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We study rewriting for equational theories in the context of symmetric monoidal categories where
there is a separable Frobenius monoid on each object. These categories, also called hypergraph
categories, are increasingly relevant: Frobenius structures recently appeared in cross-disciplinary
applications, including the study of quantum processes, dynamical systems and natural language
processing. In this work we give a combinatorial characterisation of arrows of a free hypergraph
category as cospans of labelled hypergraphs and establish a precise correspondence between rewrit-
ing modulo Frobenius structure on the one hand and double-pushout rewriting of hypergraphs on the
other. This interpretation allows to use results on hypergraphs to ensure decidability of confluence
for rewriting in a free hypergraph category. Our results generalise previous approaches where only
categories generated by a single object (props) were considered.

1 Introduction

Symmetric monoidal categories (SMCs) are an increasingly popular mathematical framework for the for-
mal analysis of network-style diagrammatic languages that are found across different disciplines. In an
SMC arrows have two composition operations, intuitively corresponding to sequential (c; d) and parallel
(c®d) combination of compound systems, and there are symmetry arrows __X__, intuitively representing
tangles of wires. These constructs are traditionally rendered by the two-dimensional notation of string
diagrams, which has the key advantage of absorbing most of the structural equalities prescribed by the

definition of SMC. For instance, the two sides of the exchange law (a; ; a2)® (b1 ; by) = (a1 ®b1); (ay ®by)

a as
are encoded by the same string diagram . The graphical syntax emphasises connectivity and

resource-exchange between components, which makes it particularly effective in the analysis of challeng-
ing computational models such as distributed systems (based on threads communication) and quantum
processes (powered by a notion of non-separable—entangled—states).

Some applications demand SMCs with a richer structure. In this paper we focus on hypergraph
categories, which are SMCs where each object x is equipped with a separable Frobenius monoid. That
means, for each x there are operations as on the left, forming a commutative monoid and a commutative
comonoid that interact according to the Frobenius law and the separability law, as on the right.

L " . " x/m Tz £ z z .
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The core intuition is that this extra structure allows dangling wires of a string diagram to fork, be
discarded, be moved to the left/right side, resulting in a more flexible manipulation of the interfaces
(variables, memory cells) of the represented system. The use of hypergraph categories as an alge-
braic approach to computation was pioneered by Walters and collaborators [9, 20], under the name
of well-supported compact closed categories. Since then separable Frobenius monoids have appeared
ubiquitously in diagrammatic calculi across diverse research threads. They notably feature in the ZX-
calculus [10] (quantum theory), where each Frobenius structure has a precise physical meaning in terms
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of quantum observables. Frobenius monoids also form the backbone of the calculus of stateless connec-
tors [7], the calculus of signal flow diagrams [4], 5], Baez’s network theory [1]] and Pavlovic’s monoidal
computer [28]]. More recently, a particular attention has been devoted to generic constructions of hyper-
graph categories through abstract notions of span, relation and their duals [35} 15, 26} [16].

Whereas separable Frobenius monoids constitute a common core for the aforementioned approaches,
in each application string diagrams are further quotiented by domain-specific equations, instrumental in
defining the appropriate notion of behavioural equality of systems. The perspective of this work is to
acknowledge the conceptual difference between the symmetric monoidal and Frobenius structure on the
one hand, which is a built-in part of any hypergraph category, and the domain-specific equations on the
other hand. We shall study the latter as rewriting rules: if the left hand side of such an equation can be
found in a larger string diagram, it can be deleted and replaced with its right hand side.

This is coherent with the everyday practice of users of diagrammatic calculi and is the starting point
for implementing graphical reasoning in a proof assistant. There is a thorough mathematical theory of
rewriting for monoidal categories, which regards rewrite rules as generator 2-cells (variously called com-
putads [21]] or polygraphs [8]) and the possible rewriting trajectories as composite two-cells. However,
this abstract perspective does not provide immediate help when it comes to implementing rewriting. The
main challenge is a concrete understanding of matching: in order to detect whether a string diagram
contains the left-hand side of a rewriting rule, one needs to consider all its possible decompositions ac-
cording to the structural equations. In an hypergraph category, this amounts to say that rewriting happens
modulo the equations of separable Frobenius monoids. For instance, the rewriting rule

C

applies in the leftmost string diagram below, module the separable Frobenius structure on objects ¢, d.

We shall develop a combinatorial characterisation of this rewriting mechanism, in three steps:

o the first step (Section [3)) is to give a combinatorial description of the string diagrams in free hy-
pergraph categories. Our choice is a category of cospans of hypergraphs, which is shown to be
isomorphic to the free hypergraph category generated by a signature. This data structure encapsu-
lates all the equivalent representations of a string diagram modulo Frobenius into a single object,
thus easing the complexity of matching. The idea of the isomorphism is that boxes in a string

diagram are represented as hyperedges, and wires as nodes. The use of cospans I; L G & I, is
essential: the carrier G encodes the string diagram itself, whereas /; and I, are discrete hypergraphs
(sets of nodes) that indicate through f and g which nodes of G are dangling wires on the left and
on the right of the corresponding string diagram.

As the name suggests, the close relationship between hypergraph categories and hypergraph struc-
tures was clear to previous authors [22]], as well as the use of cospans to mimic interfaces [[14, [31].
Our characterisation combines existing approaches in a way that best suits the application to rewrit-
ing. The main generalisation is characterising hypergraph categories that are freely generated by
multi-sorted instead of single-sorted signatures.

e The second step (Section[d)) is to exploit the combinatorial interpretation to realise string diagram
rewriting as rewriting of hypergraphs. The fact that cospans of hypergraphs form an adhesive cate-
gory [24] gives an off-the-shelf theory of double-pushout (DPO) rewriting. We show that rewriting
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modulo Frobenius and DPO rewriting of hypergraphs are essentially the same thing. The problem
of matching in an hypergraph category (2) is reduced to finding an hypergraph homomorphism.

e As last contribution (Section [5)), we show that confluence for terminating rewriting systems in
hypergraph categories is decidable, as it is reducible to a computable critical pair analysis. This
well-known property of term rewriting becomes a non-trivial question when dealing with two-
dimensional entities. For instance, in the aforementioned polygraph approach [8]], where critical
pairs are considered in the string diagrammatic syntax rather than in a graph model, even a finite
set of rewriting rules may yield infinitely many critical pairs [27)]. In the context of ordinary
DPO graph rewriting decidability also fails [29] unless further conditions are imposed, such as
requiring that all critical pairs satisfy a syntactic condition called coverability [30] or that they
are joinable in a stricter sense [[13]. We establish our decidability result within the framework
of recent work [3]] that studies confluence for DPO hypergraph rewriting with interfaces. Not
only this variant enjoys decidability without further restrictions on critical pairs, but is precisely
tailored for the interpretation of “syntactic” rewriting from hypergraph categories. We refer to
[3] for a more extensive discussion of how the interface approach compares to others in the DPO
rewriting literature.

Rewriting modulo Frobenius structure has been studied along the same lines in [2 3]]. These recent
works by the author and collaborators serve as a roadmap for this paper: the aim here is to verify that
such results generalise to multi-sorted algebraic theories, for which the freely generated category has a
Frobenius structure on each sort. In light of [2 3], the way this generalisation unfolds is not particularly
surprising, as we are essentially able to lift the same proof techniques from a single to multiple sorts.
However, we believe that the redaction of a reference paper for these results is timely. Firstly, it is justified
by the renewed interest for hypergraph categories, witnessed by several recent applications, especially
to circuit theory [15] and to natural language semantics [26} [19]: using the theory developed in [2} 3] is
going to require the full generality of the multi-sorted case. Secondly, another justification comes from
axiomatic approaches to various families of systems (concurrent [7], quantum [10]], dynamical [4, [1]])
in which the equational theory axiomatising system behaviour includes two or more Frobenius algebras.
When it comes to rewriting, the approach introduced in [2] only allows to absorb one Frobenius structure
in the combinatorial model. In this paper, we show how additional Frobenius structures can be also
absorbed in the same mannexﬂ thus reducing the complexity of the aforementioned axiomatisations and
simplifying the task of studying normal forms, confluence and termination.

Notation. In a category C with coproducts, (hy,hy): X +Y — Z is the copairing of h;: X — Z and
hy: Y — Z, defined by universal property of +. Also, f; g: a — c is the composition of arrows f: a —

. . f f f f. .
b,g: b — ¢. We sometimes write a — b or b < a for f: a — b, or also — and « if object names are
immaterial for the context. We write @ for the monoidal product in a monoidal category.

2 Props and Hypergraph Categories

We are going to study hypergraph categories freely generated by a signature of operations. The following
is the notion appropriate to the monoidal context.

IThe fact that multiple Frobenius structures are on the same object (like in the aforementioned theories) or on different
objects (like in this work) of a category may be overcome with the addition of ‘switch’ operations from one object to the others,
as we are going to show in a paper in preparation.
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Definition 2.1. A monoidal theory is a tuple (Z,C) of a signature ¥ and a finite set C of colours. Elements
of X are operations o: w — v with a certain arity w and coarity v, where w,v € C*.

Generic theories are typically triples, allowing also for a set of equations on X-terms. We do not
need that level of generality here: equations will be treated differently, as rewriting rules (unless they are
structural, like the equations of symmetric monoidal categories or of hypergraph categories, see below).

Towards hypergraph categories, it is instrumental to describe first the free symmetric monoidal cat-
egory generated by a theory (X,C), which is called a C-coloured prop [18] (product and permutation
category). This works in analogy with the single-sorted case C = {c}, in which monoidal theories act as
presentations for ({c}-coloured) props [23].

Definition 2.2. Let C be a finite set. A C-coloured prop is a symmetric monoidal category (SMC) where
the set of objects is C* and the monoidal product & on objects is word concatenation. C-coloured props
form a category Prop, with morphisms the identity-on-objects symmetric monoidal functors.

Given a monoidal theory (Z,C), one can freely construct a prop Py with arrows the X-terms quo-
tiented by the laws of symmetric monoidal categories. X-terms are freely obtained by combining opera-
tions in X, a unit id: ¢ — c for each c € C and a symmetry o, 4: cd — dc for each c,d € C, by sequential
(;) and parallel (&) composition. That means, given terms a: w; — wa, b: wy — w3, a@’: v{ = v;, one
constructs new terms a; b: w; = ws and a®a’: wivy — wavs.

We shall adopt the graphical notation of string diagrams [32] for the arrows of Py.. An arrow

a: wy; — wy is pictured as W Compositions via ; and & are drawn respectively as horizontal
. . .. . . wy wa w3 ;- L@ﬂ

and vertical juxtaposition, that means, a; b is drawn @7@7 and a®a’ is drawn [pm CR There

are spec1ﬁc diagrams for the symmetric monoidal structure, namely —» for the identity id,,: w = w

and D@ for the symmetry o, ,: wu — uw, for w,u € C*. These are definable from the basic identities

and symmetries for colours in C using the pasting rules for ; and @.

Example 2.3. The initial object in Prop, is the C-coloured prop Perm. whose arrows w — v are per-
mutations of w into v (thus arrows exist only when the word v is an anagram of the word w). Perm, is
freely generated by the monoidal theory (0,C).

Example 2.4. For C’ € C, the C-coloured prop Frob. of separable Frobenius C’ monoids is freely
generated by the monoidal theory (¢, ,C), where ZFmb = } - —G , —e|ce(C'}, and
quotlented by equations, for each ¢ € C’, stating that :)— and e form a commutative monoid (3),

that 4@ and “e form a commutative comonoid (4)), and that these interact according to the Frobenius
law and the separability law (3).

c c
c c X ¢ c c c
DCoet = wt o= o D= e 3)
e e ’ ¢ c ’ c . c
“ole = “oe e = - c o =S “

== e = )

As mentioned, when C is a singleton, C-coloured props are just called props, i.e. SMCs with objects
the natural numbers where the monoidal product is addition on objects. For later use it is convenient to
record the following result about the single-sorted case. It involves the prop Csp(FinSet) whose arrows

R D S . . _
np — np are cospans 1] — n3 < nyp of functions between ordinals n :={0,...,n—1}.
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Proposition 2.5 ([6, 23[). There is an isomorphism of {c}-coloured props between Frob,, and
Csp(FinSet). It is defined by the following mapping on the %) -operations.

vvvvvv

c
C
c -

oo

As outlined in the introduction, we are interested in studying non-structural equations as rewriting
rules. We now define the appropriate notion of rewriting for arrows in a prop. We call it “syntactic” to
emphasise that matching happens when the left-hand side of a rule is a sub-term.

Definition 2.6 (Syntactic rewriting in a prop). A rewriting rule in a C-coloured prop C is a pair of
morphisms [,r: vi — v, in C, for which we use the notation (/,7): vi — v,. A rewriting system R is
a finite set of rewriting rules. Given a,b: w; — w» in C, we say that a rewrites into b via R, notation
a =x b, if there are a; and a, yielding the following decompositions in C, where (/,7): vi = v isin R.

u u
w W w w: w W
o = e b = ol azpe (©)

We are going to study syntactic rewriting in free hypergraph categories, which we now introduce
together with their properties.
Definition 2.7. An hypergraph category is an SMC A where each object x € A has a separable Frobenius

structure, i.e., maps } { and ‘e forming a commutative monoid, a commutative comonoid
and satisfying equations as in (II]) for each x € A. Moreover, the Frobenius structure must be compatible
with the monoidal product:

T

T
LOY L4y y z cay O cey S22V 2 y cay _ —®
et = =7 an, = g h o =
The free hypergraph category over (X,C), notation Hy, is the free C-coloured prop on (ZWX{ . C)

quotiented by equations (3)), (@) and (5] for each c € C.

Observe that the free construction of Hy ¢ indeed creates a Frobenius structure for each object w € C*
of the category, canonically defined in terms of the one on colours. For instance, forw =c;...c,

cy cy
o -

w Co w C2
w o [ w R w _ @
wp— = — = & w L= — =
Cn, Cp,

-9

Example 2.8. Fix a set C of colours with just two elements, noted e and e, and a signature X consisting
of two “colour switch” operations, <®: ¢ — e and €>: ¢ — o. We may construct the free hypergraph
category Hy ¢ o, Over (Z,{e, o}). Here is an example of a string diagram in this category, where we use
the more suggestive convention of colouring wires instead of labelling them with objects e and e.

Q/&: P )

We claim that H ¢ o, is the same as the category of finite directed bipartite graphs (with interfaces).
This will become clear in Example [3.5] after the characterisation provided by Corollary [3.3]
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We now observe that the free hypergraph category Hs . can be seen as a coproduct in Prop,. This
will be useful in order to separate the component arising from X from the built-in Frobenius structure.

Proposition 2.9. There is an isomorphism Py + Frob. = H; . of C-coloured props. It extends to an
isomorphism of hypergraph categories: thus Ps. +Frob. is the free hypergraph category on (X,C).

Proof. The first part follows from how coproducts are computed in Prop,.. As P; is presented by (X,C)
and Frob. by (¢, ,,C) quotiented by (3)-(3), then Py + Frob, is presented by (£ wXf | ,C) quotiented

by (B)-(5): this is precisely the definition of Hy.. The second part holds because the isomorphism maps
the Frobenius structure on ¢ € C in Py + Frob, to the Frobenius structure on ¢ € C in Hs. O

The free hypergraph category has a universal property (of a pushout) in SymCat too. Details are
in the proof of Corollary [3.4] which uses this observation. We conclude by recalling that the Frobenius
monoids in an hypergraph category defines a canonical compact closed structure. This also justifies the
terminology “well-supported compact closed categories” originally used for hypergraph categories [9]].

Proposition 2.10 ([9]). Hypegraph categories are (self-dual) compact closed.

Proof. 1t is useful to report how the compact closed structure is actually defined. For an object x of an
hypergraph category A, define « C as .]_.CZ and _ D7 as Dlo The Frobenius equation (5)) implies the

equation for compact closure:
x xr
z Tz T z
X2

The dual of a morphism W is defined as @

3 The Combinatorial Interpretation

According to Definition[2.6] syntactic rewriting in free hypergraph categories happens modulo Frobenius
structure. The goal of this section is to give a combinatorial description of the free hypergraph category,
so that a more concrete account of the associated rewriting becomes available.

Fix a monoidal theory (Z,C). We shall work with finite directed hypergraphs, whose hyperedges are
labelled in X and nodes are labelled in C. We shall visualise hypergraphs as follows: © is a node labeled
with ¢ € C and >@)< is an hyperedge labeled with o € X, with ordered g
tentacles attached to the left boundary linking to sources and the ones on o U o
the right linking to targets. An example is on the right, with C = {cy, 3} @- @)

and X ={o1: c1 = €,02: c1c2 > cicy ).
We now organise these structures into a category. First, consider the SMC Hyp with objects the finite

directed (unlabelled) hypergraphs and homomorphisms between them. The monoidal theory (Z,C) itself

can be seen as an object of Hyp. For instance,  and C as above yield the unlabelled hypergraph on the
left (where we “call” 0, the leftmost and o the rightmost hyperedge, and

¢y the leftmost and ¢ the rightmost node). The desired labelling is given

formally by working in the slice category Hyp \ (Z,C), for which we shall
use notation Hyp; .. This definition ensures that a Z-operation o: w — v
labels an hyperedge only when the label of its input (respectively, output)

nodes forms the word w (v).
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The next step is to add interfaces, formally modelled by cospans. Fix a set {x;};ey totally ordered
by N. Define FTermy. as the restriction of the category of cospans in Hyp, . to objects the discrete
hypergraphs (i.e. no hyperedges) whose set of nodes is isomorphic to an initial segment of {x;};eny. This
restriction ensures that FTermy is a C-coloured prop. Indeed, an object of FTerm; can be identified
with a natural number k together with a labelling function {0,...,k—1} — C, which is the same as a word
in C*. The notation FTerm; . stands for “Frobenius termgraphs”, following the terminology introduced
for the single-sorted case [2]]. This name will be justified by the characterisation of Theorem [3.2]below.

We now define the two components of the functor that is going to interpret the syntactic definition
of an hypergraph category as a combinatorial structure. The key to the approach is the second defini-
tion below, which essentially tells that the combinatorial model is able to absorb all the complexity of
Frobenius structure simply in terms of nodes.

Definition 3.1. We define a C-coloured prop morphisms {-)): : Py +Frob, — FTermy as the copairing
of the following functors:

o []I: Pyc — FTermy, is defined by the following mapping on operations o: cicp...c, —
biby...b,, of X (where c¢;,b; € C).

c1 by -1 i@ip i i qi@i
n p, P i Q Pl 1
AR L ®]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The definition of hypergraph homomorphisms p and q is fixed by colour preservation.

e [-]: Frob. — FTerm;_ is defined by the following mapping on the X _, -operations.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

I R 1) ®)

fffffffffffffff

,,,,,

,,,,,,,,,,

Also here the definition of the hypergraph homomorphisms is predetermined.

We now have all the ingredients to state our characterisation theorem.
Theorem 3.2. (-)): Py +Frob. — FTerm; is an isomorphism of C-coloured props.

The proof of the theorem will be postponed to the end of the section. Let us first observe two
interesting consequences.

Corollary 3.3. FTerm; is the free hypergraph category on (£,C), i.e. Hy = FTerm,_.
Proof. [-]: Frob. — FTerm; defines an hypergraph category structure on FTerm; . and the isomor-

phism of Theorem3.2]extends to one of hypergraph categories. Then the result follows by Proposition[2.9
and Theorem 3.2 i

The next corollary states that there is no ‘information loss’ in passing from the free symmetric
monoidal category to the free hypergraph category on (Z,C).

Corollary 3.4. [[-1: Py, — FTermy is faithful.
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Proof. We use that, just as for props [34, Prop. 2.8], coproducts of C-coloured props can be computed as
certain pushouts in the category SymCat of small SMCs. In particular, Py + Frob. in Prop, arises as

|
2
Perm, Frob.

l ) lm ©)

P — P, . +Frob; = FTerm,

in SymCat, where the maps !; and !, are given by initiality of Perm; in Prop, (see Example [2.3).
Intuitively, in (9) Py + Frob, is built as the “disjoint union” of Py and Frob, where one identifies the
set of objects C* and the associated symmetric monoidal structure (the “contribution” of Perm,).

Now, in order to prove that [[-]] is faithful, we can use a result [25, Th. 3.3] about amalgamation in
Cat (which transfers to SymCat). As all the functors in (9) are identity-on-objects and !}, !, are faithful,
it just requires to show that !; and !, satisfy the so-called 3-for-2 property: for !, this means that, given
h = f;gin Py, if any two of f,g,h are in the image of !|, then so is the third. This trivially holds as
every arrow of Perm, is an isomorphism. The argument for !, is identical. O

Example 3.5. We come back to the free hypergraph category H; e o, introduced in Example
By Corollary 3.3] Hy, e ¢, = FTerm, o o,- In hypergraphs of FTerm, ¢ o,, hyperedges correspond to
switches € or <®, thus they are in fact edges (one input and one output node) and we may as well
avoid drawing them in the graphical representation. Since they connect any two nodes only when these
have a different colour, what we obtain are finite directed bipartite graphs. For instance, reprising (7))

,,,,,,,,,,,,,,,,,,,,

This example shows that Theorem [3.2] not only provides a combinatorial representation for algebraic
structures, but conversely it is also instrumental in deriving an algebraic presentation for well-known
graph-theoretic models.

We now give a proof of the characterisation theorem.

Proof of Theorem[3.2] As a preparatory step, we observe that Froby itself can be decomposed as a co-
product in Prop,, namely X ccFrob,,. Let us suppose for simplicity that C = {c,d}, so that Frob, =
Frob,, + Frob,,. It will be apparent how the argument generalises.

The prop morphism [-]: Frob, — FTerm;. is analogously decomposable as the copairing
([l¢s[-]a): Frob,, +Frob, — FTerm, . of prop morphisms [-].: Frob,, — FTerm;. and [‘];: Frob,, —
FTerm; ., defined by restricting the clauses () to the associated colour, either ¢ or d.

We have thus reduced the statement to verify that FTermy satisfies the universal property of the
coproduct Ps . + Frob,, + Frob,, in Prop,.

(/[.]d/
-1 B

FTerm;, d

: [l (10)
> Y Frob,,
4/

Py

P <
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Given a, 3, B4 and a C-coloured prop A as in (I0)), we need to show the existence of a unique y making
the diagram commute. Now, because all morphisms in (I0) are identity-on-objects, it suffices to show
that any arrow of FTerms . can be decomposed in an essentially unique way into an expression where all
the basic constituents lie in the image of [[-]], [-]. or [-]4.

To this aim, fix a cospan w L GEvin FTerm;., where G has set of nodes N, set of hyperedges E
and labelling functions ¢y: N — C and y: E — X. We pick an order e,...,e; on the hyperedges in E and

one ny,...,n; on the nodes in N. Let W E < 7 be the cospan defined as @1 < Sj[[)((e,-)]]. Intuitively, E
piles up all the hyperdges of G, but disconnected from each other. W and /% are the word concatenations
of all the inputs, respectively outputs of these hyperedges.

Similarly, we pile up all the (labeled) nodes in N, by forming the word wy € C* as EB] <ick Y (i),
There are obvious functions from w, v, w and ¥ to wy, mapping labelled nodes to their occurrence in wy.
All this information is now gathered in the following composition of cospansE]

f (id, ) . _ idei - id®o - _ (id.p) g
Wwowy ——wydw) ; (WNdW — WwyBE —— wy®V) ; WyBT —— wy <« V) (11

Copairing maps (id, j) and (id, p) are well-defined as @ is also a coproduct in Hyp, .. One can compute

that the result of composing (TI]) (by pushout) is indeed isomorphic to w i) g &y,
Towards a definition of y, we need to check that every component of (I1)) is in the image of either
[-1 or [-] = (["]¢,[-]4)- The middle cospan is clearly in the image of [[-]], as it is the monoidal product of
id id
the identity cospan wy 5 wN & wy with cospans in the image of some o € . Next, we want to check
that the two outmost cospans are in the image of ([-]., [-]17). To this aim, we show the following claim.

. h q . . .. .
Claim. Any arrow u; — uz < up of FTermg, with u1, up, us discrete is in the image of ([-1¢,[-1a)-

Proof. First, find permutations 7 : u; — ke, o up = ™d" and 73 uy — cld” factorising words u,
up and us respectively as cs followed by ds. We can then define restrictions of 4 and of g to the c-
segment or the d-segment of their domain: this gives functions A.: ¢* — ¢, hy: & = d", g.: ™ — ! and
qq: d* — d’. Observe that the codomain is restricted too, as 4 and g are colour-preserving maps. Putting

h q
these data together we can decompose u; — u3 < uy as follows.
id he®h q:8q id
(uy “w Z Fod) ; (Fod —5 dod lln od") ; ("od =, Uy <= u) (12)

It is now useful to recall Proposition Observe that the bijection given therein between Frobenius

structure and cospans in FinSet is defined by the same clauses (8) as [-] = ([-].,[-]4), modulo the labelling
he

ke feg ol

of set elements all with ¢ or with d. It follows that the cospan ¢ & ¢™ is in the image of [-]. and the

cospan d* h—d> d nil d" is in the image of [-];. Thus they are both in the image of ([-].,[-]4). Concerning
the two outermost cospans in (I2), they are also in the image of ([-].,[-]), as this is a morphism of C-
coloured prop and thus preserves and reflects the symmetry structure. Therefore, the whole of (12)) is in
the image of ([-]c,[]4)- O

Back to the main proof, thanks to the claim we have shown that the two outmost cospans of (L)) are

in the image of ([-].,[-]4). Therefore -y can be defined on w L GEy by the values of [[-]] and ([-]¢,[-]4)

2We admit a certain degree of sloppiness in writing wy both for an object of FTerm, and for the carrier of a cospan. For
wy ={ny,...,n;}, these are isomorphic descriptions of the same data: in the first case it is treated as a word in C*, in the second
as a set of nodes with a labelling function y: {ny,...,nz} — C.
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on its decomposition as in (TI)). This is a correctly and uniquely defined assignment: in the construction
of decompositions (T1]) and (12)), the only variable parts are the different orderings that are picked for
labelled nodes and for hyperedges in E, but these are immaterial since all the involved categories are
symmetric monoidal. m]

As a consequence of the claim enclosed in the proof of Theorem it is worth noticing that the
Frobenius structure identifies the hypergraphs with no hyperedges, i.e. the sets of C-labelled nodes.

Corollary 3.6. There is an isomorphism of C-coloured props Frob; = FTerm,.

As arrows of FTerm, . are the same thing as cospans in the slice category FinSet \ C, this corollary
can be seen as a multi-sorted analogue of the well-known result reported in Proposition

Double-pushout rewriting with interfaces We conclude this section by recalling double-pushout
(DPO) rewriting [L1]], that we will use to compute in FTerm;.. We will actually use a variation [[17]
of the standard definition: instead of just rewriting an hypergraph G, we shall rewrite an hypergraph
homomorphism G «J, standing for “G with interface J”. The intuition is that this form of computation
retains the information that J is how G “glues” to a bigger context. This is needed both to match the
syntactic notion of rewriting (Definition and for ensuring decidability of confluence for terminating
system (Section[5)). We formulate our definition at the level of adhesive categories [24]]. This is the more
abstract setting where DPO rewriting enjoys desirable properties (such as Church-Rosser) and where
tools and algorithms for this form of rewriting are generally defined.

Definition 3.7 (DPOI rewriting). Fix an adhesive category A. A rule for double-pushout rewriting with
interfaces (DPOI rule) is a span L < J— R in A. A DPOI rewriting system R is a finite set of DPOI

. . P . o . o
rules. Given morphisms G LTland H & Tin A, we say that G rewrites into H via R with interface 1,

notation (G L I~ (H L I), if there exists a DPOI rule L «J— R in R and a cospan J— C & I such
that the following diagram commutes and the two squares are pushouts. We call L — G a match of L

in G.
A r
- —_—

NN

If A has an initial object 0, one can relax rewriting to act on cospans of the form 0 — G &1, seen as

Q==
A=
=X

13)

objects with interface (G 5 I). In this case we write (0— G L 1)~y (0> H & I) for a rewriting step.
The following makes DPOI rewriting possible in A = Hyp; ., see Ex. below for an illustration.
Proposition 3.8. Hyp, . is an adhesive category.

Proof. The category Hyp of finite directed (unlabeled) hypergraphs is a presheaf category and thus
adhesive [24, 2]. The statement then follows because Hyp, . is defined as the slice category Hyp \ (Z,C)
and adhesive categories are closed under slice [24]]. O

4 DPOI Implementation of Rewriting Modulo Frobenius

The category Hyp ;. has an initial object O: the hypergraph with neither nodes nor hyperedges. Therefore,
as mentioned in Definition we can equivalently think of hypergraphs with interface (G — I) as
cospans 0— G <1, and meaningfully define DPOI rewriting on the morphisms with source O in FTermy_.
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On the other hand, our semantics (-)) maps diagrams of P; +Frob,, to cospans with any source. Thus,
in order to interpret syntactic rewriting, we need an intermediate step where we “fold” the two interfaces
wi,wo of a string diagram a: w; — w, into one wyw,. This is formally defined, with the help of the
compact closed structure on Py + Frob, (Proposition [2.10), by an operation ™™

wr
w1
e = faje

We are now ready to formulate the correspondence theorem between syntactic rewriting in Ps + Frob,
and DPOI rewriting in FTerm;.

Theorem 4.1. Let (I,r) be any rewriting rule on Py +Frob.. Then,
a=qnb Iff (aN verry (T

Proof. On the direction from left to right, suppose that a =) b. Thus, by definition,
2o} 2lop = mfafgafel a9
Using the compact closed structure of Py + Frob. we can put "a in the following shape
w1

wi
—L C ™@ u
Al o ): = =

The dashed line decomposes the rightmost diagram into "/": 0 — vy, followed by a diagram of type
v1vy — wiwy, which we name &. With analogous reasoning,

'
vy ! .
* ] W1
dai]

’wl T
. - : r,l— . rpl — .
w; “,2 meaning that a [M;aand "D r';a. (15)

Next, we introduce cospans giving semantics to the various diagrams:

(M) =0— L<vi» {ay =vivy—= C —wiws r"N=0->R v

(aNH=0->Gewiwy (b)) =0->H —wiws.

(16)

Equation (13)) tells that the cospan giving semantics to "a™ (respectively, "b™) is the composite of cospans
giving semantics to "/ (respectively, "r") and a. As composition of cospans is by pushout, we obtain
a double-pushout diagram as in (I3)) with J = v;v, and I = wyw,, meaning that {"a™)) ~wcrrmy, (T07).
We now conclude the proof by showing the right to left direction of the statement. Suppose that
(ma™y ~wepemy, €TbT). Naming cospans (a7, ("b™), (TIM) and (7)) as in (TI6), this implies
by definition the existence of a pushout complement C yielding a DPOI diagram as (13) with J = v;v,
and I = wyw,. Now, pick a: vivy — wiw, such that {a)) = vivo — C «w;w,, which exists by fullness of
{-)». Because composition in FTerm; . is by pushout, the existence of such a DPOI diagram yields

("aN=0—- G —wiwr)=(0— L —viv); viv2— C—wiwp) = ("1"); (ay

17
(o) =0-Hewiw2) =(0—=R—viv); vivz= C—wiw) = (Tr); (a). 4
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Because ((-)) is faithful, (I7) yields decompositions "a™ ="I";a and "b™ = "r™; a also on the syntactic
side. This allows for a rewriting step a =, b as below, where the dashed lines show how the syntactic
matching (cf. the shape (6)) is performed.

wq Wa

Example 4.2. The syntactic rewriting step (2) takes place in Py, + Frob,, where £ = {o;: ¢ —
cd,o0y: dd — c}. Tt maps via Theorem to the following DPOI rewriting step in FTermy,,. We
use numbers 1,2,3 to disambiguate the “folding” of the rule interfaces.

———————————————————————————————————————————————————————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*************************************************************************************************************

,,,,,,,,,,,,,,

5 Decidability of Confluence

This section verifies that the form of rewriting crystallised by Theorem [4.1] enjoys the Knuth-Bendix
property. Echoing the case of term rewriting, we use this terminology to mean that the confluence
problem is reducible to critical pair analysis and both are decidable for terminating rewriting systems.

To this aim, we instantiate to our setting the results of [3]. There the author and collaborators showed
that DPOI rewriting enjoys the aforementioned Knuth-Bendix property. Interfaces play a crucial role
here, as Plump showed that for DPO rewriting (without interfaces) confluence is undecidable [29].

Definition 5.1 (DPOI Critical Pair). Fix an adhesive category and DPOI rules L; « K; — R; and
L, <K, — R,. Consider the following two derivations with common source S .

Rl —K|—— 1, ILh<—K)y——Ry
b \ 7 I
H, H, (18)

We say that (H) «J) ¢~ (S «J) ~» (Hy < J) is a critical pair if (1) [f1, f2]: L1+ Ly — S is epi and (ii)
(1) is a pullback. It is joinable if there exists (W «J) such that (H; «J) ~»* (W «J) *eam (Hy < J).

Intuitively, condition (i) ensures that a critical pair S is not bigger than L + L, and condition (ii) says
that J is the largest interface that allows both rewriting steps (J is the “intersection” of C; and C5).
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Proposition 5.2 ([3]). Suppose that C satisfies the following assumptions: (1) it has an epi-mono fac-
torisation system, (2) it has binary coproducts, pushouts and pullbacks; (3) it is adhesive (4) with all
the pushouts stable under pullbacks. Then DPOI rewriting in C has the Knuth-Bendix property for
computable rewriting systems.

Remark 5.3. In the statement of Proposition[5.2] computability refers to the conditions that (i) pullbacks
are computable, (ii) for every pair of DPOI rules L; < K; — R and L, < K> — R; the set of quotients
of L; + L, is finite and computable, and (iii) for all G < J one can compute every H <[ such that
(G « 1)~ (H «1I). In particular, (i)-(ii) ensure that the set of critical pairs is finite and computable, and
(ii1) ensures that any rewriting step is also computable— see [3] for the full technical details. Caveats
on computability are intended to single out those structures where it is reasonable to apply the DPOI
mechanism, as opposed to e.g. systems with infinitely many critical pairs.

Remark 5.4. The one of Definition[5.1]is sometimes called a “pre-critical” pair, as no condition ensures
that L; and L, actually overlap in S. This distinction can be formulated abstractly for DPO in adhesive
categories when rules are (left- or right-) linear, see [[12] for an overview. However, Proposition [5.2]
works with arbitrary (non-linear) rules, c¢f. [3l], whence the more general definition. Non-overlapping
pairs can be singled out in our category of interest, FTerm; ., and discarded for confluence testing as
they are always joinable— also, their set is finite, because any DPOI systems is computable in FTermy_.

Theorem 5.5. DPOI rewriting in FTermy . has the Knuth-Bendix property.

Proof. Given that DPOI rewriting in FTermy is defined in terms of DPOI rewriting in Hyp ., it suffices
to check the statement in Hyp;.. We use Proposition @ assumptions (1)-(4) hold in any presheaf
category and are closed under slice. Therefore, as Hyp, . is defined as the slice of a presheaf category
(cf. proof of Proposition [3.§), it satisfies (1)-(4). It remains to check that any DPOI rewriting system in
Hyp, . is computable: the relevant observations are that in Hyp, . (i) pushouts and pushout complements
are effectively computable and (ii) for any two rules there are only finitely many hypergraphs that may
witness a critical pair as defined in Definition O

We would now wish to transfer Theorem5.5]to syntactic rewriting in Py ; + Frob,. This requires some
extra care. In order to determine if a rewriting system R on Py + Frob, is confluent, by Theorem [5.5]
and {.1] it is enough that all the critical pairs in the DPOI system ("R™)) are joinable. However, for
full decidability we also need to make sure that the converse holds: if one critical pair in ("R™)) is not
joinable, then R should not be confluent. To ensure this, we need to verify that all the critical pairs of
("R™M) lay in the image of ("- ™). This amounts to check that they all have discrete interfaces.

Lemma 5.6. Consider a critical pair in Hyp, . as in (I8). If both K| and K are discrete hypergraphs,
so is the interface J.

Proof. Fori=1,2,since K; is discrete, the hyperedges of C; are exactly those of G; that are not in f;(L;).
Since [f1, f2]: L1+ L, — S is epi, all the hyperedges of G are either in fi(L;) or f2(L). Therefore, J
cannot contain any hyperedge. O

By definition of (-)), for every rule L < K— R in (("R™), K is discrete. Therefore we can finally
transfer the decidability result to the context of Py + Frob,.

Corollary 5.7. Syntactic rewriting in Py .+ Frob. has the Knuth-Bendix property.

Proof. Since DPOI rewriting in FTermy, has the Knuth-Bendix property (Theorem and the two
forms of rewriting coincide (Theorem[4.1)), as discussed above it suffices to check that for a given critical
pair in FTermy ., say witnessed by (S «J), there exists a in Ps + Frob,, such that ((a)) =0— § «J. As
{(-) is full on FTerm,_, it suffices that J is discrete, which is true by Lemma[5.6] O
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6 Conclusions

We described a sound and complete interpretation of string diagram rewriting in hypergraph categories
as double-pushout rewriting of hypergraphs, and showed that it enjoys decidability of confluence for
terminating rewriting systems. A chief advantage of this approach is that the challenge posed by per-
forming matching modulo Frobenius equations disappears in the combinatorial model. This becomes
important when studying axiomatisations with multiple Frobenius monoids: these can now be all seen
as structural equations and baked into the combinatorial model, thus confining questions of confluence
and termination to the non-Frobenius axioms. This application of our theory, which we plan to explore
in future work, was the main reason to generalise the framework of [2| 3], which is only able to ab-
sorb a single Frobenius structure. Another promising direction is the algebraic study of bipartite graphs
(Example [3.5)), which may be relevant for analysing diagrammatic languages, like biological metabolic
networks [33]], based on these structures.

Acknowledgements Thanks to Filippo Bonchi, Brendan Fong, Fabio Gadducci, Aleks Kissinger, the
GAM participants and referees for useful comments and discussion on the topics of this paper.
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