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Interval temporal logics provide a general framework fonp®ral reasoning about interval structures
over linearly ordered domains, where intervals are takethagrimitive ontological entities. In
this paper, we identify all fragments of Halpern and Sholsaimerval temporal logic HS with a
decidable satisfiability problem over the class of strorttiferete linear orders. We classify them in
terms of both their relative expressive power and their derity. We show that there are exactly
44 expressively different decidable fragments, whose dexity ranges from NP to EXPSPACE. In
addition, we identify some new undecidable fragments f@lremaining HS fragments were already
known to be undecidable over strongly discrete linear @déWe conclude the paper by an analysis
of the specific case of natural numbers, whose behaviortllighfers from that of the whole class
of strongly discrete linear orders. The number of decid&blgments oveN raises up to 47: three
undecidable fragments become decidable with a non-pviemicursive complexity.

1 Introduction

Interval temporal logics provide a general framework fanperal reasoning about interval structures
over linearly (or partially) ordered domains. They takediimtervals as the primitive ontological entities
and define truth of formulas relative to time intervals, estthan time points. Interval logic modalities
correspond to various relations between pairs of intervalth the exception of Venema’s CDT and
its fragments, that consider ternary relations [22]. Irtipalar, Halpern and Shoham’s modal logic of
time intervals HS[[15] features a set of modalities that reak@ossible to express all Allen’s interval
relations[1] (see Tablg 1).

Interval-based formalisms have been extensively used myraeeas of computer science, such as,
for instance, planning, natural language processing,t@nssatisfaction, and verification of hardware
and software systems. However, most of them impose sevatacsic and semantic restrictions that
considerably weaken their expressive power. Interval teaidogics relax these restrictions, allowing
one to cope with much more complex application domains aadats. Unfortunately, many of them,
including HS and the majority of its fragments, turn out tounglecidablel[4].

In this paper, we focus our attention on the class of strodggrete linear orders, that is, of those
linear structures characterized by the presence of finitelpy points in between any two points. This
class includes, for instanc®, Z, and all finite linear orders. We give a complete classificabf all
HS fragments (defined by restricting the set of modalitiesyiewing known results and solving open
problems; the results differ, as we will see, from those dlass of all finite linearly ordered sets [7].
The aim of such a classification is twofold: on the one handidsatify the subset of all expressively-
different decidable fragments, thus marking the decidghiorder; on the other hand, we determine
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Relation | Operator Formal definition Pictorial example
meets A) | kyRA Yoy =x/ | —
before L | kylRix,y] oy <x/ I S

started-by (B) x,ylRplx' .yl x=x"y' <y Xﬂ /

finished-by|  (E) | oylRel/ syl oy =y’ x < x’ =
contains (D) x,ylRpx,y'lex<x'y' <y |—|y /

overlaps (0) x,ylRolx ylex<x <y<y’ Y

Table 1: Allen’s interval relations and the correspondirfg tdodalities.

the exact complexity of each of them. As shown in FigureAABB (that features modal operators
for Allen’s relationsmeetsandstarted-by and their inverses) and its mirror imag@EE (that replaces
relationsstartsandstarted-byby relationsfinishesandfinished-by are the minimal fragments including
all decidable subsets of operators from the HS repositona total of 62 languages. Of those, 44 turn
out to be decidable. As a matter of fact, the status of varfoagments was already knowrfi) D,

D, O, andO have been shown to be undecidable[in[6, 18);BE, BE, BE, andBE are undecidable,
as they can define, respective(fp) (by the equationD)p = (B)(E)p), (O) ((O)p = (B)(E)p), (O)
((O)p = (E)(B)p), and(D) ((D)p = (B)(E)p); (iii) undecidability ofAAB (resp.,AAE) can be shown
using the same technique used in/[18] to prove the undediiyatfi AAB (resp., AAE); (iv) ABBL (resp.,
AEEL) is in EXPSPACEI[10], and the proof of EXPSPACE-hardnes#\BrandAB (resp.,AE andAE)
over finite linear orders [7] can be easily adapted to the ofstrongly discrete linear orderéy) AA
(a.k.a. Propositional Neighborhood Logic) is in NEXPTIME;[L3], and NEXPTIME-hardness already
holds forA andA [9]; (vi) BB is NP-complete[[14], and, obviously, NP-hardness alreaulgishfor B
andB (both include propositional logic)yii) the relative expressive power of the HS fragments we are
interested in is as shown in Figdre 1, whose soundness anple@mess follow from the results given
in [11] and in [7], respectively, as definability (resp., efidability) results transfer from more (resp.,
less) general to less (resp., more) general classes.

In this paper, we complete the picture by proving the follogvhew results(i) the undecidability
of AAB (resp.,AAE) and AAB (resp.,AAE) can be sharpened #B (resp.,AE) and AB (resp.,AE),
respectively (Section 3Jji) the NP-completeness (in particular, NP-membershi®tan be extended
to BBLL (Sectior[#). In addition, we analyze the behavior of theawsifragments over interesting sub-
classes of the class of all strongly discrete linearly ardesets, taking as an example that of models based
on N (Section 6). AsN-models are not left/right symmetric, reversing the timdesrand coherently
replacing modalities (e.g{A) by (A)) does not preserve, in general, the computational preseati a
fragment. We show thaii) AB becomes decidable (which is a direct consequence of [18igely,
non-primitive recursive [7]{ii) the same holds foAB and ABB, but, in these cases, the decidability
proof for AABB given in [18] must be suitably adapte(j) ABL, ABL, andABBL remain undecidable,
but the original reductions must be suitably adapted. Tthesnumber of decidable fragments oveér
raises up to 47, the three new decidable fragments beingpalorimitive recursive. In fact, we can
slightly generalize such a result, as the addition of finitedr orders (finite prefixes &f) to N does not
alter the picture; however, to keep presentation and pamfmple as possible, we restrict our attention
to N-models only. Symmetric results can be obtained in the chsegative integers.
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2 HSand its Fragments

LetD = (D, <) be astrongly discrete linearly ordered sehat is, a linearly ordered set where for every
pairx,y, with x < y, there exist at most finitely mamy, zo, ...,z such thak < z; <z <...<zn <y.
According to the strict approach, we exclude intervals witincident endpoints (point-intervals) from
the semantics: aimterval overD is an ordered paiix,yl, with x,y € D andx < y.

12 different ordering relations (plus equality) betweew pair of intervals are possible, often called
Allen’s relations[1]: the six relations depicted in Tallé 1 and their inverd#f® interpret interval struc-
tures as Kripke structures and Allen’s relations as ace#iggirelations, thus associating a modalify)
with each Allen’s relatiorRx. For each modalityX), its inverse(or transposg denoted by(X), cor-
responds to the inverse relati®, of Rx (that is,Ryx = (Rx)™1). Halpern and Shoham’s logic HS is a
multi-modal logic whose formulas are built on a &P of proposition letters, the boolean connectives
V and—, and one modality for each Allen’s relation. We associateagrientX;X,...X, of HS with
every subsefRx,,...,Rx, } of Allen’s relations, whose formulas are defined by the felfey grammar:

pu=pl-eleVelX)el...| (Xg)e.

The other boolean connectives can be viewed as abbresaaon the dual operatofX] are defined as
usual (Xlo = —~(X)—¢). Given a formulap, its length|g| is the number of its symbols.

The semantics of HS is given in termsiaferval modelsM = (I(D), V), wherel(D) is the set of
all intervals oveiD. Thevaluation functionV : AP — 2'(®) assigns to every € AP the set of intervals
V(p) over whichp holds. Thetruth of a formula over a given intervak,y] of an interval modeM is
defined by structural induction on formulas:

M, [x,y] IF p iff [x,y]l € V(p), forallp € AP;

M, [x,y] IF = iff it is not the case thaMl, [x,y] IF V;

M, [x,yl IF @ VU iff M, [x,yllF @ or M, [x,y] IF;

M, [x,y] IF (X) iff there exists an interval’,y’] such thatix,ylRx[x’,y’l andM, [x’,y'] IF,
whereRy is the relation corresponding tX).

An HS-formula¢ is valid, denoted byt ¢, if it is true over every interval of every interval model.

In this paper, we study expressiveness and computationgbleaity of HS fragments over the class
of strongly discrete linear orders. Given a fragmé&gt X; X, ...X, and a modality X), we write(X) € &
if X € {Xy,...,Xx}. Given two fragment§; andJF>, we writeF; C F, if (X) € F1 implies (X) € F,, for
every modality(X).

Definition 1. We say that atHS modality (X) is definablein an HS fragmentJ if there exists a for-
mulay(p) € F such that(X)p < P (p) is valid, for any fixed proposition lettgr. In such a case, the
equivalencgX)p = (p) is called aninter-definability equation fofX) in .

Definition 2. Let ¥; and ¥, be twoHS fragments. We say that (§, is at least as expressive &s
(F1 <X F) if every modality(X) € F1 is definable inFy; (i) F; is strictly less expressivéhan F,
(F1 < Fo) if F1 < Fp, but notF, < Fy; (i) F1 andF, are equally expressiveor expressively equivalent
(F1= ), it F1 X Fr andFr < Fy; (iv) F1 and F, are expressively incomparablég, # F,) if neither
F1 < Fy nor Fp < F.

We denote each HS fragmefitby the list of its modalities in alphabetical order, omigfithose
modalities which are definable in terms of the others. As damaf fact, in our setting, onlyL) and(L)
turn out to be definable in some fragments. Any fragn#noan be transformed into its mirror image by

reversing the time order and simultaneously replacingh(@acurrence of{A) by (A), (L) by (L), (B)
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Complexity class:
1: Undecidable

: EXPSPACE-complete

2
3: NEXPTIME-complete
4

. NP-complete

Figure 1: Hasse diagram of fragmentsAgkBB and AAEE over strongly discrete linear orders.

by (E), and(B) by (E). In the considered class of linear orders, the mirroringatien can be applied
to any fragment preserving all its computational propertiEhus, all results given in this paper, except
for the ones in Section 6, hold both for the considered fragmand their mirror images. When the
considered class of models is not left/right symmetrict asppens wittN (Section 6), this is no longer
true. The rest of the paper, with the exception of Sectios @givoted to prove the following theorem.

Theorem 1. The Hasse diagram in Figufé 1 correctly shows all the dedielitagments oHS over the
class of strongly discrete linear orders, their relativepmssive power, and the precise complexity class
of their satisfiability problem.

3 Relative Expressive Power and Undecidability

The most basic definability results in HS, e.g., BR®ABBEE, are known since [15]. In order to show
that a given modality is not definable in a specific HS fragmemt make use of the standard notion
of bisimulation and the invariance of modal formulas witpect to bisimulations (see, e.d. [2]). In
particular, we exploit the fact that, given a modal loficany F-bisimulation preserves the truth of all
formulas inF. Thus, in order to prove that a modaligX) is not definable i, it suffices to construct
a pair of interval model®1 andM’ and anF-bisimulation between them that relates a pair of intervals
[x,yl € M and[x’,y’] € M’ such thatM, [x,y] I (X)p andM, [x’,y T I (X)p.

In the following, in order to prove that Figuré 1 is sound andplete for the class of all strongly
discrete linear orders, we focus our attention on fragmefwsABB and of its mirror image\AEE, and
we show that the set of nodes of the graph in Figure 1 is thefsit expressively different fragments
of AABB andAAEE (including AABB andAAEE themselves). Nodes are partitioned with respect to the
complexity of their satisfiability problem: nodes corresgimg to undecidable fragments are identified
by a red rectangle and by the superscript 1, while nodessmoreling to EXPSPACE-complete (resp.,
NEXPTIME-complete, NP-complete) fragments are identifigch yellow rectangle and the superscript
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2 (resp., blue rectangle/superscript 3, green rectanglerscript 4). All HS fragments that do not appear
in the picture are undecidable. Graph edges represent [Hia/eeexpressive power of two fragments:
if two nodes, labeled by the fragmerits and F>, are connected by a path going frdfa to &>, then

F, < Fy; if two fragmentsF; and F» are not connected by a path, th€np=# F,. Thus, to show that
Figurell is sound and complete, we need to prove(ihaich fragmertf; connected to a fragmefib by

an arrow is strictly more expressive thag; (ii) pairs of fragments in Figuifd 1, which are not connected
by a path, are expressively incomparable; &y the complexity of the satisfiability problem for the
considered fragments is correctly depicted in Fidure 1. dRmms (i) and (ii) are direct consequences
of the following lemma, whose proof, given in][7], makes u$bisimulations based on finite linearly
ordered sets. As the class of all strongly discrete lineartiered sets includes that of finite linearly
ordered sets, all results immediately apply.

Lemma 1([7]). The only definability equations for th&S fragmentAABB, over the class of all strongly
discrete linear orders, aréL)p = (A)(A)p and (L)p = (A)(A)p.

Hence, we can restrict our attention to condit{on. The rest of the section is devoted to prove the
undecidability of all fragments marked as undecidable guke[1. All fragments which are not referred
to in the figure have already been proved undecidable ovenldise of strongly discrete linearly ordered
sets [6, 16]. All decidable fragments of HS over the classtafngly discrete linear orders are thus
depicted in Figuréll. Sectidd 4 ahd 5 will be devoted to thatifleation of the exact complexity of
these decidable fragments.

The undecidability result we give here resembles thoselidd}. Nevertheless, the required mod-
ifications are far from being trivial. Fron_[18, 20], we knoWwat there exists a reduction from the
structural termination problem for lossy counter automataich is known to be undecidable |17], to the
satisfiability problem foAAB andAAB. Here, we consider the nonemptiness problem for incremgnti
counter automata over infinite words, which is known to beaaidhble [12], and we show that it can be
reduced to the satisfiability problem for the fragmefB; AB, AE, andAE. For the sake of brevity, we
will work out all the details of the reduction fakE only. SinceAE andAB are completely symmetric
with respect to the class of strongly discrete linearly ocedesets, the reduction féE basically works
for AB as well. Moreover, adapting it tAE (and therefore, by symmetry, #B) is straightforward.
Incrementing counter automata can be viewed as a varianssy lcounter automata where faulty tran-
sitions increase the values of counters instead of dectimgethem. Hence, some of the basic concepts
of the reduction given in [18, 20] can be exploited. A compmdive survey on faulty machines and
on the relevant complexity, decidability, and undecidabitesults can be found in [3]. Formally, an
incrementing counter automatas a tupleA = (X,Q, qo, C, A, F), whereX is a finite alphabet() is a
finite set of controktates qo € Q is the initial stateC ={c3,...,cx} is the set otounters whose values
range ovelN, A is atransition relation andF C Q is the set of final states. Let us denote dyhe
empty wordlwe assume ¢ X). The relationA is a subset of) x (ZU{e}) x L x Q, whereL is the
instruction setl. = {inc,dec,ifz} x {1,... k}. A configurationof A is a pair(q,v), whereq € Q and
v is the vector of counter values. iin of an incrementing counter automaton is an infinite sequence
of configurations such that, for every pair of consecutivefigurations(q,v),(q’,v’) anincrementing

transition (q,v) l’—a>T (q’,v’) has been taken. We say tlgtv) l’—a>T (q’,v’) has been taken if there ex-
ist vy, v} such thab < vi, (q,Vv+) La, (q’,v}), andv] <V, where(q,V) L (g V) iff (q,a,1,q") €A
and ifl = (inc,1) (resp.,(dec, 1), (ifz,1)), thenv{ =v; +1 (resp.v] =v; —1,v{ =v; = 0) (the order-
ing v <V’ is defined component-wise in the obvious way). Notice thaeam incrementing transition
(q,v) l’—a>T (q’,v’) has been taken, counter values may have been increasederandestically before

or after the execution of the basic transititm v) La, (q’,v’) by an arbitrary natural number. We say
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Figure 2: Encoding of a configuration of an incrementing ¢euautomaton i\E.

that an infinite run ofd over anw-wordw € X is acceptingiff it traverses a state ih infinitely often.
The nonemptiness problem for increasing counter autorsatiaei problem of deciding whether there
exists at least onev-word accepted by it. In Section 6, we will show that when watriet our attention
to N-models, the situation becomes slightly different, as sytmyndoes not hold anymore.

Lemma 2. There exists a reduction from the nonemptiness problemméweinenting counter automata
over w-words to the satisfiability problem f&E over the class of strongly discrete linear orders.

Proof. Let A = (£,Q,qo,C,A,F) be an incrementing counter automaton. We writéA&formula ¢ 4
which is satisfiable over the class of strongly discretedirarders iff there is at least one-word over
Y accepted byd. Let us assume th&)| = u+1, || = v, [F| =n, and|C| = k, and there aré) pn+ 1
proposition lettersyo, q1,...,q,., one for each state iQ (qo being the initial state)(ii) v proposition
lettersay,...,a, one for each symbol ik; and(iii) k proposition letterss, ...,cy, one for each counter
in C. Moreover, to simplify the formula, we introduce a propwsitletter & (resp., %, $c) which holds
at some interval iff at least ong, (resp.,ai, c;) holds at that interval. Finally, a proposition letternf
is used to denote a configuration. Additional auxiliary mrsifion letters will be introduced later on.

To encode the components of a configuration, we use inteo¥ale form[x,x + 1] (unit intervals),
which are univocally identified by thAE formula [E] L. A configuration is modeled by a (non-unit)
interval [x, x + s], labeled withconf, consisting of a sequence of unit intervals labeled asvaidx, x +
1] is labeled with (a proposition letter for) a stateQn [x + 1,x+ 2] by a letter inX, and all the remaining
unit intervals, but the last one (for technical reasdns; s — 1,x + s] is labeled with a special proposition
letter $), are labeled with counters i@. Figure[2 depicts (part of) the encoding of a configuratiom W
constrain any configuration intervd, x + s] to contain one unit interval labeled with a state, one labele
with an alphabet letter, and, for<{i < k, as many unit intervals labeled with as the value of counter
ci Is in that configuration. Without loss of generality, we caswme all counter values to be initialized
to O (v = 0), and thus the initial configuration contains no counteppsition letters.

Let [U] be a shorthand for the formultl] @ = @ A [A]lp A [A][A]e (universalmodality). We first
constrain proposition letters that denote statesQ)n input symbols (inX), and counter values to be
correctly placed.

s v k
Ul($q < \/ qiA$a+ \/ aiAse + \/ ) placeholders are correctly set (1)
i=0 i=1 i=1
[UI([E]L <> $q\VSaV $cV $b) placeholders are unit intervals  (2)
_ / exactly one placeholder per unit
[u] /\ ($p — \/ ’) interval )

pe{q,a,c,b} p’e{q,a,c,b},p’#p
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W/ (gi = =) A A\ (@i = ~a5) A A\ (et = —¢;))  exactly one state, letter, counter (4)
i#j i#j i#j
Next, we encode the sequence of configurations as a (unigfirgjeé chain that starts at the ending point
of the interval wherep 4 is evaluated, and we constrain the counter values of thialisibnfiguration
to be equal to 0. To force such a chain to be unique and to preesmfigurations from containing or
overlapping other configurations, we introduce an addiiigmoposition letteconf’, which holds over
all and only those intervals which are suffixes afenf-interval.

the initial configuration has
) . (5)

two internal points only

a chain ofconfs; eachconf (6)

has room for state and letter

/
[U]((conf — [E]Jconf’) A (conf’ — —conf)) confs are ended byonf’s (7)
which are nofconf

conf neither overlap nor
[Ul(((A)conf” — —conf) A(conf’ — (A)conf A—(E)conf)) contain otherconfs; conf’s (8)

endconfs
Now, we force configurations to be properly structured: thmyst start with a unit interval labeled with
a state (the initial configuration wittp), followed by a unit interval labeled with an input letteggsibly
followed by a number of unit intervals labeled with couniéodiowed by a last unit interval labeled with
$b. As modalities/A) and(E) do not allow one, in general, to refer to the subintervalsgi¥an interval,
a little technical detour is necessary. We introduce thelianx proposition lettersonf,, conf,, and
confc, (one for each type of counter), and we label the suffix of a gomdition interval met by a unit
interval labeled with § (resp., $i, c;) with confq (resp.,confq, conf.,). In such a way, modalityE)
can be exploited to get an indirect access to the componéatsanfiguration. As an example, we use
it to force every configuration to include at most one staid @me input letter. Notice that proposition
letter $ plays an essential role here: it allows us to associate te;l@f each configuration with the
correspondingonfe,.

(A)(conf A (E)(E)T A[E][E][E] L)

[U](conf — (A)conf A (E)(E)T)

conf starts with state )
(the initial one withqo)
[UI(($q — (A)$a) A ($aV/$c — (A)(ScV/$b)) A ($b — (A)$q)) tcl;’rfe‘g Is properly struc- ;)
$q meets confq, $a (11)
meetsconf,

at most one state and

(A)goA[U]((A)conf < (A)$q)

[UI(($q — [A](conf’ — confq)) A($a — [Al(conf’ — confy)))

[U](—=(confq A(E)confy) A—(confq A(E)confy)) one letter peronf (12)
k
[U](/\ (ci = [Al(conf’ — conf,))) ci meetsconf,, (13)
i=1

To model decrements and increments, auxiliary proposi&tierscgec,Cnew,confgec, andconfy gy,
are introducedcg4ec, Which labels at most one unit interva) of a given configuration, constrains the
value of thei-th counter to be decremented by 1 by the next transitioryiged thatA contains such a
transition. Similarly, we constraioy, ¢, to label a (unique) unit interval; added by the last transition to
represent an increment by 1 of the value of tqik counter, provided that contains such a transition.

[U]( /\ (cy — ($c A [Al(conf’ — conﬁ)))) if ¢y, thenconfy (14)
le{new,dec}
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uw( A (ELLA(A)conf) =) if confy, thenc, (15)
le{new,dec}
[Ul(=(confgec A (E)confgec) A —(confrew A(E)confrew)) at most oneconfy per

16
conf (16)

To constrain the values that counters may assume in congeaanfigurations, we introduce three
auxiliary proposition lettergorr, corr’, andcorreons. TO model the faulty behavior ofl, that can
increment, but not decrement, the values of counters ntarrdmistically, we allow twacorr-intervals
to start, but not to end, at the same point.

new counters have not a counterpart in
previousconf

gs, as, anddec counters have not a coun-
terpart in nextconf

non dec counters have a counterpart in (19)

[AJ((A)cnew — —(E)corr) (17)

[Ul(($qV$aVcgee) — [Al—corr) (18)

($c A—cgec) — (A)corr)

Ul nextconf
[UI(([E]LA(A)corr) — $¢) corr are met by a counter (20)
[Ul((corr — [Elcorr” A (A)$c)A corrs are ended byorr’s and meet a 21)
A((A)conf — [A](corr’ — cOTTeons)))  COUNtET, SOMEOTT'S ArecorrconsS
[Ul(—(corTcons A(E)coTTeons )\ corr connects counters of consecutive
(22)
A (corr — (E)correont)) conf
[UI({(A)corrcons — (A)conf) COTTcont DEginsconf (23)
K
[uj( /\ (ci = [Al(corr — (A)ci))) eachcorr corresponds to some counter  (24)
i=1
[U]—(corr A (E)corr) no corr endscorr (25)

Finally, we constrain consecutive configurations to beteeldy some transitiofiq, a,1,q’) in A.

((A) (@A (A)a) A(A)(conf A(A)q A : o
(q,a’(in\cé)’q/)eA (A)(confA (E >(00ﬂfci/\confnew)))) instruction (inc,i)  (26)

((A)aA(A)Q) AA)(conf A (A)q A - - :
(q’a’(de\!ﬂ’q/)@ <E>(C0nfci/\00nfdec))) instruction(dec,i) (27)
\/ ((A) (@A (AYa) A(A)(confA(A)q’ A[E]-confe,)) instruction(ifz,i)  (28)

(q,a,(ifz,1),q")EA

[U]((A)conf — ((28)V 22 V [29))) an instruction (29)

We definep 4 as the conjunction of all above formulas paired with the o that the infinite com-
putation passes through a final state infinitely often.

oa=@N. . ANCDN@NAKANA) \/ qr

qfE€F

It is straightforward to prove thap 4 is satisfiable iffA accepts at least one-word. O
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4 NP-Completeness

In this section, we prove that NP-completenes8Bf[14] can be extended BBLL. Since the satisfi-
ability problem for propositional logic is NP-complete,eey proper fragment oBBLL including it is

at least NP-hard. Unlike the rest of the sections, the cothisfone is a membership proof, namely, a
proof of NP-membership: by a model-theoretic argumentydinss that satisfiability of 8BLL-formula

@ can be reduced to its satisfiability in a periodic model whheelengths of prefixes and periods have
a bound which is polynomial ifp|.

For the sake of simplicity, we consider the cas@8ILL interpreted oveN. The proof can be gen-
eralized to the whole class of strongly discrete linear rd®loreover, it can be shown that satisfiability
of a BBLL-formula ¢ overN can be reduced to satisfiability of the formulép) = (L)(L)¢ over the
interval [0, 1, that is, M, [x,y] IF ¢ for some[x,y] if and only M, [0,1] I t(¢). Thus, we can safely
restrict our attention to the problem of satisfiability oy@yl (initial satisfiability). As a preliminary
step, we introduce some useful notation and notions, imduthat of periodic model.

Definition 3. An interval modeM = (I(N), V) is ultimately periodic, with prefi¥re and periodPer,
if for every interval[x,y] € I(N) and proposition lettepp € AP, (i) if x > Pre, then[x,y] € V(p) iff
[x + Per,y+ Per] € V(p) and (ii) if y > Pre, then[x,y] € V(p) iff [x,y+ Per] € V(p).

Let us consider &BLL-formula @. We defineCl(¢) as the set of all subformulas qf and of
their negations. LeM be a model such tha¥1, [0, 1] I ¢. For every pointx of the model, leR (x)
(resp., Ry (x)) be the maximal subset @l(¢) consisting of all and only thosd.)-formulas (resp.,
(L)-formulas) and their negations that are satisfied overvaterending (resp., beginning) #. Let
R(x) = R (x) UR(x). R(x) must be consistent, that is, it cannot contain a formula tndegation.
Let R be the subset of1(¢) that contains all possiblé)- and (L)-formulas. It is immediate to see
that|R| < 2|¢|. In the following, we will also compare intervals with respéo satisfiability of(B)- and
(B)-formulas. Given a mode\1, we say that two intervalg,y] and[x’,y’] are B-equivalent (denoted
[x,yl =g [x',y’]) if for every (B) € Cl(p), M, [x,y] IF (B) iff M,[x’,y’] IF (B)y and for every
(B)W € Cl(@), M, [x,y] IF (B)W iff M,[x/,y’] IF (B)w. We denote byng the number of B)- and (B)-
formulas inCl(¢). To prove that the satisfiability problem fBBLL is in NP, we first prove that every
satisfiable formulap has an ultimately periodic model, and then we show how toiblyssontract such

a model to obtain a model whose prefix and period are polyridmig|.

Lemma 3. Let ¢ be aBBLL-formula andM = (I(N), V) be such thaiV,, [0, 1] I . Then, there exists
an ultimately periodic modé\1* = (I(N), V*) that satisfiesp.

Proof. Let M = (I(N),V) be such that, [0, I- ¢. If M is not ultimately periodic, we turn it into
an ultimately periodic model as follows. First, by transfsi of (L) and (L), there must exist a point
x > 1 such thatR(y) = R(x) for everyy > x. We takex as the prefixPre. Then, we take as the period
of the model a valu®er > mpg that satisfies the following conditiongi) for every pointx < Pre and
formula (L)1 € R(x), there exists an intervak.,,y,] such that\, [x,,,y,] IF 1P andx < xy, < yy, <
Pre + Per; (ii) for every intervallx,y] such thatx < Pre andy > Pre + Per and every formulaB)y
such thatM, [x,y] I (B)1, there exists an intervat, y.,] such thatx,yl =g [x,yy,], M, [x,yy,] IF b, and
Pre < yy, < Pre+Per. The existence of suchRer is guaranteed by transitivity ¢B) and(B). To force
the model to be periodic, the following additional conditiis necessary(iii) for every interval(x,y]

such thatPre < x < Pre+ Per andy > Pre+ 2Per and every formuldB)1 such thatV, [x,y] IF (B)1,

lit is easy to see that all intervals ending (resp., beginniighe same point satisfy the sarfie-formulas (resp.{L)-
formulas).
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there exists an intervak,yy,] such thatlx,y] =g [x,yy], M, [x,yy] IF P, andyy, < Pre+2Per. If
this is not the case, we can change the valuavioto force condition(iii) to be satisfied as follows.
Let [x,y] be an interval that does not satisfy conditi@ii) . We choose a finite set of “witness points”
{y1 <...<yx}such that (a) for every intervat,y’] and every formuldB)v, if M, [x,y’] IF (B)w, then
there exists a witness poirt< y; <y’ such thatM, [x,y;] I W, and (b) for every intervalx,y”] and
every formula(B)8, if M, [x,y”] I (B)®, then there exists a witness point such thatM, [x,y;] I+ P
and eithery; > y” or [x,y;] =g [x,y”]. By transitivity of (B) and (B), it follows that the number of
witness points is less than or equaltg; (the number of B)- and(B)-formulas inCl(¢)).

We concentrate our attention on those witness péints< ... <y } that are greater thatre + Per,
and we turrV into a new valuation/’ such that all intervals starting afulfills condition (iii) as follows:
(1) for everyp € AP and everyx <y’ < Pre+ Per, we put[x,y’] € V/(p) iff [x,y’] € V(p); (2) for
everyp € AP and everyj < i < k, we put[x,Pre+ Per+1i] € V/(p) iff [x,yi] € V(p); (3) for every
p € AP and everyPre+ Per+k <y’ <y, we putlx,y’l € V/(p) iff [x,yi] € V(p); (4) the valuation
of all other intervals remains unchanged. Once such a liegiitas been completed, no other interval
[x,y’] starting atx can falsify property(iii) . By repeating such a procedure a sufficient number of times,
we obtain a model forp that satisfies all the required properties (notice that gmigs (1) and (2) are
not affected by the rewriting).

The ultimately periodic modé{1* = (I(N), V*) can be built as follows. First, we define the valuation
functionV* for some intervals in the prefix and some intervals in the dicstirrence of the period1) for
everyp € AP and everylx,y] such thaty < Pre+ Per, [x,y] € V*(p) iff [x,y]l € V'(p); (2) for every
p € AP and evenyix,y] such thaPre < x < Pre+Per andy < x+ Per, [x,y] € V*(p) iff [x,yl € V/(p).
Then, we extend/* to cover the entire mode(2) for everyp € AP and everyix,y] such thatx < Pre
andy > Pre+Per, [x,yl € V*(p) iff [x,y—Per] € V*(p); (2) for everyp € AP and everyix,y] such that
Pre < x < Pre+Per andy > x+ Per, [x,yl € V*(p) iff [x,y—Per] € V*(p); (3) for everyp € AP and
every[x,y] such thatx > Pre+ Per, [x,y] € V*(p) iff [x—Per,y—Per] € V*(p). Itis straightforward
to prove thatM*, [0, 1] IF ¢, and thusM* is the ultimately periodic model we were looking for. [

By applying a point-elimination technique similar to theeamsed in[[7] to show NP-membership of
BBLL over finite linear orders, we can reduce the length of theypeefil the period of an ultimately
periodic model to a size polynomial jip|, as proved by the following lemma.

Lemma 4. Let ¢ be aBBLL-formula. Theny is initially satisfiable oven iff it is initially satisfiable
over an ultimately periodic modail = (I(N), V), with prefixPre and periodPer, such thaPre+ Per <
(mp +2)-mp +mg +4, wherem =2|R|.

Proof. By Lemma3, we can assume thais initially satisfied over an ultimately periodic model =
(I(N), V). If Pre+Per > (mp +2)-mp + m +4, then we proceed as follows.

Let us consider all points< x < Pre+2Per. For each) € Cl(¢) such thatL){ € R(x) for somex
in such a set, we selecklxh oy < Pre+ Per andyax < Pre-+ 2Per such thafx¥ qx, ythax] satisfies
1 and for eachcﬂn’1c1X < x < Pre+ Per nointerval starting at satisfiea)p. We collect all such points into
a set (ofL-blockedpoints)Bl; C {0,...,Pre+ 2Per}. Then, for eachp € Cl(¢) such thatL){ € R(x)
for some 1< x < Pre + 2Per, we select an intervdk? . ,y". 1 that satisfiesp and such that for each
y <y¥ . nointerval ending a satisfies it. We collect all points® ; .y . into a set (off-blocked
points) Bl C {0,...,Pre}. Let Bl = Bl UBlyU{Pre,Pre+ Per}. We have thaiBl| < mp +2. Now,
let us assumBl = {x1 < x» < ...<xn}. Foreach O< i< n, let Bl; = {x|xi < x < xi41}; similarly,
let Blp = {x|0 < x < x1} andBl,, = {x|xn, < x < Pre+ 2Per}. We prove that ify,y’ € Bl;, for some
i, thenR(y) = R(y’). The proof is by contradiction. Let us assufRgy) # R(y’). SinceR(x) is the
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same for all pointsc > Pre (it immediately follows from periodicity), at least one beteny andy’
must belong to the prefix d¥1. If (L){ € R(y) and (L) & R(y’), then, by definition[L]—p € R(y’).
This implies thaty < y’, as(L) is transitive. It immediately follows thay < Pre. Let us consider
now the above-defined interval¥, ax, Yyt ax]. TWo cases may arise: eithelax <y or xinax >y’

In the former case, sincé )\ € R(y), there must exist an intervat”,y"’] satisfyingy and such that
x¥ o <X < y’, thus violating the definition of¥ .. In the latter caselL]—y ¢ R(y’), against the
hypothesis. The case in whi¢h)y € R(y) and (L) ¢ R(y’) can be proved in a similar way. Since by
assumptiorPre+ Per > (my +2) - mg +mp + 4, by a simple combinatorial argument there must exist
Xit+1(< Pre+Per) in Bl such thatBl;| > mg. Letx be the smallest point iBl;. We show that we can
build a modelIM’ = (I(N\ {x}), V'), wherex has been removed and is a suitable adaptation af,
such thatM’, [0, 1] It ¢.

Let M"” = (I(N\ {x}), V"), whereV" is the projection oV over the intervals that neither start nor
end atx. By definition, replacingVl by M”" does not affect satisfaction of box-formulas (fr@ab(¢)).
The only possible problem is the presence of some diamamdedlas which were satisfied imM and
are not satisfied anymore wl”. Let [x,y], with y < x, be such thaiM, [x,y] IF (L)1{. By definition
of B, there exists an intervak % ax, Y ax), With X% ax, Uihax € Bl andx¥ ox < Pre+ Per, such that
1 holds over[x¥ ax,y¥ax] and there exists no intervét’,y’], with x%ox < x’ < Pre + Per, such
thatm]) holds over(x’,y’]. It follows that eitherx}¥, . >y or there exists an intervak’,y’] such that

M, [x’,y’] |- andx’ > Pre+ Per. Therefore M", [x,y] IF (L)i. A symmetric argument applies to the
case of(L)1. Hence, the removal of poinidoes not cause any problem with diamond-formulas of the
forms (L)d or (L)9. Assume now that, for somg< x < x (resp.,y < x < x) and some formuldB )\
(resp.,(B)Y) in Cl(¢), itis the case thab, [y,x] I (B)\ (resp.,M, [y,x] I (B)1) and thatly,x] was
the only interval starting aj (in M) satisfyingy. Sincex is the smallest point i8l;, M, [y, x;] I- (B)\
(resp.,M, [y,xi 1] IF (B)W) by transitivity of (B) (resp.,(B)). Consider now the firstig successors of
x: x+1,...x+mg. Since|Bl;| > mg, we have that all those points belongRBé;. It is possible to
prove that there exists a point among them, sayk, that satisfies the following propertie@) for every
(B)E € Cl(o), if M,[y,x+k+1]I- (B)E, thenM, [y, x+ k] I (B)E, and(ii) for every(B)( € Cl(¢),
if M,ly,x+k—1] I (B)¢, thenM, [y, x+k] I (B)(. To prove it, it suffices to observe that, by the
transitivity of (B), if M, [y,x+k+ 1] I (B)& thenM, [y,x/] I- (B)& for everyx’ > x+k+ 1. Hence, if
x + k does not satisfy propertfj) for &, all its successors are forced to satisfy it EorSymmetricaIIy,
by the transitivity of(B), if M, [y,x+k— 1] IF (B)¢, but M, [y,x+k] I (B)C, thenM, [y,x'] I¥ (B)C
for everyx’ > x + k. Hence, all successors af+ k trivially satisfy property(ii) for {. Since the
number of(B)- and (B)-formulas is limited bymg, a point with the required properties can always be
found. We fix the defect by defining the labelilg as follows: we pufy,x+h] € V/(p) if and only if
[y, x+h—1] € V(p), for every proposition lettep and 1< t < h. The labeling of the other intervals
remain unchanged. By definition 81, it follows that this change in the labeling does not introglany
new defect.

By iterating the above-described operation, we obtain tenval modelM = (I(N), V), with Pre +
Per < (mp +2)-mgp +mg +4. However, since all changes that we did so far are limitetiegortion
of the model in between 0 arire 4 2Per, we are not guaranteed thit is actually a model foxp.
To turn it into a model forp, we must propagate the changes to the rest of the intervatlnitle
proceed as in the proof of Lemrhh 3, building an ultimatelyiquéc modelM* = (I(N), V*) as follows:

(i) for everyp € AP and everyix,y] such thaty < Pre+ Per, [x,y] € V*(p) iff [x,y] € V(p); (ii) for
everyp € AP and every[x,y] such thatPre < x < Pre+ Per andy < x + Per, [x,yl € V*(p) iff
[x,yl € V(p); (iii) for everyp € AP and everyix,y] such thak < Pre andy > Pre+ Per, [x,y] € V*(p)
iff [x,y—Per] € V*(p); (iv) for everyp € AP and everylx,y] such thatPre < x < Pre+ Per and
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y > x+ Per, [x,y] € V*(p) iff [x,y—Per] € V*(p); (v) for everyp € AP and every(x,y] such that
x > Pre+Per, [x,y]l € V*(p) iff [x—Per,y—Per] € V*(p). This concludes the proof. O

5 NEXPTIME- and EXPSPACE-Completeness

The cases of NEXPTIME-complete and EXPSPACE-completerieags have been already fully worked
out. In the following, we briefly summarize them. NEXPTIMEembership ofAA has been proved
in [5], while NEXPTIME-hardness oA over N has been shown inl[9]. It is immediate to show that
the latter result holds also for the class of strongly disctimear orders; moreover, it can be easily
adapted to the case @&, thus proving NEXPTIME-hardness of any HS fragment featyugA) or
(A). As for EXPSPACE-complete fragments, we know from| [10] th&BL is EXPSPACE-complete.
In [19], Montanari et al. prove EXPSPACE-hardness of thgrirantAB over N by a reduction from
the exponential-corridor tiling problem, which is knownte EXPSPACE-complete [21]. The reduction
immediately applies to the case of strongly discrete lieders. Moreover, it can be easily adapted to
the fragmentAB (a similar adaptation has been provided for finite lineaesdn [7]). Given a tuple
T=(T,t.,t1,H, V,n), whereT is a finite set of tile types;; < T is the bottom tilet+ € T is the top
tile, H andV are two binary relations over, that specify the horizontal and vertical constraints, and
n € N, the exponential-corridor tiling problem consists of dita whether there exists a tiling function
f from a discrete corridor of height exponentialrirto T that associates the titg (resp.,t7) with the
bottom (resp., top) row of the corridor and that satisfieshtbgzontal and vertical constraintd and

V. The reduction exploits the correspondence between timtspioiside the corridor and the intervals of
the model. It makes use ¢F| proposition letters to represent the tiling functiirmoreover, a binary
encoding of each row of the corridor is provided by means dftamhal proposition letters; finally, local
constrains on the tiling functiofare enforced by using modalities.

6 Decidability and Complexity over N

As we already pointed, the asymmetry 8fmodels, which are left-bounded and right-unbounded, is
reflected in the computational behavior of (some of) therfragts ofAABB and its mirror imagé\AEE.
More precisely (i) AB, but notAE, becomes decidable (non-primitive recursive) [18); AB andABB,

but notAE nor AEE, become decidable (this can be shown by a suitable adaptdtthe argument given

in [18]); (i) ABL andABL remain undecidable, but the proof given[inl[18] must be blytadapted.

Theorem 2. The Hasse diagram in Figutd 3 correctly shows all the dediglditagments oHS overN,
their relative expressive power, and the precise complekitss of their satisfiability problem.

The main ingredients of the decidability proof #®BB (and thus foAB andAB) can be summarized
as follows. Letyp be a satisfiabl&BB-formula and leM = (I(N), V) be a model such thatl, [x,,y o] I
¢ for some intervalx,,yJ. It can be easily checked that modalitigs), (B), and(B) do not allow one
to access any intervat,yl, with x > x,,, starting from[x,,y ], and thus valuation over such intervals
can be safely ignored. By exploiting such a limitation, we oeduce the search for a model@to a set
of ultimately periodic models only, as it is possible to prdkiat, for each satisfiabBB-formula, there
exist an ultimately periodic mod@&* = (I(N), V*) and an intervalx,,y,] such that\, [x,,y,! IF @,
Yo < Pre, andPer < mp, wheremg is the number ofB)- and (B)-formulas inCl(¢). To guess the
non-periodic part of the model, the algorithm for satisfigbichecking of AABB formulas over finite

linear orders can be used [18]. Then, the algorithm for fealigity checking of ABB formulas over
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Complexity class:
1: Undecidable

: Non primitive recursive

: EXPSPACE-complete

: NEXPTIME-complete

a B w N

J ABBL® ‘ J ABBL: ‘ ‘ AAB! ‘ ‘ AAB! ‘ AAE! ‘ ‘ AAE" ‘ ‘ AEEL*

o W

B2 H BBLL® | | ABB? | ’ ABL® ’ ABL® ‘ | AL | ABL' | | AR

ABL ||AA ||AEE1||A

>
oo}
oY)

Figure 3: Hasse diagram of all fragmentsAg¥BB and AAEE over the natural numbers.

N [19] can be applied to check whether the guessed prefix cantbaded to a complete model over
I(N) by guessing the valuation of intervals,y] with x < Pre andPre <y < Pre+ Per. To prove
termination of the algorithm, it suffices to observe thahi# guessed prefix is natinimal (in the sense
of [18]]), we can shrink it into a smaller one that satisfies niaimality condition (see Proposition 2
and Figure 3 in[[18]). Since the number of minimal prefix madslbounded, and so is the length of
the period, we can conclude that the satisfiability problemABB overN is decidable. Non-primitive
recursiveness has been already shownlin [7].

In a very similar way, it is not difficult to adapt the reductigiven in [18] to prove the undecidability
of ABL andABL overN. In this case, we reduce the structural termination prodtemtossy counter
automatal[17] to the satisfiability problem fABL and ABL. Since the universal modalitil] can be
expressed iMBL andABL as[U]e = ¢ A[L]([A]le A[A][Al@), one can repeat the entire construction
from [18] to encode an infinite computation of the lossy ceurdgutomata, usingL) to impose the
required properties on final states.
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