Structured general corecursion and coinductive graphs
[extended abstract]

Tarmo Uustalu
Institute of Cybernetics at Tallinn University of Technology, Estonia

tarmo@cs.ioc.ee

Bove and Capretta’s popular method for justifying function definitions by general recursive equations
is based on the observation that any structured general recursion equation defines an inductive subset
of the intended domain (the “domain of definedness”) for which the equation has a unique solution.
To accept the definition, it is hence enough to prove that this subset contains the whole intended
domain.

This approach works very well for “terminating” definitions. But it fails to account for “produc-
tive” definitions, such as typical definitions of stream-valued functions. We argue that such defini-
tions can be treated in a similar spirit, proceeding from a different unique solvability criterion. Any
structured recursive equation defines a coinductive relation between the intended domain and in-
tended codomain (the “coinductive graph”). This relation in turn determines a subset of the intended
domain and a quotient of the intended codomain with the property that the equation is uniquely
solved for the subset and quotient. The equation is therefore guaranteed to have a unique solution for
the intended domain and intended codomain whenever the subset is the full set and the quotient is by
equality.

Unique solutions to recursive equations General recursive definitions are commonplace in program-
ming practice.

In particular, it is highly desirable to be able to define functions by some forms of controlled general
recursion in type-theoretically motivated languages of total functional programming (in particular, proof
assistants) that come with a set-theoretic rather than a domain-theoretic semantics. For an overview of
this area, see Bove et al. [5]].

In this paper, we are concerned with describing a function f : A — B definitely by an equation of the
form:

FA<% A (1)

o

FB——B
B

where A, B are sets (the intended domain and codomain), F is a functor (the branching type of recursive
call [corecursive return] trees), ¢ is an F-coalgebra structure on A (marshals arguments for recursive
calls) and 3 is an F-algebra structure on B (collects recursive call results). We are interested in condi-
tions under which the equation is guaranteed to have a unique solution (rather than a least solution in a
domain-theoretic setting or some solution that is canonical in some sense). There are several important
generalizations of this setting, but we will not treat them here.

There are some well-known good cases.

D. Miller and Z. Esik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 5561} doi{10.4204/EPTCS.77.8

http://dx.doi.org/10.4204/EPTCS.77.8

56 Structured general corecursion and coinductive graphs

Some good cases (1): Initial algebra The following equation has a unique solution for any B, f3.

nil,cons] ™! i
1+ El x List <<l it

1+EI><fl lf

1+ElIxB B

E.g., for B = List (lists over El), B = ins (insertion of an element into a list assumed to be sorted), we get
f = isort (insertion sort).

A unique f exists because (List, [nil,cons]) is the initial algebra for the functor FX = 14+ El x X. It
is the fold (the unique algebra map) determined by the algebra (B, f3).

Some good cases (2): Recursive coalgebras A unique solution exists for any B, 8 also for the equation

.
1 El x List x List <P st

1+EI><f><f\L lf
1+ElIxBxB B

where gsplitnil = inlx and gsplit (cons(x,xs)) = inr (x,xs|<y,xs|>x). E.g., for B = List, B = concat
(concatenation of the first list, the element and the second list), we get f = gsort (quicksort).

(List, gsplit) is not the inverse of the initial algebra of FX = 1 + El x X x X (which is the algebra of
binary node-labelled trees), but we still have a unique f for any (B,).

For this property, (List,qsplit) is called a recursive coalgebra of F. Recursive F-coalgebras form
a full subcategory of the category of all F-coalgebras. The inverse of the initial F-algebra is the final
recursive F-coalgebra.

While recursiveness is a very useful property of a coalgebra, it is generally difficult to determine
whether a given coalgebra is recursive. For more information on recursive coalgebras, see Taylor [8],
Capretta et al. [6], Addmek et al. [1]].

Some good cases (3): Final coalgebra This equation has a unique solution for any A, «.

Elx A “ A

1+E|><fl if

El x Str ———— Str
hd.tl) !

E.g., for A = Str (streams), o = (hd,tl o tl) (the analysis of a stream into its head and the tail of its tail),
we get f = dropeven (the function dropping every even-position element of a given stream).

A unique f exists for any (A, &) because (Str, (hd,tl}) is the final coalgebra of FX = El x X. It is
the unfold (the unique F-coalgebra map) given by the coalgebra (A, a).

T. Uustalu 57

Some good cases (4): Corecursive algebras This equation has a unique solution for any A, o:

ElxAXA ¢ A
Elexfi lf
El x Str x Str smerge Str

Here hd (smerge(x,xs0,xs1)) = x and tl (smerge(x,xs0,xs1)) = smerge(hd xso,xs1, tlxsg).

(Str,smerge) is not the inverse of the final coalgebra of FX = El x X x X, but a unique f still exists
for any (A,). We say that (Str,smerge) is a corecursive algebra of F, cf. Capretta et al. [7]. [The
inverse of the final F'-coalgebra is the initial corecursive F'-algebra and thus a special case.] Similarly to
recursiveness of a coalgebra, corecursiveness of an algebra is a useful property, but generally difficult to
establish.

The equation [T] can of course have a unique solution also in other cases. In particular, it may well
happen that neither is (A, o) corecursive nor is (B,) recursive, but the equation still has exactly one
solution.

General case (1): Inductive domain predicate Bove and Capretta [3| |4] put forward the following
approach to recursive definitions in type theory (the idea has occurred in different guises in multiple
places; it must go back to McCarthy): for a given recursive definition, work out its “domain of definition”
and see if it contains the intended domain.

For given (A, @), define a predicate dom on A inductively by

a:A (Fdom)(aa)
doma

(i.e., as the smallest/strongest predicate validating this rule), denoting by F' P the lifting of a predicate P
from A to F A.

Write A|gom for the subset of A determined by the predicate dom, the “domain of definedness”. It is
easily verified that, for any (B,), there is f : A|gom — B uniquely solving

a‘dom

F(A|dom) <;A|dom

Ffl lf

FB B

If Va : A.doma, which is the same as A|gom = A, then f is a unique solution of the original equation |1}
i.e., the coalgebra (A, &) is recursive.
For A = List, a = gsplit, dom is defined inductively by

x:El xs:List dom(xs|<x) dom (xs|>y)

dom nil dom (cons (x,xs))

We can prove that Vxs : List. domxs. Hence (List,qgsplit) is recursive.

58 Structured general corecursion and coinductive graphs

If Algom = A, the coalgebra (A, a) is said to be wellfounded. Wellfoundedness gives an induction
principle on A: For any predicate P on A, we have

a:A (I?P)(Oca’)

a:A Pd
Pa

We have seen that wellfoundedness suffices for recursiveness. In fact, it is also necessary. While this
equivalence is easy for polynomial functors on the category of sets, it becomes remarkably involved in
more general settings, see Taylor [8].

For FX =1+ Elx X x X, A = List, a = gsplit, we get this induction principle:

x:El xs':List P(xs'|<y) P(xs|>y)

xs : List Pnil P (cons'(x,xs’))
Pxs

General case (2): Inductive graph relation The original Bove-Capretta method separates determin-
ing the domain of definition of a function from determining its values. Bove [2] showed that this separa-
tion can be avoided.

For given (A, a), (B,), define a relation | between A, B inductively by

a:A bs:FB oa(F|)bs
alPbs

Further, define a predicate Dom on A by
Doma=3db:B.alb

It is straightforward to verify that Va : A,b,b, : B.al b Aal b, — b= b,. Moreover, it is also the case
that Va : A.Doma <> doma. So, Dom does not really depend on the given (B, 3)!
From the last equivalence it is immediate that there is f : A|pom — B uniquely solving

a‘Dom

F(A|D0m) A’Dom

Ffl if

FB——8B

And, if Va : A.Doma, which is the same as A|pom = A, then f is a unique solution of the original
equation.
As a matter of fact, recursiveness and wellfoundedness are equivalent exactly because Va : A. Doma <
doma.
For FX =14+ El x X x X, A = List, & = gsplit, B = List, B = concat, the relation | is defined
inductively by
x:El xs:List xs|<ylyso xs|sx)ysi

nil | nil cons (x,xs) J. app (yso,cons(x,ys))

T. Uustalu 59

Inductive domain and graph do not work for non-terminating productive definitions Unfortu-
nately, for our dropeven example,

(hd.tlotl)

El x Str <———— Str
1+Elxdropevenl idropeven

El x Str ——— Str
hd,tl)~!

we get Vxs : Str.domxs = 1! Now, surely there is a unique function from 0 — Str. But this is uninter-
esting! We would like to learn that there is a unique function Str — Str.

Intuitively, the reason why this equation has a unique solution lies not in how a given argument is
consumed but in how the corresponding function value is produced. This is not a terminating but a
productive definition.

General case (3): Coinductive bisimilarity relation The concept of the domain of definedness can
be dualized [7]. Besides partial solutions that are defined only on a subset of the intended domain, it
makes sense to consider “fuzzy” solutions that are defined everywhere but return values in a quotient
of the intended codomain. But since the category of sets is not self-dual, the theory dualizes only to a
certain extent and various mismatches arise.

For given (B,), define a relation ~ on B coinductively by

bb,:B bb,
3bs,bs. : FB.b = B bs Ab, = B bs. \bs (F ~*) bs,

(i.e., we take ~ to be the largest/coarsest relation validating this rule).
There need not necessarily be a function f solving the equation

FA<—% A

S

F(B/=) =B/~

but, if such a function exists, it can easily checked to be unique. (See Capretta et al. [/, Thm. 1].)
IfVb,b, : B.b =~ b, — b = b,, which is the same as B/~- = B (where B/~ is the quotient of B by the
reflexive-transitive closure of /), we say that (B,) is antifounded. If (B,) is antifounded, solutions to
equation [T]are the same as solutions to the equation above, and thus unique.
For FX = El x X x X, B = Str, B = smerge, the relation = is defined coinductively by

XS,XS5 1 Str - xs &2 xs,

dx : El, xs0, X571, X504, X814 : Str.
xs = smerge(x,xs0,Xx51) A XS, = smerge(x, Xs0.,X51x) AXS) A2 XS0« AXS] R XS]«

It turns out that Vxs,xs" : Str.xs =~ xs’ — xs = xs’. Based on this knowledge, we may conclude that
solutions are unique. (They do in fact exist as well for this example, but this has to be verified separately.)

Solutions need not exist for antifounded algebras. E.g., for FX = X, B = Nat, 8 = succ, we have
that (B,) is antifounded, but for A any set and o = idy4, the equation has the form fa = succ(f a) and
has no solutions.

60 Structured general corecursion and coinductive graphs

We have thus seen that antifoundedness of (B,[8) does not guarantee that it is corecursive. The
converse also fails: not every corecursive algebra (B, 3) is antifounded [7, Prop. 5].

However, for an antifounded algebra (B,), we do get an interesting coinduction principle on B: For
any relation R on B, we have

b.b.:B bRb.

b,b,:B bRb, Tbs' bs.:FB.b' = pbs /\'b; = B bs’ Abs' (FR*)bs',
b:b*

For FX = El x X x X, B = Str, B = smerge, we get this coinduction principle:
xs',xs’ . Str xs'Rxs/,
3x 2 El,xsg), xs7, x5, x5], © Str.

xs' = smerge(x’, xs(),xs}) A xs), = smerge(x’, xs(),, x5] .,) Axsy Rxs(, Axs| Rxs),
XS = XS

XS,XSy : Str xsRxs,

General case (4): Coinductive graph relation Could one also dualize the notion of the inductive
graph? The answer is positive. Differently from the case of the coinductive concept of bisimilarity, this
yields a criterion of unique solvability.

For given (A, @), (B,), define a relation |* between A, B coinductively by

a:A b:B al”b
Jbs: FB.b=BbsAaa (F|™) bs

Define a predicate Dom™ on A by
Dom®a=3b:B.al™b
Now we can construct f : A|pom= — B/~+ that we can prove to uniquely solve

OC‘ om™
F(A|Dom°°> <D;A|Dom°°

b Ik

F(B/~) W)B/z*

If both Va : A.Dom™a and Vb,b, : B.b ~ b, — b = b,, which are the same as A|pom~ = A resp.
B/~ = B, then f uniquely solves also the equation [I| Notice, however, that in this situation we have
obtained a unique solution only for the given (A, o): we have not established that (B,) is corecursive.

To formulate a further condition, we define a relation = on B by

b=b,=3a:A.al”bNal”b,

A unique solution to equation also exists if Va : A.Dom©a and Vb, b, : B.b =b, — b = b,.
This condition is weaker: while Vb, b, : B.b = b, — b = b,, the converse is generally not true.

T. Uustalu 61

For FX =Elx X x X, B=Str, B =smerge and any fixed A, a, the relation | is defined coinductively
by

a:A xs:Str al%xs
Jxsg,xs1 : Str.xs = smerge (fst (aa),xso,xs1) Afst(snd (@ a)) | xso Asnd (snd (ca)) J™ xs;

It turns out that Va : A. Dom™ a no matter what A, ¢ are. So in this case we do have a unique solution f
for any A, ., i.e., (Str,smerge) is corecursive.

Conclusion We have considered two flavors of partiality of a function: a function may be defined only
on a subset of the intended domain and the values it returns may be underdetermined.

The Bove-Capretta method in its graph-based version scales meaningfully to equations where unique
solvability is not due to termination, but productivity or a combination the two. But instead of one
condition to check by ad-hoc means, there are two in the general case.

The theory of corecursion/coinduction is not as clean as that of recursion/induction—in particular, to
admit coinduction is not the same as to admit corecursion. We would like like to study the coinductive
graph approach further and to find out to what extent it proves useful in actual programming practice.
The main pragmatic issue is the same as with Bove and Capretta’s method: how to prove the conditions.

Acknowledgments This research was supported by Estonian Science Foundation grant no. 6940 and
the ERDF funded Estonian Centre of Excellence in Computer Science, EXCS.

References

[1] A. Adamek, D. Liicke & S. Milius (2007): Recursive coalgebras of finitary functors. Theor. Inform. and
Appl. 41(4), 447-462. doi:10.1051/ita:2007028

[2] A.Bove (2009): Another look at function definitions. In S. Abramsky, M. Mislove & C. Palamidessi, editors:
Proc. of 25th Conf. on Mathematical Foundations of Programming Semantics, MFPS-XXV (Oxford, Apr.
2009), Electron. Notes in Theor. Comput. Sci. 249, Elsevier, 61-74. doi:i10.1016/j.entcs.2009.07.084

[3] A. Bove & V. Capretta (2005): Modelling general recursion in type theory. Math. Struct. in Comput. Sci.
15(4), 671-708. doi:10.1017/s0960129505004822

[4] A. Bove & V. Capretta (2008): A type of partial recursive functions. In O. Ait Mohamed, C. Mufioz &
S. Tahar, editors: Proc. of 21st Int. Conf. on Theorem Proving in Higher Order Logics TPHOLs 2008 (Mon-
treal, Aug. 2008, Lect. Notes in Comput. Sci. 5170, Springer, 102—117. doi:;10.1007/978-3-540-71067-7_12

[5] A. Bove, A. Krauss & M. Sozeau (2011): Partiality and recursion in interactive theorem provers: an
overview. Manuscript, submitted to Math. Struct. in Comput. Sci..

[6] V. Capretta, T. Uustalu & V. Vene (2006): Recursive coalgebras from comonads. Inform. and Comput. 204(4),
437-468. doii10.1016/j.ic.2005.08.005

[7] V. Capretta, T. Uustalu & V. Vene (2009): Corecursive algebras: a study of general structured corecursion.
In M. V. M. Oliveira & J. Woodcock, editors: Revised Selected Papers from 12th Brazilian Symp. on For-
mal Methods, SBMF 2009 (Gramado, Aug. 2009), Lect. Notes in Comput. Sci. 5902, Springer, 84—100.
doi:10.1007/978-3-642-10452-7_7

[8] P. Taylor (1999): Practical Foundations of Mathematics, chapter VI. Cambridge University Press.

http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1016/j.entcs.2009.07.084
http://dx.doi.org/10.1017/s0960129505004822
http://dx.doi.org/10.1007/978-3-540-71067-7_12
http://dx.doi.org/10.1016/j.ic.2005.08.005
http://dx.doi.org/10.1007/978-3-642-10452-7_7

