not scale, however, making type
checking infeasible and separate compilation of modulgmssible. The accepted solution is to gigde
the polymorphic typ&X. X — X which can be instantiated to the two required typegl of

Termination checking, if it is to scale to software develgmnwith powerful abstractions, needs
to be compositional. Just like for other non-standard asesye. g., strictness, resource consumption
and security, type-based termination promises to be a nufdeliccess. Current termination check-
ers, however, likefoetus [AA02, Wah0Q AD10], the one of Agdalflor07], and Coqg’'s guardedness
check [Gim95 Barl0H are not type-based, but syntactic. Let us see how thistaffmampositionality.
Consider the following recursive program defined by patteatching. We use the syntax of MiniAgda

D. Miller and Z. Esik (Eds.): Fixed Points © Andreas Abel
in Computer Science 2012 (FICS 2012) This work is licensed under the
EPTCS 77, 2012, pp. 14, doi:10.4204/EPTCS.77.1 Creative Commons Attributiohicense.

http://dx.doi.org/10.4204/EPTCS.77.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Type-Based Termination, Inflationary Fixed-Points, anoctédiInductive-Coinductive Types

[Abel(, in this and all following examples.

fun everyOther : [A : Set] — List A — List A

{ everyOther A nil = nil

; everyOther A (cons a nil) = nil

; everyOther A (cons a (cons a’ as)) = cons a (everyOther A as)
}

The polymorphic functioreveryOther returns a list consisting of every second element of thetiligiu
Since the only recursive call happens on suklisof the input listcons a (cons a’ as), termination

is evident. We say that the call argument decreases istthetural ordet this order, plus lexicographic
extensions, is in essence the termination order acceptedebgroof assistants Agda, Coq, and Twelf
[Pie01.

The function distinguishes on the empty list, the singlédigthand lists with at least 2 elements. Such
a case distinction is used in list sorting algorithms, t@owe may want to abstract it froeveryOther.

fun zeroOneMany : [A : Set] — List A — [C : Set] —
(zero : O) —
(omne : A —> QO —
(many : A - A — List A — Q) —

C
{ zeroOneMany A nil C zero one many = zero
; zeroOneMany A (cons a nil) C zero one many = one a
; zeroOneMany A (cons a (cons a’ as)) C zero one many = many a a’ as

3

After abstracting away the case distinction, terminats®na longer evident; the program is rejected by
Agda’s termination checkédbetus.

fun everyOther : [A : Set] — List A — List A
{ everyOther A 1 = zeroOneMany A 1 (List A)
nil
(A a — nil)
(A a a’ as — cons a (everyOther A as))

}

Whether the recursive call argumesstis structurally smaller than the inputdepends on the definition
of zeroOneMany. In such situations, Coq's guardedness check may inlinééfiaition of zeroOneMany
and succeed. Yet in general, as we have discussed in thexcohtgpe checking, inlining definitions is
expensive, and in case of recursive definitions, incomatebrittle. Current CoqNR10] may spend
minutes on checking a single definition, and fail nevertsgle

Type-based termination can handle abstraction as in theead@mple, by assigning a more infor-
mative type tozeroOneMany that guarantees that the list passechdny is structurally smaller than the
list analyzed byzeroOneMany. Using this restriction, termination eferyOther can be guaranteed. To
make this work, we introduce a purely administrative tgpee and let variables, j, andk range over
Size. The type of lists is refined asist A i, meaning lists of lengthc i. We also add bounded size
quantification;; T(j), in concrete syntaxj < il — T j, which letsj only be instantiated to sizes
strictly smaller thari. The refined type oferoOneMany thus becomes:

Andreas Abel 3

fun zeroOneMany : [A : Set] — [i : Size] — List A i — [C : Set] —
(zero : O —
(ome : A —> QO —
(many : [j <i] - A - A — List A j — O —
C

The list passed taany is bounded by size, which is strictly smaller thag. This is exactly the infor-
mation needed to make&reryOther termination-check.

Barthe et. al. BGP0g study type-based termination as an automatic analysisifidethe curtain”,
with no change to the user syntax of types. Size quantificasicestricted to rank-1 quantifiers, known as
ML-style quantification Mil78]. This excludes the type aferoOneMany, which has a rank-2 (bounded)
guantification. Higher-rank polymorphism is not inferabl&omatically, yet without it we fall short of
our aim: compositional termination. Anyway, the preregeaisor inference is the availability of the
source code, which fails for abstract interfaces (such esnpetrized modules in Agda, Coq, or ML).
Thus, we advocate a type system with explicit size inforamabased on the structural order. It will be
presented in the remainder of this article.

2 Sizes, Iteration, and Fixed-Points

In the following, rather than syntactic we consider sentatyfpes such as sets of terminating terms. We
assume that types form a complete latticg, C,(,|J) with least elementl and greatest elemerit.
Further, let the usual type operatergdisjoint sum),x (Cartesian product), ane (function type) have
a sensible definition.

Inductive typesuF, such ad.ist A, are conceived as least fixed points of monotone type carsteu
F, for lists this beingkF X = T + A x X. Constructively CC79, least fixed points are obtained on a
U-semilattice by ordinal iteration up to a sufficiently largeglinal y. Let u®F denote thexth iterate or
approximant which is defined by transfinite recursion an

u’ F o= 1 zero ordinal: least element of the lattice
uettFE = F(u9F) successor ordinal: iteration step
p* F = Uga MF limit ordinal: upper limit

For monotoneF, iteration is monotone, i.ey%F C uBF for a < 3. At some ordinaly, which we
call closure ordinalof this inductive type, we havg®F = u'F for all a > y—the chain has become
stationary, the least fixed point has been reached. For polial F, i. e., those expressible without a
function space, the closure ordinalkis The indexa to the approximanti®F is a strict upper bound on
the heightof the well-founded trees inhabiting this type; in the cakksts (which are linear trees) it is
a strict upper bound on the length.

Dually, coinductive types'F are constructed on@a-semilattice by iteration from above.

wVooOF = T zero ordinal: greatest element of the lattice
VItLE = F(VIF) successor ordinal: iteration step
VA F = Ngea VOF limit ordinal: lower limit

lteration from above is antitone, i.e??F D vBF for a < B. The chain of approximants starts with
the all-typeT and descends towards the greatest fixed-peint In case of the abovE this would be
Colist A, the type of possibly infinite lists over element tyfe The indexa in the approximant®F

4 Type-Based Termination, Inflationary Fixed-Points, anoctédiInductive-Coinductive Types

could be called thelepthof the non-well-founded trees inhabiting this type. It ioeér bound on how
deep we can descend into the tree before we hit undefinedibeljay.

The central idea of type-based termination, going all thg tack to Mendler I1en87, Hughes,
Pareto, and SabryPS96, Giménez {5im9¢], and Amadio and Coupet-Grimah{C G99 is to introduce
syntax to speak about approximants in the type system. Contonthie more expressible systems, such
as Barthe et. al.HGR0843 and Blanqui Bla04] is syntax for ordinal variableg ordinal successasa
(MiniAgda: $a), closure ordinake (MiniAgda: #) and data type approximanB® (MiniAgda: e.g.,
List A i). Hughes et. al. and the authaxl{e08H have also quantifiergi. T over ordinals (MiniAgda:

[i : Size] — T).

How do we get a recursion principle from approximants? Gierdihe simplest example: construct-
ing an infinite repetitior of a fixed elemen& by corecursion. After assembling the colist-constructor
cons : A — Colist A i — ColList A (i+ 1) on approximants, we give a recursive equationa cons a r
with the following typing of the r.h.s.

i : Size, r: ColList AiFconsar: ColList A(i+1)

The types certify that each unfolding of the recursive definiof r increases the number of produced
colist elements by one, hence, in the limit we obtain an itdisequence and, in particulais productive.
Our example is a special instance of the recursion prinoftgpe-based termination, expressible as type
assignment for the fixpoint combinator:

fiVi.TioT(i+1)
fix f © Vi.T i

(TakeT = CoList Aandf = Ar. cons ar to reconstruct the example.) The fixed-point rule can béfijedt

by transfinite induction on ordinal indéxWhile the successor case is covered by the premise of the rul
for zero and limit case the size-indexed typenust satisfy two conditionst 0= T (bottom checkand
Na<x Ta C T A for limit ordinals A [HPS9G. The latter condition is non-compositional, but has a
compositional generalizatiompper semi-continuitfy .y Ug<p<a T B €T A [Abe08H.

The soundness of type-based termination in different megitor different type systems has been as-
sessed in at least 5 PhD theses: Bargas 99 (CIC), Pareto Par0(Q (lazy ML), Frade [Fra03 (STL), the
author P\be0q (F®), and Sacchini$ac1] (CIC). Recently, BarrasHar104 has completed a compre-
hensive formal verification in Coq, by implementing a seteitetical model of the CIC with type-based
termination.

However, type-based termination has not been integratedbigger systems like Agda and Coq.
There are a number of reasons:

1. Subtyping.
The inclusion relation between approximants gives riseutatyping, and for dependent types,
subtyping has not been fully explored. While there are btsgory JAC01, Che97, substantial
work on coercive subtypingdhe03 LAO8] and new results on Pure Subtype Systemist]L0],
no theory of higher-order polarized subtypirif¢98 Abe084 has been formulated for dependent
types yet. In practice, the introduction of subtyping metiras already complicated higher-order
unification has to be replaced by preunificati€N94].

2. Erasure.
Mixing sizes into types and expressions means that one akdsrio erase them after type check-
ing, since they have no computational significance. The system must be able to distinguish

Andreas Abel 5

relevant from irrelevant parts. This is also work in progregartial solutions have been given,
e.g., by Barras and Bernard®B08] and the author4bel1].

3. Semi-continuity.
A technical condition like semi-continuity can kill a sysieas a candidate for the foundation of
logics and programming. It seems that it even deters theresxpdost systems for type-based ter-
mination replace semi-continuity by a rough approximatiobading expressivity for simplicity—
Pareto and the author being notable exceptions.

4. Pattern matching.
The literature on type-based termination is a bit thin whesomes to pattern matching. Pattern
matching on sized inductive types has only been treated agdsii Bla04]. Pattern matching on
coinductive types is known to violate subject reductionepehndent type theory (detailed analysis
by McBride [McB09]). Deep matching on sized types can lead to a surprisingdpargibeld.

While items1 and?2 require more work, item8 and4 can be addressed by switching to a different
style of type-based termination, which we study in the negtien.

3 Inflationary Iteration and Bounded Size Quantification

Sprenger and DanSD03 note that for monoton€,

HF = |J F (WPF)

B<a

and base their system oircular proofs in thep-calculuson this observation. They introduce syntax
for unboundeddi and boundedj < i ordinal existentials and for approximanis (cf. Dam and Gurov
[DGOZ and Schopp and Simpso®$03). Induction is well-founded induction on ordinals, and no
semi-continuity is required.

A first thing to note is that if we take above equation asda@nitionfor u?F, the chaina — u“F
is monotone regardless of monotonicity Fof This style of iteration from below is calledflationary
iteration and the dualdeflationary iteration

ViF = () F (VFF)

B<a

always produces a descending chain. While inflationargtien ofF becomes stationary at some closure
ordinaly, the limit uYF is only a pre-fixed point of, i. e.,F (uYF) C uYF. This means we can construct
elements in a inflationary fixed-point as usual, but not nesnély analyze them sensibly. UnleBsis
monotone, destructing an elementofF yields only an element of (uPF) for somef < y and not
one ofF (uYF). Dually, deflationary iteration reaches a post-fixed poifit C F (VYF) giving the usual
destructor, but the constructor has typ@ < y. F (VF)) — v'F.

While we have not come across a useful application of negaiilationary fixed points in program-
ming, inflationary iteration leads to “cleaner” type-basermination. Inductive data constructors have
type (3j <i. F (uJF)) — u'F, meaning that when we pattern match at inductive tyffe, we get a
fresh size variablg < i and a rest of typd (u/F). This is the “good” way of matching that avoids
paradoxes/4be1d; find it also in Barras Bar104. Coinductive data has typeF = V| < i. F (VIF),

6 Type-Based Termination, Inflationary Fixed-Points, anoctédiInductive-Coinductive Types

akin to a dependent function type. We cannot match on it, apply it to a size, preventing subject re-
duction problems mentioned in the previous section. Rinedicursion becomes well-founded recursion
on ordinals,
fVi.Vj<i.Tj)—Ti
fix f:Vi.Ti

with no condition onl. Also, just like in PiSigmaADLO10], we can dispose of inductive and coinduc-
tive types in favor of recursion. We just define approximaetaursively using bounded quantifiers; for
instance, sized streams &@eam Ai=V] <i. Ax Stream A j, and in MiniAgda:

cofun Stream : +(A : Set) -(i : Size) — Set
{ Stream A i = [j < i] — A & Stream A j
}

MiniAgda checks thabtream A i is monotone in element typ& and antitone in depth as specified
by the polarities+ and - in the type signature. If we erase sizes(}andSize to the non-informative
type T, we obtainStream A () = T — A x Stream A () which is a possible representation of streams in
call-by-value languages. Thus, size quantification candmsidered as typkfting, size application as
forcing and size abstraction aelaying

let tail [A : Set] [i : Size] (s : Stream A $i) : Stream A i
= case (s i) { (a, as) — as }

Taking the tail requires a stream of non-zero deptil. Sinces : Vj < (i+1). Ax Stream A], we can
apply it toi (forceit) and then take its second component.

Zipping two streamssa= ag,a;,... andsb = bp,bs,... with a function f yields a streansc =
f(ag,bo), f(az,b1),... whose depth is the minimum of the depthssafandsh. Since depths are lower
bounds, we can equally state that all three streams have mcoomepth.

cofun zipWith : [A, B, C : Set] (f{ : A —- B — QO
[i : Size] (sa : Stream A i) (sb : Stream B i) — Stream C i
{ zipWith AB C £ i sasb j=
case (sa j, sb j) : (A & Stream A j) & (B & Stream B j)
{ ((a, as), (b, bs)) — (£ a b, zipWith A B C £ j as bs)
}
}

Forcing the recursively defined streamWith A B C f i sa skby applying it toj < i yields a head-tail
pair (f a b, zipWith ABC f j as b$ which is computed from headsandb and tailsas andbs of the
forced input streamsa jandsb j. The recursion is well-founded singe< i.

The famous Haskell one-line definitiofib = ® : 1 : zipWith (+)fib (tail fib) of the Fi-
bonaccistream® : 1 : 1 : 2 : 3 : 5 : 8 : 13... can now be replayed in MiniAgda.

cofun fib : [i : Size] — |i| — Stream Nat i
{ fibi = A j — (zero,
Ak — (one,
zipWith Nat Nat Nat add k
(fib k)
(tail Nat k (fib 3))))
}

The |i| in the type explicitly states that ordinalshall serve as termination measure (syntax due to
Xi [Xi02]). Note the two delay3 j <i andAk < j and the two recursive calls, both at smaller depth
j,k <'i. Such a definition is beyond the guardedness ch€ck|$J of Agda and Coq, but here the type

Andreas Abel 7

system communicates thapWith preserves the stream depth and, thus, productivity.

While our type system guarantees termination and prodtyc run-time,strongnormalization, in
particular when reducing undgrabstractions, is lost when coinductive types are just ddfiecursively.
Thus, equality testing of functions has to be very interasido-equality [ADLO1Q]), since testing;-
equality may loop. McBrideNIcB09] suggests an extensional propositional equalityl507] as cure.

Having explained away inductive and coinductive types,ingithem does not pose a problem any-
more, as we will see in the next section.

4 Mixing Induction and Coinduction

A popular mixed coinductive-inductive type are stream pesors GHPO0G given recursively by the
equationSP A B= (A — SP A B) + (B x SP A B). The intention is thabP A B represents continuous
functions fromStream A to Stream B, meaning that only finitely manj’s are taken from the input
stream before & is emitted on the output stream. This property can be endoyedkesting a least
fixed-point into a greatest on&P A B= vX.uY.(A—Y)+ (B x X) [Abe07, GHP0Y. The greatest
fixed-point unfolds tquY. (A — Y) + (B x SP A B), hence, whenever we chose the second alternative,
the least fixed-point is “restarted”. Thus, we can conc8iReA B by alexicographicordinal iteration

SPABapfB= ()] |J(A—SPABap)+(BxSPABa «)

a'<ap'<p

wherew represents the closure ordinal. The nesting is now defindlaiddgxicographic recursion pattern,
so we do not need to represent it in the order of quantifiersshifg them in maximally yields an
alternative definition:

SPABaB=(A— |JSPABap)+(Bx (| SPABa)

B'<B a'<a

This variant is close to the mixed data types of Agda]0], where recursive occurrences are inductive
unless marked witho:

data SP (A B : Set) : Set where

get : (A —- SPAB) - SPAB

put : B — o (SP AB) — SPAB
In Agda, one cannot specify the nesting order, it always idens the greatest fixed-point to be on the
outside PD10].

Let us program with mixed types via bounded quantificatiorMimiAgda! The type of stream
processors is defined recursively, with lexicographic teation measurei, j|. The bounded existential
3j’ < j.T has concrete syntalkj’ <jl & T, andEither X Y with constructorsleft: X — Either
X Yandright : Y — Either X Y is the (definable) disjoint sum type. We directly code thexeai’
definition of SP:

cofun SP : -(A : Set) +(B : Set) -(i : Size) +(j : Size) — |i,j| — Set

{SPABij=EFEither (A —» [j’ < j] &SP AB1ij’)

B & ([i” < i] — SP A B i’ #))

}

pattern get f

pattern put b sp

left £
right (b , sp)

We canrun a stream processor of deptand heightj on anA-stream of unbounded deptk)to yield a

8 Type-Based Termination, Inflationary Fixed-Points, anoctédiInductive-Coinductive Types

B-stream of depti(this is also called streamating[GHP09). If the stream processor isgat f, we feed
the head of the stream i getting an new stream processor of smaller height (indeand continue
running on the stream tail. If the stream processor psitab sp we produce ai’ < i delayed stream
whose head i® and tail is computed by runningp, which has smaller depth (indexbut unbounded
height (indexj).

cofun run : [A, B : Set] [i, j : Size] — |i,j| — SP AB i j — Stream A # —

Stream B i
{ run AB i j (get) as = case f (head A # as)
{ (G, sp) > run A B i j’ sp (tail A # as) }
; run A B i j (put b sp) as = A1’ — (b, run A B i’ # (sp i’) as)
}

A final note on quantifier placement: For monotdnhandi® = F (UB<GHB) we havell®F = u9+1F. In

particularfi®F = F L, thus for the list generatdt X = T +A x X the first approximanfiF is not empty

but contains exactly the empty list. Typ& F contains the lists of maximal length. This encoding of
data type approximants is more suitable for size arithneetdthas been advocated by Barthe, Grégoire,
and Riba BGRO08L; in practice, it might be superior—time will tell.

5 Conclusions

We have given a short introduction into a type system for ilestion based on ordinal iteration. Bounded
size quantification, inspired by inflationary fixed pointsdaecursion with ordinal lexicographic termi-
nation measures are sufficient to encode inductive and goiiveé types and recursive and corecursive
definitions and all mixings thereof. The full power of clasdiordinals is not needed to justify our recur-
sion schemes: We only need a well-founded okdéhat is “long enough” and has a successor operation.
| conjecture that set induction or constructive ordinalsdél and Rathjen4R08]) can play this role,
leading to a constructive justification of type-based teation.

While our prototype MiniAgda lacks type reconstruction de@ for an enjoyable programming ex-
perience, it is evolving into a core language for dependgye theory with termination certificates. Our
long-term goal is to extend Agda with type-based termimeitioa way that most termination certificates
will be constructed automatically. MiniAgda could serveaasntermediate language that double-checks
proofs constructed by Agda, erases static code, and feedasshinto a compiler back-end.

Acknowledgements.| am grateful for discussions with Cody Roux which exposetbbiem with Mini-
Agda’s pattern matching and set me on the track towards saligdantification as basic principle for
type-based termination. Thanks to Brigitte Pientka for yndiecussions on sized types and the invitation
to McGill, where some ideas of this paper prospered. Finkthank the MiniAgda users, especially Nils
Anders Danielsson and David Thibodeau, who have coped hdthser-unfriendliness of the system and
kept me busy fixing bugs.

References

[AAO02] Andreas Abel & Thorsten Altenkirch (2002} Predicative Analysis of Structural Recursiah Func.
Program12(1), pp. 1-41, doi:®.1017/S0956796801004191.

[Abe06] Andreas Abel (2006 A Polymorphic Lambda-Calculus with Sized Higher-Orderéy/Ph.D. thesis,
Ludwig-Maximilians-Universitat Munchen.

http://dx.doi.org/10.1017/S0956796801004191

Andreas Abel 9

[Abe07]

[Abe08a]

[Abe08b]

[Abe10]

[Abell]

[ACO1]

[ACGO8]

[AD10]

[ADLO10]

[AMSO07]

[ARO8]
[Bar99]
[Bar10a]

[Bar10b]

[BBOS]

[BGPO6]

Andreas Abel (2007 Mixed Inductive/Coinductive Types and Strong Normalaratin Zhong Shao,
editor: Proc. of the 5th Asian Symp. on Programming Languages antgi8gs APLAS 200/Lect.
Notes in Comput. Sc#A807, Springer, pp. 286—301, doi:.. 1007/978-3-540-76637-7_19.

Andreas Abel (2008Polarized Subtyping for Sized Typddath. Struct. in Comput. Scl8, pp. 797—
822, doi10.1017/S0960129508006853. Special issue on subtyping, edited by Healfdene Goguen
and Adriana Compagnoni.

Andreas Abel (2008)5emi-continuous Sized Types and Terminatiargical Meth. in Comput. Sci.
4(2), doi10.2168/LMCS-4(2:3)2008. CSL'06 special issue.

Andreas Abel (2010)MiniAgda: Integrating Sized and Dependent Typé&s Ana Bove, Ekaterina
Komendantskaya & Milad Niqui, editors¥ksh. on Partiality And Recursion in Interactive Theorem
Provers (PAR 201QElectr. Proc. in Theor. Comp. Sdi3, pp. 14-28, doi:0 .4204/EPTCS .43 . 2.

Andreas Abel (2011)irrelevance in Type Theory with a Heterogeneous Equaliygé&ment In
Martin Hofmann, editorProc. of the 14th Int. Conf. on Foundations of Software Smeeand Compu-
tational Structures, FOSSACS 2Q1%&ct. Notes in Comput. Sce604, Springer, pp. 57-71, dod.
1007/978-3-642-19805-2_5.

David Aspinall & Adriana B. Compagnoni (2001%ubtyping dependent typesheor. Comput. Sci.
266(1-2), pp. 273-309, ddi® . 1016/S0304-3975(00)00175-4.

Roberto M. Amadio & Solange Coupet-Grimal (1998alysis of a Guard Condition in Type Theory
(Extended Abstract)n Maurice Nivat, editor:Proc. of the 1st Int. Conf. on Foundations of Software
Science and Computation Structure, FoSSaC'@8t. Notes in Comput. Scl378, Springer, pp.
48-62, doi10.1007/BFb0053541.

Thorsten Altenkirch & Nils Anders Danielsson (2010)ermination Checking in the Presence of
Nested Inductive and Coinductive Typ&hort note supporting a talk given at PAR 2010, Workshop
on Partiality and Recursion in Interactive Theorem Provet®C 2010. Available atittp: //www .
cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf

Thorsten Altenkirch, Nils Anders Danielsson, Ared Loh & Nicolas Oury (2010)PiSigma: Depen-
dent Types without the Sugan Matthias Blume, Naoki Kobayashi & German Vidal, ed#oProc.
of the 10th Int. Symp. on Functional and Logic ProgrammirlgDPS 2010Lect. Notes in Comput.
Sci.6009, Springer, pp. 40-55, doi. 1007/978-3-642-12251-4_5.

Thorsten Altenkirch, Conor McBride & Wouter Swiérs (2007): Observational equality, now!ln
Aaron Stump & Hongwei Xi, editorsProc. of the Wksh. Programming Languages meets Program
Verification, PLPV 2007ACM Press, pp. 57—68, dai®.1145/1292597.1292608.

Peter Aczel & Michael Rathjen (2008)totes on Constructive Set TheoAvailable athttp: //www.
maths.manchester.ac.uk/logic/mathlogaps/workshop/CST-book-June-08.pdf. Draft.

Bruno Barras (1999Auto-validation d’un sygtme de preuves avec familles inductivies.D. thesis,
Université Paris 7.

Bruno Barras (20108Bets in Coq, Coq in Setd. Formalized Reasonirgf1). Available athttp://
jfr.cib.unibo.it/article/view/1695.

Bruno Barras (2010 he syntactic guard condition of Cogalk at the Journée “égalité et terminai-
son” du 2 féevrier 2010 in conjunction with JFLA 2010. Avdila athttp://coq.inria.fr/files/
adt-2fevl10-barras.pdf.

Bruno Barras & Bruno Bernardo (2008Fhe Implicit Calculus of Constructions as a Programming
Language with Dependent Typds Roberto M. Amadio, editorFoSSaCSLect. Notes in Comput.
Sci.4962, Springer, pp. 365—-379, doi:. 1007/978-3-540-78499-9_26.

Gilles Barthe, Benjamin Grégoire & Fernando Pasta (2006): CIC™: Type-Based Termination
of Recursive Definitions in the Calculus of Inductive Camgtions In Miki Hermann & Andrei
Voronkov, editors:Proc. of the 13th Int. Conf. on Logic for Programming, Artidicintelligence, and

http://dx.doi.org/10.1007/978-3-540-76637-7_19
http://dx.doi.org/10.1017/S0960129508006853
http://dx.doi.org/10.2168/LMCS-4(2:3)2008
http://dx.doi.org/10.4204/EPTCS.43.2
http://dx.doi.org/10.1007/978-3-642-19805-2_5
http://dx.doi.org/10.1007/978-3-642-19805-2_5
http://dx.doi.org/10.1016/S0304-3975(00)00175-4
http://dx.doi.org/10.1007/BFb0053541
http://www.cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf
http://www.cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf
http://dx.doi.org/10.1007/978-3-642-12251-4_5
http://dx.doi.org/10.1145/1292597.1292608
http://www.maths.manchester.ac.uk/logic/mathlogaps/workshop/CST-book-June-08.pdf
http://www.maths.manchester.ac.uk/logic/mathlogaps/workshop/CST-book-June-08.pdf
http://jfr.cib.unibo.it/article/view/1695
http://jfr.cib.unibo.it/article/view/1695
http://coq.inria.fr/files/adt-2fev10-barras.pdf
http://coq.inria.fr/files/adt-2fev10-barras.pdf
http://dx.doi.org/10.1007/978-3-540-78499-9_26

10

[BGRO8a]

[BGRO8D]

[Bla04]

[CC79]

[Che97]

[Che03]

[Coq93]

[DA10]

[DG02]

[Fra03]

[GHPOB]

[GHPO9]

[Gim95]

[Gim98]

[Gir72]

[HPS96]

Type-Based Termination, Inflationary Fixed-Points, anoctédiInductive-Coinductive Types

Reasoning, LPAR 20Q6d.ect. Notes in Comput. Scé246, Springer, pp. 257-271, dod.. 1007/
11916277_18

Gilles Barthe, Benjamin Grégoire & Colin Riba (@): A Tutorial on Type-Based Termina-
tion. In Ana Bove, Luis Soares Barbosa, Alberto Pardo & Jorges&dRinto, editors:LerNet
ALFA Summer SchoglLect. Notes in Comput. Scb520, Springer, pp. 100-152, doi.. 1007/
978-3-642-03153-3_3.

Gilles Barthe, Benjamin Grégoire & Colin Riba (): Type-Based Termination with Sized Products
In Michael Kaminski & Simone Martini, editorsComputer Science Logic, 22nd Int. Wksh., CSL
2008, 17th Annual Conf. of the EACSLect. Notes in Comput. Scb213, Springer, pp. 493-507,
doi:10.1007/978-3-540-87531-4_35.

Frédéric Blanqui (2004)A Type-Based Termination Criterion for Dependently-Tydéegher-Order
Rewrite SystemsIn Vincent van Oostrom, editorRewriting Techniques and Applications (RTA
2004), Aachen, Germany.ect. Notes in Comput. ScB091, Springer, pp. 24-39, do@. 1007/
978-3-540-25979-4_2.

Patrick Cousot & Radhia Cousot (197%onstructive Versions of Tarski's Fixed Point Theorems
Pacific Journal of Mathemati®d. (1), pp. 43-57.

Gang Chen (1997Rubtyping Calculus of Construction (Extended Abstrdet)gor Privara & Peter
Ruzicka, editors:Proc. of the 22nd Int. Symb. on Mathematical Foundations@h@uter Science,
MFCS'97, Lect. Notes in Comput. Sc1295, Springer, pp. 189-198, dbj:.. 1007 /BFb0029962.

Gang Chen (2003 oercive subtyping for the calculus of constructiofrs Proc. of the 30st ACM
Symp. on Principles of Programming Languages, POPL 28@3 SIGPLAN Notices38, ACM
Press, pp. 150-159, do@. 1145/640128.604145.

Thierry Coquand (1993)nfinite Objects in Type Thearyln H. Barendregt & T. Nipkow, editors:
Types for Proofs and Programs (TYPES '9Bgct. Notes in Comput. Sc806, Springer, pp. 62—78,
doi:10.1007/3-540-58085-9_72.

Nils Anders Danielsson & Thorsten Altenkirch (201@ubtyping, Declarativelyln Claude Bolduc,
Jules Desharnais & Béchir Ktari, editorBroc. of the 10th Int. Conf. on Mathematics of Program
Construction, MPC 201 ect. Notes in Comput. Sc6120, Springer, pp. 100-118, doi.. 1007/
978-3-642-13321-3_8.

Mads Dam & Dilian Gurov (2002)u-Calculus with Explicit Points and Approximatiangl. Log.
Comput12(2), pp. 255-269, dai® . 1093 /logcom/12.2.255.

Maria Joao Frade (2003)ype-Based Termination of Recursive Definitions and Cookdr Subtyp-
ing in Typed Lambda CalculPh.D. thesis, Universidade do Minho, Departamento deimética.

Neil Ghani, Peter Hancock & Dirk Pattinson (200€)ontinuous Functions on Final Coalgebras
Electr. Notes in Theor. Comp. S@64(1), pp. 141-155, ddi®.1016/j.entcs.2006.06.009.

Neil Ghani, Peter Hancock & Dirk Pattinson (200®epresentations of Stream Processors Using
Nested Fixed Pointd_ogical Meth. in Comput. Scb(3), doi10.2168/LMCS-5(3:9)2009.

Eduardo Giménez (1995Codifying Guarded Definitions with Recursive Schemedeter Dybjer,
Bengt Nordstrom & Jan Smith, editor8ypes for Proofs and Programs, Int. Wksh., TYPESI94ct.
Notes in Comput. Sc996, Springer, pp. 39-59, doi. 1007/3-540-60579-7_3.

Eduardo Giménez (1998%tructural Recursive Definitions in Type ThedryK. G. Larsen, S. Skyum
& G. Winskel, editors:Int. Colloquium on Automata, Languages and Programming 2 98), Aal-
borg, Denmarklect. Notes in Comput. Sci443, Springer, pp. 397—408, doi.. 1007 /BFb0055070.

Jean-Yves Girard (1972)nterprétation fonctionnelle etlimination des coupures dans l'aritlatique
d’ordre sugerieur. These de Doctorat Htat, Université de Paris VII.

John Hughes, Lars Pareto & Amr Sabry (199&pving the Correctness of Reactive Systems Using
Sized TypeslIn: Proc. of the 23rd ACM Symp. on Principles of Programming Lizages, POPL'96
pp. 410-423, doi0.1145/237721.240882.

http://dx.doi.org/10.1007/11916277_18
http://dx.doi.org/10.1007/11916277_18
http://dx.doi.org/10.1007/978-3-642-03153-3_3
http://dx.doi.org/10.1007/978-3-642-03153-3_3
http://dx.doi.org/10.1007/978-3-540-87531-4_35
http://dx.doi.org/10.1007/978-3-540-25979-4_2
http://dx.doi.org/10.1007/978-3-540-25979-4_2
http://dx.doi.org/10.1007/BFb0029962
http://dx.doi.org/10.1145/640128.604145
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1093/logcom/12.2.255
http://dx.doi.org/10.1016/j.entcs.2006.06.009
http://dx.doi.org/10.2168/LMCS-5(3:9)2009
http://dx.doi.org/10.1007/3-540-60579-7_3
http://dx.doi.org/10.1007/BFb0055070
http://dx.doi.org/10.1145/237721.240882

Andreas Abel 11

[Hut10]

[INR10]
[LAOS]

[McBO9]

[Men87]

[Mil78]
[Nor07]

[Par00]
[Pie01]

[QN94]

[Rey74]

[Sacl1]

[SDO3]

[SS02]

[Ste98]
[Tai67]
[Wah0o]

[Xi02]

DelLesley S. Hutchins (2010Rure subtype systemsn Manuel V. Hermenegildo & Jens Palsberg,
editors: Proc. of the 37th ACM Symp. on Principles of Programming Lizages, POPL 201ACM
Press, pp. 287-298, dot. 1145/1706299.1706334.

INRIA (2010): The Coq Proof Assistant Reference Manuwalsion 8.3 edition. INRIA. Available at
http://coq.inria.fr/.

Zhaohui Luo & Robin Adams (2008)structural subtyping for inductive types with functorigLelity
rules Math. Struct. in Comput. Scl8(5), pp. 931-972, ddi®.1017/S0960129508006956.

Conor McBride (2009)Let’s See How Things Unfold: Reconciling the Infinite witd thtensional
In Alexander Kurz, Marina Lenisa & Andrzej Tarlecki, edigoBrd Int. Conf. on Algebra and Coal-
gebra in Computer Science, CALCO 20Q@Q@ct. Notes in Comput. Sca728, Springer, pp. 113-126,
doi:10.1007/978-3-642-03741-2_9.

Nax Paul Mendler (1987Recursive Types and Type Constraints in Second-Order La@hitulus
In: Proc. of the 2nd IEEE Symp. on Logic in Computer Science (L8ZF IEEE Computer Soc.
Press, pp. 30-36.

Robin Milner (1978):A Theory of Type Polymorphism in Programmiilg Comput. Syst. Scl7, pp.
348-375, doit0.1016/0022-0000(78)90014-4.

UIf Norell (2007): Towards a Practical Programming Language Based on Depetntigre Theory
Ph.D. thesis, Dept of Comput. Sci. and Engrg., Chalmersgl@iig, Sweden.

Lars Pareto (20007ypes for Crash PreventiofPh.D. thesis, Chalmers University of Technology.

Brigitte Pientka (2001)Termination and Reduction Checking for Higher-Order Logiograms In
Rajeev Goré, Alexander Leitsch & Tobias Nipkow, editoAsitomated Reasoning, First International
Joint Conference, IJCAR 200lect. Notes in Art. Intell2083, Springer, pp. 401-415, du§:. 1007/
3-540-45744-5_32.

Zhenyu Qian & Tobias Nipkow (1994Reduction and Unification in Lambda Calculi with a General
Notion of SubtypeJ. of Autom. Reasoning2(3), pp. 389-406, dai® . 1007 /BFO0885767.

John C. Reynolds (1974)Yowards a Theory of Type Structurdn B. Robinet, editor:Program-
ming SymposiumLect. Notes in Comput. Scll9, Springer, Berlin, pp. 408-425, doi.. 1007/
3-540-06859-7_148.

Jorge Luis Sacchini (2011Pn Type-Based Termination and Pattern Matching in the dakof
Inductive ConstructionsPh.D. thesis, INRIA Sophia-Antipolis arittole des Mines de Paris.

Christoph Sprenger & Mads Dam (2003)n the Structure of Inductive Reasoning: Circular and
Tree-Shaped Proofs in the-Calculus In Andrew D. Gordon, editor:Proc. of the 6th Int. Conf.
on Foundations of Software Science and Computational Gires; FoSSaCS 200Bect. Notes in
Comput. Sci2620, Springer, pp. 425-440, do§.. 1007 /3-540-36576-1_27.

Ulrich Schopp & Alex K. Simpson (2002)erifying Temporal Properties Using Explicit Approxi-
mants: Completeness for Context-free ProcesbeMogens Nielsen & Uffe Engberg, editorBroc.

of the 5th Int. Conf. on Foundations of Software Science anth@utational Structures, FoSSaCS
2002 Lect. Notes in Comput. S2303, Springer, pp. 372—386, doi:.. 1007/3-540-45931-6_26.
Martin Steffen (1998Polarized Higher-Order Subtypind’h.D. thesis, Technische Fakultat, Univer-
sitat Erlangen.

William W. Tait (1967):Intensional Interpretations of Functionals of Finite TypeJ. Symb. Logic
32(2), pp. 198-212.

David Wahlstedt (2000)Detecting termination using size-change in parameter esluMaster’s
thesis, Goteborgs Universitet.

Hongwei Xi (2002): Dependent Types for Program Termination Verificatiah Higher-Order and
Symb. Computl5(1), pp. 91-131, daif.1023/A:1019916231463.

http://dx.doi.org/10.1145/1706299.1706334
http://coq.inria.fr/
http://dx.doi.org/10.1017/S0960129508006956
http://dx.doi.org/10.1007/978-3-642-03741-2_9
http://dx.doi.org/10.1016/0022-0000(78)90014-4
http://dx.doi.org/10.1007/3-540-45744-5_32
http://dx.doi.org/10.1007/3-540-45744-5_32
http://dx.doi.org/10.1007/BF00885767
http://dx.doi.org/10.1007/3-540-06859-7_148
http://dx.doi.org/10.1007/3-540-06859-7_148
http://dx.doi.org/10.1007/3-540-36576-1_27
http://dx.doi.org/10.1007/3-540-45931-6_26
http://dx.doi.org/10.1023/A:1019916231463

	1 Introduction: Types, Compositionality, and Termination
	2 Sizes, Iteration, and Fixed-Points
	3 Inflationary Iteration and Bounded Size Quantification
	4 Mixing Induction and Coinduction
	5 Conclusions

