
B. Hoffmann and M. Minas (Eds.): Twelfth International

Workshop on Graph Computation Models (GCM 2021)

EPTCS 350, 2021, pp. 1–18, doi:10.4204/EPTCS.350.1

Grammars Based on a Logic of Hypergraph Languages

Tikhon Pshenitsyn
Department of Mathematical Logic and Theory of Algorithms

Faculty of Mathematics and Mechanics
Lomonosov Moscow State University

GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation

*

ptihon at yandex.ru

The hyperedge replacement grammar (HRG) formalism is a natural and well-known generalization

of context-free grammars. HRGs inherit a number of properties of context-free grammars, e.g. the

pumping lemma. This lemma turns out to be a strong restriction in the hypergraph case: it implies

that languages of unbounded connectivity cannot be generated by HRGs. We introduce a formalism

that turns out to be more powerful than HRGs while having the same algorithmic complexity (NP-

complete). Namely, we introduce hypergraph Lambek grammars; they are based on the hypergraph

Lambek calculus, which may be considered as a logic of hypergraph languages. We explain the

underlying principles of hypergraph Lambek grammars, establish their basic properties, and show

some languages of unbounded connectivity that can be generated by them (e.g. the language of all

graphs, the language of all bipartite graphs, the language of all regular graphs).

1 Introduction: Productions vs Types

Formal grammar theory is an area at the intersection of linguistics, logic, programming etc., which stud-

ies an issue of how complex, unboundedly large, but in some sense regular families of objects (strings,

terms, graphs, pictures, ...), can be described using some class of finite-sized mechanisms. There exist

numerous kinds of formal grammars based on different principles. For instance, standard context-free

grammars deal with strings; they consist of terminal and nonterminal alphabets, a nonterminal start sym-

bol S, and the list of productions of the form X → α , which allow one to replace the nonterminal symbol

X by the string α .

Example 1. Look at the following “linguistic” example (which is extremely primitive from the linguistic

point of view):

Productions: S → NP sleeps NP → the N N → cat

Derivation: S ⇒ NP sleeps ⇒ the N sleeps ⇒ the cat sleeps

In the production [S → NP sleeps], there is exactly one terminal object (sleeps here) in its right-hand

side. Let us transform this production as follows: sleeps ⊲ NP\S. The ⊲ sign is to be read as “is of

the type”, and NP\S stands for the type of such objects u that, whenever we add an object v of the

type NP (NP stands for the class of singular noun phrases, which includes e.g. phrases the cat, Helen,

a colorless green idea etc.) to the left of u, vu forms an object of the type S (S stands for sentence).

Therefore, sleeps ⊲ NP\S means that the verb sleeps is such an object that, whenever a noun phrase

(singular) appears to its left, they together form a sentence. This is correct, to a first approximation: the

cat sleeps, Helen sleeps, a green colorless idea sleeps etc. are correct English sentences. Similarly, we

*The study was supported by RFBR, project number 20-01-00670, by the Theoretical Physics and Mathematics Advance-

ment Foundation “BASIS”, and by the Interdisciplinary Scientific and Educational School of Moscow University “Brain, Cog-

nitive Systems, Artificial Intelligence”.

http://dx.doi.org/10.4204/EPTCS.350.1

2 Grammars Based on a Logic of Hypergraph Languages

can transform the production [NP → the N] into a correspondence: the ⊲ NP/N (N stands for singular

nouns with their dependents that do not represent a specific object but rather a class of objects: cat,

colorless green idea). Note that the direction of the division is different from the previous one. The

following reduction laws hold: the left one A,A\B → B, and the right one B/A,A → B. The type A/B

(B\A) can be understood as the type of functions that take an argument of the type B from the right (from

the left resp.) and return a value of the type A.

In linguistics, however, it is not enough to have the above reduction laws to describe language

phenomena of interest. E.g. sometimes it is useful to have the rule NP → S/(NP\S) or the rule

A/B,B/C → A/C. Besides, there is a need for an operation that would store pairs of units of certain

types. E.g. when we consider sentences like Tim gave the lemon to Melany and the lime to Amelie, we

would like to assign the type ((NP ·PP)\(NP ·PP))/(NP ·PP) to the word and (where PP is the type of

prepositional phrases with to: to Melany, to Amelie) since it receives a pair consisting of a noun phrase

and a prepositional phrase from the right, and a similar pair from the left. A ·B is the type of pairs uv

such that u is of the type A, and v is of the type B; therefore, A ·B works as pairwise concatenation.

The above connectives \, ·,/ belong to the Lambek calculus (L) — a logical calculus introduced in

[7]. Types in the Lambek calculus are built from primitive types p1, p2, . . . ∈ Pr using \, ·,/. We focus

on the Lambek calculus in the Gentzen style; this means that it deals with sequents, which are structures

of the form A1, . . . ,An → A for Ai, A being types (A1, . . . ,An is called an antecedent, and A is called a

succeedent). The calculus L has one axiom and six inference rules:

Π → A Γ,B,∆ →C

Γ,Π,A\B,∆ →C
(\ →)

A,Π → B

Π → A\B
(→ \)

Γ,A,B,∆ →C

Γ,A ·B,∆ →C
(· →)

A → A
(Ax)

Π → A Γ,B,∆ →C

Γ,B/A,Π,∆ →C
(/→)

Π,A → B

Π → B/A
(→ /) Π → A Ψ → B

Π,Ψ → A ·B
(→ ·)

An axiom can be considered as an inference rule with zero premises. Hereinafter, primitive types are

denoted by small Latin letters (in particular, from now on we write s instead of S, np instead of NP etc.),

types are denoted by capital Latin letters, and sequences of types are denoted by capital Greek letters;

besides, Π,Ψ above are nonempty. A sequent Π → A is called derivable in L (denoted L ⊢ Π → A) if it

can be obtained by applications of inference rules.

Example 2. The following sequents are derivable in L (their derivations are presented below them):

• np/n,n,np\s → s; • np → s/(np\s); • p → (p ·q)/q.

s → s

np → np n → n

np/n,n → np
(/→)

np/n,n,np\s → s
(\ →)

s → s np → np

np,np\s → s
(\ →)

np → s/(np\s)
(→ /)

p → p q → q
p,q → p ·q (→ ·)

p → (p ·q)/q
(→ /)

Finally, the above reasonings bring us to using the Lambek calculus as a grammar formalism. A

grammar is a correspondence (i.e., a binary relation) ⊲ between terminal objects and types along with

some fixed type S; a string is said to be correct if its elements can be replaced by coresponding types

in such a way that the sequent composed of these types in the antecedent and of S in the succeedent is

derivable in L.

Another feature characterizing the Lambek calculus is its language models. Namely, let us consider

a function w : Pr → P(Σ∗) called a valuation; this function assigns a formal language over some fixed

alphabet Σ to each primitive type. It can be extended to types and sequents according to principles stated

earlier; namely, w is defined as follows:

T. Pshenitsyn 3

1. w(B\A) = {u ∈ Σ
∗ | ∀v ∈ w(B) vu ∈ w(A)};

2. w(A/B) = {u ∈ Σ
∗ | ∀v ∈ w(B) uv ∈ w(A)};

3. w(A ·B) = {uv | u ∈ w(A),v ∈ w(B)};

4. w(A1, . . . ,An) = w(A1 · . . . ·An);

5. w(Π→A) is true if and only if w(Π)⊆w(A).

Pentus [9] proved that L ⊢ Π → A if and only if w(Π → A) is true for all valuations w. This allows us

to call the Lambek calculus the logic of formal languages in the sense that it describes all the true facts

about formal languages in the signature \, ·,/,⊆ and only them.

It is often important to work with more complex structures than strings. This is the reason why a

wide variety of extensions of generative grammars to terms, graphs etc. has been introduced. In this

paper, we focus on a particular approach called hyperedge replacement grammars (HRGs). A survey on

HRGs can be found in [3, 5]; in this paper, we mainly follow the definitions and notation from [3]. We

chose HRGs as the basis for our studies since they are very close to context-free grammars in the sense

of definitions, underlying mechanisms and properties. Our main goal is to extend the Lambek calculus

and Lambek grammars to hypergraphs in a natural way and to study the resulting notions.

In Section 2, we define fundamental notions regarding hypergraphs and hyperedge replacement. In

Section 3, we introduce the hypergraph Lambek calculus extending notions of types, sequents, axioms

and rules. The formal definition of hypergraph Lambek grammars will be given in Section 5. There we

also study the power of these grammars; it turns out that they can generate more languages than HRGs,

e.g. the language of all graphs, the language of all bipartite graphs, the language of all regular graphs.

Since the membership problem for HL-grammars is NP-complete and since they generate all isolated-

node bounded languages generated by HRGs, they can be considered as an attractive alternative to HRGs.

In Section 6, we conclude and outline further research directions regarding HL and HL-grammars.

2 Hyperedge Replacement

Formal definitions of hypergraphs and of hyperedge replacement are given in this section according to

[3, Chapter 3].

N includes 0. Σ
∗ is the set of all strings over the alphabet Σ including the empty string Λ. Σ

⊛ is the

set of all strings consisting of distinct symbols (they may be considered as ordered sets). The length |w|
of the word w is the number of symbols in w. The set of all symbols contained in a word w is denoted

by [w]. If f : Σ → ∆ is a function from one set to another, then it is naturally extended to a function

f : Σ
∗ → ∆

∗ (f (σ1 . . .σk) = f (σ1) . . . f (σk)).

Definition 1. A ranked set is a set C along with the ranking function rank : C → N.

Definition 2. A hypergraph G over C is a tuple G = 〈V,E,att, lab,ext〉 where V is a set of nodes, E is a

set of hyperedges, att : E → V⊛ assigns an ordered set of attachment nodes to each edge, lab : E → C

labels each edge by some element of C in such a way that rank(lab(e)) = |att(e)| whenever e ∈ E , and

ext ∈V⊛ is an ordered set of external nodes.

Components of a hypergraph G are denoted by VG,EG,attG, labG,extG resp.

In the remainder of the paper, hypergraphs are usually called just graphs, and hyperedges are called

edges. The set of all graphs with labels from C is denoted by H (C). Graphs are usually named by letters

G and H .

In drawings of graphs, black dots correspond to nodes, labeled squares correspond to edges, att is

represented by numbered lines, and external nodes are depicted by numbers in brackets. If an edge has

4 Grammars Based on a Logic of Hypergraph Languages

exactly two attachment nodes, it can be depicted by an arrow (which goes from the first attachment node

to the second one).

Note that Definition 2 implies that attachment nodes of each hyperedge are distinct, and so are exter-

nal nodes. This restriction can be removed (i.e. we can consider graphs with loops), and all definitions

will be preserved; however, in this paper, we stick to the above definition.

Definition 3. The function rankG (or rank, if G is clear) returns the number of nodes attached to an edge

in a graph G: rankG(e) := |attG(e)|. If G is a graph, then rank(G) := |extG|.

A sub-hypergraph (or just subgraph) H of a graph G is a hypergraph such that VH ⊆ VG, EH ⊆ EG,

and for all e ∈ EH attH(e) = attG(e), labH(e) = labG(e).
If H = 〈{vi}

n
i=1,{e0},att, lab,v1 . . .vn〉, att(e0) = v1 . . .vn and lab(e0) = a, then H is called a handle.

In this work, we denote it by a•.

An isomorphism between graphs G and H is a pair of bijective functions E : EG → EH , V : VG →VH

such that attH ◦ E = V ◦ attG, labG = labH ◦ E , V (extG) = extH . In this work, we do not distinguish

between isomorphic graphs.

Strings can be considered as graphs with the string structure. This is formalized in

Definition 4. A string graph induced by a string w = a1 . . .an is a graph of the form 〈{vi}
n
i=0,{ei}

n
i=1,att,

lab,v0vn〉 where att(ei) = vi−1vi, lab(ei) = ai. It is denoted by SG(w).

We additionally introduce the following definition (not from [3]):

Definition 5. Let H ∈ H (C) be a graph. Let f : EH → C be a function, where rank(labH(e)) =
rank(f (e)) for e ∈ EH . Then f (H) = 〈VH ,EH ,attH ,
f ,extH 〉.

If one wants to relabel only one edge e0 within H with a label a, then the result is denoted by H[e0 := a].

Definition 6. Hyperedge replacement is defined in [3], and it plays a fundamental role in hyperedge

replacement grammars. The replacement of an edge e0 in G with a graph H can be done if rank(e0) =
rank(H) as follows:

1. Remove e0;

2. Insert an isomorphic copy of H (H and G have to consist of disjoint sets of nodes and edges);

3. For each i in 1..rankG(e0), fuse the i-th external node of H with the i-th attachment node of e0.

The result is denoted by G[e0/H].

It is known that if several edges of a graph are replaced by other graphs, then the result does not

depend on the order of replacements; moreover the result is not changed if replacements are done simul-

taneously (see [3]). The following notation is in use: if e1, . . . ,ek are distinct edges of a graph H and

they are simultaneously replaced by graphs H1, . . . ,Hk resp. (this requires rank(Hi) = rank(ei)), then the

result is denoted H[e1/H1, . . . ,ek/Hk].

3 Hypergraph Lambek Calculus

HRGs can be used to describe linguistic structures as well as context-free grammars since linguistic

objects often have an underlying structure, which is more complex than a string. One of the recently

studied applications is using HRGs for abstract meaning representation (see e.g. [2, 4, 6]): the meaning

of a sentence is represented by a graph. In [1], HRGs are used for modelling nonprojective dependencies

in Dutch. Another example where graph structures occur in linguistics is syntactic trees. Given a context-

free grammar, it is natural to represent an internal hierarchical structure of constituents of a generated

sentence by a tree.

T. Pshenitsyn 5

Example 3. The HRG HGr = 〈{S,NP,N},{the,cat,sleeps, l,r},P,S〉 with the list of productions P de-

fined below generates the graph Syntree:

S → NP
(1)

sleeps
1 1l r

NP → the
(1)

N
1 1l r

N → (1) cat
1

Syntree =

(1)

sleeps

the cat

1

1 1

l r

l r

Here rank(S) = rank(NP) = rank(N) = rank(sleeps) = rank(the) = rank(cat) = 1, and rank(l) =
= rank(r) = 2.

Syntree is a simplified syntactic tree for the sentence the cat sleeps; l and r distinguish left and right

children in the tree.

Since there are such cases in linguistics where we need to work with graphs rather than with strings,

we would like to generalize the categorial point of view discussed in Section 1 to hypergraphs. Our first

attempt was a generalization of basic categorial grammars to hypergraphs; the resulting formalism called

hypergraph basic categorial grammar was introduced at ICGT 2020 [10]. However, this formalism did

not significantly improve our insight since most results were proved in the same way as for strings;

in particular, such grammars generate the same set of languages as HRGs (with some nonsubstantial

exceptions related to the number of isolated nodes). In this paper, we aim to go further and to discuss

how the Lambek calculus along with its grammars can be generalized to hypergraphs. Note that, in the

string case, Lambek grammars (i.e. grammars based on the Lambek calculus) are equivalent to context-

free grammars and to basic categorial grammars. (This nontrivial result was proved in [8].)

It is known that strings can be represented as string graphs, e.g. (1) (2)
the cat sleeps

represents the string the cat sleeps (this graph is denoted as SG(the cat sleeps)). The production S →
NP sleeps then is transformed into the graph production S → SG(NP sleeps). We want to transform this

production into a correspondence as it was done in Section 1; there we “took out” the terminal unit sleeps

from the right-hand side, and assigned the type NP\S to it. Now, we are going to do the same operation

but we shall mark an edge, from which we took out the label sleeps, by a special $ symbol:

S → SG(NP sleeps) sleeps ⊲ S/SG(NP $)

In general, $ denotes the hyperedge, from which we took out its label. Similarly, the production [NP →
the N] is transformed as follows: the ⊲ NP/SG($ N). Note that now we do not need two divisions \ and

/ anymore since the difference between them is now expressed by the position of the $-labeled edge. In

order to distinguish the string divisions and the new graph division, and also to stress that the latter is

undirected, we write A÷D instead of A/D for the latter.

The conversion of a production into a correspondence between a terminal unit (a symbol, a label,

a word) and a type requires that there is exactly one terminal unit in the right-hand side of the pro-

duction. This property is called weak Greibach normal form. Note that, if we have e.g. a production

S → SG(ABaCD) where S,A,B,C,D are nonterminal, and a is terminal, then we can also use the above

$-notation and write a ⊲ S÷SG(AB$CD). As in Section 1, this means that a is such an object that when-

ever objects of types A, B, C and D are placed instead of corresponding edges in the graph SG(AB$CD),
and a is placed on the $-labeled edge, the resulting structure forms an object of the type S. We can pro-

ceed similarly with an arbitrary hypergraph production, if the grammar is in the weak Greibach normal

6 Grammars Based on a Logic of Hypergraph Languages

form. This is the main idea of hypergraph basic categorial grammars. However, as in the string case, we

would like to go further and to consider more complex types; besides, we would also like to generalize

the operation A ·B. This results in the following

Definition 7. The set Tp(HL) of types of the hypergraph Lambek calculus HL is defined inductively as

the least set satisfying the following conditions:

1. Primitive types Pr are types. Pr is a countable ranked set such that for each n there are infinitely

many types p ∈ Pr such that rank(p) = n.

2. Let N (“numerator”) be a type. Let D (“denominator”) be a hypergraph such that exactly one of its

hyperedges (call it e0) is labeled by $, and the other hyperedges (possibly, there are none of them)

are labeled by elements of Tp(HL); let also rank(N) = rank(D). Then T = (N ÷D) is a type, and

rank(T) := rankD(e0).

3. Let M be a hypergraph such that all its hyperedges are labeled by types from Tp(HL) (possibly,

there are no hyperedges at all). Then T =×(M) is also a type, and rank(T) := rank(M).

Below we often write N ÷ (D) or N ÷D instead of (N ÷D). Item 2 generalizes the concept of ÷
explained earlier: N ÷D is the type of such hypergraphs H that, if we replace the $-labeled edge in D

by H and for all the remaining edges ei, i > 0, which are labeled by some types Ti, we replace them by

hypergraphs Hi, which are of types Ti, then we obtain a hypergraph of the type N. In particular, this

explains why we require rank(N) = rank(D) and rank(N ÷D) = rankD(e0).

Example 4. The first production from Example 3 can be transformed into the following correspondence:

sleeps ⊲ s÷

(
np

(1)

$
1 1pl pr

)
(1)

Here pl , pr are primitive types introduced to deal with special “technical” labels l (r resp.). According to

our general understanding of types, one may say that l (r) is of the type pl (pr resp.). Now, (1) means that

sleeps is such an object that, if we place it instead of $ within the graph np
(1)

$
1 1pl pr

,

and we place any object (syntactic tree) of the type np instead of the np-labeled edge, then we obtain an

object of the type s (we also need to replace pl by l and pr by r).

The operation ×(M) can be called a hypergraph product, or a hypergraph concatenation. Its general

semantics it the following: if EM = {m1, . . . ,ml}, labM(mi) = Ti, and Hi is a hypergraph of the type Ti

(i = 1, . . . , l), then the hypergraph M[m1/H1, . . . ,ml/Hl] is a hypergraph of the type ×(M). Thus, ×(M)
is the type of all substitution instances of M.

Example 5. If str is the primitive type of all string graphs labeled by the blank symbol ∗, then the type

×


 (1) (2)

str

str


 is the type of all graphs consisting of two parallel strings with the common start

and finish nodes, e.g. (1) (2) .

Moving away from the intuition of ÷ and ×, we would like to introduce a syntactic calculus, which

would work with types introduced in Definition 7 by means of axioms and rules. We expect that this

calculus should generalize the Lambek calculus in the Gentzen style introduced in Section 1. This is

done in our preprint [12]; in this paper, we only introduce the axiom and rules of the hypergraph Lambek

calculus (HL) without a detailed discussion of why they actually generalize those of L.

T. Pshenitsyn 7

Definition 8. A hypergraph sequent is a structure of the form H → A, where A ∈ Tp(HL) is a type,

H ∈ H (Tp(HL)) is a hypergraph labeled by types and rank(H) = rank(A). H is called the antecedent

of the sequent, and A is called the succedent of the sequent.

Remark. Returning to our intuition, H → A could be understood as the statement “each hypergraph of

type H is also of type A” (in a similar way as for L that we described in Section 1). However, we do

not have types of the form H for H being a hypergraphs. Note that there we defined w(A1, . . . ,An) as

w(A1 · . . . ·An) in the string case. This allows us to conclude that here we should also understand H → A

as the statement “each hypergraph of type ×(H) is also of type A”

The hypergraph Lambek calculus HL deals with hypergraph sequents and explains, which of them

are derivable using axioms and rules. The only axiom of HL is the following: p• → p, p ∈ Pr (p• here

is the p-handle). Rules are presented below along with some simple examples.

1. Rule (÷→). Let N÷D be a type and let ED = {d0,d1, . . . ,dk} where lab(d0) = $, lab(di) = Ti for

i ≥ 1. Let H → A be a hypergraph sequent and let e ∈ EH be labeled by N. Let finally H1, . . . ,Hk

be hypergraphs labeled by types. Then the rule (÷→) is the following:

H → A H1 → T1 . . . Hk → Tk

H[e/D][d0 := N ÷D][d1/H1, . . . ,dk/Hk]→ A
(÷→)

This rule explains how a type with division may appear in the antecedent of a sequent: we replace

a hyperedge e by D, put a label N ÷ D instead of $ and replace the remaining labels of D by

corresponding antecedents.

Example 6. Consider the following rule application with Ti being some types and with T being

equal to q÷SG(T2$T3):

SG(pq)→ T1 SG(rs)→ T2 SG(tu)→ T3

SG(prsT tu)→ T1
(÷→)

2. Rule (→÷). Let F → N ÷D be a hypergraph sequent; let e0 ∈ ED be labeled by $. Then

D[e0/F]→ N

F → N ÷D
(→÷)

This rule is understood as follows: if there are such hypergraphs D,F and such a type N that in a

sequent H → N the hypergraph H equals D[e0/F] and H → N is derivable, then F → N÷D is also

derivable.

Example 7. Consider the following rule application where N equals ×(SG(pqr)) (here we draw

string graphs instead of writing SG(w) to visualize the rule application):

(1) (2)
p q r → N

(1) (2)
p q

→ N ÷

(
(1) (2)

$ r
) (→÷)

3. Rule (×→). Let G → A be a hypergraph sequent and let e ∈ EG be labeled by ×(F). Then

G[e/F]→ A

G → A
(×→)

This rule is formulated from bottom to top as the previous one. Intuitively speaking, there is a sub-

graph of an antecedent in a premise, and it is “compressed” into a single ×(F)-labeled hyperedge.

8 Grammars Based on a Logic of Hypergraph Languages

Example 8. Consider the following rule application where U equals ×(SG(pqrs)):

(1) (2)
p q r s →U

(1) (2)
p ×(SG(qr)) s →U

(×→)

4. Rule (→×). Let ×(M) be a type and let EM = {m1, . . . ,ml}. Let H1, . . . ,Hl be graphs. Then

H1 → lab(m1) . . . Hl → lab(ml)

M[m1/H1, . . . ,ml/Hl]→×(M)
(→×)

This rule is quite intuitive: several sequents can be combined into a single one via some hypergraph

structure M.

Example 9. Consider the following rule application with Ti being some types:

SG(pq)→ T1 SG(rs)→ T2 SG(tu)→ T3

SG(pqrstu) →×(SG(T1T2T3))
(→×)

Definition 9. A hypergraph sequent H → A is derivable in HL, written as HL ⊢ H → A, if it can be

obtained from axioms using rules of HL. A corresponding sequence of rule applications is called a

derivation and its representation as a tree is called a derivation tree.

Example 10. Let rank(s) = rank(np) = rank(n) = 1, rank(pl) = rank(pr) = 2, and let

V = s÷

(
np

(1)

$
1 1pl pr

)
; Adj = np÷

(
$

(1)

n
1 1pl pr

)
.

Then the following is the derivation of the below sequent:

s• → s np• → np p•l → pl p•r → pr

(1)

Vnp
11

pl pr

→ s

(÷→)

n• → n p•l → pl p•r → pr

(1)

V

Adj n

1

1 1

pl pr

pl pr
→ s

(÷→)

In [12], we show that L and its different variants (with modalities, with the permutation rule etc.) can be

embedded in HL; we also show that certain structural properties of L can be straightforwardly lifted to

HL. Hence HL can be considered as an appropriate extension of the Lambek calculus to hypergraphs,

as desired. Note that introduction of the division ÷ and of the product × was motivated by the intuitive

understanding of types as of families of hypergraphs (i.e. hypergraph languages). Although HL was

defined as a purely syntactic formalism that formally explains how hypergraph sequents can be rewritten,

T. Pshenitsyn 9

one would expect that hypergraph languages can be considered as models of HL. In Section 4, we

formally define language models (L-models in short) for HL in a way similar to how we introduced

the notion of valuation w in Section 1. We establish correctness of HL with respect to L-models, and

completeness of its ×-free fragment.

The following statements can be proved in a similar way as for strings (see [12]):

Theorem 1 (cut elimination). If H → A and G → B are derivable in HL, and e0 ∈ EG is labeled by A,

then G[e0/H]→ B is also derivable in HL.

Proposition 1 (reversibility of (×→) and (→÷)).

1. If HL ⊢ H →C and e0 ∈ EH is labeled by ×(M), then HL ⊢ H[e0/M]→C.

2. If HL ⊢ H → N ÷D and e0 ∈ ED is labeled by $, then HL ⊢ D[e0/H]→ N.

These statements will be used in proofs of some results in this paper.

4 Language Models for HL

In previous sections, we looked at types of the Lambek calculus (either in its string or in its hypergraph

versions) as hypergraph languages; divisions and product were interpreted as operations on languages.

In this section, we are going to formalize this idea for HL in a way similar to what we have done in

Section 1 and in Examples 4 and 5.

Definition 10. Given a ranked alphabet Σ, we call a function w : Pr →P(H (Σ)) a valuation if for each

p ∈ Pr rank(H) = rank(p) whenever H ∈ w(p). This function assigns a hypergraph language to each

primitive type. Its extension w is the following function from the set of hypergraph types to P(H (Σ)):

1. Let N÷D be a type and let ED = {d0, . . . ,dk}, labD(d0)= $, labD(di)= Ti. Then w(N÷D) consists

of all graphs G such that D[d0/G,d1/H1, . . . ,dk/Hk] belongs to w(N) whenever H1 ∈ w(T1), ...,

Hk ∈ w(Tk).

2. Let ×(M) be a type and let EM = {m1, . . . ,ml}, labM(mi) = Ti. Then w(×(M)) consists of all

graphs of the form M[m1/H1, . . . ,ml/Hl] for all Hi ∈ w(Ti).

3. We additionally define w(H → A) as the statement w(×(H))⊆ w(A).

Thus we defined language models (or L-models) for the hypergraph Lambek calculus. Now we

formulate some standard model-theoretic results (their proof in the hypergraph case does not differ from

that in the string case).

Theorem 2. If HL ⊢ H → A, then w(H → A) is true for each valuation w.

This theorem is proved by a straightforward induction on the length of a derivation. The other

direction (i.e. completeness) is an open question (in the string case, this direction was a hard open

problem until it was proved in [9]). We expect that it holds in the hypergraph case but we have no idea

how to generalize the proof from [9]. However, if we consider the product-free fragment of HL (that

is, we will consider types with ÷ only), then the completeness theorem can be easily proved using the

canonical model. In the string case, the canonical model is the following: given a type A, we assign

the set of antecedents Π such that Π → A is derivable to A considering types as symbols of an (infinite)

alphabet.

Theorem 3. If w(H → A) is true for each valuation w, and types in H → A do not contain ×, then

HL ⊢ H → A.

10 Grammars Based on a Logic of Hypergraph Languages

Proof. Let us denote the fragment of HL, in which we consider only types without ×, as HL(÷). We

fix the alphabet Σ = Tp(HL(÷)) (i.e. types without × are now symbols of the alphabet) and introduce

a valuation w0 for all primitive types: w0(p) = {G ∈ H (Σ) | HL ⊢ G → p}. Note that such a definition

of w0 can be considered not only for primitive types p but for all types T ∈ Tp(HL(÷)). We claim that

w0(T) = w0(T) for all such types; that is, the function w0 obtained from Definition 10 coincides with

w0. Indeed: if T = N ÷D, labD(d0) = $, and labD(di) = Ti (i = 1, . . . ,k), then

G ∈ w0(N ÷D)⇔ HL ⊢ G → N ÷D ⇔ HL ⊢ D[d0/G]→ N (see Proposition 1) ⇔
⇔ ∀Hi : (HL ⊢ Hi → Ti, i = 1, . . . ,k) HL ⊢ D[d0/G,d1/H1, . . . ,dk/Hk]→ N ⇔ G ∈ w0(N ÷D).

The penultimate equivalence follows from the fact that HL ⊢ T •
i → Ti and from the cut elimination

Theorem 1. Since w0(H → A) is true, w0(×(H))⊆ w0(A); H belongs to w0(×(H)) (HL ⊢ H →×(H)),
hence H belongs to w0(A). By the definition of w0, this yields that HL ⊢ H → A.

Unfortunately, a similar proof does not work for HL with × (like in the string case). Thus, there

is much space for further investigations. Nevertheless, Theorem 2 and Theorem 3 partially justify the

periphrastic name of the hypergraph Lambek calculus given in the title: it is a logic of hypergraph

languages.

5 Hypergraph Lambek Grammars and Their Power

Although in this paper we devote a great deal of attention to the hypergraph Lambek calculus itself

and to its model-theoretic motivation, our main goal is to study the concept of hypergraph Lambek

grammars (HL-grammars in short). They are defined in a similar way to Lambek grammars (in the string

case). A grammar is essentially a finite set of correspondences of the form a ⊲ T where a is a terminal

label, and T is a type; besides, in a grammar some type S (not necessarily primitive) is distinguished.

Then a hypergraph G belongs to the language generated by the grammar if we can replace labels of its

hyperedges by corresponding types (let us denote the resulting graph G′) and derive the sequent G′ → S

in HL.

We consider a ranked alphabet Σ.

Definition 11. A hypergraph Lambek grammar (HL-grammar) is a tuple HGr = 〈Σ,S,⊲〉 where Σ is a

finite set (alphabet), S ∈ Tp(HL) is a distinguished type, and ⊲ ⊆ Σ×Tp(HL) is a finite binary relation

such that a ⊲ T implies rank(a) = rank(T).

Definition 12. The type set of an HL-grammar HGr = 〈Σ,S,⊲〉 is the set ts(HGr) = {T | ∃a ∈ Σ : a ⊲ T}.

Definition 13. The language L(HGr) generated by a hypergraph Lambek grammar HGr = 〈Σ,S,⊲〉 is

the set of all hypergraphs G ∈ H (Σ) for which a function fG : EG → Tp(HL) exists such that:

1. labG(e) ⊲ fG(e) whenever e ∈ EG;

2. HL ⊢ fG(G)→ S.

Example 11. The HL-grammar SGr = 〈{a,b},s,⊲〉 where s is primitive, and

• a ⊲ s÷SG($sp) = Q,

• b ⊲ p, b ⊲ s

generates the language {SG(anbn+1) | n ≥ 0}. For example, if one wants to check that G = SG(aabbb)
belongs to L(SGr), he/she follows such steps:

T. Pshenitsyn 11

1. Relabel each edge in G in such a way that each label is replaced by a type corresponding to it. We

do this as follows: G = SG(aabbb) fG(G) = SG(QQspp).

2. Consider the sequent fG(G)→ s and derive it in HL:

s• → s s• → s p• → p

SG(Qsp)→ s
(÷→)

s• → s p• → p

SG(QQspp)→ s
(÷→)

Now, notice the following: if a sequent G′ → s is derivable, and G′ is labeled only by types from the

type set of SGr, then each derivation of G′ → s consists only of applications of (÷→). The rule (÷→)
consists of several replacements in the antecedent of a sequent, and hence the grammar SGr works in a

way similar to the hyperedge replacement grammar with the following set of productions:

S → SG(aSP) S → SG(b) P → SG(b)

Note that the conversion of this HRG back into SGr can be made according to the principles explained in

Section 3. The new grammar is actually a graph variant of a context-free grammar with the productions

S → aSP,S → b,P → b, which, clearly, generates the language {anbn+1 | n ≥ 0}.

The transformation considered in Example 4 and in Example 11 is possible, if there is exactly one

terminal label (say a) in a production; then we place $ instead of a, and establish a correspondence ⊲
between a and a type made on the basis of this production.

Definition 14. An HRG HGr is in the weak Greibach normal form if there is exactly one terminal edge

in the right-hand side of each production.

Denote by isize(H) the number of isolated nodes in H .

Definition 15. A hypergraph language L is isolated-node bounded if there is a constant M > 0 such that

for each H ∈ L isize(H)< M · |EH |.

In [11] we prove the following

Theorem 4. For each HRG generating an isolated-node bounded language there is an equivalent HRG

in the weak Greibach normal form.

Using it, we can prove the following theorem applying standard techniques.

Theorem 5. For each HRG generating an isolated-node bounded language there is an equivalent HL-

grammar.

The proof of this theorem can be found in [13]. It is not, however, of interest in this paper; we formu-

late this theorem here only to show the reader that HL-grammars are not weaker than HRGs (isolated-

node boundedness is a nonsubstantial limitation). Our objective now is to show that HL-grammars are

more powerful than HRGs; to do this, we will introduce several examples of grammars generating lan-

guages that can be generated by no HRGs.

5.1 All Binary Graphs

One of restrictions known for languages generated by HRGs is that they are of bounded connectivity (see

[3]); this follows from the pumping lemma (see [5], Chapter IV.2). Consequently, no HRG can generate

the set of all binary graphs (i.e. of usual graphs with edges of rank 2). This might seem unnatural because

12 Grammars Based on a Logic of Hypergraph Languages

HRGs represent a context-free formalism, and the language of all binary graphs seems to be very simple

and regular. Below we show that HL-grammars are powerful enough to generate such a language.

Consider the language L1 of all binary graphs without isolated nodes (the empty graph is not in-

cluded in L1 as well) over the alphabet {∗} (rank(∗) = 2) that are, besides, without external nodes. Con-

sequently, each graph in this language has at least two nodes. Let s, p be primitive types (rank(s) = 0,

rank(p) = 1). Let us define the following types:

Q1 = p, Q2 = p÷




(1)

$ p

1 1


 , Q3 = s÷




$ p

1 1


 ;

M
i j
11 =×




(1)

Qi

(2)

Q j

1 1


 , Mi

12 =×




(1)

Qi

(2)

1


 ,M j

21 =×




(1) (2)

Q j

1


 , M22 =×

(

(1) (2)

)
.

Consider a grammar HGr1 = 〈{∗},s,⊲〉 where ∗ ⊲ N whenever N ∈ {M
i j
11,M

i
12,M

j
21,M22|1 ≤ i, j ≤ 3}.

Theorem 6. L(HGr1) = L1.

Proof. To prove that L(HGr1) ⊆ L1 it suffices to note that denominators of types in ts(HGr1) do not

contain isolated nodes; since isolated nodes may appear only after applications of rules (÷→) or (→×),
all graphs in L(HGr1) do not have them.

The other inclusion L(HGr1) ⊇ L1 is of central interest. We start with an example of a specific

derivation in this grammar. After, we provide the proof in a general case, but we suppose that this

example is enough to understand the construction of HGr1.

Example 12. Consider a binary graph

H = ∗

∗

∗

∗

In order to check that H belongs to L(HGr1) we relabel it by corresponding types as follows:

fH(H) = M32
11

M2
21

M22
M1

12

Then we check derivability of fH(H) → s (see Figure 1). The idea behind types M
·,·
i j is the following:

each edge is replaced in the derivation (considered from bottom to top) by a pair of hyperedges of rank

1 attached to nodes (labeled by Qi). Each node is intended to be attached to exactly one hyperedge; then

we need to label exactly one hyperedge by Q1 (from which rule applications of (÷ →) should start),

exactly one hyperedge by Q3, and the remaining ones by Q2.

In general, let H be in L1. Since there are no isolated nodes in H there exists a function h : VH → EH

such that h(v) is attached to v whenever v ∈VH . We choose two arbitrary nodes vb (begin) and ve (end)

such that vb 6= ve. After that, we define a function c : VH →{1,2,3} as follows: c(vb) = 1, c(ve) = 3, and

c(v) = 2 whenever v 6∈ {vb,ve}.

Now we present a relabeling fH : EH → Tp(HL). Let e belong to EH and let attH(e) = v1v2.

T. Pshenitsyn 13

s• → s p• → p

Q3 p
1 1 → s

(÷→)
p• → p

Q3 Q2 p
1 1 1 → s

(÷→)
p• → p

Q3 Q2 Q2 Q1
1 1 1 1 → s

(÷→)

Q3

Q2

Q2

M1
12

1

1

1 → s

(×→)

Q3

Q2

Q2

M22
M1

12

1

1

1 → s

(×→)

Q3

Q2

M2
21

M22
M1

12

1

1

→ s

(×→)

M32
11

M2
21

M22
M1

12

→ s

(×→)

Figure 1: Derivation of a sequent corresponding to the binary graph H .

14 Grammars Based on a Logic of Hypergraph Languages

• If h(v1) = h(v2) = e, then fH(e) := M
c(v1)c(v2)
11 ;

• If h(v1) = e,h(v2) 6= e, then fH(e) := M
c(v1)
12 ;

• If h(v1) 6= e,h(v2) = e, then fH(e) := M
c(v2)
21 ;

• If h(v1) 6= e,h(v2) 6= e, then fH(e) := M22.

We aim to check derivability of the sequent fH(H)→ s. Its derivation from bottom to top starts with

the rule (×→) applied |EH | times to all types in the antecedent. It turns out that, after such applications

of (×→), the antecedent of a sequent includes one edge labeled by Q1, one edge labeled by Q3, and the

remaining edges labeled by Q2; besides, for each node there is exactly one edge attached to it (this is

satisfied by the definition of the function h). Then we apply (again from bottom to top) the rule (÷→),
and using it we “reduce” the only Q1-labeled edge (recall that Q1 = p) with a Q2-labeled edge; after

this we obtain a new p-labeled edge and repeat the procedure. Thus we eliminate all nodes and edges

one-by-one. Finally, we obtain a graph with two nodes, with a Q3-labeled edge attached to the first one

and a p-labeled edge attached to the second one. Applying (÷→) once more, we “contract” Q3 with p

and obtain the sequent s• → s, which is an axiom.

Therefore, we have established that HL-grammars are stronger than HRGs and that they moreover

disobey the pumping lemma introduced in [2].

5.2 Bipartite graphs

Another example is the language L2 ⊆ L1 of all bipartite binary graphs without isolated nodes.

Definition 16. A binary graph H is bipartite if its nodes can be divided into two disjoint subsets V1 and

V2 in such a way that each edge of H outgoes from a node belonging to V1 to a node belonging to V2.

Let us define the following types (where p,q are primitive, rank(p) = rank(q) = 1):

• R1(r) := r;

• R2(r) := r÷




(1)

$ r

1 1


;

• R3(r) := r÷




(1)

$ r
1 1


;

• R4(r) := r÷




(1)

$ r

1 1

r
1


;

• Mi j :=×




(1)

Ri(p)

(2)

R j(q)
1 1


 , 1 ≤ i, j ≤ 4;

• S :=×

(
p q

1 1

)
.

We define HGr2 := 〈{∗},S,⊲〉 as follows: ∗ ⊲ Mi j for all 1 ≤ i, j ≤ 4.

Proposition 2. L2 = L(HGr2).

The proof of this proposition is divided into two parts. It straightforward to show that L2 ⊆ L(HGr2)
by deriving sequents corresponding to graphs from L2. To prove the other inclusion, we use Proposition

1 and then notice that there is no way for two hyperedges, one of which is labeled by Ri(p) and the other

one is labeled by R j(q), to be attached to the same node in the antecedent (to prove this, it suffices to

analyze variants of how the rule (÷→) can be applied).

T. Pshenitsyn 15

5.3 Regular graphs

A less trivial example of a hypergraph language generated by a HL-grammar and by no HRGs is the

language of regular binary graphs.

Definition 17. A binary graph H is regular if there is an integer k ≥ 1 such that the indegree and the

outdegree of each node equals k.

Let L3 ⊆ L1 be the language of all regular binary graphs (without the empty graph).

Theorem 7. L3 can be generated by some HL-grammar.

To prove this theorem, we need the following result proved in [13]:

Theorem 8. If L1, . . . ,Lk are languages generated by some HRGs, then L1∩ . . .∩Lk can be generated by

some HL-grammar.

Less formally, this means that HL-grammars can generate finite intersections of languages generated

by HRGs.

Definition 18. Let MS1, . . . ,MSn, n ≥ 1 be some multisets with elements from C′ ⊆ C (that is, they

are multisets of labels from C′). Let b ∈ C \C′ be some symbol with rank(b) = 2. We denote MSi =
{a1

i , . . . ,a
ki

i }, and rank(a j
i) = t

j
i > 0. A flowerbed F(MS1, . . . ,MSn,b) over C′ is the hypergraph

〈V,E,att, lab,ext〉 where

1. V = {v
jk
i | i = 1, . . . ,n, j = 1, . . . ,ki, k = 1, . . . , t j

i −1}∪{u1, . . . ,un};

2. E = {e
j
i | i = 1, . . . ,n, j = 1, . . . ,ki}∪{ f1, . . . , fn−1};

3. (a) att(e j
i) = uiv

j1
i v

j2
i . . .v

j(t j
i −1)

i (if t
j
i = 1, then att(e j

i) = ui);

(b) att(fk) = vkvk+1;

4. (a) lab(e j
i) = a

j
i ;

(b) lab(fk) = b;

5. ext = Λ.

Informally, a flowerbed is a string graph SG(b . . .b) (b repeated n times) without external nodes such

that several hyperedges of different ranks can be additionally attached to its nodes (but only the first

attachment node of a hyperedge belongs to this string graph; the remaining nodes must be attached only

to this hyperedge).

Definition 19. Given a multiset MS, |MS|a denotes the number of occurences of a in MS.

Proof (of Theorem 7). Let C′ = {a,z} with rank(a) = 1, rank(z) = 3. We set Σ= {a,z,b} with rank(b) =
2. Let us introduce the following languages:

• L1 is the set of all flowerbeds over C′ of the form F(MS1, . . . ,MSn,b) such that |MS2k|
a =

= |MS2k+1|
a = |MS2k|

z = |MS2k+1|
z for k = 1, . . . ,⌊n−1

2
⌋

• L2 is the set of all flowerbeds over C′ of the form F(MS1, . . . ,MSn,b) such that |MS2k−1|
a =

|MS2k|
a = |MS2k−1|

z = |MS2k|
z for k = 1, . . . ,⌊n

2⌋

It is left as an exercise to prove that L1 and L2 can be generated by some HRGs; thus, according to

Theorem 8, L = L1 ∩ L2 can be generated by an HL-grammar. Let us denote such a grammar HGr =
〈Σ,S,⊲〉: L(HGr) = L. Note that L is the set of all flowerbeds over C′ of the form F(MS1, . . . ,MSn,b)
such that |MSk|

a = |MSk+1|
a = |MSk|

z = |MSk+1|
z for k = 1,2, . . . ,n−1.

16 Grammars Based on a Logic of Hypergraph Languages

Let us denote all types corresponding to a via ⊲ as Ai (i.e. a ⊲ Ai), all types corresponding to z as Z j,

and all types corresponding to b as Bk. Let

Ti j :=×




(1)

Ai

(2)

Z j

1 1


 , Ti jk :=×




(1)

Ai

(2)

Z j

1 1Bk


 .

Using these types we define an HL-grammar H̃Gr := 〈{∗},S, ⊲̃〉 as follows: ∗ ⊲̃ Ti j,Ti jk for all possible

i, j, k. We argue that L(H̃Gr) = L3. Indeed, H ∈ L(H̃Gr) if and only if there exists a relabeling fH such

that labH(e) ⊲̃ fH(e), and HL ⊢ fH(H)→ S. Labels in fH(H) are types Ti j and Ti jk, which are of the form

×(M). Using Proposition 1, we draw the conclusion that HL ⊢ fH(H)→ S if and only if HL ⊢ Ĥ → S

where Ĥ is obtained from fH(H) by replacing each hyperedge labeled by a type of the form ×(M) by M.

Ĥ is labeled by types Ai, Z j, and Bk. Note that for all i, j,k Ai 6= Z j, Z j 6= Bk, Ai 6= Bk since type(Ai) = 1,

type(Bk) = 2, type(Z j) = 3. Let g : EĤ → Σ be such a function that g(e) = a if labĤ(e) = Ai, g(e) = b

if labĤ(e) = Bk, and g(e) = z if labĤ(e) = Z j. Since HL ⊢ Ĥ → S, g(Ĥ) belongs to L(HGr) = L. To

complete the proof, observe that the number of a-labeled edges attached to a node in g(Ĥ) equals the

outdegree of this node in H , and the number of z-labeled edges attached to a node in g(Ĥ) equals the

indegree of this node in H; according to the definition of L, this number is the same for all nodes.

Formally, in the above reasonings we made a one-way transition when we introduced g; hence, we

only proved that H̃Gr generates regular binary graphs. However, given a regular binary graph H , we

can construct graphs of the form fH(H), Ĥ, and g(Ĥ) corresponding to it and then repeat the above

reasonings.

Remark. Consider the language L3 of all flowerbeds over C′ of the form F(MS1, . . . ,MSn,b) such that

|MS1|
a = n− 1. This language can also be generated by some HRG (this is left as an exercise to the

reader). If we defined L in the above proof as L1 ∩ L2 ∩ L3, then L(H̃Gr) would consist of all regular

binary graphs with n nodes such that the indegree and the outdegree of each node equals n−1. Note that

numbers of edges in graphs of L(H̃Gr) in such a case form the set
{

n(n−1)
2 | n ≥ 2

}
, which grows with

the pace O(n2) (this violates the Linear-Growth theorem, see [5], Chapter IV.2).

6 Conclusion

Hypergraph Lambek grammars are a logical formalism, which extend hyperedge replacement grammars.

They deal with hypergraph types and sequents, which have a model-theoretic semantics of hypergraph

languages. We showed that HL-grammars are more powerful than HRGs; in particular, they violate

the pumping lemma and the Linear-Growth theorem. Note that, since they generate the language of

all graphs, they are able to generate languages of unbounded treewidth. This can be considered as a

disadvantage since we cannot use algorithms for languages of bounded treewidth. However, our goal

was rather to show that HL-grammars are much more powerful than HRGs, which cannot be obtained

for free.

Note that the membership problem for HL-grammars is NP-complete: this follows from the fact that,

if H belongs to L(HGr) for HGr= 〈Σ,S,⊲〉, then this can be certified by a function fH and by a derivation

of fH(H)→ S. Description of fH and the derivation have polynomial size with respect to H and HGr,

hence the problem is in NP. It is NP-complete since HL-grammars can generate an NP-complete language

T. Pshenitsyn 17

(which can be generated by some HRG without isolated nodes). Therefore, being equal in complexity to

HRGs, HL-grammars represent a promising instrument for generating hypergraph languages.

As is often the case, there are more questions than answers. Some of them are listed below:

1. Is it true that, if w(H → A) is true for all valuations, then HL ⊢ H → A (for sequents that include

types with ×)?

2. Do HL-grammars generate the language of (a) complete binary graphs? (b) planar binary graphs?

(c) directed acyclic binary graphs?

3. What string languages can be generated by HL-grammars?

4. Is the class of languages generated by HL-grammars closed under intersections?

5. What nontrivial necessary properties (like the pumping lemma for HRGs) exist for languages

generated by HL-grammars?

6. Can HL-grammars be embedded in some known kind of graph grammars?

We are interested in further and deeper study of generalizations of logical approaches and concepts to as

graphs; we think that this allows one to better understand the nature of the considered notions.

Acknowledgments

I am grateful to my scientific advisor Mati Pentus for his careful attention to my studies. I also thank

anonymous reviewers for their substantial and valuable advice.

References

[1] Daniel Bauer & Owen Rambow (2016): Hyperedge Replacement and Nonprojective Dependency Struc-

tures. In David Chiang & Alexander Koller, editors: Proceedings of the 12th International Workshop on

Tree Adjoining Grammars and Related Formalisms (TAG+12), June 29 - July 1, 2016, Heinrich Heine

University, Düsseldorf, Germany, The Association for Computer Linguistics, pp. 103–111. Available at

https://www.aclweb.org/anthology/W16-3311/.

[2] Frank Drewes & Anna Jonsson (2017): Contextual Hyperedge Replacement Grammars for Abstract Mean-

ing Representations. In Marco Kuhlmann & Tatjana Scheffler, editors: Proceedings of the 13th In-
ternational Workshop on Tree Adjoining Grammars and Related Formalisms, TAG 2017, Umeå, Swe-

den, September 4-6, 2017, Association for Computational Linguistics, pp. 102–111. Available at

https://www.aclweb.org/anthology/W17-6211/.

[3] Frank Drewes, Hans-Jörg Kreowski & Annegret Habel (1997): Hyperedge Replacement Graph Grammars.

In Grzegorz Rozenberg, editor: Handbook of Graph Grammars and Computing by Graph Transformations,

Volume 1: Foundations, World Scientific, pp. 95–162, doi:10.1142/9789812384720 0002.

[4] Sorcha Gilroy, Adam Lopez & Sebastian Maneth (2017): Parsing Graphs with Regular Graph Grammars. In

Nancy Ide, Aurélie Herbelot & Lluı́s Màrquez, editors: Proceedings of the 6th Joint Conference on Lexical

and Computational Semantics, *SEM @ACM 2017, Vancouver, Canada, August 3-4, 2017, Association for

Computational Linguistics, pp. 199–208, doi:10.18653/v1/S17-1024.

[5] Annegret Habel (1992): Hyperedge Replacement: Grammars and Languages. Lecture Notes in Computer

Science 643, Springer, doi:10.1007/BFb0013875.

[6] Bevan K. Jones, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann & Kevin Knight (2012): Semantics-

Based Machine Translation with Hyperedge Replacement Grammars. In Martin Kay & Christian Boitet,

editors: COLING 2012, 24th International Conference on Computational Linguistics, Proceedings of the

https://www.aclweb.org/anthology/W16-3311/
https://www.aclweb.org/anthology/W17-6211/
http://dx.doi.org/10.1142/9789812384720_0002
http://dx.doi.org/10.18653/v1/S17-1024
http://dx.doi.org/10.1007/BFb0013875

18 Grammars Based on a Logic of Hypergraph Languages

Conference: Technical Papers, 8-15 December 2012, Mumbai, India, Indian Institute of Technology Bombay,

pp. 1359–1376. Available at https://www.aclweb.org/anthology/C12-1083/.

[7] Joachim Lambek (1958): The Mathematics of Sentence Structure. The American Math-

ematical Monthly 65(3), pp. 154–170, doi:10.1080/00029890.1958.11989160. Available at

http://www.jstor.org/stable/2310058.

[8] Mati Pentus (1993): Lambek Grammars Are Context Free. In: Proceedings of the Eighth Annual Symposium
on Logic in Computer Science (LICS ’93), Montreal, Canada, June 19-23, 1993, IEEE Computer Society,

pp. 429–433, doi:10.1109/LICS.1993.287565.

[9] Mati Pentus (1995): Models for the Lambek Calculus. Ann. Pure Appl. Log. 75(1-2), pp. 179–213,

doi:10.1016/0168-0072(94)00063-9.

[10] Tikhon Pshenitsyn (2020): Hypergraph Basic Categorial Grammars. In Fabio Gadducci & Timo Kehrer,

editors: Graph Transformation - 13th International Conference, ICGT 2020, Held as Part of STAF 2020,

Online, June 25-26, 2020, Proceedings, Lecture Notes in Computer Science 12150, Springer, pp. 146–162,

doi:10.1007/978-3-030-51372-6 9.

[11] Tikhon Pshenitsyn (2020): Weak Greibach Normal Form for Hyperedge Replacement Grammars. In

Berthold Hoffmann & Mark Minas, editors: Proceedings of the Eleventh International Workshop on Graph
Computation Models, GCM@STAF 2020, Online-Workshop, 24th June 2020, EPTCS 330, pp. 108–125,

doi:10.4204/EPTCS.330.7.

[12] Tikhon Pshenitsyn (2021): Introduction to a Hypergraph Logic Unifying Different Variants of the Lambek

Calculus. Available at https://arxiv.org/abs/2103.01199.

[13] Tikhon Pshenitsyn (2021): Powerful and NP-Complete: Hypergraph Lambek Grammars. In Fabio Gadducci

& Timo Kehrer, editors: Graph Transformation - 14th International Conference, ICGT 2021, Held as Part

of STAF 2021, Virtual Event, June 24-25, 2021, Proceedings, Lecture Notes in Computer Science 12741,

Springer, pp. 102–121, doi:10.1007/978-3-030-78946-6 6.

https://www.aclweb.org/anthology/C12-1083/
http://dx.doi.org/10.1080/00029890.1958.11989160
http://www.jstor.org/stable/2310058
http://dx.doi.org/10.1109/LICS.1993.287565
http://dx.doi.org/10.1016/0168-0072(94)00063-9
http://dx.doi.org/10.1007/978-3-030-51372-6_9
http://dx.doi.org/10.4204/EPTCS.330.7
https://arxiv.org/abs/2103.01199
http://dx.doi.org/10.1007/978-3-030-78946-6_6

	1 Introduction: Productions vs Types
	2 Hyperedge Replacement
	3 Hypergraph Lambek Calculus
	4 Language Models for HL
	5 Hypergraph Lambek Grammars and Their Power
	5.1 All Binary Graphs
	5.2 Bipartite graphs
	5.3 Regular graphs

	6 Conclusion

