Analysis of Software Binaries for Reengineering-Driven
Product Line Architecture — An Industrial Case Study

Ian D. Peake, Jan Olaf Blech, Lasith Fernando
RMIT University, Melbourne, Australia

Divyasheel Sharma, Srini Ramaswamy, Mallikarjun Kande
ABB Corporate Research, Bangalore, India

This paper describes a method for the recovering of software architectures from a set of similar
(but unrelated) software products in binary form. One intention is to drive refactoring into software
product lines and combine architecture recovery with run time binary analysis and existing clustering
methods. Using our runtime binary analysis, we create graphs that capture the dependencies between
different software parts. These are clustered into smaller component graphs, that group software
parts with high interactions into larger entities. The component graphs serve as a basis for further
software product line work. In this paper, we concentrate on the analysis part of the method and
the graph clustering. We apply the graph clustering method to a real application in the context of
automation / robot configuration software tools.

1 Introduction

In large organizations, due to mergers and acquisitions over multiple years, sometimes decades apart,
multiple products evolve and mature to serve different market segments. These may have similar func-
tionalities derived from similar market and product requirements. Although these are candidates for
software product line approaches, they differ in their architectural evolution, due to factors such as tech-
nology lock-ins, customer driven technology choices, talent availability and pipeline and outsourcing
silos. Product lines approaches have been shown to significantly reduce costs and improve productivity
in certain industrial contexts, and have therefore been considered attractive. However there are relatively
few corresponding experience reports in the literature. In particular in contexts as described above, it
is not surprising if product line engineering must focus on so-called “reengineering-driven” scenarios,
where any planned reuse must first account for a set of products with a complex mix of common features,
subtle semantic differences and little implementation overlap. In such large organizational contexts it is
challenging to discuss possible reuse across products because of the difficulty of sharing or discussing
development assets such as requirements or architecture documentation or source code, let alone the
discussion or generation of “big picture” knowledge relating architectures between products.

This paper describes a method and a case study seeking to derive structural software architecture
descriptions of unrelated but similar software products, from software binaries, into a form intended for
evaluating and driving refactoring into software product lines. Our industry partner ABB has several or-
ganizationally separate multi-national divisions with partly distinct business goals and accountabilities,
where each division provides one or two products which exhibit similar requirements and functional-
ity. We investigate a software product line architecture scenario in ABB involving a set of software
products for control automation engineering. However for these products it is challenging both to elicit
requirements which propagate from business units to tools and to obtain information about existing tool

J. Atlee and S. Gnesi (Eds.): FMSPLE 2015

EPTCS 182, 2015, pp. 71-[82} doi{10.4204/EPTCS.182.6 © Peake et al.

http://dx.doi.org/10.4204/EPTCS.182.6

72 Reengineering-Driven Product Line Architectures

architectures (tracing requirements to implementations). Efforts in this exercise focus on extracting soft-
ware architecture documentation from documentation and binaries, with the goal to use feedback from
draft documentation to propose a software product line architecture. For this purpose we focus on an
architectural description notation based on graphs which formalizes dependence relationships between
components at arbitrary levels of abstraction. Use of graphs has the advantage that they are suitable for
use as input/output to and from tools as well as intuitively understood by humans.

For this work, we develop a method for architecture recovery based on runtime and static binary
analysis use it to generate documentation. Typically for scenarios involving architecture recovery, the
scale of graph recovered is is a major challenge. Even a relatively coarse-grained analysis of most
systems provides too much detail to be useful as documentation. Also it is desirable to relate candidate
components to functionality. We use an existing clustering method to try to resolve these issues. We
examine binaries using Intel’s Pin tool [5] for binary instrumentation, as well as free and open source
tools for static analysis of generic MS Windows executables and .NET assemblies. The contribution of
this paper is:

e Our method: a description of the architecture derivation process and its adaptation to the systems
of interest and the realization of the graph clustering in this context.

e A case study in deriving structural software architecture descriptions from software binaries in-
tended for engineering-driven software product line architecture.

e An evaluation of the method and lessons learned.

A preliminary 6-pages work in progress paper has been published [22]], featuring parts of the method but
no application to an industrial case study.

2 Related Work

Although software product line architecture is shown to improve productivity significantly in certain
industrial contexts, there are relatively few methods and experience reports in the literature related to
reengineering-driven scenarios. Software product line engineering process models typically assume ei-
ther (i) a centralized and top-down management-driven initiative to introduce and support reuse efforts
or (ii) an initial single effort at source code level to develop a product which has splintered in an ad
hoc way through code forking into multiple related projects. Moreover in the largest organisations the
existence of independent product groups makes it challenging to meaningfully share or even to discuss,
at a technical level, sharing development assets such as architecture documentation and source code.
Reengineering-driven product line architecture minimally requires architecture documentation for all
related products, however few existing (or recent) efforts focused specifically on methods for architecture
reconstruction for software product lines. Fewer still focus on methods explicitly suited to the reengi-
neering scenario. The MAP method—“mining architectures for product lines” [27]—assumes shared
knowledge of product lines at management and technical level and availability of people, in particu-
lar architects, source code, documentation and thus emphasis maximizing stakeholder buy-in, need for
access to software architects and developers. Another assumption is that candidate products are all ini-
tially situated in similar domains. The MAP method consists of several phases: preparation, extraction,
composition, qualification, evaluation and follow-on activities. The extraction phase for each product
is concerned with extraction of an implementation model from existing source assets (note assumption
that source code is available), and jointly, abstraction to an component-based architectural model and
mapping known architectural styles and attributes onto the architectural model. Other related work [23]]

Peake et al. 73

described a method and experience in architecture recovery for product families. Notably it is argued
“Apparently, the process step of abstracting meaningful higher-level views from the low-level model or
source code is the most complex task. A lack of appropriate (semi-)automatic tools increases manual
work.” Our approach provides a solution for one step in an automated tool based approach.

Breivold [2] and Kettu [[15] describe case studies in analysis of industrial automation systems in
ABB. At least one author is common to these publications. Breivold describes a case study in analysis of
an industrial automation control system to improve its evolvability using their architecture evolvability
analysis (AREA) method. The method is not specifically focused on software product scenarios. Kettu
describes experience and lessons learned, synthesised as practical advice, and illustrated by two case
studies in architecture reconstruction of ABB industrial automation systems. There is mention of a
system called DependencyTool, developed for the static analysis of binaries, to overcome difficulties in
analysis of source code such as C which typically requires preprocessing before analysis. Another case
study describes the development of a PLA for ABB Robotics software [16]]. A more recent industrial
case study on software product lines in the industrial automation domain has been conducted [[17]. From
a methodological view, this is complementing our runtime analysis part.

Existing published work on architecture reconstruction and related reverse engineering tasks fo-
cussing on derivation of component candidates and inter-dependencies is covered in existing surveys
and overview papers [6l 25, 3]]. Two main directions are highlighted: 1) methods based on analysis of
source code and 2) methods based on the analyses or execution of system binaries. A taxonomy of reverse
engineering techniques includes classifications according to the artefacts used, and whether analysis is
static—based on syntactic analysis of source or executable—or dynamic—based on running, observing
or animating the system itself [3]]. In this paper, we focus on runtime analysis for architecture derivation.
This is also called dynamic analysis [8]. DiscoTect [29, 26] is an existing framework that reconstructs
architectures of running systems, designed to handle multiple high level architectural styles and possible
realizations in implementations. Its DiscoSTEP language enables mappings to be manually defined by
domain experts for interpreting low level system events as more abstract architectural elements defined
as coloured Petri Nets. DiscoTect analyses execution traces collected by a trace engine like method calls
between objects using the Java Platform Debugger Architecture.

Reconstructing software architecture from execution traces is structured into two tasks 1) the analysis
of the execution traces and 2) the identification of potential components. Combining potential component
candidates into disjunct sets denoting suggestions for aggregation of components is known as clustering.
It is an important step for gaining suggestions on the original and potential future architectures. The
field of clustering for software components has been studied by several authors including [13]. In [20]
an analysis of source code for component detection is featured. [12] studies clustering in the context of
software evolution.

In this work we are using the Pin tool [5] for binary instrumentation and tracing hints about the
architecture at runtime. Other well known tools include the Valgrind [21]] tool which does not have
native Windows support. It offers, however, a wider range of instrumentation possibilities potentially
resulting in slower code.

3 Case Study

An overview of the candidate systems under study is given in Figure Il For confidentiality reasons no
ABB products, subcomponents or other elements can be named. We list the primary implementation
language, size metric and number of installed binary components and comments related to composition.

74 Reengineering-Driven Product Line Architectures

Name | Primary Implementation Language Size (Mb) / Size (#binaries) Composition

S1 C++ 32/80 Main EXE + DLLS, COM
S2 C++ 133 /289

S3 C++ 196 /515 Main EXE + other EXE
S4 NET 2817348

S5 NET 438 /340

S6 Other 41/14

S7 C++ 76 /165 Main EXE

Figure 1: System overview

Systems | S1 | S2 | S3 | S4 | S5 | S6 | S7
S1 67 | 53

S2 53 | 257 1
S3 509 1

S4 640

S5 680

S6 1 14

S7 1 164

Figure 2: Implementation overlap

In many respects systems show some expected diversity in relation to implementation language, style
and scale. All systems are native Windows 32 bit applications. Binaries for the systems range in size
from 32 to 438 megabytes.

In Figure[2] we attempt to quantify which components from each existing system are reused or shared
by any other, using a simple metric. It seems plausible that one or more components in binaries may be
reused or shared across products in the organization, with consistent names. For a given pair of systems,
our metric counts the number of filenames which are common to both systems’ install directories. For
each system we take a recursive directory listing of the (binary) install directory and create a list of files
in the directory and canonicalise them by translating characters to lower case. Then we count the number
of filenames which appear in both systems’ listings. The measure is symmetric. Only non-zero entries
are shown (where there are some shared files). The measure roughly matches our understanding of the
systems: S1 and S2 are closely related, with significant implementation overlap, while the pairs (S2,S7)
and (S3,S6) share a single common component but are otherwise unrelated. The metric is approximate
for several reasons: first, filenames do not reflect the binary contents, i.e. filenames could be renamed
without affecting the behaviour of components.

Of these systems, binaries for S1, S3, S4, S5 and S7 were selected for analysis based on assessment
of analysis feasibility.

4 Approach

4.1 Method

Our aim is the recovery of architectural constructs as defined by authors such as Szypersky [28] and
Kazman [14], focusing on the following, in rough order of priority: system components—that is, inde-
pendently deployable units. (We treat deployability as a proxy for reusability); dependencies on external
systems; relationships between components (and external systems, or their components); relationships

Peake et al. 75

between (user-observable) features and components; contracts which govern interactions between com-
ponents; the most important aspects (functional/extra-functional properties, not only user-visible); rela-
tionships between aspects and components. The steps in our method are:

1. System identification: Identify the candidate software systems for product line refactoring.

2. Requirements definition: Key requirements in the form of features, extra-functional properties and
use cases should be identified.

3. Static and dynamic binary analysis and graph construction. As discussed, in this step program
data in the form of a (detailed) graph.

4. Abstraction: Form clusters around lower level components which correlate with hypothesised com-
ponents.

5. Visualization. Since our method involves several steps which can be automated, in particular ab-
straction, yet nevertheless are imperfect, human intervention is useful to assess and adjust the
method. Visualization provides a human-readable representation of abstract graphs for this pur-
pose.

6. Software product line architecture: 1dentify a product line architecture and justify its alignment
with the respective architectures and requirements of each software system.

7. Refactoring: Restructure each of the respective systems to align with the product line architecture.

The emphasis in this paper is on steps 3—5. Our experience with steps 1-6 applied to the case study sys-
tem is summarized as follows. Step 1 is presented in the case study section above and are not otherwise
a focus of this paper. Step 2 is not a focus of this paper—for an example of use cases see [22]. Steps
3-5 and our experience with them are summarized in detail below. Readers are referred to [17] for more
details of methods related to step 6.

4.2 Static Binary Analysis

We use both static and dynamic analysis of software binaries to derive dependency graphs as a basis for
informal comparison between systems. We produce for each system a graph where nodes are interpreted
as (low level) components and edges are interpreted as directed dependencies with labels identifying
caller and callee sites (method names or addresses) within the component. Thus each edge encodes the
occurrence of one method from one component calling another method in another component.

Static analyses are derived from binary metadata. Every system studied is Windows-based and comes
installed as a collection of executables (EXE and DLL files) and miscellaneous (documentation, configu-
ration) files, therefore the most apparent level of reuse and interpretation is at executable file level. Win-
dows executable metadata often reveals some coarse dependence structure between executables needed
for dynamic loading and linking.

Given the goal to derive documentation for cross-product comparison, it is implicit that dependency
graphs for respective products should be of a roughly similar number of components (at least order of
magnitude) to enable comparisons by humans, however it is impossible to find a simple interpretation of
“component” satisfying this constraint, rather deeper, and dynamic, analysis, using different interpreta-
tions for different systems, is needed. For some systems, core functionality is concentrated in one or a
few very large executables revealing virtually no structure. To enable informal analysis, we also extract
further information, namely packages, classes/objects and/or methods and in particular names, accord-
ing to implementation language. For most systems, symbol tables are available in individual executables

76 Reengineering-Driven Product Line Architectures

enabled extraction of type and member/method names. For .NET systems we analyse at the level of
assemblies. For .NET systems, package, type and member names is present in the executables.

4.3 Dynamic Binary Analysis

To clarify architecture information derived statically, we also trace control flow of executables at run-
time. We instrument selected systems using Intels Pin tool [5] which uses just-in-time (JIT) interpre-
tation/compilation to provide functionally non-invasive custom logging, tracing or profiling. We adapt
an existing Pin plugin to instrument all direct transfers of control visible in the executable including in
imported code, as well as all indirect or dynamically discovered transfers of control. Every (first) occur-
rence of a transfer of control between a unique pair of source and target addresses is logged in the form
of a time stamp, and a source and target object (typically executable) and address. The output of such
a process is used to construct a graph. Static analysis may be a coarse over-approximation of behavior
and weak in identifying likely paths, while dynamic (e.g. runtime) analysis suffers from covering only a
few use cases. Thus we expected that structure revealed by dynamic analyses might be weak. However,
with a surprisingly small amount of instrumentation, it appears that a reasonable amount of data was
available about runtime interdependencies between components. Although we use the terminology of
method calling, strictly speaking at trace level we are logging branches and calls and treating these as
“call” edges. Although strictly we start with source/target addresses at trace level, wherever possible we
reconstruct “called” method names by inference from symbol tables.

As a refinement of dynamic analysis, we also trace key functionalities or aspects of a tool. We log
runtime paths based on specific usage scenarios. The idea is to invoke a distinct function or aspect of a
tool using sequences of user interactions with the tool. The component interactions are then extracted
from the generated control-flow trace in order to gain hints on architectural details. We use a small
Pin tool which attaches to an already-running process, logs loading of all executables and logs the first
occurrence of a control edge along with a “time stamp” (counter). The use of time stamps makes it
feasible to reconstruct the order of control edge discovery. The ability to start logging midway through a
session allows the ability to approximately isolate the correlation between a specific user action and the
code triggered.

4.4 Abstraction

To generate component dependence diagrams we perform clustering using the LIMBO algorithm [4] to
reduce detail and highlight the most-relevant abstractions.

Architecture analysis artefacts such as component dependence diagrams or call graphs as described
above may be displayed graphically as a common form of documentation (or indeed as a common form
of high level design notation). However in practice the scale of such graphs as generated may make
human comprehension of these formats prohibitive. With the engineering tool systems encountered this
proved to be the case for several of the tools which consisted of one hundred or more executables.

There is scope for machine abstraction of these graphs using clustering methods. Clustering is a
generic method where a collection of objects are partitioned according to their similarity. Objects are
characterized according to a set of multi-valued or real-valued attributes. Then the basis for similarity
between two objects is the extent to which they have similar attributes. Clustering of graphical software
views is already a well-studied area with one main objective being to provide useful abstractions for
documentation purposes.

Peake et al. 77

We use a clustering algorithm known as LIMBO [4]. LIMBO is based on a generic information-
theoretic method called Agglomerative Information Bottleneck (AIB). LIMBO has been used for the
analysis of large systems across scientific disciplines including for architecture reconstruction. LIMBO
remains one of the known-best approaches for architecture reconstruction, based on studies comparing
results from algorithms and experts on real large systems [18]]. LIMBO and the underlying AIB method
are generic—they operate fundamentally on a set of objects O, a set of attributes A and relation R C O X A
with non-negative real number weighting w : O x A — R U L. A major purpose of attributes is to encode
the graph-theoretic dependencies among objects, thus A O O, and a relationship between 0,0’ € O is
encoded as w(o,0’) # L.

Our method uses LIMBO as follows. Each primitive (component) is modelled both by an object in
0 € O and an attribute in @ € A. For a component o, w(0,a) is the number of different ways o calls a
different object a. R and w are constructed from the execution traces in an application-dependent way.

First, weights are modified via a suitable weighting transformation. We select term-document fre-
quency weighting in our case, which transforms weights according to their significance (the more rarely
held an attribute A is overall by all objects, and the more frequently by some given object O, the more
significant, thus heavily weighted, A is for O.) Next, the new weights are converted to probabilities such
that the sum of all weights per object is 1. Finally, LIMBO attempts to compress its representation of R
by iteratively merging the closest pair of objects and generating a new relation R’ which approximates R
under merging. The closest pair is the one for which merging minimises information loss in R. LIMBO
uses an additional phase to analyse the merge history (resembling a tree) to determine an appropriate
point in the merge history (hopefully with a small number of objects) as the most appropriate clustering.
LIMBO’s genericity enables it to support both “structural” and “non-structural” attributes. Structural
attributes reflect program dependence structure as described above. In our work so far clustering is on
a structural basis. Non-structural attributes refer to the general case and cover properties such as a time
stamp or authorship.

LIMBO iteratively and greedily searches for and merges the pair of (“similar”) objects which, when
merged into a single object approximating both, preserves the most information overall until eventually
only a single object is left, recording the merge history. Additional pre- and post-processing phases
combine to improve performance for large object sets, and to select the most suitable point late in the
merge process to reflect the best clustering. Following a generic recommended method, we take a low-
level graph and encode it for clustering.

Functionality tracing is performed repeatedly across all tool sets, to try to informally relate known or
hypothesized features / aspects to specific binary artefacts (primitive (component)s). An obvious method
for tracing involves searching based on domain knowledge for components based on the name of a spe-
cific feature or aspect, or a synonym, such as “firmware download” or “hardware connection.” In our
case study, several such attempts may be classed as partly successful, however gaining a precise charac-
terization of such mappings, or isolating a single component corresponding to a feature is unsurprisingly
difficult. More systematic functionality tracing was performed as followups to other methods below, as
a means of informal evaluation.

4.5 Visualization

Although our method of generating graphs varies (see above), we aim to apply a common, abstract
interpretation on them, based on a notion of dependence between components, where the degree of de-
pendence may vary. Following a generic method recommended as part of LIMBO, we take a low-level
graph and encode it for clustering. The graph format encodes a set of edges, where each edge relates

78 Reengineering-Driven Product Line Architectures

Figure 3: S7 as documented

a pair (componentl,methodl) with another pair (component2,method2). Thus each edge encodes the
occurrence of one method from one component calling another method in another component. (Al-
though we use the terminology of method calling, strictly speaking at trace level we are logging control
flow branches and calls and treating these as “call” edges. Moreover although strictly we start with
source/target addresses at trace level, wherever possible we reconstruct called method names by infer-
ence from symbol tables. Although the method of generating graphs varies (see above), the interpretation
of the graphs is the same in all cases and is based on a notion of dependence between components where
the degree of dependence may vary. We first create a set of objects corresponding to each unique com-
ponent and set their attributes. The attributes of each component correspond to all low level components.
If there is some dependence between C1 and C2, then C1 has the attribute C2, and C2 has the attribute
C1 (thus a symmetric interpretation of a dependence graph). The number of unique edges between C1
and C2 determines the value of the attribute C2 for C1 and vice versa. If there is no direct interaction
between C1 and C2, the value of C2 for Cl1 is zero.

We obtain a clustering of low level components into high level components which we represent
graphically (for example Figure [below, c.f. the corresponding documented architecture in Figure [3)).
Nodes are shown as ellipses. For confidentiality reasons no component, object or method names are
shown. The number of unique dependencies between components are provided by labels on the edges.
The main dependence direction is given first. Dependencies in the opposite direction are written in brack-
ets. Edges are colour-coded according to how frequently calls/jumps are made between components.
Clustering introduces a second higher level of structure—each cluster may be considered a candidate
high level subsystem and requires a name. We settled on a method involving the labelling of clusters
with the names of all primitive components of the cluster, with the primitives ranked in descending or-
der by a significance metric. Due to confidentiality reasons an example from the case study cannot be
shown. The significance metric favours primitives with more interactions outside of their own cluster,
and a higher ratio of outgoing calls to their own cluster to incoming calls from their own cluster. The
rationale for such a metric is that: (i) primitives with more overall interactions outside the cluster are de
facto “interfaces,” hiding significant abstractions, whereas primitives with fewer interactions outside the
cluster are more likely internal and incidental; and, (ii) primitives with higher ratio of outgoing calls to
incoming calls within the cluster are more likely at a higher level of abstraction.

Peake et al.

133 (0) &m 110(0)

67(2)

266 (0)

270(0)

78(0) \ 147 (0)

110)

Figure 4: S7 - discovered architecture

/n

10 (0)

51(1)

96 (42) 3(18)

300

381 (0)

212(0)

881 (0)

80 (67)

497 (0)

39 (0)

4

8(1)

235 (48)

286 (0)

109 (0)

111 (0)

Figure 5: S7 - “refactored” architecture based on use cases

79

80 Reengineering-Driven Product Line Architectures

4.6 Software Product Line Analysis

It is possible to consider a “refactored” version of an architecture, based on dynamic information recov-
ered from a selected set of use cases. For two selected tools (S1 and S7) we recorded and graphed the
trace for each of a small set of “typical” use cases: load (a project or component), edit (FBD/ST/etc.),
check, save, simulate / go online. We extended the clustering method above to provide an “overlay”
which colours the names of primitive components deterministically, according to a variation of our sig-
nificance metric above. This work is inspired by, though not systematically following, prior work to
trace requirements to code, however it proved useful for validating informal attempts to trace functional-
ity more precisely. In the case of S7 this method appears to have directed analysis to components which
might not otherwise have been considered, where names for components (and indeed methods) did not
make functionality completely apparent. In Figure [5| we show an example of the result of a dynamic
analysis based on use cases.

S Evaluation of Software Binary Clustering

There are several reasons why clustering may not reflect an authoritative architecture and therefore a
number of possible improvements. For example there may be insufficient data in the run time call graph,
or architectural anti-patterns may be enforced by the as-is architecture. Where many primitive com-
ponents are clustered together, it is desirable to associate each component with a meaningful name or
feature. Ideally a name is an exact abstraction of the collection of primitive components. This depends on
understanding what abstractions (e.g. aspects) are semantically common to all objects of a component,
or the principle abstraction of the component. Our ranking metric for the most significant primitives
in a cluster could be used to select names from the highest ranked primitives as candidate names for
the cluster. Although this has not been evaluated systematically it appears promising in practice. The
clustering method on which LIMBO is based is generic. There is scope to assign so-called “non struc-
tural attributes,” perhaps based on manual assignment of features, or based on other attributes such as
location in a source code hierarchy, perhaps with input from architects or system experts. Albeit that in
this form LIMBO no longer accepts graphs, but rather weighted binary relations. These could pertain to
specific features or aspects such as “UI” or “Safety” or even identifiers, identifier segments or “topics”
relating to identifiers or documentation and influenced by domain language as extracted from domain
documentation. For instance we have experimented with some methods described in [10]. Such addi-
tional attributes can be assigned to those objects and then taken into account during clustering. There
are some existing aspect mining approaches which may be applicable. The graph data itself could be
improved. For runtime analysis, call graphs were generated based on relatively few use cases and short
sessions based on introductory tutorials. Thus certain objects are not exercised, have few associated calls,
and their corresponding components are probably not being clustered properly. There is ambiguity in the
literature about whether to generate structural attributes by treating the primitive call graph as directed
or undirected. Treating the graph as directed results in asymmetric attribution—the relationship between
two components is represented in their two respective objects by two separate attributes with distinct
values depending on which component is the “caller”—whereas treating the graph as undirected results
in the two objects having attributes with the same value. In our work the call graph is interpreted as
undirected, which seems to improve clustering for certain components which call few other components.

Garcia and others introduce the notion of ground truth in software architecture [11], defined as a
reliable, authoritative architecture which has been certified correct by a long-term contributor, that is,
someone with long term involvement in a project and intimate knowledge of the systems architecture.

Peake et al. 81

They propose a framework for establishing ground truth architectures which minimize the involvement
of long-term contributors, involving a set of processes and a set of so-called mapping principles for
grouping code-level entities into architectural elements and identifying interfaces. Mapping principles
are prioritized according to their classification as either application, generic, domain principles, in de-
scending order of priority. Such approaches seem likely to be applicable in our context.

6 Conclusion

In this paper we presented our method for extracting software system architectures into a graph based
format that allows further analysis. We presented a case study exemplifying the use for software product
line-based work. Future work comprises the use of graphs obtained from the method described in this
paper as a formal notation for a variety of analysis tasks (such as comparing variants of a product line)
and as a basis for more automated product line identification and refactoring. While the graphs are use
case based, they can even serve as a representation for formally proving the absence of interdependencies
between different components, under a given use case.

References

[1] Beremiz IDE. Version 1.1 RC3. Downloaded from beremiz. org (July 2013)

[2] Hongyu Pei Breivold, Ivica Crnkovic, and Peter J. Eriksson. Analyzing software evolvability.Computer
Software and Applications, 2008. COMPSAC’08. 32nd Annual IEEE International. IEEE, 2008,
doi:10.1109/COMPSAC.2008.50.

[3] Gerardo Canfora, Massimiliano Di Penta, Luigi Cerulo: Achievements and challenges in software reverse
engineering. Commun. ACM 54(4): 142-151, 2011, doi;10.1145/1924421.1924451.

[4] Periklis Andritsos and Vassilios Tzerpos. Information-Theoretic Software Clustering. In IEEE Trans. on
Software Eng., 31(2): 150-165, 2005, doij10.1109/TSE.2005.25,

[5] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, Kim Hazelwood. Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation. Programming Language Design and Implementation (PLDI), Chicago, IL, June 2005,
doi:10.1145/1065010.1065034.

[6] Elliot J. Chikofsky, James H. Cross II: Reverse Engineering and Design Recovery:A Taxonomy. IEEE Soft-
ware 7(1): 13-17, 1990, doi:10.1109/52.43044,

[7] CoDeSys—industrial IEC 61131-3 PLC programming: www.codesys.com

[8] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, Rainer Koschke: A Systematic Survey
of Program Comprehension through Dynamic Analysis. IEEE Trans. Software Eng. 35(5): 684-702, 2009,
doi:10.1109/TSE.2009.28.

[9] 4DIAC IDE. Version 1.3: fordiac.org, Accessed July 2013.

[10] Garcia, Joshua, et al. Enhancing architectural recovery using concerns. Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering. IEEE Computer Society, 2011,
doii10.1109/ASE.2011.6100123.

[11] Garcia, Joshua, et al. Obtaining ground-truth software architectures. Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, doi:10.1109/ICSE.2013.6606639.

[12] Rainer Koschke. Atomic architectural component recovery for program understanding and evolution. Inter-
national Conference on Software Maintenance, 2002.

http://dx.doi.org/10.1109/COMPSAC.2008.50
http://dx.doi.org/10.1145/1924421.1924451
http://dx.doi.org/10.1109/TSE.2005.25
http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1109/TSE.2009.28
http://dx.doi.org/10.1109/ASE.2011.6100123
http://dx.doi.org/10.1109/ICSE.2013.6606639

82

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Reengineering-Driven Product Line Architectures

Chung-Horng Lung. Software Architecture Recovery and Restructuring through Clustering Techniques. 3rd
International Software Architecture Workshop (ISAW): 101-104, 1998, doi:10.1145/288408.288434.

Kazman, Rick, et al. SAAM: A method for analyzing the properties of software architectures. Proceedings
of the 16th international conference on Software engineering. IEEE Computer Society Press, 1994.

Tommy Kettu, Eckhard Kruse, Magnus Larsson, Goran Mustapic. Using architecture analysis to evolve com-
plex industrial systems.Architecting Dependable Systems V. Springer Berlin Heidelberg, 2008, 326-341.
doi:10.1007/978-3-540-85571-2_14.

Heiko Koziolek,Roland Weiss,Jens Doppelhamer:Evolving Industrial Software Architectures into a Software
Product Line: A Case Study, QoSA, 2009, 177-193, doi:10.1007/978-3-642-02351-4_12,

Heiko Koziolek, Thomas Goldschmidt, Thijmen de Gooijer, Dominik Domis, and Stephan Sehestedt. Ex-
periences from identifying software reuse opportunities by domain analysis. In Proc. 17th Internal Software
Product Line Conference (SPLC2013), Industry Track. ACM, 2013, doi:10.1145/2491627.249164 1.

Onaiza Magbool, Haroon A. Babri: Hierarchical Clustering for Software Architecture Recovery. IEEE Trans.
Software Eng. 33(11): 759-780, 2007, doij10.1109/TSE.2007.70732.

MATIEC compiler. Source from bitbucket.org/mjsousa/matiec (July 2013)

Brian S. Mitchell, Spiros Mancoridis. Comparing the decompositions produced by software cluster-
ing algorithms using similarity measurements. International Conference on Software Maintenance, 2001,
doii10.1109/ICSM.2001.972795.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic binary in-
strumentation. ACM SIGPLAN conference on Programming language design and implementation, 2007,
doi:10.1145/1250734.1250746.

Ian D. Peake, Jan Olaf Blech, Lasith Fernando: Towards Reconstructing Architectural Models of Soft-
ware Tools by Runtime Analysis. EESSMOD@MOoDELS 2013: 43-48, http://ceur-ws.org/Vol-1078/
paperb.pdf.

Martin Pinzger,Harald Gall,Jean-Francois Girard,Jens Knodel,Claudio Riva,Wim Pasman,Chris Broerse,Jan

Gerben Wijnstra:Architecture Recovery for Product Families.PFE 2003, 332-351, doi:10.1007/978-3-540-
24667-1_26.

PLCEdit Editor. Version 2.1.1. Downloaded from www.plcedit.org (July 2013)
Damien Pollet, Stéphane Ducasse, Loic Poyet, Ilham Alloui, Sorana Cimpan, Hérve Verjus: Towards A

Process-Oriented Software Architecture Reconstruction Taxonomy. Conference on Software Maintenance
and Reengineering: 137-148, 2007, doi;10.1109/CSMR.2007.50.

Bradley Schmerl, Jonathan Aldrich, David Garlan, Rick Kazman and Hong Yan. Discovering Architectures
from Running Systems. IEEE Trans. Software Eng. 32(7): 454-466, 2006, doi:10.1109/TSE.2006.66.
Christoph Stoermer,Liam O’Brien:MAP — Mining Architectures for Product Line Evaluations.WICSA
2001: 35-44, doi:10.1109/WICSA.2001.948405.

Clemens Szypersky. Component software: beyond object-oriented programming. Addison- Wesley, New
York, 1999.

Hong Yan, David Garlan, Bradley R. Schmerl, Jonathan Aldrich, Rick Kazman. DiscoTect: A System for
Discovering Architectures from Running Systems. International Conference on Software Engineering: 470-
479, 2004, doi:10.1109/ICSE.2004.1317469.

http://dx.doi.org/10.1145/288408.288434
http://dx.doi.org/10.1007/978-3-540-85571-2_14
http://dx.doi.org/10.1007/978-3-642-02351-4_12
http://dx.doi.org/10.1145/2491627.2491641
http://dx.doi.org/10.1109/TSE.2007.70732
http://dx.doi.org/10.1109/ICSM.2001.972795
http://dx.doi.org/10.1145/1250734.1250746
http://ceur-ws.org/Vol-1078/paper5.pdf
http://ceur-ws.org/Vol-1078/paper5.pdf
http://dx.doi.org/10.1007/978-3-540-24667-1_26
http://dx.doi.org/10.1007/978-3-540-24667-1_26
http://dx.doi.org/10.1109/CSMR.2007.50
http://dx.doi.org/10.1109/TSE.2006.66
http://dx.doi.org/10.1109/WICSA.2001.948405
http://dx.doi.org/10.1109/ICSE.2004.1317469

	1 Introduction
	2 Related Work
	3 Case Study
	4 Approach
	4.1 Method
	4.2 Static Binary Analysis
	4.3 Dynamic Binary Analysis
	4.4 Abstraction
	4.5 Visualization
	4.6 Software Product Line Analysis

	5 Evaluation of Software Binary Clustering
	6 Conclusion

