
D. Miller and Z.Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 39–46, doi:10.4204/EPTCS.77.6

c© M. Lange, E. Lozes
This work is licensed under the
Creative Commons Attribution License.

Model-Checking the Higher-Dimensional Modal µ-calculus

Martin Lange Etienne Lozes
School of Electr. Eng. and Computer Science, University of Kassel, Germany

The higher-dimensional modalµ-calculus is an extension of theµ-calculus in which formulas are
interpreted in tuples of states of a labeled transition system. Every property that can be expressed
in this logic can be checked in polynomial time, and conversely every polynomial-time decidable
problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined
in the higher-dimensional modalµ-calculus. We exemplify the latter connection by giving several
examples of decision problems which reduce to model checking of the higher-dimensional modal
µ-calculus for some fixed formulas. This way generic model checking algorithms for the logic can
then be used via partial evaluation in order to obtain algorithms for theses problems which may
benefit from improvements that are well-established in the field of program verification, namely on-
the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as
well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and
games.

1 Introduction

The Modalµ-CalculusLµ [6] is mostly known as a backbone for temporal logics used in program
specification and verification. The most important decisionproblem in this domain is the model checking
problem which is used to automatically prove correctness ofprograms. The model checking problem for
Lµ is well-understood by now. There are several algorithms andimplementations for it. It is known
that model checkingLµ is equivalent under linear-time translations to the problem of solving a parity
game [8] for which there also is a multitude of algorithms available. From a purely theoretical point of
view, there is still the intriguing question of the exact computational complexity of model checkingLµ :
the best known upper bound for finite models is UP∩coUP [5], which is not entirely matched by the
P-hardness inherited from model checking modal logic.

Lµ can express exactly the bisimulation-invariant properties of tree or graph models which are de-
finable in Monadic Second-Order Logic [4], i.e. are regular.This means that for every such setL of trees
or graphs there is a fixedLµ formulaϕL s.t. a tree or graphG is a model ofϕL iff it belongs toL. Thus,
any decision problem that has an encoding into regular and bisimulation-invariant sets of trees or graphs
can in principle be solved using model checking technology.In detail, suppose there is a setM and a
function f from the domain ofM to graphs s.t.{ f (x) | x∈M} is regular and closed under bisimilarity.
By the result above there is anLµ formula ϕM which defines (the encoding of)M. Now any model
checking algorithm forLµ can be used in order to solveM.

Note that in theory this is just a reduction fromM to the model checking problem forLµ on a fixed
formula. Obviously reductions from any problemA to some problemB can be used to transfer algorithms
from B to A, and the algorithm obtained forA can in general be at most as good as the algorithm forB
unless it can be optimised for the fragment ofB resulting from embeddingA into it. However, there are
two aspects that are worth noting in this context.

• A reduction to model checking for a fixed formula can lead to much more efficient algorithms. A
model checking algorithm takes two inputs in general: a structure and a formula. If the formula is

http://dx.doi.org/10.4204/EPTCS.77.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

40 Model-Checking the Higher-Dim.µ-Calculus

fixed then partial evaluation can be used in order to optimisethe general scheme, throw away data
structures, etc.

• Program verification is a very active research area which hasdeveloped many clever techniques
for evaluating formulas in certain structures including on-the-fly [8] and symbolic methods [2],
partial-order reductions, etc.

We refer to [1] for an example of this scheme of reductions to model checking for fixed formulas, there
being done for problems that are at least PSPACE-hard. It also shows how this can be used to solve com-
putation problems in this way. Since the data complexity (model checking with fixed formula) ofLµ is
in P, using this scheme forLµ is restricted to computationally simpler problems which can nevertheless
benefit from developments in program verification. Furthermore, it is the presence of fixpoint operators
in such a logic which makes it viable to this approach: fixpoint operators can be used to express induc-
tive concepts—e.g. the derivation relation in a context-free grammar—and at the same time provide the
foundation for algorithmic solutions via fixpoint iteration for instance.

Here we consider an extension ofLµ , the Higher-Dimensional Modalµ-CalculusL ω
µ , and in-

vestigate its usefulness regarding the possibility to obtain algorithmic solutions to various decision or
computation problems which may benefit from techniques originally developed for program verification
purposes only. It is known thatL ω

µ captures the bisimulation-invariant fragment of P. We willsketch how
theL ω

µ model checking problem can be reduced toLµ model checking via a simple product construction
on transition systems. Thus we can obtain—in principle—an algorithm for every problem that admits
a polynomial-time solution and a bisimulation-invariant encoding into graphs. The reduction fromL ω

µ
to Lµ is compatible with on-the-fly or BDD-based model checking techniques, thus transferring such
algorithms fromLµ first toL ω

µ and then on to such decision problems.

2 The Higher-Dimensional Modal µ-Calculus

Labeled Transition Systems. A labeled transition system (LTS) is a graph whose vertices and edges
are labeled with sets of propositional variables and labelsrespectively. Formally, an LTS over a set
Σ = {a,b, . . .} of edge labels and a setP= {p,q, . . .} of atomic propositions is a tupleM= (S,s0,∆,ρ)
such thats0 ∈ S, ∆ ⊆ S×Σ×Sandρ : S→P(P). Elements ofSare called states, and we writes

a
−→ s′

when(s,a,s′) ∈ ∆. The states0 ∈ S is called the initial state ofM.
We will mainly considerfinite transition systems,i.e. transition systems(S,s0,∆,ρ) such thatS is a

finite set. Infinite-state transition systems arising from program verification are also of interest, but their
model checking techniques differ from the ones of finite LTS and cannot be handled by our approach
(see more comments on that point in the conclusion).

Syntax. We assume infinite setsVar= {x,y, . . .} andVar2 = {X,Y, . . .}, of first-order and second-order
variables respectively. For tuples of first-order variables x̄= (x1, . . . ,xn) andȳ= (y1, . . . ,yn), with all xi

distinct,x̄←ȳ, denotes the functionκ : Var→Var such thatκ(xi) = yi , andκ(z) = zotherwise. It is called
avariable replacement.

The syntax of the higher-dimensional modalµ-calculusL ω
µ is reminiscent of that of the ordinary

modalµ-calculus. However, modalities and propositions are relativized to a first-order variable, and it
also features thereplacementmodality{κ}. Formulas ofL ω

µ are defined by the grammar

ϕ ,ψ := p(x) | X | ¬ϕ | ϕ ∧ψ | 〈a〉xϕ | µX.ϕ | {x̄←ȳ}ϕ

M. Lange, E. Lozes 41

wherex,y ∈ Var, κ : Var→Var is a variable replacement with finite domain,a∈ Σ, andX ∈ Var2. We
require that every second-order variable gets bound by a fixpoint quantifierµ at most once in a formula.
Then for every formulaϕ there is a functionfpϕ which maps each second-order variableX occurring
in ϕ to its unique binding formulafpϕ(X) = µX.ψ . Finally, we allow occurrences of a second-order
variableX only under the scope of an even number of negation symbols underneathfpϕ(X).

A formula is of dimensionn if it contains at mostn distinct first-order variables; we writeL n
µ to

denote the set of formulas of dimensionn. Note thatL 1
µ is equivalent to the standard modalµ-calulus:

with a single first-order variablex, we havep(x) ≡ p, {x←x}ψ ≡ ψ and〈a〉xψ ≡ 〈a〉ψ for anyψ .
As usual, we writeϕ ∨ψ , [a]xϕ , andνX.ϕ to denote¬(¬ϕ ∧¬ψ), ¬〈a〉x¬ϕ , ¬µX.¬ϕ ′ respectively

whereϕ ′ is obtained fromϕ by replacing every occurrence ofX with ¬X. Other Boolean operators like
⇒ and⇔ are defined as usual.

Note that{κ} is an operator in the syntax of the logic; it does not describesyntactic replacement of
variables. Consider for instance the formula

νX.

∧

p∈P

p(x)⇒ p(y) ∧
∧

a∈Σ
[a]x〈a〉yX ∧ {(x,y)←(y,x)}X.

As we will later see, this formula characterizes bisimilar statesx andy. In this formula, the operational
meaning of{x,y←y,x}X can be thought as “swapping the players’ pebbles” in the bisimulation game.

We will sometimes require formulas to be inpositive normal form. Such formulas are built from
literals p(x), ¬p(x) and second-order variablesX using the operators∧, ∨, 〈a〉x, [a]x, µ , ν , and{κ}. A
formula isclosedif all second-order variables are bound by someµ .

With Sub(ϕ) we denote that set of allsubformulasof ϕ . It also serves as a good measure for the
sizeof a formula: |ϕ | := |Sub(ϕ)|. Another good measure of the complexity of the formulaϕ is its
alternation depth adϕ , i.e the maximal alternation ofµ andν quantifiers along any path in the syntactic
tree of its positive normal form.

Semantics. A first-order valuationv over a LTSM is a mapping from first-order variables to states,
and a second order valuation is a mapping from second order variables to sets of first-order valuations:

Val , Var → S
Val2 , Var2 → P(Val)

We write v[x̄ 7→ s̄] to denote the first-order valuation that coincides withv, except thatxi ∈ x̄ is
mapped to the correspondingsi ∈ s̄. We use the same notationV [X̄ 7→ P̄] for second-order valuations.
The semantics of a formulaϕ of L ω

µ for a LTSM and a second-order valuationV is defined as a set of
first-order valuations by induction on the formula:

Jp(x)KV
M

, {v : p∈ ρ(v(x))}
J¬ϕKV

M
, Val− JϕKV

M

Jϕ ∧ψKV
M

, JϕKV
M
∩ JψKV

M

J〈a〉xϕKV
M

, {v : ∃s. v(x)
a
−→ sandv[x 7→ s] ∈ JϕKV

M
}

JXKV
M

, V (X)

JµX.ϕKV
M

, LFP λP∈P(Val). JϕK
V [X 7→P]
M

J{x̄←ȳ}ϕKV
M

, {v : v[x̄ 7→ v(ȳ)] ∈ JϕKV
M
}

We simply writeJϕKM to denote the semantics of a closed formula. We writeM,v� ϕ if v∈ JϕKM,
andM � ϕ if M,v0 � ϕ , wherev0 is the constant function tos0. Two formulas are equivalent, written

42 Model-Checking the Higher-Dim.µ-Calculus

ϕ ≡ ψ , if JϕKM = JψKM for any LTSM. As with the normal modalµ-calculus, it is a simple exercise
to prove that every formula is equivalent to one in positive normal form.
Proposition 1. For everyϕ ∈L ω

µ there is aψ in positive normal form such thatϕ ≡ψ and|ψ | ≤ 2· |ϕ |.

Reduction to the Ordinary µ-Calculus. Here we considerL ω
µ as a formal language for defining

decision problems. Algorithms for these problems can be obtained from model checking algorithms for
Lµ on fixed formulas using partial evaluation. In order to lift all sorts of special techniques which have
been developed for model checking in the area of program verification we show how to reduce theL ω

µ
model checking problem to that ofL 1

µ , i.e. the ordinaryµ-calculus.
Let us assume a fixed non-empty finite subsetV of first-order variables. A formulaϕ of L ω

µ with
fv(ϕ)⊆V can be seen as a formulaϕ̂ of L 1

µ over the set of the atomic propositionsP×V and the action
labelsΣ×V∪ (V→V). We writepx instead of(p,x) for elements ofP×V, and equallyax for elements

from Σ×V. Thenϕ 7→ ϕ̂ can be defined as the homomorphism such thatp̂(x), px, 〈̂a〉xϕ , 〈ax〉ϕ̂ , and
̂{x̄←ȳ}ϕ , 〈x̄←ȳ〉ϕ̂.

We call an LTShigher-dimensionalwhen it interprets the extended propositionspx and modalities
〈ax〉 and〈κ〉 introduced by the formulaŝϕ, andgroundwhen it interprets the standard propositions and
modalities. For a ground LTSM and a formulaϕ , we thus need to define the higher-dimensional LTS
over whichϕ̂ should be interpreted: we call it theV-clone of M, and write itcloneV(M). Roughly
speaking,cloneV(M) is the asynchronous product of|V| copies ofM. More formally, assumeM =
(S,s0,∆,ρ); thencloneV(M) = (S′,s′0,∆′,ρ ′) is defined as follows.
• The states are valuations of the variables inV by states inS, e.g S′ =V → S, ands′0 is the constant

functionλx∈V.s0.

• The atomic propositionpx is true in those new states, which assignx to an original state that
satisfiesp, e.g.ρ ′(v) = {px : p∈ ρ(v(x))}.

• The transitions contain labels of two kinds. First, there isanax-edge between two valuationsv and
v′, if there is ana-edge betweenv(x) andv′(x) in the original LTSM:

v
ax−→ v′ iff ∃t.v(x)

a
−→ t andv′ = v[x 7→ t].

For the other kind of transitions we need to declare the effect of applying a replacement to a valu-
ation. Letv : V→Sbe a valuation of the first-order variables inV, andκ : V→V be a replacement
operator. Lettκ(v) be the valuation such thattκ(v)(x) = v(κ(x)). Then we add the following
transitions to∆′.

v
κ
−→ v′ iff v′ = tκ(v)

Note that the relation with labelκ is functional for any suchκ , i.e. every state incloneV(M) has
exactly oneκ-successor. Hence, we have〈κ〉ψ ≡ [κ]ψ over cloned LTS.
Theorem 2. Let V be a finite set of first-order variables, letM = (S,s0,∆,ρ) be a ground LTS, and let
ϕ be aL ω

µ formula such that fv(ϕ)⊆V. Then

M |= ϕ iff cloneV(M) |= ϕ̂.

The proof goes by straightforward induction onϕ and is therefore ommitted – see also the chapter
on descriptive complexity in [3] for similar results. The importance of Thm. 2 is based on the fact that it
transfers many model checking algorithms for the modalµ-calculus toL 1

µ , for example on-the-fly model
checking [8], symbolic model checking [2] with BDDs or via SAT, strategy improvement schemes [9],
etc.

M. Lange, E. Lozes 43

3 Various Problems as Model Checking Problems

The model checking algorithms we mentioned can be exploitedto solve any polynomial-time problem
that can be encoded as a model checking problem inL ω

µ . By means of examples, we now intend to show
that these problems are quite numerous.

Process Equivalences. The first examples are process equivalences encountered in process algebras.
We only consider here strong simulation equivalence and bisimilarity, and let the interested reader think
about how to encode other process equivalences, like weak bisimilarity for instance.

Let us first recall some standard definitions. LetM = (S,s0,∆,ρ) be a fixed LTS. Asimulationis a
binary relationR⊆ S×Ssuch that for all(s1,s2) in R,

• for all p∈ P: p∈ ρ(s1) iff p∈ ρ(s2);

• for all a∈ Σ ands′1 ∈ S, if s1
a
−→ s′1, then there iss′2 ∈ Ssuch thats2

a
−→ s′2 and(s′1,s

′
2) ∈R.

Two statess,s′ aresimulation equivalent, s⋍ s′, if there are simulationsR,R′ such that(s,s′) ∈ R and
(s′,s) ∈ R′. A simulationR is abisimulationif R= R−1; we say thats,s′ arebisimilar, s∼ s′, if there
is a bisimulation that contains(s,s′). We say that two valuations are bisimilar,v∼ v′, if for all x∈ Var,
v(x) ∼ v′(x).

Proposition 3. [7] L ω
µ is closed under bisimulation: if v∈ JϕK and v∼ v′, then v′ ∈ JϕK.

Let us now explain how these process equivalences can be decided by the model checking algorithms:
the following formula captures valuationsv such thatv(x) ∼ v(y)

νX.

∧

p∈P

p(x)⇔ p(y) ∧
∧

a∈Σ
[a]x〈a〉yX ∧ {(x,y)←(y,x)}X

whereas the following formula captures valuationsv such thatv(x) ⋍ v(y)

νX
(
νY.

∧

p∈P

p(x)⇔ p(y) ∧
∧

a∈Σ
[a]x〈a〉yY

)
∧ {(x,y)←(y,x)}X.

Automata Theory. A second application ofL ω
µ is in the field of automata theory. To illustrate this

aspect, we pick some language inclusion problems that can besolved in polynomial-time.
A non-deterministic Büchi automaton can be viewed as a finite LTS A = (S,s0,∆,ρ) whereρ in-

terprets a predicatefinal. Remember that a run on an infinite wordw∈ Σω in A is accepting if it visits
infinitely often a final state. The set of wordsL(A)⊆ Σω that have an accepting run is called the language
accepted byA.

The language inclusion problemL(A) ⊆ L(B) is PSPACE-hard for arbitrary Büchi automata and
therefore unlikely to be definable inL ω

µ . In the restricted case ofB being deterministic, it becomes
solvable in polynomial time. Remember that a Büchi automaton is called deterministic if for alla∈ Σ,
for all s,s1,s2 ∈ S, if s

a
−→ s1 ands

a
−→ s2, thens1 = s2.

Let us now encode the language inclusion problemL(A)⊆ L(B) as aL ω
µ model checking problem.

To shorten a bit the formula, we assume thatB is moreovercomplete, i.e. for all s∈ S, for all a∈ Σ, there
is at least ones′ such thats

a
−→ s′. Let us introduce the modality〈synch〉ϕ ,

∨
a∈Σ〈a〉x〈a〉yϕ . Consider

the formula

ϕincl , 〈synch〉∗νZ1.

(
final(x)∧¬final(y)∧µZ2.〈synch〉

(
Z1∨ (¬final(y)∧Z2)

))

44 Model-Checking the Higher-Dim.µ-Calculus

Let MA,B be the LTS obtained as the disjoint union ofA andB with initial statessA of A andsB of B
respectively. ThenL(A) is included inL(B) if and only ifMA,B,v 6� ϕincl wherev(x) = sA andv(y) = sB.
Indeed, this formula is satisfied if there is a runrA of A and a runrB of B reading the same wordw∈ Σω

such thatrA visits a final state ofA infinitely often, whereasrB eventually stops visiting the final states of
B. SinceB is deterministic, no other runr ′B could readw, thusw∈ L(A)\L(B).

The same ideas can be applied to parity automata. A parity automaton is a finite automaton where
states are assigned priorities; it can be seen as an LTS(S,s0,∆,ρ) whereρ interpretspriority predicates
prtyk in such a way thatρ(s) is a singleton{prtyk} for all s∈ S. A word w∈ Σω is accepted by a parity
automaton if there is a run ofw such that the largest priority visited infinitely often is even. Consider the
formulasprty≤m(x) = prty0(x)∨ . . .∨prtym(x) and

ϕn,m = 〈synch〉∗νZ.〈synch′〉+
(
prtyn(x)∧〈synch′〉+(prtym(y)∧Z)

)

where〈synch′〉+ϕ is a shorthand forµZ.〈synch〉prty≤n(x)∧ prty≤m(y)∧ (ϕ ∨Z). Thenϕn,m asserts that
there are two runsrA andrB of two parity automataA andB recognizing the same wordw such that the
highest priorities visited infinitely often byrA andrB are respectivelyn andm. SinceL(A) 6⊆ L(B) if and
only there is an evenn and an oddmsuch thatMA,B |= ϕn,m, this gives us again a decision procedure for
the language inclusion problem of parity automata whenB is deterministic complete.

Parsing of Formal Languages. A third application ofL ω
µ is in the field of parsing for formal, namely

context-free languages. To each finite wordw, we may associate its linear LTSMw. For instance, for

w = aab, Mw is the LTS a a b . Let us now consider a context-free grammarG,

and define a formula that describes the language ofG. To ease the presentation, we assume thatG
is in Chomsky normal form, but a linear-size formula would bederivable for an arbitrary context-free
grammar as well. The production rules ofG are thus of the form eitherXi→XjXk or Xi→a, for X1, . . . ,Xn

the non-terminals ofG. Let us pick variablesx,y and z, intended to represent respectively the initial
the final, and an intermediate position in the (sub)word currently parsed. To every non-terminalXi, we
associate the recursive definition:

ϕi =µ
∨

Xi→a

〈a〉x x∼ y ∨
∨

Xi→Xj Xk

{z←x}〈−〉∗z
(
({y←z}ϕ j)∧ ({x←z}ϕk)

)

wherex∼ y is the formula characterizing bisimilarity and〈−〉∗zϕ is µZ.ϕ ∨
∨

a∈Σ〈a〉zZ. If v(x) andv(y)
are respectively the initial and final states ofMw, thenMw,v� ϕi is equivalent tow being derivable inG
starting with the symbolXi.

String Problems. Model Checking forL ∞
µ can even be useful for computation (as opposed to deci-

sion) problems. Consider for example the Longest Common Subword problem: given wordsw1, . . . ,wm

over some alphabetΣ, find a longestv that is a subword of allwi . This problem is NP-complete for
an unbounded number of input words. Thus, we consider the problem restricted to some fixedm, and
it is possible to define a formulaϕm

LCSW ∈ L m
µ such that model checking this formula on a suitable

representation of thewi essentially computes such a common subword.
For the LTS take the disjoint union of allMwi for i = 1, . . . ,m, and assume that each state inMwi

is labeled with a propositionpi which makes it possible to definem-tuples of states in which thei-th
component belongs toMwi . Now consider the formula

ϕm
LCSW := νX.

m∧

i=1

pi(xi)∧
∨

a∈Σ
〈a〉1 . . . 〈a〉mX

M. Lange, E. Lozes 45

Note thatϕm
LCSW is unsatisfiable for anym≥ 1. Thus, a symbolic model checking algorithm for instance

would always return the empty set of tuples when called on this formula and any LTS. However, on
an LTS representingw1, . . . ,wm as described above it consecutively computes in thej-th round of the
fixpoint iteration, all tuples of positionsh1, . . . ,hm such that the subwords inwi from positionhi− j to hi

are all the same for everyi = 1, . . . ,m. Thus, it computes, in its penultimate round the positions inside the
input words in which the longest common substrings end. Their starting points can easily be computed
by maintaining a counter for the number of fixpoint iterations done in the model checking run.

In the same way, it is possible to compute the longest common subsequence of input wordsw1, . . . ,wm.
A subsequence ofw is obtained by deleting arbitrary symbols, whereas a subword is obtained by delet-
ing an arbitrary prefix and suffix fromw. The Longest Common Subsequence problem is equally known
to be NP-complete for unboundedm. For any fixedm, however, the following formula can be used to
compute all longest common subsequences of such input wordsusing model checking technology in the
same way as it is done in the case of the Longest Common Subwordproblem.

ϕm
LCSS := νX.

m∧

i=1

pi(xi)∧
∨

a∈Σ
〈a〉x1〈−〉

∗
x1
. . . 〈a〉xm〈−〉

∗
xm

X

where〈−〉∗xi
ψ stands forµY.ψ ∨

∨
a∈Σ
〈a〉xiY.

Games. The Cat and Mouse Game is played on a directed graph with threedistinct nodesc, mandt as
follows. Initially, the cat resides in nodec, the mouse in nodem. In each round, the mouse moves first.
He can move along an edge to a successor node of the current oneor stay on the current node, then the
cat can do the same. If the cat reaches the mouse, she wins; otherwise, if the mouse reaches the target
nodet, he wins; otherwise, the mouse runs forever without being caught nor reaching the target node: in
that case, the cat wins. The problem of solving the Cat and Mouse Game is to decide whether or not the
mouse has a winning strategy for a given graph.

Note that this problem is not bisimulation-invariant underthe straight-forward encoding of the di-
rected graph as an LTS with a single propositiont to mark the target node. Consider for example the
following two, bisimilar game arenas.

t t

Clearly, if the cat and mouse start on the two separate leftmost nodes then the mouse can reach the target
first. However, these nodes are bisimilar to the left node of the right graph, and if they both start on this
one then the cat has caught the mouse immediately.

Thus, winning strategies cannot necessarily be defined inL ∞
µ . However, it is possible to define them

when a new atomic formulaeq(x,y) expressing thatx andy evaluate to the same node, is being added to
the syntax ofL ∞

µ (standard model checking procedures can be extended to handle the equality predicate
eqas well).

ϕCMG := µX.(t(x)∧¬eq(x,y))∨〈−〉x(¬eq(x,y))∧ [−]yX)

We havev |= ϕCMG if and only if the mouse can win from positionv(x) when the cat is on positionv(y)
initially.

46 Model-Checking the Higher-Dim.µ-Calculus

4 Conclusion
We have considered the modal fixpoint logicL ω

µ for a potential use in algorithm design and given ex-
amples of problems which can be defined inL ω

µ . The combination of fixpoint quantifiers and modal
operators has been proved to be very fruitful for obtaining algorithmic solutions for problems in auto-
matic program verification. The examples boost the idea of using successful model checking technology
in other areas too.

The use of model checking algorithms on fixed formulas does not provide a generic recipe that
miraculously generates efficient algorithms, but it provides the potential to do so. The next step on this
route towards an efficient algorithm for some problemP requires partial evaluation on a model checking
algorithm and the formulaϕP definingP. This usually requires manual tweaking of the algorithm and
is highly dependent on the actualϕP. Thus, future work on this direction would consist of consequently
optimisingL ω

µ model checking algorithms for certain definable problems and testing their efficiency in
practice.

On a different note,L ω
µ is an interesting fixpoint calculus for which the model checking problem

over infinite-state transition systems has not been quite studied so far. The most prominent result in this
area is the decidability ofL 1

µ over pushdown LTS [10]. However, model checkingL ω
µ — or even just

L k
µ for somek≥ 2 — seems undecidable for pushdown LTS. It is questionable whether model checking

of L ω
µ is decidable for any popular class of infinite-state transition systems.

References

[1] R. Axelsson & M. Lange (2007):Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic.
In: Proc. 14th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’07, LNCS
4790, Springer, pp. 62–76, doi:10.1007/978-3-540-75560-9_7.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill & L. J. Hwang (1992): Symbolic Model
Checking: 1020 States and Beyond. Information and Computation98(2), pp. 142–170, doi:10.1016/
0890-5401(92)90017-A.

[3] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema & S. Weinstein (2007):
Finite Model Theory and its Applications. Springer-Verlag, doi:10.1007/3-540-68804-8.

[4] D. Janin & I. Walukiewicz (1996):On the Expressive Completeness of the Propositionalµ-Calculus with
Respect to Monadic Second Order Logic. In: CONCUR, pp. 263–277, doi:10.1007/3-540-61604-7_60.

[5] M. Jurdziński (1998):Deciding the winner in parity games is in UP∩co-UP. Inf. Process. Lett.68(3), pp.
119–124, doi:10.1016/S0020-0190(98)00150-1.

[6] D. Kozen (1983): Results on the Propositionalµ-calculus. TCS 27, pp. 333–354, doi:10.1007/
BFb0012782.

[7] M. Otto (1999): Bisimulation-invariant PTIME and higher-dimensionalµ-calculus. Theor. Comput. Sci.
224(1-2), pp. 237–265, doi:10.1016/S0304-3975(98)00314-4.

[8] C. Stirling (1995):Local Model Checking Games. In: Proc. 6th Conf. on Concurrency Theory, CONCUR’95,
LNCS 962, Springer, pp. 1–11, doi:10.1007/3-540-60218-6_1.

[9] J. Vöge & M. Jurdziński (2000):A Discrete Strategy Improvement Algorithm for Solving Parity Games. In:
CAV, pp. 202–215, doi:10.1007/10722167_18.

[10] Igor Walukiewicz (1996):Pushdown Processes: Games and Model Checking. In: CAV, pp. 62–74, doi:10.
1007/3-540-61474-5_58.

http://dx.doi.org/10.1007/978-3-540-75560-9_7
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1007/3-540-61604-7_60
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1007/BFb0012782
http://dx.doi.org/10.1007/BFb0012782
http://dx.doi.org/10.1016/S0304-3975(98)00314-4
http://dx.doi.org/10.1007/3-540-60218-6_1
http://dx.doi.org/10.1007/10722167_18
http://dx.doi.org/10.1007/3-540-61474-5_58
http://dx.doi.org/10.1007/3-540-61474-5_58

	1 Introduction
	2 The Higher-Dimensional Modal -Calculus
	3 Various Problems as Model Checking Problems
	4 Conclusion

