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We introducep-equivalencéy asymptotic probabilities, which is a weak almost-eqig¢inae based
on zero-one laws in finite model theory. In this paper, we @@ar¢he computational complexities
of p-equivalence problems for regular languages and provielélowing details. First, we give an
robustness op-equivalence and a logical characterization fleequivalence. The characterization
is useful to generate some algorithms feequivalence problems by coupling with standard results
from descriptive complexity. Second, we give the compatal complexities for the@-equivalence
problems by the logical characterization. The computafi@omplexities are the same as for the
(fully) equivalence problems. Finally, we apply the proéds p-equivalence to some generalized
equivalences.

1 Introduction

The study of the equivalence problem of regular languages dack to the beginning of formal language
theory. This problem is a fundamental problem and regulaguages have many applications (see e.g.,
[1]). Regular expressions (REG), nondeterministic finisgesautomaton (NFA), and deterministic finite
state automaton (DFA) are normally used to represent retariguages. Both the equivalence problem
for NFAs and REGs are known as PSPACE-completé [15] and thivaignce problem for DFAS is
known as NL-complete [12].

In recent years, somalmost-equivalencefor regular languages were introduced. These equiva-
lences are weaker than the (fully) equivalence. For exanptelanguaged,; andL,, are f-equivalent
[2, [3] if their symmetric differencel.; A LA, is a finite set; and two languages; and Ly, areE-
equivalent[8] if their symmetric differencel; A Ly, is a subset oE, whereE is a regular language.
In [8], it is pointed out that bothf-equivalence problems arteequivalence problems for NFAs are
PSPACE-complete; and bothrequivalence problems ariekequivalence problems for DFAs are NL-
complete, where the regular languages given by a DFA@E as an input. In this paper, we define
another almost-equivalencp-gquivalence p-equivalence is defined as follows. Lat(L) be

(L) = the number of strings of lengtithat are inL
Hnlt) = the number of strings of length

That is, un(L) is the probability that a randomly chosen string of lengtfs in a languagd.. The
asymptotic probabilityf L, p(L), is defined ag(L) = limp_ tn(L) if the limit exists. Then, we define
that two languaged,; andL,, arep-equivalentf p(L;ALy) =0.

ILyaLly=(L1\L2)U(La\L1)
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The definition is based on the asymptotic probabilities iftdimodel theory, which are defined as
follows. Let un(P) be

_the number of finite graphs withnodes that satisfgp

Hn(®) the number of finite graphs withnodes

That is, un(®P) is the probability that a randomly chosen graph withodes satisfies a first-order sen-
tence®. (Note that this definition can be extended to any fimitstructures from finite graphs.) The
asymptotic probability ofp, u(®), is defined agu(®P) = lim,_,. n(P) if the limit exists. Then, we
define thatp is almost surely validf pu(®) = 1.

In finite model theory, the next two theorems are some intieigesesults in decidability between
validity and “almost surely” validity.

Theorem 1.1(Trakhtenbrot[[26]) For any vocabularyo with at least one binary relation symbol, it is
undecidablevhether a first-order sentenek of vocabularyo is valid over finiteo-structures.

Theorem 1.2 (see e.g., Corollary 12.11 [13])There is an algorithm that given as input a finite
structure and a first-order sentendeof vocabularyo, decides whethe® is almost surely valid.

Relative to finiteo-structures, Theorem 1.2 tells us that itiscidablewhether a sentence is almost
surely valid, whereas Theordm 1.1 tells us that itnslecidablevhether a sentence is valid. One of our
main motivation to considgr-equivalence is as follows: Does there exist some differsimcdecidability
or in computational complexity between equivalence pratjuivalence?

(In this paper, however, in the class of regular languagespmve that there is no differences in
computational complexity between equivalence and p-edgnee, e.g., the p-equivalence problem for
REGs is also PSPACE-complete.)

Our results and contributions.

In this paper, we give the computational complexities of phequivalence problems for regular lan-
guages. Moreover, we also give these complexities of somergkized equivalence problems.

First, we give a simple characterizationgg&quivalence, coupled with standard results from descrip-
tive complexity [11], which is used to decide the p-equivake problem for various representations of
regular languages.

Second, we prove the computational hardness forpHeguivalence problems by modifying the
proofs of the computational hardness for (fully) equivakeproblems.

Finally, we give the computational complexities for eqlevece problems for some generalized
equivalences based on the proofs for thequivalence problems. These results give a robustness of
equivalence problems for regular languages in terms ofdhgpatational complexities when the equiv-
alence is generalized.

Paper outline.

The remainder of this paper is organized as follows: Se@igives the necessary definitions and ter-
minology for languages, automaton, apekquivalence; Sectidn 3 shows some fundamental results of
p-equivalence; Sectidd 4 describes the computational eexitplupper bounds of both theequivalence
problems and some generalized equivalence problemsp8gtiescribes the computational complexity
lower bounds of both the-equivalence problems and some generalized equivaleotdeprs; Section
remarks about the problem to decide whether a given retariguage obeys zero-one law [20] based
on previous sections.
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2 Preliminaries

In this paper, we consider three well-known standard moelsegular languagesegular expression
(REG),deterministic finite state automat§bFA), andnondeterministic finite state automat@dFA).
Let A be a finite alphabet and It [A"] be the set of all strings [of length] over A.

REG The syntax for REG is defined as follows:
a:=0|1llacA|o-a2|a1Uaz | a;
Then,L(a) (the language of RE@) is inductively defined as follows:
(1) L(O) =0; (2)L(1) ={e}; 3) L(a) ={a}; (4) L(a1-0a2) =L(a1)-L(az2); (5) L(a1Uaz) =

ntimes

L(ay) UL(az2); and (6)L(a;) = UnsoL(a1)-...-L(a1), where the concatenation operatiois
defined ad (a1) - L(a2) = {1 | 51 € L(01),S € L(az)}. We may omit- (i.e., aja, denotes
a1 - ay). € denotes the empty string.

DFA A DFA .« is a 5-tuple(Q,A, 8,0°, F), where (1)Qis a finite set of states; (& is a finite alphabet;
(3) 6 : Q x A— Qis a transition function; (4)° € Q is the initial state; and (3f C Q is a set of
acceptance states. We inductively defée,s) by using the definition od(q,a) as follows. If
s= ¢, thend(q,s) = g. Otherwise (i.es= as), 4(q,s) = 5(5(q,a),s).

Then,L(«/) = {s€ A" | 5(¢°,s) € F}.

NFA A NFA .« is a 5-tuple(Q,A, 8,°,F), where (1)Qis a finite set of states; (& is a finite alphabet;
(3) 6 : Q x A— 2R is a transition function; (4)° € Q s the initial state; and (3 C Q s a set of
acceptance states. L&(Q',a) = Uqeqy 6(0,@), whereQ' € Q and we inductively definé(Q',s)
by using the definition 08(Q’,a) as follows. Ifs= ¢, thend(Q',s) = Q. Otherwise (i.es= as),
5(Q.s)=5(5(Q,a).3).

Then,L(«/) = {sc A* | 3q € &(¢°,s).q € F}.

Reachabl&y, ') in DFA[NFA] means that there exists a stringuch thatd(q,s) = d[q € ({q},9)].

2.1 The almost equivalence by asymptotic probabilities anthe zero-one law for formal
language theory

The zero-one law in finite model theory is a property which nsg@lmost surely true” or “almost surely
false” (see e.g..[13, Section 12]). In formal language thexero-one law is investigated by Sin’ya [20]
as follows; A languagé obeys zero-one law if almost all strings ard.ior almost all strings are not in
L. In other words, a languadeobeys zero-one law if is “almost empty” or “almost full”. Formally,

“almost empty” and “almost full” are defined by asymptotiopabilities. LetL be a language. We

define (se A L)
se se
“n(L) - |An|

That is, U, (L) is the probability that a string af length given by uniform randomly is ih. We then
define theasymptotic probabilityf L asu (L) = limp . tn(L) if the limit exists. We say thdt is almost
emptyif y(L) =0 andL is almost fullif u(L) = 1. We say thak obeyszero-one lawf L is almost empty
or almost full.

In this paper, we now definp-equivalenceby asymptotic probabilities as follows; we say that two
languagesl.1 andL,, arep-equivalenif u(L;ALy) =0. L1 ~p L, denotes that; andL, arep-equivalent
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anday ~p a, denotes thak (a1) ~, L(az) for two regular expressionsgi; anda,. Note that whether
two languages arp-equivalent is relative to a given alphal#et

Example2.1 We first consider a few simple examples about the asymptoticgbilities .
e Obviously,u(A*) =1 andu(0) = 0.

1 (if niseven

. Hence u(L(ay)) does not exist.
0 (if nis odd A(L(ay)

e Letay = (AA)*. Then,un(L(01)) = {

e LetA={aj,a} anda, = aj. Then,uy(L(a2)) = 5. Hence,u(L(az)) = 0.
e LetA={a} andaz = aj. Then,uy(L(as)) =1. Henceu(L(as)) = 1.

Example2.2 We now consider a few simple examples abpwgquivalence.

o LetA={ay,ay}, a1 = A*andaj = a1A*. Then,un(L(a1) A L(ay)) = % =1

Hence,a1 ~, a; doesnothold (by thatu(L(a1) A L(aj)) = 3).

o LetA= {ay,a,a3}, a2 = (a1Ua)*, andaj = 0. Then,un(L(a2) A L(ap)) = &.

Hence,a, >~ a5 holds (by thaiu(L(a2) A L(aj)) = 0).

o LetA={ay,a}, a3 = (aUap)*, andaj = 0. Then,un(L(a3) A L(aj)) = 1.
Hence,as ~ a5 doesnot hold (by thatu(L(as3) A L(aj)) =1).

Remark. The numerator of the definition @f,(L), |[{s€ A" | s L}|, is called thedensityof L, denoted
d_(n) [17, Chapter IX Section 2.2]. In particular, it is said thathaspolynomial density24] if d_(n) =
O(n¥) for some integek > 0. This property is similar tg-equivalence. Actually, whefA| > 2, if L
has polynomial density, them(L) = 0 holds. However, these properties are not equivalent lsecdue
converse does not clearly hold.

Remark. The asymptotic probability over finite strings is like a cogte example of the asymptotic
probability over finiteg-structures. Precisely, these are different in that thenéoris for languages
and the latter is for formulas. As for regular languagesuli@ganguages are precisely those definable in
monadic second-order logic over finite strings (MSQ [6]. Thus, the asymptotic probability for regular
languages is regarded as a concrete example of the asyenptobiability over finiteo-structures. In
additon, the zero-one law considered in this paper is nattalvathout order”, but about “with order”.
(This difference is important. For example, first-orderidogithout order (FO) has zero-one law, while
first-order logic with order (FQx]) does not/[1B].)

2.2 Descriptive Complexity

In this paper, we use the following results from descripteenplexity.
Theorem 2.1([11, Corollary 9.22]) FO(TC) = NL

Theorem 2.2([11, Theorem 9.11]) FO(DTC) = L

Theorem 2.3([11, Corollary 10.29]) SO(TC) = PSPACE

TC is a special function such that, for any binary relayi C(R) is the transitive closure &®. DTC
is also a special function such that, for afgterministicbinary relatiorR (i.e, (9,q4') € RA(9,d") e R—
qd =d"), DTC(R) is the transitive closure dr.
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3 Fundamental results ofp-equivalence

In this section, we give some fundamental resultp-equivalence.

First, p-equivalence is an equivalence relation (ice, is (1) reflective :L; ~, L1, (2) symmetric
i Ly ~p Lo = Ly ~p Ly, and (3) transitive :Ly ~p Ly ALy >~ L3 = Ly ~p La. ). [I and2 obviously
hold. [3 is proved by the following inequality. © |(L1A|/L§|)”An| < |(L1A‘kﬁ|)mn‘ + ‘(Lzﬁkﬁ‘)ﬂm‘ = pn(Ly A
L2) + tn(L2 A L3). On the right hand side, by the assumption,nlim pn(L1 A L) + pn(L2 A L3) = 0.
Therefore, by the squeeze theorgnil.; A Lz) = 0. Hencel1 ~p La.

3.1 p-equivalence andf-equivalence

In this subsection, we show a relationship betwpearquivalence and-equivalence.
Proposition 3.1.

(1) =C = Cp.

(2) WhenA| > 2, >~ C .

(3) WhenA| =1, ~¢ is equal to~~p,

Proof. (1) ~¢ C ~ is followed by that, ifL; A L is a finite set, them(Ly A L) = 0. (2) It is proved
by thata, ~,, a5 holds, whereas, ~ a; does not hold, whera, anda; are the regular expressions in
Example 2.P. (3) We are enough to prove thatD ~,. We prove the contraction , i.e.,liff ¢ Lo, then
L1 % L2. Note thatun(Ly A L) is 0 or 1 becausA| = 1 and thenA"| = 1. If Ly %+ Lo, thenly A L,

is an infinite set, i.e.uy(L1 A Lz) = 1 occurs infinitely. Therefore, lim,e tn(L1 A L2) # 0. Hence,
L1 %p Lo O

3.2 Arobustness ofp-equivalence

— %. However, some other defi-
nitions of the asymptotic probability af have been considered, for example, fR)L) = %
n-1

and (3)d(L) = ZK%ML) whereA<" = U0§k<nAk. (un is used byl[4], Salomaa and Soittdla[19], Sin'ya
[20], and us;u;: is used by Berstel [4]d, is used by Berstel et al. [5]. More details are written(in [21]
Let u*(L) = limp_e i (L) @andd(L) = limy . n(L) in the same way ag(L).

Proposition 3.2 says that the three almost equivalencesedebyu, yu*, andd are all equivalent
over regular languages. To prove it, we recall the followiwg theorems.

We have defined the asymptotic probabilitylo&s (1) (L)

Theorem 3.1(Stolz-Cesaro theorem (See e.Q.,/ [16])liMy e ﬁ:ﬁ:ﬁ: =1, thenlimp_o Bﬁn =1, where
{an}n_o is a sequence of integerf, }o_ is @ sequence of integers and strictly monotone, and | is la rea

number.

Theorem 3.2(Lynch [14]). For any regular language L, there exists a positive integeuuah that, for
any integer0 < b < a, limp e Uan+b(L) exists. (Letd belimp e tanib(L).)

Proposition 3.2. For any regular language L, the following three conditione all equivalent. (1u(L) =
0; (2) p*(L) =0; and (3) (L) =0.

Proof. 1. = 2. and 1.= 3. are proved directly by Theorem B.1. (This part holds e¥dnis not a
regular language.)
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Conversely, 3= 1. is proved by the following inequality.

n— 1
(L) = kz )5 z —Zk' oHariolb) ?1

,wherem= | 2| anda is an integer enjoying the properties stated in Thedrem Btzn, by Theorem

B.J (Letay = zﬂ?;é Hak+b(L) andby, = am), the limit of the above formula as approaches infinity is

zﬁ;})%’. By limp . (L) = 0 and the squeeze theorelm= 0 for everyb. Hence, lim_,. tn(L) = 0.
Moreover, 2.= 1. is proved by the following inequality.

(L) = 5 L)X AR S S g (L) X IACD SRESIARKYY s SR A
& ShoIAK T SRoglARKeD S0 koA Skoo A
_ Z L SR ek n(L) X [ARKTE A Rt T ARK Y
Sk AR+ SholAY Shoo A

,wherem= | 2| anda is an integer enjoying the properties stated in Thedrem Btzn, by Theorem
B (Letam = 315 tak+b(L) x |ARTP and by = $ -1 |A[2+P), the limit of the above formula as
approaches infinity iig;(l)lb X ZE/J%‘;)AW. By limp_e (L) = 0 and the squeeze theoretp,= O for
everyb. Hence, lim_,. tn(L) = 0. O

3.3 The DFA condition

In [20], the zero-one lawregarding the above asymptotic probabilities is introduaed some algebraic

characterizations are given. We now give the DFA conditiamich is different from the characterisations
in [20, Theorem 1]. This condition is very useful to constrtie algorithms in the following section.

(This condition can be proved via [20, Theorem 1]. Howevethis paper, we give a proof more directly
and simply.)

Lemma 3.1. For any DFA« = (Q,A,5,q°,F),

u(L(<7)) #0 <= Jq e F.(Reachabl&®,q) A Vg € Q.(Reachabléy, o ) — Reachabléy,q)))
u(L(«7)) # 0 means that either the limit does not exist, or the limit&xand is not equal to 0.

Proof. Let pn(q) = W and letin(Q') = 3 qeq Hn(q). (Note thatiin(L (7)) = pin(F).)

(=) We prove the contraposition. (i.e., ¥ig € F.(Reachabl&®,q) — 3¢ € Q.(Reachablgy,q) A
—~Reachabléy,q))), thenu(L(<?)) =0.)
LetRy = {d € Q| Reachabl&y,q)}. Then,

0 < u(F Z:Ilk Z:Hk(Rq) < Z: (1- |A|1Q) X M- (Rg) 1)
ge c

L
_Z: \AUQ\ 10 % Bk mod ) (Re)

(by using (1) repeatedly)
1

)L%,J
|A||Q|

<|F[x(1-
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(1) is proved as follows. It is enough to prove that, for @aflyc R, there exists a string such
that the length i$Q| and (g, s') & Ry. First, there exists a string] such thatd(q”,s|) ¢ Ry by
the assumption. We can assume that the leng#) isf at most|Q| because the shortest length of
strings] satisfyingd(q”,s;) ¢ Ry is at mosQ|. Secondd(q’,s;s,) ¢ Ry for any strings, by the
definition of Ry. Then,s = g/ s, satisfies the above condition by choosing a stgnghose length
is Q] —sy.

Hence, by that lim . [F| x (1— \A%)L%J = 0 and the squeeze theorem(L(</)) = u(F) =0.

(«) Let s be a string such thad(¢?,s) = q and letS, be the SCC (Strongly Connected Compo-
nent) containingy. Note thatS; is a sink SCC by the assumptiorig € Q.(Reachabléy,q ) —
Reachabl@y,q))). Then, by tha, is a sink SCCk(S;) > = for anyk > |so|. By the pigeon

= |Al%l
hole principle and tha§, is a sink SCC, for ank > |5, there exists a stat§ € S such that

H(d) > “‘l‘éj‘>. Lets be a string such thal(q,s') = q and|s| < |S| (note that we can read

from any statef € §; at most|;| steps.). Then,

(by 6(d',s) =q)

I‘lk+|3"(q) lek(q/) X |A||Sl|

w(s) 1 1 1 1 1 1 1

=gl TAE S e m) A AR < ) A

for anyk > |sp|. We can prove thati(L(<7)) = 0 (i.e.,Ve > 0.3N.¥n> N.|un(F)| < €) is not true

by the above inequality.s(= IA\% X ﬁ X IA\% is a counter example.) Therefopg(L (7)) # 0.
O

We now introduce the xor automatons of two DFASs.

Definition 3.1. Let o/ = (Qq,A, &,02,F1) and.« = (Q2,A, &, 3, F>) be DFAs. Then, the xor automa-
ton of o7 and.er, /1 @ o5, is the DFA(Q1 x Q2,A, &', (A2, 09),F’), where

(1) &'((dr,%2),8) = (61(0h, &), %(G2,)); and
(2) F'={(d1, %) | o € Fa xor oz € R}
Then, the next proposition easily follows.
Proposition 3.3. For any DFAs@) and .o, L(aA @ o) = L(e#) A L(97).

Moreover, note that we can construgf @ o4 from o4 and.«% in logarithmic space.

4 The computational complexity upper bounds ofp-equivalence prob-
lems

In this section, we show the computational complexity ugpaunds ofp-equivalence problems. In
particular, in terms of the (fully) equivalence problems REGs, some algorithms have already been
developed. One approach is to transform two regular expresinto two equivalent NFAs by Meyer
and Stockmeyer [22, Proposition 4.11]. We now give alganghfor the p-equivalence problems by
using standard results from descriptive complexity [L1je3e algorithms are given by the condition in
Lemmd3.1L. We prove the next theorem.
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Theorem 4.1.

1. The p-equivalence problem for DFAs is in NL.

2. The p-equivalence problem for unary DFAsisin L.

3. The p-equivalence problem for NFAs is in PSPACE.
4. The p-equivalence problem for unary NFAs is in coNP.

Proof.

1. We first give a reduction from a DFA to a first-order strueturet.#Z = (Q,{Ra}aca, R_,q°, F) be
the first-order structure corresponding to a DEA= (Q,A, 6,¢°,F), where (1)R, C Q? is a binary
relation such thafg;, gz) € Ry <= &(tp,a) = gz for anya € A; and (2)R_ C Q? is a binary relation
such that(gy,q2) € R- <= Ja < A(q1,q) € Ra. (Note that we can construc#Z” from . in
logarithmic space.)

Let @4 = (Q1,A, &1, 0, F1) and % = (Q2,A, &, 09, F2) be two given DFAs. Then, the first-order
structure.# 2“2 can be constructed in logarithmic space. The DFA conditioheémmd3.113q €
F’.ReachabléP, q) AVd € Q1 x Q.. Reachablég, ') — Reachabléy',q), can be written in FO(TC)
as3q.(F(q) AR (q°,q) AVY.(R* (g,q) — R (d,q))), whereR*[is the reflective transitive closure
of R_. Thus, by NL = FO(TC) (Theorein 2.1), theeequivalence problem for DFAs is in NL.

2. In the case ofA| = 1, the sentence written in FO(TCYg.(F(g) AR (d°,q) AVY.(R (9,9) —
R*(q,q))), is also written in FO(DTC) becaud®_ is deterministic by that#} & % is also unary
DFA. Therefore, by L = FO(DTC) (Theoreim 2.2), theequivalence problem for unary DFAs is in L.

3. Lete/ = (Q1,A 4,00, F1) and o = (Qz,A, &,09,F2) be two given NFAs. Then, we construct
a second-order structure from these NFAs. L&t"19%2 = (Q; W Qy, {Ra}aca,R_,Q%F’) be the
second-order structure, where ®) C [1(Q1 % Qy)? is a binary second-order relation such that
(Q,Q) ERa <= 8(QNQLAU&KQNQa) =Q" foranyac A ()R- CI(Q1wQy)? is
a binary second-order relation such tt@t, Q") e R_ <= Ja.(Q,Q") € Ry; (3) Q° = {2, 09}; and
(4) F' CO(Q1wWQy) is a unary second-order relation such tRate F' < (3q1 € @ NQ1.q1 €
Fp) xor (3gp € @ NQ2.02 € F2). (Note that we can construc ““1%<2 from <7, and.o% in polyno-
mial space.) This structure corresponds to the xor autamatdhe two DFAs given by powerset
construction of these NFAs.

Then, the DFA condition in Lemm@a_3.1 can be written in SO(TE€)3®.(F(Q) A R (Q°,Q) A
VQ.(RE(Q,Q) — R.(Q,Q))), whereR" is the reflective transitive closure &_. Therefore, by
PSPACE = SO(TC) (Theorem 2.3), theequivalence problem for NFAs is in PSPACE.

4. Inthis case, we give a coNP algorithm for gixequivalence problem directly because it may be easier
than using Fagin’s Theorem [11].
Let A be then x n adjacency matrix generated from a unary N&A= ({1,...,n},{0},9,1,F). More
preciselyAis an adjacency matrix such that (B); ; = 1if j € 5(i,0), and (2)(A)i,; =0if j & 4(i,0).
It is immediate that O L(.«7) if and only if there exists a numbgre F such that A")1 ; = 1. The
following algorithm (Algorithm(1) is based on the next lemma
Lemma 4.1. For any unary NFAsg/ and .o, L(24) #, L(e%) <= there exists n such that
1. 21Qu+IQ2l < « 21+Qul+Q2l: gng
2. 0"e (o) A L().

%R’ (q,q) denotesTC(R-)(q,q) va=d.
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Proof. Note thatl (.21) ~, L(.2%) if and only if L(.e71) ~¢ L(.o2) by that these NFAs are unary NFAs
and Proposition_3]1. Then, it is enough to prove that) A L(<%) is a infinite set if and only
if there existsn such that (1) B+ < n < 2M+Qu+IQ2l; and (2) @ € L(.1) A L(a). Letvg =
(A'{ . el,A'§ -e1), whereA; andA; are the adjacency matrices generated fegrand.o%,, respectively;
andey is the unit vectof1,0,...,0). Itis immediate that, for ank > 2/Qu+I2l v occurs infinitely in
the sequencéw}i_, because the number of the patternipfs at most £+l Moreover, for any
v occurring infinitely in the sequendai )y, there exist&’ such that 82102 < k' < 2 x 2/Qul+IQ2|
andv = v because the period of the sequerigg}y_, is at most 241+l Hence, this Lemma is
proved. O

Then, we give an algorithm (Algorithid 1) to search a numbsuch that satisfies the condition 1 and
the condition 2 in Lemma_4.1. Nondeterministically “gueti® binary representation of and test
whether there is a path in the adjacency matriApandA; of lengthn to accepting states. This idea
is based on [15, Theorem 6.1] that states that the equivajameblem for unary NFAs is in coNP. The
algorithm runs in nondeterministically polynomial time.

Algorithm 1 p-equivalence Problem for unary NFA
Ensure: L(44) ~, L(2%)? (Trueor False
(AL, A) < (A1,A2), whereA; andA; are the adjacency matrices generated from two unary N&AS,
and.as, respectively.
d<1
while d < 1+ |Q1| + |Q2| do
(ALA,) < (A < ALA, x A) or (A}, A,) < (A] x AL x A, A, x A, x Ap) (nondeterministically)
d<d+1
end while
if (3].(A7)1; =1) xor (3].(A5)1,; = 1) then
returnFalse
else
returnTrue
end if

In Algorithm[dl, if any process in the algorithm returfisue, it is shown thatl (.1) ~, L(%%). Oth-
erwise (i.e., if there exists a process such that retbaise), it is shown that (.2) %, L(.2%).

Therefore, thgg-equivalence problem for unary NFAs is in coNP.

4.1 Some generalized equivalence problems

We conclude this section with a result for some generalizgivalence problems.

Corollary 4.1. Let x-equivalence problem be an equivalence problem gitisthat the x-equivalence
problem for DFAs is logarithmic space reducible to thg-model-checking problem (i.e, the problem to
decide whether# satisfiesdy for a given model#, whered, is a first-order sentence with transitive
closure). Then,

1. The x-equivalence problem for DFAs is in NL.
2. The x-equivalence problem for unary DFAs s in L.
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3. The x-equivalence problem for NFAs is in PSPACE.

For example,f-equivalence([2| 13] andE-equivalence[[B] satisfy the condition afequivalence,
whereE is a finite set. The DFA conditions of these equivalences eaedsily written in a first-order
sentence with transitive closure.

5 The computational complexity lower bounds ofp-equivalence problems

In this section, we show the computational complexity lolweunnds ofp-equivalence problems.
Theorem 5.1.
1. The p-equivalence problem for DFAs is NL-hard.

2. The p-equivalence problem for unary REGs is coNP-hard.
3. The p-equivalence problem for REGs is PSPACE-hard.

Proof. 1. We reduce the GAP (Graph Accessibility Problem) to thesbdlpms, whereéGAP = {G |
is ann x n adjacency matrix that has a path from node 1 to ngd€This proof is based on[12, The-
orem 26].) Note that GAP is NL-hard [12]. We define the DBEA = ({—1,1,...,n},{1,...,n},d,1,
{n}), where (1)4(i, j) = jif (i,]) isan edge o6 and 1<i <n; (2) 3(n,j) =n; and (3)o(i, j) = —1
for all other values of, j. In this reduction, once you visit at you will not get out fromn. Then,
it is immediate thaG € GAP <= L(/) %, 0 and note that this reduction is in logarithmic space.
Hence, thep-equivalence problem for DFAs is coNL-hard. By NL = coNL [B3], thep-equivalence
problem is also NL-hard.

2. This part can be solved by the same reduction_as [15, Time6rg]. This is a reduction from the
complement of the equivalence problem to 3-SAT. Note thaA3-is a well-known NP-hard problem
[7]. Let the regular expressioB and thek-th prime numbemy be the same a5 [15, Theorem 6.1].
Intuitively, a string ® corresponds to an assignment in 3-SAT whiotlevariable is True[False] if and
only if i = 1]0](mod px) andE corresponds to a given formula. @ L(E) means that the assignment
corresponding to'Gsatisfies the formula correspondingHo
Then, we can easily show thiatE) = A* <= L(E) ~¢ A" because, for any two numbeigandiy,
such thati; = io(mod [, p«), 0* € L(E) <= 02 < L(E) holds. Therefore, by Propositién 3.1,
L(E) =A* < L(E) ~p A*. Hence, thep-equivalence problem for unary REGs is coNP-hard.

3. It is enough to prove that theequivalence problem for REGs is NLINSPACE-hard becausna |
guage that is CSL-hard (i.e, NLINSPACE-hard) is also PSPAGE [9, Lemma 1.10.(1)]. The
reduction of this proof is based an [9, Proposition 2.4], ahhis about that the equivalence problem
for REGs is PSPACE-hard. Intuitively, in these two redutsioa regular expressiar, corresponds
to a given nondeterministic linear-space bounded Turinghim& M and a given input stringand a
strings ¢ L(ag,) corresponds to an accepting sequenci! @i inputs.

LetM = (Q,Aw, J,9°, %) be a nondeterministic linear-space bounded Turing maehide=a; ... a,

be an input string, where (X) is a finite set of states; (B is a finite alphabet, whergy always
contains the blank symbol (3) & : Q x Ay — [0(Q x Ay x {L,R}) is a transition function; (4)° € Q

is the initial state; and (52 € Qs the acceptance state. We also require that once the neastiiers

its acceptance states, it never leaved/itaccepts an input if the machine can reach an acceptance
stateg? from the initial configuration (i.e, the header is at thertedst position, the state &, and the
tape isa; ... an) by finitely transitions. Then, we construct the R = a1 UazU as as foIIow;

SAfinite set{sy,..., s} denotes the regular expressi|n---Us, andA\ ¢ denotesA\ {c}.
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(@ A={#UAWU(Qx An),
(b) (input error)ay = ((A\#) U#((A\ (¢, a1)) U (d°,a1) ((A\ a2) Uap((A\ ag) Uag(...)))))A",
(c) (acceptance errogp = (A\ (U{9?} x Am))*,
(d) transition errorprz = Ue, ¢, csea(A\ (U{0?} x Am))*CaC2C3AM2(A3\ iy (c1,Cp,C3))A", and
e) fu:A>— is the transition function foM. Formally, eachfy(cy,cs,c3) is the smallest
(e) fu: A3 = O(A3) is th ition function foM. F Il hf is th Il
set that satisfies the following conditions:
(i.) If c1=(g,&), c; = &, and(q,a},R) € 6(q,a1), then(al, (¢ ,a2),¢3) € fm(c1,C2,C3);
(i) If c1=(g,a1) and(q’,ay,L) € 6(q,a1), then(&y, ¢z, ¢C3) € fu(ca,C2,C3);
(iii.) If c2=(q,a2), c3 = as, and(q',a,, R) € 6(q,a), then(cy, &, (d',as)) € fm(C1,C2,C3);
(iv.) If co=(q,a2), 1 = &, and(q, a5, L) € (d,a), then((d',a1),85,C3) € fm(C1,C2,C3);
(v.) If c3=(g,a3), C2 = @, and(q, &, L) € 6(q,as), then(cy, (d,a2),85) € fum(ca,C2,C3);
(vi.) If c3 = (g,a3) and(q', a5, R) € 5(q,as), then(cy, ¢z, 8) € fum(C1,C2, C3);
(VII) If c; =&, cp = ap, andcz = ag, then(cl,cz,03) € fu (Cl,Cz,C3).
Note that the regular expressiofy, can be constructed in polynomial time. Then, we prove thé nex
Lemma. This Lemma gives a relationship betwé¢ag,) and acceptance runs bf on the inputs.

Lemma 5.1. For any regular expressiony, constructed in the above manner and for any strihg s
s & L(ay) if and only if S is in the form of

#oP,a))...a%.. . #a ... (d &) )...a#. . . #al ... (q",&f )Cmi1...C

, Where (@) s= a‘l’. 0. (b) o° is the initial state in M; (c) § is the acceptance state in M; and
(d)foreachi( <i< m) #a' ..(q, ak) .a, denotes the i th configuration (i.e., in step i, each j-th
(1< j<n)characteris %fl the state is g and the header is at the-kh position) and this configuration
is obtained from the+ 1 th configuration by a transition.

Proof.
(only if) (a) and (b) are followed by (input error); (c) (i.g% occurs ins) is followed by (acceptance
error); (d) is followed by (transition error).

(if) First,s ¢ L(a) is followed by thas' is form of #q°,a9) ---a3---. Seconds' ¢ L(a») is followed
by thatg? occurs ins. Third, s & L(a3) is followed by thats' represents valid configurations
until g does not occur is'. Therefores ¢ L(ag).

O

It is immediate that ang satisfying the conditions in Lemniab.1 corresponds to ae@ence run
of M on the inputs; and, for any acceptance run idf on the inputs, there exists a string such that
satisfies the conditions in Lemrhab.1. Then, we can provedkelremma.

Lemma 5.2. For any nondeterministic linear-space bounded Turing nraei and for any string s,
the following three conditions are equivalent.

(a) M does not accept the input s.
(b) L(ay) =A"
(c) Lagy) ~pA".
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Proof. (a) < (b) is followed by Lemma&a5]1 and the above consideration={k() is easily followed
by = C ~p. We only prove (c)= (b). We prove the contraposition.

WhenL(ay) # A", lets be a string notirL(ay, ). It is immediate that, for any stringf, s's” is also
in the form of #qC,a?)...a3#...#a) ... (d, 8, )...a#...#a ... (9™, & )cmy1...G. (Note that any
string matchegm1...¢.)

Therefore, iy (L(ag)) < 1— IA\% andy (L(ag) A A) =1—py(L(ag)) >1—(1— IA\%) = IA\%

hold, wheren’ > |S'|. Hence, byuy (L(ag) A A*) # 0, L(ag) #p A"

Thus, we can reduce the membership problem for nondetestigitinear-space bounded Turing ma-
chine to thep-equivalence problem for REGs. Therefore, frequivalence problem for REGs is
PSPACE-hard.

O

Remark.The principal difference between this reduction and thectdn of [9, Proposition 2.4] is only
(transition error). By this modificatior,(a) ~, A* <= L(a) = A* holds.

The next theorem is obtained from Theorlem 4.1 and Thebrem 5.1
Theorem 5.2.

1. The p-equivalence problem for DFAs is NL-complete.

2. The p-equivalence problem for unary DFAs isin L.

3. The p-equivalence problems for NFAs and REGs are PSPAGHlete.

4. The p-equivalence problems for unary NFAs and unary RE&SsaNP-complete.
Proof. We can transform any regular expressmrnnto an NFA <7, such that_(a) = L(<7,) in poly-
nomial time (e.g., Thompson’s construction [[25] 18]). Fearaple, it is an easy consequence that the
p-equivalence problem for REGs is in PSPACE by the constinaind Theorem 4.1. It is also an easy

consequence that tipeequivalence problem for NFAs is PSPACE-hard by the constm and Theorem
5.1. O

5.1 Some generalized equivalence problems

We conclude this section with a result for some generalizgivalence problems.

Corollary 5.1. Let x-equivalence problem be an equivalence problem gatigthat = C ~, C ~,.
Then,

(1) The x-equivalence problems for REGs and NFAs are PSRACdE-
(2) The x-equivalence problem for DFAs is NL-hard.
(3) The x-equivalence problems for unary REGs and unary MFAsoNP-hard.

Proof. We first show that (ay;) ~x A" <= L(ay) ~p A"
(=) Itis followed by that~, C ~,,.
(<) By L(ay) =A" <= L(ay) ~p A" (Lemmd5.2)L(ay) = A*. Then,L(a) ~, A" is followed by

:g:)(.
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Therefore, we can reduce the membership problem for nomdietistic linear-space bounded Turing
machine to thex-equivalence problem for REGs by using the same reductidgin@oreni 5.1L. Hence, (1)
is proved.

(2) and (3) are also proved in the same way as (1). (2) is feltbly thal_ (.g) %p 0 <= L(ag) #
0 is described in Theorem 5.1. (3) is followed by th&E) ~, A* <= L(E) = A* is described in
Theoreni5.11. O

Moreover, the next corollary is obtained from Corollaryl 4rid Corollary 5.11

Corollary 5.2. Let x-equivalence problem be an equivalence problem getgsthat (1) the x-equivalence
problem for DFAs is logarithmic space reducible to thg-model-checking problem; and (2 C ~x C
~n. Then

P )

(1) The x-equivalence problems for REGs and NFAs are PSRAGiplete.
(2) The x-equivalence problem for DFAs is NL-complete.

For example,f-equivalence an&-equivalence satisfy the condition xfequivalence, wherk is a
finite set. Hence, for any finite st the E-equivalence problem for NFAS|[8] is also PSPACE-complete,
wherea< is fixed.

6 The computational complexities of zero-one law

We define theero-one problemas the problem to decide whether a given languagkeys zero-one law
[20] (i.e.,u(L) =0oru(L) =1). (In terms of time complexity, the zero-one problem forAO& O(|A|n)
[20], where|A| is the size of alphabet andis the number of states.)

In this section, we show that the zero-one problem andpteguivalence problem are the same in
terms of the computational complexities.

Corollary 6.1.
1. The zero-one problem for REG and NFA are PSPACE-complete.
2. The zero-one problem for DFA is NL-complete.
3. The zero-one problem for unary REG and unary NFA are cobiRptete.

4. The zero-one problem for unary DFA is in L.

Proof. First, each zero-one problem can be solved by paequivalence problems ds~, 0V L ~,
A*. Therefore, the zero-one problems are not harder faquivalence problems. For example, if
p-equivalence problem for REGs is in PSPACE, then zero-oakl@m for REG is also in PSPACE.

It is also proved that the computational hardness of the-aeeoproblems are given in the almost
same way as the computational hardness foipteguivalence problems as follows.

REG and NFA In Theoreni 501, for any regular expressimf constructed fronM ands, L(ag;) %, 0 is
easily followed by thak (##A*) C L(ay,). Therefore] (ay,;) has zero-one law= L(ag;) ~p A"

DFA In Theorem[ 5.1, we intentionally create a path to 0 by a newaditere. More precisely, we
define the DFAe = ({0,1,...,n},{e/1,...,n},d,1,{n}), where (1) ifi # n, thend(i,e) = 0;
(2)if i =n, thend(i,e) = n; and (3) otherwised(i, ) is the same aé(i, j) in Theoreni5.01. Then,
L(a%) #p A" is easily followed by that, for any stringe L(eA"), s¢ L(%). Therefore L (.a)
has zero-one law—= L(4/g) ~; 0.
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unary REG and unary NFA We can use the reduction in [15, Theorem 6.1].[1n [15, Thedseh], E
is always an infinite set. Thereforie(E) ¢ 0. By LemmdZ4.lll (E) %, 0. HenceE has zero-one
law <= L(E) ~p A".

O

7 Conclusion and Future Work

We have got the following results (Talile 1). In regular lsages, thep-equivalence problems and the
(fully) equivalence problems are the same in terms of theprdgaiional complexities. Moreover, we
have got the same complexity computational results for speneralized equivalence problems.

One of the possible future works is to study abptgquivalence for more complex language classes
(e.g., context free languages). In connection with alneggtivalence, it is also interesting to characterize
hyper-minimization based op-equivalence like[3, Theorem 3.4].

unary alphabet/A| = 1) general case
REG | DFA | NFA REG | DFA | NFA
equivalence coNP-c inL coNP-c | PSPACE-c| NL-c PSPACE-c
[15] [12] [15] [15] [12] [15]

p-equivalence| coNP-c inL coNP-c | PSPACE-c| NL-c PSPACE-c
(Th52) | (Th[4d) | (Th(52) | (Th52) | (Th52)| (ThE.2)
zero-one coNP-c inL coNP-c | PSPACE-c| NL-c PSPACE-c
(Cori6.1)| (Corl6.1)| (Corl6.1)| (Cori6.d) | (Cori6.1)| (Cori6.d)

Table 1: The computational complexities of some problemsdgular languages
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