
B. Hoffmann and M. Minas (Eds.): Twelfth International

Workshop on Graph Computation Models (GCM 2021)

EPTCS 350, 2021, pp. 69–88, doi:10.4204/EPTCS.350.5

Resilience of Well-structured Graph Transformation Systems*

Okan Özkan Nick Würdemann

Department of Computing Science
University of Oldenburg

Oldenburg, Germany

{o.oezkan,wuerdemann}@informatik.uni-oldenburg.de

Resilience is a concept of rising interest in computer science and software engineering. For systems

in which correctness w.r.t. a safety condition is unachievable, fast recovery is demanded. We investi-

gate resilience problems of graph transformation systems. Our main contribution is the decidability

of two resilience problems for well-structured graph transformation systems (with strong compatibil-

ity). We prove our results in the abstract framework of well-structured transition systems and apply

them to graph transformation systems, incorporating also the concept of adverse conditions.

1 Introduction

Resilience is a broadly used concept in computer science and software engineering (e.g., [20]), and a

basic concept for, e.g., industrial control systems [16] and mobile cyber-physical systems [13]. For

systems in which correctness w.r.t. a safety condition SAFE is unachievable, fast recovery is demanded.

We interprete fast recovery as reachability of the safety condition in a bounded amount of time steps.

The intuitive approach is to start from any error state, i.e., a state in which ¬SAFE(≡ ERROR) holds,

and try to reach a state in which SAFE holds again as fast as possible.

Another approach to formalizing resilience is to ask whether the system can withstand an adverse

effect rather than to ask whether fast recovery is possible from any error state. To formally capture

adverse effects we consider an environment interacting with the system. In this setting, we investigate

on the question whether a state satisfying SAFE can be reached in bounded time, starting from any state

satisfying ENV, i.e., any state directly resulting from an environment interference.

For modeling systems we use graph transformation systems (GTSs), as considered, e.g., in [6], which

are a visual yet precise formalism. In this perception, system states are captured by graphs and state

changes by graph transformations. Usually, the state set (the set of graphs reachable from a start graph)

is infinite. To handle infinite state sets, we incorporate the concept of well-structuredness [1, 8, 10]. A

well-structured transition system (WSTS) is informally a transition system equipped with a well-quasi-

order (wqo) satisfying that larger states simulate smaller states. This allows us to abstract from both

of the approaches towards resilience described above. In the setting of WSTSs, we define resilience

problems for a given downward-closed set J (a BAD condition, e.g., ERROR or ENV) and an upward-

closed set I (e.g., a safety property SAFE). Given an initial state s and a natural number k, the explicit

resilience problem asks whether we can, starting from s, reach I in at most k steps whenever we reach J.

The bounded resilience problem asks whether there exists a k such that k-step resilience is satisfied.

We show that both resilience problems (given a basis of the upward-closure of the reachable states)

are decidable for strongly well-structured transition systems (SWSTSs). We propose an algorithm which

computes the minimal k s.t. we can recover from any BAD state in at most k steps, or returns false if

*Supported by the German Research Foundation (DFG) through the Research Training Group (DFG GRK 1765) SCARE

http://dx.doi.org/10.4204/EPTCS.350.5

70 Resilience of Well-structured GTSs

there exists no such k. It is based on the ideal reachability algorithm proposed by Abdulla et al. [1], and

solves both resilience problems at the same time.

When applying these results to GTSs, we assume that the corresponding graph class is of bounded

path length in order to obtain a SWSTS. This sufficient condition for a GTS to be strongly well-structured

is shown by König & Stückrath in [10]. The wqo on graphs used in this case is the subgraph order, so

I = ISAFE corresponds to a constraint stating existence of subgraphs. We incorporate adverse conditions

by distinguishing system and environment rules, and considering J = JENV, the set of graphs directly

resulting from the application of an environment rule.

The rest of this paper is organized as follows: We recall preliminary concepts in Sec. 2. In Sec. 3,

we present the concept of resilience in the context of adverse conditions and identify abstract resilience

problems. In Sec. 4, we prove decidability of resilience for strongly well-structured transition systems.

We apply these results to graph transformation systems incorporating adverse conditions in Sec. 5. In

Sec. 6, we present related work. We close with a conclusion and an outlook in Sec. 7.

2 Preliminaries

We recall the concepts used in this paper, namely graph transformation systems [6, 5] and (in particular

well-structured) transition systems [8].

2.1 Graph Transformation Systems

In the following, we recall the definitions of graphs, graph conditions, rules, and graph transformation

systems [6, 5]. A directed, labeled graph consists of a set of nodes and a set of edges where each edge is

equipped with a source and a target node and where each node and edge is equipped with a label. Note

that this kind of graphs are a special case of the hypergraphs considered in [10].

Definition 1 (graphs & graph morphisms). A (directed, labeled) graph (over a finite label alphabet Λ)

is a tuple G = 〈VG,EG,srcG, tgtG, labV
G, labE

G〉, with finite sets VG and EG of nodes (or vertices) and

edges, functions srcG, tgtG : EG → VG assigning source and target to each edge, and labeling func-

tions labV
G : VG → Λ, labE

G : EG → Λ . A (simple, undirected) path p in G of length ℓ is a sequence

〈v1,e1,v2 . . . ,vℓ,eℓ,vℓ+1〉 of nodes and edges s.t. srcG(ei) = vi and tgtG(ei) = vi+1, or tgtG(ei) = vi

and srcG(ei) = vi+1 for every 1 ≤ i ≤ ℓ, and all contained nodes and edges occur at most once. Let

ℓ(G) denote the length of a longest path in G. Given graphs G and H , a (partial graph) morphism

g : G ⇀ H consists of partial functions gV : VG ⇀VH and gE : EG ⇀ EH which preserve sources, targets,

and labels, i.e., gV ◦ srcG(e) = srcH ◦ gE(e), gV ◦ tgtG(e) = tgtH ◦ gE(e), labV
G(v) = labV

H ◦ gV (v), and

labE
G(e) = labE

H ◦gE(e) on all egdes e and nodes v, for which gE(e), labE(e), labV (v) is defined. Further-

more, if a morphism is defined on an edge, it must be defined on all incident nodes. The morphism g is

total (injective) if both gV and gE are total (injective). If g is total and injective, we also write g : G →֒H .

The composition of morphisms is defined componentwise.

We consider graph constraints [15, 9] whose validities are inherited to bigger/smaller graphs.

Definition 2 (positive & negative basic graph constraints). The class of positive (basic graph) constraints

is defined inductively: (i) ∃G is a positive constraint where G is a graph, (ii) for positive constraints c,c′,

also c∨c′, c∧c′ are positive constraints. Analogously, the negative (basic graph) constraints are defined

by: (i) ¬∃G is a negative constraint for any graph G, (ii) for negative constraints c,c′, also c∨ c′, c∧ c′

are negative constraints. A graph G satisfies ∃G′ if there exists an total injective morphism G′ →֒ G.

O. Özkan & N. Würdemann 71

The semantics of the logical operators are as usual. We write G |= c if G satisfies the positive/negative

constraint c.

Remark. If c is a positive constraint, ¬c is equivalent to a negative constraint, and vice versa.

Fact 1 (upward & downward inheritance). Let G →֒ H be a total injective morphism, c be a positive

constraint, and c′ a negative constraint. If G |= c, then also H |= c. If H |= c′, then also G |= c′.

We use the single pushout (SPO) approach [6, 10] with injective matches for modeling graph trans-

formations. The reason for choosing SPO and not, e.g., the double pushout approach (DPO) [5] is that

the dangling condition disturbs the compatibility condition of WSTS in Def. 10.

Definition 3 (rules & transformations). A (graph transformation) rule r = 〈L ⇀ R〉 (over a finite label

alphabet Λ) is a partial morphism from L to R (both graphs over Λ). A (direct) transformation G⇒ H

from a graph G to a graph H applying rule r at a total injective match morphism g : L →֒ G is given by a

pushout as shown in Fig. 1a (for existence and construction of pushouts, see, e.g., [6]). We write G⇒r H

to indicate the applied rule, and G⇒R H if G⇒r for a rule r contained in the rule set R.

Note that we do not have any application conditions. The pushout of a rule application is visualized

in Fig. 1a. An example for a rule is presented in Fig. 1b, and an application of that rule in Fig. 1c.

L R

G H

r

g

(a) Pushout for the trans-

formation G⇒r H

tr :

〈

P
1

W
2

3
⇀ P

1
W

2

3
〉

(b) A graph transformation rule tr

P
1

W
2

S1 3

S2 4

5 6

7 8

9

⇒tr P
1

W
2

S1 3

S2 4

5 6

7 8

9

(c) An application of the rule tr

Figure 1: Pushout and example of a direct graph transformation.

GTSs are simply finite sets of rules. We specify the state set later.

Definition 4 (graph transformation system). A graph transformation system (GTS) is a finite set of graph

transformation rules.

2.2 Transition Systems

We recall the notion of transition systems. In Sec. 4, we prove our results on the level of transition

systems and explicate the concept for graph transformation systems in Sec. 5.

Definition 5 (transition system). A transition system (TS) 〈S,→〉 consists of a (possibly infinite) set S of

states and a transition relation→⊆ S×S. Let→0= IdS (identitiy on S),→1=→, and→k=→k−1 ◦→ for

every k ≥ 2. Let→≤k=
⋃

0≤ j≤k→
j for every k ≥ 0. The transitive closure is given by→∗=

⋃

k≥0→
k.

The following definition shows how any GTS can be interpreted as a TS.

Definition 6 (graph transition system). Let R be a GTS and G a set of graphs which is closed under rule

application of R. The graph transition system w.r.t. R and G is the transition system 〈G ,⇒R〉. A graph

transition system 〈G ,⇒R〉 is of bounded path length if supG∈G ℓ(G)< ∞.

Example 1 (GTS of bounded path length). The rules 〈∅ ⇀ A 〉 and 〈 A1 ⇀ A1 〉 together with the

set of disjoint unions of unboundedly many (possibly non-isomorphic) star-shaped graphs forms a graph

transition system of bounded path length.

72 Resilience of Well-structured GTSs

Remark. Note that we only demand bounded path length. If we additionally demand a bound on the

node degree, the number of nodes/edges in each connected component of any graph in the graph class is

bounded. This can be shown by an induction over the bound on the path length.

Often we are interested in the predecessors or successors of a given set of states in a transition system.

Definition 7 (pre- & postsets). Let 〈S,→〉 be a transition system. For S′ ⊆ S and k ≥ 0, we define

prek(S′) = {s ∈ S | ∃s′ ∈ S′ : s →k s′} and postk(S′) = {s ∈ S | ∃s′ ∈ S′ : s′ →k s}. Let pre∗(S′) =
⋃

k≥0 prek(S′) and post∗(S′) =
⋃

k≥0 postk(S′). We abbreviate post1(S′) by post(S′) and pre1(S′) by pre(S).

GTSs, when interpreted as TSs, in general have an infinite state space.

2.3 Well-structuredness

While several problems are undecidable for transition systems in general due to their infinite state space,

many interesting decidability results can be achieved if the system is well-structured [8, 1, 10].

Definition 8 (well-quasi-order). A well-quasi-order (wqo) over a set X is a quasi-order (a reflexive,

transitive relation) ≤⊆ X ×X s.t. every infinite sequence 〈x0,x1, . . .〉 in X contains an increasing pair

xi ≤ x j with i < j.

We give two examples for wqos on graphs. In our setting, the subgraph order is of crucial importance.

Example 2 (subgraph & minor order).

(i) The subgraph order ≤ is given by G≤ H iff there is a total injective morphism G →֒ H . Let Gℓ be

a graph class of bounded path length (with bound ℓ). The restriction of ≤ to Gℓ is a wqo [10, 4].

However, it is not a wqo on all graphs: consider, e.g., the infinite sequence 〈 , , , . . .〉 of

cyclic graphs of increasing length, which contains no increasing pair.

(ii) The minor order 4 is given by G 4 H iff G can be obtained from H by a sequence of edge

contractions, node and edge deletions. The minor order is a wqo on all graphs [10, 17].

Assumption. From now on, we implicitly equip every set of graphs with the subgraph order. By ≤ we

mean either an abstract wqo or the subgraph order, depending on the context.

Definition 9 (closure & basis). Let X be a set and ≤ a wqo on X . For every subset A of X , we denote

by ↑A = {x ∈ X | ∃a ∈ A : a≤ x} the upward-closure and ↓A = {x ∈ X | ∃a ∈ A : x≤ a} the downward-

closure of A. If A =↑A, then a basis of A is a subset B⊆ A s.t. (i) B generates A, i.e., ↑B = A, and (ii) any

two distinct elements in B are incomparable, i.e., ∀b1,b2 ∈ B : b1 6= b2⇒ b1 6≤ b2.

Sets A satisfying A =↑A are later called ideals. For well-structuredness, we demand that the wqo

yields a simulation of smaller states by larger states. This condition is called compatibility.

Definition 10 (well-structured transition systems). Let 〈S,→〉 be transition system and ≤ a decidable

wqo on S, i.e., for each two given states s,s′ ∈ S, it is decidable whether s≤ s′. The tuple 〈S,≤,→〉 is a

(strongly) well-structured transition system, if

(i) The wqo is (strongly) compatible with the transition relation, i.e., for all s1,s
′
1,s2 ∈ S with s1 ≤ s′1

and s1→ s2, there exists s′2 ∈ S with s2 ≤ s′2 and s′1→
∗ s′2 (strongly: s′1→

1 s′2).

(ii) For every s ∈ S, a basis of ↑pre(↑{s}) is computable.

In Fig. 2, both versions of compatibility are visualized. The term (strongly) well-structured transition

system is often abbreviated by (S)WSTS. In Sec. 4, we prove the decidability of resilience for SWSTSs.

We include the definition of general WSTSs for clarity and to point out the differences. Note that for

O. Özkan & N. Würdemann 73

s1 s2

s′1 s′2

≤ ≤

∗

∀

∃

(a) Upwards compatibility

s1 s2

s′1 s′2

≤ ≤

1

∀

∃

(b) Strong upwards compatibility

Figure 2: Visualization of the (strong) upwards compatibility property for transition systems.

GTSs, strong compatbility is achieved by applying the same (SPO) rule to bigger graphs. However, in

DPO, the bigger graph may not fullfill the dangling condition. Consider, e.g., the rule which deletes a

node. This rule can be applied to the graph consisting of a single node but not to the graph in DPO.

The following result of König & Stückrath terms sufficient conditions for GTSs to be well-structured.

Lemma 1 ([10]). Every graph transition system of bounded path length is strongly well-structured

(equipped with the subgraph order).

Note that in [10], König & Stückrath consider labeled hypergraphs. However, the proof in this case

is the same. The premise of bounded path length seems very restrictive, but we can still capture infinitely

many graphs. A usual example are graphs where the “topology” remains unchanged. It is also shown

in [10] that every lossy GTS is well-structured w.r.t. the minor order and without restriction of the graph

class. “Lossy” means that every edge contraction rule is contained in the GTS. However, in this case, we

do not obtain strong compatibility.

Assumption. In the following, let 〈S,≤,→〉 be a strongly well-structured transition system.

Upward- and downward-closed sets w.r.t. a given wqo are of special interest. Such sets are called

ideals and used in Sec. 3 to define resilience problems for WSTSs.

Definition 11 (ideal). An ideal I ⊆ S is an upward-closed set, i.e., ↑ I = I. A bi-ideal J ⊆ S is an ideal

which is also downward-closed, i.e., ↑ J = J =↓ J. An anti-ideal J ⊆ S is a downward-closed set, i.e.,

↓J = J. The anti-ideal J is decidable if, given s ∈ S, it is decidable whether s ∈ J.

Example 3 (ideal). Let Gℓ be a graph class of bounded path length. For every positive constraint c,

Ic = {G ∈ Gℓ |G |= c} is an ideal.

Bi-ideals often represent “control states” as in [1]. The notion of anti-ideal is the pendent to ideal.

Since a downward-closed set does not have an “upward-basis” in general, we will demand that member-

ship is decidable.

Example 4 (anti-ideal). Let Gℓ be a graph class of bounded path length. For every negative constraint c,

Jc = {G ∈ G |G |= c} is a decidable anti-ideal.

The set of ideals of S is closed under preset, union, and intersection.

Fact 2 (stability of ideals). Let I,J ⊆ S be ideals. Then the sets pre(I), I∪ J, and I∩ J are ideals.

A major point in our argumentation is the observation that every infinite ascending sequence of ideals

w.r.t. a wqo eventually becomes stationary.

Lemma 2 ([1]). For every infinite ascending sequence 〈I0 ⊆ I1 ⊆ . . .〉 of ideals, there exists a k ≥ 0 s.t.

Ik = Ik+1. This directly implies ∃k0 ≥ 0 ∀k≥ k0 : Ik = Ik0
.

Since ideals are in general infinite, we often want a finite representation. Similar to algebraic struc-

tures, ideals are represented by a finite basis (a minimal generating set). Indeed, every ideal has a basis

and every basis is finite. We consider bases for complexity reasons. In theory, finite generating sets are

sufficient to carry out our approach.

Fact 3 ([1]). (i) For every ideal I ⊆ S, there exists a finite basis B of I. (ii) Given a finite set A ⊆ S with

I =↑A, we can compute a finite basis B of I.

74 Resilience of Well-structured GTSs

2.4 Ideal Reachability

In [1], Abdulla et al. exploit Lemma 2 to show the decidability of ideal reachability (also called cover-

ability) for strongly well-structured transition systems. The corresponding algorithm forms the basis of

our results. We present its basic idea. For any ideal I, another ideal I∗ is constructed, s.t. ∃s′ ∈ I : s→∗ s′

iff s ∈ I∗. This is clearly the case for I∗ = pre∗(I) =
⋃

j≥0 pre j(I). The idea is to iteratively construct the

sequence of the ideals Ik =
⋃

0≤ j≤k pre j(I) until it becomes stable.

Definition 12 (index). For an ideal I ⊆ S and k≥ 0, let Ik =
⋃

0≤ j≤k pre j(I)⊆ Ik+1. The index k(I) is the

smallest k0 s.t. Ik = Ik0 for all k ≥ k0.

Lemma 2 ensures that k(I) always exists. However, we have to show that Ik = Ik+1 implies k(I)≤ k

to obtain a stop condition. This follows by the observation that Ik+1 = I∪pre(Ik).

Fact 4 (stop condition). Let I ⊆ S be an ideal and k ≥ 0 s.t. Ik = Ik+1, then Iℓ = Ik for all ℓ ≥ k, i.e.,

k(I)≤ k. This also implies that pre∗(I) = Ik.

Since ideals are infinite, we cannot carry this construction out directly, but we use a basis for rep-

resenting an ideal. If we can show the computability of a basis in every iteration step, we obtain an

algorithm which can decide whether we can reach an ideal I from a given state s.

Lemma 3 ([1]). Given a basis of an ideal I ⊆ S, and a state s of a strongly well-structured transition

system, we can decide whether we can reach I from s.

Proof. We have to show that we can compute a basis of Ik+1 if we are given a basis of Ik. Then the

decidability of the stop condition follows directly. Let B be a basis of Ik. We have

Ik+1 = I∪pre(Ik) = I∪
⋃

s′∈B

pre(↑{s′}).

Since pre(↑{s′}) is computable for any s′ ∈ S by definition, we obtain a finite generating set of Ik+1. By

Fact 3, we can compute a basis of Ik+1.

3 Adverse Conditions and Resilience Problems

We put adverse conditions and resilience into context by using joint graph transformation systems [12].

Abstracting from the setting of GTSs, we identify resilience problems for TSs.

3.1 Joint Graph Transformation Systems

We recapitulate the modeling of adverse conditions by joint graph transformation systems, introduced

in [12]. We define joint graph transformation systems, which involve a system and an environment, as

well as an automaton modeling the interaction between them. Both, system and environment, are GTSs.

Assumption. In the following, let Λ be a fixed label alphabet, and S and E be GTSs over Λ, called

system and environment, respectively. W.l.o.g., we assume that S and E are disjoint. (If S and E share

a common rule r, we assign r different names in S and E .)

We specify the class of automata which are used to regulate the interaction between system and

environment. These control automata are similar to ω-automata, see, e.g., [19].

O. Özkan & N. Würdemann 75

Definition 13 (control automaton). A control automaton of 〈S ,E 〉 is a tuple A = 〈Q,q0,δ ,sel〉 con-

sisting of a finite set Q disjoint from Λ, called the state set, an initial state q0 ∈ Q, a transition relation

δ ⊆ Q×Q, and a function sel : δ → P(S ∪ E) (into the power set of S ∪ E), called the selection

function.

A joint graph transformation system is obtained by synchronizing the system, repectively, the envi-

ronment, with the control automaton, and then joining both sets of enriched rules.

Definition 14 (joint graph transformation system). Let A = 〈Q,q0,δ ,sel〉 be a control automaton of

〈S ,E 〉. The joint graph transformation system of S and E w.r.t. A is the graph transformation system

SA∪EA where for a rule set R ∈ {S ,E }, the enriched rule set RA is given by

RA = {〈L,q〉⇀ 〈R,q′〉 |〈q,q′〉 ∈ δ and 〈L ⇀ R〉 ∈R∩ sel〈q,q′〉},

and for a graph G and a state q, the tuple 〈G,q〉 denotes the disjoint union of G and a node labeled with q.

In the partial morphism 〈L,q〉⇀ 〈R,q′〉, the node labeled with q is mapped to the node labeled with q′.

We refine our notion of joint graph transformation systems, namely to annotated joint graph trans-

formation systems, which also carry the information whether the last applied rule was a system or envi-

ronment rule. This is realized by a node labeled with “s” or “e”.

Notation. For a joint graph transformation system SA∪EA, the symbol m(S) = s or m(E) = e, is the

marker of S or E , respectively. For a rule r ∈R and R ∈ {S ,E }, let m(r) = m(R) be the marker of r.

The set of all markers M = {⊤,s,e} includes also the symbol ⊤, usually indicating a start graph.

For the explicit construction, we can use premarkers to reduce the number of rules. For a more

extensive account on this technical detail, consult [12].

Definition 15 (annotated joint graph transformation system). Let SA∪EA be a joint graph transformation

systems w.r.t. a control automaton A of 〈S ,E 〉. The annotated joint graph transformation system of S

and E w.r.t. A is S ′
A∪E ′A, where for a rule set R ∈ {S ,E }, the marked rule set R ′A is defined as

R
′
A = {〈L,q,m〉⇀ 〈R,q′,m′〉 |〈L,q〉⇀ 〈R,q′〉 ∈RA, m ∈M, m′ = m(R)},

where 〈G,q,m〉 in turn denotes the disjoint union of a graph G, a node labeled with a state q, and a node

labeled with a marker m. In the partial morphism 〈L,q,m〉⇀ 〈R,q′,m′〉, the node lableled with m is

mapped to the node labeled with m′.

We explicate the state set of annotated joint GTSs. These graphs are of the form 〈G,q,m〉 for a state q

of the control automaton and a marker m. We denote a class of all such graphs by G ⊕Q⊕M. Using such

graphs instead of the product of graphs we can directly apply the result of [10] for GTSs (Lemma 1).

Definition 16 (joint graph transition system). Let (SA∪EA)
′ be an annotated joint GTS and G ′ be a class

of graphs which is of the form G ⊕Q⊕M and closed under rule application of (SA∪EA)
′. The graph

transition system 〈G ′,⇒(SA∪EA)′〉 is called annotated joint graph transition system.

Note that we usually begin our analysis at a start graph of the form 〈G,q0,⊤〉.

Example 5 (supply chain). We model a simple supply chain with graph transformation rules. The

infrastructure (topology) is given in the following start graph:

P W

S1

S2

76 Resilience of Well-structured GTSs

A production site (P) is connected to a warehouse (W) which again is connected to two stores S1 and S2.

Each black node indicates one product at the corresponding (connected) location. The behavior in this

production chain is modeled by the graph transformation rules in Fig. 3a. The system rules consists of pr

(the completion of a product at the production site P), tr (transporting a product from P to the warehouse

W), and sh1 and sh2 (shipping a product from W to one of the two stores S1, S2). The environment

rules describe external impacts. Namely, ac describes an accident in the warehouse which leads to the

loss of one product, and b1 and b2 describe that a product is bought from S1 or S2, respectively. The

S

pr :
〈

P1 ⇀ P1
〉

tr :
〈

P
1

W
2

3 ⇀ P
1

W
2

3

〉

sh1 :
〈

W
1

S1 2
3 ⇀ W

1
S1

2
3

〉

sh2 :
〈

W
1

S2 2
3 ⇀ W

1
S2

2
3

〉

, E

ac :
〈

W1 ⇀ W1
〉

b1 :
〈

S11 ⇀ S11
〉

b2 :
〈

S21 ⇀ S21
〉

(a) The two GTSs S (system) and E (environment)

e
pr

tr
pr tr

pr tr
shi shi

sh
i

ac, bi

bi

(b) Control automaton

Figure 3: A joint GTS consisting of a GTS for system and environment, each, and a control automaton.

control automaton in Fig. 3b describes the possible order of rule applications. We are interested in the

question when the product is again in stock (at least 1 product in the warehouse and in each of both

stores) whenever a customer buys a product or when an accident in the warehouse happens. After each

such transition, the automaton is in the state e. Regardless of the current situation, in 17 steps we can

accomplish that the product is in stock by first producing and transporting 6 products with a following

accident (3 products will get lost) and shipping them to the stores afterwards. However, what is the

minimal number of steps in which we can reach a situation where the product is in stock whenever

someone bought a product or a product got lost in an accident?

We come back to that question in Ex. 6 in Sec. 5.3. We describe the setting for joint GTSs which

we investigate: Consider a safety condition c, given as positive constraint, and the set of graphs Ic =
{G′ ∈ G ⊕Q⊕M |G′ |= c} which satisfy c. Similarly, let Je = {G

′ ∈ G ⊕Q⊕M |G′ |= ∃e} (all graphs

obtained by an environment interference; ∃e means that there exists a node labeled with e). The environ-

ment is usually modeled in a such way that it has an adverse effect on the satisfaction of c. Resilience

in this context means that the system can withstand such an adverse condition. We ask whether we can

reach a graph in Ic in a reasonable amount of time whenever we reach a graph in Je. By a “reasonable

amount of time”, we mean either that a number k of steps is given in which Ic should be reached (explicit

resilience), or that Ic should be reached in a bounded number of steps (bounded resilience).

Another approach is to consider the set J¬c = {G′ ∈ G ⊕Q⊕M|G′ 6|= c} instead of Je. So, we

ask whether we can reach a graph which satisfies c in a bounded amount of time/in at most k steps

whenever we reach a graph which does not satisfy c, i.e., an error state. Both instances of the problem

are reasonable, and if we can give a positive answer for the latter one, we can also give a positive answer

for the first one. We focus on the first problem (adverse conditions), but the results we obtain in Sec. 4

abstract from a specific J and therefore also apply to the latter one (error states).

3.2 Abstract Resilience Problems

The previous motivation gives rise to a more abstract definition of resilience problems, namely in the

framework of TSs. Recall that, when we explicate a state set, every GTS can be interpreted as a TS.

O. Özkan & N. Würdemann 77

We assume that a TS 〈S,→〉 comes along with a set of propositions each of which is either satis-

fied or not satisfied by each state of the TS. Let SAFE (safety condition) and BAD (bad condition) be

propositions. Note that BAD is not necessarily equivalent to ¬SAFE. We ask whether we can reach

a state which satisfies SAFE in a reasonable amount of time whenever we reach a state which satisfies

BAD. From this we formulate two resilience problems. First consider the case where the recovery time

is bound by a natural number k ≥ 0, i.e., the (abstract) explicit resilience problem.

EXPLICIT RESILIENCE PROBLEM

Given: A state s of a TS 〈S,→〉, propositions SAFE and BAD, a natural number k ≥ 0.

Question: ∀s′ ∈ S : (s′ |= BAD∧ s→∗ s′)⇒∃s′′ ∈ S : s′→≤k s′′∧ s′′ |= SAFE ?

If we assume that the transition system yields infinite sequences of transitions, we can express the

property to be evaluated in CTL by s |= AG(BAD→
∨

0≤ j≤k EX jSAFE). We can also ask whether there

exists such a bound k. We call this problem the (abstract) bounded resilience problem.

BOUNDED RESILIENCE PROBLEM

Given: A state s of a TS 〈S,→〉, propositions SAFE and BAD.

Question: ∃k ≥ 0 ∀s′ ∈ S : (s′ |= BAD∧ s→∗ s′)⇒∃s′′ ∈ S : s′→≤k s′′∧ s′′ |= SAFE ?

Both problems are undecidable: For SAFE = false, resilience is equivalent to reachability of BAD.

4 Decidability Results

Many interesting decidability results can be obtained if we assume that a transition system is well-

structured [1, 8, 10]. We formulate the resilience problems from the previous section for WSTSs and

show decidability of both, the explicit and the bounded resilience problem, in the setting of SWSTSs.

4.1 Resilience Problems in a Well-structured Framework

Properties in well-structured transition systems are often given as upward- or downward closed sets [1, 8].

Ideals enjoy suitable features for verification such as finite representation and stability, and anti-ideals

are their complements (cp. Sec. 2.3). Transfering the abstract resilience problems into this framework,

it is therefore reasonable to demand that both propositions, SAFE and BAD, are given by ideals or anti-

ideals. For our purpose, the following setting suits very well: we assume that the safety property is given

by an ideal and the bad condition by a decidable anti-ideal.

From these considerations, we formulate “instances” of the abstract resilience problems for well-

structured transition systems. Again, we first consider the case where the recovery time is bounded by a

k ∈ N, the explicit resilience problem for WSTSs.

EXPLICIT RESILIENCE PROBLEM FOR WSTSS

Given: A state s of a WSTS 〈S,≤,→〉, a basis of ↑ post∗(s), an ideal I with a given basis, a

decidable anti-ideal J, a natural number k ≥ 0.

Question: ∀s′ ∈ J : (s→∗ s′)⇒∃s′′ ∈ I : s′→≤k s′′ ?

Analogously, we formulate the bounded resilience problem for WSTSs.

78 Resilience of Well-structured GTSs

BOUNDED RESILIENCE PROBLEM FOR WSTSS

Given: A state s of a WSTS 〈S,≤,→〉, a basis of ↑ post∗(s), an ideal I with a given basis, a

decidable anti-ideal J.

Question: ∃k ≥ 0 ∀s′ ∈ J : (s→∗ s′)⇒∃s′′ ∈ I : s′→≤k s′′ ?

From now on, we mean one of the previously defined resilience problems for WSTSs if we speak of

a resilience problem. If the answer of the bounded (explicit) resilience problem is positive, we say that

〈S,≤,→〉 is resilient (k-step resilient) w.r.t. I and J starting from s. In this context, s is a start state.

Remark. The premise that a basis of ↑post∗(s) is given is a strong but reasonable assumption. In general,

we cannot simply compute the sequence of ideals Pk =
⋃

0≤ j≤k ↑post j(s) until it becomes stationary. This

sequence does become stationary by Lemma 2. However, in contrast to the case in Lemma 3, Pk+1 =Pk is

not a sufficient stop condition. So, this way it is not algorithmically checkable when we have reached k0

s.t. Pℓ = Pk0
for every ℓ ≥ k0. However, we investigate resilience of GTSs each of which constitutes

a SWSTS. A sufficient condition for strong well-structuredness is boundedness of the path length (cp.

Lemma 1). This holds, e.g., for graph classes where the “topology” is static. For these graph classes, a

basis of all successors is often easier to determine than in general. A typical example for such GTSs are

Petri nets, where such a basis is computable (Sec. 5.3). In Sec. 5.2, we drop the assumption, and show

that we can still approximate a basis of ↑post∗(s) to achieve approximation results for resilience.

4.2 Decidability

Abdulla et al. show in [1] that ideal reachability is decidable for SWSTSs (cp. Lemma 3). In [8],

Finkel & Schnoebelen show that ideal reachability (or coverability) is also decidable for WSTSs. Both

algorithms coincide in the case of strong well-structuredness. König & Stückrath [10] use the algorithm

of [8] for the backwards analysis for (generalized) well-structured GTSs.

The main difference between the algorithms in [1] and [8] is that for (not necessarily strongly)

WSTSs, pre(I′) in general, for any ideal I′, is not an ideal. Thus, Finkel & Schnoebelen consider in

every iteration step the ideal ↑pre(I′) instead of pre(I′). Now the same arguments like before hold (cp.

Sec. 2.4) and a basis of pre∗(I) =↑pre∗(I) for a given ideal I can be computed.

We are interested in the exact number of steps which we need to reach an ideal. Thus, pre(I′) should

be an ideal and we cannot use the technique from [8] for WSTSs. We need to restrict our setting to

strongly WSTSs like in [1]. First, we state our main result for SWSTSs, the decidability of resilience.

Theorem 1 (decidability of resilience). The explicit and the bounded resilience problem both are decid-

able for strongly well-structured transition systems.

We prove this theorem by giving a respective algorithm. It exploits a modified version of the

ideal reachability algorithm in [1] (cp. Lemma 3). We check in every iteration step inclusion in Ik =
⋃

0≤ j≤k pre j(I). Before doing so, we need a finite representation of post∗(s)∩ J to check the inclusion in

an ideal I′. The next lemma uses that J and I′ are downward- and upward-closed, respectively.

Lemma 4 (intersection with anti-ideal). Let A⊆ S be a set, J ⊆ S an anti-ideal and I′ ⊆ S an ideal. Then

A∩ J ⊆ I′⇔ (↑A)∩ J ⊆ I′.

This lemma enables us to prove Thm. 1 given above. We iteratively determine the minimal k satisfy-

ing post∗(s)∩ J ⊆ Ik (or stop, if there does not exist such k).

Proof of Theorem 1. Let Bpost be a basis of ↑post∗(s), B0 a basis of I, and J a decidable anti-ideal. For

every k ≥ 0, Ik is an ideal due to strong compatibility. By applying Lemma 4 twice, we obtain

post∗(s)∩ J ⊆ Ik ⇔ Bpost∩ J ⊆ Ik

O. Özkan & N. Würdemann 79

for any k ≥ 0. Since Bpost is finite and J is a decidable anti-ideal, we can directly compute Bpost∩ J. We

perform a modification of the ideal reachability algorithm: Iteratively check whether Bpost∩ J ⊆ Ik. If

this is the case, return kmin = k. Otherwise check whether Ik+1 = Ik. If so, return −1 (false), otherwise

continue. We have to make sure that every iteration step is decidable. In fact, we can compute a basis

of Ik+1 if we have a basis of Ik. This follows by the proof of Lemma 3. The stop condition is decidable

and by Fact 4 also sufficient. Soundness and completeness follow by the previous considerations and the

fact that

post∗(s)∩ J ⊆ Ik ⇔ (∀s′ ∈ J : (s→∗ s′)⇒∃s′′ ∈ I : s′→≤k s′′)

for any k ≥ 0. Termination is guaranteed by Lemma 2.

To sum up, our algorithm decides whether there exists a k ≥ 0 s.t. post∗(s)∩ J ⊆ Ik, and returns the

minimal such k in the positive case. Thus, it decides the bounded resilience problem. Given any k, we

can check whether kmin ≤ k and therefore decide the explicit resilience problem.

We denote the above described algorithm deciding resilience by MINIMALSTEP(Bpost ,J,B0) and the

used procedure returning a basis of pre(↑B′) by PREBASIS(B′). It is shown in [10], that such a prebasis

is computable for GTSs, and described in detail in [18]. The method MIN(B′) minimizes a finite set B′

by deleting every element in B′ for which there is already a smaller element in B′.

Algorithm 1 Minimal k Algorithm

1: procedure MINIMALSTEP(Bpost ,J,B0) ⊲ kmin (minimal upper bound for recovery time)/−1

2: B← Bpost∩ J ⊲ compute B by taking out elements which are not in J

3: k← 0 ⊲ increasing counter

4: B1← B0 ⊲ basis of the current Ik; B0 is a given basis of I

5: B2←∅ ⊲ basis of the current Ik+1

6: while true do

7: if B⊆↑B1 then

8: return k ⊲ we found kmin

9: else

10: B2← B0∪ PREBASIS(B1) ⊲ PREBASIS(B1) computes the basis of ↑B1

11: B2←MIN(B2) ⊲ MIN(B2) minimizes the set B2

12: if B2 ⊆↑B1 then

13: return −1 ⊲ there exists no such k

14: else

15: B1← B2 ⊲ continue

16: k← k+1

17: end if

18: end if

19: end while

20: end procedure

In the proof of Thm. 1, it was crucial that we have strong compatibility. This approach does not work

for WSTSs in general. We loose precision when we only demand compatibility. Thus, we conjecture

that both resilience problems are undecidable for WSTSs in general, but this question remains still open.

80 Resilience of Well-structured GTSs

5 Application to Graph Transformation Systems

We apply the abstract results of the previous section to (joint) graph transformation systems and present

a framework for verifying resilience of GTSs. We exemplarily show how Petri nets fit in this setting and

give also an example beyond Petri nets.

We considered ideals as safety, and decidable anti-ideals as “bad” conditions. In the setting of

well-structured GTSs w.r.t. the subgraph order, these can be expressed as positive and negative con-

straints. Recall that, for a fixed class G of graphs, Ic = {G ∈ G |G |= c} for a positive constraint c, and

Jc′ = {G ∈ G |G |= c′} for a negative constraint c′.

Fact 5 (ideals of graphs). Let Gℓ be a class of graphs of bounded path length. Let I,J ⊆ Gℓ be sets.

(i) I is an ideal⇔ I = Ic for a positive constraint c.

(ii) J is a decidable anti-ideal⇔ J = Jc for a negative constraint c.

Thus, for GTSs, our safety conditions are equivalent to positive constraints and bad conditions are

equivalent to negative constraints.

Remark. More general graph constraints, e.g., ∀(1 ,∃(1)), do not constitute ideals w.r.t. the subgraph

order. The relation 1 ≤ 1 shows that upward-closedness is not guarenteed. In special cases, (nested)

graph constraints [15, 9] may yield ideals, e.g., the ideal in the later discussed Ex. 7 can be expressed as

∀(L1 L 2,∃(L1 L 2)). However, we conjecture that a generalization to more arbitrary (nested)

graph contraints is not possible.

5.1 Verifying Resilience of Graph Transformation Systems

Using the sufficient conditions for strong well-structuredness of König & Stückrath [10], we obtain the

decidability of both resilience problems for a subclass of GTSs. We need to use the subgraph order as

wqo. Thus, we have the restriction of bounded4 path length for the considered graph class. Instead of

considering GTSs, we consider graph transition systems, i.e., we always explicate the state set. Thm. 1

and the result in [10] (see Lemma 1) imply our main result for GTSs:

Theorem 2 (decidability of resilience for well-structured GTSs). The explicit and the bounded resilience

problem are decidable for graph transition systems which are of bounded path length (and equipped with

the subgraph order).

As joint GTSs are also GTSs, the same sufficient conditions for strong well-structuredness apply.

Fact 6 (strongly well-structured joint GTSs). Every annotated joint graph transition system which is of

bounded path length is strongly well-structured (equipped with the subgraph order).

An immediate consequence of Thm. 2 and Fact 6 is the following:

Corollary 1 (decidability of resilience for joint GTSs). The explicit and the bounded resilience prob-

lem are decidable for annotated joint graph transition systems which are of bounded path length (and

equipped with the subgraph order).

Thus, we can apply the algorithm MINIMALSTEP described in Sec. 4.2 to verify resilience of an-

notated joint graph transition systems. We consider an ideal Ic for a positive constraint c with a given

basis Bc. The anti-ideal (bi-ideal) is given by Je = {G
′ ∈ G ⊕Q⊕M |G′ |= ∃e}. We assume that a start

graph G∈ G ⊕{q0}⊕{⊤} and a basis BG of ↑post∗(G) are given. The PREBASIS procedure for the sub-

graph order needed in the algorithm is given by König & Stückrath in [10] (and more detailed in [18]).

O. Özkan & N. Würdemann 81

MINIMALSTEP(BG ,Je,Bc)

(SE)′

basis BG

basis Bc

kmin/false

Figure 4: Verifying resilience in the adverse conditions approach.

5.2 Approximations

We now drop an essential assumption for the decidability results in Sec. 4.2 by considering SWSTSs

without a given basis of ↑ post∗(s). We show that we can still approximate kmin from below (by kℓun,

ℓ ∈ N) and above (by kov) by calculating corresponding approximations of (a basis of) ↑post∗(s). The

following function, called µ-function, defines these approximations.

Definition 17 (µ-function, kℓun, kov). Let 〈S,≤,→〉 be a SWSTS, J ⊆ S an anti-ideal, and I ⊆ S an ideal.

We define the function µ : P(S)→N∪{∞} as µ(A) = min({k ∈N : A∩J ⊆
⋃

j≤k pre j(I)}∪{∞}) where

P(S) is the power set of S. For s ∈ S and ℓ ∈ N, let kℓun := µ(
⋃

j≤ℓ post j(s)) and kov := µ(post∗(↑{s})).

Note that kmin = µ(post∗(s)) and that kmin = ∞ can be read as “there is no such k”. By definition,

µ is monotonic, i.e., A⊆ B implies µ(A)≤ µ(B), and by Lemma 4, µ(↑A) = µ(A). For the under- and

over-approximation, we consider a basis of ↑
⋃

j≤ℓpost j(s) and a basis of ↑ post∗(↑{s}), respectively.

For every GTS of bounded path length, this under-approximation is feasible. We present an idea for

performing the over-approximation by means of invertibility.

Fact 7 (weak invertibility). Let 〈G ,⇒R〉 be a graph transition system of bounded path length and R ′ a

GTS s.t. G⇒∗
R

H iff H ⇒∗
R′

G for all G,H ∈ G . Then, for every G ∈ G , post∗
R
(↑{G}) = pre∗

R′
(↑{G})

and a basis of post∗
R
(↑{G}) is computable.

In particular, such an R ′ exists if G ⇒r H iff H ⇒r−1 G for all G,H ∈ G , r ∈ R, where for a

rule r = 〈L ⇀ R〉 which is injective on its domain, r−1 = 〈R ⇀ L〉 is the inverse rule. In general, G⇒r H

only implies that there is a graph G′ ≤ G s.t. H ⇒r−1 G′, since an application of r may have deleted

dangling edges. However, in some classes of GTSs, e.g., in Petri nets (see Sec. 5.3), there are no dangling

edges in both directions, and we can use the inverse rules for the over-approximation.

Fact 8 (approximation). Let 〈G ,⇒R〉 be a GTS of bounded path, J ⊆ G an anti-ideal, I ⊆ G an ideal,

and G ∈ G . (i) For every ℓ≥ 0, kℓun is computable and kℓun ≤ kmin. The sequence 〈kℓun〉ℓ converges to kmin,

eventually stabilizing. (ii) Under the assumptions of Fact 7, kov is computable and kov ≥ kmin.

Note that kℓun = ∞ implies kmin = ∞, and kov < ∞ implies kmin < ∞. Only if kℓun = 0 and kov = ∞, we

gain no information about kmin. The approximation results described above are visualized in Fig. 5.

0 kℓun
≤ kℓ+1

un
kmin ≤ kov

↑∪ j≤ℓpost j(G) ↑∪ j≤ℓ+1 post j(G)⊆ ⊆ . . . ⊆ ↑post∗(G) ⊆ ↑post∗(↑{G})

ℓ→ ∞

Figure 5: Under- and over-approximation of kmin by corresponding approximation of ↑post∗(G).

82 Resilience of Well-structured GTSs

5.3 An Example Class: Petri Nets

Petri nets [14] are a common model for discrete distributed systems in computer science, often applied,

e.g., in logistics or supply chains [22]. It is a classical example for strongly well-structured (graph)

transition systems. We will give a definition of Petri nets and show how our example fits in this setting.

Definition 18 (Petri nets). A Petri net is a tuple N = 〈P,T,F〉 with disjoint finite sets of places P and

transitions T , and a flow function F : (P×T)∪ (P×T)→ N. A marking in N is a multi-set M : P→ N

that indicates the number of tokens on each place. F(x,y) = n > 0 means there is an arc of weight n

from node x to y describing the flow of tokens in the net. A transition t ∈ T is enabled in a marking M if

∀p ∈ P : F(p, t)≤M(p). If t is enabled, then t can fire in M, leading to a new marking M′ calculated by

∀p∈ P : M′(p) = M(p)−F(p, t)+F(t, p). This is denoted by M[t〉M′. Usually, a Petri net N is equipped

with an initial marking M0. The tuple 〈N,M0〉 is then called a marked Petri net.

Any Petri net N can be interpreted as a transition system with the states S given by M (N), the set

of all markings of N, and the transitions → given by M → M′ ⇔ ∃t ∈ T : M[t〉M′. Together with the

wqo ≤PN, given by ∀M,M′ ∈M (N) : M ≤PN M′ :⇔∀p ∈ P : M(p)≤M′(p), this constitutes a SWSTS.

For Petri nets, reachability and equivalent problems are decidable [14, 7]. From this fact and the results

in [21], one can show that for Petri nets a basis of ↑post∗(M0) is computable: In [21], it is shown that for

any ideal I of markings in a Petri net, a basis of I is computable iff for every ω-marking M it is decidable

whether I∩ ↓ {M} = ∅. An ω-marking is a function M : P→ N∪ {ω}, and analogously to before,

↓{M} := {M′ ∈M (N) |∀p ∈ P : M′(p) ≤ M(p)∨M(p) = ω}. Since ↑post∗(M0) is an ideal, we can

apply this result and ask whether ↑post∗(M0)∩ ↓{M} =∅ is decidable. This is obviously equivalent to

↑post∗(M0)∩ ↓{M} ⊆∅, allowing us to apply Lemma 4, since ∅ is an ideal. Thus, we now ask whether

post∗(M0)∩ ↓{M}=∅.

This problem corresponds to the so-called submarking reachability problem, which is decidable (cp.,

e.g., [7]), since it is recursively equivalent the to reachability problem. Therefore, we get that a basis

of ↑post∗(M0) is computable.

Petri nets can also be seen as an instance of GTSs, as shown in [2]. From that point of view, every

transition corresponds to a graph transformation rule. A marking is given by the structure of the Petri

net represented as a graph, with the number of tokens on a place represented by extra nodes connected

to it, as in Fig. 1c. The wqo ≤PN then directly corresponds to the subgraph order. Together with the

start graph representing the initial marking, interpreting the GTS as a WSTS results in exactly the same

SWSTS above. This means we can apply the algorithm deciding resilience in GTS to Petri nets. We

demonstrate this by the following example, where we consider a Petri net that, when interpreted as a

GTS, is exactly the supply chain modeled in Ex. 5.

Example 6 (supply chain as Petri net). We consider a marked Petri net modeling a simplified scenario

of a supply chain, shown in Fig. 6. As usual we depict places as circles, transitions as rectangles, and

the flow as weighted directed arcs between them. In the example, all weights are 1 and therefore not

indicated. Dots on places indicate the number of tokens on the respective place in the initial marking.

The Petri net corresponds directly to the graph transformation rules in Ex. 5, with the blue transitions

simulating S , and the red (checkered) transitions simulating E . The initial marking represents the start

graph. Correspondingly, the control automaton has the same structure as in Ex. 5, with transitions re-

placing rules. Let I = {〈M,q〉 |M(warehouse),M(store1),M(store2)≥ 1∧q ∈Q}, i.e., in the warehouse

and in both stores products are available for shipping or purchase, respectively. The transitions corre-

sponding to E reduce the number of tokens in the net. We consider the resilience problem with adverse

conditions. By definition of the control automaton, we know that Je = {〈M,e〉|M is a marking}.

O. Özkan & N. Würdemann 83

produce

product

transport
warehouse

accident

ship1

ship2

store1

store2

buy1

buy2

e
produce transport produce transport

produce tra
nsportshipi shipi

ship
i

accident, buyi

buyi

Figure 6: A Petri net modeling a supply chain, and its control automaton.

We interpreted Ex. 5/ Ex. 6 as joint GTS and applied a prototype implementation of the algorithm

MINIMALSTEP from Sec. 4.2 to it. We obtained that kmin = 6 is the smallest k for which the system

is k-step resilient: The following set B
M0
e is the intersection of a basis of ↑ post∗(M0) with Je where

M0 = 〈0,1,1,1,q0〉. The first coordinate corresponds to (the number of tokens in) P/product, the second

coordinate to W /warehouse, and the third and fourth coordinate correspond to S1/store1 and S2/store2,

respectively.

BM0
e = {〈0,1,1,1〉,〈0,5,0,0〉,〈0,0,3,0〉,〈0,0,0,3〉,〈0,1,2,0〉,

〈0,1,0,2〉,〈0,0,2,1〉,〈0,0,1,2〉,〈0,3,1,0〉,〈0,3,0,1〉}×{q0}

We computed Bk, a basis of Ik, for 1≤ k ≤ 21. We only give Bk∩ Je for 1≤ k ≤ 6:

B1∩ Je = {〈0,1,1,1〉,〈0,2,0,1〉,〈0,2,1,0〉}×{q0}

B2∩ Je = {〈0,0,1,1〉,〈0,2,0,1〉,〈0,2,1,0〉,〈0,3,0,0〉}×{q0}

B3∩ Je = {〈0,0,1,1〉,〈0,1,0,1〉,〈0,1,1,0〉,〈0,3,0,0〉}×{q0}

B4∩ Je = B5∩ Je = B3∩ Je

B6∩ Je = {〈0,0,1,1〉,〈0,1,0,1〉,〈0,1,1,0〉,〈0,3,0,0〉,〈0,0,2,0〉, 〈0,0,0,2〉}×{q0}

We obtain B
M0
e 6⊆↑Bk ∩ Je for 1≤ k ≤ 5, but B

M0
e ⊆↑B6∩ Je. Thus, kmin = 6.

5.4 An Example beyond Petri Nets

We give an example for a joint GTS which cannot be modeled by a (finite) Petri net and verify its

resilience.

Example 7 (path game). Consider two fixed locations represented by nodes labeled with L. Points be-

tween them are represented by black nodes. The system tries to construct two directed paths of length 2

between the locations, one path forth and one back, using the rules S in Fig. 7. The respective ideal

is therefore given by ∃(L L)∨∃(L L). The environment deletes edges in the graph, corre-

sponding to E in Fig. 7. The control automaton is alternating:

e s

A
S

E

Thus, one may consider this as a game with alternating turn order. The system can (i) create a new

middle point connected to the locations by the rule New, (ii) create two parallel edges provided that there

84 Resilience of Well-structured GTSs

S

New :
〈

L
1

L
2
⇀ L

1
L

2

〉

Rev1 :
〈

L
1 2

⇀ L
1 2

〉

Para1 :
〈

L
1 2

⇀ L
1 2

〉

Rev2 :
〈

L
1 2

⇀ L
1 2

〉

Para2 :
〈

L
1 2

⇀ L
1 2

〉

Mer1 :

〈

L
1

3

4 L
2
⇀ L

1 3,4
L

2

〉

Mer2 :

〈

L
1

3

4 L
2
⇀ L

1 3,4
L

2

〉

Mer3 :

〈

L
1

3

4 L
2
⇀ L

1 3,4
L

2

〉

E

{

Del1 :
〈

L
1 2

⇀ L
1 2

〉

Del2 :
〈

L
1 2

⇀ L
1 2

〉

Figure 7: Components of the joint GTS

is one by the Para-rules, (iii) reverse the direction of an edge by the Rev-rules, and (iv) merge two

middle points each of which are connected to a different location by the Mer-rules. We ask whether the

system can construct the two directed paths of length 2 in a bounded number of rounds (steps) when the

environment made its turn, regardless of the current situation. If so, what is the minimal number of steps?

We can reach the graph GLL := L L (modulo isolated nodes) when the system is only changing

the direction of edges. Hence, 〈GLL,e〉 ∈↑post∗(G)∩Je for any start graph G with exactly two locations,

arbitrarily many middle points, and arbitrary edges between middle points and locations. Therefore, we

only check when 〈GLL,e〉 occurs the first time in a basis Bk. We applied a prototype implementation of

the algorithm in Sec. 4.2 to this example and obtained B13∩ Je = {〈GLL,e〉} 6⊆ B12 by computation of

B12 =
({

L L , L L , L L , L L , L L , L L ,

L L , L L , L L , L L , L L , L L
}

×{s}
)

∪
({

L L , L L
}

×{e}
)

.

Thus, kmin = 13.

Note that we consider equivalence classes of graphs modulo isolated middle points. This has no

effect on the well-structuredness of this example. Also note that leaving out the rules for merging has

only a slight impact on the bases and no effect on kmin.

5.5 Adverse Conditions vs. Error States

We compare the adverse conditions approach with the error state approach. As pointed out, these two

views of resilience are not equivalent. While every system that is resilient w.r.t. error states (i.e., J = S\I)

is also resilient w.r.t. adverse conditions (i.e., J = Je) due to Je \ I ⊆ S\ I (meaning that if we can reach I

from every state, then also from every state in Je), the opposite does not hold in general.

We do not define a restriction on the system/environment to allow more freedom of modeling but

our counterexample in Fig. 8 captures the adverse effect of the environment. The joint GTS in Fig. 8a,

together with a start graph , results in the state set in Fig. 8b. A basis of I is given by 〈 ,q0〉. From

the definition of A, we see that Je is given by {〈G,q1〉 | ≤ G}, indicated by the hatched area. We see

that from every reachable state in Je we can reach I in one step, which means that the system is 1-step

resilient w.r.t. adverse conditions. On the other hand, we cannot reach I from the state 〈 ,q0〉 ∈ S \ I,

O. Özkan & N. Würdemann 85

S

S1 :
〈

1 2
3

⇀
1 2

3
〉

S2 :
〈

1 2
3

⇀
1 2

3
〉

id : 〈∅⇀∅〉

,

E

{

E :
〈

1 2
3

⇀
1 2

3
〉

,

q0 q1

AS \{S2}

E

S

(a) Components of the joint GTS

I J = S\ IJe

〈

,q0

〉 〈

,q1

〉 〈

,q0

〉

〈

,q0

〉 〈

,q1

〉 〈

,q0

〉

s0 =

.

id

S1

E

S1

S1

id
E

S1

S2

id

id

S2

id

id

S1 S1

(b) The state set of the joint GTS

Figure 8: A joint GTS example that is 1-step resilient w.r.t. Je (adverse conditions), but not resilient w.r.t.

J = S\ I (error states).

which is reachable from Je when the “wrong” system rule is applied. This means the system is not

resilient w.r.t. error states.

If, due to the structure of a joint GTS, we can reach Je from every reachable error state, as, e.g., in

Ex. 5, both approaches coincide. The computed kmin’s then only differ by at most the index k(Je).

6 Related Work

We use SPO graph transformation for modeling systems as in Löwe [11] (see also Ehrig et al. [6]).

Our notion of joint GTSs is a special case of graph-transformational interacting systems. Another

approach considering dependencies can be found, e.g., in Corradini et al. [3].

The concept of resilience is broadly used in different areas, e.g., in industrial control systems [20, 16],

with varying definitions. Following these ideas, we formulated resilience in the abstract settings of TSs

and GTSs. Our interpretation of resilience captures recovery in bounded time.

Abdulla et al. [1] show the decidability of ideal reachability (coverability), eventuality properties and

simulation in (labeled) SWSTSs. We use the presented algorithm to show the decidability of resilience

problems in SWSTSs.

Finkel & Schnoebelen [8] show that the concept of well-structuredness is ubiquitous in computer

science by providing a large class of example models (e.g., Petri nets and their extensions, communicat-

ing finite state machines, lossy systems, basic process algebras). Moreover, they give several decidabil-

ity results for systems with different degrees of well-structuredness. They also generalize the algorithm

of [1] to (not necessarily strongly) WSTSs to show decidability of coverability.

In [10], König & Stückrath extensively study the well-structuredness of GTSs. More detailed con-

siderations can be found in [18]. They identify three types of wqos (minor, subgraph, induced subgraph)

on graphs based on results of Ding [4] and Robertson & Seymour [17]. The fact that the subgraph order

is a wqo on graphs of bounded path length while the minor order allows all graphs comes with a trade-

off: For obtaining well-structuredness w.r.t. the minor order, the GTS must contain all edge contraction

rules, i.e., it must be a “lossy” GTS. On the other hand, all GTSs (without application conditions) are

strongly well-structured on graphs of bounded path length w.r.t. the subgraph order. This result enables

us to apply our abstract results to GTSs (in particular, we use the pred-basis procedure in the case of the

subgraph order for our algorithm). In our setting, the regarded wqo is the subgraph order since it yields

strong compatibility. They also generalize the notion of well-structured transition systems by regarding

Q-restricted WSTSs whose state sets needs not to be a wqo but rather a subset Q of the states is a wqo.

König & Stückrath develope a backwards algorithm based on [8] for Q-restricted WSTSs obtaining de-

cidability of coverability under additional assumptions. For SWSTSs, this approach coincides with the

86 Resilience of Well-structured GTSs

ideal reachability algorithm [1].

All in all, our result for SWSTSs uses a modification of Abdulla et. al [1], and our application to GTSs

additionally uses the predecessor-basis procedure from König & Stückrath [10] in every computation

step. It can also be seen as a modification of the backwards analysis of König & Stückrath [10] in the

case of the subgraph order. We summarize the relations of our results and the used concepts in Fig. 9.

Resilience in SWSTSs

Thm. 1

Coverability in SWSTSs

Abdulla et al. [1] Thm. 4.1

Coverability in WSTSs

Finkel & Schoebelen [8] Thm. 3.6

Coverability in Q-restr. WSTSs

König & Stückrath [10] Thm. 1

Resilience in GTSs

Thm. 2

Coverability in GTSs

König & Stückrath [10] Prop. 4

Method: Pred-basis procedure

uses

modification of

uses

Figure 9: Relation of the decidability results for resilience (bold) and the results in related work. The

bottom (blue) and the top (green) layers contain decidability results for GTSs and WSTSs, respectively.

The hooked arrows (→֒) mean “generalized to” or “instance of”.

7 Conclusion

We provided a definition of resilience in an abstract framework, namely the explicit and the bounded

resilience problem, and proved decidability of both problems for strongly well-structured transition sys-

tems. By application of this theory, we obtained decidability results for GTSs of bounded path length,

and in particular a verification framework for GTSs which incorporates adverse conditions.

Our results require that a basis of the upward-closure of all successors is given. Although determining

this basis for GTSs is a difficult task, it is computable for Petri nets and can be computed for other GTSs

in special cases. We showed how to approximate such a basis when the assumption is dropped, thereby

approximating the answer to the resilience problems. In this paper, the used well-quasi-order on graphs

is the subgraph order. For the proof, the requirement of strong compatibility is crucial. Our approach

does not work for lossy GTSs which are well-structured w.r.t. the minor order. We conjecture that both

resilience problems are undecidable for lossy GTSs. Ideals w.r.t. the subgraph order can be represented

by positive basic graph constraints. In general, nested graph constraints do not constitute ideals.

Future work. We will investigate on (1) the (un)decidability of resilience for WSTSs/lossy GTSs,

(2) synthesis of resilient GTSs, i.e., using the presented approach to construct provably resilient GTSs,

and (3) the computability of a basis of the upward-closure of all successors for (a subclass of) strongly

well-structured GTSs. Regarding (2), we will investigate on the construction of strongly well-structured

GTSs. Regarding (3), we will consider further methods for achieving approximation results for re-

silience.

Acknowledgment. We are grateful to Annegret Habel, Christian Sandmann, and the anonymous re-

viewers for their helpful comments to this paper. We thank Barbara König for the discussion about

approximation and computation of the upward-closure of all successors, and Detlef Plump for the note

on graph classes of bounded path length and bounded node degree.

References

[1] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson & Yih-Kuen Tsay (1996): General Decidability The-

orems for Infinite-State Systems. In: Proc. LICS 1996, IEEE Computer Society Press, pp. 313–321,

O. Özkan & N. Würdemann 87

doi:10.1109/LICS.1996.561359.

[2] Paolo Baldan, Andrea Corradini, Fabio Gadducci & Ugo Montanari (2010): From Petri Nets to Graph Trans-

formation Systems. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 26, doi:10.14279/tuj.eceasst.26.368.

[3] Andrea Corradini, Luciana Foss & Leila Ribeiro (2008): Graph Transformation with Dependencies for

the Specification of Interactive Systems. In: Proc. WADT 2008, LNCS 5486, Springer, pp. 102–118,

doi:10.1007/978-3-642-03429-9 8.

[4] Guoli Ding (1992): Subgraphs and well-quasi-ordering. J. Graph Theory 16(5), pp. 489–502,

doi:10.1002/jgt.3190160509.

[5] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Algebraic

Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series, Springer,

doi:10.1007/3-540-31188-2.

[6] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro, Annika Wagner & Andrea Corra-

dini (1997): Algebraic Approaches to Graph Transformation - Part II: Single Pushout Approach and Com-

parison with Double Pushout Approach. In: Handbook of Graph Grammars and Computing by Graph Trans-

formations, Volume 1: Foundations, World Scientific, pp. 247–312, doi:10.1142/9789812384720 0004.

[7] Javier Esparza & Mogens Nielsen (1994): Decidability Issues for Petri Nets. BRICS Report Series 1(8),

doi:10.7146/brics.v1i8.21662.

[8] Alain Finkel & Philippe Schnoebelen (2001): Well-structured transition systems everywhere! Theor. Comput.

Sci. 256(1-2), pp. 63–92, doi:10.1016/S0304-3975(00)00102-X.

[9] Annegret Habel & Karl-Heinz Pennemann (2009): Correctness of high-level transformation systems relative

to nested conditions. Math. Struct. Comput. Sci. 19(2), pp. 245–296, doi:10.1017/S0960129508007202.

[10] Barbara König & Jan Stückrath (2017): Well-structured graph transformation systems. Inf. Comput. 252, pp.

71–94, doi:10.1016/j.ic.2016.03.005.

[11] Michael Löwe (1991): Extended algebraic graph transformation. Ph.D. thesis, Technical University of

Berlin, Germany. Available at http://d-nb.info/910935696.

[12] Okan Özkan (2020): Modeling Adverse Conditions in the Framework of Graph Transformation Systems. In:

Proc. GCM@STAF 2020, EPTCS 330, pp. 35–54, doi:10.4204/EPTCS.330.3.

[13] Subhav Pradhan, Abhishek Dubey, Tihamer Levendovszky, Pranav Srinivas Kumar, William A. Emfin-

ger, Daniel Balasubramanian, William Otte & Gabor Karsai (2016): Achieving resilience in dis-

tributed software systems via self-reconfiguration. Journal of Systems and Software 122, pp. 344–363,

doi:10.1016/j.jss.2016.05.038.

[14] Wolfgang Reisig (1985): Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Sci-

ence 4, Springer, doi:10.1007/978-3-642-69968-9.

[15] Arend Rensink (2004): Representing First-Order Logic Using Graphs. In: Proc. ICGT 2004, LNCS 3256,

Springer, pp. 319–335, doi:10.1007/978-3-540-30203-2 23.

[16] Craig G. Rieger, Kevin L. Moore & Thomas L. Baldwin (2013): Resilient control systems: A multi-agent

dynamic systems perspective. In: Proc. EIT 2013, IEEE, pp. 1–16, doi:10.1109/EIT.2013.6632721.

[17] Neil Robertson & Paul D. Seymour (2004): Graph Minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser.

B 92(2), pp. 325–357, doi:10.1016/j.jctb.2004.08.001.

[18] Jan Stückrath (2016): Verification of Well-Structured Graph Transforma-

tion Systems. Ph.D. thesis, University of Duisburg-Essen. Available at

https://nbn-resolving.org/urn:nbn:de:hbz:464-20160425-093027-1.

[19] Wolfgang Thomas (1990): Automata on Infinite Objects. In: Handbook of Theoretical Com-

puter Science, Volume B: Formal Models and Semantics, Elsevier and MIT Press, pp. 133–191,

doi:10.1016/b978-0-444-88074-1.50009-3.

[20] Kishor S. Trivedi, Dong Seong Kim & Rahul Ghosh (2009): Resilience in computer systems and networks.

In: Proc. ICCAD 2009, ACM, pp. 74–77, doi:10.1145/1687399.1687415.

http://dx.doi.org/10.1109/LICS.1996.561359
http://dx.doi.org/10.14279/tuj.eceasst.26.368
http://dx.doi.org/10.1007/978-3-642-03429-9_8
http://dx.doi.org/10.1002/jgt.3190160509
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1142/9789812384720_0004
http://dx.doi.org/10.7146/brics.v1i8.21662
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1017/S0960129508007202
http://dx.doi.org/10.1016/j.ic.2016.03.005
http://d-nb.info/910935696
http://dx.doi.org/10.4204/EPTCS.330.3
http://dx.doi.org/10.1016/j.jss.2016.05.038
http://dx.doi.org/10.1007/978-3-642-69968-9
http://dx.doi.org/10.1007/978-3-540-30203-2_23
http://dx.doi.org/10.1109/EIT.2013.6632721
http://dx.doi.org/10.1016/j.jctb.2004.08.001
https://nbn-resolving.org/urn:nbn:de:hbz:464-20160425-093027-1
http://dx.doi.org/10.1016/b978-0-444-88074-1.50009-3
http://dx.doi.org/10.1145/1687399.1687415

88 Resilience of Well-structured GTSs

[21] Rüdiger Valk & Matthias Jantzen (1985): The Residue of Vector Sets with Applications to Decidability Prob-

lems in Petri Nets. Act. Inf. 21, pp. 643–674, doi:10.1007/BF00289715.

[22] Xiaoling Zhang, Qiang Lu & Teresa Wu (2009): Petri-net based application for supply chain management:

An overview. In: Proc. IEEM 2009, pp. 1406–1410, doi:10.1109/IEEM.2009.5373050.

http://dx.doi.org/10.1007/BF00289715
http://dx.doi.org/10.1109/IEEM.2009.5373050

	1 Introduction
	2 Preliminaries
	2.1 Graph Transformation Systems
	2.2 Transition Systems
	2.3 Well-structuredness
	2.4 Ideal Reachability

	3 Adverse Conditions and Resilience Problems
	3.1 Joint Graph Transformation Systems
	3.2 Abstract Resilience Problems

	4 Decidability Results
	4.1 Resilience Problems in a Well-structured Framework
	4.2 Decidability

	5 Application to Graph Transformation Systems
	5.1 Verifying Resilience of Graph Transformation Systems
	5.2 Approximations
	5.3 An Example Class: Petri Nets
	5.4 An Example beyond Petri Nets
	5.5 Adverse Conditions vs. Error States

	6 Related Work
	7 Conclusion

