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We give a new general definition of arity, yielding the comipamotions of signature and associated
syntax. This setting is modular in the sense requested Bly fnerging two extensions of syntax
corresponds to building an amalgamated sum. These sigisadte too general in the sense that we
are not able to prove the existence of an associated syntidnsiigeneral context. So we have to
select arities and signatures for which there exists theetkitial monad. For this, we follow a
track opened by Matthes and Uustal]; we introduce a notion of strengthened arity and prove that
the corresponding signatures have initial semanticsgggociated syntax). Our strengthened arities
admit colimits, which allows the treatment of thecalculus with explicit substitution in the spirit of

[12.

1 Introduction

Many programming or logical languages allow constructiagch bind variables and this higher-order
feature causes much trouble in the formulation, the unaledétg and the formalization of the theory of
these languages. For instance, there is no universallypsteliscipline for such formalizations: that
is precisely why the POPLmark Challengd pffers benchmarks for testing old and new approaches.
Although this problem may ultimately concern typed langesagnd their operational semantics, it al-
ready concerns untyped languages. In this work, we extendvwokinds of constructions our treatment
of higher-order abstract syntaxd], based on modules and linearity.

First of all, we give a new general definition of arity, yieldithe companion notion of signature.
The notion is coined in such a way to induce a companion natfaepresentation of an arity (or of a
signature) in a monad: such a representation is a morphissn@gmodules over the given monad, so that
an arity simply assigns two modules to each monad. Theredtusal category of such representations of
a signature and whenever it exists, the initial represemtateserves the name of syntax associated with
the given signature. This approach enjoys modularity irstese introduced byLP]: in our category of
representations, merging two extensions of a syntax quorets to building an amalgamated sum.

Our notion of arity (or signature) is too general in the sethse¢ we are not able to build, for each
signature, a corresponding initial representation. kotig a track opened in Matthes-UustallLg], we
define a fairly general notion atrengthenedrity, yielding the corresponding notion of strengthened
signature. Our main result (TheorefrB) says that any strengthened signature yields the desiitél in
representation. As usual, this initial object is built asiaimal fixpoint.

Understanding the syntax of the lambda-calculus with ekiubstitution was already done ihd],
where the arity for this construction was identified as a dpeence a colimit, of elementary arities (see
Section8). Our main motivation for the present work (and for our nemépwas to propose a general
approach to syntax (and ultimately to semantics) accogritinthis example in the spirit of our previous
work [14]. This is achieved thanks to our second main result (Thecgt@nwhich states the existence
of colimits in the category of (strengthened) arities.
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In this extended abstract, we do not discuss proofs. A campkrsion is available on-link.

2 Related and future work

The idea that the notion of monad is suited for modeling stutisin concerning syntax (and semantics)
has been retained by many recent contributions on the fuspe e.g.9, 12, 16]) although some other
settings have been considered. For instancelt the authors argue in favor of a setting based on
Lawvere theories, while in7] the authors work within a setting roughly based on operatiequgh they
do not write this word down). The latter approach has beeadiyoextended, notably by M. Fior@,

9, 10]. Our main specificity here is the systematic use of the olagien that the natural transformations
we deal with are linear with respect to natural structuremodiule (a form of linearity had already been
observed, in the operadic setting, s&#][ Section 4).

The signatures we consider here are much more general thagighatures in7], and cover the
signatures appearing id$, 12]. Note however that the latter works treat also non-welifted syntax,
an aspect which we do not consider at all.

In our next work, we will propose a treatment of equationahaetics for the present syntaxes. This
approach should also be accommodated to deal with typeddaeg as done for elementary signatures
in [17, 18, 2], or to model operational semantics as done for elementgnatures in 1J.

3 The big category of modules

Modules over monads and the associated notion of linearalatansformation intend to capture the
notion of “algebraic structure which is well-behaved widspect to substitution”. An introduction on
this subject can be found in our papet8,[14]. Let us recall here the very basic idea.

Let Rbe a monad over a base categ@ryA module overR with range in a categor is a functor
M: C — D endowed with an action dR, i.e., a natural “substitution” transformatign M-R— M
compatible with the substitution d® in the obvious sense. Given two modulesN over the same
monad and with the same range, a linear natural transfasmati M — N is a natural transformation
of functors which is compatible with the actions in the omd®ense. This gives a category M) of
modules with fixed basR and rangeD.

It is useful for the present paper to consider a larger cayegbich collects modules over fierent
monads. For the following definition, we fix a range catedory

Definition 3.1 (The big module categoryMWe define the big module category Blvﬁ)ds follows:
e its objects are pairdR{ M) of a monadr on C and anR-moduleM with range inD.
e a morphism from, M) to (S,N) is a pair f,m) where f: R— S is a morphism of monads, and

m: M — f*N is a morphism oR-modules (here*N is the functorN equipped with the obvious
structure ofR-module).

4 The category of arities

In this section, we give our new notion of arity. The destirfiyan arity is to have representations in
monads. A representation of an ardyin a monadR should be a morphism between two modules
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dom@ R) and codonm4,R). For instance, in the case of the arityof a binary operation, we have
dom@R) := R? and codomg,R) := R. Hence an arity should consist of two halves, each of which
assigns to each mondtia module oveR in a functorial way. However, in all our natural examples, we
have codong, R) = R as above. Although this will no longer be the case in the tyg@es® (which we do
not consider here), we choose to restrict our attentionitesuof this kind, where codora(R) is R.

From now on we will consider only monads over the cated®tyand modules with rang8et. For
technical reasons, see Sectihnve restrict our attention to the categoryustocontinuous endofunctors
that we will denote Entl(Set). Analogously we will write Moff (resp. BMod&) for the full subcategory
of monads (resp. of modules over these monads) whichyam@continuous.

We recall that finite limits commute with filtered colimits 8et. It follows that End’(Set) has finite
limits and arbitrary (small) colimits. This is the key ingient in the proofs ofvu-cocontinuity for most
of our functors.

Definition 4.1 (Arities). An arity is a right-inverse functor to the forgetful functor from tbategory
BMod® to the category Mot
Now we give our basic examples of arities:
e Every monadRis itself aR-module. The assignmeRt— R gives an arity which we denote .
e The assignmerR — =R, wherexg denotes the final module ovBris an arity which we denote by,

e Given two aritiesa andb, the assignmeriR — a(R) x b(R) is an arity which we denote bgxb . In
particular®? = ® x @ is the arity of any (first-order) binary operation and, in g@e@®" is the arity
of n-ary operations.

e Given an endofunctoF of Set, we consider theerivedfunctor given byF’: X — F(X+%). It can
be checked how wheR is a module so i&’. Given an aritya, the assignmeriR — a(R)’ is an arity
which we denote’ and is callederivativeof a.

e Derivation can be iterated. We denote &Y the n-th derivative ofa. Hence, in particular, we have
a® =3 al=a,a@=ga".

e For each sequence of non-negative integefssy, ..., ), the assignmerR — R x ... x R) is an
arity which we denote b®(®. Arities of the form®(® are saidalgebraic These algebraic arities are
those which appear irv].

e Given two aritiesa, b their compositiora-b := R a(R) - b(R) is an arity.
Definition 4.2. A morphism among two aritiea;,a,: Mon“ — BMod” is a natural transformation
m: a; — ap which, post-composed with the projection BMbd— Mon®, becomes the identity. We
easily check that arities form a subcategory Ar of the categbfunctors from Mo to BMod”.

Now we give two examples of morphisms of arities:

e The natural transformatiop: ® -® — 0O induced by the structural composition of monads is a
morphism of arities.

e The two natural transformatior®- n andn - © from @ to ® - ® are morphisms of arities.

Theorem 4.3. The category of arities has finite limits and arbitrary (sipablimits.

5 Categories of representations

Definition 5.1 (Signatures) We define a signaturk = (O, ) to be a family of aritiesx: O — Ar. A
signature is said to be algebraic if it consists of algebaaiiies.
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Definition 5.2 (Representation of an arity, of a signatur&iven anw-cocontinuous monai over Set,
we define a representation of the amtyn Rto be a module morphism from(R) to R; a representation
of a signhatureZ in R consists of a representation®Rfor each arity inx.

Example5.3. The usuabpp: A2 — A is a representation of the ari®? into the monad\ of A-calculus
8.

Definition 5.4. Given a signatur& = (O, a), we build the category Madnof representations o as
follows. Its objects arev-cocontinuous monads equipped with a representatiai. ¢k morphismm
from (M,r) to (N, s) is a morphism of monads froal to N compatible with the representations in the
sense that, for eaahin O, the following diagram oM-modules commutes:

ao(M) —=—= M

)| lm

m*(a/O(N))W m*N

where the horizontal arrows come from the representatiodstize left vertical arrow comes from the
functoriality of arities andn: M — m*N is the morphism of monad seen as morphisnMemodules.

These morphisms, together with the obvious compositiom, Ko™ into a category which comes
equipped with a forgetful functor to the category of monads.
We are primarily interested in the existence of an initigkobin this category Mon

Definition 5.5. A signatureX is said representable if the category Mdras an initial object, which we
denotex.

Theorem 5.6. Algebraic signatures are representable.

For more details we refer to our papé&8[ (Theorems 1 and 2). We give below a more general result
(Theorem?.9).

6 Modularity and the big category of representations

It has been stressed ihd] that the standard approach (via algebras) to higher-a@ylaiax lacks modu-
larity. In the present section we show in which sense ouraambr via modules enjoys modularity. The
key for this modularity is what we call the big category ofnegentations.

Suppose that we have a signatdire (O, a) and two subsignatures, andX, coveringZ in the obvi-
ous sense, and IBp be the intersection &f; andX,. Suppose that these four signatures are representable
(for instance becausgis algebraic or strengthened in the sense defined below)uloty would mean
that the corresponding diagram of monads

is a pushout. The observation df7 is that this diagram of raw monads is, in general, not a pusho
Since we do not want to change the monads, in order to claiiméatularity, we will have to consider
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a category of enhanced monads. Here by enriched monad, we anesonad equipped with some
additional structure, namely a representation of someatige.

Our solution to this problem goes through the following “bigitegory of representations, which we
denote by RMon, wherB may stand for representation or for rich:

e An object of RMon is a tripleRR, Z,r) whereR is a monady} a signature, andis a representation of
YinR
e A morphism in RMon from Ry, (O1,a1),r1) to (Ro, (O2,ap),r2) consists of an injective map= O; —
O, compatible witha; anday, and a morphismm from (Ry1,r1) to (Ry,i*(r2)), wherei*(r,) should
be understood as the restriction of the representatidn the subsignature(y,a;) where we pose
i*(r2)(0) :=r2(i(0)).
e |t is easily checked that the obvious composition turns Rhbm a category.
Now for each signaturE, we have an obvious functor from Mdto RMon, through which we may sée
as an object in RMon. Furthermore, an injectiorL; — X, obviously yields a morphisi := £, — 3,
in RMon. Hence our ‘pushout’ square of signatures as desgtrdiove yields a square in RMon. The
proof of the following statement is straightforward.
Modularity holds in RMon, in the sense that given a ‘pushaegtiare of representable signatures as
described above, the associated square in RMon is a pudijeiat a
As usual, we will denote by RMdhthe full subcategory of RMon constituted bycocontinuous
functors. It is easy to check that the previous statememjuslgy valid in RMor¥. Indeed, recall that,
by our definition, the initial representation of represetgasignatures lies in RMdéh

7 Strengthening signatures

Guided by the ideas of Matthes and Uustdl6][we introduce in our framework the notion sfrength-
ened arity For a categonC, let us denote by E{t{C) the category ofv-cocontinuouspointed end-
ofunctors i.e., the category of paird=(n) of an w-cocontinuous endofunctdf of C and a natural
transformation;: | — F from the identity endofunctor t&. A morphism of pointed endofunctors
f: (F1,m) — (F2,72) is a natural transformatioh: F; — F, satisfyingf on, =n».

Definition 7.1. A strengthened arityis a pair {H,6) whereH is an w-cocontinuous endofunctor of
End’(Set) (i.e.,H € End’(End’(Set))) and@ is a natural transformatiof:: H(-)- ~— H(-- ~) (where
H(-)- ~ and H(—- ~) have to be understood as functors from &(8kt) x End’(Set) to End’(Set))
satisfyingfx (1,) = 1nx and such that the following diagram is commutative

0x(21 Zp.01¢)

H(X)-Z1-Z> H(X-Z1-Z5) 1)

%@X ﬁ)

H(X-Z1)-Z;

for every endofunctoK and pointed endofunctorZ{, i), (Z»,€). We refer tod as thestrengthon H.

Our first task is to make clear that our wording is consisterihé sense that a strengthened akity
somehow yields a genuine arifj. For this task, for each mondriwe poseH (R) := H(R) and we exhibit
on it a structure oR-module. We do even slightly more by upgradiHginto amodule transformem
the following sense:
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Definition 7.2. A module transformer is an endofunctor of the big module gate BMod” which

commutes with the structural forgetful functor BMbd— Mon®.

Let (H,0) be a strengthened arity. For evesycocontinuous monal andw-cocontinuousk-module
M, we define the natural transformatiph™): H(M)-R — H(M) as the compositiot (o™) - Oy r.
TheAn H(M),pHM) is anR-module, and this construction upgradéinto a module transformer denoted
by H.

We call the restriciort of the module transformeH to the category of monads the arity associated
to the strengthened arity.

Our next task is to upgrade our favorite examples of aritigs strengthened arities:

e The arity® comes from the strengthened arity, ) whereH andé are the relevant identities.

e The arity = comes from the strengthened arityf, §) whereH is the final endofunctor and is the
relevant identity. This is the final strengthened arity.

e The arity® - ® comes from the strengthened arity,0) whereH := X+ X- X andfxy : X- XY —
X-Y-X-Y:=X-n¥-X-Y; here we have written" for the morphism from the identity functor t6
(remember thaY is pointed).

e If an arity comes from a strengthened arity, so does its dtviv (see Proposition.4).

Then we show how our basic constructions in the category itésarcarries over the category of
strengthened arities. First we describe this categonpHbjscts are strengthened arities and we take for
morphisms from K1, 6,) to (Hz,6,) those natural transformatioms: H; — H» which are compatible
with 61 andé,, that is, the diagram

Hi(X)-Z —%~ Hy(X - 2)
mXZ¢ ¢m><-z
Ha(X) - Z —— Ha(X 2)

is commutative for every endofunctirand every pointed endofunctdr
Theorem 7.3. The category of strengthened arities has finite limits ariadteary colimits.

Next, we take care of the derivation. We denoteboyne endofunctor o$et given byA — A+ . For
any other pointed endofunctdroverSet we have a natural transformatiert : D- X — XD given by

WX X(A) +% — X(A+#) WX 1= X(ia) +ae.-*

whereia: A— A+ = andx: « — A+« are the inclusion maps.

Proposition 7.4. If (H,0) is a strengthened arity, then the pdid’,o’), where H := X — H(X)’ and
0%z = 0xzD- H(X)wW?, is a strengthened arity. We call it thkerivativeof (H, 6).

Now we point out the possibility of composing strengthengties.
Definition 7.5. If H := (H,p) andK := (K, o) are two strengthened arities, their compositibrK is the
pair (H - K,6) whered is defined bydx z¢ = H(ox z¢) - PK(X).(Z.)-
Proposition 7.6. This composition turns strengthened arities into a strichwidal category.

Next, we turn to the main interest of strengthened aritiesignatures) which is that the fixed point
we are interested in inherits a structure of monad.

Lemma 7.7. Let (H,0) be a strengthened arity. Thgn the fixed point T of the functes F+ H is w-
cocontinuous a~nd comes equipped with a structurd-oépresentation which is the initial object in the
category of theH-representations.
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We say that a signature is strengthened if it is a family afrgjthened arities. The previous lemma
leads immediately to the following result.

Theorem 7.8. Strengthened signatures are representable.

8 Examples of strengthened syntax

Lambda-calculus moduloa-equivalence One paradigmatic example of syntax with binding is the
calculus. We denote h¥(X) the set of lambda-terms up teequivalence with free variables ‘indexed’
by the setX. It is well-known [6, 3, 13] that A has a natural structure of cocontinuous monad where the
monad composition is given by variable substitution.

It can be easily verified that applicati@pp: A2 — A and abstractiombs: A’ — A areA-linear
natural transformations, that ig, is a monad endowed with a representationf the signaturex =
{app: ©%,abs: ©’}. The monad\ is initial in the category Moh of w-cocontinuous monads equipped
with a representation of the signatiie

This is an example of algebraic signature and thus alreadyetd by other previous worksd, 14, 7].

Here we simply remark that our new theory covers such a clalssase.

Explicit composition operator We now consider our first example of non-algebraic signatOreany
monadR, we have the composition operator (also cajiid operator)uR: R-R — R which has arity

®- 0. We will refer to theuR operator as thamplicit composition operator. An interesting problem is to
see if this kind of operators admits a correspondirglicit version, i.e., if they can be implemented as a
syntactic construction. As we have seen befor® is a strengthened arity hence we can build syntaxes
with explicit composition operator of kind

join: ®@-0 — 6.

Of course, this is only ayntacticcomposition operator, in the sense that it does not enjograkv
desirable conversion rules like associativity, two-sidientity and the obvious compatibility rules with
the other syntactic constructions present in the signatareur next work we will show how to construct
such kind ofsemanticcomposition operator.

Let us mention that given a mon& the unityr: | — Ris not anR-linear morphism (in fact| is
not even arR-module in general). For this reason we cannot treat exambleyntax with explicit unit.

Syntax and semantics with explicit substitution On any monadR, we have a series of substitution
operatorso,: R™ - R" — R which simultaneously replaaceformal arguments in a term with given
terms. As observed by Ghani and Uustdld][ these substitution morphisms satisfy a series of compati
bility relations which mean that they come from a single niismsubst: C — © whereC is identified

as the coend _
A:Fin
C= f 0 x @A

HereFin stands for a skeleton of the category of finite s€t8,denotes the cartesian power a@t

is defined by@™(R, X) := R(X + A). Since coends are special colimits, and strengthenedsagtimit
colimits, we just have to check that the bifunctorial arityB) — ®® x ®B factors through the category
of strengthened arities. As far as objects are concernedfalfows from our results in Sectioi. The
verification of the compatibility of the corresponding “eeming” and “projection” morphisms with the
strengthened structures is straightforward.
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