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A game-theoretic model for the study of dynamic networksnialgzed. The model is motivated
by communication networks that are subject to failure ofewdnd where the restoration needs
resources. The corresponding two-player game is playeseeet “Destructor” (who can delete
nodes) and “Constructor” (who can restore or even createsiodder certain conditions). We also
include the feature of information flow by allowing Constiorcto change labels of adjacent nodes.
As objective for Constructor the network property to be axtad is considered, either as a safety
condition or as a reachability condition (in the latter cstseting from a non-connected network). We
show under which conditions the solvability of the corrasgiog games for Constructor is decidable,
and in this case obtain upper and lower complexity boundsyelsas algorithms derived from
winning strategies. Due to the asymmetry between the pdagafety and reachability objectives are
not dual to each other and are treated separately.

Keywords: infinite games, dynamic networks, fault-tolerant systems

1 Introduction and Motivation

A classical scenario for the application of game-theometéthods in verification is the antagonism be-
tween a possibly maliciousnvironmentand asysten(or its control component) that has to guarantee a
desired behavior given any choice of actions of¢hgironment The task of verification is then to show
that in this game betweegnvironmentand systenthe playersystemhas a winning strategy, and in an
ideal situation it should even be possible to generate sweim@ing strategy from the specification of
the desired behavior (defined, e.g., in terms of a formulamiioral logic).

The present paper pursues this view in a specific contextighaftcentral interest in the theory of
communication networks. We study the antagonism betwaguplgrs” and “users” of a communication
network on one side and the generation of faults (either Iyraaor by malicious interference) on the
other. So, we considetynamic network games which a game position is just given by a current shape
of a network. The party that generates faults is modeled dgysepcalledDestructorwho can “delete”
nodes in a network. In the present paper we only considergasaim the set of nodes (and induced
changes in the set of edges). The more general case tha afig® including edges in the dynamics
involves heavier notation, but does not affect the genersiliits as they appear in this paper. (More
precisely, our framework is able to simulate edge deletipnsiodeling each edge as a vertex|[15].)

The other parties involved are the suppliers of the netwaoitk the users. There are many ways
to model these parties. We consider here a model that repiseaecompromise between conceptual
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Figure 1: Movement of strong node with Figure 2: Creation of a new node by a Bet=
restoration. {u1, Uz, us} of strong nodes.

simplicity and adequacy for practical applicat@nihe aspect of simplicity is introduced by a merge of
the two parties suppliers and users in a single player céllenkstructor This player has the power to
restore deleted nodes or even to create new nodes (i.etgiodethe network beyond its original shape),
matching the purpose of a supplier, and she also can traismimation along edges of the network,
matching the actions of an user. The latter feature is @@l the possibility to relabel two nodes that
are connected by an edge.

A detailed description of these possible actions by Desiruand Constructor yields a dynamic
network game in which these players carry out their movedterration, step by step changing the
shape and the labeling of the network. In the present papeanafyze these games only with one
objective (winning condition for Constructor), namely vihe objective to guarantee that the network is
connected. The objective arises in two versions: as a sgéetye in which connectivity of the network is
to be guaranteed forever by Constructor, or as a reachyafpdine in which Constructor has to construct
a connected network, starting from a disconnected one.eSigcassume complete information, these
games are trivially determined. Our aim is to clarify undéiah assumptions these games are effectively
solvable, i.e., that one can decide who wins (and in this tasmnstruct a winning strategy for the
winner). One should note that by the independent and vefgrdiit conceptions of the two players,
there is no direct duality between reachability and saféfgaiives; both games have to be analyzed
separately. On the other hand, a simplification is built imbo model by our decision only to declare
connectivity of the network as Constructor’s objective,,ithat the aim of the users to realize the transfer
of information from certain source nodes to target nodestisaken into account. (For a study of network
games including this aspect, see the paper [14].)

Before stating our results, let us sketch informally but iiittee more detail the definitions of Con-
structor’s actions, which she chooses from a given set esruiWe distinguish three different types of
rules. The first is concerned only with the “information flothtough the network evoked by the users;
nodes and edges as such stay fixed. A natural way to descisbastbect is to assume a labeling of the
nodes that may change over time. For instance, the lbalnodeu and a blank label on the adjacent
nodev are modified to the blank label anand the labeh on v, corresponding to a shift of the daga
from u to v. Only the labels of adjacent non-deleted nodes can chaogéhd same reason as in com-
munication networks only neighboring active clients arkedb send or receive messagesrefabeling
rule describes in which way Constructor may change labels ofcadjanodes. The other rules entail
a changes to the network structure. Constructor can restates, which could have existed before, or
create completely new nodes. These steps involve the cbottgirongness” of a node: a strong node
cannot be deleted, and it is the prerequisite for perforntimegrestoration and creation of nodes. One
can view strong nodes as maintenance resources of supplieich are located on some places in the
network. The strongness property may be propagated thredghs to existing nodes; being at some

Iwe thank our colleagues in the research cluster UMIC (UliighkSpeed Mobile Information and Communication) for
their contributions in devising the current model.
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game variant objective
allowed rules reachability safety
expanding
all undecidable undecidable
s-create, w-create, relabel undecidable KPEIME
s-create, move, relabel undecidable PRSE-complete
w-create, move undecidable open
non-expanding PSracehard /in EXPTIME  PSPACEcomplete
unlabeled NP-hard /in PBACE P SPACE-complete

Table 1. Summary of our results; for expanding games, wéndisish whether Constructor is allowed
to create strong nodes-€reatd, create weak nodesvfcreatg, movestrong nodes, aelabelnodes.

nodeu it can also be used to restore a deleted notig moving to it if there was an edge, V) in the
network before the deletion of (see Figuréll). For the creation of a node we can pick som8 skt
strong nodes, create a new nad@hat is or is not strong) and connect it by an edge with eacle oS
(see Figurél2). This corresponds to the assumption thaianaa “more expensive” than restoration. In
our framework, both actions are either feasible in genaralibject to constraints given by the labels of
the involved nodes; we will collect these constraintsnovemenandcreation rules

Our results clarify the solvability of thesmnnectivity gamem several versions, complementing a
result of [20] that the reachability problem (to reach a @miad network by Constructor) is undecidable
in the cases where the creation of new nodes is allowed. Gairrésults say that for safety games
solvability (for Constructor) is undecidable in the geherase but — maybe surprisingly — decidable
when either creation of new non-strong nodes is disallowedavement of strong nodes is disallowed.
The former problem is PEACE-complete, the latter is solvable irkETIME (where the input size is given
by the size of the initial network and the size of the rule $e€onstructor). Also in those restrictions
where creation of nodes or relabeling is completely digadid we sharpen the results of [20] (where
P Seace-hardness was shown) in obtaining A8 E-completeness.

For the last mentioned restriction (no creation of nodesratabelings), we finally obtain partial
results by providing lower and upper bounds; the proofsitlkie again the difference between safety
and reachability. We show that under the first restrictiolvataility by Constructor is P8acehard
(while the easily obtained upper bound ig®H' IME), and for the second restriction (no relabelings) this
solvability is in P$AcCE and NP-hard. An overview of the results is given in Table 1.

The paper is structured as follows. In the sequel of thisthiction we discuss related but technically
different approaches to network games. Sedtion 2 intratlee model in detail. Sectidd 3 offers the
results on safety games, whereas in Secflon 4 the solyabflieachability games is studied. We finish
by listing some selected perspectives from a very rich leajks of problems that remain to be treated in
this area combining practical issues with theoreticalasge

Related Work. Our game model was introduced in_[20]; we sharpen and exteesktpreliminary
decidability and complexity results. The game-theorepigraach is inspired bgabotage gamesvhich
van Benthem suggested [n [3]. There, a reachability proldeen graphs is considered, where a “Run-
ner” traverses a graph while a “Blocker” deletes an edge afieh move. The theory of these games and
many variants have been thoroughly studied in [18] 23, 11, 17
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Dynamically changing systems are also addressedrilipe algorithms(see [9,/4]). These find
applications in routing and scheduling problems in wirglasd dynamically changing wired networks
(see[[21] 25]). However, the only approaches we are awareheferthe adversarial also changes the
network structure is due to Awerbuch et al. [[1, 2]; there ainguobjective is faced with an adversary
that injects packets and also decides which connectioravailable. These studies aim at a competitive
analysis of the “communication throughput”: the number @livebred packets of an online algorithm is
compared to an optimal offline algorithm.

Another view on online algorithms adynamic algorithmgsee [7| 8]). Afully dynamic algorithm
refers to a dynamic graph in which edges are inserted andedeléhe focus of investigation is the
computational complexity of static graph properties witispgect to a given sequence of update steps
(see[16] 22]). The same idea leads tyaamic complexity theoryvhich deals with the complexity of
computing and maintaining an auxiliary structure; thissture entails the solution of a decision problem
for a dynamically changing instance (seel[27]).

Studies on a game-theoretic model for routing under adxiatsmndition have been started in [14].
Instead of a competitive analysis of a given online alganitthe aim is to check whether a given dynamic
scenario has a solution in form of a routing scheme (and tthegire a routing scheme if it exists).
This model is also inspired by the sabotage game model, boplemnentary to the present work. The
adversary deactivates edges and injects packets in themet@nd a solution of the game requires that
all packets must be delivered or that the overall number dkgta in the network is bounded.

Another interesting approach arises from the studies o&uhya versions of th&®ynamic Logic of
Permission(DLP), which is in turn an extension of tHeropositional Dynamic Logi¢PDL). In DLP,
“computations” in a Kripke structure from one state to aeothre considered which are subject to
“permissions” [19]. The logic DLgDyn (seel[6] 12]) extends DLP with formulas which allow updatés o
the permission set and thus can be seen as a dynamicallyichdfgpke structure. Nevertheless, all
the dynamics have to be specified in the formula; an advaissgent is not considered.

The idea of changing networks is of course studied in corside depth in the theory of graph
grammars, graph rewriting, and graph transformations [&e24]). While there the class of generable
graphs (networks) is the focus of study, we deal here withmibee refined view when considering the
evolvement of a two-player game and the properties of graghbarring in them. In the (one-player)
framework of model checking, we mention the workl[10], whgraph-interpreted temporal logics
introduced as a rule-based specification. A technique isldped to map a “graph transition systems”,
which nodes are graphs, to a finite Kripke structure, so tlaasical LTL model checking can be applied.

2 Dynamic Networksvia Games

We presenhetworksin the formG = (V,E, A, S, (Pa)acs) with
e afinite seV of vertices (also called nodes),
e an undirected edge relatidh
e a setA C V of active nodes
e asetSC A of strong nodes
e a partition ofV into setsP; for some label alphabét A node belongs t&; if it carries the labeh.

We say that a node ideactivatedor deletedif it is not active. Aweak nodas an active node which is
not strong. A network is connected if the graph that is induoyg the active vertices is connected, i.e.,
for any two active vertices, v there exists a path fromto v which only consists of active nodes.
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The dynamics of a network arises by the possible moves of tayeps,DestructorandConstructor
which are changing the respective current networklyAamic network gamwill be presented as a pair
¢ = (G,R) consisting of arinitial network Gas above and a finite sBtof rules for Constructor. The
two players play turn by turn in alternation; DestructortstaBoth players are allowed to skip as well.

Let us describe the rules that define the players’ possiltlersc When it is Destructor’s turn, he can
perform adeletion stefby deleting some weak nodec A\ S, the setA is changed t&\\ {v}. When it
is Constructor’s turn, she can choose a rule from her rul® et is applicable on the current network.
The rules inR can be of three different types.

Relabeling rule: A rule (a,b — c,d) allows Constructor to change the labalsndb of two active
adjacent nodes & into c andd, respectively. Formally, for two verticase P, andv € B, with
(u,v) € E the setdy, B, P, andPy are updated t&, \ {u}, R, \ {v}, P-U{u}, andPy U {v}.

For relabeling rules we will also consider rules with muéipelabelings in one turn. This corre-
sponds to our intuition that there can be a lot of informaflow in the network at the same time.
For example, for two relabeling steps in one turn we use theation (a,b — c,d; e, f — g,h).
The relabelings are applied one after the other, but in threegarn.

Movement rule: Arule (a ™% b) allows Constructor to shift the “strongness” from a strongethat

carries the labeh to an adjacent node that is labeled withnd must not be strong. Formally, for
two verticesu € Pyandv e Bywithue S v¢ S and(u,v) € E, the seSis updated t¢S\ {u}) U{v}
andAis updated tAU{v}. The case& € Ameans to simply shift strongnesstdhe case/ € V\ A
meangestorationof v. The terms “moving a strong node” and “shifting its stronggieare used
interchangeably through the paper.

Creation rule. These rules enable Constructor to create a completely nee, mehich is not irnv. A

creat
rule (ag,...,an creates), ay,...,a,) allows Constructor to choose any &et= {uy,...,u,} C Sof

n different strong nodes such that the labelupfs & (for all i € {1,...,n}). Then, Constructor
creates a new active noae labels it withc, and connects it to every node th Formally, the
setsV andA are updated t¥ U {w} andAl {w}, respectively; als& is updated by adding edges
betweenw and each node df. Also the labels of the nodes h may change after creation; the
label ofu; is changed t@&] (for all i € {1,...,n}). For thecreation of a strong nodee use the

notation{ay,...,a, s-oreate) a,...,a,). Inthis case alsSis updated tSU {w}.

We consider some variants where Constructor's moves ateécted. A game(G,R) is callednon-
expandingf R does not contain any creation rule.unlabeledgames nodes cannot be distinguished by
theirs labels; formally, we assume that all vertices arelkdbwith a blank symbal, and the movement
rule (_ ™% ) is the only available rule.

A play of a game¥ is an infinite sequence = GG, --- whereG; is the initial network and each
step fromG; to Gj.; results from the moves of Destructor {ifs odd) and Constructor (ifis even),
respectively. So, plays are infinite in general, but may besickered finite in the cases where neither
of the players can move, or a given objective (winning coodjtis satisfied. In this paper we consider
dynamic network connectivity gameghere Constructor’s objective concerns the connectofithe net-
work (more precisely, of the active nodes). We distinguistwieen connectivity games witbachability
objectiveandsafety objectiveln the former the initial network is disconnected, and Gartdor’'s objec-
tive is to reach a connected network; conversely, in theysglme the initial network is connected, and
Constructor has to guarantee that the network always staysected. If Constructor achieves the given
objective in a playr, shewins 1T with respect to this objective.
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Figure 3: An example initial network (bold nodes are strong)

A strategy for Destructors a function (usually denoted lay) that maps each play pref@q,G; - - - Gk
with an oddk to a networkGy ; that arises fronGg by a node deletion. Analogously,strategy for
Constructoris such a function (denoted iy wherek is even andsy, 1 arises fromGy by applying one
of the rules fromR. A strategy is callegositional (or memoryleskif it only depends on the current
network, i.e., it is a function that maps the current netw@gkio Gy 1 as above. If Constructor has a
strategyt to win every play, where she moves according tavith respect to the reachability (safety)
objective,Constructor wins the reachability (safety) ganiestructor wins otherwise. This leads us to
the following decision problems.

e Dynamic reachability problemGiven a dynamic network ganmi, does Constructor have a strat-
egy to win the reachability gané (i.e., eventually a connected network is reached)?

e Dynamic safety problemGiven a dynamic network gani€, does Constructor have a strategy to
win the safety gamé (i.e., the network always stays connected)?

In this paper we only consider reachability and safety dhjes. For these winning conditions it is
well known that one can restrict winning strategies of bddyers to positional strategies [26,/13], i.e.,
if Constructor (Destructor) has a strategy to win a given gamnshe (he) also has a positional strategy
to win¢. Therefore, we will always assume positional strategighigpaper.

Example2.1 We consider a dynamic network connectivity ga#e- (G,R) with labels_L, € . The
initial network G = (V,E, A, S (Pa)acs) With the setS= {s;,s,u;,w; } of strong nodes is depicted in
Figure[3. We consider the safety game where the only rulR is (o ——% _)). It means that the
strong nodes; ands, are not able to move, because their labels do not match thenme rule.
Constructor has to guarantee the connectivity of the ndédwéis a scenario for this game one could
imagine two clientss;, s, communicating over a network with unreliable intermediateles but two
mobile maintenance resources (initially locatedugrmndvy).

By taking a closer look at this example we see that Destrdwera winning strategy. He deletes
in his first move; then we distinguish between two cases: iighuoictor restoresss, Destructor deletes
vy in his next move and finally; or vo; if Constructor does not move the upper movable strong node
to ws, this node has to remain @t ; otherwise Constructor loses by deletionmaf In the second case it
is easy to see that Destructor wins by suitable deletion®dés in{u;, Uz, V1,V }.

Now we consider the same game, but additionally with theticreaule (., . Lyo). We
claim that now Constructor has a winning strategy. If Dettrudeletes the node or v, Constructor
creates a new vertex with the creation rule which establishes a new connectitwdsen the two strong
nodesu; andw;. If Destructor deletes the new vertexConstructor creates a new vertex again, and so
on. Note that in this way the number of vertices in the\éean increase to an unbounded number.

create.)
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3 Resultsfor Safety Connectivity Games

The general case. In this section we analyze the dynamic safety problem, faciwiwve show in our
first result that it is undecidable in general. It is indeethaekable that we have to assume the presence
of weak creation, movement, and relabeling rules to shosv ttater we will see that the dynamic safety
problem becomes decidable if weak creation or movemers are absent.

Theorem 3.1. The dynamic safety problem is undecidable, even if Cortstrigan only apply weak
creation, movement, and relabeling rules.

Proof. We use a reduction from the halting problem for Turing maekinThese are w.l.0.g. presented
in the formatM = (Q,I", 8, do, Ostop) With a state se@, a tape alphabdt (including a blank symbal),
a transition functiord : Q\ {dstop} X ' = Q x ' x {L, R}, an initial stategy, and a stop stat@sop.

For a Turing machin® we construct a ganté = (G, R) such thatM halts when started on the empty
tape iff Constructor is not able to keep the network alwaysneated by applying the rules & i.e.,
Destructor wins the safety garmgé The idea is to consider a configurationMfas a connected network
where Constructor creates additional vertices during ifmelation of a valid computation dfi. If M
stops, she cannot create vertices anymore, and Destrecaiie to disconnect the network. We label
the nodes that correspond to a configuratioMaith triples of the from x (QU{L,R}) x {|,]} with
Q = Qx{0,1,4,>}. The first component holds the content of its representddo€¢he tape. The
second component is labeled withor R if the represented cell is on the left-hand side of the head or
on the right-hand side of the head, respectively; the secontbonent is labeled with € Q and some
auxiliary symbol ifM is in stateq and the head is on the cell represented by this node. Thestieindent
is either an end]() or an inner marker|() depending on whether the node is the currently the righétmo
represented cell of the tape or not. Additionally, the ladphabet contains the symbals L, +, and !.
The labelsT, L are used for the two additional strong nodes that Constrinet® to keep connected; the
1 -labeled node is always connected to every cell node whid@ thabeled node is only connected to the
L -labeled node via some weak nodes that are labeledwitfhe exclamation mark (!) is used as a label
that Destructor has to prevent to occur; if Constructor rgasdo relabel a strong node to a !-labeled
node, she has a winning strategy regardless of the behavidr o

Constructor has to createtalabeled weak node in every turn where she simulates a ti@msif M.
Since we want Constructor to simulate only valid transgiowe ensure that an according creation rule
can only be applied to the cell node that holds the currets sttM and an adjacent cell node. For this
reason only two cell nodes are strong at any time. Construgtable to shift these nodes depending
on whether Constructor wants to simulate a left or a righiditeon of M. We ensure that Constructor
shifts the nodes at most once between simulating two tiansijt otherwise she would be able to shift
them forever instead of simulating. For this reason the cell node representing the head halsaayxi
symbols in{0,1,<,>}: the symbol 0 means that Constructor can choose either ftalshistrong nodes
or to simulate a transition. If this symbol is 1, she has alyeshifted the strong nodes and now must
simulate a transition. The symbotsandr> are used as intermediate labels when Constructor shifts the
strong nodes to the left or to the right, respectively. Thigaihnetwork, which corresponds to the initial

configuration oM on an empty working tape, is depicted in Figule 4.

In the following we describe the rule set As mentioned before, the rutg, T, L m!,T,L>

allows Constructor to ensure the connectivity of the nekwba strong node obtains the !-label.

To allow Constructor to shift the two strong cell nodes to ttigit, we add the following rules for
create+) move

alge Q,aberl,and« €{|,]}: 1.{(a,(q,0),|),T,L —— (a,(q,>),]), T, L), 2.{(a,(q,>),|) —
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(Uv(quO)vD (UvR’])

Figure 4: A game network representing an initial configaratf M.

(b,R %)), 3. ((aL,]) ™ (b, (q,>),])), and 4.((a, (q,>),],0), T, L <% (a(g,1),]), T,L). The
rules for shifting the two strong nodes to the left are buillagously. After the application of the
second and the third rule, we want to force Destructor totilede the weak cell node (instead ofta
labeled node). For this reason we add the relabeling(ffad., |), (b, (q,2),|) —!,!; !, (c,R %) — 1,1)

for everya,b,cel’, ze {q,>}, andx € {|,]}. An application of this rule is possible iff a series of three
cell nodes is active; it leads to an !-labeled strong nodehmmde to a network where Constructor wins.

A transition ofM is simulated by changing the labels of the two strong cellesodOne of the cell
nodes has to carry, besides the stati®lpthe auxiliary symbol 0 or 1; in this case it is guaranteed titia
two strong cell nodes are adjacent. Due to the introducedemaes, we can assume that these strong
nodes are already at their desired position. Then, it is Basypply a set of creation rules that mimics
the transitions oM. Formally, for each tupléq,a, p,b, X) with 6(qg,a) = (p,b,X) and for everyc e T,
ze€ {0,1}, andx € {|,]} we add the rulé (c,R, ), (a,(q,2),*), T, L createn), (c,(p,0),]),(b,Ry*), T, L)
if X =L, and((a,(q,2),|),(c,R ), T, L createn), (b,L,]),(c,(p,0),*), T, L) if X=R

Finally, rules are needed to extend the network in the caderibre space on the tape is needed. New
cell nodes are allocated next to the end marker, which repteshe rightmost used cell of the tape. For
this allocation we add the ruleL, (a,(q,0),]) <=, | (a,(g,0),])) for everyac I, andq € Q.
Destructor will deactivate the created node with the IgbeR,]) immediately to prevent Constructor
from relabeling a strong tape node to a !-labeled node.

To show the correctness of the construction, assumevthraver stops. In this case Constructor can
guarantee that there is at least one activtabeled node, which connects the nodes labéleahd L.
One of the threet--labeled nodes in the initial network is deleted since Destr starts. Destructor
may delete another of these nodes if he misbehaves aftertapmextension or a strong node shift and
hence allows Constructor to obtain a strong !-labeled ntmeach case Constructor wins. Conversely,
if M stops, Constructor cannot apply any rule for simulatingaadition from some point onwards. The
construction ensures that Constructor can shift the stosfighodes or create a new cell node at most
once after simulating a transition. Hence, she can only Bkim some point onwards, and Destructor
wins by deleting all--labeled nodes. O

Decidable Subcases. Now, we analyze safety games under some restrictions toitke gule set. If
we prohibit weak creation rules, solving safety games isA2&-complete. The PS\cEhardness also
holds in the more restricted unlabeled case (see Theorémtgere, we show the inclusion in P&CE.

We call a strategy of Destructatrict if he deletes a vertex in every turn (i.e., he does not skip)
whenever there is still a weak node left for deletion. We cssumne that Destructor always plays a strict
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strategy in a safety game: if Destructor skips, so Congirutan skip as well leading the play to the
same network (which is still connected).

Remark3.2 If Destructor wins a safety ganig, he also has a strict strategy to vigh

For a playmr = G1G»... we define thdevel of a networkG; as the number of weak nodes@; if
Destructor acts next (i..js odd) and as the number of weak node&jminus 1 if Constructor moves
next (i.e.,i is even). Clearly, if Destructor plays according to a sticategy, the level is monotonically
decreasing as long as the level has not reached O (or Desthas won).

Lemma 3.3. Consider a safety gam& without weak creation rules. If Destructor wi, he also
wins ¥ with a strict strategy such that, for ea¢h Constructor is able to shift each strongness at most
n, - dy times in networks of levél(before a disconnected network is reached), wheigly) is the number

of nodes (deactivated nodes) of the first occurring netwbfteve! /.

Proof. Towards a contradiction, assume that Destructor has & winaing strategyo, but Constructor
has a strategy where, for somé, she is able to shift a strongness more thatd, times in networks of
level £ before Destructor wins. Consider a playvhere Destructor and Constructor play according to
andr, respectively. So, there exists sofrmich that Destructor shifts a strongness at least, + 1 times

in networks of level. Let G; be the first network of level in 11, and letGy be the last network of level

in 11, where either Destructor has already won (G js disconnected) or Constructor’'s move decreases
the level. Since weak creation rules, which preserves tha, lare forbidden and Destructor’s strategy

is strict, we can assume that Constructor applies only mewnenules in the play infi%s; - - - Gk and hence
the set of nodes and their labels are preserved in this plixy &pplying a relabeling or a strong creation
rule would immediately decrease the levelte 1.

In the play infixG; - - - Gk each strongness is shifted along a certain path of nodds péadtich must
have been deactivated before Constructor shifts the stemsgto it; otherwise the level would decrease
to £ — 1 immediately. Among these deactivated vertices we diststg for each network i; - - - Gy,
between the nodes that have already been deactivatedGirarel the nodes that have been deleted by
Destructor in some network of levéht least once. As the netwofk consists ofl,; deactivated nodes, in
the play infixG; - - - Gx Constructor shifts a strongness at mi)simes to a node that has not been deleted
by Destructor in some network of levélbefore. Since there is a strongness that Constructor sttifts
leastn, - d; + 1 times in networks of levet, there is a play infbxGj, ---Gj, of mwith i < j; < jo <K
where a strongness is shifted in a loop such that the nodeevihisr strongness is shifted to has been
deleted by Destructor before in some network of lévedssume that this loop consists mfnodes.

Since Constructor restores theasenodes, none of thesa nodes stay deactivated until Destructor
wins or the level decreases. It remains to be shown that ietrdoes not have to delete all of these
m nodes in order to prevent Constructor from applying a cenialie. By definition than deleted nodes
are restored by the same strongness; none of the other stooleg has to be moved in order to restore
them. The vertices, edges, and labels of the network stayamged during the loop. So, Constructor’s
possibilities for node creation and movement are not cimtstt. In the case we assume that Destructor
must delete all of thennodes to prevent Constructor from applying a relabeling, ke obtain a winning
strategy for Constructor since she would be able to movettbag node in the loop again and again,
which would take her as many turns as Destructor needs fardgtle deletions (in this case Destructor
would not be able to perform any other node deletion).

Therefore, at least one of thesenode deletions is needless for Destructor; we can elimitate
from Destructor’s strategy without harming his strict wiimgn strategy. (For the elimination step, we
let Destructor successively delete the next weak node thatduld delete by playing his strategy)
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Repeating this elimination for every case where Construgn shift some strongness in networks of the
same level in a loop, we can optimize Destructor’s strictninig strategy to one where he additionally
prevents for all that any strongness is shifted more timand, times in networks of level. O

So, for safety games where Destructor wins we obtained aarupmund of the length of the path
along that a strongness is shifted within the same levelnRhis we can derive an upper bound for the
number of node deletions that Destructor needs if he has ringrstrategy.

Lemma 3.4. Consider a safety gami€ without weak creation rules. L&t | (|S) be the number of active
nodes (strong nodes) of the initial network. If Destructans¥/, he also has a strict strategy to wif
with at most'S - (2|V| — |S/)® node deletions.

Proof. Assume that Destructor wins the safety gathelhe previous lemma states that Destructor also
wins with a strict strategy where, for eaéhConstructor can shift each strongness at mgstl, times

in networks of leve¥. Since the number of strong nodes is fixed, Destructor witis astrict strategy
where, for eacld, he acts at mosg -n,-d, = |§-n;- (n, — |§ — ¢) times in networks of level. For strict
strategies the level is monotonically decreasing (as lanig lzas not reached 0). The level decreases at
most|V|— |9 times; son, < |V|+ (V| —|9) = 2|V| — | for every/. Hence, Destructor wins with a

strict strategy deleting at moﬁ)ﬂ&‘ﬂ 1S/-ng- (g — |§ =€) < |9 - (2]V]| —|9])® nodes. O

To show that the dynamic safety problem is inHASE (if weak creation rules are forbidden) it
suffices to build up the game tree, which we truncate afler(2|V| — |S)® moves of Destructor. We
construct the game tree on-the-fly in a depth-first mannethatowe only have to store a path from the
root to the current node, which length is polynomial in theesif¥.

Theorem 3.5. For games where Constructor does not have any weak creatien the dynamic safety
problem is inP SPACE

Another decidable subclass of the dynamic safety problethdscase where Constructor cannot
move any strong node. Since Constructor is not able to esoy deleted node, we can ignore the
deleted nodes in each network. Hence, we only have to expteréinite state space.

Theorem 3.6. For games where Constructor does not have any movementthdedynamic safety
problem is INEXPTIME.

Proof sketch.Consider a safety ganté without movement rules. Due to Remark]3.2 we can assume
w.l.0.g. that Constructor plays according to a strict sfggt Then, the level decreases at must— |
times before Destructor wins or all nodes in the network &meng, wherelV| (|S) is the number of
active nodes (strong nodes) in the initial network. We tiams ¢ into aninfinite game13] on a game
graphG’, where each vertex corresponds to a networ¢ @ind the information which player acts next.
When we ignore deleted nodes, the number of networks of tine $avel is at most exponential .
Since the number of different levels is lineardh the size ofG’ is at most exponential i# and can

be computed in exponential time. The dynamic safety prolflen¥ is equivalent to the problem of
determining the winner in the safety game®fn which is decidable in linear time [26,113]. O

Non-Expanding and Unlabeled Games. We already showed in Theordm B.5 that we can solve the
dynamic safety problem in RBcE if weak creation rules are forbidden. This lower bound caro®
improved in the more restricted cases of non-expanding atabaled games since it has already been
shown in [20] that the dynamic safety problem isHASe-hard for unlabeled games.
Theorem 3.7. For unlabeled games, the dynamic safety probleSBACE-hard.

So, the dynamic safety problem is P&&Ecomplete also for unlabeled and non-expanding games.
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4 Resultsfor Reachability Connectivity Games

TheGeneral Case. The dynamic reachability problem is also undecidable iregan This has already
been shown in[20] for the variant where Constructor has &ehea biconnected network (instead of
a connected network). The result also holds if we allow Goietdr to use only strong creation and
relabeling rules. Moreover, in the reachability game arfigirachine can be simulated solely by Con-
structor who may connect a network if a stop state is reachbdreas in the safety game she has to
simulate transitions in order to compensate Destructatferdeletions. As a consequence the undecid-
ability of the dynamic reachability problem holds even foe solitaire game version where Destructor
always decides to skip. One can easily adapt the proof oféislt to the case where Constructor only
has to establish a connected network. Alternatively, weatsmuse the idea of the proof of Theorem 3.1
to relabel adjacent “cell nodes” with weak creation ruled gnarantee with movement rules that only
these two adjacent “cell nodes” are strong.

Theorem 4.1. The dynamic reachability problem is undecidable, even igdmctor can only apply
strong creation and relabeling rules or she can only applykvereation and movement rules. In both
cases the problem remains undecidable in the solitaire geergon where Destructor never moves.

Non-Expandingand Unlabded Games. The proofs for the undecidability of the dynamic reachapili
problem for expanding games rely on the availability of tmeamoves; if these are omitted, the state
space is finite and hence the problem becomes trivially dbéd

Remarkd.2. For non-expanding games, the dynamic reachability prolidgamEXPTIME.
Complementary to this 8 TIME upper bound, we have a P&CE lower bound.

Theorem 4.3. For non-expanding games, the dynamic reachability prolikeRmSrPACE-hard.

This result is a variant of a result in [20], where theFRSEe-hardness has been shown for the question
of whether Constructor can reach a network in which a celéial occur. It can be shown by a reduction
from the sabotage game problem.

In theunlabelednon-expanding case we give an NP lower bound andraBSupper bound.

Theorem 4.4. For unlabeled games, the dynamic reachability problemd ishard.

Proof sketch.We use a polynomial-time reduction from tliertex covemproblem. The basic idea is to
use a graph, safyc, as a networlG where the original vertices are taken as deactivated nowkthe
original edges are taken as weak intermediate nodes; nené&deonsists ok strong nodes, which are
connected to the deactivated nodes. If Constructor is aldenineciG by moving these strong nodes to
the deactivated nodes, those (formerly deactivated) nimdesa vertex cover irGyc; and conversely, if
Gvc has a vertex cover of size Constructor wins by moving the strong nodes to this vertasec [

Now, we establish a P.CE upper bound for the unlabeled case. The basic observatitatisif
Constructor moves some strong node a certain number of tshesmoves a strong node in a loop that
cannot be necessary for a winning strategy. For this purpesérst note an upper bound on the number
of moves of a strong node; we know that afkerfVV| moves Constructor has shifted this strongness in
some loop at lea¥t times starting from a certain vertex.

Remarkd.5. If Constructor shifts some strongndssV | times, there is a vertexe V that this strongness
visits k4 1 times, i.e., the strongness is shifted throkdbops that start and end wat
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We show that Constructor does not need to shift a strong fodedh more than 2V| — 1 loops
starting from the same vertex. Then we can infer from theipusvremark that it is sufficient for
Constructor to shift each strongness at mosv2 — 1 times.

Lemma4.6. Consider an unlabeled reachability garfde If Constructor wing?, she also wing with
a strategy where she shifts each strongness at Bvdgt2 — 1 times.

Proof. Towards a contradiction, we assume that Constructor hasring strategy, but that Destructor
has a strategy such that Constructor has to shift some strongness at lepgf2imes before she wins.
Consider a playr where Destructor and Constructor play accordingrtand t, respectively. Then,
the previous remark states that there is a vevteXV from which Constructor moves some strongness
through at least 2V | loops before Constructor wins the play

In a reachability game where only movement rules are allovidssstructor cannot restrict Con-
structor’s possibilities to move. Hence, there are only psesible reasons for Constructor to shift the
mentioned strong node in a loop that starts and ends at

1. Some node of the loop, sayis restored by shifting the strong node in that loop. Howegwethis
case we can assume that Constructor does not rastageain while shifting the strongness in a
loop that starts and ends\atOtherwise Constructor can omit each former loop in whiahstifts
the strong node only for this reason; Constructor will stilh with this modified strategy.

2. Destructor deletes some nadle V \ {v}. Also in this case we can assume that Constructor does
not move again this strongness in a loop that starts and ¢ndstale Destructor can ensure that
the deletion ofu is Constructor’'s only achievement (e.g., it may be that idesdr loses during
this loop if he does not delet®. Otherwise the deletion af in each former loop does not let
Constructor establish a connected network. Hence, Castrgan omit each former loop in
which she shifts the strong node only for this reason; aghia,will still win with this strategy.

Thus, we can assume that the first case occurs at jMosimes and the second case occurs at most
|V| —1 times if Constructor plays optimal. Hence, we can optin@zstructor’s winning strategy

to a winning strategyt’ with which she shifts each strong node through at mos$¥/2— 1 loops that
start and end at the same vertex. This is a contradiction tasgumption that Constructor has to shift
some strongness at least)Z|? times; if this was the case it would follow from previous lemthat this
strongness is shifted through at leasf\2] loops that start and end at the same vertex. O

We lift the upper bound for the number of moves of each stramden(in reachability games where
Constructor wins) to the overall number of moves that Caoiestr needs to win.

Lemma4.7. Consider an unlabeled reachability gar#fewhere the network consists pf| vertices,|S
of which are strong. If Constructor wiri, she also has a strategy to wifiwith at mos-|S- |V |2 -1
moves.

Proof. For connectivity games with reachability objective we caaume that Constructor never skips:
if she skips, Destructor can skip as well leading the playhtogame (disconnected) network. Since
Constructor never skips, there exists a strongness thatste at leask times within|S| -k moves. By
Lemma4.6 Constructor wins with-25| - [V|? — 1 moves if she has a winning strategy. O

To show the decidability in PRCE it suffices to build up the game tree, which we truncate after
2-19- V|2 — 1 moves of Constructor (analogously to Theofenm 3.5).

Theorem 4.8. For unlabeled games, the dynamic reachability problem widisble inP SPACE.
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5 Perspectives

We have introduced dynamic network connectivity games &udiexd the dynamic reachability and the
dynamic safety problem for them. We showed that both problare undecidable in general. However,
restricting the permitted rule types we pointed out dedeldtagments and encountered fundamental
differences in the decidability and computational comitjeaf the reachability the safety version of the
problem. As conclusion we mention some concrete open isswkpossible refinements of the model.

1.

One can consider versions of the dynamic reachability thaddynamic safety problem where
other subsets of the rules are allowed as considered in aipisrp Some of these cases are trivial
whereas others seem to be challenging: for instance thdigued whether the dynamic safety
problem is decidable if only relabeling rules are prohitjter the question of whether the dynamic
reachability problem is decidable if only creation rules allowed.

. We have a gap between the upper and the lower bound forthgexity of solving non-expanding

reachability games. We conjecture these are easier to isotkie unlabeled case as in the general
non-expanding case; however, a proof is still missing.

. Some of our results depend on the balance of node deletibreatoration: if Constructor restores

a node, Destructor can delete another one immediatelyelbfows rules for multiple movements
and relabelings in Constructor’s turns, the complexityhefdynamic reachability and the dynamic
safety problem increases. (In the non-expanding case] ME-completeness can be obtained via
a reduction from the halting problem of polynomial spacertuted alternating Turing machines.)

. We focused on reachability and safety specificationshiefdrmal analysis of networks. In prac-

tice one may consider a more involvegcurrence (Buchi) conditignwhere Constructor has to
reach a connected network again and again, peraistence (co-Buchi) conditipavhere Con-
structor has to guarantee that the network stays conneciedsome point onwards [13].

In the same way one may consider propertiebnigar temporal logic(LTL). A slight general-
ization in the context of connectivity games are LTL-speaifions over a single predicate that is
true in turni iff the current network is connected in tuirnFor non-expanding games with such an
LTL-condition an EXPTIME lower and a 2KPTIME upper bound are knowh [1L5].

Itis rarely realistic to assume an omniscient adversdmy deletes nodes; faults are better modeled
as random events. This scenario has been studied in theviaef sabotage games [17]. One
can study the corresponding case for dynamic network cdinitg@games, where Destructor is
replaced by random vertex deletiohs|[15].

. Another aspect is that yes/no questions as studied ip&pier (i.e., whether a given specification

is satisfied or not) have to be refined. From a practical pdiniew the formulation of an opti-
mization problem is more useful, where we ask how many stnmuigs are necessary to guarantee
the network connectivity. For this optimization problermpie heuristics yield small (although
not optimal) solutions with efficient winning strategies\arious classes of networks |15].

Acknowledgment. We thank a careful referee for his/her remarks on Lefnma 313 emmd4.5; they
helped to clarify the arguments.
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