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A game-theoretic model for the study of dynamic networks is analyzed. The model is motivated
by communication networks that are subject to failure of nodes and where the restoration needs
resources. The corresponding two-player game is played between “Destructor” (who can delete
nodes) and “Constructor” (who can restore or even create nodes under certain conditions). We also
include the feature of information flow by allowing Constructor to change labels of adjacent nodes.
As objective for Constructor the network property to be connected is considered, either as a safety
condition or as a reachability condition (in the latter casestarting from a non-connected network). We
show under which conditions the solvability of the corresponding games for Constructor is decidable,
and in this case obtain upper and lower complexity bounds, aswell as algorithms derived from
winning strategies. Due to the asymmetry between the players, safety and reachability objectives are
not dual to each other and are treated separately.
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1 Introduction and Motivation

A classical scenario for the application of game-theoreticmethods in verification is the antagonism be-
tween a possibly maliciousenvironmentand asystem(or its control component) that has to guarantee a
desired behavior given any choice of actions of theenvironment. The task of verification is then to show
that in this game betweenenvironmentandsystemthe playersystemhas a winning strategy, and in an
ideal situation it should even be possible to generate such awinning strategy from the specification of
the desired behavior (defined, e.g., in terms of a formula of temporal logic).

The present paper pursues this view in a specific context thatis of central interest in the theory of
communication networks. We study the antagonism between “suppliers” and “users” of a communication
network on one side and the generation of faults (either by nature or by malicious interference) on the
other. So, we considerdynamic network gamesin which a game position is just given by a current shape
of a network. The party that generates faults is modeled by a player calledDestructorwho can “delete”
nodes in a network. In the present paper we only consider changes in the set of nodes (and induced
changes in the set of edges). The more general case that arises when including edges in the dynamics
involves heavier notation, but does not affect the general results as they appear in this paper. (More
precisely, our framework is able to simulate edge deletionsby modeling each edge as a vertex [15].)

The other parties involved are the suppliers of the network and the users. There are many ways
to model these parties. We consider here a model that represents a compromise between conceptual
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Figure 2: Creation of a new node by a setU =
{u1,u2,u3} of strong nodes.

simplicity and adequacy for practical applications1. The aspect of simplicity is introduced by a merge of
the two parties suppliers and users in a single player calledConstructor. This player has the power to
restore deleted nodes or even to create new nodes (i.e., to extend the network beyond its original shape),
matching the purpose of a supplier, and she also can transmitinformation along edges of the network,
matching the actions of an user. The latter feature is realized by the possibility to relabel two nodes that
are connected by an edge.

A detailed description of these possible actions by Destructor and Constructor yields a dynamic
network game in which these players carry out their moves in alternation, step by step changing the
shape and the labeling of the network. In the present paper weanalyze these games only with one
objective (winning condition for Constructor), namely with the objective to guarantee that the network is
connected. The objective arises in two versions: as a safetygame in which connectivity of the network is
to be guaranteed forever by Constructor, or as a reachability game in which Constructor has to construct
a connected network, starting from a disconnected one. Since we assume complete information, these
games are trivially determined. Our aim is to clarify under which assumptions these games are effectively
solvable, i.e., that one can decide who wins (and in this caseto construct a winning strategy for the
winner). One should note that by the independent and very different conceptions of the two players,
there is no direct duality between reachability and safety objectives; both games have to be analyzed
separately. On the other hand, a simplification is built intoour model by our decision only to declare
connectivity of the network as Constructor’s objective, i.e., that the aim of the users to realize the transfer
of information from certain source nodes to target nodes is not taken into account. (For a study of network
games including this aspect, see the paper [14].)

Before stating our results, let us sketch informally but in alittle more detail the definitions of Con-
structor’s actions, which she chooses from a given set of rules. We distinguish three different types of
rules. The first is concerned only with the “information flow”through the network evoked by the users;
nodes and edges as such stay fixed. A natural way to describe this aspect is to assume a labeling of the
nodes that may change over time. For instance, the labela on nodeu and a blank label on the adjacent
nodev are modified to the blank label onu and the labela on v, corresponding to a shift of the dataa
from u to v. Only the labels of adjacent non-deleted nodes can change; for the same reason as in com-
munication networks only neighboring active clients are able to send or receive messages. Arelabeling
rule describes in which way Constructor may change labels of adjacent nodes. The other rules entail
a changes to the network structure. Constructor can restorenodes, which could have existed before, or
create completely new nodes. These steps involve the concept of “strongness” of a node: a strong node
cannot be deleted, and it is the prerequisite for performingthe restoration and creation of nodes. One
can view strong nodes as maintenance resources of suppliers, which are located on some places in the
network. The strongness property may be propagated throughedges to existing nodes; being at some

1We thank our colleagues in the research cluster UMIC (Ultra High-Speed Mobile Information and Communication) for
their contributions in devising the current model.
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game variant
allowed rules

objective

reachability safety

expanding
all undecidable undecidable
s-create, w-create, relabel undecidable in EXPTIME

s-create, move, relabel undecidable PSPACE-complete
w-create, move undecidable open

non-expanding PSPACE-hard / in EXPTIME PSPACE-complete
unlabeled NP-hard / in PSPACE PSPACE-complete

Table 1: Summary of our results; for expanding games, we distinguish whether Constructor is allowed
to create strong nodes (s-create), create weak nodes (w-create), movestrong nodes, orrelabelnodes.

nodeu it can also be used to restore a deleted nodev by moving to it if there was an edge(u,v) in the
network before the deletion ofv (see Figure 1). For the creation of a node we can pick some setS of
strong nodes, create a new nodev (that is or is not strong) and connect it by an edge with each node inS
(see Figure 2). This corresponds to the assumption that creation is “more expensive” than restoration. In
our framework, both actions are either feasible in general or subject to constraints given by the labels of
the involved nodes; we will collect these constraints inmovementandcreation rules.

Our results clarify the solvability of theseconnectivity gamesin several versions, complementing a
result of [20] that the reachability problem (to reach a connected network by Constructor) is undecidable
in the cases where the creation of new nodes is allowed. Our first results say that for safety games
solvability (for Constructor) is undecidable in the general case but – maybe surprisingly – decidable
when either creation of new non-strong nodes is disallowed or movement of strong nodes is disallowed.
The former problem is PSPACE-complete, the latter is solvable in EXPTIME (where the input size is given
by the size of the initial network and the size of the rule set of Constructor). Also in those restrictions
where creation of nodes or relabeling is completely disallowed we sharpen the results of [20] (where
PSPACE-hardness was shown) in obtaining PSPACE-completeness.

For the last mentioned restriction (no creation of nodes, norelabelings), we finally obtain partial
results by providing lower and upper bounds; the proofs illustrate again the difference between safety
and reachability. We show that under the first restriction solvability by Constructor is PSPACE-hard
(while the easily obtained upper bound is EXPTIME), and for the second restriction (no relabelings) this
solvability is in PSPACE and NP-hard. An overview of the results is given in Table 1.

The paper is structured as follows. In the sequel of this introduction we discuss related but technically
different approaches to network games. Section 2 introduces the model in detail. Section 3 offers the
results on safety games, whereas in Section 4 the solvability of reachability games is studied. We finish
by listing some selected perspectives from a very rich landscape of problems that remain to be treated in
this area combining practical issues with theoretical research.

Related Work. Our game model was introduced in [20]; we sharpen and extend these preliminary
decidability and complexity results. The game-theoretic approach is inspired bysabotage games, which
van Benthem suggested in [3]. There, a reachability problemover graphs is considered, where a “Run-
ner” traverses a graph while a “Blocker” deletes an edge after each move. The theory of these games and
many variants have been thoroughly studied in [18, 23, 11, 17].
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Dynamically changing systems are also addressed byonline algorithms(see [9, 4]). These find
applications in routing and scheduling problems in wireless and dynamically changing wired networks
(see [21, 25]). However, the only approaches we are aware of where the adversarial also changes the
network structure is due to Awerbuch et al. [1, 2]; there a routing objective is faced with an adversary
that injects packets and also decides which connections areavailable. These studies aim at a competitive
analysis of the “communication throughput”: the number of delivered packets of an online algorithm is
compared to an optimal offline algorithm.

Another view on online algorithms aredynamic algorithms(see [7, 8]). Afully dynamic algorithm
refers to a dynamic graph in which edges are inserted and deleted; the focus of investigation is the
computational complexity of static graph properties with respect to a given sequence of update steps
(see [16, 22]). The same idea leads to adynamic complexity theory, which deals with the complexity of
computing and maintaining an auxiliary structure; this structure entails the solution of a decision problem
for a dynamically changing instance (see [27]).

Studies on a game-theoretic model for routing under adversarial condition have been started in [14].
Instead of a competitive analysis of a given online algorithm, the aim is to check whether a given dynamic
scenario has a solution in form of a routing scheme (and to synthesize a routing scheme if it exists).
This model is also inspired by the sabotage game model, but complementary to the present work. The
adversary deactivates edges and injects packets in the network, and a solution of the game requires that
all packets must be delivered or that the overall number of packets in the network is bounded.

Another interesting approach arises from the studies of dynamic versions of theDynamic Logic of
Permission(DLP), which is in turn an extension of thePropositional Dynamic Logic(PDL). In DLP,
“computations” in a Kripke structure from one state to another are considered which are subject to
“permissions” [19]. The logic DLP+dyn (see [6, 12]) extends DLP with formulas which allow updates of
the permission set and thus can be seen as a dynamically changing Kripke structure. Nevertheless, all
the dynamics have to be specified in the formula; an adversarial agent is not considered.

The idea of changing networks is of course studied in considerable depth in the theory of graph
grammars, graph rewriting, and graph transformations (see[5, 24]). While there the class of generable
graphs (networks) is the focus of study, we deal here with themore refined view when considering the
evolvement of a two-player game and the properties of graphsoccurring in them. In the (one-player)
framework of model checking, we mention the work [10], wheregraph-interpreted temporal logicis
introduced as a rule-based specification. A technique is developed to map a “graph transition systems”,
which nodes are graphs, to a finite Kripke structure, so that classical LTL model checking can be applied.

2 Dynamic Networks via Games

We presentnetworksin the formG= (V,E,A,S,(Pa)a∈Σ) with

• a finite setV of vertices (also called nodes),

• an undirected edge relationE,

• a setA⊆V of active nodes,

• a setS⊆ A of strong nodes,

• a partition ofV into setsPa for some label alphabetΣ. A node belongs toPa if it carries the labela.

We say that a node isdeactivatedor deletedif it is not active. Aweak nodeis an active node which is
not strong. A network is connected if the graph that is induced by the active vertices is connected, i.e.,
for any two active verticesu,v there exists a path fromu to v which only consists of active nodes.
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The dynamics of a network arises by the possible moves of two players,DestructorandConstructor,
which are changing the respective current network. Adynamic network gamewill be presented as a pair
G = (G,R) consisting of aninitial network Gas above and a finite setR of rules for Constructor. The
two players play turn by turn in alternation; Destructor starts. Both players are allowed to skip as well.

Let us describe the rules that define the players’ possible actions. When it is Destructor’s turn, he can
perform adeletion stepby deleting some weak nodev∈ A\S; the setA is changed toA\{v}. When it
is Constructor’s turn, she can choose a rule from her rule setR that is applicable on the current network.
The rules inR can be of three different types.

Relabeling rule: A rule 〈a,b −→ c,d〉 allows Constructor to change the labelsa andb of two active
adjacent nodes ofA into c andd, respectively. Formally, for two verticesu∈ Pa andv∈ Pb with
(u,v) ∈ E the setsPa, Pb, Pc, andPd are updated toPa\{u}, Pb\{v}, Pc∪{u}, andPd ∪{v}.

For relabeling rules we will also consider rules with multiple relabelings in one turn. This corre-
sponds to our intuition that there can be a lot of informationflow in the network at the same time.
For example, for two relabeling steps in one turn we use the notation〈a,b−→ c,d ; e, f −→ g,h〉.
The relabelings are applied one after the other, but in the same turn.

Movement rule: A rule 〈a
move
−−−→ b〉 allows Constructor to shift the “strongness” from a strong node that

carries the labela to an adjacent node that is labeled withb and must not be strong. Formally, for
two verticesu∈Pa andv∈Pb with u∈S, v 6∈S, and(u,v)∈E, the setSis updated to(S\{u})∪{v}
andA is updated toA∪{v}. The casev∈A means to simply shift strongness tov; the casev∈V \A
meansrestorationof v. The terms “moving a strong node” and “shifting its strongness” are used
interchangeably through the paper.

Creation rule: These rules enable Constructor to create a completely new node, which is not inV. A

rule 〈a1, . . . ,an
create(c)
−−−−→ a′1, . . . ,a

′
n 〉 allows Constructor to choose any setU = {u1, . . . ,un} ⊆ Sof

n different strong nodes such that the label ofui is ai (for all i ∈ {1, . . . ,n}). Then, Constructor
creates a new active nodew, labels it withc, and connects it to every node inU . Formally, the
setsV andA are updated toV ·∪{w} andA ·∪{w}, respectively; alsoE is updated by adding edges
betweenw and each node ofU . Also the labels of the nodes inU may change after creation; the
label of ui is changed toa′i (for all i ∈ {1, . . . ,n}). For thecreation of a strong nodewe use the

notation〈a1, . . . ,an
s-create(c)
−−−−−→ a′1, . . . ,a

′
n 〉. In this case alsoS is updated toS ·∪ {w}.

We consider some variants where Constructor’s moves are restricted. A game(G,R) is callednon-
expandingif R does not contain any creation rule. Inunlabeledgames nodes cannot be distinguished by
theirs labels; formally, we assume that all vertices are labeled with a blank symbolxy and the movement
rule 〈xy

move
−−−→ xy〉 is the only available rule.

A play of a gameG is an infinite sequenceπ = G1G2 · · · whereG1 is the initial network and each
step fromGi to Gi+1 results from the moves of Destructor (ifi is odd) and Constructor (ifi is even),
respectively. So, plays are infinite in general, but may be considered finite in the cases where neither
of the players can move, or a given objective (winning condition) is satisfied. In this paper we consider
dynamic network connectivity games, where Constructor’s objective concerns the connectivityof the net-
work (more precisely, of the active nodes). We distinguish between connectivity games withreachability
objectiveandsafety objective. In the former the initial network is disconnected, and Constructor’s objec-
tive is to reach a connected network; conversely, in the safety game the initial network is connected, and
Constructor has to guarantee that the network always stays connected. If Constructor achieves the given
objective in a playπ, shewinsπ with respect to this objective.



136 Connectivity Games over Dynamic Networks

xy

u1

xy

u2

xy

u3

xy

v1

xy

v2

xy

w1

xy

w2

xy

w3

⊥

s1

⊥

s2

Figure 3: An example initial network (bold nodes are strong).

A strategy for Destructoris a function (usually denoted byσ ) that maps each play prefixG1G2 · · ·Gk

with an oddk to a networkGk+1 that arises fromGk by a node deletion. Analogously, astrategy for
Constructoris such a function (denoted byτ) wherek is even andGk+1 arises fromGk by applying one
of the rules fromR. A strategy is calledpositional (or memoryless) if it only depends on the current
network, i.e., it is a function that maps the current networkGk to Gk+1 as above. If Constructor has a
strategyτ to win every play, where she moves according toτ , with respect to the reachability (safety)
objective,Constructor wins the reachability (safety) game; Destructor wins otherwise. This leads us to
the following decision problems.

• Dynamic reachability problem:Given a dynamic network gameG , does Constructor have a strat-
egy to win the reachability gameG (i.e., eventually a connected network is reached)?

• Dynamic safety problem:Given a dynamic network gameG , does Constructor have a strategy to
win the safety gameG (i.e., the network always stays connected)?

In this paper we only consider reachability and safety objectives. For these winning conditions it is
well known that one can restrict winning strategies of both players to positional strategies [26, 13], i.e.,
if Constructor (Destructor) has a strategy to win a given game G , she (he) also has a positional strategy
to win G . Therefore, we will always assume positional strategies inthis paper.

Example2.1. We consider a dynamic network connectivity gameG = (G,R) with labels⊥,xy ∈ Σ. The
initial network G = (V,E,A,S,(Pa)a∈Σ) with the setS= {s1,s2,u1,w1} of strong nodes is depicted in
Figure 3. We consider the safety game where the only rule inR is 〈xy

move
−−−→ xy〉. It means that the

strong nodess1 and s2 are not able to move, because their labels do not match the movement rule.
Constructor has to guarantee the connectivity of the network. As a scenario for this game one could
imagine two clientss1,s2 communicating over a network with unreliable intermediatenodes but two
mobile maintenance resources (initially located onu1 andv1).

By taking a closer look at this example we see that Destructorhas a winning strategy. He deletesw3

in his first move; then we distinguish between two cases: if Constructor restoresw3, Destructor deletes
v1 in his next move and finallyu1 or v2; if Constructor does not move the upper movable strong node
to w3, this node has to remain atw1; otherwise Constructor loses by deletion ofw1. In the second case it
is easy to see that Destructor wins by suitable deletions of nodes in{u1,u2,v1,v2}.

Now we consider the same game, but additionally with the creation rule 〈xy,xy
create(xy)
−−−−−→ xy,xy 〉. We

claim that now Constructor has a winning strategy. If Destructor deletes the nodev1 or v2 Constructor
creates a new vertexv3 with the creation rule which establishes a new connection between the two strong
nodesu1 andw1. If Destructor deletes the new vertexv3 Constructor creates a new vertex again, and so
on. Note that in this way the number of vertices in the setV can increase to an unbounded number.
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3 Results for Safety Connectivity Games

The general case. In this section we analyze the dynamic safety problem, for which we show in our
first result that it is undecidable in general. It is indeed remarkable that we have to assume the presence
of weak creation, movement, and relabeling rules to show this. Later we will see that the dynamic safety
problem becomes decidable if weak creation or movement rules are absent.

Theorem 3.1. The dynamic safety problem is undecidable, even if Constructor can only apply weak
creation, movement, and relabeling rules.

Proof. We use a reduction from the halting problem for Turing machines. These are w.l.o.g. presented
in the formatM = (Q,Γ,δ ,q0,qstop) with a state setQ, a tape alphabetΓ (including a blank symbolxy),
a transition functionδ : Q\{qstop}×Γ → Q×Γ×{L,R}, an initial stateq0, and a stop stateqstop.

For a Turing machineM we construct a gameG = (G,R) such thatM halts when started on the empty
tape iff Constructor is not able to keep the network always connected by applying the rules ofR, i.e.,
Destructor wins the safety gameG . The idea is to consider a configuration ofM as a connected network
where Constructor creates additional vertices during the simulation of a valid computation ofM. If M
stops, she cannot create vertices anymore, and Destructor is able to disconnect the network. We label
the nodes that correspond to a configuration ofM with triples of the fromΓ× (Q̂∪{L,R})×{|, ]} with
Q̂ := Q×{0,1,⊳,⊲}. The first component holds the content of its represented cell of the tape. The
second component is labeled withL or R if the represented cell is on the left-hand side of the head or
on the right-hand side of the head, respectively; the secondcomponent is labeled withq∈ Q and some
auxiliary symbol ifM is in stateq and the head is on the cell represented by this node. The thirdelement
is either an end (] ) or an inner marker (| ) depending on whether the node is the currently the right-most
represented cell of the tape or not. Additionally, the labelalphabet contains the symbols⊤, ⊥, +, and !.
The labels⊤, ⊥ are used for the two additional strong nodes that Constructor has to keep connected; the
⊥-labeled node is always connected to every cell node while the⊤-labeled node is only connected to the
⊥-labeled node via some weak nodes that are labeled with+. The exclamation mark (!) is used as a label
that Destructor has to prevent to occur; if Constructor manages to relabel a strong node to a !-labeled
node, she has a winning strategy regardless of the behavior of M.

Constructor has to create a+-labeled weak node in every turn where she simulates a transition of M.
Since we want Constructor to simulate only valid transitions, we ensure that an according creation rule
can only be applied to the cell node that holds the current state of M and an adjacent cell node. For this
reason only two cell nodes are strong at any time. Constructor is able to shift these nodes depending
on whether Constructor wants to simulate a left or a right transition ofM. We ensure that Constructor
shifts the nodes at most once between simulating two transitions; otherwise she would be able to shift
them forever instead of simulatingM. For this reason the cell node representing the head has auxiliary
symbols in{0,1,⊳,⊲}: the symbol 0 means that Constructor can choose either to shift the strong nodes
or to simulate a transition. If this symbol is 1, she has already shifted the strong nodes and now must
simulate a transition. The symbols⊳ and⊲ are used as intermediate labels when Constructor shifts the
strong nodes to the left or to the right, respectively. The initial network, which corresponds to the initial
configuration ofM on an empty working tape, is depicted in Figure 4.

In the following we describe the rule setR. As mentioned before, the rule〈 !,⊤,⊥
create(+)
−−−−→!,⊤,⊥〉

allows Constructor to ensure the connectivity of the network if a strong node obtains the !-label.
To allow Constructor to shift the two strong cell nodes to theright, we add the following rules for

all q∈ Q, a,b∈ Γ, and∗ ∈ {|, ]}: 1. 〈(a,(q,0), |),⊤,⊥
create(+)
−−−−→ (a,(q,⊲), |),⊤,⊥〉, 2. 〈(a,(q,⊲), |)

move
−−−→
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Figure 4: A game network representing an initial configuration of M.

(b,R,∗)〉, 3. 〈(a,L, |)
move
−−−→ (b,(q,⊲), |)〉, and 4.〈(a,(q,⊲), |,0),⊤,⊥

create(+)
−−−−→ (a,(q,1), |),⊤,⊥〉. The

rules for shifting the two strong nodes to the left are built analogously. After the application of the
second and the third rule, we want to force Destructor to deactivate the weak cell node (instead of a+-
labeled node). For this reason we add the relabeling rule〈(a,L, |),(b,(q,z), |) −→ !, ! ; ! ,(c,R,∗)−→ !, ! 〉
for everya,b,c∈ Γ, z∈ {⊳,⊲}, and∗ ∈ {|, ]}. An application of this rule is possible iff a series of three
cell nodes is active; it leads to an !-labeled strong node andhence to a network where Constructor wins.

A transition ofM is simulated by changing the labels of the two strong cell nodes. One of the cell
nodes has to carry, besides the state ofM, the auxiliary symbol 0 or 1; in this case it is guaranteed that the
two strong cell nodes are adjacent. Due to the introduced move rules, we can assume that these strong
nodes are already at their desired position. Then, it is easyto supply a set of creation rules that mimics
the transitions ofM. Formally, for each tuple(q,a, p,b,X) with δ (q,a) = (p,b,X) and for everyc∈ Γ,

z∈ {0,1}, and∗ ∈ {|, ]} we add the rule〈(c,R, |),(a,(q,z),∗),⊤,⊥
create(+)
−−−−→ (c,(p,0), |),(b,R,∗),⊤,⊥〉

if X = L, and〈(a,(q,z), |),(c,R,∗),⊤,⊥
create(+)
−−−−→ (b,L, |),(c,(p,0),∗),⊤,⊥〉 if X = R.

Finally, rules are needed to extend the network in the case that more space on the tape is needed. New
cell nodes are allocated next to the end marker, which represents the rightmost used cell of the tape. For

this allocation we add the rule〈⊥,(a,(q,0), ])
create((xy,R,]))
−−−−−−−→ ⊥,(a,(q,0), |)〉 for everya ∈ Γ, andq ∈ Q.

Destructor will deactivate the created node with the label(xy,R, ]) immediately to prevent Constructor
from relabeling a strong tape node to a !-labeled node.

To show the correctness of the construction, assume thatM never stops. In this case Constructor can
guarantee that there is at least one active+-labeled node, which connects the nodes labeled⊤ and⊥.
One of the three+-labeled nodes in the initial network is deleted since Destructor starts. Destructor
may delete another of these nodes if he misbehaves after sometape extension or a strong node shift and
hence allows Constructor to obtain a strong !-labeled node.In each case Constructor wins. Conversely,
if M stops, Constructor cannot apply any rule for simulating a transition from some point onwards. The
construction ensures that Constructor can shift the strongcell nodes or create a new cell node at most
once after simulating a transition. Hence, she can only skipfrom some point onwards, and Destructor
wins by deleting all+-labeled nodes.

Decidable Subcases. Now, we analyze safety games under some restrictions to the given rule set. If
we prohibit weak creation rules, solving safety games is PSPACE-complete. The PSPACE-hardness also
holds in the more restricted unlabeled case (see Theorem 3.7). Here, we show the inclusion in PSPACE.

We call a strategy of Destructorstrict if he deletes a vertex in every turn (i.e., he does not skip)
whenever there is still a weak node left for deletion. We can assume that Destructor always plays a strict
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strategy in a safety game: if Destructor skips, so Constructor can skip as well leading the play to the
same network (which is still connected).

Remark3.2. If Destructor wins a safety gameG , he also has a strict strategy to winG .

For a playπ = G1G2 . . . we define thelevel of a networkGi as the number of weak nodes inGi if
Destructor acts next (i.e.,i is odd) and as the number of weak nodes inGi minus 1 if Constructor moves
next (i.e.,i is even). Clearly, if Destructor plays according to a strictstrategy, the level is monotonically
decreasing as long as the level has not reached 0 (or Destructor has won).

Lemma 3.3. Consider a safety gameG without weak creation rules. If Destructor winsG , he also
winsG with a strict strategy such that, for eachℓ, Constructor is able to shift each strongness at most
nℓ ·dℓ times in networks of levelℓ (before a disconnected network is reached), where nℓ (dℓ) is the number
of nodes (deactivated nodes) of the first occurring network of levelℓ.

Proof. Towards a contradiction, assume that Destructor has a strict winning strategyσ , but Constructor
has a strategyτ where, for someℓ, she is able to shift a strongness more thannℓ ·dℓ times in networks of
level ℓ before Destructor wins. Consider a playπ where Destructor and Constructor play according toσ
andτ , respectively. So, there exists someℓ such that Destructor shifts a strongness at leastnℓ ·dℓ+1 times
in networks of levelℓ. Let Gi be the first network of levelℓ in π, and letGk be the last network of levelℓ
in π, where either Destructor has already won (i.e.,Gk is disconnected) or Constructor’s move decreases
the level. Since weak creation rules, which preserves the level, are forbidden and Destructor’s strategyσ
is strict, we can assume that Constructor applies only movement rules in the play infixGi · · ·Gk and hence
the set of nodes and their labels are preserved in this play infix; applying a relabeling or a strong creation
rule would immediately decrease the level toℓ−1.

In the play infixGi · · ·Gk each strongness is shifted along a certain path of nodes, each of which must
have been deactivated before Constructor shifts the strongness to it; otherwise the level would decrease
to ℓ− 1 immediately. Among these deactivated vertices we distinguish, for each network inGi · · ·Gk,
between the nodes that have already been deactivated sinceGi and the nodes that have been deleted by
Destructor in some network of levelℓ at least once. As the networkGi consists ofdℓ deactivated nodes, in
the play infixGi · · ·Gk Constructor shifts a strongness at mostdℓ times to a node that has not been deleted
by Destructor in some network of levelℓ before. Since there is a strongness that Constructor shiftsat
leastnℓ ·dℓ+ 1 times in networks of levelℓ, there is a play infixG j1 · · ·G j2 of π with i ≤ j1 < j2 ≤ k
where a strongness is shifted in a loop such that the node where this strongness is shifted to has been
deleted by Destructor before in some network of levelℓ. Assume that this loop consists ofmnodes.

Since Constructor restores thesem nodes, none of thesem nodes stay deactivated until Destructor
wins or the level decreases. It remains to be shown that Destructor does not have to delete all of these
m nodes in order to prevent Constructor from applying a certain rule. By definition them deleted nodes
are restored by the same strongness; none of the other strongnodes has to be moved in order to restore
them. The vertices, edges, and labels of the network stay unchanged during the loop. So, Constructor’s
possibilities for node creation and movement are not constricted. In the case we assume that Destructor
must delete all of themnodes to prevent Constructor from applying a relabeling rule, we obtain a winning
strategy for Constructor since she would be able to move the strong node in the loop again and again,
which would take her as many turns as Destructor needs for thenode deletions (in this case Destructor
would not be able to perform any other node deletion).

Therefore, at least one of thesem node deletions is needless for Destructor; we can eliminateit
from Destructor’s strategy without harming his strict winning strategy. (For the elimination step, we
let Destructor successively delete the next weak node that he would delete by playing his strategyσ .)
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Repeating this elimination for every case where Constructor can shift some strongness in networks of the
same level in a loop, we can optimize Destructor’s strict winning strategy to one where he additionally
prevents for allℓ that any strongness is shifted more thannℓ ·dℓ times in networks of levelℓ.

So, for safety games where Destructor wins we obtained an upper bound of the length of the path
along that a strongness is shifted within the same level. From this we can derive an upper bound for the
number of node deletions that Destructor needs if he has a winning strategy.
Lemma 3.4. Consider a safety gameG without weak creation rules. Let|V| (|S|) be the number of active
nodes (strong nodes) of the initial network. If Destructor wins G , he also has a strict strategy to winG
with at most|S| · (2|V|− |S|)3 node deletions.

Proof. Assume that Destructor wins the safety gameG . The previous lemma states that Destructor also
wins with a strict strategy where, for eachℓ, Constructor can shift each strongness at mostnℓ ·dℓ times
in networks of levelℓ. Since the number of strong nodes is fixed, Destructor wins with a strict strategy
where, for eachℓ, he acts at most|S| ·nℓ ·dℓ = |S| ·nℓ ·(nℓ−|S|−ℓ) times in networks of levelℓ. For strict
strategies the level is monotonically decreasing (as long as it has not reached 0). The level decreases at
most|V|− |S| times; so,nℓ ≤ |V|+(|V|− |S|) = 2|V|− |S| for everyℓ. Hence, Destructor wins with a

strict strategy deleting at most∑|V|−|S|
ℓ=0 |S| ·nℓ · (nℓ−|S|− ℓ)≤ |S| · (2|V|− |S|)3 nodes.

To show that the dynamic safety problem is in PSPACE (if weak creation rules are forbidden) it
suffices to build up the game tree, which we truncate after|S| · (2|V | − |S|)3 moves of Destructor. We
construct the game tree on-the-fly in a depth-first manner, sothat we only have to store a path from the
root to the current node, which length is polynomial in the size ofG .
Theorem 3.5. For games where Constructor does not have any weak creation rule, the dynamic safety
problem is inPSPACE.

Another decidable subclass of the dynamic safety problem isthe case where Constructor cannot
move any strong node. Since Constructor is not able to restore any deleted node, we can ignore the
deleted nodes in each network. Hence, we only have to exploreare finite state space.
Theorem 3.6. For games where Constructor does not have any movement rule,the dynamic safety
problem is inEXPTIME.

Proof sketch.Consider a safety gameG without movement rules. Due to Remark 3.2 we can assume
w.l.o.g. that Constructor plays according to a strict strategy. Then, the level decreases at most|V|− |S|
times before Destructor wins or all nodes in the network are strong, where|V| (|S|) is the number of
active nodes (strong nodes) in the initial network. We transform G into aninfinite game[13] on a game
graphG′, where each vertex corresponds to a network ofG and the information which player acts next.
When we ignore deleted nodes, the number of networks of the same level is at most exponential inG .
Since the number of different levels is linear inG , the size ofG′ is at most exponential inG and can
be computed in exponential time. The dynamic safety problemfor G is equivalent to the problem of
determining the winner in the safety game onG′, which is decidable in linear time [26, 13].

Non-Expanding and Unlabeled Games. We already showed in Theorem 3.5 that we can solve the
dynamic safety problem in PSPACE if weak creation rules are forbidden. This lower bound cannot be
improved in the more restricted cases of non-expanding and unlabeled games since it has already been
shown in [20] that the dynamic safety problem is PSPACE-hard for unlabeled games.
Theorem 3.7. For unlabeled games, the dynamic safety problem isPSPACE-hard.

So, the dynamic safety problem is PSPACE-complete also for unlabeled and non-expanding games.
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4 Results for Reachability Connectivity Games

The General Case. The dynamic reachability problem is also undecidable in general. This has already
been shown in [20] for the variant where Constructor has to reach a biconnected network (instead of
a connected network). The result also holds if we allow Constructor to use only strong creation and
relabeling rules. Moreover, in the reachability game a Turing machine can be simulated solely by Con-
structor who may connect a network if a stop state is reached,whereas in the safety game she has to
simulate transitions in order to compensate Destructor’s node deletions. As a consequence the undecid-
ability of the dynamic reachability problem holds even for the solitaire game version where Destructor
always decides to skip. One can easily adapt the proof of thisresult to the case where Constructor only
has to establish a connected network. Alternatively, we canalso use the idea of the proof of Theorem 3.1
to relabel adjacent “cell nodes” with weak creation rules and guarantee with movement rules that only
these two adjacent “cell nodes” are strong.

Theorem 4.1. The dynamic reachability problem is undecidable, even if Constructor can only apply
strong creation and relabeling rules or she can only apply weak creation and movement rules. In both
cases the problem remains undecidable in the solitaire gameversion where Destructor never moves.

Non-Expanding and Unlabeled Games. The proofs for the undecidability of the dynamic reachability
problem for expanding games rely on the availability of creation moves; if these are omitted, the state
space is finite and hence the problem becomes trivially decidable.

Remark4.2. For non-expanding games, the dynamic reachability problemis in EXPTIME.

Complementary to this EXPTIME upper bound, we have a PSPACE lower bound.

Theorem 4.3. For non-expanding games, the dynamic reachability problemis PSPACE-hard.

This result is a variant of a result in [20], where the PSPACE-hardness has been shown for the question
of whether Constructor can reach a network in which a certainlabel occur. It can be shown by a reduction
from the sabotage game problem.

In theunlabelednon-expanding case we give an NP lower bound and a PSPACE upper bound.

Theorem 4.4. For unlabeled games, the dynamic reachability problem isNP-hard.

Proof sketch.We use a polynomial-time reduction from thevertex coverproblem. The basic idea is to
use a graph, sayGVC, as a networkG where the original vertices are taken as deactivated nodes and the
original edges are taken as weak intermediate nodes; moreover, G consists ofk strong nodes, which are
connected to the deactivated nodes. If Constructor is able to connectG by moving these strong nodes to
the deactivated nodes, those (formerly deactivated) nodesform a vertex cover inGVC; and conversely, if
GVC has a vertex cover of sizek, Constructor wins by moving the strong nodes to this vertex cover.

Now, we establish a PSPACE upper bound for the unlabeled case. The basic observation isthat, if
Constructor moves some strong node a certain number of times, she moves a strong node in a loop that
cannot be necessary for a winning strategy. For this purpose, we first note an upper bound on the number
of moves of a strong node; we know that afterk · |V| moves Constructor has shifted this strongness in
some loop at leastk times starting from a certain vertex.

Remark4.5. If Constructor shifts some strongnessk· |V| times, there is a vertexv∈V that this strongness
visits k+1 times, i.e., the strongness is shifted throughk loops that start and end atv.
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We show that Constructor does not need to shift a strong node through more than 2· |V| − 1 loops
starting from the same vertex. Then we can infer from the previous remark that it is sufficient for
Constructor to shift each strongness at most 2· |V|2−1 times.

Lemma 4.6. Consider an unlabeled reachability gameG . If Constructor winsG , she also winsG with
a strategy where she shifts each strongness at most2· |V|2−1 times.

Proof. Towards a contradiction, we assume that Constructor has a winning strategyσ , but that Destructor
has a strategyτ such that Constructor has to shift some strongness at least 2· |V|2 times before she wins.
Consider a playπ where Destructor and Constructor play according toσ and τ , respectively. Then,
the previous remark states that there is a vertexv∈V from which Constructor moves some strongness
through at least 2· |V| loops before Constructor wins the playπ.

In a reachability game where only movement rules are allowed, Destructor cannot restrict Con-
structor’s possibilities to move. Hence, there are only twopossible reasons for Constructor to shift the
mentioned strong node in a loop that starts and ends atv.

1. Some node of the loop, sayu, is restored by shifting the strong node in that loop. However, in this
case we can assume that Constructor does not restoreu again while shifting the strongness in a
loop that starts and ends atv. Otherwise Constructor can omit each former loop in which she shifts
the strong node only for this reason; Constructor will stillwin with this modified strategy.

2. Destructor deletes some nodeu∈V \{v}. Also in this case we can assume that Constructor does
not move again this strongness in a loop that starts and ends at v while Destructor can ensure that
the deletion ofu is Constructor’s only achievement (e.g., it may be that Destructor loses during
this loop if he does not deleteu). Otherwise the deletion ofu in each former loop does not let
Constructor establish a connected network. Hence, Constructor can omit each former loop in
which she shifts the strong node only for this reason; again,she will still win with this strategy.

Thus, we can assume that the first case occurs at most|V| times and the second case occurs at most
|V| − 1 times if Constructor plays optimal. Hence, we can optimizeConstructor’s winning strategyτ
to a winning strategyτ ′ with which she shifts each strong node through at most 2· |V| − 1 loops that
start and end at the same vertex. This is a contradiction to our assumption that Constructor has to shift
some strongness at least 2· |V|2 times; if this was the case it would follow from previous lemma that this
strongness is shifted through at least 2· |V| loops that start and end at the same vertex.

We lift the upper bound for the number of moves of each strong node (in reachability games where
Constructor wins) to the overall number of moves that Constructor needs to win.

Lemma 4.7. Consider an unlabeled reachability gameG where the network consists of|V| vertices,|S|
of which are strong. If Constructor winsG , she also has a strategy to winG with at most2· |S| · |V |2−1
moves.

Proof. For connectivity games with reachability objective we can assume that Constructor never skips:
if she skips, Destructor can skip as well leading the play to the same (disconnected) network. Since
Constructor never skips, there exists a strongness that sheshifts at leastk times within|S| ·k moves. By
Lemma 4.6 Constructor wins with 2· |S| · |V|2−1 moves if she has a winning strategy.

To show the decidability in PSPACE it suffices to build up the game tree, which we truncate after
2· |S| · |V|2−1 moves of Constructor (analogously to Theorem 3.5).

Theorem 4.8. For unlabeled games, the dynamic reachability problem is decidable inPSPACE.
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5 Perspectives

We have introduced dynamic network connectivity games and studied the dynamic reachability and the
dynamic safety problem for them. We showed that both problems are undecidable in general. However,
restricting the permitted rule types we pointed out decidable fragments and encountered fundamental
differences in the decidability and computational complexity of the reachability the safety version of the
problem. As conclusion we mention some concrete open issuesand possible refinements of the model.

1. One can consider versions of the dynamic reachability andthe dynamic safety problem where
other subsets of the rules are allowed as considered in this paper. Some of these cases are trivial
whereas others seem to be challenging: for instance the question of whether the dynamic safety
problem is decidable if only relabeling rules are prohibited, or the question of whether the dynamic
reachability problem is decidable if only creation rules are allowed.

2. We have a gap between the upper and the lower bound for the complexity of solving non-expanding
reachability games. We conjecture these are easier to solvein the unlabeled case as in the general
non-expanding case; however, a proof is still missing.

3. Some of our results depend on the balance of node deletion and restoration: if Constructor restores
a node, Destructor can delete another one immediately. If one allows rules for multiple movements
and relabelings in Constructor’s turns, the complexity of the dynamic reachability and the dynamic
safety problem increases. (In the non-expanding case, EXPTIME-completeness can be obtained via
a reduction from the halting problem of polynomial space bounded alternating Turing machines.)

4. We focused on reachability and safety specifications for the formal analysis of networks. In prac-
tice one may consider a more involvedrecurrence (Büchi) condition, where Constructor has to
reach a connected network again and again, or apersistence (co-Büchi) condition, where Con-
structor has to guarantee that the network stays connected from some point onwards [13].

5. In the same way one may consider properties inlinear temporal logic(LTL). A slight general-
ization in the context of connectivity games are LTL-specifications over a single predicate that is
true in turni iff the current network is connected in turni. For non-expanding games with such an
LTL-condition an EXPTIME lower and a 2EXPTIME upper bound are known [15].

6. It is rarely realistic to assume an omniscient adversary who deletes nodes; faults are better modeled
as random events. This scenario has been studied in the framework of sabotage games [17]. One
can study the corresponding case for dynamic network connectivity games, where Destructor is
replaced by random vertex deletions [15].

7. Another aspect is that yes/no questions as studied in thispaper (i.e., whether a given specification
is satisfied or not) have to be refined. From a practical point of view the formulation of an opti-
mization problem is more useful, where we ask how many strongnodes are necessary to guarantee
the network connectivity. For this optimization problem simple heuristics yield small (although
not optimal) solutions with efficient winning strategies onvarious classes of networks [15].

Acknowledgment. We thank a careful referee for his/her remarks on Lemma 3.3 and Lemma 4.6; they
helped to clarify the arguments.
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