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Falsification is drawing attention in quality assurance of heterogeneous systems whose complexities
are beyond most verification techniques’ scalability. In this paper we introduce the idea of causality
aid in falsification: by providing a falsification solver—that relies on stochastic optimization of a
certain cost function—with suitable causal information expressed by a Bayesian network, search for
a falsifying input value can be efficient. Our experiment results show the idea’s viability.

1 Introduction

Falsification In computer science, verification refers to the task of giving a mathematical proof to the
claim that the behavior of a system M satisfies a desired property ϕ (called a specification), under any
circumstances (such as choices of input to the system M ). A mathematical proof thus obtained gives a
level of confidence that is fundamentally different from empirical guarantees given by testing.

Extensive research efforts have yielded a number of effective verification techniques and they have
seen successful real-world applications. At the same time, however, it is also recognized that large-scale
heterogeneous systems are still beyond the scalability of most of these verification techniques. Notable
among such are cyber-physical systems (CPSs) that exhibit not only discrete digital dynamics but also
continuous physical dynamics. Imagine a car today: it contains not only dozens of chips (like ECUs) but
also continuous dynamics (wheels, suspensions, internal combustion, etc.).

It is in this CPS context that the idea of falsification is found its use [17].

The falsification problem
• Given: a model M (a function from an input signal to an output signal), and a specifi-

cation ϕ (a temporal formula)
• Answer: a critical path, that is, an input signal σin such that the corresponding output

M (σin) does not satisfy ϕ

Two benefits of falsification are particularly appealing. For one, a system model M can be totally a
black box: once M as a function σin 7→M (σin) is given as an oracle, we can check if an educated guess
σin is a solution or not—without knowing M ’s internal working. This is an advantage given that many
CPSs do have black-box components: they can come from external suppliers, or they can be physical
dynamics too complex to mathematically model (typically one uses look-up tables to describe such).

∗Supported by Grants-in-Aid for JSPS Fellows No. 15J09877.
†Supported by JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), and JSPS Grant-

in-Aid No. 15KT0012.

http://dx.doi.org/10.4204/EPTCS.257.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


4 Causality-Aided Falsification

Algorithm 1 Falsification by optimization, with a cost function fϕ

Input: σ0 . The initial guess
1: v0 := fϕ (M (σ0)); . vi = fϕ (M (σi)) is the score of the input vi
2: for i = 1 . . .N do . N is the greatest number of iteration

3: σi := argminσ

(
fϕ (M (σ))

∣∣∣∣ under the previous observations
(σ0,v0),(σ1,v1), . . . ,(σi−1,vi−1)

)
;

4: vi := fϕ (M (σi));
5: if vi < 0 then return σi;
6: end if . Falsification succeeded, because we assume fϕ (τ)< 0 implies τ 6|= ϕ

7: i := i+1;
8: end for

Another appealing feature of falsification is its affinity with machine learning (ML) and optimization
techniques. In automatic verification techniques the greatest challenge is state-space explosion: the size
of the input space for σin grows exponentially with respect to its dimension, often to the extent that
exhaustive search in it is no longer possible. Recent surges in ML and optimization algorithms can
offer potent countermeasures against this curse of dimensionality: specifically, after observing output
M (σ1), . . . ,M (σn) for input σ1, . . . ,σn, those algorithms can “learn” from these previous attempts and
suggest an input signal σn+1 with which M (σn+1) 6|= ϕ is likely.

One can say that falsification is after all adaptive testing: most falsification solvers rely on stochastic
guess; hence their failure do not prove “M (σin) |= ϕ for every σin.” However in many real-world scenar-
ios falsification is as good as one gets, because of systems’ complexity and their black-box components
within. Existing stochastic optimization-based solvers (such as S-TaLiRo [8] and BREACH [13]) have
shown striking performance, too, scaling up to various Simulink diagrams from automotive applications.
Moreover, falsification has special appeal to real-world engineers: while it takes certain familiarity to
come to appreciate correctness proofs, counterexamples discovered by falsification easily convince en-
gineers that there are issues to be resolved.
Search of Cost Functions A technical cornerstone that set off the study of falsification is robust se-
mantics of temporal formulas [14, 15]. With CPS application in mind we assume that input and output
of our system model M are given by (time-variant) signals. For them it is standard to specify properties
using some temporal logic, such as metric interval temporal logic (MITL) [7] and signal temporal logic
(STL) [20]. In robust semantics [14, 15] a signal σ and a formula ϕ are assigned a continuous truth
value Jσ , ϕK ∈ R that designates how robustly the formula is satisfied. This departure from the conven-
tional Boolean semantics (where Jσ , ϕK ∈ {tt, ff}) allows one to adopt a hill climbing-style optimization
algorithm to look for a falsifying input signal.

Algorithm 1 is a high-level description of falsification by optimization. Here a cost function fϕ

carries a signal (output of the system M ) to a real; we assume that its value is linked with satisfaction
of ϕ , that is specifically, fϕ(τ)< 0 implies τ 6|= ϕ . We assume that the value of fϕ for a given input can
be effectively computed; we assume the same for the function M . Still in Line 3 the true solution may
not be available since the global structure of M is unknown—this reflects our black-box view on M .
Therefore in Line 3 we make a guess based on the previous trials.

The robust semantics of temporal formulas in [14, 15] is a prototype of such a cost function (Algo-
rithm 1). Subsequently in the study of falsification, search of better cost functions has been an important
topic. For example, sometimes time robustness [14]—as opposed to space robustness in the original
work [15]—yields smoother hills to climb down, aiding optimization. Combination of space and time
robustness is pursued in [5], where they enrich logics with averaged modalities to systematically en-
hance expressivity. Additional bias is put on cost functions in [12] so that search for falsifying input
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covers a greater number of discrete modes of a system M . After all, the question here is how to enrich
cost functions, extracting additional information from a system M and/or a specification ϕ .

Contribution: Causality Aid in Falsification In this paper we build on the observations in [4] and
propose to aid falsification using causal information. We lay out the idea using a simple example.

Example 1 (incremental counter) Consider the pseudocode shown on
the right. We think of: i0, i1, . . . iN ∈ [−1,1] as the values of a time-variant
input signal i at time t = 0,1, . . . ,N, respectively; Lines 1–10 as a system
M that takes such input and returns the value of cnt as output; and the
assertion cnt≤N as a specification ϕ , that is 2[N,N](cnt≤N) in temporal
logic. It is clear that, to falsify ϕ , all the input values i0, i1, . . . , iN must
lie in (−0.2,0.2); otherwise the counter is reset and never reaches cnt=
N +1.

Input: i0, i1, . . . , iN ∈ [−1,1]
Output: cnt

1: t := 0;cnt := 0
2: while t ≤ N do
3: flag := (|it |< 0.2);
4: if flag then
5: cnt := cnt+1
6: else
7: cnt := 0;
8: end if
9: t := t +1;

10: end while
11: assert(cnt≤ N)

Now consider solving the falsification problem here. It turns out that existing falsification solvers
have hard time in doing so: besides the apparent hardness of the problem (following the uniform distri-
butions the success probability would be 0.2N), there is the following “causal” reason for the difficulty.

Assume iN 6∈ (−0.2,0.2), meaning that cnt is reset to 0 at the last moment. In this case the earlier
input values i0, i1, . . . , iN−1 have no effect in the final output cnt, nor in the robust semantics of the
specification 2[N,N](cnt ≤ N). Therefore there is no incentive for stochastic optimization solvers to
choose values i0, . . . , iN−1 from (−0.2,0.2). More generally, desired bias is imposed on earlier input
values i0, . . . , ik only after later input values ik+1, . . . , iN have been suitably fixed. Given the system
(the above program) as a black box and the specification 2[N,N](cnt ≤ N) alone, there is no way for
optimization solvers to know such causal dependency.

ϕ5 =
�[5,5](cnt≤ 5)

ϕ4 =
�[4,4](cnt≤ 4)

ϕ0 =
�[0,0](cnt≤ 0)

tt ff
0.8 0.2

ϕ3 tt ff
tt 1 0
ff 0.8 0.2

ϕ4 tt ff
tt 1 0
ff 0.8 0.2

Figure 1: Causality annotation for incre-
mental counter (where N = 5)

Our enhancement of falsification algorithms consists of
leveraging causal information expressed as Bayesian net-
works. See Fig. 1, where we fix N = 5 for presentation. The
Bayesian network expresses causal dependence of the orig-
inal specification ϕ = ϕ5 on other specifications ϕ0, . . . ,ϕ4.
The newly introduced specifications ϕi = �[i,i](cnt ≤ i), for
each i = 0, . . . ,4, express that the counter cnt has already
been reset by time i. Therefore in order to falsify ϕ5, i.e. to
keep incrementing cnt, these additional specifications must
be falsified, too. The last observation is expressed in the
Bayesian network in Fig. 1, specifically in the conditional
probabilities Pr

(
Jϕi+1K = ff | JϕiK = tt

)
= 0.

Now our falsification algorithm looks not only at ϕ5 but
also at the other predicates ϕ0, . . . ,ϕ4. This way we successfully impose bias on earlier input values
i0, . . . , i4 to lie in (−0.2,0.2)—as demonstrated by our experimental results later.

Following the idea illustrated in the last example, our main contribution in this paper is a causality-
aided falsification algorithm that uses Bayesian networks of temporal formulas as input on the specifica-
tion side. Such a Bayesian network can be derived from an original specification ϕ alone; they can also
be derived through inspection of a system model M ; or we can use both ϕ and M . In order to efficiently
leverage the causal information expressed by a Bayesian network, we follow [9,10] and use variations of
Gaussian process optimization as our optimization algorithms (Line 3 of Algorithm 1). The feature that
they allow to guess both average and variance (see §2.2) turns out to be particularly useful. We imple-
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mented the algorithm; our experimental results, although preliminary, seem to support the effectiveness
of our approach.

General methodologies of deriving such Bayesian networks are outside the paper’s focus, although
we do have some preliminary ideas and we exploited them for our current examples. One is the use of
probabilistic predicate transformers that are a classic topic in semantics [18, 19, 22] and are shed fresh
light on in the context of probabilistic programming languages (see e.g. [23]). This idea follows the ear-
lier observations in [6]; it successfully generates the Bayesian network in Fig. 1 for Example 1. Another
idea is parse tree-like decomposition of an original temporal formula ϕ; we decorate the resulting tree
with conditional probabilities that we learn through sampling. These methods will be described in our
forthcoming papers.

Related Work Besides search of better cost functions, an important direction in the study of falsifica-
tion is improving optimization algorithms (that are used in Line 3 of Algorithm 1). In the falsification
literature many different algorithms have been used and studied: they include simulated annealing, ant-
colony optimization, the cross-entropy method, the Nelder-Mead algorithm, and so on [8,13,25] . In [11]
a discrete algorithm of Tabu search is employed for enhanced coverage.

Yet another important direction is multiple shooting falsification [27, 28] where, unlike single shoot-
ing approaches like in this paper, a bunch of trajectories are investigated in a single iteration relying on
suitable abstraction of a system model and/or a specification. We believe our idea of causality aid in
falsification is orthogonal to the choice between single and multiple shooting; we will study as future
work the effect of causality in multiple shooting falsification.

2 Backgrounds

2.1 STL and Robust Semantics

Here we present signal temporal logic (STL) [20] as our formalism for expressing (original, without
causal information) specifications. We also present its robust semantics [14] that give the prototype of
the cost function fϕ in Algorithm 1. Our cost function will be derived from the robust semantics of the
formulas in a Bayesian network. At the same time we emphasize that our methodology of causality-aided
falsification does not depend on the specific underlying specification formalism of STL.

Definition 2.1 (syntax of STL) The set of STL formulas are recursively defined as follows.

ϕ ::= g(y)> 0 | ¬ϕ | ϕ1∨ϕ2 | ϕ1 UI ϕ

Here g(y) is some real-value function over the set of variables y = {y1, . . . ,yn}, and I is a closed non-
singular interval in R≥0.

We also introduce the following standard temporal operators as abbreviations: the eventually operator
3Iϕ , (∞ > 0)UI ϕ and the always operator �Iϕ , ¬3I¬ϕ .

Definition 2.2 (Boolean semantics of STL) Let σy : R≥0→Rn be a signal, that is, a function that maps
time τ to the values σy(τ) of the variables y at time τ . We define the (Boolean) validity of an STL formula
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over a signal σy, as follows. Here σ τ
y stands for the time-shifted signal such that σ τ

y (τ
′), σy(τ + τ ′).

σy � g(y)> 0 def.⇐⇒ the inequality g(σy(0))> 0 holds

σy � ¬ϕ
def.⇐⇒ σy 2 ϕ

σy � ϕ1∨ϕ2
def.⇐⇒ σy � ϕ1 or σy � ϕ2

σy � ϕ1 UI ϕ2
def.⇐⇒ ∃τ ∈ I.

(
σ τ

y � ϕ2 and ∀τ ′ ∈ [0,τ].σ τ ′
y � ϕ1

)
The following “quantitative refinement” of the semantics of STL initiated the research program of

falsification by optimization [14, 15].

Definition 2.3 (robust semantics of STL) For a signal σy and an STL formula ϕ , we define the robust-
ness Jσy, ϕK ∈ R∪{∞,−∞} inductively as follows. Here u and t denote infimums and supremums of
real numbers, respectively.

Jσy, g(y)> 0K , g(σy(0))
Jσy, ¬ϕK , −Jσy, ϕK
Jσy, ϕ1∨ϕ2K , Jσy, ϕ1Kt Jσy, ϕ2K
Jσy, ϕ1 UI ϕ2K ,

⊔
τ∈I
(
Jσ τ

y , ϕ2Ku
d

τ ′∈[0,t]Jσ τ ′
y , ϕ1K

)
Note that the sign of robustness coincides with the Boolean semantics. That is, Jσy, ϕK > 0 implies

σy � ϕ , and Jσy, ϕK < 0 implies σy 2 ϕ . Conversely, σy � ϕ implies Jσy, ϕK ≥ 0, and σy 2 ϕ implies
Jσy, ϕK≤ 0.

2.2 Gaussian Process Optimization

In this paper we follow the workflow in Algorithm 1, deriving the cost function fϕ in it from a Bayesian
network. For the optimization step (Line 3 of Algorithm 1) we use Gaussian process optimization—
we follow [4, 9, 10] about this choice. It has a feature that it suggests the global shape of an unknown
function; this feature turns out to be convenient for our purpose of integrating causal information in
falsification. We present a brief review of the topic; see e.g. [24] for details.

l = 1 l = 0.1 l = 0.01

Figure 2: Gaussian process regression with the squared-exponential covariance kernel k(x,x′) =
exp(−||x−x′||2/2l2) with different length scale (l = 1,0.1,0.01). The black dots designate previous ob-
servations D =

{
(x1, f (x1)), . . . ,(xt , f (xt))

}
. By the definition of Gaussian processes, when one looks

at the vertical section of each figure at specific input x∈X, the shade of blue forms a normal distribution
GP(µ,k)(x) = N

(
µ(x),k(x,x)

)
. The center of the pipe (the light-blue line in each figure) stands for

the expected value µ(x) of the unknown function f ; the width of the pipe stands for its variance k(x,x).
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2.2.1 Gaussian Process Regression

Let f be an unknown function, from a certain input domain to the set of real numbers, about which
we wish to infer certain properties. (For Algorithm 1 we would take f = fϕ(M ( ))). In Gaussian
process regression the shape of f is estimated assuming that f is a probabilistic process called a Gaussian
process.

We start with some formal definitions. For more detail, see e.g. [24].

Notation 2.4 We let N (µ,k) stand for the probability density function of the multivariate Gaussian
distribution whose mean vector is µ and covariance matrix is k.

Definition 2.5 (Gaussian process) A Gaussian process is a family of probabilistic variables (zx)x∈X
such that each of its finite subset (zx1 , . . . ,zxt ) has a joint Gaussian distribution. A Gaussian process is
determined by a pair (µ,k) of its mean function µ : X→ R and its covariance function k : X×X→ R;
this Gaussian process is denoted by GP(µ,k). For this we have

(zx1 , . . . ,zxt )
> ∼N (µ,k) where µ i = µ(xi) and ki j = k(xi,x j)

for each finite subset {x1, . . . ,xt} of X. We write GP(µ,k)(x1, . . . ,xt) for the above multivariate Gaussian
distribution N (µ,k).

In Fig. 2 is how an unknown function f can be guessed by Gaussian processes. The blue pipe
designates the estimated values of the unknown function f : the farther input x is from the observed
points, the thicker the pipe is (that means bigger uncertainty).

In the regression of f using Gaussian processes, a choice of a covariance function k : X×X→ R
determines smoothness of f . A common template for covariance functions is the squared-exponential
kernel function kl(x,x′) , exp(−l · ‖x− x′‖2/2), where l is so-called the length scale parameter. In
practice, we pick a good length scale parameter by cross validation. As we see in Fig. 2, the choice of a
covariance function yields the following tendencies in Gaussian process regression:

• The bigger the distance ‖x−x′‖ is, the smaller the covariance is, thus the harder it gets to estimate
the value fϕ(x) from the observation of the value fϕ(x′).

• Covariance is smaller too when the length scale parameter l is bigger.

One advantage of Gaussian process regression is that, given a set of observations, the posterior
process is described analytically. Let random variables (zx)x∈X obey a prior Gaussian process GP(µ,k);
and D =

{
(x1,z1), . . . ,(xt ,zt)

}
be a set of observations. Then the posterior distribution, denoted by

GP(µ,k;D), is given by the Gaussian process GP(µ ′,k′), where

µ
′(x) = µ(x)+kD(x)kDD

−1( [z1 . . .zt ]
>− [µ(x1) . . .µ(xt)]

> ),
k′(x,x′) = k′(x,x′)−kD(x)kDD

−1kD(x′)
>
.

Here kD(x) = [k(x1,x) . . .k(xt ,x)], and kDD is a t×t matrix whose i, j-component is k(xi,x j). In practice,
given observed data D =

{
(x1, f (x1)), . . . ,(xt , f (xt))

}
and a covariance kernel function k, we estimate

the function f as GP(0,k;D) where 0 denotes the function constantly zero.
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time t = 1
(Next: x1 = 5.5)

t = 2
(Next: x2 = 0)

t = 3
(Next: x3 = 10)

t = 4
(Next: x4 = 2.6)

t = 5
(Next: x5 = 7.8)

t = 6
(Next: x6 = 1.8)

t = 7
(Next: x7 = 3.3)

t = 8
(falsified)

Figure 3: Illustration of the GP-PSat algorithm. In each figure, the red line is for the unknown function
f to minimize; and the blue cloud is the Gaussian process estimation GP(µ,k) of f . At time t = 1 the
input is chosen randomly (say x1 = 5.5). Subsequently we pick the point xt that minimizes the probability
PrGP(µ,k)( f (x)> 0). We observe that, as the algorithm proceeds, the estimate of f becomes finer too.

2.2.2 Gaussian Process Optimization and Acquisition Function

Gaussian process regression allows us to predict, based on observations in D, the value f (x) for each
input x as a normal distribution GP(µ,k)(x). To complete an optimization scenario, we wish to pick a
candidate x ∈ X for which f (x) is small.

It is well-known that, for such choice, a balance is important between exploration (i.e. bias toward
a bigger variance k(x,x)) and exploitation (bias toward a smaller expected value µ(x)). A criterion for
this balance is called an acquisition function—we pick x at which the acquisition function is minimum.
Assuming that an acquisition function ψ(x;GP(µ,k)) has been fixed, the whole procedure for Gaussian
process optimization can be described as in Algorithm 2. Note that, in Line 3 of Algorithm 2, we usually
employ another optimization solving method (such as simulated annealing).

In falsification, our goal would be to find x such that f (x) < 0. As a natural choice of acquisition
functions, we focus on the following probability in this paper.

Definition 2.6 (Probability of Satisfaction)

ψ(x;GP(µ,k)) , PrGP(µ,k)( f (x)> 0) (1)

Here PrGP(µ,k)( f (x)> c) is an abbreviation of Pr( f (x)> c | f (x)∼GP(µ,k)(x)).

We write GP-PSat for Algorithm 2 under ψ as an acquisition function; Fig. 3 illustrates how it
works.

The acquisition functions we will use are extension of this ψ . We note, however, that this acquisition
function is commonly known as “pure and impractical” in the field of Gaussian process optimization.
More sophisticated acquisition functions that are known include probability improvement, expected im-
provement [21], upper confidence bound [26] and so on. At the time of writing it is not clear how these
acquisition functions can be used as part of our framework in §4.
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Algorithm 2 Gaussian process optimization GPOptimization(D,k,ψ)

Input: a covariance function k : X×X→R; an acquisition function ψ; and an initial data set D= {(x′1, f (x′1)), . . . ,(x
′
s, f (x′s))}

Output: input x ∈ X for which f (x) is small
1: for t = 1,2, . . . do
2: GP(µ ′,k′) = GP(0,k;D); . Estimate the unknown function f
3: xt = argminx∈X ψ(x;GP(µ ′,k′)); . Choose new sample input
4: D = D∪{(xt , f (xt))}; . Observe the corresponding output
5: end for
6: return xt

3 Causality in Falsification: Further Examples

In addition to Example 1, we shall exhibit two more examples of falsification problems; for each, we
introduce a Bayesian network that encodes suitable causal information, too. The latter will be exploited
in our causality-aided algorithm in §4.

3.1 Example Model 2: Coincidental Sine Waves

Let us consider the model in Fig. 4. In this simple model there are four sine waves x1(t), . . . ,x4(t) of
different frequency, and we pick their initial phases i1, . . . , i4 as input of the system.

As a specification, we pick the following formula—it is falsified when the peaks of four sine waves
correspond.

ϕ ≡ �[0,10](
∨

i=1,...,4

xi < 0.99) (2)

We see that falsifying ϕ with pure random sampling is difficult because ϕ is false only in rare cases.
What is worth, the (conventional) robustness of ϕ does not always guide us to the counterexamples.

Example 2 Let us consider the subformula
∨

i=1,...,4 xi < 0.99. When we compare the values (x1,x2,x3,x4)=
(1,1,1,0) and (0,0,0,1), we could say the former is “closer” to falsifying the subformula—the three out
of four sine waves simultaneously at a peak. However, these robustness values are the same 0.99 in both
cases.

In this case, we sometimes divide the difficulty into small pieces—first get x1 and x2 simultaneously
at a peak; then get x3 and x4 at a peak; finally, try to make them synchronize. Let us introduce for-
mulas ϕ12 and ϕ34 such that falsifying them means matching the peak of x1,x2, and x3,x4 respectively.
Decomposing ϕ into ϕ12 and ϕ34 might help us in falsification for the following reasons.

• The small formulas ϕ12 and ϕ34 are much easier to falsify compared to ϕ .

• Moreover, the robustness mapping fϕ12(M ( )) and fϕ34(M ( )) have much simpler dynamics
than the one of the original specification ϕ , so the Gaussian process regression for the small for-
mulas tend to work better than the one for ϕ .

The Bayesian network B in Fig. 5 is devised to express this intuition. For example, the formula ϕ is
true with probability 1 when either ϕ12 or ϕ34, otherwise ϕ becomes false with small probability 0.1. As
shown in Fig. 6, the conditional joint distribution PrB(− | JϕK = ff) tells us the fact that ϕ is false only if
both ϕ12 and ϕ34 are false.
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Input: i1, . . . i4 ∈ [0,1]
Output: x1(t), . . . ,x4(t)

for each t ∈ R≥0
x1(t) = sin(1.1t + i1);
x2(t) = sin(1.2t + i2);
x3(t) = sin(1.3t + i3);
x4(t) = sin(1.4t + i4);

Figure 4: System model for §3.1

ϕ:
�(p12∨

p34)

ϕ12:
�p12

ϕ34:
�p34

tt ff
0.9 0.1

tt ff
0.9 0.1

ϕ12 ϕ34 tt ff
tt tt 1 0
tt ff 1 0
ff tt 1 0
ff ff 0.9 0.1

where(
p12 ≡ x1 < 0.99∨ x2 < 0.99
p34 ≡ x3 < 0.99∨ x4 < 0.99

)

Figure 5: Bayesian network for §3.1

PrB(−)
ϕ1 ϕ2 ϕ

tt tt tt 0.81
tt tt ff 0
tt ff tt 0.09
tt ff ff 0
ff tt tt 0.09
ff tt ff 0
ff ff tt 0.009
ff ff ff 0.001

PrB(− | JϕK = ff)
ϕ1 ϕ2 ϕ

tt tt tt 0
tt tt ff 0
tt ff tt 0
tt ff ff 0
ff tt tt 0
ff tt ff 0
ff ff tt 0
ff ff ff 1

PrB(−)
ϕ12 = tt 0.9
ϕ12 = ff 0.1
ϕ34 = tt 0.9
ϕ34 = ff 0.1
ϕ = tt 0.999
ϕ = ff 0.001

PrB(− | JϕK = ff)
ϕ12 = tt 0
ϕ12 = ff 1
ϕ34 = tt 0
ϕ34 = ff 1
ϕ = tt 0
ϕ = ff 1

Figure 6: Unconditional/conditional joint distributions in the Bayesian network of Fig. 5

ϕ

∼= ϕv∧ϕω

ϕv:
�v < 120

ϕω :
�ω < 4780

tt ff
0.99 0.01

tt ff
0.9 0.1

ϕv ϕω tt ff
tt tt 1 0
tt ff 0 1
ff tt 0 1
ff ff 0 1

Figure 7: Bayesian network for §3.2

PrB(−)
ϕv ϕw ϕ

tt tt tt 0.891
tt tt ff 0
tt ff tt 0
tt ff ff 0.099
ff tt tt 0
ff tt ff 0.009
ff ff tt 0
ff ff ff 0.001

PrB(− | JϕK = ff)
ϕv ϕw ϕ

tt tt tt 0
tt tt ff 0
tt ff tt 0
tt ff ff 0.908
ff tt tt 0
ff tt ff 0.083
ff ff tt 0
ff ff ff 0.009

PrB(−)
ϕv = tt 0.99
ϕv = ff 0.01
ϕw = tt 0.9
ϕw = ff 0.1
ϕ = tt 0.891
ϕ = ff 0.109

PrB(− | JϕK = ff)
ϕv = tt 0.908
ϕv = ff 0.092
ϕw = tt 0.083
ϕw = ff 0.917
ϕ = tt 0
ϕ = ff 1

Figure 8: Unconditional/conditional joint distribu-
tions in the Bayesian network of Fig. 7
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3.2 Example Model 3: Automatic Transmission

The last example is the automatic transmission model from the benchmark of temporal logic verifica-
tion [16]. This model is still miniature, but an elaborate mimicry of the systems in the real world hence
suitable for our purpose.

As a specification ϕ to falsify, we use the following formula. It is taken from [16] (it is ϕAT
2 there).

�(v < 120∧ω < 4780)

Here the variable v and ω stand for the speed of the vehicle and the angular velocity of the engine rotation
respectively.

We know that we can falsify ϕ either by violating the speed limit (v < 120) or the engine rotation
limit (ω < 4780). In this model, ω takes the values in the range around [0,4800] while v does around
[0,120]. Note that their scales are very different: hence in the most of the cases, the robustness of the
ω-component is likely to be shadowed by the one of the v-component. As a consequence, we expect that
conventional falsification solver only try to falsify by the violation of the speed limit v < 120.

The Bayesian network annotation is also effective in such a situation. That is, we can add the in-
formation about “which is more likely to happen, the violation of the speed and the rotation limit.” (In
actual deployment such insights will be provided by engineers’ domain knowledge.) Let assume that
the probabilities of the violation of the speed and the rotation limit are 0.01 and 0.1 respectively. This
information is expressed in Fig. 7, where the conditional probabilities for ϕ simply encode logical rela-
tionship (note that ϕ is semantically equivalent to ϕv∧ϕω ) however, the probabilities at leaves reflect the
above insight.

Remark 3.1 In §3.1 and §3.2, as an indicator of robustness, we employed the (space) robust semantics of
STL in [14] and shown that it is not sensitive enough for some falsification scenarios. In contrast to [14],
the metric-based robustness of MITL in [15] has a degree of freedom to capture the lacked notions.
For example in §3.2, we could solve the falsification problem more efficiently if we could re-scale v
and ω appropriately, and this re-scaling is nothing but the defining the metric space in [15]. However,
defining such a metric space itself is challenging and needs expert’s domain knowledge—similarly as our
framework needs suitable causal information. We expect that our causality-aided framework is a viable
option compare to finding a suitable metric.

4 Falsification with Causality Annotation

Given the backgrounds in §2 and the examples in §3, we are now ready to ask the question: given a
falsification problem and a Bayesian network annotation about causality, what cost function should we
optimize? In this section, we will give some answers to the question by lifting up the conventional notion
of acquisition functions which we reviewed in §2.2 to the multi-formula setting.

Consider one of the Bayesian networks that we have seen in the paper. Let B denote the Bayesian
network; and let Φ = {ϕ1, . . . ,ϕN} be the set of formulas that appear there. Now assume that we are
running the Gaussian regression not only for fϕ = JM ( ),ϕK but also fϕi = JM ( ),ϕiK for all the
formulas ϕi in the Bayesian network.

The regression result for fϕi gives us the probabilistic “forecast” of the truth values assignment of the
formulas Θ ∈ 2Φ as follows.
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Notation 4.1 Let GP(µi,ki)∼ fϕi be our estimate for fϕi ; we can use this data to estimate the probability
of obtaining Θ as the truth assignment, under an input value x. Precisely: let Θ be the assignment
(ϕ1 = θ1, . . . ,ϕN = θN) where θi ∈ {tt, ff}; then

PrGP(x)(Θ) , PrGP(µ1,k1)

(
fϕ1(x) R1 0

)
· · ·PrGP(µN ,kN)

(
fϕN (x) RN 0

)
, (3)

where Ri is > if θ1 = tt, and < otherwise.

4.1 KL Divergence based acquisition function

Recall the scenario in §3.1—from the conditional joint distribution PrB(− | JϕK = ff), we see that the
both small formulas ϕ12 and ϕ34 also should be false to synchronize all the peaks of the sine waves.

Inspired from the above example, we propose the following criteria to choose the next candidate x as
falsifying input.

Definition 4.2 (An acquitision function ψB(x))

x = argmin
x

ψB(x) where ψB(x) = DKL

(
PrB(Θ | JϕK = ff)

∣∣∣∣∣∣∣∣PrGP(x)(Θ)

)
Here DKL is the Kullback Leibler divergence—a measure of the difference between two probabilistic
distributions. Intuitively, with this criteria, we pick the next input x with which the probabilistic forecast
PrGP(x)(Θ) by regression becomes “closer to the conditional joint distribution PrB(Θ | JϕK = ff)”.

Example 3 Let us consider the sine waves model in §3.1. From simple calculation, we see that the
acquisition function ψB is as follows.

ψB(x) =− logPrGP( fϕ(x)< 0)− logPrGP( fϕ12(x)< 0)− logPrGP( fϕ34(x)< 0)

Hence minimizing ψB(x) means trying to falsify all the formulas ϕ , ϕ12, and ϕ34.

Remark 4.3 In this paper, we assume that PrB(JϕK = ff) is not 0 nor 1 on the given Bayesian network
B. In the former case, ψB(x) is undefined because PrB(JϕK = ff) is 0, and the latter case, ψB(x)
is constantly 0 because PrB(Θ | JϕK = ff) = PrB(Θ). We believe this is reasonable if we believe the
given annotation B is correct—in case PrB(JϕK = ff) is 0 (or 1) falsification never succeeds (or always
succeeds, respectively).

The resulting extension of the GP-PSat algorithm (§2.2) with Bayesian networks is presented in
Algorithm 3.

4.2 Another acquisition function based on the difference of KL divergence

Aside from the acquisition function ψB in Def. 4.2, we propose another criteria.

Definition 4.4 (Another acquitision function ψ ′B(x))

x = argmin
x

ψ
′
B(x) where

ψ
′
B(x) = DKL

(
PrB(Θ | JϕK = ff)

∣∣∣∣∣∣∣∣PrGP(x)(Θ)

)
−DKL

(
PrB(Θ)

∣∣∣∣∣∣∣∣PrGP(x)(Θ)

)
.
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Algorithm 3 Extension of the GP-PSat algorithm with Bayesian network annotation, for falsification
Input: an input space X; a system M ; a specification ϕ to falsity; a Bayesian network B whose nodes are labeled with formu-

las Φ = {ϕ1, . . . ,ϕN}; a covariance function k : X×X→ R; and an initial data set Di = {(x′1, fϕi(x′1)), . . . ,(x
′
s, fϕi(x′s))}

for each i = 1, . . . ,N
1: for t = 1 . . .T do
2: GP(µi,ki) = GP(0,k;Di) for each i = 1, . . . ,N;
3: . Estimate the cost functions fϕ1 , . . . , fϕN by Gaussian process regression
4: xt = argminx∈X ψB(x); . Choose a new sample input by the acquisition function
5: Di = Di∪{(xt ,JM (xt), ϕiK)} for each i = 1, . . . ,N; . Observe the robustness
6: if JM (xt), ϕK < 0 then return xt ; . The specification ϕ is falsified
7: end if
8: end for

One of the advantages of this acquisition function ψ ′B(x) is that we can extract it to a simpler form
as follows.

ψ
′
B(x) = ∑

ϕi∈Φ

( (
PrB(JϕiK = tt)−PrB(JϕiK = tt | JϕK = ff)

)
log PrGP( fϕi(x)> 0)

+
(
PrB(JϕiK = ff)−PrB(JϕiK = ff | JϕK = ff)

)
log PrGP( fϕi(x)< 0)

)
.

Example 4 Consider the incremental counter in Example 1. From the Bayesian network in Fig. 1 we
extract the following acquisition function ψ ′B.

ψ
′
B(x) = ∑

t∈[0,5]
(1−0.2t+1)

(
logPrGP( fϕt (x)> 0)− logPrGP( fϕt (x)< 0)

)
For each formula ϕt , when PrGP( fϕt (x) > 0) becomes bigger, so is the value ψ ′B(x). Therefore the
algorithm tries to make all the formulas to be false. This matches our intuition in §1.

Example 5 Let us consider the automatic transmission problem in §3.2. The Bayesian network in Fig. 7
tells that most of the failure of ϕ is caused by that of ϕω . The acquisition function ψ ′B is as follows.

ψ
′
B(x) = logPrGP( fϕ(x)> 0)− logPrGP( fϕ(x)< 0)

+0.082
(

logPrGP( fϕv(x)> 0)− logPrGP( fϕv(x)< 0)
)

+0.817
(

logPrGP( fϕω
(x)> 0)− logPrGP( fϕω

(x)< 0)
)

Hence as we expected, the satisfaction of ϕω is a bigger factor than that of ϕv.

We note that extension of other (more sophisticated) acquisition functions (e.g. GP-UCB) is not
straightforward. It is one direction of our future work.

5 Implementation and Experimental Results

5.1 Implementation

Our implementation of Algorithm 3 consists of the following three open source libraries and one new
part. They are mostly written in MATLAB.

Computing the robustness We employ BREACH [2] to compute the simulation output of the system
M (x) and the robustness JM (x), ϕK as defined in Def. 2.3.
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Gaussian process regression Line 2 in Algorithm 3 is done by GPML MATLAB Code version 4.0 [3],
a widely used library for computation about Gaussian processes.

Inference on Bayesian networks We employ Bayes Net Toolbox for Matlab [1] for inference on Bayesian
networks.

The algorithms GP-PSat and GP-PI aided by Bayesian networks This part is new. Optimization of
an acquisition function ψ is done by the following two steps: 1) we randomly pick initial samples
x1, . . . ,x100 and compute the corresponding values of ψ; and 2) from the minimum xi of the one
hundred, we further do greedy hill-climbing search.

5.2 Experiments

Using our implementation we conducted the following experiments. We do experiments for the three
falsification problems; Problem 1 is from Examples 1, Problem 2 from §3.1 and Problem 3 from §3.2.
For the automatic transmission example (in §3.2) we used two different parameters; Problem 3-1 is with
the specification ϕ =�(v >−1∧ω < 4780); and Problem 3-2 is with ϕ =�(v < 120∧ω < 4780).

The experiments were done on a ThinkPad T530 with Intel Core i7-3520M 2.90GHz CPU with
3.7GB memory. The OS was Ubuntu14.04 LTS (64-bit). A single falsification trial consists of a number
of iterations—iterations of for-loop in line 2 in Algorithm 1—before it succeeds or times out (after 100
seconds). For each problem we made ten falsification trials. We made multiple trials because of the
stochastic nature of the optimization algorithm. We measured the performance by the following criteria:

• Success rate: The number of successful trials (out of ten).

• The number of iteration loops: The average number of iteration loops to find the counterexample.

• The computational time: The average time to find the counterexample.

Besides our two extended algorithms with the acquisition functions (in Def. 4.2 and 4.4), we mea-
sured the performance of the conventional Gaussian process optimization algorithms GP-PSat and com-
pare them.

The experimental results are in Table 1. We see that our causality-aided approach (GP-PSat with
ψB and ψ ′B) significantly outperformed others for Example 1. This suggests promising potential of the
proposed approach in the context of probabilistic programs—all the more because Bayesian networks
like in Fig. 1 could be systematically derived using probabilistic predicate transformers.

Our algorithms performed at least as well as the conventional GP-PSat, for the other examples (Prob-
lem 2, 3-1 and 3-2). In Problem 3-1 and 3-2 we observe that our algorithms took fewer iterations before
successful falsification. This is potentially an advantage when we wish to deal with bigger Simulink
models as system models M (their numerical simulation, i.e. computation of M (σ), is computationally
expensive). That said, we believe the idea of causality aid in falsification can be a breaking one, with a
potential of accelerating falsification by magnitudes. Its current performance for Problem 3 (that is from
cyber-physical systems, a main application domain of falsification) is therefore not satisfactory. We will
therefore pursue further improvement of our algorithm (Algorithm 3).

6 Future Work

In this paper, we show that the causality information given in the form of a Bayesian network helps
us to solve falsification problems efficiently. However, we still have many challenges in constructing
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Table 1: Experiment results
Problem 1 Problem 2 Problem 3-1 Problem 3-2

Succ. Iter. Time Succ. Iter. Time Succ. Iter. Time Succ. Iter. Time
Algorithm (Succ.) (Succ.) (Succ.) (Succ.) (Succ.) (Succ.) (Succ.) (Succ.)
GP-PSat 0 208.2 100.0 5 122.4 77.2 10 49.5 41.5 10 23.0 6.7

- - 93.6 54.4 49.5 41.5 23.0 6.7
GP-PSat with ψB 7 109.3 81.3 6 62.5 77.4 8 32.0 56.7 10 15.7 7.2

105.0 73.2 52.7 62.4 28.0 45.8 15.7 7.2
GP-PSat with ψ ′B 5 104.5 76.3 5 63.2 81.0 7 36.6 64.3 10 13.7 25.0

92.0 52.7 51.2 62.1 29.8 49.0 13.7 25.0

such helpful Bayesian networks. As we discussed in §1, we expect that the theory of probabilistic
programming languages will shed light on the problem, but at any rate we need more practical example
scenarios to evaluate the viability of our approach.

Moreover, we conceive that our proposed algorithm in §4 contains the potential for many improve-
ments. As we note in §2.2.2, the acquisition function in GP-PSat is simple, but not the state-of-the-art
in the field of Gaussian process optimization. Extending our approach to other type of the acquisition
function is not straightforward, but we think it is within possibility.
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