
D. Cantone and G. Delzanno (Eds.): Seventh Symposium on
Games, Automata, Logics and Formal Verification (GandALF’16)
EPTCS 226, 2016, pp. 198–212, doi:10.4204/EPTCS.226.14

c○ M. Hannula, J. Kontinen,
M. Lück & J. Virtema

This work is licensed under the
Creative Commons Attribution License.

On Quantified Propositional Logics and the
Exponential Time Hierarchy

Miika Hannula
Department of Computer Science

The University of Auckland
m.hannula@auckland.ac.nz

Juha Kontinen
Department of Mathematics and Statistics

University of Helsinki
juha.kontinen@helsinki.fi

Martin Lück
Institut für Theoretische Informatik

Leibniz Universität Hannover
lueck@thi.uni-hannover.de

Jonni Virtema
Department of Mathematics and Statistics

University of Helsinki
Institut für Theoretische Informatik

Leibniz Universität Hannover
jonni.virtema@helsinki.fi

We study quantified propositional logics from the complexity theoretic point of view. First
we introduce alternating dependency quantified boolean formulae (ADQBF) which generalize
both quantified and dependency quantified boolean formulae. We show that the truth
evaluation for ADQBF is AEXPTIME(poly)-complete. We also identify fragments for
which the problem is complete for the levels of the exponential hierarchy. Second we study
propositional team-based logics. We show that DQBF formulae correspond naturally to
quantified propositional dependence logic and present a general NEXPTIME upper bound
for quantified propositional logic with a large class of generalized dependence atoms. Moreover
we show AEXPTIME(poly)-completeness for extensions of propositional team logic with
generalized dependence atoms.

1 Introduction
Deciding whether a given quantified propositional formula (qBf) is valid is a canonical PSPACE-
complete problem [14]. Dependency quantified propositional formulae (dqBf) introduced by Peter-
son et al. [13] are variants of qBfs for which the corresponding decision problem is NEXPTIME-
complete. Intuitively the rise of complexity stems from the fact that existential second-order
quantification (existential quantification of Boolean functions) can be expressed in dqBf.

We present several logical formalisms, based on quantified propositional logic, that capture the
concept of function quantification. We start from a variant of qBf where quantification happens
on the level of Boolean functions in form of explicit syntactical objects. This second-order qBf,
introduced in Section 2, captures the exponential hierarchy [10, 11]. In Section 3 we extend dqBf
to incorporate universal quantification of Skolem functions, and show that second-order qBf can
be translated to this novel formalism in logspace. In Sections 4 and 5 we finally study dependence
logic and team logic [15] in the framework of qBf. We give efficient translations between these
different formalisms and prove that they all capture the exponential hierarchy.

For a detailed exposition on dependence logics see the recent survey [2]. For the definition
of the relevant complexity classes we follow the definition of alternating Turing machines by
Chandra, Kozen and Stockmeyer [1]. The class AEXPTIME(poly) is the class of all problems
decidable by alternating Turing machines in exponential time, i.e., 𝒪

(︁
2𝑛𝒪(1)

)︁
, and polynomially
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many alternations between existential and universal states. The classes 𝛴E
𝑘 and 𝛱E

𝑘 of the
exponential hierarchy are similar but with at most 𝑘 alternations, where 𝑘 ∈ N, starting in an
existential resp. universal state. The classes are closed both under ≤P

m- and ≤log
m -reductions. In

this paper, if not specified otherwise, when we speak of reductions we mean ≤log
m -reductions.

2 Second-order propositional logic
Second-order propositional logic is obtained from usual qBf by shifting from quantification over
proposition variables to quantification over Boolean functions. In this setting Boolean functions
with arity 0 correspond to propositional variables. Boolean functions with arity ≥ 1 are called
proper functions.

For a formal definition let 𝛷 be a set of function symbols. Every function symbol 𝑓 ∈ 𝛷 has
its own well-defined arity ar(𝑓). The syntax of SO2(𝛷) is given as follows:

𝜑 ::= (𝜑∧𝜑) | ¬𝜑 | ∃𝑓𝜑 | 𝑓(𝜑, . . . ,𝜑⏟  ⏞  
𝑛 times

), where 𝑓 ∈ 𝛷 and ar(𝑓) = 𝑛.

The symbols ∀, ∨, → and ↔ are defined as the usual abbreviations. We call this logic SO2
as it essentially corresponds to second-order predicate logic SO restricted to the domain {0,1}.
ESO2 is the fragment of SO2 where quantifiers ∃ for proper functions may occur only in the scope
of even number of negations, i.e., universal quantification of proper functions is disallowed.
Definition 2.1 (SO2 semantics). The semantics of SO2(𝛷) is defined with assignments that map
variables to Boolean functions: A 𝛷-interpretation 𝑆 is a map from 𝛷 to Boolean functions, i.e.,
for any 𝑓 ∈ 𝛷 with arity ar(𝑓) = 𝑛, 𝑆(𝑓) : {0,1}𝑛 → {0,1} is an 𝑛-ary Boolean function. Given
an SO2(𝛷)-formula 𝜑, write J𝜑K𝑆 for its valuation in 𝑆, which is defined as

J𝜑∧𝜓K𝑆 := J𝜑K𝑆 · J𝜓K𝑆 ,

J¬𝜑K𝑆 := 1− J𝜑K𝑆 ,

J𝑓(𝜑1, . . . ,𝜑𝑛)K𝑆 := 𝑆(𝑓)(J𝜑1K𝑆 , . . . ,J𝜑𝑛K𝑆), where ar(𝑓) = 𝑛,

J∃𝑓𝜑K𝑆 := max
{︂

J𝜑K
𝑆𝑓

𝐹

⃒⃒⃒⃒
𝐹 : {0,1}𝑛 → {0,1}

}︂
,

where 𝑆𝑓
𝐹 is the 𝛷-interpretation s. t. 𝑆𝑓

𝐹 (𝑓) = 𝐹 and 𝑆𝑓
𝐹 (𝑔) = 𝑆(𝑔) for 𝑔 ̸= 𝑓 . An SO2(𝛷)-formula

𝜑 is valid if J𝜑K𝑆 = 1 for all 𝛷-interpretations 𝑆. It is satisfiable if there is at least one 𝑆 s. t.
J𝜑K𝑆 = 1. Finally, 𝜑 is true if it contains no free variables and it is valid. If 𝑓 = (𝑓1, . . . ,𝑓𝑛) is a
tuple of function symbols, we sometimes write ∀𝑓 for ∀𝑓1 . . .∀𝑓𝑛 and ∃𝑓 for ∃𝑓1 . . .∃𝑓𝑛.

In the following we drop 𝛷 and just assume that it contains sufficiently many function symbols
of any finite arity.
Definition 2.2. A second-order formula is simple if functions have only propositions as arguments.
It is in prenex form if all quantifiers are at the beginning of the formula, and all proper functions
are quantified before propositions, i.e., it is of the form

𝜑= a1𝑓1 . . .a𝑛𝑓𝑛a′
1𝑥1 . . .a′

𝑚𝑥𝑚𝜓,

where 𝑛,𝑚 ≥ 0, {a1, . . . ,a𝑛,a′
1, . . . ,a′

𝑚} ⊆ {∃,∀}, the functions 𝑓1, . . . ,𝑓𝑛 have arity > 0, the
functions 𝑥1, . . . ,𝑥𝑚 have arity 0, and 𝜓 is a quantifier-free propositional formula.
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Write 𝛴𝑘-SO2 for the restriction of SO2 to formulae of the form 𝜑= a1𝑓1 . . . a𝑘𝑓𝑘 𝜓, where
𝑘 ∈ N, a1 = ∃, {a2, . . . ,a𝑛} ⊆ {∃,∀}, each 𝑓𝑖 is a possibly empty tuple of proper function symbols,
and 𝜓 is an SO2 formula in which all quantifications are of propositional variables. If a1 = ∀,
the corresponding fragment is called 𝛱𝑘-SO2. The restriction to formulae where each function
symbol 𝑓 occurs only with a fixed tuple 𝑎𝑓 of arguments is denoted by the suffix ·u.

Let L be some logic. The problems TRUE(L), SAT(L), and VAL(L) are defined as follows:
Given a formula 𝜑 ∈ L, decide whether the formula is true, satisfiable, or valid, respectively.

The restricted variant SO2 of second-order logic SO is obviously decidable due to its finite
domain. Moreover it captures exactly the levels of the exponential hierarchy.

Proposition 2.3 ([10]). For any 𝑘 ≥ 1 the following problems restricted to prenex formulae
are complete w. r. t. ≤P

m: TRUE(𝛴𝑘-SO2) is 𝛴E
𝑘 -complete, TRUE(𝛱𝑘-SO2) is 𝛱E

𝑘 -complete, and
TRUE(SO2) is AEXPTIME(poly)-complete.

3 Dependency quantified propositional formulae

In the previous section we considered second-order propositional logic. Now we turn to logics in
which functions are quantified only implicitly in form of Skolem functions of variables. Well-known
such logics are dependency quantified propositional formulae (DQBF), but also independence-
friendly logic (IF) by Hintikka and Sandu [7]. They have in common the syntactical property that
Skolem functions are specified by denoting constraints for quantified variables. It is worth noting
that we get the standard quantified propositional logic by restricting attention to formulae of
SO2 in which it is only allowed to quantify functions of arity 0. Furthermore, DQBF correspond
to the fragment ESOu

2 . In this section we introduce a generalization of DQBF that analogously
corresponds to the full logic SOu

2 .
We start by giving the definition of DQBF and some required notation. For the definitions

related to DQBF, we follow Virtema [16]. For a set 𝐶 of propositional variables, we denote by
𝑐 the canonically ordered tuple of the variables in the set 𝐶. We refer to usual propositional
assignments, in contrast to function assignments, by 𝑠 instead of 𝑆.

A formula that does not have any free variables is called closed (or a sentence). A simple qBf
is a closed qBf of the type 𝜑 := ∀𝑝1 · · ·∀𝑝𝑛∃𝑞1 · · ·∃𝑞𝑚𝜃, where 𝜃 is a propositional formula and
the propositional variables 𝑝𝑖, 𝑞𝑗 are all distinct. Any tuple (𝐶1, . . . ,𝐶𝑚) such that 𝐶1, . . . ,𝐶𝑚 ⊆
{𝑝1, . . . ,𝑝𝑛} is called a constraint for 𝜑.

Definition 3.1. A simple qBf ∀𝑝1 · · ·∀𝑝𝑛∃𝑞1 · · ·∃𝑞𝑚𝜃 is true under a constraint (𝐶1, . . . ,𝐶𝑚)
if there exist functions 𝑓1, . . . ,𝑓𝑚 with 𝑓𝑖 : {0,1}|𝐶𝑖| → {0,1} such that for each assignment
𝑠 : {𝑝1, . . . ,𝑝𝑛} → {0,1}, 𝑠

(︀
𝑞1 ↦→ 𝑓1(𝑠(𝑐1)), . . . , 𝑞𝑚 ↦→ 𝑓𝑚(𝑠(𝑐𝑚))

)︀
|= 𝜃.

A dependency quantified propositional formula is a pair (𝜑,𝐶), where 𝜑 is a simple quantified
propositional formula and 𝐶 is a constraint for 𝜑. We say that (𝜑,𝐶) is true if 𝜑 is true under
the constraint 𝐶. Let DQBF denote the set of all dependency quantified propositional formulae.

Proposition 3.2 ([13, 5.2.2]). TRUE(DQBF) is NEXPTIME-complete problem w.r.t. ≤log
m .

We next introduce a novel variant of DQBF called alternating dependency quantified proposi-
tional formulae ADQBF. The syntax of alternating quantified propositional formulae extends
the syntax of quantified propositional formulae with a new quantifier U . The quantifier U is
used to express universal quantification of Skolem functions of propositional symbols.
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Definition 3.3. A simple 𝛴𝑘-alternating qBf is a closed formula of the form

𝜑 := ∀𝑝1 · · ·∀𝑝𝑛 (∃𝑞1
1 · · ·∃𝑞1

𝑗1)(U𝑞2
1 · · ·U𝑞2

𝑗2)(∃𝑞3
1 · · ·∃𝑞3

𝑗3) . . .(𝑄𝑞𝑘
1 · · ·𝑄𝑞𝑘

𝑘)𝜃,

where 𝑄 ∈ {∃,U}, 𝜃 is a propositional formula and the quantified propositional variables are all
distinct. Similarly, a simple 𝛱𝑘-alternating qBf is a closed formula of the form

𝜑 := ∀𝑝1 · · ·∀𝑝𝑛 (U𝑞1
1 · · ·U𝑞1

𝑗1)(∃𝑞2
1 · · ·∃𝑞2

𝑗2)(U𝑞3
1 · · ·U𝑞3

𝑗3) . . .(𝑄𝑞𝑘
1 · · ·𝑄𝑞𝑘

𝑗𝑘
)𝜃.

A simple alternating qBf is a simple 𝛴𝑖-alternating or 𝛱𝑖-alternating qBf for some 𝑖. Any tuple
(𝐶1

1 , . . . ,𝐶
𝑘
𝑗𝑘

) such that 𝐶1
1 , . . . ,𝐶

𝑘
𝑗𝑘

⊆ {𝑝1, . . . ,𝑝𝑛} is called a constraint for 𝜑.

Definition 3.4. Truth of a simple alternating qBf under a constraint (𝐶1
1 , . . . ,𝐶

𝑘
𝑗𝑘

) is defined
by generalizing Definition 3.1 such that each U𝑞𝑙

𝑖 is interpreted as universal quantification over
(Skolem) functions 𝑓 𝑙

𝑖 : {0,1}|𝐶𝑙
𝑖 | → {0,1}.

Example 3.5: Let 𝜑 := ∀𝑝1∀𝑝2∃𝑞1U𝑞2 𝜃 and 𝐶 := ({𝑝2},{𝑝1}). Now (𝜑,𝐶) is true iff there exists
a function 𝑓1 : {0,1} → {0,1} s. t. for all functions 𝑓2 : {0,1} → {0,1} it holds that for each
assignment 𝑠 : {𝑝1,𝑝2} → {0,1}, 𝑠

(︀
𝑞1 ↦→ 𝑓1(𝑠(𝑝2)), 𝑞2 ↦→ 𝑓2(𝑠(𝑝1))

)︀
|= 𝜃.

Example 3.6: The formula ∀𝑥(U𝑦∃𝑧)¬𝑦 ↔ 𝑧 under the constraint ({𝑥},{𝑥}) expresses that
every |𝑥|-ary Boolean function has a negation.

Definition 3.7. The set ADQBF is the set of all pairs (𝜑,𝐶) where 𝜑 is a simple alternating
qBf and 𝐶 is a constraint of 𝜑. The set 𝛴𝑘-ADQBF (𝛱𝑘-ADQBF) is then the subset of ADQBF
where 𝜑 is 𝛴𝑘-alternating (𝛱𝑘-alternating).

Lemma 3.8. For all 𝑘 ≥ 1 it holds that TRUE(𝛴𝑘-ADQBF) ∈𝛴E
𝑘 , TRUE(𝛱𝑘-ADQBF) ∈𝛱E

𝑘 ,
and TRUE(ADQBF) ∈ AEXPTIME(poly).

Proof. We give a brute-force algorithm. Let the universal quantified prefix of the given qBf be
∀𝑝1 . . .∀𝑝𝑛. For every ∃-quantified block ∃𝑞1 . . .∃𝑞𝑗 with constraints 𝐶1, . . . ,𝐶𝑗 , existentially guess
and write down a Boolean function from the variables 𝐶𝑖 ⊆ {𝑝1, . . . ,𝑝𝑛} for every 𝑞𝑖. For every
U -quantified block, switch to universal branching and do the same. The quantifier-free part can
then be evaluated in deterministic exponential time for every possible assignment to 𝑝1, . . . ,𝑝𝑛.
The algorithm runs in exponential time and its alternations are bounded by the alternations of ∃
and U quantifiers in the formula.

For the hardness direction we first show how the uniqueness property can be obtained for
arbitrary SO2-formulae by introducing additional function symbols. The following lemma will be
needed in the sequel (see, e.g., Väänänen [15]).

Lemma 3.9. Let 𝑆 be an SO2 interpretation, 𝑥 a propositional variable, 𝑓 and 𝑓 ′ function
variables with ar(𝑓 ′) = ar(𝑓) + 1, and 𝜑(𝑥,𝑓) an SO2-formula in which 𝑥 and 𝑓 occur only as
free variables and in which 𝑓 ′ does not occur. Then it holds that 𝑆 |= ∀𝑥∃𝑓𝜑⇔ 𝑆 |= ∃𝑓 ′ ∀𝑥𝜑′ and
𝑆 |= ∃𝑥∀𝑓𝜑⇔ 𝑆 |= ∀𝑓 ′∃𝑥𝜑′, where 𝜑′ is obtained from 𝜑 by replacing 𝑓(𝑦) with 𝑓 ′(𝑥,𝑦).

Lemma 3.10. Every 𝛴𝑘-SO2-sentence (𝛱𝑘-SO2-sentence, SO2-sentence) 𝜑 can be translated to
an equivalent simple prenex 𝛴𝑘-SOu

2-sentence (𝛱𝑘-SOu
2-sentence, SOu

2-sentence) 𝜓 in polynomial
time.
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Proof. First we prove that 𝜑 can be transformed into a simple formula in polynomial time.
Whenever a subformula 𝜉 = 𝑓(𝜓1, . . . ,𝜓𝑖, . . . ,𝜓𝑛) occurs and 𝜓𝑖 is not a proposition, then replace
𝜉 by ∀𝑏

(︀
(𝑏↔ 𝜓𝑖) → 𝑓(𝜓1, . . . , 𝑏, . . . ,𝜓𝑛)

)︀
, where 𝑏 is a new proposition symbol.

Then by the usual translation move all quantifiers to the beginning of the formula. Swap
the order of the quantifiers according to Lemma 3.9 until all quantified proper function
symbols precede the quantified propositions. Such obtained 𝜑 is simple and of the form
a1𝑓1 . . .a𝑛𝑓𝑛∀𝑝1∃𝑞1 . . .∀𝑝𝑚∃𝑞𝑚𝜃 where 𝜃 is quantifier-free, {a1, . . . ,a𝑛} ⊆ {∃,∀}, and 𝑓1, . . . ,𝑓𝑛

are the only proper functions that occur in 𝜑.
Finally we “split” the quantified function symbols in 𝜑 s. t. every proper function symbol occurs

with exactly one fixed argument tuple. Let 𝜒= ∃𝑓a1𝑔1 . . .a𝑘𝑔𝑘a′
1𝑝1 . . .a′

𝑚𝑝𝑚 𝜃(𝑓(𝑥1), . . . ,𝑓(𝑥𝑛))
where 𝜃 is quantifier-free be a subformula of 𝜑, meaning that 𝑓 occurs in 𝜃 at 𝑛 different positions
with 𝑛 (possibly different) argument tuples 𝑥1, . . . ,𝑥𝑛. In what follows, 𝑓1 . . .𝑓𝑛 and 𝑦1, . . . ,𝑦𝑛

are assumed to be distinct and fresh. Then 𝜑 is equivalent to the formula obtained from 𝜑 by
substituting 𝜒 by the formula ∃𝑓1 . . .∃𝑓𝑛a1𝑔1 . . .a𝑘𝑔𝑘a′

1𝑝1 . . .a′
𝑚𝑝𝑚 ∀𝑦1 . . . ∀𝑦𝑛 (𝜓1 ∧𝜓2), where

𝜓1 :=
⋀︀𝑛−1

𝑖=1
(︀
(𝑦𝑖 ↔ 𝑦𝑖+1) → (𝑓𝑖(𝑦𝑖) ↔ 𝑓𝑖+1(𝑦𝑖+1))

)︀
ensures that the functions 𝑓1, . . . ,𝑓𝑛 are all the

same, and 𝜓2 := (
⋀︀𝑛

𝑖=1𝑥𝑖 ↔ 𝑦𝑖) →
(︁
𝜃(𝑓1(𝑦1), . . . ,𝑓𝑛(𝑦𝑛))

)︁
simulates 𝜃(𝑓1(𝑥1), . . . ,𝑓𝑛(𝑥𝑛)). The

“split” of universal quantifiers is done analogously. Clearly 𝜑 remains simple and in prenex form.
The steps introduced above do not add additional alternations of function quantifiers, hence

the resulting formula is now an 𝛴𝑘-SOu
2 resp. 𝛱𝑘-SOu

2 resp. SOu
2 sentence.

Theorem 3.11. Let 𝑘 ≥ 1. For odd 𝑘 the problem TRUE(𝛴𝑘-ADQBF) is 𝛴E
𝑘 -complete. For

even 𝑘 the problem TRUE(𝛱𝑘-ADQBF) is 𝛱E
𝑘 -complete. The problem TRUE(ADQBF) is

AEXPTIME(poly)-complete.

Proof. The membership was shown in Lemma 3.8. For the hardness we start with the problem
TRUE(𝛴𝑘-ADQBF). We give a reduction from TRUE(𝛴𝑘-SOu

2) which is by Proposition 2.3
and Lemma 3.10 ≤P

m-complete for 𝛴E
𝑘 . Let 𝜑 :=𝑄1𝑓1𝑄2𝑓2 . . .∃𝑓𝑘∀𝑝1∃𝑞1 . . .∀𝑝𝑛∃𝑞𝑛𝜓, where 𝜓 is

quantifier-free, be a simple prenex 𝛴𝑘-SOu
2-sentence. Note that 𝑄𝑘 = ∃ since 𝑘 is odd. For each

function symbol 𝑓𝑖 that occurs in 𝜓, let (𝑎𝑖
1, . . . ,𝑎

𝑖
𝑚𝑖

) denote the unique tuple that occurs as an
argument of 𝑓𝑖. Each of these functions with arguments can be simulated by a single constrained
propositional variable; a problem in this translation is however that some 𝑎𝑖

𝑗 may be existentially
quantified and thus not part of the 𝑝1, . . . ,𝑝𝑛. However, this problem can be easily solved by
introducing fresh universally quantified propositional variables:

Assume that 𝜓 is in negation normal form. Any subformula 𝑓𝑖(𝑎) is replaced by ∀𝑟
(︀
(𝑎 ↔

𝑟) → 𝑓𝑖(𝑟)
)︀
, where 𝑟 = 𝑟1, . . . , 𝑟ar(𝑓𝑖) are fresh distinct variables. Analogously, ¬𝑓𝑖(𝑎) is replaced

by ∀𝑟
(︀
(𝑎↔ 𝑟) → ¬𝑓𝑖(𝑟)

)︀
. Clearly the such obtained sentence can be transformed to prenex form

by just moving all the freshly introduced quantifiers to the right end of the quantifier prefix. The
such obtained sentence is equivalent to 𝜑. Thus we may assume w.l.o.g. that if 𝑓𝑖(𝑎𝑖

1, . . . ,𝑎
𝑖
𝑚𝑖

)
occurs in 𝜑, then {𝑎𝑖

1, . . . ,𝑎
𝑖
𝑚𝑖

} ⊆ {𝑝1, . . . ,𝑝𝑛}.
For the reduction to ADQBF now just consider ∀𝑝1 . . .∀𝑝𝑛 as universal quantified variables.

For every 𝑓𝑖(𝑎𝑖
1, . . . ,𝑎

𝑖
𝑚𝑖

) introduce a quantified variable ∃𝑓𝑖 with constraint {𝑎𝑖
1, . . . ,𝑎

𝑖
𝑚𝑖

} if 𝑓𝑖

is existentially quantified, and introduce U𝑓𝑖 with the same constraint otherwise. For every
𝑞𝑖 introduce a quantified variable ∃𝑞𝑖 with constraint {𝑝1, . . . ,𝑝𝑖}. Let 𝜓′ denote the formula
obtained from 𝜓 by substituting, for each 𝑖, 𝑓𝑖(𝑎𝑖

1, . . . ,𝑎
𝑖
𝑚𝑖

) by 𝑓𝑖. Thus the resulting ADQBF has
the form 𝜑′ := ∀𝑝1 . . .∀𝑝𝑛 (∃𝑓1) (U𝑓2) . . . (∃𝑓𝑘 ∃𝑞1 . . . ∃𝑞𝑛) 𝜓′. Since the final function quantifier
𝑄𝑘 was existential, we can merge the functions 𝑓𝑘 and the quantified propositions 𝑞1 . . . 𝑞𝑛 to
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a single existentially quantified block in ADQBF. So 𝜑′ is in 𝛴𝑘-ADQBF, and by definition
of ADQBF, 𝜑′ is true under the constraint 𝐶 (where 𝐶 is constructed as above) if and only if
𝜑 ∈ TRUE(𝛴𝑘-SOu

2).
For general SOu

2 formulae we can again assume that the last function quantifier is existential.
The same holds for 𝛱𝑘-SOu

2 formulae if 𝑘 is even. In these cases a similar proof yields a reduction
to ADQBF resp. 𝛱𝑘-ADQBF.

Theorem 3.12. Let 𝑘 ≥ 2. For even 𝑘 the problem TRUE(𝛴𝑘-ADQBF) is 𝛴E
𝑘−1-complete. For

odd 𝑘 the problem TRUE(𝛱𝑘-ADQBF) is 𝛱E
𝑘−1-complete.

Proof. The hardness results follow from Theorem 3.11. For inclusion, we prove the case for
𝛴𝑘-ADQBF. We give a ≤log

m -reduction from TRUE(𝛴𝑘-ADQBF) to TRUE(𝛴𝑘−1-ADQBF). The
result then follows from Theorem 3.11. The case for 𝛱𝑘-ADQBF is analogous. Consider a formula
𝜑 := ∀𝑝1 · · ·∀𝑝𝑛 (∃𝑞1

1 · · ·∃𝑞1
𝑗1)(U𝑞2

1 · · ·U𝑞2
𝑗2) . . .(U𝑞𝑘

1 · · ·U𝑞𝑘
𝑗𝑘

)𝜃 and a constraint 𝐶 = (𝐶1
1 , . . . ,𝐶

𝑘
𝑗𝑘

).
We claim that (𝜑,𝐶) is equivalent to

𝜑′ := ∀𝑝1 · · ·∀𝑝𝑛∀𝑞𝑘
1 · · ·∀𝑞𝑘

𝑗𝑘
(∃𝑞1

1 · · ·∃𝑞1
𝑗1)(U𝑞2

1 · · ·U𝑞2
𝑗2) . . .(∃𝑞𝑘−1

1 · · ·∃𝑞𝑘−1
𝑗𝑘−1

)𝜃

under the constraint 𝐶 ′ = (𝐶1
1 , . . . ,𝐶

𝑘−1
𝑗𝑘−1

).
By definition (𝜑,𝐶) is true if and only if for all extensions of the tuple of quantified Skolem func-

tions 𝑓1
1 , . . . ,𝑓

𝑘−1
𝑗𝑘−1

(some of which are existentially/universally quantified) and for all extensions
of the Skolem functions 𝑓𝑘

𝑖 it holds that:

∀𝑡 ∈ 𝑇 : 𝑡 |= 𝜃, where 𝑇 := {𝑠
(︀
𝑞1

1 ↦→ 𝑓1
1 (𝑐1

1), . . . , 𝑞𝑘
𝑗𝑘

↦→ 𝑓𝑘
𝑗𝑘

(𝑐𝑘
𝑗𝑘

)
)︀

| 𝑠 : {𝑝1, . . . ,𝑝𝑛} → {0,1}} (1)

Note that, in fact, 𝑇 is the set of all expansions of assignments 𝑠(𝑞1
1 ↦→ 𝑓1

1 (𝑐1
1), . . . , 𝑞𝑘−1

𝑗𝑘−1
↦→

𝑓𝑘−1
𝑗𝑘−1

(𝑐𝑘−1
𝑗𝑘−1

)), 𝑠 : {𝑝1, . . . ,𝑝𝑛} → {0,1}, into domain {𝑝1, . . . ,𝑝𝑛, 𝑞
1
1, . . . , 𝑞

𝑘
𝑗𝑘

}. Thus (1) can be equiv-
alently written as

∀𝑡 ∈ 𝑇 : 𝑡 |= 𝜃, where 𝑇 := {𝑠
(︀
𝑞1

1 ↦→ 𝑓1
1 (𝑐1

1), . . . , 𝑞𝑘−1
𝑗𝑘−1

↦→ 𝑓𝑘−1
𝑗𝑘−1

(𝑐𝑘−1
𝑗𝑘−1

)
)︀

| (2)

𝑠 : {𝑝1, . . . ,𝑝𝑛, 𝑞
𝑘
1 , . . . , 𝑞

𝑘
𝑗𝑘

} → {0,1}}

Now note that as the constraints and quantifiers for 𝑞1
1, . . . , 𝑞

𝑘−1
𝑗𝑘−1

are exactly the same in 𝐶 and
in 𝐶 ′ each extension of the tuple of quantified Skolem functions 𝑓1

1 , . . . ,𝑓
𝑘−1
𝑗𝑘−1

in the evaluation
of (𝜑,𝐶) can be directly interpreted in (𝜑,𝐶 ′), and vice versa. From this together with the
equivalence of (1) and (2), we conclude that (𝜑,𝐶) and (𝜑,𝐶 ′) are equivalent.

Using the translation from SOu
2 to ADQBF introduced in the proof of Theorem 3.11, we

obtain the following corollary.
Corollary 3.13. For every SO2-sentence 𝜑 there is a polynomial time computable ADQBF-
instance (𝜓,𝐶) which is true iff 𝜑 is true. For every ESO2-sentence 𝜑 there is a polynomial time
computable DQBF-instance (𝜓,𝐶) which is true iff 𝜑 is true.

4 Quantified propositional logics with team semantics
The study of propositional logics with team semantics has so far concentrated on extensions of
propositional logics with different dependency notions such as functional dependence, indepen-
dence and inclusion. Here we extend the perspective to quantified propositional logics.
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4.1 Basic notions and results

In the team semantics context it is usual to consider assignments over finite sets of proposition
symbols. We begin by fixing some notation. Let 𝐷 be a finite, possibly empty set of proposition
symbols. A set 𝑋 of assignments 𝑠 : 𝐷 → {0,1} is called a team. The set 𝐷 is the domain
Dom(𝑋) of 𝑋. We denote by 2𝐷 the set of all assignments 𝑠 : 𝐷 → {0,1}. If 𝑝= (𝑝1, . . . ,𝑝𝑛) is a
tuple of propositions and 𝑠 is an assignment, we write 𝑠(𝑝) for (𝑠(𝑝1), . . . ,𝑠(𝑝𝑛)). If 𝑏 ∈ {0,1} and
𝑠 is an assignment with domain 𝐷, we let 𝑠(𝑞 ↦→ 𝑏) denote the assignment with domain 𝐷∪{𝑞}
defined as follows: 𝑠(𝑞 ↦→ 𝑏)(𝑝) = 𝑏 if 𝑝= 𝑞 and 𝑠(𝑞 ↦→ 𝑏)(𝑝) = 𝑠(𝑝) if 𝑝 ̸= 𝑞.

Let 𝑋 be a team. A function 𝐹 :𝑋 → {{0},{1},{0,1}} is called a supplementing function
of 𝑋. Supplementing functions are used for giving semantics for existential quantifiers. For a
proposition symbol 𝑝, we define 𝑋[𝐹/𝑝] := {𝑠(𝑝 ↦→ 𝑏) | 𝑠 ∈𝑋,𝑏 ∈ 𝐹 (𝑠)}. We say that 𝑋[𝐹/𝑝] is a
supplemented team of 𝑋 in 𝑝.

For 𝐴 ⊆ {0,1} we define 𝑋[𝐴/𝑝] := {𝑠(𝑝 ↦→ 𝑏) | 𝑠 ∈ 𝑋,𝑏 ∈ 𝐴}. The team 𝑋[{0,1}/𝑝] is the
duplicating team of 𝑋 in 𝑝. Duplicating teams are used to give semantics for universal quantifiers.

Let 𝛷 be a set of proposition symbols. The syntax of quantified propositional team logic
QPTL(𝛷) is given by the following grammar:

𝜑 ::= 𝑝 | ¬𝑝 | (𝜑∧𝜑) | (𝜑∨𝜑) | ∼𝜑 | ∀𝑝𝜑 | ∃𝑝𝜑, where 𝑝 ∈ 𝛷,

Its quantifier-free fragment is called propositional team logic PTL(𝛷), similar to the first-order
team logic TL by Väänänen [15]. Likewise its ∼-free fragment is called quantified propositional
logic QPL(𝛷). The usual propositional logic PL(𝛷) is then just the quantifier-free fragment of
QPL(𝛷).

Let us denote by Prop(𝜑) the set of proposition symbols that occur in 𝜑, and by Fr(𝜑) the
set of proposition symbols that occur free in 𝜑. We sometimes write 𝜑(𝑝1, . . . ,𝑝𝑛) to denote
that 𝜑 is a formula whose free proposition symbols are in {𝑝1, . . . ,𝑝𝑛}. A formula in which no
proposition symbol occurs free is called a sentence. We denote by |=PL the ordinary satisfaction
relation of quantified propositional logic defined via assignments in the standard way. Next we
give team semantics for quantified propositional logic. The semantics for the quantifiers follow
the corresponding definitions of first-order team semantics (as quantified propositional logic can
be seen as first-order logic over domain {0,1}).
Definition 4.1 (Lax team semantics). Let 𝛷 be a set of atomic propositions and let 𝑋 be a
team. The satisfaction relation 𝑋 |= 𝜑 for 𝜑 ∈ QPTL(𝛷) is defined as follows.

𝑋 |= 𝑝 ⇔ ∀𝑠 ∈𝑋 : 𝑠(𝑝) = 1 if 𝑝 ∈ 𝛷.
𝑋 |= ¬𝑝 ⇔ ∀𝑠 ∈𝑋 : 𝑠(𝑝) = 0 if 𝑝 ∈ 𝛷.

𝑋 |= (𝜑∧𝜓) ⇔ 𝑋 |= 𝜑 and 𝑋 |= 𝜓.

𝑋 |= (𝜑∨𝜓) ⇔ 𝑌 |= 𝜑 and 𝑍 |= 𝜓, for some 𝑌,𝑍 such that 𝑌 ∪𝑍 =𝑋.

𝑋 |= ∼𝜑 ⇔ 𝑋 ̸|= 𝜑.

𝑋 |= ∃𝑝𝜑 ⇔ 𝑋[𝐹/𝑝] |= 𝜑 for some function 𝐹 :𝑋 → {{0},{1},{0,1}}.
𝑋 |= ∀𝑝𝜑 ⇔ 𝑋[{0,1}/𝑝] |= 𝜑.

We say that a sentence 𝜑 is true if {∅} |= 𝜑, i.e., if the team with just the empty assignment
satisfies 𝜑.
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The next proposition shows that the team semantics and the ordinary semantics for QPL-
formulae coincide.
Proposition 4.2 (Flatness property [15]). Let 𝜑 be a formula of quantified propositional logic
and let 𝑋 be a propositional team. Then 𝑋 |= 𝜑 iff ∀𝑠 ∈𝑋 : 𝑠 |=PL 𝜑.

The syntax of quantified propositional dependence logic QPD(𝛷) is obtained by extending the
syntax of QPL(𝛷) by the following grammar rule for each 𝑛 ∈ N:

𝜑 ::= dep(𝑝1, . . . ,𝑝𝑛, 𝑞) , where 𝑝1, . . . ,𝑝𝑛, 𝑞 ∈ 𝛷.

The meaning of the propositional dependence atom dep(𝑝1, . . . ,𝑝𝑛, 𝑞) is that the truth value of the
proposition symbol 𝑞 is functionally determined by the truth values of the proposition symbols
𝑝1, . . . ,𝑝𝑛. The semantics for the atoms is defined as follows: 𝑋 |= dep(𝑝1, . . . ,𝑝𝑛, 𝑞) iff for all
𝑠, 𝑡 ∈𝑋 : 𝑠(𝑝1) = 𝑡(𝑝1), . . . ,𝑠(𝑝𝑛) = 𝑡(𝑝𝑛) implies 𝑠(𝑞) = 𝑡(𝑞).

The next well-known result is proved in the same way as the analogous result for first-order
dependence logic [15].
Proposition 4.3 (Downwards closure). Let 𝜑 be a QPD-formula and let 𝑌 ⊆𝑋 be propositional
teams. Then 𝑋 |= 𝜑 implies 𝑌 |= 𝜑.

In this article we study also a variant of QPD obtained by replacing dependence atoms by
the so-called inclusion atoms. The syntax of quantified propositional inclusion logic QPLInc(𝛷) is
obtained by extending the syntax of QPL(𝛷) by the grammar rule 𝜑 ::= (𝑝1, . . . ,𝑝𝑛) ⊆ (𝑞1, . . . , 𝑞𝑛)
for every 𝑛≥ 0, where 𝑝1, . . . ,𝑝𝑛, 𝑞1, . . . , 𝑞𝑛 ∈ 𝛷. The semantics for propositional inclusion atoms
is defined as follows: 𝑋 |= 𝑝⊆ 𝑞 iff ∀𝑠 ∈𝑋 ∃ 𝑡 ∈𝑋 : 𝑠(𝑝) = 𝑡(𝑞).

It is easy to check that QPLInc is not downward closed (cf. Proposition 4.3). However,
analogously to FO-inclusion-logic [3], QPLInc is closed w. r. t. unions:
Proposition 4.4 (Closure under unions). Let 𝜑∈ QPLInc and let 𝑋𝑖, for 𝑖∈ 𝐼, be teams. Suppose
that 𝑋𝑖 |= 𝜑 for each 𝑖 ∈ 𝐼. Then

⋃︀
𝑖∈𝐼𝑋𝑖 |= 𝜑.

Definition 4.5. Let L be a propositional logic with team semantics. Recall that a sentence
𝜑 ∈ L is true if {∅} |= 𝜑. A formula 𝜑 ∈ L is satisfiable if there exists a non-empty team 𝑋 such
that 𝑋 |= 𝜑. A formula 𝜑 ∈ L is valid if 𝑋 |= 𝜑 holds for all teams 𝑋 such that the proposition
symbols in Fr(𝜑) are in the domain of 𝑋. The problems TRUE(L), SAT(L), and VAL(L) are
defined in the obvious way: Given a formula 𝜑 ∈ L, decide whether the formula is true, satisfiable
or valid, respectively.

The following results for PLInc and MInc are implicitly shown by Hella et al. [6]. They state
the results using PSPACE-reductions, but in fact their reductions run in polynomial time.
Proposition 4.6 ([6, 16]). SAT(PLInc) and SAT(MInc) are EXPTIME-complete w. r. t. ≤P

m-
reductions. VAL(PD) is NEXPTIME-complete w. r. t. ≤log

m -reductions.
The following lemma is a direct consequence of a result of Galliani et al. [4, Lemma 14],

where an analogous claim is proven in the first-order setting over structures with universe size at
least 2. The result follows by the obvious back-and-forth translations between propositional logic
and first-order logic where truth of a propositional formula is replaced with satisfaction by the
first-order structure that has universe {0,1} and two constants interpreted as 0 and 1.
Lemma 4.7 ([4]). Any formula 𝜑 in L, where L ∈ {QPD,QPLInc}, is logically equivalent to a
polynomial size formula a1𝑝1 . . .a𝑘𝑝𝑘𝜓 in L where 𝜓 is quantifier-free and {a1, . . . ,a𝑘} ⊆ {∃,∀}
for 𝑖= 1, . . . ,𝑛.
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4.2 Complexity of quantified propositional logics

In this section we consider the complexity of quantified propositional dependence and inclusion
logic. In the latter case, we reduce the problem to the satisfiability problem of modal inclusion
logic, MInc, as defined by Hella et al. [6].
Proposition 4.8. TRUE(QPD) is NEXPTIME-complete w. r. t. ≤log

m -reductions.

Proof. We show a reduction from VAL(PD) to TRUE(QPD). By Proposition 4.6, the former is
NEXPTIME-hard and thus the latter is as well. Let 𝜑 be a PD-formula and let 𝑝 be the tuple
of proposition symbols that occur in 𝜑. Note first that, since PD is downward closed, it follows
that 𝜑 is valid if and only if 2𝑝 |= 𝜑, where 2𝑝 is the team that contains exactly all propositional
assignments with domain 𝑝. Thus it follows that the PD-formula 𝜑 is valid if and only if the
QPD-formula ∀𝑝𝜑 is true.

The fact that TRUE(QPD) is in NEXPTIME follows from the obvious brute force algo-
rithm that uses non-determinism to guess the witnessing teams for existential quantifiers and
disjunctions.

Theorem 4.9. TRUE(QPLInc) is EXPTIME-complete w. r. t. ≤P
m-reductions.

Proof. We give a ≤P
m-reduction from SAT(PLInc) to TRUE(QPLInc). Since, by Proposition 4.6,

SAT(PLInc) is EXPTIME-hard under ≤P
m-reductions, it follows that TRUE(QPLInc) is as well.

Let 𝜑 be a formula of PLInc and let 𝑝 be the tuple of proposition symbols that occur in 𝜑. Clearly
there exists a nonempty propositional team 𝑋 such that 𝑋 |= 𝜑 if and only if {∅} |= ∃𝑝𝜑.

We will next show that TRUE(QPLInc) is in EXPTIME. We do this via a polynomial time
translation 𝜑 ↦→ 𝜑* from QPLInc to MInc. The translation is designed such that 𝜑 is true if and
only if 𝜑* is satisfied by a non-empty team in a Kripke structure. Since, by Proposition 4.6,
SAT(MInc) is in EXPTIME, it follows that TRUE(QPLInc) is as well. In our construction,
the idea is that points in a 𝐾𝑟𝑖𝑝𝑘𝑒 model will correspond to propositional assignments, and
existential and universal quantifiers are simulated by diamonds and boxes, respectively.

First we will enforce a binary (assignment) tree in our structure. Branching in the tree will
correspond to quantification of proposition variables. The binary tree is forced in the standard
way by modal formulae: The formula branch(𝑝𝑖) := ♦𝑝𝑖 ∧♦¬𝑝𝑖 forces that there are ≥ 2 successor
states which disagree on a proposition 𝑝𝑖. The formula store(𝑝𝑖) := (𝑝𝑖 ∧�𝑝𝑖) ∨ (¬𝑝𝑖 ∧�¬𝑝𝑖) is
used to propagate chosen values for 𝑝𝑖 to successors in the tree. Now define

tree(𝑝,𝑛) := branch(𝑝1)∧
𝑛−1⋀︁
𝑖=1

�𝑖
(︁
branch(𝑝𝑖+1)∧

𝑖⋀︁
𝑗=1

store(𝑝𝑗)
)︁
,

where �𝑖𝜑 :=
𝑖 many⏞  ⏟  
� · · ·�𝜑. The formula tree(𝑝,𝑛) forces a complete binary assignment tree of depth

𝑛 for proposition symbols 𝑝1, . . . ,𝑝𝑛. Notice that tree(𝑝,𝑛) is an ML-formula and hence has the
flatness property, analogously to Proposition 4.2 [17]. When 𝜑 is a QPLInc-formula, we denote
by 𝜑′ the MInc formula that is obtained from 𝜑 by substituting each existential quantifier ∃𝑝 by
♦ and each universal quantifier ∀𝑝 by �.

We are now ready to state our reduction. Let 𝜑 be an arbitrary QPLInc-formula in the normal
form of Lemma 4.7. W.l.o.g. we may assume that 𝜑= a1𝑝1 . . .a𝑛𝑝𝑛𝜓, where {a1, . . . ,a𝑛} ⊆ {∃,∀}
and 𝜓 is quantifier-free. Define 𝜑* := tree(𝑝,𝑛)∧𝜑′. It is straightforward to check that, indeed, 𝜑
is true if and only if 𝜑* is satisfiable.
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4.3 Propositional team logic and ADQBF

In [5] it was established that the validity and satisfiability problem of PTL extended with either
inclusion or independence atom is complete for AEXPTIME(poly). In the extended version of
the paper it is shown that, in fact, this holds this holds already for PTL. Here we generalize this
result by establishing connections between fragments of team-based logics and ADQBF.

First observe that sentences of ADQBF can be equivalently interpreted as sentences of QPTL
extended with dependence atoms, denoted by QPTL(dep). This translation is analogous to the
translation from SO to first-order team logic (see [8, 12]). Let

𝜑 := ∀𝑝1 · · ·∀𝑝𝑛 (∃𝑞1
1 · · ·∃𝑞1

𝑗1)(U𝑞2
1 · · ·U𝑞2

𝑗2)(∃𝑞3
1 · · ·∃𝑞3

𝑗3) . . .(𝑄𝑞𝑘
1 · · ·𝑄𝑞𝑘

𝑗𝑘
)𝜃,

be a simple alternating qBf with constraints (𝐶1
1 , . . . ,𝐶

𝑘
𝑗𝑘

). Recall that for a set of variables 𝐶,
we denote by 𝑐 the canonically ordered tuple consisting of the variables in 𝐶. Let 𝜑* denote the
following QPTL(dep)-sentence:

∀𝑝1 · · ·∀𝑝𝑛 (∃𝑞1
1 · · ·∃𝑞1

𝑗1)(U𝑞2
1 · · ·U𝑞2

𝑗2)(∃𝑞3
1 · · ·∃𝑞3

𝑗3) . . .(𝑄𝑞𝑘
1 · · ·𝑄𝑞𝑘

𝑗𝑘
) (3)

∼
[︃
∼(𝑝∧¬𝑝)∧

⋀︁
1≤𝑖≤𝑘

𝑖 is even
1≤𝑙≤𝑗𝑖

dep
(︁
𝑐𝑖

𝑙,𝑦
𝑖
𝑙

)︁]︃
∨
[︃(︁ ⋀︁

1≤𝑖≤𝑘
𝑖 is odd
1≤𝑙≤𝑗𝑖

dep
(︁
𝑐𝑖

𝑙,𝑦
𝑖
𝑙

)︁)︁
∧𝜃
]︃

Above the quantifier U𝑞 is treated as a shorthand for the expression ∼∃𝑞∼.1 It is straightforward
to check that 𝜑 is true under the constraint (𝐶1

1 , . . . ,𝐶
𝑘
𝑗𝑘

) if and only if 𝜑* is true. Thus we obtain
fragments of QPTL(dep) that express complete problems for levels of the exponential hierarchy,
see Theorem 3.11. For 𝑘 = 1, we obtain a translation from DQBF to QPD. It is noteworthy that,
in fact, by the above translation we obtain a close connection between the classes 𝛴E

𝑘 and 𝛱E
𝑘 ,

and the fragment of QPTL(dep) of sentences with ≤ 𝑘 nested ∼s (deg∼(𝜑)); formally defined as
follows:

deg∼(∀𝑝𝜑) := deg∼(∃𝑝𝜑) := deg∼(𝜑), deg∼(𝜑∨𝜓) := deg∼(𝜑∧𝜓) := max{deg∼(𝜑),deg∼(𝜓)},
deg∼(¬𝜑) := deg∼(𝜑), deg∼(∼𝜑) := deg∼(𝜑)+1, deg∼(dep(𝑝,𝑞)) := deg∼(𝑝) := 0.

Note that the relationship given by this translation is not strict. It is easy to show, by a
brute-force algorithm, that TRUE(L) is in 𝛴E

𝑘+1, where L is the fragment of QPTL(dep) with
formulae with deg∼(𝜑) ≤ 𝑘. Moreover, from the above translation together with Theorem 3.11
we obtain hardness for 𝛴E

𝑘−2.

Proposition 4.10. Every ADQBF-instance (DQBF-instance) (𝜓,𝐶) can be translated in poly-
nomial time to a QPTL(dep)-sentence (QPD-sentence) 𝜑 s. t. (𝜓,𝐶) is true iff 𝜑 is true.

Using the ideas of [5], we may eliminate the quantifiers in (3) and relate the truth of 𝜑
and 𝜑* with the satisfiability of a certain formula of PTL extended with dependence atoms,
denoted by PTL(dep). Define a shorthand max(𝑝1, . . . ,𝑝𝑛) := ∼

⋁︀
1≤𝑖≤𝑛 dep(𝑝𝑖). It was noted in

[5] that 𝑋 satisfies max(𝑝1, . . . ,𝑝𝑛) if and only if for each assignment 𝑠 with domain {𝑝1, . . . ,𝑝𝑛}
1The syntax is the same as in Definition 3.4. However, for ADQBF, U refers to the universal quantification of

Skolem functions, while in team semantics, it refers to the universal quantification of supplementing functions.
These notions are not the same, but easily translatable into each other, as we show.
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there is an expansion 𝑠′ of 𝑠 in 𝑋. Let 𝜑′ := max(𝑝1, . . . ,𝑝𝑛, 𝑞
1
1, . . . , 𝑞

𝑘
𝑘)∧𝜓 denote the PTL(dep)-

formula, where 𝜓 is obtained by using the following recursive translation to eliminate every
quantifier from 𝜑 starting from left to right. Each quantifier of type ∃𝑞𝑖

𝑗 is recursively translated
as
(︁
dep

(︁
𝑐𝑖

𝑗 , 𝑞
𝑖
𝑗

)︁
∨ (dep

(︁
𝑐𝑖

𝑗 , 𝑞
𝑖
𝑗

)︁
∧𝜓)

)︁
. Each quantifier of type U𝑞𝑖

𝑗 is recursively translated as

∼
(︁
dep

(︁
𝑐𝑖

𝑗 , 𝑞
𝑖
𝑗

)︁
∨ (dep

(︁
𝑐𝑖

𝑗 , 𝑞
𝑖
𝑗

)︁
∧ ∼𝜓)

)︁
. For the right most quantifier in the recursive translation,

we set 𝜓 := 𝜃. It is quite straightforward to prove (cf. [5, Theorem 7]) that 𝜑 is true under
the constraint (𝐶1

1 , . . . ,𝐶
𝑘
𝑗𝑘

) if and only if 𝜑′ is satisfiable. Here the connection between the
classes 𝛴E

𝑘 and 𝛱E
𝑘 , and the fragment of PTL(dep) of sentences with deg∼(𝜑) ≤ 𝑘 is even more

tighter than above. We obtain 𝛴E
𝑘 -hardness for SAT(L), where L is the fragment of PTL(dep)

with formulae with deg∼(𝜑) ≤ 𝑘. Note that using the above recursive translation and by setting
max(𝑝1, . . . ,𝑝𝑛, 𝑞

1
1, . . . , 𝑞

𝑘
𝑘) := ∀𝑝1 · · ·∀𝑝𝑛∀𝑞1

1 . . .∀𝑞𝑘
𝑘 , we obtain 𝛴E

𝑘 -hardness for TRUE(L), where L
is the fragment of QPTL(dep) with formulae with deg∼(𝜑) ≤ 𝑘.

Finally note that dependence atoms of type dep(𝑝1, . . . ,𝑝𝑛, 𝑞) can be expressed via unary
atoms as follows

∼
(︀
(𝑟∨¬𝑟)∨

⋀︁
1≤𝑛

dep(𝑝𝑖)∧∼dep(𝑞)
)︀
,

while unary atoms dep(𝑝) can be rewritten as ∼(∼𝑝∧ ∼¬𝑝). As a summary, we obtain the
following results.
Proposition 4.11. Every ADQBF-instance (𝜓,𝐶) can be translated in polynomial time to a
QPTL-sentence 𝜑 s. t. (𝜓,𝐶) is true iff 𝜑 is true.
Proposition 4.12. For a logic L let L𝑘 denote the fragment of L with formulae 𝜑 for which
deg∼(𝜑) ≤ 𝑘. Then TRUE(QPTL𝑘(dep)) and SAT(PTL𝑘(dep)) are in 𝛴E

𝑘+1 and 𝛴E
𝑘 -hard w. r. t.

≤P
m-reductions. Moreover TRUE(QPTL𝑘) and SAT(PTL𝑘) are in 𝛴E

𝑘+1 and 𝛴E
𝑘−2-hard w. r. t.

≤P
m-reductions.

5 Generalized dependence atoms
In this section we study extensions of QPL and QPTL by the so-called generalized dependence
atoms. In the context of first-order dependence logic, generalized atoms were introduced by
Kuusisto [9].

An 𝑛-ary generalized dependence atom (𝑛-GDA) is a set 𝐺 of 𝑛-ary relations over the Boolean
domain {0,1}. For each 𝑛-GDA 𝐺, we introduce an atomic expression 𝐴𝐺(𝑝1, . . . ,𝑝𝑛) that takes
𝑛 proposition symbols as parameters. Let 𝑋 be a team with {𝑝1, . . . ,𝑝𝑛} ⊆ Dom(𝑋). The
satisfaction relation 𝑋 |=𝐴𝐺(𝑝1, . . . ,𝑝𝑛) is given as follows:

𝑋 |=𝐴𝐺(𝑝1, . . . ,𝑝𝑛) ⇔ rel(𝑋,(𝑝1, . . . ,𝑝𝑛)) ∈𝐺,

where rel(𝑋,(𝑝1, . . . ,𝑝𝑛)) := {
(︀
𝑠(𝑝1), . . . ,𝑠(𝑝𝑛)

)︀
| 𝑠 ∈𝑋}. We say that an SO2-formula 𝜑(𝑓) with

free function variable 𝑓 defines 𝐺 if

𝑋 |=𝐴𝐺(𝑝1, . . . ,𝑝𝑛) ⇔ ∅𝑓
𝜒(𝑋,(𝑝1,...,𝑝𝑛)) |= 𝜑(𝑓),

where 𝜒(𝑋,(𝑝1, . . . ,𝑝𝑛)) is the characteristic function of rel(𝑋,(𝑝1, . . . ,𝑝𝑛)), and ∅𝑓
𝜒(𝑋,(𝑝1,...,𝑝𝑛))

is the assignment that maps 𝑓 to 𝜒(𝑋,(𝑝1, . . . ,𝑝𝑛)). Moreover, we call 𝐺 SO2-definable (ESO2-
definable) if there exists an SO2-formula (ESO2-formula) 𝜑(𝑓) that defines 𝐺. For a set 𝒢 of
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GDAs, let us denote by QPL(𝒢) (QPTL(𝒢)) the logic obtained by extending QPL (QPTL) with
the atoms in 𝒢. For a set 𝒢 = {𝐺𝑖 | 𝑖 ∈ N} of atoms and respective defining sentences 𝜑𝑖, the set
𝒢 is said to be polynomial time translatable if the function 1𝑛 ↦→ ⟨𝜑𝑛⟩, where ⟨𝜑𝑛⟩ is the binary
encoding of 𝜑𝑛, is polynomial-time computable. The following theorem relates the logics QPL(𝒢)
and QPTL(𝒢) to ESO2 and SO2, respectively.

As an example, we consider the dependence atom introduced in Section 4.

Example 5.1: The 𝑛-ary dependence atom dep(𝑝1, . . . ,𝑝𝑛−1, 𝑞) corresponds to the 𝑛-GDA that
is defined as{︃

𝑅⊆ {0,1}𝑛

⃒⃒⃒⃒
⃒ ∀(𝑠1, . . . ,𝑠𝑛),(𝑡1, . . . , 𝑡𝑛) ∈𝑅 :

𝑛−1⋀︁
𝑖=1

𝑠𝑖 = 𝑡𝑖 implies 𝑠𝑛 = 𝑡𝑛

}︃

It is definable (even without second-order quantifiers) by the ESO2-formula

𝜑(𝑓) := ∀𝑥1 . . .∀𝑥𝑛∀𝑦1 . . .∀𝑦𝑛

(︃
𝑓(𝑥1, . . . ,𝑥𝑛)∧𝑓(𝑦1, . . . ,𝑦𝑛)∧

𝑛−1⋀︁
𝑖=1

𝑥𝑖 ↔ 𝑦𝑖

)︃
→ (𝑥𝑛 ↔ 𝑦𝑛)

Theorem 5.2. Let 𝒢 be a set of ESO2-definable (SO2-definable), polynomial time translatable
generalized dependence atoms. Then every sentence in QPL(𝒢) (QPTL(𝒢)) can be translated to
an equivalent ESO2 (SO2) sentence in polynomial time.

These translations are analogously presented by Väänänen in the first-order setting [15]. As
we restrict ourselves to propositional logics, the difference is that only the domain {0,1} and
therefore the logic SO2 are considered for the resulting formulae. The idea is to encode teams of
assignments as their Boolean “characteristic functions”. We start the proof with a slightly more
general lemma.
Lemma 5.3. Let 𝒢 be a set of SO2-definable, polynomial time translatable generalized dependence
atoms. Then for every formula 𝜑 ∈ QPTL(𝒢) and every set of proposition symbols {𝑝1, . . . ,𝑝𝑛} ⊇
Fr(𝜑) there is an SO2-sentence 𝜓(𝑓) computable in polynomial time s. t. for all Boolean teams 𝑋
with Dom(𝑋) ⊇ {𝑝1, . . . ,𝑝𝑛},

𝑋 |= 𝜑⇔ ∅𝑓
𝜒(𝑋,(𝑝1,...,𝑝𝑛)) |= 𝜓(𝑓).

Proof. Analogously to the textbook translation from dependence logic to ESO [15], we show how
to transform an open QPTL(𝒢)-formula 𝜑, whose free proposition symbols are from {𝑝1, . . . ,𝑝𝑛},
to an SO2-sentence 𝜑*(𝑓). One can easily verify by induction that for any team 𝑋 with
Dom(𝑋) ⊇ {𝑝1, . . . ,𝑝𝑛}, 𝑋 |= 𝜑 if and only if ∅𝑓

𝜒(𝑋,(𝑝1,...,𝑝𝑛)) |= 𝜑*(𝑓). The construction proceeds
recursively as follows.

1. Assume 𝜑=𝐴𝐺(𝑝𝑖1 , . . . ,𝑝𝑖𝑘
) for 𝐺 ∈ 𝒢, and let 𝑝= (𝑝1, . . . ,𝑝𝑛), 𝑝0 = (𝑝𝑖1 , . . . ,𝑝𝑖𝑘

). Moreover,
let 𝑝1 be any sequence listing {𝑝1, . . . ,𝑝𝑛}∖{𝑝𝑖1 , . . . ,𝑝𝑖𝑘

}. Then 𝜑*(𝑓) is defined as

∃𝑔𝜓(𝑔)∧𝜋𝑝,𝑝0(𝑓,𝑔),

where 𝑔 has arity 𝑘, 𝜓(𝑔) is the SO2-translation of 𝐺 and 𝜋𝑝,𝑝0(𝑓,𝑔) := ∀𝑝(𝑓(𝑝) → 𝑔(𝑝0)) ∧
∀𝑝0∃𝑝1(𝑔(𝑝0) → 𝑓(𝑝)) expresses that the team encoded in 𝑔 is the projection of the team
encoded in 𝑓 onto the variables 𝑝0.
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2. If 𝜑= 𝑝𝑖, then 𝜑*(𝑓) is defined as ∀𝑝(𝑓(𝑝) → 𝑝𝑖).

3. If 𝜑= ¬𝑝𝑖, then 𝜑*(𝑓) is defined as ∀𝑝(𝑓(𝑝) → ¬𝑝𝑖).

4. If 𝜑= 𝜓0 ∧𝜓1, then 𝜑*(𝑓) is defined as 𝜓*
0(𝑓)∧𝜓*

1(𝑓).

5. If 𝜑= 𝜓0 ∨𝜓1, then 𝜑*(𝑓) is defined as

∃𝑓0∃𝑓1(𝜓*
0(𝑓0)∧𝜓*

1(𝑓1)∧∀𝑝
(︀
𝑓(𝑝) → (𝑓0(𝑝)∨𝑓1(𝑝)))∧∀𝑞((𝑓0(𝑞)∨𝑓1(𝑞)) → 𝑓(𝑞))

)︀
.

6. If 𝜑= ∀𝑞𝜓, then 𝜑*(𝑓) is defined as

∃𝑔
(︀
𝜓*(𝑔)∧∀𝑝 ∀𝑝′ (𝑓(𝑝) → 𝑔(𝑝,𝑝′))∧∀𝑞∀𝑞′(𝑔(𝑞,𝑞′) → 𝑓(𝑞))

)︀
.

7. If 𝜑= ∃𝑞𝜓, then 𝜑*(𝑓) is defined as

∃𝑔
(︀
𝜓*(𝑔)∧∀𝑝 ∃𝑝′(︀𝑓(𝑝) → 𝑔(𝑝,𝑝′))∧∀𝑞 ∀𝑞′(𝑔(𝑞,𝑞′) → 𝑓(𝑞))

)︀
.

8. If 𝜑= ∼𝜓, then 𝜑*(𝑓) is defined as ¬𝜓*(𝑓).

Note that, if the atoms in 𝒢 are ESO2-definable and if the ∼-case is dropped from the above
translation, then the resulting formula itself is in ESO2.

Corollary 5.4. Let 𝒢 be a set of ESO2-definable, polynomial time translatable generalized
dependence atoms. Then for every formula 𝜑 ∈ QPL(𝒢) and every set of proposition symbols
{𝑝1, . . . ,𝑝𝑛} ⊇ Fr(𝜑) there is an ESO2-sentence 𝜓(𝑓) computable in polynomial time s. t. for all
Boolean teams 𝑋 with Dom(𝑋) ⊇ {𝑝1, . . . ,𝑝𝑛},

𝑋 |= 𝜑⇔ ∅𝑓
𝜒(𝑋,(𝑝1,...,𝑝𝑛)) |= 𝜓(𝑓).

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Let 𝜑 be a QPL(𝒢) resp. QPTL(𝒢) sentence. First translate it to an ESO2-
sentence resp. SO2-sentence 𝜓(𝑓) in polynomial time according to Corollary 5.4 resp. Lemma 5.3.
It holds that 𝑋 |= 𝜑 iff ∅𝑓

𝜒(𝑋,(𝑝1,...,𝑝𝑛)) |= 𝜓(𝑓), if Dom(𝑋) ⊇ {𝑝1, . . . ,𝑝𝑛}, and in particular that 𝜑
is true (i.e., satisfied by a non-empty team) iff 𝜓′ := ∃𝑓∃𝑝(𝑓(𝑝)∧𝜓(𝑓)) is true.

Hence, we may conclude this section with the following complexity results.

Theorem 5.5. (i) Assume that 𝒢 is a polynomial time translatable set of SO2-definable gener-
alized dependence atoms. Then TRUE(QPTL(𝒢)) is AEXPTIME(poly)-complete w. r. t.
≤P

m-reductions.

(ii) Assume that 𝒢 is a polynomial time translatable set of ESO2-definable generalized dependence
atoms, and assume that dependence atoms translate into QPL(𝒢) in polynomial time. Then
TRUE(QPL(𝒢)) is NEXPTIME-complete w. r. t. ≤P

m-reductions.

Proof. Both upper bounds follow from Theorem 5.2 and Proposition 2.3. The lower bound for
TRUE(QPTL(𝒢)) (TRUE(QPL(𝒢))) follows from Proposition 4.11 (Proposition 4.8).
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6 Summary

In this article we compared different approaches to function quantification, with the logics
depicted in Figure 1. We showed that, while some of the logics can express the quantification of
functions only in a restricted way, like only in form of Skolem functions, they all can be efficiently
translated into each other. It was shown in Lemma 3.10 that the “uniqueness” property of
function symbols occurring in SO2 and ESO2 formulae can be obtained and hence (as depicted
in the proof of Theorem 3.11) these formulae have a natural translation into ADQBF and
DQBF. Proposition 4.10 established that ADQBF and DQBF can easily be translated into team
semantics, i.e., into QPTL(dep) and QPD. The point is that the dependence atom can be used in
team semantics to model the constraints of Skolem functions. Finally we showed in Theorem 5.5
that propositional team logic, even when augmented with generalized dependence atoms, can
efficiently be translated back into SO2 resp. ESO2 when teams are modeled as Boolean functions.
Thus all these formalisms capture the same complexity classes: the class AEXPTIME(poly) by
unbounded quantifier alternation and the class NEXPTIME by the existential fragment. Since
QPTL(𝒢) can express the dependence atom, it is complete for AEXPTIME(poly) for any set
𝒢 of polynomial time translatable SO2-definable generalized dependence atoms. For QPL(𝒢) the
matter is more complicated: If the dependence atom can be efficiently expressed in QPL(𝒢) and
𝒢 is a set of polynomial time translatable ESO2-definable generalized dependence atoms, then
QPL(𝒢) is NEXPTIME-complete, but for instance for QPLInc the complexity drops down to
EXPTIME, as shown in Theorem 4.9. Higher levels of the exponential hierarchy are not only
captured by fragments of SO2 (see Proposition 2.3), but also (with more or less sharp bounds)
by the corresponding fragments of ADQBF (see Theorem 3.11) and (Q)PTL (Proposition 4.12).

Logic Ex. fragment Method of function quantification Example

SO2 ESO2 Explicit, Second-order interpretation ∃𝑓𝑦 ∀𝑥𝜑
ADQBF DQBF Constraints, Skolem functions ∀𝑥∃𝑦𝜑, 𝐶𝑦 = {𝑥1}
QPTL QPD Dep. atoms, Supplemented teams ∀𝑥∃𝑦 𝜑∧dep(𝑥1,𝑦)
PTL PD Dep. atoms, Splitting of teams dep(𝑥1,𝑦)∨ (𝜑∧dep(𝑥1,𝑦))

Figure 1: Different formalisms of Boolean function quantification
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