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Propositional linear time temporal logic (LTL) is the standard temporal logic for computing appli-
cations and many reasoning techniques and tools have been developed for it. Tableaux for deciding
satisfiability have existed since the 1980s. However, the tableaux for this logic do not look like
traditional tree-shaped tableau systems and their processing is often quite complicated.

In this paper, we introduce a novel style of tableau rule which supports a new simple traditional-
style tree-shaped tableau for LTL. We prove that it is sound and complete. As well as being simple
to understand, to introduce to students and to use, it is also simple to implement and is competitive
against state of the art systems. It is particularly suitable for parallel implementations.

1 Introduction

Propositional linear time temporal logic, LTL, is important for hardware and software verification [21].
LTL satisfiability checking (LTLSAT) is receiving renewed interest with advances in computing power,
several industry ready tools, some new theoretical techniques, studies of the relative merits of different
approaches, implementation competitions, and benchmarking: [12, 23, 21]. Common techniques include
automata-based approaches [28] and resolution [19] as well as tableaux [13, 30, 17]. Each type of
approach has its own advantages and disadvantages and each can be competitive at the industrial scale
(albeit within the limits of what may be achieved with PSPACE complexity). State of the art systems
such as [22] often incorporate a variety of previous approaches working in parallel and thus piggy-back
on the fastest existing tableaux and fastest versions of other approaches.

Traditionally tableaux present as tree-shaped [4, 26, 11]. For temporal logic, tableaux tend to be
declarative, which means that the definition of a node is as a set of formulas (so a particular set appears
at most once), and the successor relation is determined by those formulas; and they tend to be graph-
shaped. Figure 1 shows a typical graph-style tableau, a more general graph rather than tree-shaped (this
from [8]). In general, these tableau constructions need the whole graph to be present before a second
phase of discarding nodes takes place.

Figure 2 shows the tree-style tableau from [25] which is unusual: now nodes are independent objects
arranged in a tree and although they are labelled by sets of formulas, the same label may appear on
different nodes. This stands out in being tree-shaped (not a more general graph), and in being one-
pass, i.e., not relying on a two-phase building and pruning process. It also stands out in speed (i.e.,
faster than other tableau approaches) [12] and is thus the state of the art in tableau approaches to LTL.
Construction of tree-shaped tableaux can be local as we do not need to check if the same label has already
been constructed somewhere else. However, there are still elements of communication between separate
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Figure 1: A graph-shaped tableau for g = aUb from
[8]

Figure 2: A tree-shaped tableau from [24]

branches and a slightly complicated annotation of nodes with depth measures that needs to be managed
as it feeds in to the tableau rules. So it is not in the traditional style of classical tableaux [1].

The following is a new simpler tableau for LTL. While many of the rules are unsurprising given ear-
lier LTL tableaux [30, 25], the new rule to curtail the construction of repetitive loops is interesting. Loop
checking is a common concern in tableau approaches modal logics and there have been many strange
rules proposed. There is a loop checker (for a branching logic) in [2] which cuts construction after a label
appears three times: but this would cause incompleteness in LTL. For logic S4, [14] require that boxes
must accumulate. For LTL we have loop checkers in [10] and [6] but these have not proven practical
because they involve collecting unwieldy annotations (of conjuncts from a doubly exponentially-sized
closure set) or sets of sets of contextual formulas (see [29] for a more detailed account). The new PRUNE
rule presented here is instead simple and very intuitive: don’t return to a label for a third time unless there
is progress on fulfilling eventualities after the second time.

Perhaps the most similar previous work is that in [5] which presents a tableau for linear time µ-
calculus in which there are several rules operating on the sequence of labels in a branch. One rule called
(v) classifies a branch as successful if a label is repeated three times with the same fixed point being
unwound first in each intervening interval. This corresponds roughly to having the same eventuality
postponed first in each interval: so not quite as easy to define or check in temporal logic. As far as the
author knows this tableau has neither been implemented, nor translated to work with LTL.

Thus the PRUNE rule is completely novel and a surprisingly simple way to curtail repetitive branch
extension. It may be applicable in other contexts. The overall tableau is thus novel and it is unique in
that it is wholly traditional in style (labels are sets of formulas), tree shaped tableau construction, no
extraneous recording of calculated values, contexts or annotations, just looking at the labels. It is also
unique in allowing separate parallel development of branches.

Because of the tree shape, the tableau search allows completely independent searching down separate
branches and so lends itself to parallel computing. In fact, this approach is “embarrassingly parallel”
[9]. Thus there is also potential for quantum implementations. Developing a parallel implementation is
ongoing work, however: even though only formula set labels need to be recorded down a branch, there
is a need to work out an efficient way for memory of the sequence of labels to be managed below nodes
where two branches separate.

Solid experimental work in [3] (see section 7) shows that the new tableau is competitive but that is



M. Reynolds 289

not the task of this paper.
The interesting completeness and termination of the tableau search is proved here. The proofs are

mostly straightforward. However, the completeness proof with the PRUNE rule is interesting, new and
quite complicated. The main task of this paper is to present that proof.

In this paper we briefly remind the reader of the well-known syntax and semantics for LTL in Sec-
tion 2, describe our tableau approach in general terms in Section 3, present the rules in Section 4, com-
ment on the use of the rules and provide some motivation for our approach in Section 5, discuss sound-
ness and prove completeness in Section 6, and briefly discuss implementation issues in Section 7, before
a conclusion in Section 9. Full versions of the (short) proofs can be found in an online technical report
[20].

2 Syntax and Semantics

We assume a countable set AP of propositional atoms, or atomic propositions.
A (transition) structure is a triple (S,R,g) with S a finite set of states, R⊆ S×S a binary relation called

the transition relation and labelling g tells us which atoms are true at each state: for each s∈ S, g(s)⊆AP.
Furthermore, R is assumed to be serial: every state has at least one successor ∀x ∈ S.∃y ∈ S s.t.(x,y) ∈ R.

Given a structure (S,R,g), an ω-long sequence of states 〈s0,s1,s2, ...〉 from S is a fullpath (through
(S,R,g)) iff for each i, (si,si+1) ∈ R. If σ = 〈s0,s1,s2, ...〉 is a fullpath then we write σi = si, σ≥ j =
〈s j,s j+1,s j+2, ...〉 (also a fullpath).

The (well formed) formulas of LTL include the atoms and if α and β are formulas then so are ¬α ,
α ∧β , Xα , and αUβ . We will also include some formulas built using other connectives that are often
presented as abbreviations instead. However, before detailing them we present the semantic clauses.

Semantics defines truth of formulas on a fullpath through a structure. Write M,σ |= α iff the formula
α is true of the fullpath σ in the structure M = (S,R,g) defined recursively by:

M,σ |= p iff p ∈ g(σ0), for p ∈ AP;
M,σ |= ¬α iff M,σ 6|= α;
M,σ |= α ∧β iff M,σ |= α and M,σ |= β ;
M,σ |= Xα iff M,σ≥1 |= α; and
M,σ |= αUβ iff there is some i≥ 0 s.t. M,σ≥i |= β and for each j,

if 0≤ j < i then M,σ≥ j |= α .
Standard abbreviations in LTL include the classical > ≡ p∨¬p, ⊥ ≡ ¬>, α ∨ β ≡ ¬(¬α ∧¬β ),

α → β ≡ ¬α ∨ β , α ↔ β ≡ (α → β )∧ (β → α). We also have the temporal: Fα ≡ (>Uα), Gα ≡
¬F(¬α) read as eventually and always respectively.

A formula α is satisfiable iff there is some structure (S,R,g) with some fullpath σ through it such
that (S,R,g),σ |= α . A formula is valid iff for all structures (S,R,g) for all fullpaths σ through (S,R,g)
we have (S,R,g),σ |= α . A formula is valid iff its negation is not satisfiable.

For example, >, p, F p, p∧X p∧F¬p, Gp are each satisfiable. However, ⊥, p∧¬p, F p∧G¬p,
p∧G(p→ X p)∧F¬p are each not satisfiable.

We will fix a particular formula, φ say, and describe how a tableau for φ is built and how that decides
the satisfiability or otherwise, of φ . We will use other formula names such as α , β , e.t.c., to indicate
arbitrary formulas which are used in labels in the tableau for φ .
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3 General Idea of the Tableau

The tableau for φ is a tree of nodes (going down the page from a root) each labelled by a set of formulas.
To lighten the notation, when we present a tableau in a diagram we will omit the braces {} around the
sets which form labels. The root is labelled {φ}.

Each node has 0, 1 or 2 children: it is the parent of its children. A node is called a leaf if it has 0 chil-
dren. A leaf determines a branch, being itself, its parent, its parent’s parent e.t.c.. A leaf may be crossed
(×), indicating its branch has failed, or ticked (

√
), indicating the branch is successful. Otherwise, a leaf

indicates an unfinished branch and having an unfinished branch means that the tableau is unfinished. In
that case there will be a way to use one if the rules below to extend the branch and the tableau.

The whole tableau is successful if there is a successful branch. This indicates a “yes” answer to the
satisfiability of φ . It is failed if all branches are failed: indicating “no”. Otherwise it is unfinished. Note
that you can stop the algorithm, and report success if you tick a leaf even if other branches have not
reached a tick or cross yet.

A small set of tableau rules (see below) determine whether a node has one or two children or whether
to cross or tick it. This depends on the label of the parent, and also, for some rules, on labels on ancestor
nodes, higher up the branch towards the root. The rule also determines the labels on the children.

The parent-child relation is indicated by a vertical arrow in some diagrams but otherwise just by
vertical alignment. However, to indicate use of one particular rule (coming up below) called the TRAN-
SITION rule we will use a vertical arrow (↓=) with two strikes across it, or just an equals sign.

A node label may be the empty set, although it then can be immediately ticked by rule EMPTY
below.

A formula which is an atomic proposition, a negated atomic proposition or of the form Xα or ¬Xα

is called elementary. If a node label is non-empty and there are no direct contradictions, that is no α and
¬α amongst the formulas in the label, and every formula it contains is elementary then we call the label
(or the node) poised.

Most of the rules consume formulas. That is, the parent may have a label Γ = ∆ ·∪ {α}, where ·∪
is disjoint union, and a child may have a label ∆∪{γ} so that α has been removed, or consumed. In
diagrams, if it is useful we sometimes indicate such a formula, known as a pivot formula, by underlining
it.

See the ¬p∧X¬p∧ (qU p) example given in Figure 3 of a simple successful tableau. Note that if
one was building, or searching, the tableau in a depth-first left-to-right manner then the tableau could
be judged as successful after the left-most ticked branch was found and we could terminate the search
without constructing quite as much as shown. However, we are not assuming that tableaux need to be
constructed in that order.

As usual, a tableau node x is an ancestor of a node y precisely when x = y or x is a parent of y or a
parent of a parent of y, e.t.c. Then y is a descendent of x and we write x≤ y. Node x is a proper ancestor
of y, written x < y, iff it is an ancestor and x 6= y. Similarly proper descendent. When we say that a node
y is between node x and its descendent z, x ≤ y ≤ z, then we mean that x is an ancestor of y and y is an
ancestor of z.

A formula of the form X(αUβ ) (or XFβ or X¬Gβ ′) appearing in a poised label of a node m, say,
also plays an important role. We will call such a formula an X-eventuality because αUβ (or Fβ or ¬Gβ ′)
is often called an eventuality, and its truth depends on β (or β = ¬β ′ in the G case) being eventually true
in the future (if not present). If the formula β appears in the label of a descendent node n of m then we
say that the X-eventuality at m has been fulfilled by n by β being satisfied there.



M. Reynolds 291

¬p ∧X¬p ∧ qUp

��
¬p,X¬p ∧ qUp

��
¬p,X¬p, qUp

ss ++
¬p,X¬p, p
×

¬p,X¬p, q,X(qUp)

��
=

¬p, qUp

ss ++
¬p, p ¬p, q,X(qUp)

��
=×
qUp

ss ''
p

��
=

q,X(qUp)

��
=

qUp√
...

1

Figure 3: ¬p∧X¬p∧ (qU p)

4 Rules

There are twenty-five rules altogether. We would only need ten for the minimal LTL-language, but recall
that we are treating the usual abbreviations as first-class symbols, so they each need a pair of rules. In
this conference paper we skip the rules for abbreviations.

Most of the rules are what we call static rules. They tell us about formulas that may be true at a single
state in a model. They determine the number, 0, 1 or 2, of child nodes and the labels on those nodes from
the label on the current parent node without reference to any other labels. These rules are unsurprising
to anyone familiar with any of the previous LTL tableau approaches.

To save repetition of wording we use an abbreviated notation for presenting each rule: the rule A/B
relates the parent label A to the child labels B. The parent label is a set of formulas. The child labels
are given as either a

√
representing the leaf of a successful branch, a × representing the leaf of a failed

branch, a single set being the label on the single child or a pair of sets separated by a vertical bar | being
the respective labels on a pair of child nodes.

Thus, for example, the U-rule, means that if a node is labelled {αUβ} ·∪∆, if we choose to use the
U-rule and if we choose to decompose αUβ using the rule then the node will have two children labelled
∆∪{β} and ∆∪{α,X(αUβ )} respectively.

Often, several different rules may be applicable to a node with a certain label. If another applicable
rule is chosen, or another formula is chosen to be decomposed by the same rule, then the child labels
may be different. We discuss this non-determinism later.

The four (static) termination rules:
EMPTY-rule: {} /√; ⊥-rule: {⊥} ·∪∆ /×;
CONTRADICTION-rule: {α,¬α} ·∪∆ /×; ¬>-rule: {¬>} ·∪∆ /×.

These are the positive static rules:
>-rule: {>} ·∪∆ / ∆.
∧-rule: {α ∧β} ·∪∆ / (∆∪{α,β}).
U-rule: {αUβ} ·∪∆ / (∆∪{β} | ∆∪{α,X(αUβ )}).

There are also static rules for negations:
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¬¬-rule: {¬¬α} ·∪∆ / ∆∪{α}.
¬∧-rule: {¬(α ∧β )} ·∪∆ / (∆∪{¬α} | ∆∪{¬β}).
¬U-rule: {¬(αUβ )} ·∪∆ / (∆∪{¬α,¬β} | ∆∪{¬β ,X¬(αUβ )}).

Although the following rules can be derived from the above, and although we are trying to abbreviate
the explanation here, the following derived rules may be useful for the reader to better understand the
brief examples presented in this paper. They are static rules for F and G and their negations:

F-rule: {Fα} ·∪∆ / (∆∪{α} | ∆∪{XFα}).
G-rule: {Gα} ·∪∆ / ∆∪{α,XGα}.
¬G-rule: {¬Gα} ·∪∆ / (∆∪{¬α} | ∆∪{X¬Gα}).
¬F-rule: {¬Fα} ·∪∆ / ∆∪{¬α,X¬Fα}.

The remaining four non-static rules are only applicable when a label is poised (which implies that
none of the static rules will be applicable to it). In presenting them we use the convention that a node u
has label Γu. More than one of the following rules may apply to a particular leaf node at any time: in
that case, we apply the rule which is listed here first.

[LOOP]: If a node v with poised label Γv has a proper ancestor (i.e., not itself) u with poised label
Γu such that Γu ⊇ Γv, and for each X-eventuality X(αUβ ) or XFβ in Γu we have a node w such that
u < w≤ v and β ∈ Γw then v should be a ticked leaf.

[PRUNE]: Suppose that u < v < w and each of u, v and w have the same poised label Γ. Suppose
also that for each X-eventuality X(αUβ ) or XFβ in Γ, if there is x with β ∈ Γx and v < x≤ w then there
is y such that β ∈ Γy and u < y≤ v. Then w should be a crossed leaf.

[PRUNE0]: Suppose that u < v share the same poised label Γ and Γ contains at least one X-
eventuality. Suppose that there is no X-eventuality X(αUβ ) or XFβ in Γ with a node x such that β ∈ Γx

and u < x≤ v. Then v should be a crossed leaf.
[TRANSITION]: If none of the other rules above do apply to it then a node labelled by poised Γ

say, can have one child whose label is: ∆ = {α|Xα ∈ Γ}∪{¬α|¬Xα ∈ Γ}.
The tableau is extended at each stage by choosing the leaf node on any unfinished branch and at-

tempting to apply a rule: if no other rules apply, the TRANSITION rule will. The choice of unfinished
branch is arbitrary. If there are no unfinished branches, so the tableau is finished, then clearly it will
either be successful or failed.

5 The motivation for the tableaux rules

A traditional classical logic style tableau starts with the formula in question and breaks it down into
simpler formulas as we move down the page. The simpler formulas being satisfied should ensure that
the more complicated parent label is satisfied. Alternatives are presented as branches. See the example
given in Figure 4.

We follow this style of tableau as is evident by the classical look of the tableau rules involving
classical connectives. The U and ¬U rules are also in this vein, noting that temporal formulas such as U
also gives us choices: Figure 5.

Eventually, we break down a formula into elementary ones. The atoms and their negations can be
satisfied immediately provided there are no contradictions, but to reason about the X formulas we need to
move forwards in time. This is where we use the TRANSITION step: see Figure 3. Reasoning switches
to the next time point and we carry over only information nested below X and ¬X .

With just these rules we can now do the whole ¬p∧X¬p∧ (qU p) example. See Figure 3.
This example is rather simple, though, and we need additional rules to deal with infinite behaviour.
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Figure 4: Classical disjunction
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Figure 6: Gp gives rise to a very repetitive in-
finite tableau without the LOOP rule, but suc-
ceeds quickly with it
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Figure 7: G(p∧q)∧F¬p crossed by PRUNE

Consider the example Gp which, in the absence of additional rules, gives rise to the very repetitive
infinite tableau in Figure 6.

Notice that the infinite fullpath that it suggests is a model for Gp as would be a fullpath just consisting
of the one state with a self-loop (a transition from itself to itself).

This suggests that we should allow the tableau branch construction to halt if a state is repeated.
However the example G(p∧q)∧F¬p shows that we can not just accept infinite loops as demonstrating
satisfiability: the tableau for this unsatisfiable formula would have an infinite branch if we did not use the
PRUNE rule to cross it (Figure 7). Note that the optional PRUNE0 rule can be used to cross the branch
one TRANSITION earlier.

Notice that the infinite fullpath that the tableau suggests is this time not a model for G(p∧q)∧F¬p.
Constant repeating of p,q being made true does not satisfy the conjunct F¬p. We have postponed the
eventuality forever and this is not acceptable.

If αUβ appears in the tableau label of a node u then we want β to appear in the label of some later
(or equal node) v. In that case we say that the eventuality is satisfied by v.
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Eventualities are eventually satisfied in any (actual) model of a formula: by the semantics of U .
This motivates the LOOP rule. If a label is repeated along a branch and all eventualities are satisfied

in between then we can build a model by looping states. In fact, the ancestor can have a superset and it
will work (see the soundness proof in [20]).

Examples like G(p∧ q)∧F¬p (in Figure 7) and p∧G(p→ X p)∧F¬p which have branches that
go on forever without satisfying eventualities, still present a problem for us. We need to stop and fail
branches so that we can answer “no” correctly and terminate and so that we do not get distracted when
another branch may be successful. In fact, no infinite branches should be allowed.

The final rule that we consider, and the most novel, is based on observing that these infinite branches
are just getting repetitive without making a model. The repetition is clear because there are only a finite
set of formulas which can ever appear in labels for a given initial formula φ . The closure set for a formula
φ is as follows:

{ψ,¬ψ|ψ ≤ φ}∪{X(αUβ ),¬X(αUβ )|αUβ ≤ φ}

Here we use ψ ≤ φ to mean that ψ is a subformula of φ . The size of closure set is ≤ 4n where n is the
length of the initial formula. Only formulas from this finite set will appear in labels. So there are only
≤ 24n possible labels.

The PRUNE rule is as follows. If a node at the end of a branch (of an unfinished tableau) has a label
which has appeared already twice above, and between the second and third appearance there are no new
eventualities satisfied that were not already satisfied between the first and second appearances then that
whole interval of states (second to third appearance) has been useless. The PRUNE0 rule applies similar
reasoning to an initial repeat in which no eventualities are fulfilled. In Figure 7, the PRUNE rule crosses
the right hand branch as the only X-eventuality XF¬p remains unfulfilled as ¬p does not appear in a
label despite three repeats of the same label.

It should be mentioned that the tableau building process we describe above is non-deterministic in
several respects and so really not a proper description of an algorithm. However, we will see in the
correctness proof below that the further details of which formula to consider at each step in building the
tableau are unimportant.

Finally a suggestion for a nice example to try. Try p∧G(p↔ X¬p)∧G(q→¬p)∧G(r→¬p)∧
G(q→¬r)∧GFq∧GFr.

6 Proof of Correctness: Soundness and Completeness

In the long technical report [20], we show full details of the proof of soundness, completeness and
termination for the tableau search. Termination is guaranteed because there can be no infinitely long
branches. Soundness presents no novelty to those familiar with soundness proofs for similar tableaux:
construct a model from the successful tableau branch. Completeness, however, is novel, because of the
novel rules and we present that here.

Note that the completeness proof we present here seems to be entirely novel: using a model of a
satisfiable formula to find a successful branch in a tableau, and having to backtrack in general. Ideas of
relating a tableau branch to a model appear in many places (eg. [29]) but here we have to backtrack up
the tableau while continuing in the model and use a subtle progress argument to show that we can not
do this forever. An interesting aspect here compared to some other completeness proofs such as that in
[6] is that we see that with the new PRUNE rule there is no need to rely on any “fair” expansion strategy
amongst eventualities: being unfair for too long falls fowl of the PRUNE rules. Note also that there does
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not seem to be a simpler completeness proof based on the idea of a shortest lasso model of a formula and
a claim that the PRUNE rule will not apply.

Note also that the completeness proof gives us the rather strong result that for a satisfiable formula
we will find a successful tableau regardless of the order in which we use the rules and regardless of the
order in choosing unfinished branches to extend.

LEMMA:[Completeness] Suppose that φ is a satisfiable formula of LTL. Then any finished tableau
for φ will be successful.

PROOF: Suppose that φ is a satisfiable formula of LTL. It will have a model. Choose one, say
(S,R,g),σ |= φ . In what follows we (use standard practice when the model is fixed and) write σ≥i |= α

when we mean (S,R,g),σ≥i |= α .
Also, build a finished tableau T for φ in any manner as long as the rules are followed. Let Γ(x) be

the formula set label on the node x in T . We will show that T has a ticked leaf.
To do this we will construct a sequence x0,x1,x2, .... of nodes, with x0 being the root. This sequence

may terminate at a tick (and then we have succeeded) or it may hypothetically go on forever (and more on
that later). In general, the sequence will head downwards from a parent to a child node but occasionally
it may jump back up to an ancestor.

As we go we will make sure that each node xi is associated with an index J(i) along the fullpath σ

and we guarantee the following invariant INV (xi,J(i)) for each i≥ 0. The relationship INV (x, j) is that
for each α ∈ Γ(x), σ≥ j |= α .

Start by putting J(0) = 0 when x0 is the tableau root node. Note that the only formula in Γ(x0) is φ

and that σ≥0 |= φ . Thus INV (x0,J(0)) holds at the start.
Now suppose that we have identified the x sequence up until xi. Consider the rule that is used in T

to extend a tableau branch from xi to some children. Note that we can also ignore the cases in which the
rule is EMPTY or LOOP because they would immediately give us the ticked branch that is sought.

It is useful to define the sequence advancement procedure in the cases apart from the PRUNE rule
separately. Thus we now describe a procedure, call it A, that is given a node x and index j satisfying
INV (x, j) and, in case that the node x has children via any rule except PRUNE, the procedure A will give
us a child node x′ and index j′ which is either j or j+ 1, such that INV (x′, j′) holds. The idea will be
to use procedure A on xi and J(i) to get xi+1 and J(i+1) in case the PRUNE rule is not used at node xi.
We return to deal with advancing from xi in case that the PRUNE rule is used later. So now we describe
procedure A with INV (x, j) assumed.

In this conference paper only the most interesting rules are shown: see [20] for the rest.
[EMPTY] If Γ(x) = {} then we are done. T is a successful tableau as required.
[CONTRADICTION] Consider if it is possible for us to reach a leaf at x with a cross because of a

contradiction. So there is some α with α and ¬α in Γ(x). But this can not happen as then σ≥ j |= α and
σ≥ j |= ¬α .

[U-rule] So Γ(x) = ∆ ·∪{αUβ} and there are two children. One y is labelled Γ(y) = ∆∪{β} and the
other, z, is labelled Γ(z) = ∆∪{α,X(αUβ )}. We know σ≥ j |= αUβ . Thus, there is some k ≥ j such
that σ≥k |= β and for all l, if j ≤ l < k then σ≥l |= α . If σ≥ j |= β then we can choose k = j (even if
other choices as possible) and otherwise choose any such k > j. Again there are two cases, either k = j
or k > j.

In the first case, when σ≥ j |= β , we put x′ = y and otherwise we will make x′ = z. In either case put
j′ = j.

Let us check the invariant. Consider the first case. We have σ≥ j′ |= β .
In the second case, we know that we have σ≥ j′ |= α and σ≥ j′+1 |= αUβ . Thus σ≥ j′ |= X(αUβ ).
Also, in either case, for every other γ ∈Γ(x′) we still have σ≥ j′ |= γ . So we have the invariant holding.
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[¬U-rule] So Γ(x) = ∆ ·∪{¬(αUβ )} and there are two children. One y is labelled ∆∪{¬α,¬β} and
the other, z, is labelled ∆∪{¬β ,X¬(αUβ )}. We know σ≥ j |= ¬(αUβ ). So for sure σ≥ j |= ¬β .

Furthermore, possibly σ≥ j |= ¬α as well, but otherwise if σ≥ j |= α then we can show that we can
not have σ≥ j+1 |= αUβ . Suppose for contradiction that σ≥ j |= α and σ≥ j+1 |= αUβ . Then there is some
k ≥ j such that σ≥k |= β and for all l, if j ≤ l < k then σ≥l |= α . Thus σ≥ j |= αUβ . Contradiction.

So we can conclude that there are two cases when the ¬U-rule is used. CASE 1: σ≥ j |= ¬β and
σ≥ j |= ¬α . CASE 2: σ≥ j |= ¬β and σ≥ j+1 |= ¬(αUβ ).

In the first case, when σ≥ j |= ¬β , we put x′ = y and otherwise we will make x′ = z. In either case put
j′ = j.

Let us check the invariant. In both cases we know that we have σ≥ j′ |= ¬β . Now consider the first
case. We also have σ≥ j |= ¬α . In the second case, we know that we have σ≥ j+1 |= ¬(αUβ ). Thus
σ≥ j′ |= X¬(αUβ ). Also, in either case, for every other γ ∈ Γ(x′) we still have σ≥ j′ |= γ . So we have the
invariant holding.

[OTHER STATIC RULES]: similar.
[TRANSITION] So Γ(x) is poised and there is one child, which we will make x′ and we will put

j′ = j+1.
Consider a formula γ ∈ Γ(x′) = {α|Xα ∈ Γ(x)}∪{¬α|¬Xα ∈ Γ(x)}.
CASE 1: Say that Xγ ∈ Γ(x). Thus, by the invariant, σ≥ j |= Xγ . Hence, σ≥ j+1 |= γ . But this is just

σ≥ j′ |= γ as required.
CASE 2: Say that γ = ¬δ and ¬Xδ ∈ Γ(x). Thus, by the invariant, σ≥ j |= ¬Xδ . Hence, σ≥ j+1 6|= δ .

But this is just σ≥ j′ |= γ as required.
So we have the invariant holding.
[LOOP] If, in T , the node xi is a leaf just getting a tick via the LOOP rule then we are done. T is a

successful tableau as required.
So that ends the description of procedure A that is given a node x and index j satisfying INV (x, j)

and, in case that the node x has children via any rule except PRUNE (or PRUNE0) the procedure A will
give us a child node x′ and index j′, which is either j or j + 1, such that INV (x′, j′) holds. We use
procedure A to construct a sequence x0,x1,x2, .... of nodes, with x0 being the root. and guarantee the
invariant INV (xi,J(i)) for each i≥ 0.

The idea will be to use procedure A on xi and J(i) to get xi+1 and J(i+ 1) in case the PRUNE rule
is not used at node xi. Start by putting J(0) = 0 when x0 is the tableau root node. We have seen that
INV (x0,J(0)) holds at the start.

In the conference paper version of the rest of the proof we ignore the PRUNE0 rule. It can be dealt
with in a similar way.

[PRUNE ] Now, we complete the description of the construction of the xi sequence by explaining
what to do in case xi is a node on which PRUNE is used. Suppose that xi is a node which gets a cross in
T via the PRUNE rule. So there is a sequence u = xh,xh+1, ...,xh+a = v,xh+a+1, ...,xh+a+b = xi = w such
that Γ(u) = Γ(v) = Γ(w) and no extra eventualities of Γ(u) are satisfied between v and w that were not
already satisfied between u and v.

What we do now is to undertake a sort of backtracking exercise in our proof. We choose some such u,
v and w, there may be more than one triple, and proceed with the construction as if xi was v instead of w.
That is we use the procedure A on v with J(i) to get from v to one xi+1 of its children and define J(i+1).
Procedure A above can be applied because Γ(v) = Γ(xi) and so INV (v,J(i)) holds. The procedure A
gives us INV (xi+1,J(i+1)) as well.

If we find xi+1 from xi in this way when xi is a tableau node on which PRUNE is applied then we say
that xi+1 is obtained from xi via the jump tuple (u,v,w).
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Thus we keep going with the new xi+1 child of v, and J(i). We have made the subtle move of
backtracking up the tableau to find our xi+1 but simultaneously continued progress to J(i+ 1) without
backtracking in our journey through the model.

That ends our complete description of how to find the matching sequences of xi and J(i). We have
seen that the sequences either finish at a ticked node of the tableau or can go on another step.

To finish the proof we need to consider whether the above construction goes on for ever. Clearly it
may end finitely with us finding a ticked leaf and succeeding. However, at least in theory, it may seem
possible that the construction keeps going forever even though the tableau will be finite. The rest of the
proof is to show that this actually can not happen. The construction can not go on forever. It must stop
and the only way that we have shown that that can happen is by finding a tick.

Suppose for contradiction that the construction does go on forever. Thus, because there are only a
finite number of nodes in the tableau, and because procedure A defines xi+1 as a child of xi, then we must
meet the PRUNE rule and jump back up the tableau infinitely often.

There are only a finite number of nodes in T so only a finite number of jump tuples so there must be
some that are used to obtain xi+1 for infinitely many i. Call these recurring jump tuples.

Say that (u0,v0,w0) is one such recurring tuple. Choose u0 so that for no other recurring jump triple
(u1,v1,w1) do we have u1 being a proper ancestor of u0.

As we proceed through the construction of x0,x1, .. and see a jump every so often, eventually all the
jump tuples which only cause a jump a finite number of times stop causing jumps. After that index, Z
say, (u0,v0,w0) will still cause a jump every so often.

Thus u0 will never appear again as xi for i > Z and all xi for i > Z that we choose will be descendants
of u0. This is because by choice of u0 we will never jump up to u0 or above it (closer to the root) via any
jump tuple that is used after Z. Say that xN is the very last xi that is equal to u0.

Now consider any X(αUβ ) that appears in Γ(u0). (There must be at least one eventuality in Γ(u0)
as it is used to apply rule PRUNE and not the LOOP rule).

A simple induction shows that αUβ or X(αUβ ) will appear in every Γ(xi) from i = N up until at
least when β appears in some Γ(xi) for i > N (if that ever happens). This is because if αUβ is in Γ(xi)
then it will also be in any child node unless the UNTIL rule is used. If the UNTIL rule is used on xi and
β is not in Γ(xi) and does not get put in Γ(xi+1) then X(αUβ ) will be put in Γ(xi+1). The subsequent
temporal TRANSITION rule will thus put αUβ into the new label. Finally, in case the xi sequence
meets a PRUNE jump (u,v,w) then the new xi+1 will be a child of v which is a descendent of u which is
a descendent of u0 so will also contain αUβ or X(αUβ ).

Now J(i) just increases by 0 or 1 with each increment of i, We also know that σ≥J(i) |= αUβ from
i = N onwards until (and if) β gets put in Γ(xi). Since σ is a fullpath we will eventually get to some i
with σ≥J(i) |= β . In that case our construction makes us put β in the label (to keep the invariant holding).
Thus we do eventually get to some i≥ N with β ∈ Γ(xi). Let Nβ be the first such i≥ N. Note that all the
nodes between u0 and xNβ

in the tableau also appear as xi for N < i < Nβ so that they all have αUβ and
not β in their labels Γ(xi).

Now let us consider if we ever jump up above xNβ
at any TRANSITION of our construction (after

i = Nβ ). In that case there would be a PRUNE jump triple of tableau nodes u, v and w governing the first
such jump. Since u is not above u0 and v is above xNβ

, we must have Γ(u) = Γ(v) with X(αUβ ) in them
and β not satisfied in between. But w will be below xNβ

at the first such jump, meaning that β is satisfied
between v and w. That is a contradiction to the PRUNE rule being applicable to this triple.

Thus the xi sequence stays within descendants of xNβ
forever after Nβ .

The above reasoning applies to all eventualities in Γ(u0). Thus, after they are each satisfied, the
construction xi does not jump up above any of them. When the next supposed jump involving u0 with
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some v and w happens after that it is clear that all of the eventualities in Γ(u0) are satisfied above v. Thus
the LOOP rule would have applied between u and v.

This is a contradiction to such a jump ever happening. Thus we can conclude that there are not
an infinite number of jumps after all. The construction must finish with a tick. This is the end of the
completeness proof.

7 Implementations

Tableau search here, even in a non-parallel implementation, should (theoretically) be able to be imple-
mented to run a little faster than that the state of the art tableau technique of [25]. This is because there
is less information to keep track of and no backtracking from potentially successful branches when a
repeated label is discovered.

A fast implementation of the new tableau written by Matteo Battelo of Udine University is available
from https://github.com/Corralx/leviathan and described in [3]. Experiments run using this
implementation, on the full set of 3723 standard benchmark formulas [23], show comparative speed
performance with five state of the art tools (Aalta [18], TRP++ [16], LS4 [27], NuSMV [7], and PLTL)
based on automata, resolution, resolution(again), symbolic model checking, the Schwendimann tableau
technique respectively. Interestingly the memory usage for the new tableau is significantly less. See [3]
for the details of the implementation and experiments.

For now, as this current paper is primarily about the theory behind the new rules, we have pro-
vided a demonstration Java implementation to allow readers to experiment with the way that the tableau
works. The program allows comparison with a corresponding implementation of the Schwendimann
tableau. The demonstration Java implementation is available at http://staffhome.ecm.uwa.edu.
au/~00054620/research/Online/ltlsattab.html. This allows users to understand the tableau
building process in a step by step way. It is not designed as a fast implementation. However, it does
report on how many tableau construction steps were taken.

Detailed comparisons of the running times across 24 typical benchmark formulas are available in
[20]. In Figure 8, we give a small selection to give the idea of the experimental results. This is just
on two quite long formulas, “Rozier 6” and “Rozier 9” and one very long formula “anzu amba amba
6” from the so-called Rozier counter example series of [23]. Shown is formula length, running time in
seconds (on a standard laptop), number of tableau steps and the maximum depth of a branch in poised
states. As claimed, the new tableau needs roughly the same number of steps but saves time on each step
(at least as the formulas get longer). Indeed there are only three formulas presented but they are each
part of important series which each show the same pattern: the two approaches are comparable in terms
of number of steps taken. Future heavy duty implementation should then be able to deliver on a faster
implementation for the new approach as we know each step is simpler than a step for the Schwendimann
approach.

8 Example

In order to illustrate the differences in approach very briefly we include two diagrams from the long
paper. See Figure 9 and 10 for the overall shape of the two tableaux applied to the example

θ = a∧G(a↔ X¬a)∧GFb1∧GFb2∧G(b1→¬a)∧G(b2→¬a)∧G¬(b1∧b2).

https://github.com/Corralx/leviathan
http://staffhome.ecm.uwa.edu.au/~00054620/research/Online/ltlsattab.html
http://staffhome.ecm.uwa.edu.au/~00054620/research/Online/ltlsattab.html
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fmla Reynolds Schwendimann
length sec steps depth sec steps depth

r6 190 0.871 20k 353 0.855 20k 353
r9 277 113 239k 4353 120 242k 4353
as6 1864 0.003 54k 2 0.015 61k 2

Figure 8: Comparison of the two tableaux from the Java implementation

Figure 9: Schwendimann Example
Figure 10: Same Example with new tableau

Roughly, there are two eventualities which need respectively state 1 and 3 to fulfil them but we must
return to state 0 in between. There are some similar observations on the Schwendiman approach in [15].

9 Conclusion

We have introduced a new type of tableau rule for temporal logics, in particular for LTL. This allows the
operation of a novel but traditionally tree-shaped, one-pass tableau system for LTLSAT. It is simple in
all aspects with no extra notations on nodes, neat to introduce to students, amenable to manual use and
can be implemented efficiently with competitive performance.

In searching or constructing the tableau one can explore down branches completely independently
and further break up the search down individual branches into separate somewhat independent processes.
Thus it is particularly suited to parallel implementations.

Because of the simplicity, it also seems to be a good base for more intelligent and sophisticated
algorithms: including heuristics for choosing amongst branches and ways of managing sequences of
label sets. The idea of the PRUNE rules potentially have many other applications.
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