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Partial methods play an important role in formal methods and beyond. Recently such meth-
ods were developed for parity games, where polynomial-time partial solvers decide the win-
ners of a subset of nodes. We investigate here how effective polynomial-time partial solvers
can be by studying interactions of partial solvers based on generic composition patterns that
preserve polynomial-time computability. We show that use of such composition patterns
discovers new partial solvers – including those that merge node sets that have the same but
unknown winner – by studying games that composed partial solvers can neither solve nor
simplify. We experimentally validate that this data-driven approach to refinement leads to
polynomial-time partial solvers that can solve all standard benchmarks of structured games.
For one of these polynomial-time partial solvers not even a sole random game from a few
billion random games of varying configuration was found that it won’t solve completely.

1 Introduction

Parity games are two-player games on directed graphs that are determined [18, 4, 21]. Parity
games have several applications, including as back-ends in formal methods. The exact compu-
tational complexity for finite parity games has been an open problem for over 20 years: deciding
which player wins a node in a parity game is in UP∩coUP [16] and the fastest known algo-
rithms run in sub-exponential time in the size of games, see e.g. [15, 19]. Some types of parity
games have polynomial-time solutions. Bounding the index of games – i.e. the largest color of a
game – by a fixed number, Zielonka’s algorithm based on the whole-set rule [8] becomes poly-
nomial time. Or we may bound a descriptive complexity measure: parity games with bounded
DAG-width [2], tree-width [2, 5] or entanglement [3] can be solved in polynomial time.

Algorithms that solve parity games do so using specific mechanisms, for example strategy
improvement [20] or progress measures [14]. But it seems not feasible to let such mechanisms
interact in iterative computations, even though this might speed up solving time. The difficulty
is that such mechanisms operate over very different views of games and their complexity; for
example, how might one use a strategy-improvement step (which updates one player’s strategy)
to increase a progress measure (an element in a specific complete lattice)?

Partial solvers [10, 11] have been proposed as algorithms that can solve parts of a parity game
but not necessarily all of such a game. Such algorithms are designed to run in polynomial time,
and this is relatively easy to obtain. The harder part is to understand which parity games are
solved completely by a given partial solver. Partial solvers are related to known static analyses
such as priority propagation (see e.g. [7]), that may decrease colours of nodes. Extant work
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2 Partial Solvers for Parity Games

has shown the feasibility of using partial solvers [10, 11], yet they don’t completely solve some
benchmarks of structured games and they don’t solve many randomly generated games. In this
paper, we ask whether partial solvers can improve their effectiveness through interaction.

Addressing this question seems feasible as all these methods share a common view of the
complexity of a finite game – say the number of nodes plus the number of edges plus the sum
of all colours of all nodes. This common view allows us to think of static analyses, let us
mention color reductions based on abstract Rabin index computations [9], as partial solvers as
well and to then compose partial solvers to improve their effectiveness. This discussion leads
us to consider whether there are simple, generic, yet effective composition patterns for partial
solvers that preserve polynomial-time computability, allow us to manually discover new partial
solvers, and that can solve all standard benchmarks of structured games and only very rarely
do not completely solve a randomly generated game. The main contribution of this paper is to
provide such an approach and experimental evidence that such aims are realizable.

Outline of paper: We review background in Section 2, develop our composition approach for
partial solvers in Section 3, and show how its use leads to data-driven refinement of partial solvers
in Section 4. In Section 5, we report our experimental and validation work for our approach and
its newly discovered partial solvers. Related work is discussed in Section 6, further insights are
discussed in Section 7, and Section 8 concludes the paper. We refer to [1] for proofs, a formal
presentation of our approach, and further experimental details not provided in this paper.

2 Background

We define key concepts of parity games, review some partial solvers and static analyses for such
games, and fix technical notation used in this paper. We write N for the set {0,1, . . .} of natural
numbers. A parity game G is a tuple (V,V0,V1,E,c), where V is a set of nodes partitioned
into possibly empty node sets V0 and V1, with an edge relation E ⊆ V ×V that contains no
dead-ends (i.e. for all v in V there is a w in V with (v,w) in E), and a colouring function
c : V → N. Throughout, we write p for one of 0 or 1 and 1− p for the other player. Nodes in
V0 are owned by player 0, nodes in V1 are owned by player 1. We write owner(v) to denote the
p for which v is in Vp. In figures, c(v) is written within nodes v, nodes in V0 are depicted as
circles and nodes in V1 as squares. For a relation ρ ⊆ A×B and X ⊆ A we write X•ρ for set
{b ∈ B | ∃a ∈X : (a,b) ∈ ρ}, whereas ρ•Y denotes set {a ∈ A | ∃b ∈ Y : (a,b) ∈ ρ} for Y ⊆ B; we
will abuse this notation for singleton X and Y as in v•E or E•v in a parity game. Below we
write C(G) for the set of colours in game G, i.e.

C(G) = {c(v) | v ∈ V }

We write x%2 for x modulo 2 for an integer x. For each p in {0,1}, the preference ordering �p

on C(G) is given by c1�p c2 iff (c1%2 = p and c2%2 = 1− p) or (c1 and c2 have parity p and
c1 ≤ c2) or (c1 and c2 have parity 1−p and c2 ≤ c1).

A play from some node v0 results in an infinite play π = v0v1 . . . in (V,E) where the player
who owns vi chooses the successor vi+1 such that (vi,vi+1) is in E. Let Inf(π) be the set of
colours that occur in π infinitely often:

Inf(π) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k = c(vi)}
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Player 0 wins play π iff min Inf(π) is even; otherwise player 1 wins play π. A strategy for player
p is a total function σp : V ∗ ·Vp→ V where the pair (v,σp(w · v)) is in E for all v in Vp and w
in V ∗. A play π conforms with σp if for every finite prefix v0 . . .vi of π with vi in Vp we have
vi+1 = σp(v0 . . .vi).

Parity games are determined [18, 4, 21]: (i) node set V is the disjoint union of two, possibly
empty, sets Win0[G] and Win1[G], the winning regions of players 0 and 1 (respectively) in G;
and (ii) there are (memoryless) strategies σ0 and σ1 such that all plays beginning in Win0[G]
and conforming with σ0 are won by player 0, and all plays beginning in Win1[G] and conforming
with σ1 are won by player 1. By abuse of language, ∅ is also a parity game with no nodes.

We define the rank of parity game G as

r(G) = |V |+ |E |+
∑
v∈V

c(v)

We write Attrp[G,X] for the attractor of node set X for player p, which computes the alternating
reachability of X for that player in the game graph of G (see e.g. Definition 1 in [10]). It is well
known that Attrp[G,X] is contained in the winning region Winp[G] whenever X ⊆Winp[G]. The
color of a finite path or cycle P in the directed graph (V,E) is defined to be min{c(v) | v is on P}.
A subset C ⊆ V of a directed graph is called a (maximal) strongly connected component, denoted
by SCC, if for all v,w in C there is a path in (V,E) from v to w; and if there is no strict superset
of C in (V,E) with that property.
Example 1 For parity game G on the right in Figure 2, we have Win1[G] = ∅ and Win0[G] = V .
The (memoryless) strategy σ0 with σ0(v4) = v19 is a winning strategy for player 0 on Win0[G].

We present partial solvers and static analyses for parity games, some of them already in a
form suitable for the composition patterns developed in this paper. All these partial solvers
and static analyses preserve the winning regions of the (remaining) game, and can be computed
in polynomial time in the size of their input games [10, 12, 9]. Static color compression scc
is agnostic to the game graph and makes C(G) convex in N, e.g. C(G) = {0,2,3,6,7} becomes
{0,1,2,3} where nodes coloured with 2 now have color 0, nodes coloured 3 now have color 1 and
so forth. Priority propagation pp is informed by the game graph. At node v, let p(v) denote
min(maxc(v•E),maxc(E•v)) where c(Y ) = {c(y) | y ∈ Y }; if there is a node v with p(v)< c(v),
one such node is selected by pp and the color at v is changed to p(v); otherwise pp has no effect.

The monotone attractor for a node set X of color d in C(G) [10] is defined as follows: it is the
greatest set of nodes YX in G from which player d%2 can force to reach nodes in X whilst only
encountering nodes of color ≥ d en route. A node set X is a fatal attractor [10] if it is contained
in its monotone attractor YX , and then all nodes in X are won by player d%2 in parity game G
[10]. We write fa for the static analysis that returns a fatal attractor (say by exploring colours
in descending order) if G has one, and returns nothing otherwise. Another static analysis ari is
based on the abstract Rabin index of parity games [9]: for node v with c(v) > 1, let c′v be the
maximal color of all cycles that go through node v in G; if there is a node v with c′v < c(v), then
ari chooses one such node and changes the color at v to c′v; otherwise ari has no effect on G.
Finally, let gfa be a more general form of partial solver fa, based on the partial solver in [12].
For gfa, all nodes in node set X have color parity p (not necessarily the same color), and YX is
the greatest set of nodes from which player p can ensure that X is reached such that the minimal
color encountered en route has parity p [12]. Partial solver gfa returns a set X contained in the
corresponding YX , if there is such a pair (X,YX), and returns nothing otherwise.



4 Partial Solvers for Parity Games

3 Composition of partial solvers

We now present our approach to expressing and composing partial solvers with ease. Funda-
mental to this is the notion of a state s which has form

(W0,W1,ρ,G
′,G)

and models an intermediate state of computation within an implicit composition context. Below,
we write s.G and so forth to refer to such components of state s, write s.V , s.E etc. for the
components of game s.G, and similarly for game s.G′. We may elide prefix “s.” if state s is clear
from context. The original input game is s.G and parity game s.G′ is the continuation game
that still needs to be solved; node sets s.Wp for p in {0,1} model those nodes in s.G for which
the winner is already decided as player p; for v in V ′, node set v•ρ for ρ ⊆ V ′×V represents
those nodes in V that have the same (not yet known) winner in s.G as v has in s′.G′; and the
winning regions Winp[s.G] of s.G are the union of s.Wp and the image of the winning region
Winp[s.G′] under relation ρ. A state models configurations of partial solver computations, where

(∅,∅,∆VG
,G,G)

is a natural initial configuration with ∆VG
= {(v,v) | v ∈ VG}, and the more general configurations

model composition contexts.
We write Σ for the set of all states, let the rank of s be the rank of s.G′, and define a partial

order ≤ on states by
s′ ≤ s iff (s= s′ or r(s′)< r(s))

Note that (Σ,≤) satisfies the descending chain condition, where the length of any descending
chain starting in s is polynomial in r(s.G′).

A partial solver is a terminating algorithm A whose semantics f is a state transformer of
type Σ→Σ and satisfies, for all s in Σ, the following: the input game s.G won’t change under f ,
f strictly decreases the rank or won’t change the state, and f preserves winners of nodes whose
winners have already been decided.

Definition 1 Let P be the set of partial solvers that run in polynomial time in rank of s.G.

By abuse of language, we sometimes refer to functions f as partial solvers but context will
determine which algorithms they denote.

Refinement for state transformers f ≤ g is defined as f ≤ g iff ∀s ∈ Σ: f(s) ≤ g(s). Then f
refines g, and so any partial solver with semantics f refines any partial solver with semantics g.
We write Σf for the set of residual games of partial solver f , which f cannot simplify.

We now formally present the five analyses from Section 2 in this setting: Static color com-
pression scc maps a state s= (W0,W1,ρ,G

′,G) to s′ which is s except that s.G′ may change to
reflect the compressed, convex color set. Priority propagation pp also may only change s.G′ such
that the color of at most one node in s.G′ is decreased and all other aspects of s.G′ remain the
same in s′. For fatal attractor detection fa, suppose it detects a fatal attractor X won by player
p in G. We set Z = Attrp[s.G′,X]. Partial solver fa then transforms state s into (assuming p= 0
without loss of generality): s′ = (W0∪Z•ρ,W1,ρ

′,G′ \Z,G). where ρ′ is the restriction of ρ from
domain V ′ to V ′ \Z, and G′ \Z is parity game G′ restricted to node set V ′ \Z (which eliminates
all incoming and outgoing edges of Z as well). Next, consider static analysis ari. If there is
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no node v in s.G′ with c′v < c(v), then ari(s) = s. Otherwise, some such node is chosen and s′

equals s except that s′.G′ reduces the color at node v to c′v in s.G′. The behaviour of gfa is the
same as for fa above except that the manner in which such a node set X is computed differs
[12], e.g. colours of nodes in X may vary. We summarise the above discussion:
Lemma 1 The partial solvers scc, pp, fa, ari, and gfa have semantics Σ→ Σ and are in P.

We are interested in sequential iterations of partial solvers that revert control to the first
solver in the sequence as soon as state rank decreases: Let f1, . . . ,fk be elements of P with k≥ 1.
Let, for each s in Σ, set Ms be {i | 1≤ i≤ k, r(fi(s))< r(s)}. Then while(f1, . . . ,fk)(s) is defined
as s if Ms = ∅ and as while(f1, . . . ,fk)(fjm(s)) otherwise where jm = min(Ms). It is not hard to
show that this defines a family of operators on P:
Lemma 2 For k ≥ 1, operator λ(f1, . . . ,fk)while(f1, . . . ,fk) has type Pk→P.

For a partial solver g= while(f1, . . . ,fk), we have Σg =
⋂k

i=1 Σfi
. In particular, Σg is invariant

under permuting the order of the fi in g. Operator while(·) supports our data-driven approach to
refinement as follows: given g0 = while(f1, . . . ,fk) we study games s.G′ with while(f1, . . . ,fk)(s) =
s to manually learn a new static analysis fk+1 with while(f1, . . . ,fk,fk+1)(s) 6= s, and then sim-
ilarly consider g1 = while(f1, . . . ,fk,fk+1) on the set of states Σg0 for further refinement. These
are refinements since while(f1, . . . ,fk)≥ while(f1, . . . ,fk,fk+1) for all k ≥ 1 and all partial solvers
f1, . . . ,fk+1. The partial solvers in [10, 11, 12] could not completely solve all 1-player games.
We show that such completeness is achievable by the interaction of such partial solvers with ari
and scc′ – a variant of scc that statically compresses the color set of each SCC in a parity game
separately: if C is such a SCC with set of colours C, then scc′ makes C convex in N and recolours
the SCC C accordingly. This also illustrates how we may reason about states in Σg:
Theorem 1 Let g = while(f1, . . . ,fk) be in P with {scc′,ari,fa} contained in {f1, . . . ,fk}. Then
there is no s in Σg for which s.G′ is a 1-player game.

Operator lifted(f) transforms a partial solver f into a second-order version that tests con-
sequences of edge removals on residual games of f . For game G with edge relation E, this
uses derived games: G(v,w) equals G except where v•E is now {(v,w)}; and G\ (v,w) equals G
except where (v,w) is removed from E. By abuse of notation, we write s\ (v,w) for a state that
equals state s except that (s\ (v,w)).G′ equals G′ \ (v,w). That is to say, G(v,w) removes from
E all edges (v,w′) with w 6= w′, whereas G\ (v,w) removes from G the edge (v,w). The game
G\ (v,w) will not introduce deadlocks as it will only be called on nodes v with |v•E |> 1. We
also require notation for initial calling contexts of partial solvers:

call(f)(G) = (f(s).W0,f(s).W1)

where s equals (∅,∅,∆VG
,G,G). Expression call(f)(G) extracts the respective set of nodes that

f can decide to be won by each player, when run in an initial configuration for G. Operator
lifted(f), in Figure 1, tests whether the commitment to edge (v,w) in G(v,w) turns a residual
state of f into one that it not residual, and this will allow it to simplify G to either G(v,w) or
G\ (v,w). Thus, lifted(·) either leaves a state unchanged or removes from s.G′ at least one edge.
We use lifted(·) for defining, for all f in P, function lift(f) : Σ→ Σ through

lift(f) = while(f, lifted(f))
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lifted(f)(s) {
let H = (V ∗,V ∗0 ,V ∗1 ,E∗, c∗) be s.G′;
for (v in V ∗ such that |v•E∗ |> 1) {
p= owner(v);
for (w in v•E∗) {
let (U0,U1) = call(f)(H(v,w));
if (v in Up) {
return (s.W0,s.W1,s.ρ,H(v,w),s.G);

elseif (v in U1−p) {
return (s.W0,s.W1,s.ρ,H \ (v,w),s.G);
}
}
}
return s;
}

Figure 1: Pseudo-code for function lifted(·) with dependent type
∏

f : P (Σf → Σ): for par-
tial solver A in P with semantics f , it renders a partial solver lifted(A) in P with semantics
lifted(f) : Σf → Σ by testing effects of edge removals on running A

Note that lift(f) now has domain Σ as the semantics of while(·) enforces that lifted(f) is only
reached with input from Σf . Let algorithm A have semantics f ; we write lifted(A) for the
algorithm obtained from the pseudo-code for lifted(f) in Figure 1 when all applications of f are
implemented by A. Then lift(A) denotes while(A, lifted(A)).
Lemma 3 If A in P has semantics f , then lift(A) is in P and has semantics lift(f).
Of course, we may appeal to Lemma 3 repeatedly to define higher-order versions lift(lift(A)) and
so forth for algorithms A in P with semantics f , which are all in P by virtue of this lemma.
Next, we use these operators for data-driven refinement.

4 Data-driven refinement

Let us first consider partial solver

ps1 = while(scc,pp,fa,ari,gfa)

Based on the semantics of while(f1, . . . ,fk), we may assume that the input domain of each fj

with j > 1 equals
⋂j−1

i=1 Σfi
. In particular, if some partial solver fj requires that its input games

have no fatal attractors, this is guaranteed by having fl = fa for some l < j. We will also that
a new analysis fk+1 (which may be more expensive, say) is only ever called in the refinement
while(f1, . . . ,fk+1) on states that are residual for while(f1, . . . ,fk).

Some static analyses below will merge a set of nodes X to a sole node owned by player p
and of color d. This merge operation can be defined generically:
Definition 2 Let s be a state, X ⊆ V ′ with |X | ≥ 2 and X•E′ \X 6= ∅. Let p be a player, d a
color, and z 6∈ s.V ′. Then tuple merge(s,X,p,d,z) denotes

(s.W0,s.W1,merge(ρ,X,z),merge(s.G′,X,p,d,z),G) (1)
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Figure 2: Left: Residual game s.G′ for ps1. Right: game mss(s).G′ obtained from the call
merge(s,{v14,v3},owner(v3), c(v3),v26)

where the parity game merge(s.G′,X,p,d,z) is defined as (V ∗,V ∗0 ,V ∗1 ,E∗, c∗) with

V ∗1−p = V ′1−p \X
V ∗p = (V ′p \X)∪{z}
E∗ = (E′ \X×X)∪ ((E′•X \X)×{z})∪ ({z}× (X•E′ \X))

and c∗(v) = c′(v) for all v 6= z whereas c∗(z) = d. Relation merge(ρ,X,z) is (ρ \X × s.V ′)∪
{(z,w) | w ∈X•ρ}.

Whenever we invoke the above merge method, we need to ensure that the resulting tuple is
an actual state. The parity game merge(s.G′,X,p,d,z) has no dead-ends: this is so since z has
at least one outgoing edge, which is guaranteed by the fact that (x,v) is in s.E′ for some x in
X and some v in s.V ′ \X. Next, we present two static analyses that use this merging.

Sole successor node merging: mss. An inspection of residual games for ps1 identifies a
method mss for merging two nodes, so we set

ps2 = while(scc,pp,fa,ari,gfa,mss)

To see how mss works, let s be a state in Σ. Suppose that there are two nodes v and w in s.G′

such that v•E′ = {w}, w•E′ 6⊆ {v,w}, and the color of v in s.G′ is not smaller than that of w.
Choose some z not in the node set of s.G′. Then mss(s) = merge(s,{v,w},owner(w), c(w),z).
As w•E′ contains a node not in the merge set {v,w}, state mss(s) is well defined. If there are
no such nodes v and w, we set mss(s) = s. Figure 2 shows a residual game for ps1 and the effect
of mss on it: node v14 is v, node v3 is w, the owner of w is player 1, w has color 2, and z is v26.

Theorem 2 The static analysis mss is in P.

Merging SCCs: mscc. The study of residual games for ps2 introduces more complex methods
for merging nodes. We will only describe one of these next, static analysis mscc which operates
on states residual for fa and attempts to merge an SCC in a sub-game of the residual game.
For state s, this analysis checks whether there is some color d such that the following can be
realised: Let H = (V ′[Z],E′∩Z×Z) be the game graph that restricts the game graph of s.G′
to Z = {w ∈ V ′1−p | c(w) ≥ d}, the set of all nodes w owned by player 1−p and of color ≥ d in
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Figure 3: Left: Residual game s.G′ for ps2. Right: game mscc(s).G′ obtained from the call
merge(s,{v5,v33},1−0,2,v34)

s.G′ where p = d%2. Suppose there is an SCC C in H and a subset X ⊆ C with |X |> 1 such
that all elements in X have color d and where X•E′ ∩ (V ′ \X) 6= ∅ in G′. The latter implies
mscc(s) = merge(s,X,1− p,d,z) is well defined: since X•E′ ∩ (V ′ \X) 6= ∅, the parity game
mscc(s).G′ contains no dead-ends. If there is no such color d with corresponding H and X, we
set mscc(s) equal to s. This defines a refined partial solver

ps3 = while(scc,pp,fa,ari,gfa,mss,mscc)

Figure 3 shows a residual game for ps2 and the effect of mscc on it: d is 2, p is 0, node set X is
{v5,v33}, and z is v34.

The soundness proof for this analysis is pretty straightforward: first we show that the same
player indeed wins all nodes in X, and then we show that the merged version of the continuation
game has the same winning region modulo ρ.

Theorem 3 The static analysis mscc is in P with domain Σfa.

Edge removal based on conditional fatal attractors: erfa. The residual games of ps3
led us to studying edge removal methods for states in Σfa. We discovered static analysis erfa

which works as follows for any s in Σfa: If there is an edge (v,w) in s.G′ such that s.G′(v,w) has
a fatal attractor, then erfa choses one such edge and sets erfa(s) = s \ (v,w), i.e. erfa removes
edge (v,w) from s.G′. The intuition is that any fatal attractor that would appear in s.G′(v,w)
would have to be a fatal attractor for player 1−owner(v), since s is in Σfa. Therefore, we may
remove the edge (v,w) from s.G′ as choosing this edge would lead player owner(v) to lose that
node. Otherwise, if no such edge exists, erfa(s) equals s. For refined partial solver

ps4 = while(scc,pp,fa,ari,gfa,mss,mscc,erfa)

Figure 4 shows s.G′ for some s in Σps3 and the effect of erfa on it: d is 2, p is 0, set X is {v5,v33},
and z is v34.

Theorem 4 The static analysis erfa is in P with domain Σfa.
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Figure 4: Left: Residual game s.G′ for ps3. Right: game erfa(s).G′ which removes edge (v25,v16)
since s.G′(v25,v16) contains {v25,v16} as a fatal attractor for color 0

Edge removal based on shared descendant: ersd. Residual games for partial solver ps4
suggested to us the following static analysis ersd, which removes an edge based on a shared
descendant. This checks, for s in Σ, whether there are three different nodes v,w,z in s.G′, an
edge (v,w) in s.G′, p in {0,1}, and two colours cv and cw in C(s.G′) (not necessarily at v or w)
with cv�p cw such that:
• there is a path Pvz of color cv from node v to z in s.G′ such that all nodes on Pvz are in
Vp or have only one outgoing edge in s.G′, and
• there is a path Pwz of color cw from node w to z in s.G′ such that all nodes on Pwz are in
V1−p or have only one outgoing edge in s.G′.

If there are such data, ersd chooses one such edge (v,w) and sets ersd(s) = s \ (v,w), i.e. edge
(v,w) is removed from s.G′. The intuition is that this only requires an argument when player p
wins v in s.G′ with a winning strategy that moves from v to w: then we can employ a dominance
argument based on �p as indicated below. Otherwise, if no such edge exists, ersd(s) equals s.
Figure 5 shows the effect of ersd on a residual game for ps4: v is v0, w is v20, p is 1, z is v8, the
path Pvz (blue, via v16 and v21) has color cv = 0, and the path Pwz (green, via v19) has color
cw = 0. This yields a refined partial solver

ps5 = while(scc,pp,fa,ari,gfa,mss,mscc,erfa,ersd)

The proof of the correctness of ersd exploits that removing an edge (v,w) where v is in Vp

cannot increase the winning region of player p. Therefore, it will suffice to show that this does
not decrease the winning region of player p. Only the case when v is won by player p with a
strategy that moves from v to w is of real interest: then, any winning strategy for player p at
node v in s.G′ can be replaced with a winning strategy in s.G′ \ (v,w) that moves from node
v along the path Pvz. In detail, we then use this strategy τ and the path Pvz to define a new
strategy γ with finite memory for that player on the new game G′′ = s.G′ \ (v,w). We then show
that this new strategy γ is winning in game G′′ on the old winning region of s.G′, by showing
that each infinite play in game G′′ conformant with the new strategy γ determines an infinite
play in game s.G′ that is conformant with the (winning) strategy τ , such that the outcome for
player p of the infinite play in game G′′ is better or equal with respect to �p to the outcome of
the infinite play in game s.G′. This ensures that player p wins the infinite play in the new game
G′′, as he does win the infinite play in game s.G′.

Theorem 5 The static analysis ersd is in P.
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Figure 5: Left: Residual game s.G′ for ps4. Right: game ersd(s).G′ which removes edge (v0,v20)
since it has two control paths that meet the criteria for ersd

5 Experimental results

Our approach and its implementation in Python do not compute winning strategies since sound-
ness proofs for some partial solvers require finite memory; related to that, in [12] it was noted
that the partial solver psolC, to which while(gfa) in our paper is similar, may require finite
memory. We use PGSolver [6, 7] as a test oracle to validate that our implementations of partial
solvers are sound, i.e. that they never misclassify the winner of a node of an input game.

Experiments on structured benchmarks. We ran ps1 on Keiren’s comprehensive bench-
mark suite [17] on a HP EliteDesk 800 G1 TWR with RAM 16GB and an Intel Core i7-4770
3.40GHz. For efficiency reasons, we ran ps1 over all games in that suite whose textual repre-
sentation was less than 200KB. This suite contains the PGSolver benchmarks as well; however,
for some of the latter types Keiren’s suite only contains games whose textual representation is
larger than 200KB; for these types we thus used PGSolver itself to generate such test games.
We refer to [1] for the full list of these games. In this manner, we tested 481 games – some
of which with more than 10,000 nodes. Both ps1 and our implementation of Zielonka’s algo-
rithm solved 464 of these games completely and agreed on those solutions. For the remaining
17 games, an exception was raised (stack overflow or a timeout of 60 seconds) for at least one
of ps1 or our implementation of Zielonka’s algorithm. Our version of Zielonka’s algorithm was
also extensively tested against the PGSolver command pgsolver − global recursive, justifying
its use in validation testing. That use allowed us to unit test more efficiently, as our pipe from
Python to PGSolver input was rather slow.

Random games used. We used a standard type of random game [7] with configuration xx-
yy-aa-bb, which has xx nodes whose ownership is determined uniformly at random, yy colours
where colours of nodes are independently and uniformly drawn from set {0,1, . . . ,yy}, and where
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for each node v the set v•E has at least aa and at most bb elements; the cardinality of v•E is
determined for each node independently and uniformly at random.

Unit testing for our implementation of solvers. For each of the four new analyses of
Section 4, we generated a stream of random games and applied the analysis to each game as
often as it would result in state changes. For each state change, we tested whether the winning
regions (modulo potential node merging via ρ) won’t change. Specifically, we generated 100,000
such tests for each analysis. For erfa, we used configuration 60-30-2-3 and 100,395 games in Σfa

to generate that many tests. For ersd, we used configuration 60-30-2-3 with 24,081 games, for
mss we took configuration 60-30-1-3 and 100,140 games in Σfa, and for mscc we had configuration
60-30-1-3 with 1,885,423 games. Note that such tests may generate fewer games than test cases,
if the analysis can be applied repeatedly on continuation games. But we may have to generate
more games than tests, which was the case for analyses that require states from Σfa.

In addition, we did unit testing of partial solvers ps1 through to ps5: we generated 10
million games of type 50-25-2-4 as a test harness; these partial solvers ps1 through to ps5
never misclassified a node for all of these games, based on the regression test with PGSolver as
described above. Here we also unit tested that these are refinements: ps1≥ ps2≥ ps3≥ ps4≥ ps5.
This gave us high confidence that these implementations are correct. So we turned unit tests
off in further experiments that explored billions of random games in search for residual games.

Finally, we unit tested lifted(·) on 974 residual games that we found for ps5 and ran lifted(ps5)
on those: for all of these games this call removed at least one edge (i.e. it reached the if or
elseif branch in Figure 1) and it successfully tested that no winning regions changed. We did
the same unit tests on 24,132 residual games for ps4 that we generated. For each of these games,
the if or elseif branch was reached and the resulting game did not change winning regions.

Comparing effectiveness of new analyses. We wanted to understand how often these four
analyses can simplify games. For this, we considered states in Σfa to create an input common to
all these analyses. We generated 100,000 states s in Σfa where s.G′ is the result of eliminating
all fatal attractors from a random game of configuration type 60-30-2-3. The analyses simplified
99,596 such games for erfa, 84,126 games for ersd, 80,327 for mss, and 7,946 for mscc. Then
we did a similar experiment for 25,360 residual games of a partial solver similar to ps3, whose
residual games are all in Σfa∩Σerfa

∩Σmss : this confirmed that neither erfa nor mss simplified
any of these games - whereas ersd simplified 25,355 of these and mscc simplified 20,119 of these.

Experiments for data-driven refinement. We conducted experiments to determine which
random game configurations xx-yy-aa-bb are more prone to generating residual games for our
partial solvers above: when bb equals aa+ 2 and xx and yy are fixed, we noticed that bb = 2
was most effective at generating residual games whereas aa ≥ 5 was very ineffective. Fixing
aa and bb and letting yy be xx or xx/2, we noted that residual games occur more frequently
as xx increases from 30 to about 90 but then occur less frequently again. Fixing only yy, we
noted that an increase beyond 15 did not have much effect. These insights informed a large
experiment in which we generated 10,422,420 random games of type 50-25-2-3 in total – more
than 10 million games – and recorded how many residual games each of the five partial solvers
had for these: 32,716 for ps1, 30,631 for ps2, 19,230 for ps3, 958 for ps4, and only 136 for ps5.
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The latter 136 residual games are completely solved by lift(ps5). This illustrates that each of
the newly discovered partial solvers leads to more effective refinements of existing ones.

Experiments for lift(·). We ran lift(ps5) on a range of random game configurations to see
whether we could find any non-empty residual games. We tested this on games of varying config-
urations with node sizes ranging from 40 to 1000. All of these games, totalling to 9,353,516,890
(over nine billion games), were solved completely by lift(ps5); specifically, we first ran ps5 on
these games and invoked lift(ps5) on all the non-empty residual games, which were only in the
order of thousands. This staging is justified as ps5 is part of the interaction within lift(ps5).

Experiments on large games. The implementation of our game generators and partial
solvers is not optimized. For one, it may take too long to generate random games of one million
nodes or more. For another, our partial solvers may not be able to solve such large games
in a reasonable period of time, be it for random or structured games. Therefore, the insights
reported above, including the effectiveness of our proposed data-driven approach to discovering
new partial solvers, are limited in that they refer to parity games of small or medium size.
However, we did mean to generate – within these performance constraints – some large games
and determine whether ps5 would be able to solve them completely. The limited number of games
that we managed to generate and test in this manner will only provide anecdotal evidence. But
we do report such evidence here for sake of completeness.

We tested ps5 against the games from PGSolver’s structured benchmark that are used in [6].
We solved the Elevator verification problem Gn for 2 ≤ n ≤ 5 and its variant G′n for 3 ≤ n ≤ 6.
We also solved the Tower of Hanoi problem Tn with 5 ≤ n ≤ 11. The size of the corresponding
games varied from 564 nodes to 708,587 nodes. The partial solver ps5 completely solved all of
these structured games.

We also tested ps5 on large games from the remaining categories of Keiren’s comprehensive
benchmark suite, namely mlsolver, equivchecking and modelchecking. We managed to generate
15 games across these three types of benchmarks, where the size of these games varied from
35,234 nodes to 1,081,474 nodes. Partial solver ps5 completely solved all of these 15 games.

Based on the experiments on random games that were performed in [6], we finally ran both
ps5 and lifted(ps5) on random games with node sets of size either ten thousand, one-hundred
thousand, or one million. Specifically, we managed to generate 35,699 games with 10,000 nodes
(32,054 games in configuration 10000-100-2-4 and 3645 games in configuration 10000-1000-2-4),
882 games with 100,000 nodes of configuration 100000-100-2-4, and 17 games with 1,000,000
nodes with configuration 1000000-yy-2-4 where yy equals 100 for six games, 10 for one game, 22
for four games, and 50 for six games. All of these 36,598 games were completely solved by ps5,
and so therefore also by lifted(ps5).

6 Related work

In [6], a pattern is proposed, implemented, and evaluated for how to solve parity games. This
generic solver can be seen as a composition context of partial solvers (in our setting and ter-
minology) in which all but one partial solver run in polynomial time, and where the latter is a
complete solver that is only called when the partial solvers cannot progress on any terminal SCC
of the parity game. The aim of this is to gain efficiency, and this was successfully demonstrated
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in [6]. But the aim of our work here is to gain effectiveness so that a composition context of
partial solvers would never or very rarely have to call a complete solver. In [8], it is shown that
a variant of Zielonka’s algorithm solves some classes of parity games in polynomial time, and an
improved lower (exponential) bound is derived for solving all parity games with such recursive
algorithms. In [13], a function related to lift(f) is studied; using our terminology, it operates as
follows: for w 6= w′ in v•E, if there is some node z in G such that f detects a different winner
for node z in the two games G(v,w) and G(v,w′), then node v is won by player owner(v) in parity
game G. It would be of interest to integrate this method into our approach for experimental
evaluation. In [11], another function similar to lift(f) is investigated: apart from presentational
differences (our work here uses states), the function in [11] essentially omits the if part of code
in Figure 1 and its soundness proof had severe restrictions on the types of partial solvers that it
may use as arguments. In [12], experiments compared the effectiveness of partial solver psolB
of [10] (which is similar to our while(fa)) and psolC (which is similar to our while(gfa)): on
random games, psolC was more effective than psolB on games with higher edge density, but
not at all more effective on games with lower edge density.

7 Discussion

We also ran detailed experiments on residual games of some of the partial solvers ps1 to ps5.
Specifically, we studied structural features of their terminal SCCs. It appears that such SCCs
have statistically significant structure. For example, we were unable to find a terminal SCC of a
residual game that has two winners; however, we could then manually combine two such games
to construct a residual terminal SCC in which both players win nodes.

We implemented the partial solver ersd in a weaker version than that presented above: control
paths only have nodes owned by the controlling player. It may be possible to generalise the ersd

specified in the paper such that node z is reached in the alternating sense by the controlling
player (on a tree rather than on a path), and always reached with the specified color.

Our approach to data-driven refinement of partial solvers worked well since residual games
were found within a reasonable amount of time. But this method led to powerful partial solvers
for which we now genuinely struggle to find any residual games by relying on standard random
and non-random benchmarks. This may make it harder to evaluate and improve such a partial
solver. Theorem 1, however, suggests one form of evaluation: to prove mathematical properties
of residual games that may also imply that well known types of games are never residual for a
given partial solver. Partial solver ps1, e.g., completely solves all Büchi games, as psolB in [10]
does that.

Our paper focussed on effectiveness: the ability of a partial solver to completely solve a game
in polynomial time. Our approach can also facilitate the study of the efficiency of composed
partial solvers, for example by choosing the order of arguments in while(·).

8 Conclusions

There are many heuristics for solving or preprocessing parity games, potentially decreasing the
complexity of a parity game by reducing some of its colours, by removing some of its edges, or
by removing some of its nodes (whose winners would then be known). Such methods are sound
as they do not alter the winning regions of the resulting parity game. We developed here an
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approach to composition that allows such methods to interact and to share information so that
their power of inference could be amplified. Concretely, we developed the notion of state that
captures computational state within a composition context and defined partial solvers as certain
state transformers. Two composition operators for partial solvers were developed and shown to
preserve polynomial-time computability: a sequential iteration of a list of partial solvers that
tracks progress, and a lift operator testing soundness of edge removals by exploring consequences
of edge commitments for a partial solver.

We instantiated these composition operators with partial solvers from the literature and
applied them experimentally to study games that such composed partial solvers cannot simplify.
These games, seen as data, led to the incremental design of new partial solvers, even to a
new method that merges nodes known to have the same but unknown winner. We proved the
soundness of these new solvers. Our focus was on computing winning regions, not winning
strategies. Would could compute finite-memory winning strategies in principle; it would be
interesting to learn whether this could be done here for memoryless winning strategies as well.

We unit tested the implementation of our approach to validate experimental results. The
latter demonstrated the effectiveness of such a sequence of refined partial solvers: after only a
few refinement steps we arrived at a partial solver that not only solved all structured games from
the state-of-the-art benchmark suite for parity games, but whose lifted version also solved all
random games generated within a month of calendar time. We think this is compelling evidence
that there are very effective polynomial-time partial solvers for parity games.

The strength of this work is that is yields effective partial solvers that are guaranteed to run
in polynomial time. But this is also its weakness in that we do not, at present, have a good
understanding of what types of parity games are solved completely for certain partial solvers.
More powerful versions of Theorem 1, which extend to classes of 2-player games, would be a
first step in addressing that weakness.

Open Access to Research Data

Our source code is openly accessible at

bitbucket.org/Ah-Fat/gandalf_source

Structured benchmarks we used were not our own and are accessible through the references
provided in this paper. We chose not to store the random games we generated. This is justified
by the fact that the random generators are publicly available and so these experiments can be
repeated in principle on freshly generated random input, where the expectation is that results
will be similar in quality.
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[19] Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In:

Kaminski, M., Martini, S. (eds.) Computer Science Logic, 22nd International Workshop, CSL 2008,
17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings. Lecture
Notes in Computer Science, vol. 5213, pp. 369–384. Springer (2008). DOI: doi:10.1007/978-3-540-
87531-4 27
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