M odel-Checking the Higher-Dimensional M odal u-calculus

Martin Lange Etienne Lozes
School of Electr. Eng. and Computer Science, University afsel, Germany

The higher-dimensional modai-calculus is an extension of the-calculus in which formulas are
interpreted in tuples of states of a labeled transitionesystEvery property that can be expressed
in this logic can be checked in polynomial time, and conJgreeery polynomial-time decidable
problem that has a bisimulation-invariantencoding inb®lad transition systems can also be defined
in the higher-dimensional modal-calculus. We exemplify the latter connection by giving esgf
examples of decision problems which reduce to model chgosdrthe higher-dimensional modal
p-calculus for some fixed formulas. This way generic modetkhey algorithms for the logic can
then be used via partial evaluation in order to obtain atgors for theses problems which may
benefit from improvements that are well-established in e Bf program verification, namely on-
the-fly and symbolic techniques. The aim of this work is taext such techniques to other fields as
well, here exemplarily done for process equivalences mata theory, parsing, string problems, and
games.

1 Introduction

The Modal u-Calculus.Z,, [6] is mostly known as a backbone for temporal logics usedrog@m
specification and verification. The most important decigimblem in this domain is the model checking
problem which is used to automatically prove correctnegsa@jrams. The model checking problem for
<, is well-understood by now. There are several algorithmsiamglementations for it. It is known
that model checking?), is equivalent under linear-time translations to the pnobte solving a parity
game [[8] for which there also is a multitude of algorithmsikamde. From a purely theoretical point of
view, there is still the intriguing question of the exact gartational complexity of model checking),:
the best known upper bound for finite models isri¢BUP [5], which is not entirely matched by the
P-hardness inherited from model checking modal logic.

£, can express exactly the bisimulation-invariant propsrtietree or graph models which are de-
finable in Monadic Second-Order Logid [4], i.e. are reguldris means that for every such $etf trees
or graphs there is a fixe@), formulag, s.t. a tree or grapts is a model ofg, iff it belongs toL. Thus,
any decision problem that has an encoding into regular asichblation-invariant sets of trees or graphs
can in principle be solved using model checking technoldgydetail, suppose there is a ddtand a
function f from the domain oM to graphs s.t{ f(x) | x € M} is regular and closed under bisimilarity.
By the result above there is a#, formula ¢y which defines (the encoding of. Now any model
checking algorithm forZ,, can be used in order to sol.

Note that in theory this is just a reduction frdvhto the model checking problem fd¥), on a fixed
formula. Obviously reductions from any problekto some problenB can be used to transfer algorithms
from B to A, and the algorithm obtained féf can in general be at most as good as the algorithnBfor
unless it can be optimised for the fragmenBofesulting from embedding into it. However, there are
two aspects that are worth noting in this context.

e Areduction to model checking for a fixed formula can lead tacmmore efficient algorithms. A
model checking algorithm takes two inputs in general: acstine and a formula. If the formula is

D. Miller and Z. Esik (Eds.): Fixed Points © M. Lange, E. Lozes
in Computer Science 2012 (FICS 2012) This work is licensed under the
EPTCS 77, 2012, pp. 382146, d0i:10.4204/EPTCS|77.6 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.77.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

40 Model-Checking the Higher-Dimu-Calculus

fixed then partial evaluation can be used in order to optirfiseggeneral scheme, throw away data
structures, etc.

e Program verification is a very active research area whichdeasloped many clever techniques
for evaluating formulas in certain structures includingtba-fly [8] and symbolic method$§1[2],
partial-order reductions, etc.

We refer to[1] for an example of this scheme of reductions taleh checking for fixed formulas, there
being done for problems that are at least PSPACE-hard.dtshiews how this can be used to solve com-
putation problems in this way. Since the data complexitydet@hecking with fixed formula) af), is

in P, using this scheme fa¥, is restricted to computationally simpler problems which oavertheless
benefit from developments in program verification. Furthaemit is the presence of fixpoint operators
in such a logic which makes it viable to this approach: fixpoiperators can be used to express induc-
tive concepts—e.g. the derivation relation in a contegefgrammar—and at the same time provide the
foundation for algorithmic solutions via fixpoint iteratidor instance.

Here we consider an extension &, the Higher-Dimensional Modgk-Calculus.Z’, and in-
vestigate its usefulness regarding the possibility to inbé#gorithmic solutions to various decision or
computation problems which may benefit from techniquesiraity developed for program verification
purposes only. Itis known that)” captures the bisimulation-invariant fragment of P. We skittch how
theZ,” model checking problem can be reduced4pmodel checking via a simple product construction
on transition systems. Thus we can obtain—in principle—lgorihm for every problem that admits
a polynomial-time solution and a bisimulation-invariantceding into graphs. The reduction frag?
to £, is compatible with on-the-fly or BDD-based model checkinghteques, thus transferring such
algorithms from%, first to .’ and then on to such decision problems.

2 TheHigher-Dimensional Modal u-Calculus

Labeled Transition Systems. A labeled transition system (LTS) is a graph whose verticesedges
are labeled with sets of propositional variables and labedpectively. Formally, an LTS over a set
> ={a,b,...} of edge labels and a sBt= {p,q,...} of atomic propositions is a tup®t = (S 5,4, p)
such thatgy € S,A C Sx I x Sandp : S—+Z(P). Elements oS are called states, and we wrige>+ &
when(s,a,s) € A. The states € Sis called the initial state dit.

We will mainly consideffinite transition systemsg,e. transition systemsS 5,4, p) such thatSis a
finite set. Infinite-state transition systems arising framogpam verification are also of interest, but their
model checking techniques differ from the ones of finite LT aannot be handled by our approach
(see more comments on that point in the conclusion).

Syntax. We assume infinite set&ar = {x,y,... } andVar, = {X,Y,... }, of first-order and second-order
variables respectively. For tuples of first-order variable= (xq,...,X,) andy = (y1,...,Y¥n), with all x;
distinct, x«—Y, denotes the functior : Var—Var such thak (x;) = y;, andk (z) = zotherwise. It is called
avariable replacement

The syntax of the higher-dimensional mogaktalculus.Z’ is reminiscent of that of the ordinary
modal u-calculus. However, modalities and propositions are iketstd to a first-order variable, and it
also features theeplacementodality {k }. Formulas ofZ are defined by the grammar

¢ = pX) [X[=p[dAY]|(@xp | uX.§|{xY}

M. Lange, E. Lozes 41

wherex,y € Var, K : Var—Var is a variable replacement with finite domam¢ %, andX € Var,. We
require that every second-order variable gets bound by aifikguantifieru at most once in a formula.
Then for every formulap there is a functiorfp, which maps each second-order varial@ccurring

in ¢ to its unique binding formuldp, (X) = uX.¢. Finally, we allow occurrences of a second-order
variableX only under the scope of an even number of negation symbolsroedthfp, (X).

A formula is of dimensiom if it contains at moshn distinct first-order variables; we writéfﬁ to
denote the set of formulas of dimensionNote that,iﬁ} is equivalent to the standard mogaicalulus:
with a single first-order variable we havep(x) = p, {x«x}@ = @ and(a)xy = (a)y for any .

As usual, we writep V |, [a]x¢, andvX.¢ to denote-(—¢ A —), —(a)x—@, = uX.~¢’ respectively
where¢’ is obtained fromp by replacing every occurrence Xfwith —X. Other Boolean operators like
= and< are defined as usual.

Note that{k } is an operator in the syntax of the logic; it does not descsipgactic replacement of
variables. Consider for instance the formula

vX. A\ p) = py) A ARx@yX A {(xy)«(¥X)}X.
peP acx

As we will later see, this formula characterizes bisimil@tasx andy. In this formula, the operational
meaning of{x, y«y, X} X can be thought as “swapping the players’ pebbles” in therhikition game.

We will sometimes require formulas to be positive normal form Such formulas are built from
literals p(x), —p(x) and second-order variabl¥susing the operators, V, (a)x, [ax, 4, v, and{k}. A
formula isclosedif all second-order variables are bound by sgme

With Sul{¢) we denote that set of aflubformulasof ¢. It also serves as a good measure for the
sizeof a formula: |¢| := |Sulf¢)|. Another good measure of the complexity of the formglas its
alternation depth ag, i.e the maximal alternation gt andv quantifiers along any path in the syntactic
tree of its positive normal form.

Semantics. A first-order valuationv over a LTSt is a mapping from first-order variables to states,
and a second order valuation is a mapping from second ordeables to sets of first-order valuations:

Val & Var — S
Val, £ Var, — 2(Val)

We write v[x — §] to denote the first-order valuation that coincides wittexcept thatx € X is
mapped to the correspondisge s. We use the same notatiofi|X — P| for second-order valuations.
The semantics of a formulh of . for a LTS and a second-order valuationis defined as a set of
first-order valuations by induction on the formula:

[P()] 3 = {vipepvx)}

[~91% = Val—[g]y,

[AWl £ [olnn[wln

[(@xp]m £ {v:i3sv(x) > sandvix— 9 € [¢]5}
[XDan = 7(X) ,

[uX.]%, 2 LFP APe 2(Val). [¢]5 "
[y}l = {viviX= V()] €[]}

We simply write[¢]oy to denote the semantics of a closed formula. We vipite/ = ¢ if v € [@]om,
and9 E ¢ if M, vo E @, wherey is the constant function tgy. Two formulas are equivalent, written

42 Model-Checking the Higher-Dimu-Calculus

¢ =y, if [@]on = [W]on for any LTSON. As with the normal modali-calculus, it is a simple exercise
to prove that every formula is equivalent to one in positieenmal form.

Proposition 1. For everyg € . there is ay in positive normal form such that = ¢ and |g| < 2-[¢|.

Reduction to the Ordinary p-Calculus. Here we consider?,’ as a formal language for defining
decision problems. Algorithms for these problems can bainétl from model checking algorithms for
%, on fixed formulas using partial evaluation. In order to liftsorts of special techniques which have
been developed for model checking in the area of progranficegion we show how to reduce th#”
model checking problem to that ciﬁ}, i.e. the ordinaryu-calculus.

Let us assume a fixed non-empty finite subsef first-order variables. A formulg of £ with
fv(¢) CV can be seen as a formupeof .iﬁ} over the set of the atomic propositioAs< V and the action
labels~ xV U (V — V). We write py instead of{ p, x) for elements oP x V, and equallya, for elements

frﬂnzx V. Theng — @ can be defined as the homomorphism suchpi/(l\m)é Px, m £ (ay) @, and
{xy}¢ £ () 9.

We call an LTShigher-dimensionalvhen it interprets the extended propositignsand modalities
(ax) and(k) introduced by the formulag, andgroundwhen it interprets the standard propositions and
modalities. For a ground LT3 and a formulap, we thus need to define the higher-dimensional LTS
over which@ should be interpreted: we call it thé-clone of 91, and write itcloney (901). Roughly
speaking,cloney (M1) is the asynchronous product M| copies of)t. More formally, assuméi =
(S 50,4, p); thencloney (M) = (S, 5,4, p’) is defined as follows.

e The states are valuations of the variable¥ iny states ir§, e.g $=V — S, ands, is the constant

functionAx e V.s.

e The atomic propositiorpy is true in those new states, which assigto an original state that
satisfiesp, e.9.p"(V) = {px : p€ p(V(x))}.

e The transitions contain labels of two kinds. First, therariga,-edge between two valuationsand
Vv, if there is ame-edge betweeni(x) andV/(x) in the original LTS:

vV iff 3tv(x) > tandV = vix—t].

For the other kind of transitions we need to declare the effeapplying a replacement to a valu-
ation. Letv:V—Shbe a valuation of the first-order variablesMnandk : V—V be a replacement
operator. Letk(v) be the valuation such thék (v)(x) = v(k(x)). Then we add the following
transitions ta\'.

vVt vV =Tk(v)

Note that the relation with labe{ is functional for any suck, i.e. every state irloney (91) has
exactly onex-successor. Hence, we hayee) y = [K] over cloned LTS.
Theorem 2. LetV be a finite set of first-order variables, Bt = (S s,A, p) be a ground LTS, and let
¢ be aZ? formula such that figp) CV. Then

ME¢ iff cloney(M) = .

The proof goes by straightforward induction ¢rand is therefore ommitted — see also the chapter
on descriptive complexity in [3] for similar results. Theportance of Thnl.]2 is based on the fact that it
transfers many model checking algorithms for the medahlculus taZ?, for example on-the-fly model
checking [8], symbolic model checkingl[2] with BDDs or via BAstrategy improvement schemes [9],
etc.

M. Lange, E. Lozes 43

3 Various ProblemsasMode Checking Problems

The model checking algorithms we mentioned can be explédesblve any polynomial-time problem
that can be encoded as a model checking proble#h By means of examples, we now intend to show
that these problems are quite numerous.

Process Equivalences. The first examples are process equivalences encountereddess algebras.
We only consider here strong simulation equivalence arichbésity, and let the interested reader think
about how to encode other process equivalences, like weakilarity for instance.

Let us first recall some standard definitions. DBt= (S 5,4, p) be a fixed LTS. Asimulationis a
binary relationR C Sx Ssuch that for al(s;,) in R,

o forall pe P: pep(s) iff pe p(sp);
e forallac T ands, € S if s; — §, then there is, € Ssuch thas, — s, and(s;,s,) € R

Two statess, s aresimulation equivalents = s, if there are simulation® R such that(s,s') € Rand
(s,s) € R. A simulationR is abisimulationif R= R™1; we say thas,s arebisimilar, s~ ¢, if there
is a bisimulation that contains,s'). We say that two valuations are bisimilar, v, if for all x € Var,
V(X) ~ V().

Proposition 3. [7] .7 is closed under bisimulation: ifg [¢] and v~ V, then V € [¢].

Let us now explain how these process equivalences can kieddry the model checking algorithms:
the following formula captures valuationsuch that/(x) ~ v(y)

vX. A\ p(¥) < ply) A AlElx(@yX A {(Xy) (¥, X)X

peP acz

whereas the following formula captures valuatiergich thaw/(x) < v(y)

vX(WY. A\ p() < ply) A Alalx(@yY) A {(xy) (X)X
peP ac

Automata Theory. A second application afZ;? is in the field of automata theory. To illustrate this
aspect, we pick some language inclusion problems that canlbed in polynomial-time.

A non-deterministic Buchi automaton can be viewed as aefiiitS A = (S 5,4, p) wherep in-
terprets a predicaténal. Remember that a run on an infinite wakde X% in A is accepting if it visits
infinitely often a final state. The set of wordgA) C 2% that have an accepting run is called the language
accepted bw.

The language inclusion problein/A) C L(B) is PSPACE-hard for arbitrary Buichi automata and
therefore unlikely to be definable i&,?. In the restricted case & being deterministic, it becomes
solvable in polynomial time. Remember that a Bichi autamas called deterministic if for ath € ,
foralls,s,s € S if s—» s ands —— s, thens; = s,.

Let us now encode the language inclusion problei) C L(B) as a.¢,” model checking problem.
To shorten a bit the formula, we assume tBas moreoveicompletei.e. for all s€ S for all a € %, there
is at least on&’ such thas — s Let us introduce the modalitfsynch ¢ = \/..s(a)x(a)y¢. Consider
the formula

B 2 <synch*le.(finaI(x)/\ﬂfinal(y)AuZz.(synch(Zl\/(ﬂfinal(y)/\Zz))>

44 Model-Checking the Higher-Dimu-Calculus

Let Map be the LTS obtained as the disjoint unionfAfind B with initial statessa of A andsg of B
respectively. Thel(A) is included inL(B) if and only if Mta g,V @inct Wherev(x) = sa andv(y) = sg.
Indeed, this formula is satisfied if there is a myof A and a rurrg of B reading the same womd € %
such that visits a final state of infinitely often, whereasg eventually stops visiting the final states of
B. SinceB is deterministic, no other rurg, could readw, thusw € L(A)\L(B).

The same ideas can be applied to parity automata. A parigneaibn is a finite automaton where
states are assigned priorities; it can be seen as an&ES A, p) wherep interpretspriority predicates
prty, in such a way thap(s) is a singleton{prty, } for all s€ S Awordw € X% is accepted by a parity
automaton if there is a run @f such that the largest priority visited infinitely often iseev Consider the
formulasprty - ,(X) = prtyg(X) V...V prtym(x) and

bnm = (synch*vZ.(synch)™ (prty,(X) A (synch) ™ (prtym(y) A Z))

where(synch) ™ ¢ is a shorthand fopZ.(synchprty .,(X) A prty-m(y) A (¢ V Z). Theng,m asserts that
there are two runsa andrg of two parity automata andB recognizing the same word such that the
highest priorities visited infinitely often by, andrg are respectivelyr andm. SinceL(A) £ L(B) if and
only there is an even and an oddn such that)ia g = ¢nm, this gives us again a decision procedure for
the language inclusion problem of parity automata wBés deterministic complete.

Parsing of Formal Languages. A third application ofZ,? is in the field of parsing for formal, namely
context-free languages. To each finite werdwe may associate its linear LT®,,. For instance, for

w = aab, M, is the LTS O a O a O b (O - Letus now consider a context-free gramn@r

and define a formula that describes the languag&.ofTo ease the presentation, we assume @hat
is in Chomsky normal form, but a linear-size formula woulddsgivable for an arbitrary context-free
grammar as well. The production rules@fare thus of the form eithet;—X; X or Xi—a, for Xy,..., X,
the non-terminals of5. Let us pick variablex,y and z, intended to represent respectively the initial
the final, and an intermediate position in the (sub)wordently parsed. To every non-termingl, we
associate the recursive definition:

¢ =u V @xx~y v\ {2) (({y=200) A ({x-ZH)
Xi—a Xi—Xj Xk
wherex ~ y is the formula characterizing bisimilarity ae-);¢ is uZ.¢ V \/ s (@)2Z. If v(X) andv(y)
are respectively the initial and final state<0gf,, thenMi,, v E ¢; is equivalent tawv being derivable irG
starting with the symbaX;.

String Problems. Model Checking for.Z? can even be useful for computation (as opposed to deci-
sion) problems. Consider for example the Longest CommomvBudproblem: given wordes, . .., Wp
over some alphabéf, find a longest that is a subword of alv;. This problem is NP-complete for
an unbounded number of input words. Thus, we consider thalgmrorestricted to some fixed, and
it is possible to define a formul@/t,, € " such that model checking this formula on a suitable
representation of the; essentially computes such a common subword.

For the LTS take the disjoint union of @, fori=1,...,m, and assume that each statedity,
is labeled with a propositiom; which makes it possible to defima-tuples of states in which thieth
component belongs ®1t,,. Now consider the formula

dlesw:=VX. A\ pi(x) A\ (@)1... (@mX

i=1 acx

M. Lange, E. Lozes 45

Note thatd, is unsatisfiable for angn> 1. Thus, a symbolic model checking algorithm for instance
would always return the empty set of tuples when called os fimimula and any LTS. However, on
an LTS representingvy, ...,Wm as described above it consecutively computes injttie round of the
fixpoint iteration, all tuples of positions, ..., hy,, such that the subwords w from positionh; — j to h;
are all the same for eveiy=1,...,m. Thus, it computes, in its penultimate round the positimsidie the
input words in which the longest common substrings end. rT$taiting points can easily be computed
by maintaining a counter for the number of fixpoint iteraiaone in the model checking run.

In the same way, it is possible to compute the longest commiogesjuence of input worelg, . . . , W,
A subsequence of is obtained by deleting arbitrary symbols, whereas a suthigoobtained by delet-
ing an arbitrary prefix and suffix fromv. The Longest Common Subsequence problem is equally known
to be NP-complete for unbounded For any fixedm, however, the following formula can be used to
compute all longest common subsequences of such input wieidg model checking technology in the
same way as it is done in the case of the Longest Common Sulpxaiotem.

Pless = VX A\ P AV (@ (=5 - (@) ()i X

i=1 acx

where(—)} ¢ stands fouY.¢ v V (a)xY.

acx

Games. The Cat and Mouse Game is played on a directed graph with dlisgect nodes, mandt as
follows. Initially, the cat resides in nodg the mouse in nodm. In each round, the mouse moves first.
He can move along an edge to a successor node of the curreat stag/ on the current node, then the
cat can do the same. If the cat reaches the mouse, she wieswidh, if the mouse reaches the target
nodet, he wins; otherwise, the mouse runs forever without beingloanor reaching the target node: in
that case, the cat wins. The problem of solving the Cat andsel@ame is to decide whether or not the
mouse has a winning strategy for a given graph.

Note that this problem is not bisimulation-invariant undlee straight-forward encoding of the di-
rected graph as an LTS with a single propositicilm mark the target node. Consider for example the
following two, bisimilar game arenas.

t t
:>o o o

Clearly, if the cat and mouse start on the two separate |sttmudes then the mouse can reach the target
first. However, these nodes are bisimilar to the left nodéefright graph, and if they both start on this
one then the cat has caught the mouse immediately.

Thus, winning strategies cannot necessarily be defingd;in However, it is possible to define them
when a new atomic formulag(x,y) expressing that andy evaluate to the same node, is being added to
the syntax ofZ}” (standard model checking procedures can be extended téeftarcequality predicate
egas well).

$emc 1= HX. (L) A—edxy)) V (=)x(—edxy)) A [=]yX)

We havev = ¢cme if and only if the mouse can win from positiarix) when the cat is on positiov(y)
initially.

46 Model-Checking the Higher-Dimu-Calculus

4 Conclusion

We have considered the modal fixpoint logi’ for a potential use in algorithm design and given ex-
amples of problems which can be defined4ff’. The combination of fixpoint quantifiers and modal
operators has been proved to be very fruitful for obtainilggrEthmic solutions for problems in auto-
matic program verification. The examples boost the ideaiofjusuccessful model checking technology
in other areas too.

The use of model checking algorithms on fixed formulas dodspnavide a generic recipe that
miraculously generates efficient algorithms, but it pregidhe potential to do so. The next step on this
route towards an efficient algorithm for some problBmequires partial evaluation on a model checking
algorithm and the formulgp definingP. This usually requires manual tweaking of the algorithm and
is highly dependent on the actugb. Thus, future work on this direction would consist of consamtly
optimising.Z,” model checking algorithms for certain definable problengtasting their efficiency in
practice.

On a different note,Z is an interesting fixpoint calculus for which the model cfiegkproblem
over infinite-state transition systems has not been quitdiei so far. The most prominent result in this
area is the decidability ojﬁ} over pushdown LTS [10]. However, model checkigf’ — or even just
.iﬁ',‘ for somek > 2 — seems undecidable for pushdown LTS. It is questionablketiven model checking
of Z% is decidable for any popular class of infinite-state tramsisystems.

References

[1] R. Axelsson & M. Lange (2007Model Checking the First-Order Fragment of Higher-Ordexpoint Logic
In: Proc. 14th Int. Conf. on Logic for Programming, Artificialtétligence, and Reasoning, LPAR'AINCS
4790, Springer, pp. 62—76, do@t. 1007/978-3-540-75560-9_7.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill & L. J. Kvang (1992): Symbolic Model

Checking: 10°° States and Beyond Information and Computatio88(2), pp. 142—170, ddi0.1016/
0890-5401(92)90017-A

[3] E. Gradel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spen¢dd. Y. Vardi, Y. Venema & S. Weinstein (2007):
Finite Model Theory and its ApplicationSpringer-Verlag, doi:0.1007/3-540-68804-8.

[4] D. Janin & I. Walukiewicz (1996):On the Expressive Completeness of the Propositipn@halculus with
Respect to Monadic Second Order Lodit: CONCUR pp. 263-277, doi:0.1007/3-540-61604-7_60.

[5] M. Jurdzihski (1998):.Deciding the winner in parity games is in Wo-UP. Inf. Process. Lett68(3), pp.
119-124,doit0.1016/S0020-0190(98)00150-1

[6] D. Kozen (1983): Results on the Propositiongh-calculus TCS 27, pp. 333-354, dain.1007/
BFb0012782.

[7] M. Otto (1999): Bisimulation-invariant PTIME and higher-dimensionaicalculus Theor. Comput. Sci.
224(1-2), pp. 237—-265, ddi0 . 1016/50304-3975(98) 00314-4.

[8] C. Stirling (1995):Local Model Checking Gamem: Proc. 6th Conf. on Concurrency Theory, CONCUR’'95
LNCS962, Springer, pp. 1-11, dad.1007/3-540-60218-6_1.

[9] J. Vbge & M. Jurdzihski (2000)A Discrete Strategy Improvement Algorithm for Solving Be@ames In:
CAV, pp. 202-215, doi:0.1007/10722167_18.

[10] Igor Walukiewicz (1996)Pushdown Processes: Games and Model CheckimgCAV, pp. 62—74, dot0.
1007/3-540-61474-5_58.

http://dx.doi.org/10.1007/978-3-540-75560-9_7
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1007/3-540-61604-7_60
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1007/BFb0012782
http://dx.doi.org/10.1007/BFb0012782
http://dx.doi.org/10.1016/S0304-3975(98)00314-4
http://dx.doi.org/10.1007/3-540-60218-6_1
http://dx.doi.org/10.1007/10722167_18
http://dx.doi.org/10.1007/3-540-61474-5_58
http://dx.doi.org/10.1007/3-540-61474-5_58

	1 Introduction
	2 The Higher-Dimensional Modal -Calculus
	3 Various Problems as Model Checking Problems
	4 Conclusion

