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The use of graphics processors (GPUs) is a promising approach to speed up model checking to
such an extent that it becomes feasible to instantly verify software systems during development.
GPUEXPLORE is an explicit-state model checker that runs all its computations on the GPU. Over
the years it has been extended with various techniques, and the possibilities to further improve its
performance have been continuously investigated. In this paper, we discuss how the hash table of
the tool works, which is at the heart of its functionality. We propose an alteration of the hash table
that in isolated experiments seems promising, and analyse its effect when integrated in the tool.
Furthermore, we investigate the current scalability of GPUEXPLORE, by experimenting both with
input models of varying sizes and running the tool on one of the latest GPUs of NVIDIA.

1 Introduction

Model checking [2] is a technique to systematically determine whether a concurrent system adheres to
desirable functional properties. There are numerous examples in which it has been successfully applied,
however, the fact that it is computationally very demanding means that it is not yet a commonly used pro-
cedure in software engineering. Accelerating these computations with graphics processing units (GPUs)
is one promising way to model check a system design in mere seconds or minutes as opposed to many
hours.

GPUEXPLORE [28}[29,|33]] is a model checker that performs all its computations on a GPU. Initially,
it consisted of a state space exploration engine [28]], which was extended to perform on-the-fly deadlock
and safety checking [29]. Checking liveness properties has also been investigated [27], with positive
results, but liveness checking has yet to be integrated in the official release of the tool. Finally, in order
to reduce the memory requirements of GPUEXPLORE, partial order reduction has been successfully
integrated [20].

Since the first results achieved with GPUEXPLORE [28]], considerable progress has been made. For
instance, the original version running on an NVIDIA K20 was able to explore the state space of the
peterson? model in approximately 72 minutes. With many improvements to GPUEXPLORE’s algo-
rithms, reported in [33]], the GPU hardware and the CUDA compiler, this has been reduced to 16 seconds.
With these levels of speed-up, it has become much more feasible to interactively check and debug large
models. Furthermore, GPU developments continue and many options can still be investigated.

Performance is very important for a tool such as GPUEXPLORE. However, so far, the scalability of
the tool has not yet been thoroughly investigated. For instance, currently, we have access to a NVIDIA
Titan X GPU, which is equipped with 12 GB global memory, but for all the models we have been using

*We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GeForce Titan X used for this
research.

Timo Kehrer and Alice Miller (Eds.):
‘Workshop on Graphs as Models 2017 (GAM *17) © N.W. Cassee, T.S. Neele & A.J. Wijs
EPTCS 263, 2017, pp. 38-{52} doi{10.4204/EPTCS.263.4


http://dx.doi.org/10.4204/EPTCS.263.4

N.W. Cassee, T.S. Neele & A.J. Wijs 39

so far, 5 GB of global memory suffices as the models used for the run-time analysis of GPUEXPLORE
do not require more than SGB for a state space exploration. In the current paper, we report on results we
have obtained when scaling up models to utilise up to 12 GB.

In addition, we also experimentally compared running GPUEXPLORE on a Titan X GPU with the
Maxwell architecture, which was released on 2015, with GPUEXPLORE running on a Titan X GPU with
the Pascal architecture, which was released a year later. This provides insights regarding the effect recent
hardware developments have on the tool.

Finally, we analyse the scalability of a critical part of the tool, namely its hash table. This structure
is used during model checking to keep track of the progress made through the system state space. Even
a small improvement of the hash table design may result in a drastic improvement in the performance of
GPUEXPLORE. Recently, we identified, by conducting isolated experiments, that there is still potential
for further improvement [9]]. In the current paper, we particularly investigate whether changing the size
of the so-called buckets, i.e., data structures that act as containers in which states are stored, can have a
positive effect on the running time.

The structure of the paper is as follows. In Section[2] we discuss related work. Next, an overview of
the inner working of GPUEXPLORE is presented in Section[3] The hash table and its proposed alterations
are discussed in Section 4] After that, we present the results we obtained through experimentation in
Section[5] Finally, conclusions and pointers to future work are given in Section [6]

2 Related work

In the literature, several different designs for parallel hash tables can be found. First of all, there is the
hash table for GPUs proposed by Alcantara et al. [1l], which is based on Cuckoo hashing. Secondly,
Laarman et al. [24] designed a hash table for multi-core shared memory systems. Their implementation
was later used as a basis for the hash table underlying the LTSMIN model checker. Other lock-free hash
tables for the GPU are those proposed by Moazeni & Sarrafzadeh [19], by Bordawekar [6] and by Misra
& Chaudhuri [18]. Cuckoo hashing as implemented by Alcantara ef al. is publicly available as part of the
CUDPP library Unfortunately, to the best of our knowledge, there are no implementations available of
the other hash table designs.

Besides GPUEXPLORE [33]], there are several other GPU model checking tools. Bartocci et al. [5]]
developed an extension for the SPIN model checker that performs state-space exploration on the GPU.
They achieved significant speed-ups for large models.

A GPU extension to the parallel model checking tool DIVINE, called DIVINE-CUDA, was devel-
oped by Barnat et al. [4]. To speed-up the model checking process, they offload the cycle detection
procedure to the GPU. Their tool can even benefit from the use of multiple GPUs. DIVINE-CUDA
achieves a significant speed-up when model checking properties that are valid.

Edelkamp and Sulewski address the issues arising from the limited amount of global memory avail-
able on a GPU. In [12], they implement a hybrid approach in a tool called CUDMOC, using the GPU
for next state computation, while keeping the hash table in the main memory, to be accessed by multiple
threads running on the Central Processing Unit (CPU). In [13], they keep part of the state space in the
global memory and store the rest on disk. The record on disk can be queried through a process they
call delayed duplicate detection. Even though disk access causes overhead, they manage to achieve a
speed-up over single-threaded tools.

Thttp://cudpp.github.io/
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par using
producer consumers send * rec * _ -> trans,
rec send * _ * rec -> trans
() (L on "
"producer.aut"
T
gen_work send Il
rec " "
consumer.aut
() ]
T "consumer.aut"
end par

Figure 1: Example of LTS network with one producer and two consumers. On the right, the communica-
tion between the LTSs is specified using the EXP syntax [14]. Here, producer. aut and consumer. aut
are files containing the specification of the producer and the consumer respectively.

Edelkamp et al. [[7, 18] also applied GPU programming to probabilistic model checking. They solve
systems of linear equations on the GPU in order to accelerate the value iteration procedure. GPUs are
well suited for this purpose, and can enable a speed-up of 18 times over a traditional CPU implementa-
tion.

Wu et al. [35] have developed a tool called GPURC that performs the full state-space exploration
process on the GPU, similar to GPUEXPLORE. Their implementation applies dynamic parallelism, a
relatively new feature in CUDA that allows launching of new kernels from within a running kernel. Their
tool shows a good speed-up compared to traditional single-threaded tools, although the added benefit of
dynamic parallelism is minimal.

Finally, GPUs are also successfully applied to accelerate other computations related to model check-
ing. For instance, Wu et al. [34] use the GPU to construct counter-examples, and state space decomposi-
tion and minimisation are investigated in [26,131,|32]]. For probabilistic model checking, Ceska et al. [10]
implemented GPU accelerated parameter synthesis for parameterized continous time Markov chains.

3 GPUs and GPUEXPLORE

GPUEXPLORE [28| 29} 33]] is an explicit-state model checker that practically runs entirely on a GPU
(only the general progress is checked on the host side, i.e. by a thread running on the CPU). It is written
in CUDA C, an extension of C offered by NVIDIA. CUDA (Compute Unified Device Architecture) pro-
vides an interface to write applications for NVIDIA’s GPUs. GPUEXPLORE takes a network of Labelled
Transition Systems (LTSs) [[17] as input, and can construct the synchronous product of those LTSs using
many threads in a Breadth-First-Search-based exploration, while optionally checking on-the-fly for the
presence of deadlocks and violations of safety properties. A (negation of a) safety property can be added
as an automaton to the network.

An LTS is a directed graph in which the nodes represent states and the edges are transitions between
the states. Each transition has an action label representing an event leading from one state to another.
An example network is shown in Figure [} where the initial states are indicated by detached incoming
arrows. One producer generates work and sends it to one of two consumers. This happens by means of
synchronisation of the ‘send’ and ‘rec’ actions. The other actions can be executed independently. How
the process LTSs should be combined using the relevant synchronisation rules is defined on the right in
Figure[I] using the syntax of the EXP.OPEN tool [17]]. The state space of this network consists of 8 states
and 24 transitions.

The general approach of GPUEXPLORE to perform state space exploration is discussed in this sec-
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Figure 2: Schematic overview of the GPU hardware architecture and GPUEXPLORE

tion, leaving out many of the details that are not relevant for understanding the current work. The
interested reader is referred to 28, 29, 133]].

In a CUDA program, the host launches CUDA functions called kernels, that are to be executed many
times in parallel by a specified number of GPU threads. Usually, all threads run the same kernel using
different parts of the input data, although some GPUs allow multiple different kernels to be executed
simultaneously (GPUEXPLORE does not use this feature). Each thread is executed by a streaming pro-
cessor (SP). Threads are grouped in blocks of a predefined size. Each block is assigned to a streaming
multiprocessor (SM). An SM consists of a fixed number of SPs (see Figure @)

Each thread has a number of on-chip registers that allow fast access. The threads in a block together
share memory to exchange data, which is located in the (on-chip) shared memory of an SM. Finally, the
blocks can share data using the global memory of the GPU, which is relatively large, but slow, since it
is off-chip. The global memory is used to exchange data between the host and the kernel. The GTX
TITAN X, which we used for our experiments, has 12 GB global memory and 24 SMs, each having 128
SPs (3,072 SPs in total).

Writing well-performing GPU applications is challenging, due to the execution model of GPUs,
which is Single Instruction Multiple Threads. Threads are partitioned in groups of 32 called warps. The
threads in a warp run in lock-step, sharing a program counter, so they always execute the same program
instruction. Hence, thread divergence, i.e. the phenomenon of threads being forced to execute different
instructions (e.g., due to if-then-else constructions) or to access physically distant parts of the global
memory, negatively affects performance.

Model checking tends to introduce divergences frequently, as it requires combining the behaviour
of the processes in the network, and accessing and storing state vectors of the system state space in
the global memory. In GPUEXPLORE, this is mitigated by combining relevant network information as
much as possible in 32-bit integers, and storing these as textures, that only allow read access and use a
dedicated cache to speed up random accesses.

Furthermore, in the global memory, a hash table is used to store state vectors (Figure[2). The currently
used hash table has been designed to optimise accesses of entire warps: the space is partitioned into
buckets consisting of 32 integers, precisely enough for one warp to fetch a bucket with one combined
memory access. State vectors are hashed to buckets, and placed within a bucket in an available slot. If
the bucket is full, another hash function is used to find a new bucket. Each block accesses the global hash
table to collect vectors that still require exploration.

To each state vector with n process states, a group of n threads is assigned to construct its successors
using fine-grained parallelism. Since access to the global memory is slow, each block uses a dedicated
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state cache (Figure[2). It serves to store and collect newly produced state vectors, that are subsequently
moved to the global hash table in batches. With the cache, block-local duplicates can be detected.

4 The GPUEXPLORE Hash Table

States discovered during the search exploration phase of GPUEXPLORE are inserted into a global mem-
ory hash table. This hash table is used to keep track of the open and closed sets maintained during the
breadth first search based exploration of the state space.

Since many accesses (reads and writes) to the hash table are performed during state-space explo-
ration, its performance is critical for our model checker. In order to allow for efficient parallel access,
the hash table should be lock-free. To prevent corruption of state vectors, insertion should be an atomic
operation, even when a state vector spans multiple 32 bit integers.

Given these requirements, we have considered several lock-free hash table implementations. One of
them, proposed by Alcantara et al. [[1], uses so-called Cuckoo hashing.

With Cuckoo hashing a key is hashed to a bucket in the hash table, and in case of a collision the key
that is already in the bucket is evicted and rehashed using another hash function to a different bucket.
Re-insertions continue until the last evicted key is hashed to an empty bucket, until all hash functions are
exhausted or until the chain of re-insertions becomes too long [22]].

The other hash table we considered is the one originally designed for GPUEXPLORE [33]]; we refer to
its hashing mechanism as GPUEXPLORE hashing. We experimentally compared these two hash tables,
and from these comparisons we concluded that while Cuckoo hashing on average performs better, it does
not meet all the demands needed by GPUEXPLORE. However, based on the performance evaluation a
possible performance increase has been identified for GPUEXPLORE hashing [9]. This section discusses
the proposed modification, and its implementation.

4.1 GPUEXPLORE Hashing
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Figure 3: Division of threads in a warp over a bucket of size 32 in GPUEXPLORE 2.0

The GPUEXPLORE hash table consists of two parts: the storage used to store the discovered vectors and
the set of hash constants used by the hash function to determine the position of a vector in the hash table.
The memory used to store vectors is divided into buckets with a size of 32 integers. Each bucket is addi-

vector_length
vectors. The reason for writing vectors to buckets with half-warps (a group of 16 threads) is that in

many cases, atomic writes of half-warps are scheduled in an uninterrupted sequence [33]]. This results in
vectors consisting of multiple integers to be written without other write operations corrupting them. It
should be noted that the GPUEXPLORE hash table uses closed hashing, i.e., the vectors themselves are
stored in the hash table, as opposed to pointers to those vectors.

tionally split into two equally sized half buckets. Therefore a single bucket can store 2 * {176J
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When inserting, a warp of 32 threads inserts a single vector into a bucket. The way threads are divided
over a bucket can be observed in Figure [3] this figure visualizes a single bucket of the GPUEXPLORE
hash table for a vector length of 3. Each thread in a warp is assigned to one integer of the bucket, and to
one integer of the vector. This assignment is done from left to right per half bucket. For this example the
first 3 threads, i.e., the first vector group, is assigned to the first slot in the bucket, and the first thread in
a vector group is assigned to the first integer of the vector. By assigning every thread to a single part of
the vector and of the bucket each thread has a relatively simple task, which can be executed in parallel.

The insertion algorithm first hashes the vector to insert to determine the bucket belonging to the
vector. Each thread checks its place in the bucket and compares the integer on that position to the
corresponding integer of the vector. After comparing, the insertion algorithm then uses CUDA warp
instructions to quickly exchange data between all 32 threads in the warp to determine whether a sin-
gle vector group of threads has found the vector. If the vector has been found the insertion algorithm
terminates, if the vector has not been found the algorithm continues.

Half bucket border
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Figure 4: Example of inserting the vector (8,2, 1) into the GPUEXPLORE 2.0 hash table.

Figure 4] shows an example of the vector (8,2,1) being inserted into the GPUEXPLORE hash table
where the first two slots are already occupied. Because the first two slots are already occupied the first
six threads compare their element of the vector to their element of the bucket. The icons above the arrows
indicate the result of these comparisons. As can be seen there is one thread that has a match, however,
because not all elements in the slot match the insertion algorithm does not report a find.

If the vector is not found in the bucket, the insertion algorithm selects the first free slot in the bucket,
in this case the third slot. This selection procedure can be done efficiently using CUDA warp instructions.
Next, the associated threads attempt to insert the vector (8,2,1) into the selected slot using a compare
and swap operation. If the insertion fails because another warp had claimed that slot already for another
vector, the algorithm takes the next free slot in the bucket.

If a bucket has no more free slots the next set of hash constants is used, and the next bucket is
probed. This is repeated until all hash constants have been used, and if no insertion succeeds into any of
the buckets, the insertion algorithm reports a failure and the exploration stops.

In GPUEXPLORE 2.0 the hash table is initialized using eight hash functions. After each exploration
step, blocks that have found new vectors use the insertion algorithm to insert any new vectors they found
into the global hash table. The hash table is therefore a vital part of GPUEXPLORE.

Buckets with a length of 32 integers have been chosen because of the fact that warps in CUDA
consist of 32 threads. This way, every integer in a bucket can be assigned to a single thread. Besides, this
design choice also allows for coalesced memory access: when a warp accesses a continuous block of 32
integers, this operation can be executed in a single memory fetch operation [21]. Uncoalesced accesses,
on the other hand, have to be done individually after each other. By coalescing the accesses, the available
bandwidth to global memory is used efficiently.
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4.2 Configurable Bucket Size

While the current implementation of the hash table makes it possible for GPUEXPLORE to achieve a
considerable increase in performance over CPU-based explicit-state model checkers [33]], it suffers from
one disadvantage. Namely, after initially scanning the bucket, only x threads, where x is the vector
length, are active at a time. The other 32 — x threads are inactive while they await the result of the atomic
insertion of the active group. If the insertion fails but there is still a free slot in the hash table, another
group of x threads becomes active to attempt an atomic insertion, while the remaining 32 — x threads
again await the result of this operation.

Thread . Bucket border ‘ Bucket border . Bucket border

i}li|ll|li|l \lli\llill\ill\il Ii\lli\lli\lli\l\ Ii\ill\ill\lli\ll

" Vector group

Figure 5: Division of threads in a warp over buckets of size 8

Therefore, for buckets with a lot of free slots where insertions fail the majority of threads in the
warp are inactive. Furthermore, the vector size generally does not exceed four integers, which means
that when attempting to atomically insert a vector, the majority of threads in a warp is inactive. Ergo,
one possible improvement over the GPUEXPLORE hash table is to reduce the bucket size, so that there
are fewer slots per bucket, and therefore, fewer threads are needed to insert a single vector. As a single
insertion still uses one thread per integer in the bucket, in turn more vectors can be inserted in parallel.

Figure [5| shows what the division of threads over a warp looks like if buckets of size 8 instead of 32
are used. As can be observed, a warp can insert four elements in parallel, as in this diagram each group
of 8 threads inserts a different vector and accesses different buckets in global memory.

The logical consequence of this improvement is that after scanning a bucket, fewer threads are in-
active while the vector is being inserted into a free slot. If we suppose that the vector size for a certain
model is 3, and that the new bucket size is 8, then while inserting a vector using the GPUEXPLORE hash
table 32 — 3 = 29 threads are inactive. On the other hand, if four buckets of size 8 are simultaneously
accessed, only 32 — 3 -4 = 20 threads are inactive, and four vectors are simultaneously processed, as
opposed to only one.

However, while more threads can be active at the same time, smaller buckets also lead to thread
divergence within a warp. First of all, of course, accessing different buckets simultaneously likely leads
to uncoalesced memory accesses. Furthermore, it is also possible that in an insertion procedure, one
group needs to do more work than another in the same warp. For instance, consider that the first group in
the warp fails to find its vector in the designated bucket, and also cannot write it to the bucket since the
latter is full. In that case, the group needs to fetch another bucket. At the same time, another group in the
warp may find its vector in the designated bucket, and therefore be able to stop the insertion procedure.
In such a situation, these two groups will diverge, and the second group will have to wait until the first
group has finished inserting. This means that the use of smaller buckets can only be advantageous if the
performance increase of the smaller buckets outweighs the performance penalty of divergence. In this
paper, we address whether this is true or not in practical explorations.

The suggested performance increase has been experimentally validated by comparing an implemen-
tation of the hash table with varying bucket size to the original GPUEXPLORE 2.0 hash table, both in
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Figure 6: Results of inserting a sequence of 100,000,000 randomly generated integers into the hash tables
of GPUEXPLORE (GH) and GPUEXPLORE with configurable buckets (GH-CBS). For the bucketed
version a bucket size of four integers has been used.

isolation and as a part of GPUEXPLORE. The results of this comparison are presented and discussed in
section

S Experiments

In this section we discuss our experiments to evaluate the scalability of GPUEXPLORE. In Section
we report on experiments to evaluate the effect of the bucket size on the runtimes of GPUEXPLORE. In
the next two sections, our goal is to determine whether GPUEXPLORE scales well when varying the size
of the model and the performance of the hardware, respectively. For most of the experiments, we use an
NVIDIA Titan X (Maxwell) installed on a machine running LINUX MINT 17.2. The number of blocks
is set to 6,144, with 512 threads per block. The hash table is allocated 5GB in global memory.

For our benchmarks, we selected a varied set of models from the CADP toolset [[14], the mCRL2

toolset [11]] and the BEEM database [23]. The models with a .1 suffix have been modified to obtain a
larger state space.

5.1 Varying the Bucket Size

To test different bucket sizes two types of experiments have been performed. First, the hash table with
varying bucket sizes has been tested in isolation, where the time taken to insert 100,000,000 elements
has been measured. Second, GPUEXPLORE has been modified such that it uses a hash table with mod-
ifiable bucket size. This bucket size can be set at compile time. The performance of this version of
GPUEXPLORE has been compared to the original GPUEXPLORE w.r.t. the exploration of several input
models.

The input data for the performance evaluation of the hash tables in isolation is a set of sequences of
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randomly generated integers, each sequence consisting of 100,000,000 vectors with a length of 1 integer.
The sequences vary in how often an element occurs in the sequence. A duplication of 1 means that every
unique element occurs once in the sequence, and a duplication of 100 means that each unique element
in the sequence occurs 100 times. Therefore a sequence with a duplication of 100 has % unique
elements. Note that this experiment tries to replicate state space exploration, where many duplicate
insertions are performed when the fan-in is high, i.e., many transitions in the state space lead to the same
state. So this experiment replicates the performance of the hash table for models that vary in the average
fan-in of the states. For each sequence, we measured the total time required to insert all elements.

The results of this comparison are depicted in Figure [6] We refer to the standard GPUEXPLORE
2.0 hash table as GH and the hash table with configurable bucket size as GH-CBS. In the experiment,
GH-CBS with a bucket size of four integers has been compared to GH. GH-CBS is slower for sequences
where each element only occurs a few times. However, for sequences with a higher duplication degree
GH-CBS starts to outperform GH. After all, for the sequences with more duplication, less time is spent
on atomically inserting elements, since most elements are already in the hash table. GH-CBS performs
up to three times better than GH. We will see later why the amount of duplication is relevant for model
checking.

In addition to testing the performance of the hash tables in isolation, the performance of GH-CBS
has been compared with standard GPUEXPLORE hashing as a part of GPUEXPLORE 2.0. The hash
table underlying GPUEXPLORE, as implemented by Wijs, Neele and Bosnacki [33]], has been modified
to allow configuration of the bucket size at compile time. We compared the time required for state
space exploration of our implementation, GPUEXPLORE with configurable bucket size, with the original
implementation of GPUEXPLORE 2.0 [33]].

Four bucket sizes have been compared to GPUEXPLORE 2.0, namely bucket sizes 4, 8, 16 and 32
integers. The relative performance with these bucket sizes has been recorded with the performance of
GPUEXPLORE 2.0 as baseline. For each model the experiment has been run five times and the average
running time of these five runs has been taken.

The result of these comparisons is illustrated in Figure [/l As can be observed the total exploration
time of GPUEXPLORE with configurable bucket size is for most models larger than the runtime of GPU-
EXPLORE 2.0. Only szymanski5 and lann7 show a small performance increase for bucket size 4. For the
other instances, however, the new hash table causes a slow down of up to 30%.

There are three reasons why the promising performance shown in the previous experiments is not
reflected here. First, the increased complexity of the hash table negatively affects register pressure, i.e.,
the number of registers each thread requires to execute the kernel. When the register usage in a kernel
increases, the compiler may temporarily place register contents in global memory. This effect is not
observed when the hash table is tested in isolation, as in that case, far fewer registers per thread are
required. The increase in register pressure is also the reason that GPUEXPLORE with a configurable
bucket size set to 32 is slower than GPUEXPLORE with a static bucket size of 32.

Furthermore, smaller bucket sizes result in more thread divergence and more uncoalesced memory
accesses when reading from the hash table. Therefore, the available memory bandwidth is used less
efficiently, leading to a drop in performance. Apparently, the increased potential for parallel insertions
of vectors cannot overcome this drawback.

Lastly, while exploring the state-space, GPUEXPLORE only discovers duplicates if those states have
several incoming transitions. On average, the models used for the experiments have a fan-in of 4 to
6, with some exceptions that have a higher fan-in of around 8 to 11. However, from Figure [0] it can
be concluded that the hash table in isolation only starts to outperform the static hash table when each
element is duplicated 21 times. This partly explains the performance seen in Figure
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Figure 7: Relative runtime of GPUEXPLORE 2.0 with variable bucket size. The runtime GPUEXPLORE
2.0 with a fixed bucket size of 32 integers is used as a reference and is normalized to 1.

5.2 Varying the Model Size

In addition to experimentally comparing the effect of different bucket sizes, we also investigated how
GPUEXPLORE 2.0 behaves when exploring state spaces of different size. We performed this experiment
with two different models. The first is a version of the Gas Station model [15] where the number of
pumps is fixed to two. We varied the number of customers between two and twelve. None of these
instances requires a state vector longer than two 32-bit integers.

The other model is a simple implementation of a ring-structured network, where one token is con-
tinuously passed forward between the nodes. Each node has two transitions to communicate with its
neighbours and a further three internal transitions. Here, we varied the number of nodes in the network.

We executed the tool five times on each instance and computed the average runtime. The results are
listed in Table |1} For the smallest instances, the performance of GPUEXPLORE (measured in states/sec)
is a lot worse compared to the larger instances. This has two main reasons. First of all, the relative
overhead suffered from initialization and work scanning is higher. Second, the parallelism offered by
the GPU cannot be fully exploited, because the size of one search layer is too small to occupy all blocks
with work.

For the gas station model, peak performance is achieved for the instance with ten customers, which
has 60 million states. For larger instances, the performance decreases slightly due to the increasing
occupancy of the hash table. This leads to more hash collisions, therefore more time is lost on rehashing.

The results of the token ring model show another interesting scalability aspect. There is a perfor-
mance drop between the instances with 10 nodes and 11 nodes. This is caused by the fact that the
instance with 11 nodes is the smallest for which the state vector exceeds 32 bits in length. Longer state
vectors lead to more memory accesses throughout the state-space generation algorithm.
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Table 1: Performance of GPUEXPLORE for the Gas Station and the Token Ring model while varying the
amount of processes.

Token Ring
- states  time (s)  states/sec
Gas Station
X 12 0.027 449
states time (s)  states/sec 54 0.047 1.138
165 0.016 10,294 216 0.067 3,212
1,197 0.023 51,004 810 0.086 9,402

2916  0.113 25,702
38313 0.062 621,989 10,206  0.180 56,571

186,381 0209 892,039 34992 0275 127,142

849285  0.718 1,183,246 118,098 0488 242225

3,680,721  1.235 2,981,535 10 393,660  1.087 362,294
9 15,333,057  3.093 4,957,437 11 1,299,078 6394 203,159
10 61,863,669 11.229 5,509,307 12 4251528 8345 509,462
11 243,104,733 44.534 5,458,810 13 13,817,466  8.138 1,697,864
12 934,450,425 178.817 5,225,726 14 44,641,044  22.060 2,023,649
15 143,489,070  68.233 2,102,934
16 459,165,024 215.889 2,126,853

O 00NN kW2

N
2
3
4 7,209 0.035 206,812
5
6
7
8

5.3 Speed-up Due to the Pascal Architecture

The Titan X we used for most of the benchmarks is based on the Maxwell architecture, and was launched
in 2015. Since then, NVIDIA has released several other high-end GPUs. Most aspects have been im-
proved: the architecture has been revised, there are more CUDA cores on the GPU and there is more
global memory available. To investigate how well GPUEXPLORE scales with faster hardware, we per-
formed several experiments with a Titan X with the Maxwell architecture (TXM) and with a Titan X
with the Pascal architecture (TXP). The latter was released in 2016, and the one we used is installed in
the DAS-5 cluster [3] on a node running CENTOS LINUX 7.2.

The TXM experiments were performed with 6,144 blocks, while for the TXP, GPUEXPLORE was
set to use 14,336 blocks. The improvements of the hardware allows for GPUEXPLORE to launch more
blocks. To evaluate the speed-ups compared to a single-core CPU approach, we also conducted exper-
iments with the GENERATOR tool of the latest version (2017-i) of the CADP toolbox [14]]. These have
been performed on nodes of the DAS-5 cluster, which are equipped with an INTEL HASWELL E5-2630-
v3 2.4 GHz CPU, 64 GB memory, and CENTOS LINUX 7.2.

The results are listed in Table[2] The reported runtimes are averages after having run the correspond-
ing tool ten times. For most of the larger models, we see a speed-up of about 2 times when running
GPUEXPLORE on a TXP compared to running it on a TXM. The average speed-up is 1.73. This indi-
cates that GPUEXPLORE scales well with a higher memory bandwidth and a larger amount of CUDA
cores.

Comparing GPUEXPLORE on a TXP with single-core CPU analysis, the average speed-up is 183.91,
and if we only take state spaces into account consisting of at least 10 million states, the average speed-
up is 280.81. Considering that with multi-core model checking, linear speed-ups can be achieved [16]],
this roughly amounts to using 180 and 280 CPU cores, respectively. This, in combination with the
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Table 2: Performance comparison of single-core GENERATOR of CADP (GEN) and GPUEXPLORE run-
ning on a Titan X with the Maxwell architecture (TXM) and with the Pascal architecture (TXP).

runtime (seconds) speed-ups

model states GEN TXM TXP GEN-TXP TXM-TXP
acs 4,764 4.17  0.05 0.06 71.91 0.89
odp 91,394 326 0.08 0.05 70.76 1.64
1394 198,692 2.81 0.20 0.15 18.95 1.36
acs.1 200,317 5.30 0.18 0.14 37.88 1.27
transit 3,763,192 3436  0.77 0.48 70.99 1.59
wafer_stepper.1 3,772,753 2295 101 0.51 45.17 2.00
odp.1 7,699,456 65.50 1.34 0.66 99.54 2.03
1394.1 10,138,812 82.71 142 0.83 99.66 1.71
asyn3 15,688,570  358.58  3.15 1.98 181.47 1.59
lamport8 62,669,317 1048.13  5.81 3.11 336.80 1.87
des 64,498,297 47743 12.34 6.65 71.84 1.86
szymanski5 79,518,740 1516.71  7.48 3.90 389.10 1.92
peterson? 142,471,098 3741.87 31.60 15.74 237.81 2.01
lann6 144,151,629 2751.15 10.57 5.39 510.80 1.96
lann7 160,025,986 3396.19 16.67 8.41 403.92 1.98
asyn3.1 190,208,728 4546.84 31.03 15.37 295.92 2.02

average 183.91 1.73

observation that frequently, speed-ups over 300 times and once even over 500 times are achieved, clearly
demonstrates the effectiveness of using GPUs for explicit-state model checking.

6 Conclusion and Future Work

In this paper, we have reported on a number of scalability experiments we conducted with the GPU
explicit-state model checker GPUEXPLORE. In earlier work, we identified potential to further improve
its hash table [9]. However, experiments in which we varied the bucket size in GPUEXPLORE provided
the insight that only for very specific input models, and only if the bucket size is set very small (4), some
speed-up becomes noticeable. In the context of the entire computation of GPUEXPLORE, the additional
register use per thread and the introduced uncoalesced memory accesses and thread divergence make it
not worthwile to make the bucket size configurable. This may be different for other applications, as our
experiments with the hash table in isolation point out that hashing can be made more efficient in this way.

Besides this, we have also conducted experiments with models of different sizes. We scaled up a Gas
Station model and a Token Ring model and obtained very encouraging results; for the second model,
GPUEXPLORE can generate up to 2.1 million states per second, and for the first model, at its peak,
GPUEXPLORE is able to generate about 5.5 million states per second, exploring a state space of 934.5
million states in under three minutes. We believe these are very impressive numbers that demonstrate the
potential of GPU model checking.

Finally, we reported on some experiments we conducted with new GPU hardware. The Titan X
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with the Pascal architecture from 2016 provides for our benchmark set of models an average speed-up
of 1.73 w.r.t. the Titan X with the Maxwell architecture from 2015. We also compared the runtimes of
GPUEXPLORE running on the Pascal Titan X with the CPU single-core GENERATOR tool of the CADP
toolbox, and measured an average speed-up of 183.91 for the entire benchmark set of models, and of
280.81 for the models yielding a state space of at least 10 million states. Often speed-ups over 300 times
have been observed, and in one case even over 500 times.

Future work For future work, we will consider various possible extensions to the tool. First of all,
the ability to write explored state spaces to disk will open up the possibility to postprocess and further
analyse the state spaces. This could be done directly, or after application of bisimulation reduction on
the GPU [26].

Second of all, we will work on making the tool more user friendly. Currently, providing an input
model is quite cumbersome, since GPUEXPLORE requires a user to express system behaviour in the low
level description formalism of networks of LTSs. Specifying systems would be much more convenient if
a higher-level modelling language would be supported. We will investigate which modelling languages
would be most suitable for integration in the current tool.

Finally, we will also consider the application of GPUEXPLORE to conduct computations similar to
model checking, such as performance analysis [30]. This requires to incorporate time into the input
models, for instance by including special actions to represent the passage of time [25]].
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