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We study in depth the class of games with opacity condition, which are two-player games with
imperfect information in which one of the players only has imperfect information, and where the
winning condition relies on the information he has along theplay. Those games are relevant for
security aspects of computing systems: a play isopaquewhenever the player who has imperfect
information never “knows” for sure that the current position is one of the distinguished “secret”
positions. We study the problems of deciding the existence of a winning strategy for each player,
and we call them theopacity-violate problemand theopacity-guarantee problem. Focusing on the
player with perfect information is new in the field of games with imperfect-informationbecause when
considering classical winning conditions it amounts to solving the underlying perfect-information
game. We establish the EXPTIME-completeness of both above-mentioned problems, showing that
our winning condition brings a gap of complexity for the player with perfect information, and we
exhibit the relevantopacity-verify problem, which noticeably generalizes approaches considered in
the literature for opacity analysis in discrete-event systems. In the case of blindfold games, this
problem relates to the two initial ones, yielding the determinacy of blindfold games with opacity
condition and the PSPACE-completeness of the three problems.

1 Introduction

We described in [14] a class of two-player games with imperfect information that we calledgames with
opacity condition. In these games, the players are Robert (for “robber”) and Gerald (for “guardian”).
Robert has imperfect information as opposed to Gerald who has perfect information. This asymmetric
setting is very relevant for the verification of open systemsand all the more for security aspects as it
captures the intuitive picture of an attacker having only a partial information against a system. The game
model we consider relies on the classical imperfect-information arenas, as defined ine.g. [16, 1], but
it is equipped with a subset of positions that denote confidential information and that we callsecrets.
We focus on the opportunity for Robert to discover some secret, by introducing the property ofopacity:
a play isopaqueif, at each step of the (infinite) play, the set of positions that are considered possible
by Robert does not consist of secrets only. In games with opacity condition, the opacity property is the
winning condition for Gerald. Informally, Robert tries to force the game to reach some point when he
knows for sure that the current position is a secret, whereasGerald tries to keep Robert under uncertainty.
Note that this winning condition can be seen as a particular epistemic temporal logic statement [10] on an
imperfect information arena seen as an epistemic temporal model : this ETL formula isG¬KRobertsecret.
However, to our knowledge the complexity of deciding the existence of winning strategies for such
winning conditions has never been studied in depth.

Our claim that games with opacity condition are natural and adequate models for practical applica-
tions is all the more sustained by very recent contributionsof the literature [17, 8]. These results mainly
arise from the analysis of discrete-event systems and theirtheory of control, and our games embed some
problems studied in this domain, such as the verification of opacity. Our abstract setting provided by
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the game-theoretical paradigm enables us to focus on essential aspects of the topic, such as synthesizing
strategies, and to circumvent the complexity of the problems.

Not surprisingly, games with opacity condition are not determined [14]. We therefore introduced two
dual problems: theopacity-violate problemand theopacity-guarantee problem, that consist of deciding
the existence of a winning strategy, respectively for Robert and for Gerald. The opacity-violate problem
generalizes the strategy problem in reachability games with imperfect information [16], and so does
the opacity-guarantee problem, but putting the emphasize on the player who has perfect information
and has the complementary safety objective. The latter is, to our knowledge, never been done, for the
following reason. In two-player games with imperfect information, when considering the existence of
winning strategies for a player, one can equivalently consider that the opponent has perfect information
(see [16]). Thus, when dealing with omega-regular winning conditions in arenas where the imperfect
information is asymmetric, focusing on the player with perfect information would amount to solve the
underlying perfect-information game. Our case is different : when considering Gerald’s point of view,
we could indeed equivalently consider that Robert plays with perfect information too, but we cannot
give up the imperfect-information setting because the definition of the winning condition itself relies on
Robert’s information along the play.

Additionally to the two aforementioned problems, we consider theopacity-verify problemas an inter-
mediate problem: the question here is to decide whether in a game with opacity condition, all strategies of
Gerald are winning. The choice of considering this apparently weird problem is well motivated. Firstly,
it is equivalent both to the opacity-guarantee problem and to the complementary of the opacity-violate
problem for blindfold games; an immediate consequence is the determinacy of blindfold games with
opacity condition. And secondly, it enables us to embed opacity issues in discrete-event systems with a
strong language-theoretic feature, addressed earlier in the literature [17, 8].

In this contribution, we consider the three problems of opacity-violate, opacity-guarantee and opacity-
verify, keeping in mind that our main attention turns to the opacity-guarantee problem. It is not hard to
establish the EXPTIME-completeness of the opacity-violate problem, from a power-set construction in-
spired by [16] that amounts to solving a reachability perfect-information game, and from the fact that it
generalizes imperfect-information games with reachability condition, known to be EXPTIME-complete
[16]. Regarding the opacity-guarantee problem, we rely on an earlier power-set construction to reduce
this problem to a perfect-information game [14], yielding EXPTIME membership. The EXPTIME-
hardness result for this problem, where the main player (Gerald) has perfect information, was unknown
until now and relies on a reduction from the empty input string acceptance problem for linearly-bounded
alternating Turing machines. The key point is a pioneer encoding of configurations by information sets.
Concerning the opacity-verify problem, we prove its PSPACE-completeness, which for the lower bound
relies on a reduction similar to the one in [6] from the universality problem for nondeterministic automata
[11]. Interestingly, the opacity-verify problem relates the two other problems for the particular case of
blindfold games, in such a way that those games are determined. We also show that the blindfold setting
embraces the language-theoretic approaches for opacity analysis in discrete-event systems [17, 8].

The paper is organized as follows. In Section 2, we define games with opacity condition. In Sec-
tion 3, we present the opacity-guarantee problem and the opacity-violate problem, and we establish their
EXPTIME complexity. We first recall the power-set constructions from [14] yielding the upper bounds,
then we show the matching lower bounds. In Section 4, we consider the opacity-verify problem for
blindfold games. In this setting, we establish the determinacy and the PSPACE completeness of the three
opacity problems. In Section 5, we relate the opacity-verify problem to the language opacity verifica-
tion of [17, 8]. In Section 6, we discuss complexity aspects of problems regarding Gerald’s winning
strategies. We conclude in Section 7 by giving some ideas on our current and future work.



B. Maubert & S. Pinchinat & L. Bozzelli 89

2 Games with opacity condition

A game with opacity conditionover the alphabetΣ and the set of observationsΓ is an imperfect infor-
mation game structureA = (V,∆,obs,act,v0,S) whereV is a finite set ofpositions, ∆ : V ×Σ → 2V\ /0
is a transition function, obs :V → Γ is anobservation function, and act :Γ → 2Σ\ /0 assigns to each ob-
servation a non-empty set of available actions, so that available actions are identical for observationally
equivalent positions. Finally,v0 is the initial position, and the additional elementS⊆V in the structure
A is a finite set ofsecret positions.

In a gameA= (V,∆,obs,act,v0,S), the players are Gerald and Robert. A play is an infinite sequence
of rounds, and in each roundi ≥ 1, Robert chooses an actionai ∈ act(obs(vi−1)), Gerald chooses the new
positionvi ∈ ∆(vi−1,ai), and Robert observes obs(vi). A play in A is an infinite sequenceρ = v0a1v1 . . .∈
v0(ΣV)ω that results from an interaction of Robert and Gerald in thisgame.

We now extend obs to plays by letting obs(v0a1v1a2v2 . . .) := v0a1γ1a2γ2 . . . with γi = obs(vi) for
eachi ≥ 1. The imperfect information setting leads Robert to partially observe a playρ as obs(ρ). Note
that since the initial position is a part of the description of the arena, it is known by Robert.

For every natural numberk∈ N and playρ , we denote byρk ∈ v0(ΣV)k thek-th prefix ofρ , defined
by ρk := v0a1v1 . . .akvk, with the convention thatρ0 = v0. We denote byρ+ an arbitrary prefix ofρ .

Since the information revealed to Robert is based on observations, a strategy of Robert inA is
a mapping of the formα : v0(ΣΓ)∗ → Σ such that for any play prefixρk ending in observationγ ,
α(obs(ρk)) ∈ act(γ). On the contrary Gerald has perfect information on how the play progresses, so
a strategy of Gerald inA is a mapping of the formβ : v0(ΣV)∗Σ → V such that for any play prefixρk

ending in positionv, for all a in act(obs(v)), β (ρka) ∈ ∆(v,a).
Given strategiesα andβ of Robert and of Gerald respectively, we say that a playρ = v0a1v1 . . . is

induced byα if ∀k≥ 1, ak = α(obs(ρk−1)), andρ is induced byβ if ∀k≥ 1, vk = β (ρk−1ak). We also
noteα β̂ the only play induced byα and byβ .

In the following, an observationγ might be interpreted as the set of positions it denotes, namely
obs−1(γ).

Let us fix a playρ = v0a1v1a2v2 . . .. Note that everyk-th prefix ofρ characterizes a uniqueinforma-
tion set I(ρk) ⊆ V consisting of the set of positions that Robert considers possible in the game afterk
rounds. Formally, information sets can be defined inductively as follows.

Definition 1 For every playρ = v0a1v1a2v2 . . ., we let I(ρ0) := {v0} and I(ρk+1) := ∆(I(ρk),ak+1)∩
obs(vk+1), for k∈ N.

We now define the opacity property:

Definition 2 For a given set of secret positions S⊆V, a playρ satisfiesthe opacity property forS, or is
S-opaque, if:

∀k∈ N, I(ρk)* S

Informally, the opacity condition means that Robert never knows with certainty that the current
position is a secret, because there is always one of the positions he considers possible that is not a
secret. In agame with opacity condition, the opacity property is the winning condition for Gerald,i.e
S-opaque plays are winning for Gerald, and the other ones are winning for Robert.

Remark 1 The definition of the arena and of the opacity condition are slightly different from the ones
in [14] : originally Robert’s aim was to reach a singleton information set. We introduce here the set of
secret positions and define the winning condition accordingly because it makes these games closer to the
intuition behind opacity. Anyway the results established in [14] still hold in this setting, and adapting
the proofs is straightforward.



90 Opacity Issues in Games with Imperfect Information

3 Opacity-violate and opacity-guarantee problems

It is well known that perfect-information games are determined [13], and that imperfect-information
games are not determined in general. We recall that a game isdeterminedif each position is winning for
one of the two players.

We proved the following result in [14]:

Theorem 1 Games with opacity condition are not determined in general.

This result leads to introduce two dual problems. We remind thatα (resp.β ) stands for a strategy of
Robert (resp. Gerald). We first consider Robert’s point of view.

Definition 3 Given a game with opacity condition A= (V,∆,obs,act,v0,S), theopacity-violate problem
is to decide whether the following property holds:

∃α ,∀β , α β̂ is not S-opaque

We now consider Gerald’s dual point of view.

Definition 4 Given a game with opacity condition A= (V,∆,obs,act,v0,S), theopacity-guarantee prob-
lem is to decide whether the following property holds:

∃β ,∀α , α β̂ is S-opaque

Remark 2 It is important to comment on Definition 4 regarding the universal quantification over Robert’s
strategies. As defined, this quantification ranges over observation based strategies only. The opacity-
guarantee problem would however be equivalent if this quantification ranged over the wider set of perfect
information strategies, as already argumented by Reif in [16] : along a play, Robert’s possible behaviors
are not restricted by observation-based strategies.

In the rest of this section we prove the following result:

Theorem 2 The opacity-violate and opacity-guarantee problems are EXPTIME-complete.

In the following, we adopt the classic convention that the size of a game is the size of its arena,i.e.
the number of positions.

3.1 Power-set constructions for upper bounds

We recall the power-set constructions of [14] that lead to equivalently solve perfect information games.
We first address the opacity-violate problem. Since we consider the point of view of the player

with imperfect information, this problem is close to problems usually studied in games with imperfect
information. This is why we can easily rely on previous work on the topic to study its complexity. We
remind the construction from [14], which is strongly inspired from the one described by Reif in [16] :

Let A = (V,∆,obs,act,v0,S) be a game with opacity condition. We define a reachability perfect-
information gamẽA, where the players are Roberta and SuperGeraldine1. A position of Ã is either I
whereI is a reachable information set inA - it is a position of Roberta -, or(I ,a) whereI is a reachable
information set inA anda∈ act(I) 2 - it is a position of SuperGeraldine.

1We use the superlative “Super” here because in general the winning strategies of SuperGeraldine do not reflect any winning
strategy of Gerald inA. She has “more power” than Gerald.

2act(I) makes sense because an information set is always a subset of asingle observation.
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The game is played as follows. It starts in the initial position I0 := {v0} of Roberta. In a positionI ,
Roberta choosesa∈ act(I) and moves to position(I ,a). Next, letO be the set of reachable observations
from I by a. SuperGeraldine chooses a next information set∆(I ,a)∩ γ , whereγ ranges overO. In
Ã, a playI0(I0,a1)I1(I1,a2) . . . is winning for Roberta if it reaches a position of the formI with I ⊆ S,
otherwise it is winning for SuperGeraldine.

Theorem 3 [14] Robert has a winning strategy in A, if and only if, Roberta has a winning strategy in
the perfect-information gamẽA.

Due to nondeterminacy (Theorem 1), the opacity-guarantee problem has to be studied on its own.
We remind the power-set construction for the opacity-guarantee problem described in [14], that leads
to a safety perfect-information gamêA. In this game, unlike iñA, we maintain an extra information
on how Gerald is playing inA. The players inÂ are SuperRoberta3 and Geraldine. A position in̂A
is either of the form(I ,v) where I is a reachable information set inA, andv ∈ I - it is a position of
SuperRoberta -, or of the form(I ,v,a) whereI is a reachable information set inA, v∈ I , anda∈ act(I)
- it is a position of Geraldine. The initial position is({v0},v0). In position(I ,v), SuperRoberta chooses
a∈ act(I), and moves to(I ,v,a). In position(I ,v,a), Geraldine choosesv′ ∈ ∆(v,a) and moves to(I ′,v′)
whereI ′ = ∆(I ,a)∩ obs(v′). In Â, a play(I0,v0)(I0,v0,a1)(I1,v1) . . . is winning for SuperRoberta if it
reaches a position(I ,v) with I ⊆ S, otherwise it is winning for Geraldine.

Theorem 4 [14] Gerald has a winning strategy in A, if and only if, Geraldine has a winning strategy in
the perfect-information gamêA.

It is well known that perfect-information reachability games and perfect-information safety games are
solvable in PTIME. Since the constructions ofÃ andÂ involve a single exponential blow-up, it follows
from Theorems 3 and 4 that the opacity-violate and opacity-guarantee problems are in EXPTIME.

3.2 Matching lower bounds

We prove here that the opacity-violate and the opacity-guarantee problems are EXPTIME-hard.
First, EXPTIME-hardness of the opacity-violate problem isproved by a reduction from reachability

imperfect-information games of [16]. Recall that areachability imperfect-information gameis a game
of imperfect informationA= (V,F,∆,obs,act,v0) overΣ andΓ with a distinguished set oftarget obser-
vations F⊆ Γ that Robert aims at reaching.

Theorem 5 [16] Solving reachability imperfect-information games isEXPTIME-complete.

The reduction is straightforward. LetA=(V,F,∆,obs,act,v0) be a reachability imperfect-information
game overΣ andΓ. We define the game with opacity conditionA′ := (V,∆,obs,act,v0,S) overΣ andΓ,
whereS=

⋃
γ∈F γ . It is easy to see that solving the reachability imperfect-information gameA is equiv-

alent to solving the opacity-violate problem in the gameA′ : a winning strategy for Robert to reachF in
A is also a winning strategy for Robert inA′, and vice versa (remember that the information set is always
a subset of the current observation).

We now show that the opacity-guarantee problem is EXPTIME-hard by a polynomial-time reduction
from the acceptance problem of the empty input string forlinearly-bounded alternatingTuring Machines
(TM) with a binary branching degree, which is EXPTIME-complete [5]. The key idea is to encode TM
configurations by the information sets.

3we use the superlative “Super” as, contrary to what Roberta could do in the gamẽA, SuperRoberta can take advantage of
the extra information.
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In the rest of this section, we fix such a TM machineM = (B,Q = Q∀ ∪Q∃ ∪{qacc,qre j},q0,δ ),
whereB is the input alphabet,Q∃ (resp.Q∀) is the set of existential (resp. universal) states,q0 ∈ Q is the
initial state,qacc /∈Q∀∪Q∃ is the (terminal) accepting state,qre j /∈Q∀∪Q∃ is the (terminal) rejecting state,
andδ : (Q∀∪Q∃)×B→ (Q×B×{+1,−1})× (Q×B×{+1,−1}) is the transition function. In each
non-terminal step (i.e., the current state is inQ∀∪Q∃), M overwrites the tape cell being scanned, and the
tape head moves one position to the left (−1) or right (+1). Letn be the size ofM and[n] = {1, . . . ,n}.
We assume thatn> 1.

SinceM is linearly bounded, we can assume thatM uses exactlyn tape cells when started on
the emptyinput stringε . Hence, a configuration (ofM over ε) is a wordC = w1(q,b)w2 ∈ B∗ · (Q×
B) ·B∗ of length exactlyn denoting that the tape content isw1bw2, the current state isq, and the tape
head is at position|w1|+1. The initial configurationCinit is given by(q0, ) n−1, where is the blank
symbol. Moreover, without loss of generality, we assume that when started onCinit , no matter what
are the universal and existential choices,M alwayshalts by reaching a terminal configurationC, i.e.
such that the associated state, writtenq(C), is in {qacc,qre j} (this assumption is standard, see [5]). For a
non-terminal configurationC = w1(q,b)w2 (i.e. such thatq∈ Q∃∪Q∀), we denote bysuccL(C) (resp.
succR(C)) the successor ofC obtained by choosing the left (resp. the right) triple inδ (q,b). An accepting
computation treeof M overε is a finite treeT whose nodes are labeled by configurations and such that
the root is labeled byCinit , the leaves are labeled by accepting configurationsC, i.e. q(C) = qacc, each
internal nodex is labeled by a non-terminal configurationC, and: (1) ifC is existential (i.e.,q(C) ∈ Q∃),
thenx has exactly one child whose label is one of the two successorsof C, and (2) ifC is universal (i.e.,
q(C) ∈ Q∀), thenx has exactly two children corresponding to the two successors succL(C) andsuccR(C)
of C. We construct a game with opacity conditionAM such that Gerald has a winning strategy inAM

if, and only if, there is an accepting computation tree ofM over ε (Theorem 6). Hence, EXPTIME-
hardness of the opacity-guarantee problem follows.

In the gameAM , the tape content can be retrieved from the current information set (of sizen), and
the remaining information about the current configuration is available in each position of the information
set. A step of the machine is simulated by two rounds of the game: in the first round, depending on
whether the current state is universal or existential, Robert simulates the universal choice of the next
configuration or Gerald simulates the existential choice, and the second round simulates the updating of
the configuration of the machine.
Here, we describe the construction of the gameAM = (V,∆,obs,act,v0,S).

1. V = {v0,sa f eL,sa f eR,sa f echoice}∪
(
([n]×B)× ([n]×Q×B)×{L,R,choice}

)
.

2. obs :V → Γ = {γ0,γchoice,γL,γR} is defined by

obs(v) =





γ0 if v= v0

γL if v∈ {sa f eL}∪
(
([n]×B)× ([n]×Q×B)×{L}

)

γR if v∈ {sa f eR}∪
(
([n]×B)× ([n]×Q×B)×{R}

)

γchoice otherwise.

3. act :Γ → Σ = {∀L,∀R,∃}∪B is defined by

act(γ) =





Σ if γ = γ0

{∀L,∀R,∃} if γ = γchoice

B otherwise.

4. S= ([n]×B)× ([n]×{qre j}×B)×{choice}.
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We delay the formal definition of∆ : V ×Σ → 2V\ /0 after informally describing the running of the game.
A configurationC is encoded by aninformation set If (C) of the form

{((1,b1),(i,q(C),bi ), f ), . . . ,((n,bn),(i,q(C),bi ), f )}

where f ∈ {L,R,choice}, i is the position of the tape cell ofC being scanned, and for each 1≤ j ≤ n, b j

is the content of thej-th cell. For eachf ∈ {L,R,choice}, I f (C) is called thef -codeof C, and during a
play, the current information set is of the formI f (C) for some reachable configurationC of the machine,
unless Robert happened to have made somedeviatingmove which does not simulate the dynamics ofM .
We capture this deviation by making Robert lose: technically, the play enters one of thesafepositions
sa f eL,sa f eR, or sa f echoice that do not belong to the setSof secrets; then, once a safe position is reached,
only other safe positions can be reached, yielding Gerald towin, whatever Robert does in the future.
Note that for eachf ∈ {L,R}, I f (C) does not violate the opacity condition forS, andIchoice(C) violates
the opacity condition forS if, and only if,C is rejecting (i.e.q(C) = qre j). For allq∈ Q∃∪Q∀ andb∈ B,
we denote byδL(q,b) (resp. δR(q,b)) the left (resp. right) triple inδ (q,b). The behavior ofAM is as
follows:

First round: From the initial positionv0, whatever Robert and Gerald choose, the information set at the
end of the first round isIchoice(Cinit ), thechoice-code of the initial configuration.

The current information set is Ichoice(C) for some terminal configuration C: If C is rejecting, then
Ichoice(C)⊆Sand Gerald loses. Otherwise,Ichoice(C) 6⊆Sand independently of the move of Robert,
the play reaches a safe positionsa f edir for somedir ∈ {L,R} and Gerald wins.

As we shall see, there remain only two cases, which in turn simulate a complete step ofM .

The current information set is Ichoice(C) for some non-terminal configuration C:
Let v = ((k,bk),(i,q(C),bi),choice) be the current position (corresponding to some position in
Ichoice(C)). From obs(v), Robert can only choose actions in{∃,∀L,∀R}. There are again two cases.

C is existential (note that this information is contained inthe position v). Moves∀L and∀R of
Robert are deviating and the play reaches one of the safe positions sa f eL or sa f eR, thus
Gerald wins. If instead Robert’s move is∃, the following movedir ∈ {L,R} of Gerald aims
at simulating the existential choice ofM in the configuration configurationC. The reached
position is thenv′ = ((k,bk),(i,q(C),bi),dir).

C is universal. The move∃ of Robert is deviating and the following move of Gerald can lead only
to sa f eL or sa f eR, which makes him win. Instead Robert’s move∀dir ∈ {∀L,∀R} simulates
the universal choice ofM in the configurationC. Next, Gerald’s move is unique and leads
to the positionv′ = ((k,bk),(i,q(C),bi ),dir).

Whatever the type of the configurationC was, by letting the observation classes split positions
with different values ofdir (see the definition of obs above), the information set after the move of
Gerald becomesIdir (C), unless Robert’s move was deviating.

The current information set is Idir (C) with dir ∈ {L,R}, for some non-terminal configuration C:
Let the current position bev= ((k,bk),(i,q(C),bi ),dir) ∈ Idir(C), and let
δdir(q(C),bi) = (qdir ,bdir ,θdir ). The value j = i + θdir represents the position of the cell being
scanned in the next configurationsuccdir (C); note that the valuej is easily computable from the
current positionv. In order however to complete the step of the machine and to reach the informa-
tion setIchoice(succdir (C)), the value ofb j must be provided by the game. Therefore, we letb j be
the only non-deviating move of Robert from positionv∈ Idir (C), among the possible moves inB.
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From positionv= ((k,bk),(i,q(C),bi ),dir), the above behavior is implemented as follows. Letb
be the action chosen by Robert. Ifk /∈ {i, j}, tape cellk is unchanged by the step of the machine,
hence the only possible move of Gerald leads to((k,bk),( j,qdir ,b),choice). If k= i, tape celli is
overwritten, hence the move of Gerald is unique and leads to((i,bdir ),( j,qdir ,b),choice). Finally,
if k= j, there are two cases. Ifb= b j , then Gerald can only move to(( j,b j ),( j,qdir ,b j),choice)
which updates the data for the next configurationsuccdir (C), otherwise the moveb (6= b j ) of Robert
is deviating (and the play reaches a safe position).

We can now formally define the moves inAM , by letting∆ : V ×Σ → 2V\ /0 be:

Casev= v0:
∆(v,a) = {((h, ),(1,q0, ),choice) | h∈ [n]}

Casev= sa f echoice:
∆(v,a) = {sa f edir | dir ∈ {L,R}}

Casev= sa f edir , wheredir ∈ {L,R}:

∆(v,a) = {sa f echoice}

Casev= ((h,b),(i,q,b′),choice):

∆(v,a) =





{((h,b),(i,q,b′),dir) | dir ∈ {L,R}} if a= ∃ andq∈ Q∃
{((h,b),(i,q,b′),L)} if a= ∀L andq∈ Q∀
{((h,b),(i,q,b′),R)} if a= ∀R andq∈ Q∀
{sa f edir | dir ∈ {L,R}} otherwise

Casev= ((h,b),(i,q,b′),dir), wheredir ∈ {L,R}, q /∈ {qre j,qacc}, andδdir(q,b′) = (qdir ,bdir ,θdir ):

∆(v,a) =





{((h,b),(i +θdir ,qdir ,a),choice)} if a∈ B andh /∈ {i, i +θdir}
{((h,bdir ),(i +θdir ,qdir ,a),choice)} if a∈ B andh= i
{((h,b),(i +θdir ,qdir ,b),choice)} if a= b andh= i +θdir

{sa f echoice} otherwise

Casev= ((h,b),(i,q,b′),dir), wheredir ∈ {L,R} andq∈ {qre j,qacc}:

∆(v,a) = {((h,b),(i,q,b′),choice)}

This achieves the construction of the gameAM which satisfies the following result:

Theorem 6 [2] There is an accepting computation tree ofM over ε if, and only if, there is a winning
strategy of Gerald in the game AM .

4 Blindfold games with opacity condition

We recall that a game with imperfect information isblindfold if all positions have the same observation.

Lemma 7 Let A=(V,∆,obs,act,v0) be a blindfold game with imperfect information overΣ andΓ= {γ}.
For every play prefixρn = v0a1v1 . . .anvn, I(ρn) = ∆({v0},a1 . . .an).
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The proof is trivial, by applying the definition of the information set.
In blindfold games Robert cannot base the choice of his actions on anything because he sees nothing

of what Gerald does. So a strategy for Robert is just an infinite sequence of actions. More formally:

Lemma 8 Let A=(V,∆,obs,act,v0) be a blindfold game with imperfect information overΣ andΓ= {γ},
let α be a strategy for Robert, then there exists a1a2a3 . . . ∈ Σω such that for all strategiesβ andβ ′ for
Gerald,obs(α β̂ ) = obs(α β̂ ′) = v0a1γa2γ . . .

In the rest of this section we prove the following two theorems:

Theorem 9 Blindfold games with opacity condition are determined.

Theorem 10 For blindfold games with opacity condition, the opacity-guarantee problem and the opacity-
violate problem arePSPACE-complete.

Both theorems are proved by considering a third problem: theopacity-verify problemwhich ad-
dresses the strong ability for Gerald to win the game. We define this problem and establish its PSPACE-
completeness in the general setting of games with opacity condition and also in the particular case of
blindfold games (Theorem 11). We finally compare it to the opacity-violate and opacity-guarantee prob-
lems for blindfold games (Theorem 14).

Definition 5 Given a game with opacity condition A= (V,∆,obs,act,v0,S), theopacity-verify problem
is to decide whether the following property holds:

∀β ,∀α , α β̂ is S-opaque (1)

If Property (1) holds, any strategyβ of Gerald is a winning-strategy. Otherwise, there exists a play in the
game that is notS-opaque.

Theorem 11 The opacity-verify problem isPSPACE-complete, even for blindfold games.

For the PSPACE membership, we design an algorithm that decides whether there exists a losing play
for Gerald, which is clearly equivalent to deciding whetherthere exists a strategy of Gerald that is not
winning. The algorithm runs in NPSPACE, hence in PSPACE [18], by nondeterministically choosing
the moves for Robert and Gerald, and by updating the current information set of Robert at each round.
Since information sets are subsets of the set of positions, if there aren positions, we needO(n) space to
run this algorithm. The PSPACE-hardness of the opacity-verify problem results from a reduction from
the universality problem for a complete nondeterministic finite automaton (NFA), known to be PSPACE-
complete [19]. This reduction was initially inspired by [7]but is in fact a variant of the one in [6].

We recall that a NFAA = (Q,Σ,∆,Q0,Qf ) is a nondeterministic finite automaton with statesQ,
alphabetΣ, transition relation∆ : Q×Σ → 2Q and sets of (respectively) initial and accepting statesQ0

andQf . A NFA A is complete if for every stateq and lettera, ∆(q,a) 6= /0. ThelanguageL (A )⊆ Σ∗ of
A is the set of wordsw∈ Σ∗ such that∆(Q0,w)∩Qf 6= /0. The universality problem is to decide whether
A accepts all possible finite words,i.e L (A ) = Σ∗.

Given a complete NFAA = (Q,Σ,∆,Q0,Qf ), define the blindfold game with opacity condition
AA = (Q∪{q0},∆′,obs,act,q0,S) overΣ andΓ = {γ}, with q0 /∈ Q, as follows:

S= Q\(Qf ∪{q0}) act(γ) = Σ ∀q∈ Q∪{q0},obs(q) = γ

∀a∈ Σ,∆′(q,a) =

{
Q0 if q= q0

∆(q,a) otherwise
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Since, firstly,q0 is not reachable after the first move, secondly,∆′(q,a) = ∆(q,a) for q 6= q0 and
finally, ∆′(q0,a) = Q0 for all a, we obtain from lemma 7 the following corollary :

Corollary 12 For each play prefix in AA of the formρn = q0a1 . . .anqn (n≥ 1), I(ρn) = ∆(Q0,a2 . . .an).

One may note that the aim of the initial positionq0 is to initialise Robert’s information set toQ0 at
the end of the first round.

Proposition 13 The NFAA is universal if, and only if, in AA , every strategy of Gerald is winning.

Proof We start with the right-left implication. Assume that everystrategy is winning for Gerald. Take
one strategyβ , and take a wordw ∈ Σ∗. Consider a playρ in which Robert’s first moves form the
sequence of actionsaw, for somea in Σ, and Gerald follows strategyβ . This is possible because the
underlying automaton is complete. Beingρ induced by the winning strategyβ , it is S-opaque, hence in
particularI(ρ1+|w|) * S. By Corollary 12 we obtain :∆(Q0,w) * S, which implies that there exists a
positionq in ∆(Q0,w) that is inQf , henceA acceptsw. A is universal.

For the other implication, suppose thatA is universal. Letβ be a strategy of Gerald, and letρ be
a play induced byβ . We prove thatρ is S-opaque. Letn ∈ N. If n = 0, I(ρn) = {q0} * S. If n> 0,
there existsw in Σ∗ such thatI(ρn) = ∆(Q0,w) (Corollary 12). SinceA is universal it acceptsw, hence
∆(Q0,w)∩Qf 6= /0. SoI(ρn)* S, and this finishes the proof.

Theorem 14 In the setting of blindfold games with opacity condition, the opacity-verify problem, the
opacity-guarantee problem and the complementary of the opacity-violate problem are equivalent.

Proof Let A= (V,∆,obs,act,v0,S) be a blindfold game with opacity condition. It is clear that in gen-
eral,

∀β ,∀α , α β̂ is S-opaque⇒∃β ,∀α , α β̂ is S-opaque

We prove the converse in the case of blindfold games. Supposethat there exists a winning strategyβ for
Gerald. We prove that any strategyβ ′ is also winning.

Let α be a strategy for Robert. SinceA is blindfold, by Lemma 8 we have that obs(α β̂ ) = obs(α β̂ ′),
so for everyn∈ N, I(α β̂ ′ n) = I(α β̂ n)* S.

So we have that the opacity-verify problem is equivalent to the opacity-guarantee problem in blind-
fold games. We now show that the opacity-verify problem is also equivalent to the complementary of the
opacity-violate problem (decide whether∀α ,∃β s.t. α β̂ is S-opaque holds).

Once again one implication is trivial :

∀β ,∀α , α β̂ is S-opaque⇒∀α ,∃β , α β̂ is S-opaque

Now the other way. Suppose that for any strategyα there is a strategyβ for Gerald such thatα
loses. Now take any couple of strategies(α ,β ′). We know that there exists a strategyβ such thatα β̂
is S-opaque. But we also know (Lemma 8) that obs(α β̂ ) = obs(α β̂ ′) because the game is blindfold, so
once again for everyn∈ N, I(α β̂ ′n) = I(α β̂ n)* S.

The idea behind this theorem is that in blindfold games with opacity condition, the outcome of a play
does not rely on Gerald’s behaviour but only on what Robert plays. Indeed, since he observes nothing
of what Gerald does, Robert’s information set, and so the winning condition, are only determined by the
series of actions he chooses. Thus, these games via a power-set construction can be seen as (reachability)
one-player games: each position is a reachable informationsetI , at each step the unique player (Robert)
chooses an actiona∈ act(I), whereI is the current position, and moves to position∆(I ,a). Therefore, in
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blindfold games with opacity condition, whether Robert hasa winning strategy (i.e a winning sequence
of actions), or Gerald wins whatever he does.

The determinacy of blindfold games with opacity condition (Theorem 9) is an immediate corollary
of the above Theorem 14. Also Theorem 10 results from Theorems 14 and 11.

5 Related work

Opacity has mostly been studied in the framework of discrete-event systems and their theory of control
([17, 8]). It is both interesting and important to know to what extent the classical problems in this field
can be embedded into our games. We first describe the discrete-event system setting, next we define the
notion of opacity in this framework. We finally propose a translation from the verification of opacity in
this setting to the opacity-verify problem in games with opacity condition.

First we recall that aa deterministic finite automaton (DFA)is a NFAA = (Q,Σ,δ ,q0,Qf ) but with
a unique initial stateq0 and in which the transition relationδ : Q×Σ → 2Q satisfies|δ (q,a)| ≤ 1 for all
statesq and input symbolsa.

The problem of opacity is defined in [8] with regards to a LTSG (labelled transition system,i.e a
DFA without accepting states) and a confidential predicateφ over execution traces ofG, representable
by a regular languageLφ ⊆ Σ∗ whereΣ is the set of events of the transition system. For convenience, we

equivalently state it on a DFAA φ
G representing the transition system together with the secret predicate.

The automatonA φ
G is simply the synchronized product ofG with some complete DFA acceptingLφ .

We denote byT (A ) ⊆ Σ∗ the set of execution traces of an automatonA , and byL (A ) the language
accepted byA , so we have thatT (A

φ
G ) = T (G) andL (A

φ
G ) =T (G)∩Lφ . From now on, for a DFA

A , a stateq andw∈ T (A ), δ (q,w) shall denote the only state it contains.
We consider a subset of eventsΣa ⊆ Σ which denotes the observation capabilities of a potential

attacker of the system, and we letPΣa be theprojectionfunction fromΣ∗ to Σ∗
a. Two wordsw andw′ are

observationally equivalentif PΣa(w) = PΣa(w
′). We denote by[w]a = P−1

Σa
(PΣa(w)) the set of words inΣ∗

that are observationally equivalent to the wordw with regard toΣa.

Definition 6 Lφ is opaquew.r.t. T (G) andΣa if

∀w∈ T (G), [w]a∩T (G)* Lφ

This means thatLφ is opaque w.r.t.T (G) and Σa if, and only if, whenever an execution trace
of G verifies the confidential predicateφ there exists another possible execution trace observationally
equivalent that does not verifyφ .

We take an instance of the opacity verification problem,A
φ

G = (Q,Σ,δ ,qG
0 ,Qf ), and we describe the

construction of the game with opacity conditionAφ
G such that the following holds.

Theorem 15 Verifying thatLφ is opaque w.r.tT (G) andΣa is equivalent to deciding the opacity-verify

problem in Aφ
G.

The construction starts fromA φ
G where transitions labelled by events inΣ\Σa are turned intoε-

transitions. Then we remove thoseε-transitions as described in [11] by taking theε-closure of the
transition function, and we obtain theε-free nondeterministic finite automatonA ε = (Q,Σa,∆ε ,Qε

0,Qf ).
In this automaton, transitions are all labelled by observable events. One should think of the nonde-

terminism in this automaton as the uncertainty the attackerhas concerning the behaviour of the system.
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More precisely, she does not know when an observable event istriggered whether the system takes “in-
visible” transitions or not, may it be before, after, or bothbefore and after the observable one.

We need the following lemma, which is a mere consequence of the construction :

Lemma 16
∀w∈ Σ∗

a,∆
ε(Qε

0,w) = {δ (qG
0 ,w

′) | w′ ∈ [w]a∩T (G)}

We can now define the gameAφ
G = (V,∆,obs,act,v0,S) overΣ′ = {√} andΓ = {γx | x∈ Σa}∪{γε}:

• V = Q×Σa∪Qε
0×{ε}∪{vinit}.

• ∆(v,
√
) =

{
{(q′,y) | y∈ Σa,q′ ∈ ∆ε(q,y)} if v= (q,x)

{(q,ε) | q∈ Qε
0} if v= vinit

• ∀(q,x) ∈V, obs((q,x)) = γx, and obs(vinit ) = γε

• ∀v∈V, act(v) = {√}
• S= {(qf ,x) | qf ∈ Qf ,x∈ Σa∪{ε}} and v0 = vinit

Remark 3 Without loss of generality we can assume that in every state qof A ε there exists an event y
in Σa such that∆ε(q,y) is not empty. So in every position(q,x) in V , ∆((q,x),

√
) is not empty, and the

game can always continue.

In this game, Robert is passive. He only observes Gerald, whosimulates the systemG. If the game
is in position(q,x), it represents that we are in stateq in the systemG, and that the last visible event
wasx (if x= ε , no observable event happened yet). Robert observesγx, i.e the only information he gains
during a play is the sequence of visible events. When Gerald plays, he chooses a visible eventy and a
state reachable fromq throughy in A ε , which can be seen as choosing as many invisible transitionsin G
as he wishes, plus one visible amongst them,y. We shall noteα√ the only possible strategy for Robert,
which is to always play

√
.

vinit is the initial position, that can never be reached after the first move. It is used to initialize Robert’s
information set toQε

0 ×{ε} (these are the only reachable positions fromvinit , and they have the same
observation,γε ). This represents the set of states inG that are reachable before any observable transition
is taken.

We start the proof of Theorem 15 by establishing this centrallemma.

Lemma 17 Let ρn+1 = vinit
√
(q0,ε)

√
(q1,x1) . . .

√
(qn,xn) be a prefix of a play, with n≥ 0. Then

{q | (q,xn) ∈ I(ρn+1)}= ∆ε(Qε
0,x1 . . .xn) and for all (q,x) in I(ρn+1), x= xn.

Proof The latter fact is obvious, from the definition of observations. Considering the former fact, we
prove it by induction onn.

n= 1 : I(ρ1) = ∆({vinit },
√
)∩ γε = {(q0,ε) | q0 ∈ Qε

0}, so{q | (q,ε) ∈ I(ρ1)}= Qε
0 = ∆ε(Qε

0,ε)

n+1 :
{q | (q,xn+1) ∈ I(ρn+2)} = {q | (q,xn+1) ∈ ∆(I(ρn+1),

√
)∩obs((qn+1,xn+1))}

= {q | (q,xn+1) ∈ ∆(I(ρn+1),
√
)}

= {q | ∃(q′,xn) ∈ I(ρn+1),q∈ ∆ε(q′,xn+1)}
= {q | ∃q′ ∈ ∆ε(Qε

0,x1 . . .xn),q∈ ∆ε(q′,xn+1)}
= ∆ε(Qε

0,x1 . . .xn+1)
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We move on to the proof of Theorem 15. Suppose that every strategy β is winning for Gerald. We
prove thatLφ is opaque w.r.tT (G) andΣa. Take a wordw in T (G). There exists a prefix of a play
ρn+1 = vinit

√
(q0,ε)

√
(q1,x1) . . .

√
(qn,xn) such thatx1 . . .xn = PΣa(w). So there exists a strategyβ such

that α√̂ β n+1 = ρn+1. With lemma 17 and 16 we have that{q | (q,xn) ∈ I(ρn+1)} = {δ (qG
0 ,w) | w ∈

[x1 . . .xn]a∩T (G)}. Sinceβ is winning,{q | (q,xn) ∈ I(ρn+1)}* Qf , so there existsw′ in [x1 . . .xn]a∩
T (G) = [w]a∩T (G) such thatδ (qG

0 ,w
′) /∈ Qf . This implies that[w]a∩T (G)* Lφ .

Now suppose thatLφ is opaque w.r.tT (G) and takeβ a strategy for Gerald inAφ
G, we prove

that β is winning. Let ρβ = α√̂ β be the only possible play induced byβ . Take a prefixρn+1
β =

vinit
√
(q0,ε)

√
(q1,x1) . . .

√
(qn,xn) of this play. By Lemma 17 and 16 again,{q | (q,xn) ∈ I(ρn+1

β )} =

{δ (qG
0 ,w) |w∈ [x1 . . .xn]a∩T (G)}. Since an information set is never empty, there existsw in [x1 . . .xn]a∩

T (G), and becauseLφ is opaque w.r.tT (G), [x1 . . .xn]a∩T (G)*Lφ . So there existsw′ in [x1 . . .xn]a∩
T (G) such thatδ (qG

0 ,w
′) = q /∈ Qf , hence(q,xn) /∈ SandI(ρn

β )* S. β is winning.

6 Discussion on complexity

Solving safety games with perfect-information is in PTIME,and solving parity games with perfect infor-
mation is known to be inNP∩co-NP[12]. However we have seen that deciding whether Gerald, whohas
perfect-information, has a winning strategy in a game with opacity condition, is EXPTIME-complete,
even if we let Robert play with perfect-information (in the sense that his strategies are based on actual
prefixes of plays instead of their observation). So the gap between deciding the existence of a winning
strategy for a player in perfect-information games and for Gerald in a game with opacity condition does
not come from the fact that Robert has imperfect information, but rather from the nature of the winning
condition itself, which is based on the notion of information set, and forces Gerald to keep track of what
Robert’s information set along the game is.

Similarly, verifying that a finite-state strategy is winning in a safety perfect-information game can be
done in PTIME, whereas we have shown in [2] that in games with opacity condition, deciding whether a
finite-state (and even memoryless) strategy of Gerald is winning is PSPACE-complete in the size of the
arena and the memory of the strategy (we define in a classic waythe size of the memory of a strategy
as the number of states of an I/O automaton realizing the strategy [9]). The idea is that one has to check
that the strategy is winning not in all positions, but in all information sets. Concerning the size of the
memory needed for Gerald’s strategies, we know that an exponential memory is sufficient because if
there is a winning strategy there is a memoryless one in the powerset construction. The lower bound for
the needed memory is still an open problem.

7 Conclusion and perspectives

Following [14], we have extended the study of games with opacity condition. The opacity condition is
an atypical winning condition in imperfect information arenas aiming at capturing security aspects of
computer systems. Since games with opacity condition are not determined in general, two dual problems
need being considered: the opacity-violate problem and theopacity-guarantee problem, focusing on the
player who has imperfect information and on the player who has perfect information respectively. The
latter problem is usually equivalent to solving the underlying perfect information game, which explains
why it has never been considered; but the fact that our winning condition is based on information sets
makes the problem relevant. For both problems, simple power-set constructions apply to convert such
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games into perfect information ones, that can be solved in polynomial time, hence their upper bound is
EXPTIME. On the contrary, the matching EXPTIME lower bound for the opacity-guarantee problem,
where the main player has perfect information, was unknown until now and relies on an elegant reduction
from the empty input string acceptance problem for linearly-bounded alternating Turing machines. The
key point is to encode configurations by information sets. The reduction and its correctness proof are
very technical, but we could provide an intuitive informal description.

Finally, we focused on the particular case of blindfold games which offers specific results such as
determinacy (Theorem 9) and PSPACE-complete complexities(Theorem 10). The main tool to obtain
these results is the opacity-verify problem which addresses the question whether any strategy of Gerald
is winning. The fact that blindfold games with opacity condition can be seen as one-player games makes
this problem relevant and explains why it is equivalent to the opacity-guarantee problem and to the
complement of the opacity-violate problem in the blindfoldsetting, as we established. We also proved
that it is PSPACE-complete, by providing a PSPACE algorithmand a reduction from the nondeterministic
finite automata universality problem. The opacity-verify problem is all the more interesting to consider
that it naturally demonstrates how the paradigm of opacity condition embraces opacity issues investigated
in the recent literature of Control Theory [17, 8].

Games with opacity condition open a novel field in the theoretical aspects of games with imperfect
information by putting the emphasis on the player who has perfect information. From this point of view,
plethora of questions need being addressed, among which their connection with language-theoretic is-
sues (the synchronizing/directing word problem [3, 15, 4],controller synthesis to enforce the opacity of
a language [8]), their logical foundations, and their algorithmic aspects.
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