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Topological fixpoint logics are a family of logics that adsibpological models and where the fix-
point operators are defined with respect to the topologitatpretations. Here we consider a topo-
logical fixpoint logic for relational structures based oni8t spaces, where the fixpoint operators are
interpreted via clopen sets. We develop a game-theoretiastcs for this logic. First we introduce
games characterising clopen fixpoints of monotone opeyatoStone spaces. These fixpoint games
allow us to characterise the semantics for our topologigaloiint logic using a two-player graph
game. Adequacy of this game is the main result of our pap@ealllyj we define bisimulations for
the topological structures under consideration and usgaine semantics to prove that the truth of
a formula of our topological fixpoint logic is bisimulatidnvariant.

1 Introduction

By topological fixpoint logicsve mean a family of fixpoint logics that admit topological natsland
where the fixpoint operator is defined with respect to topcklginterpretations. In the standard se-
mantics fixpoint operators are interpreted as the leastrgatgst) fixpoint of a monotone map in the
powerset lattice. In our topological setting we interprgpdiint operators as the least (or greatest) fix-
point of a monotone map on some (topological) sublatticéhefgowerset lattice (e.g., clopen subsets,
open or closed subsets, regular open or closed subsetsfgtdmportant motivation for studying such
formalisms is that every axiomatic system of the magalalculus is complete with respect to the topo-
logical semantics via clopen sets [1]. Moreover, the powesfahlqvist completeness and correspon-
dence result from modal logic can be extended to the axiansgstems of modali-calculus for this
semantics[[6]. We note that completeness results for axioragstems of modati-calculus with the
standard semantics are very rare, and require highly commpdehinery([14],[[28], see alsb [118] arid [9].
Note also that axiomatic systems of modal conjugatecalculus axiomatized by Sahlqvist formulas
are closed under Dedekind-MacNeille completions via togichl semantics [5]. However, these sys-
tems are not closed under Dedekind-MacNeille completionghe standard semantics [17]. Another
motivation for studying topological semantics of fixpoingic is that it provides an alternative view on
fixpoints operators with new notions of expressivity andribdiility. For a comprehensive discussion on
the importance of generalized models in logic, includingdaddixpoint logic, we refer tol[2]. A rather
different approach to interpret fixpoint formulas over tlygcal spaces is taken in[11] where formulas
are interpreted in the full powerset lattice and where nitidalare interpreted via topological operations
such as closure and topological derivative.

We illustrate the difference between standard and topodddixpoint operators with an example.
Consider the framéNU {0}, R) drawn in Figuré IL. We assume that the topology on the set s that
clopen sets are finite subsetsNand cofinite sets containing the poit The denotation of the formula
O*pis the set of points that “see points finwrt the transitive closure of the relatid®i. Therefored*p
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Figure 1: Example

is equal to the se¥. Indeed N is the least fixed point of the m&— {0} U S, where©S= {5 | Ise
S.(s,s) € R}. However, if we are looking for a least clopen fixpoint of thigp then we see that this will
be the seNU {e}. Intuitively, the denotation of the formula*p wrt the clopen semantics is the set of
all points that “see points ip wrt thetopological transitive closuref the relationR”. Note that a similar
operation was used in[21] for characterising in dual teruisigectly irreducible modal algebras.

In this paper, we aim to advance the study of topological fixptogics by developing a game
semantics for them. We will concentrate on a variant of togigial fixpoint logic based on interpretations
via clopen sets. For clopen sets we consider Stone spadea hihary relationdescriptiveu-framesin
the terminology of([1] and [6]). The advantage of clopen &ethat the denotation of modal formulas in
clopen sets is the same as in the standard Kripke semantiosdsdl logic. The negation of a formula
is interpreted as the complement, conjuction and disjandis the intersection and union, respectively,
and the modal operators are also interpreted in the staneayd However, clopen sets of an arbitrary
Stone space do not form a complete lattice and thereforexpeifit operators, in general, may not be
interpreted in Stone spaces with the clopen semantics.efdrer we need to restrict to a class of Stone
spaces where these operators can be interpreted. We wihadhis by looking at relational structures
based orextremally disconnected spacghich is a subclass of descriptigeframes.

There are several motivations for developing the game skesaior the topologicalu-calculus.
Firstly, the semantics of a formula can be usually much betteerstood when formulated in terms of
games. This is especially true for formulas with some noalrinterplay of least and greatest fixpoint
operators. Secondly, a game semantics is crucial for thelagflmwent of automata-theoretic methods of
the topologicalu-calculus: the game semantics provides an “operationatiasdics for the formulas
of the logic and the definition of a run of an automata (or ofitseptance game) is entirely based on
this operational view on the truth of a formula. Thirdly, theme semantics is an important tool for
developing the model-theory of the topologigakalculus.

The main contribution of this paper is a game semantics fertdpologicalu-calculus based on
clopen sets. Technically, the main result is the proof ofjadey of our game semantics. Finally we are
demonstrating how the game semantics can be used in ordetaio onodel-theoretic results: we prove
that the topologicali-calculus is invariant under what we call clopen bisimwalasi.

We view the results in this paper as first steps towards atfeity of topological fixpoint logics. An
ultimate goal is to define game semantics and automata foesdiriptiveu-frames (not necessarily based
on extremally disconnected spaces). This would enable aply the methods of games and automata
for tackling problems such as decidability and the finite elgatoperty of axiomatic systems of the
modalu-calculus. These systems are complete for descriptifframes, whereas their completeness for
the standard Kripke semantics is quite problematic.

2 Preliminaries

2.1 Two Player graph games

Two-player infinite graph games, graph gamedgor short, are defined as follows. For a more compre-
hensive account of these games, the reader is referred]to [12
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A graph game is played ontmard B that is, a set opositions Each positiorb € B belongso one
of the twoplayers 3 (Eloise) andv (Abélard). Formally we writd8 = B; U By, and for each positiob
we useP(b) to denote the playersuch that € B;. Furthermore, the board is endowed with a binary
relation E, so that each positioh € B comes with a seE[b] C B of successors Note that we do not
require the games to be strictly alternating, i.e., suaressf positions irB; or By can lie again irBg
or By, respectively. Formally, we say that theenaof the game consists of a directed two-sorted graph
B = (B3,By,E).

A matchor play of the game consists of the two players moving a pebble arthentoard, starting
from somanitial position ky. When the pebble arrives at a positiog B, it is playerP(b)’s turn to move;
(s)he can move the pebble to a new position of their liking,the choice is restricted to a successor of
b. ShouldE[b] be empty then we say that play(b) got stuckat the position. Amatchor play of the
game thus constitutes a (finite or infinite) sequence of osibgb:1b, ... such thatyEb ; (for eachi
such thab; andb;; are defined). Aull play is either (i) an infinite play or (ii) a finite play in which the
last player got stuck. A non-full play is calledoartial play. Each full play of the game hasvénnerand
aloser. A finite full play is lost by the player who got stuck; the wing condition for infinite games
is usually specified using a so-calledrity function In our paper, however, we specify the winning
conditions on infinite games in more intuitive terms, s@t@xplicitly which infinite plays will be won
by which player. Throughout the paper the reader shoulditdke granted that the winning conditions
involved could easily be encoded using suitable parity ions.

A strategyfor playeri tells a player how to play to at a given game position: thislwanepresented
as apartial function mapping partial play8 = by - - - by with P(b,) =i to legal next positions, that is, to
elements oE|[by], and that it is undefined E[b,] = 0. A strategy ishistory freeif it only depends on the
current position of the match, and not on the history of thécmaA strategy isvinning for player ifrom
positionb € B if it guaranteed to win any match with initial positiorb, no matter how the adversary
plays — note that this definition also applies to positibrfier which P(b) # i. A positionb € B is called
awinning positiorfor playeri, if i has a winning strategy from positidmthe set of winning positions for
i in a game¥ is denoted a¥Vin(¥¢). Parity games enjokistory-free determinagye., at each position
of the game board one of the player has a history free winrtnagegyy (cf. [16| 10]).

2.2 Tarski's fixpoint game

Recall that on any complete lattice the least fixpqifit and the greatest fixpointF of a monotone
functionF exist and can be obtained as follows: first we define for eadimaka € ORD two sequences

{Fél}GEORD and{FC\{}}anRD by pUttIng

o= L, Fayn=F(Fa) and Fg = Vp.Fs foraalimitordinal
R = T, Fai1=F(Fg) and Fy = Apg.F; foraalimitordinal.

The core of the game-theoretic semantics of the maezdiculus is based on Tarski’'s game-theoretic
characterisation of fixpoints. Given a monotone funckon#X — £2X, the game board of the standard
fixpoint game is defined as follows:

Position | Player| Moves
xe X 3 {CCX|xeF(C)}
N ‘ C

CcX

We will use the above notation in the following to introducagh games: the table specifies tBat= X,
By = &#X and in the third column of the table the successors of eacle dr@rd position are specified.
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The condition on infinite plays in the standard fixpoint gamhat all infinite plays of the game are won
by V in the least fixpoint game and Byin the greatest fixpoint game.

It is a standard result in fixpoint theory (cf. elg.[22]) that above least and greatest fixpoint games
characterise the least and greatest fixpoirf ofespectively. For examplé,has a winning strategy at a
positionx € X in the least fixpoint game iff is an element ofiF. If x is an element of the least fixpoint,
we know that there exists an ordimalsuch tha € F. In case thatr is a limit ordinal this means that
x€VpaFs =Up<a F5 CF(Up<qFg) where the inclusion is easily verifiable. This mearsn move

from positionx to position{s_ 4 Fé’ andV is forced to move to some ¢ Fé’ with B < a. Similary, if

a = B+ 1, 3 can ensure that the play reaches a positioﬁﬁlrafter one round. In any case, due to the
well-foundedness of the ordinals,can ensure that the play moves frome F.' to somex € FE’ with

B < a which implies tha8 has a strategy that forc&2o get stuck after a finite humber of moves.

2.3 Topological preliminaries

We will work with Kripke frames that are endowed with a topmpo The most important class of such
frames used in the study of modal logic is thatnobdal spacegakadescriptive framés This is due
to the Stone representation theorem for Boolean algebdhd@rsson-Tarski representation theorem for
Boolean algebras with operators.nfodal spacés a triple(X, 1, R) such thafX = (X, 1) is a Stone space
andR C X x X is a binary relation that ipoint-closedandclopen The latter mean th&(x) = {y € X :
XRy} is a closed set for eache X and thatOU e Clp(X) for eachU e Clp(X), where CIgX) is the set
of all clopen subsets af andOU = {x € X | dy € U. xRy}. Every modal algebra can be represented as
the algebrg Clp(X), <), whereX is the ultrafilter space. As a result every axiomatic systémadal
logic is complete wrt modal spaces. We refer[tb [8] for mortailie on completeness of modal logics
wrt modal spaces. We also note that modal spaces can be pissasted as Vietoris coalgebras on the
category of Stone spaceés [15]. Throughout this paper wetagitly assume that all topological Kripke
frames are modal spaces.

A Stone spac& = (X, 1) is calledextremally disconnecteifl the closure of any open subset Xf
is open. It is well known (see e.g., [19]) thatifis an extremally disconnected space, then(E)gs a
complete Boolean algebra. Moreover, for a set of clopen{gétsi € |} the infinite meets and joins are
computed as\/{U; :i €1} =CI(U{Ui:iel})andA{U;:iel} =Int(N{U;:iel}). We call a modal
space(X, 1,R) anextremally disconnected modal spatcéX, 1) is extremally disconnected.

2.4 Modal u-calculus on topological spaces: denotational semantics

The complete lattice structure on CIf) of an extremally disconnected spake= (X, 1) enables us to
define a topological semantics of the mogatalculus that is based on clopen sets.

Definition 2.1. Given a countably infinite s&ropof propositional variables (o, po, 01, etc), the lan-
guage.?,, of the modalu-calculus is inductively defined as follows:

Zy>9 u= p,peProp|-p peProp|p A [pVe|[L|T[C¢ |09
Up'¢(p>Q1a-~>Qn)|Vp-¢(pana--->Qn)

where in formulas of the formp.¢ and vp.¢ we require that the variable p does not occur under a
negatioH]. The sets FVarp) and BVal¢) of free and bound variables of a given formuglac .2}, are
defined in a standard way.

1Formulas are always in negation normal form, ie., negatimg occur in front of propositional variables.
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Definition 2.2. Given an extremally disconnected modal spg€eR) based on a spack = (X, 1) and
a valuation V: Prop— Clp(X) we define the semanti§g s € Clp(X) of a formula¢ by induction:

[plv = V(p) [=plv = X\V(p)
[Yindelv = [yalvNyelv [nviely = [ylvUlgelv

[Llv = 0 [Tlv = X

[CYlv = {xeX|RX)N[Y]v #0} [Oylv = {xeX[R(X) C[ylv}
[up.wly = Ip(ywy) lveylv = gfp(yy)

where ¢ : Clp(X) — Clp(X) is the (monotone) operator defined U) = [Y]vipsu for U €
p [p—U]

Clp(X) and with
uifg=p
Vip—UJ(q) == { V(q) otherwise.

We call the tripleM = (X,R V) an extremally disconnected (Kripke) model and wiifigp — U] to
denote the mod&¥l = (X,R,V[p— U]).

3 Games for monotone operators on topological spaces

In this section we are going to define topological analogdi¢seofixpoint game from pade 48. We start
by looking at fixpoints of a monotone functidh: Clp(X) — Clp(X) on the lattice of clopen subsets
Clp(X) of an extremally disconnected Stone spéce (X, T). This assumption on the topology guar-
antees the existence of a least and greatest fixpoiRt arfid these fixpoints can be obtained using the
ordinal approximant§&/}' and Fy, respectively. To understand how the fixpoint game has tcefieet

we need to inspect how the ordinal approximaffsandF) are computed in case is a limit ordinal:

Fa = \ F5=Cl(UF5)

B<a B<a
Fa = NAFg=Int([)F)
B<a B<a

Therefore, intuitively speaking, in order to maintain thairn that a given poink is an element of
uF it suffices thad provides some open s&C X such thatx € F(CI(O)), so this will become easier
for 4. Likewise, in order to prove thatc vF, 3 will now have to provide some closed $&tuch that
x € F(Int(C)) which is potentially more difficult compared to the standixgoint game. Note that in
both cases QD) and In{C) are clopen as the closure of an open set and the interior osadliset are
clopen sets in an extremally disconnected Stone space.l8ana@tions form the basis for the following
definitions of the fixpoint games:

Definition 3.1. LetX = (X, 1) be an extremally disconnected topological space and [eChp(X) —
Clp(X) be a monotone map. We define two graph games. We start witrathe board of the least
fixpoint games) (F ):

Position | Player | Moves
xeX 3 {CCX|xeF)forallU e Clp(X) withCCU}
CcX v C
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ie, at a position xc X, playerd has to move to someC X such that xc F (U ) for all clopen supersets of
C and at position GZ X playerY¥ has to move to somé & C. Infinite plays are won by. The resulting

graph game will be called the least clopen fixpoint game arbbeidenoted bWL',(F). The greatest
clopen fixpoint gamé’} (F) is defined similarly with the major difference that an infinlay is won by
3. Also, the game board &f! (F) reflects the aforementioned way of computing mee®paX):

Position | Player | Moves
xe X ‘ E| ‘ {CCX|xeF()forallU e Clp(X) with Int(C) CU }
v C

CcX

With these definitions at hand it is not difficult to prove tlﬁt(F) and¥ (F) indeed characterise
the least and greatest clopen fixpoint$-ofespectively. This is the content to the following propiosi.

Proposition 3.2. Let X = (X, 1) be an extremally disconnected space, let@lp(X) — Clp(X) be a
monotone operator. Then for anyexX we have

1. xe pF iff x € Wing(4),(F))
2. xe VF iff x € Wing(4) (F))

Proof. We only provide the proof for the greatest fixpoint ga#jgF) - the one for the least fixpoint
game is very similar. We need to show thlin; (4, (F)) = vF. Suppose first that € vF € Clp(X).
Thend has an obvious winning strategy: she is playing thevéet All V can do is choosing another
elementX’ € vF after whichd can move again toF and so forth. Note that any such play will be infinite
and thusd has a strategy to win any play startingate.,x € Wing(4! (F)).

For the converse we show that for all ordinalsve haveX \ FY C Win,(%,(F)) by induction ona.
Casea = 0. Then the claim is obvious a6\ Fy =X\ X = 0.
Casea = 3+1. Suppose that in a play starting at positicaF); = F (F[;’) playerd moves to som€ C X
with x € F(U) for allU € Clp(X) with Int(C) C U. ClearlyC ¢ Fy’ for otherwise InfC) C F;' and thus

x € F(Fg) = Fy. Hencev can pick an element € C\Fg. Now by I.H. we have that' € Win, (¢} (F))
and thusv has a strategy to win the play from now on. This shows thhfs a winning strategy at
positionx in %, (F) as required.

Casea is a limit ordinal. Consider some¢ F) = /\Fg and letC C X be chosen byl as in the previous
case. By our assumption on the topology we hA\Eg = Int(N Fﬁ/)' It is not difficult to see that
c¢ ﬂFl;’ for suppose otherwise: then (@) C Int(N Fg) = /\Fl;’ and thusc e F(A Fg) - /\Fg which
contradicts our assumption on Therefore there exists & < a such thaC ¢ FL‘;, ie., such that there
existsx' € Cwith X' ¢ Fg'. By the induction hypothesis we know that Win, (¢} (F)) and from position
X V has a strategy to win the play. Therefat@as a winning strategy from positioras required. [

This shows that the game4 and«), characterise the least and greatest clopen fixpoint of a tnneo
operator. We will use these games to prove adequacy of oue gamantics for the topological modal
p-calculus: If4 has a winning strategy in the evaluation game for a formulthefform up.¢ and
vp.¢ then we will construct a winning strategy for her in the cepending fixpoint games that we just
discussed. Vice versa we would like to transform winningtstgies in the fixpoint games into winning
strategies of the evaluation game fop.¢ andvp.¢. For this converse direction we will need second -
but equivalent - versions of the fixpoint games.

Definition 3.3. LetX be an extremely disconnected space and leCip(X) — Clp(X) be a monotone
map. As elements @fip(X) can occur both as position afandV, we clearly mark the owner of such a
position using the set of markersM{3,v}. We define the following two-player ga%ﬁ (F) by putting
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Position | Player | Moves

xeX 3 {(V,U) e M xCIp(X) | xe F(U)}
(V,U)eMxClp(X) | Vv | {(3,U)eMxClp(X)|UnU’+#0}
(3,U)eMxClp(X) | 3 |U

ie, at a position x X, playerd has to move to some clopen setlX such that x F (U ), ¥ challenges
this by playing a element U= Clp(X) with U NU’ £ 0 and at position(3,U’) € M x Clp(X) player 3
has to move to somé & U’. AgainV wins all infinite plays of the game. Similarly we define the gam
¢! (F) by defining the following game board and by stipulating thatins all infinite plays:
Position | Player | Moves
xeX 3 {UeClp(X) | xe FU)}
U € Clp(X) v U
Remark 3.4. The reader familiar with fixpoint games might be surprised slightly worried as there is
an unexpected asymmetry between the ga#fied~) and¥,' (F). Both games have in fact been derived

from two completely symmetric games with the following galboards (omitting the markers M) and
the usual winning conditions for infinite least and greafiegoint games:

Gy Position | PI. | Moves 9, Position | PI. | Moves
xeX | 3 | {UeClpX)|xeFU)} xeX | 3 | {UeClpX)|xeFU)}
UeClpX) | Vv | U UeClpX) | V | U
XeX | V | {UeClpX|x eU’} XeX | 3 | {UeClpX|x eU’}
U'eClp(X) | 3 | U’ U'eClp(X) | v | U

It is not difficult to see, however, that both games can be liieg to the game#/)! (F) and%;' (F).
We will now show that games fqr andv characterise the least and greatest clopen fixpoint.

Proposition 3.5. Let X be an extremally disconnected space, let@®p(X) — Clp(X) be a monotone
operator. Then for any € X we have

1. xe pF iff x € Wins(4) (F)).
2. x€ VF iff x e Wing(4) (F))

Proof. We first focus on the least fixpoint operator. Suppose ttajuF for somex € X. Then there
is a least ordinabr such thaix € F£', we call this theu-depth ofx. We will show that3 has a winning
strategy ing",' (F) atx by describing a strategy fat that ensures that eithgrgets stuck within the next
round or that the play reaches a positiore Fé’, with a’ < a. Both facts entail thaf has a strategy such
that all plays compliant with her strategy are finite and thestthe player who will eventually get stuck.
Casea = 8+ 1. Thenx e FB“+1 = F(Fé’) andJ's strategy is to move from to (v, Fﬁf’). PlayerY either
gets stuck (ifF! = 0) or responds by moving to son(g,U’) with U’ € Clp(X) such that)’n Fé‘ #0.
Now 3 picks an arbitrary¢ ¢ U’ N FE’ and the round finished on a positighe Fé’ with strictly smaller
U-depth as required.
Casea is a limit ordinal. Therd's strategy is to move fromx to (V,Vpq F5) = (V,Cl(Up<a F3))
which is a legal move ag € /g4 Fé‘ C F(Vg<a Fé‘). UnlessV gets stuck, he will move to some
position (3,U") whereU’ € Clp(X) with U' NV g_q FE’ # 0. In other words, the clopen sub&éthas a
non empty intersection with the closureldg._ Fé‘ which impliesU’mUB<O, Fé‘ # 0. Therefored can
pick a suitable element € g4 FE’ such that the round finishes in a positirof smalleru-depth.

We now show that the gan#/ (F ) characterises the greatest clopen fixpoint. Suppose thafF
Clp(X). Then, as in the proof for the gan#& (F), 3 has a simple winning strategy by always moving
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to VF € Clp(X). For the converse we show that for all ordinalsve haveX \ FY C Win, (4! (F)) by
induction ona. The cases =0 anda = 3+ 1 follow easily from the inductive hypothesis. Supposis
alimit ordinal and consider somez Fy = Agq FBv and suppose thatmoves to som& € Clp(X) such
thatx € F(U). Then it is easy to see thet g4 Fy, for otherwiseU C Int(Np.4 Fg) = Ap<a Fg
and hence
xeFU)CF(A\F)C A\Fg.
B<a B<a

ThereforeY can pick some’ € g4 Fg, ie., X ¢ Fé’ for somef3 < a. By I.H. we know thatv has a
winning strategy from positio®’ and hence - as’s move toU was arbitrary - we showed th&thas a
winning strategy from positior. This finishes the proof ok \ FY C Win, (4! (F)) which is equivalent
toFY € X\Winy(%)! (F)) = Wing(¢)! (F)) for all @ € ORD. The latter impliesVing (%) (F)) CvF. O

We conclude our discussion of fixpoint games on extremalgatinected spaces. The reader might
wonder why we introduced two gam%(F), ,%' (F) for the least fixpoint o and two games for
the greatest fixpoint. Do we really need both variants ofghe@nd v-games? The reason why both
variants seem necessary for proving our adequacy theorbaséd on the following observatfinThe
games?, and¥ characterise both the same least fixpoints and have thersfeisame winning regions
within the set of stateX. It is, however, in general not possible to transform sgiate ofd in the first
variant of theu-game into corresponding strategies foin the second game. To see this, suppose that
3 has a strategy in ¢' = ¢},(F) at positionx and supposé (x) = C. We would like to equipd with a
corresponding strategyin ¢"' = ¢/! (F) at positionx such that for the next “roundkUU’y of ¢'! that
is compliant withg, there is a corresponding roun@y of ¢' compliant with f (and by re-using that
argument round-by-round, one could ensure that a winning strategy foB in ¢' iff g is a winning
stratgey fodin ¢").

To achieve this, we have to defifis strategyg such that she moves fromin ¢" to some suitable
clopen set. Supposé) C CI(C). ThenV can respond with soméd’ € Clp(X) such thal NU’ £ 0.
This impliesU’ N CI(C) # 0 and thus - a8)’ is clopen - that)’NC # 0. Hence,3 can continue the
play by picking an element of U’ NC which overall results in the partigt'' -play xUU'’y. Clearly, the
sequenceCy is also anf-compliant%'-play and therefore can act as the corresponding play for the
¢ -play xUU'y. Similarly one can show that in any play whéetenoves from positiox to somelJ with
U ¢ CI(C), ¥ can ensure that the next statéhat is reached in the play will be an elemen®o{C and
therefore that the resulting'' -play is no longer linked to any correspondifigcompliantG' -play.

Therefore we can construct a corresponding strategy i7" iff there is a legitimate move for 3
atxwith U C CI(C). In general, however, there is no suitable cloperuset CI(C) with x € F(U) - and
this property is required for a legitimate movedt . This is demonstrated by the following example.

Example 3.6. Consider the Ston€ech compactificatiof8(N) of the natural numbeéfs let C C B(N)
be the collection of non-principal ultrafilters ovidrand consider the (trivially monotone) operator

F= idCIp(B(N)) : CIp(B(N)) — CIp(B(N))

For any cloperJ € Clp(B(N)) we havel = S= {u € B(N) | Se u} for some suitable s&C N. With
this in mind, it is easy to see that for all clopdsve havel C C impliesU = 0.

Consider now an arbitrary € C. We have thak € F(U) for all U € Clp(BN) such thaC C U (in
particular,C would be a legitimate move iﬁA(F) atx). On the other hand, fdd € Clp(BN) we have

2We state this observation for, but it equally applies to.
SWhich is extremally disconnected, seeleg [19].
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thatU C CI(C) = C impliesU = 0 and thusx ¢ F(U) for all theseU (which shows that there is no
suitable move fod in ,%' (F) atx that correponds to her move fraxto C).

4 Game semantics for theu-calculus on topological spaces

We are now ready to define the game characterisation of tiperlsemantics of the modatcalculus.
Our presentation follows the presentation of the standarmdegsemantics of the modalcalculus that
can be found e.g. in[22]. In the following we assume that veed&raling with‘clean” formulas in.Z);:

Definition 4.1. A formula¢ € .2}, is called clean if no two distinct occurrences of fixpoint igpers in
¢ bind the same propositional variable and if a variable occeither free or bound i (but not both
bound and free). For any bound variablegPropthat occurs within a clean formul@ we denote by
¢ @p = n p.y the unique subformula @f where p is bound by the fixpoint operatgre {u,v}.

The restriction to clean formulas is standard practiceémtiodal literature. It will simplify the game
definition. Furthermore it allows us to give a concise dabnitof when the unfolding of one fixpoint
variable depends on the unfolding of another one.

Definition 4.2. For a clean formulag € £, and bound variables,y € Propoccurring in ¢ we say
x <y yif ¢ @x is a subformula op @y.

Definition 4.3. Let ¢ € £}, be a formula and leM = (X,R V) be an extremally disconnected Kripke
model together with valuation YProp— Clp(X). The game board of the evaluation ga#igp,M) is
specified in the table in Figuig 2.

As usually a finite full play of’(¢,M) is lost by the player who got stuck at the end of the play. In
order to specify the winning condition on infinite playsve need the following notation:

Inf (1) := {p € BVar(¢) | p occurs infinitely often int}.

A standard argument shows that for any infinite ptagf &’(¢,M) the set Inf ) is nonempty, finite and
upwards directed with respect to the dependency ordger Therefore the maximal elememex(Inf (71))
of Inf(mm) wrt <, is well-defined and we declareto be the winner of an infinite play of &(¢,M) iff
max(Inf (1)) is a v-variable, ie., a variable bound by a greatest fixpoint opera

After our discussion of fixpoint games, the reader shoulceHdtle problems with understanding
the intuition behind the winning condition: an infinite plawyring which the highest infinitely often
“unfolded” fixpoint variable is a/-variable corresponds to an infinite play of a greatest fixpgame.
Therefore3 wins such a play. Similarly all infinite plays in which the higgt infinitely often unfolded
variable is gu-variable are won by. We now turn to the formulation and proof of the main theordm o
this section. First we need to introduce some terminologlamauxiliary lemma.

Definition 4.4. Consider a two-player graph gan#@ with set of positions B. For a set¥ B we say
a¥-play mis Y -full if eitherris a full play orrm=by...b, is a partial play with y,... b,_1 €Y and
b, €Y, i.e, ks the first position of the play occurring in'Y.

Lemma4.5. LetM = (X,R,V) be an extremally disconnected model diet np.d withn € {u,v} be a
fixpoint formula and consider the gantés = &' (n p.6, M) and%y, = &(5,M[p— U]) withU € Clp(X).
Furthermore we letinfold, = {(p,X) | X € X}.

(i) Any strategy # for 3in ¢, at (5, x) corresponds to a strategy; for 3in ¢, at (d,x) such that any
unfold,-full, f,-compliant¥,-play starting at(d,x) is an {;-compliant, full,-play.
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Position | Player| Possible Moves

(p,x), p€ FVar(¢) andx ¢ V(p) 3 0
(p,X), p € FVar(¢) andx € V(p) v 0
(=p,Xx), p € FVar(¢) andx ¢ V(p) 4 0
(=p,Xx), p € FVar(¢) andx e V(p) 3 0
(WL AY2,X) Voo {(@1,%), (@2,x)}
(Y1V y2,x) 3 {1, %), (2,%) }
(CY.x) 3 {(@X) | R4}
(Og.x) | ¥ | {(g.X) | RxX}
(np-y.x),ne{puvt | 3V | (¥,X
(p:X), p€ BVar(¢) p@p=up.y | Vv | {(p,U)[U eClp(X), xeU}
(p.x), peBvar(¢), p@p=vp.y | 3 | {(pU)|U eClp(X), xeU}
(p,U), peBVar(¢), p@p=pp.y | 3 | {(¢.X)|x €U}
(p,U), peBVar(¢), p@p=vp.y | VvV | {(g,X)[XecU}

wherex, X' denote elements of andU denotes a clopen subset®f= (X, 1).

Figure 2: Game board of the evaluation ga#ie, M)

(if) Any strategy § of 3in ¢ at (d,X) corresponds to a strategy, for 3 in ¢, at (6, x) such that for
any full fy-compliant¥-play starting at(d,x) is an f,-compliant,unfold,-full ¢,-play.

Proof. The lemma follows from the fact that a sequence of the farm (J,x)b; ... b; ... is an unfolg-
full ¢,-play iff it is a full ¢,-play. O

Theorem 4.6(Adequacy) LetM = (X,R,V) be an extremally disconnected model with valuation V
Prop— Clp(X). For every formulap € £}, and every x X the following are equivalent:

(i) x € [¢]v, and

(i) 3 has a winning strategy at positigg,x) in & (¢,M).
(Sketch).The proof goes by induction ofi. We only will sketch the induction step for the case that
¢ = up.d - the full proof of the theorem is quite lengthy and most of tetails are similar to the
adequacy proof of the standard game semantics for the npedalculus. We pu = &(¢,M) and for

any clopen subsét € Clp(X) we put4, = &(5,M[p+— U]).
By the induction hypothesis afiand becausgd]lyp,u; = J (U) we have for alU € Clp(X) that

x € 8y (U) iff (5,%) € Wins(4). (1)

In order to prove the theorem fgr= up.d it suffices to show that the following are equivalent:

X € Wing(%,(3)) )
X € Win (54” 6V) ®3)
(9.%) € Winy(¥). 4

We proved the equivalence 6 (2) abdl (3) in the previous eeciio prove all of the equivalences, we will
now show that((B) implies {4) which in turn implids (2). Foetimplication from[(B) to[(4) consider some
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statex € Wins(%) (3y ), ie., 3 has a history-free winning strategy at positiom %, (3y )) represented
by two (possibly partial) functions

U : X = Clp(X) and N : Clp(X) — X.

W.l.o.g. we can assume that,N) is winning for3 from all positions inWins(¢} (8y)) (in particular,
U andN are defined at those positions). As the stratdgis winning (and thus legitimate) at atle
Wins(¢)! (8y)) we have that for all suckthatU (x) is a legitimate move at. Hencex € 8y (U (x)) and
thus, by [1),(8,x) € Wins(4 ). Therefore, for eack € Wins (4} (3y)), we can assume

(a) that there is a winning stratedy ) for 3 in the game, ) at position(d,x) and
(b) that(V,U(x)) € Wirg(%",' (5?{)).
As seen in Lemma 4.5, the winning stratefjy,, can be (trivially) turned into a valid stratedy; x

for 3in ¢ at (9,x) that can be followed until another position of the fotmx) is reached or unti
wins the game. This observation is important for defintfgstrategy in¢ starting from positior(¢, x):

e starting from(¢,x), the play proceeds t@,x) and after thaH plays strategyf, x.

o if the f, x-compliant play never reaches a position of the fqnx') then3 continues playing
according tof, x and wins: the resulting, x--compliant, full-play contains afy x-compliant
full 4 -play (by Lemma45) starting &b,x) which is won by3 as f, ) is a winning strategy for
3in gU(X) at (5,X).

e Suppose arf, x-compliant play reaches a position of the fofmx’). Until now - by Lemmd4.b
- the play corresponds to &, -compliant play of4 . As fyx) is a winning strategy fos in
%4, (» this entails thak’ € U (x). Itis now's turn to move ir# to a position(p,U’) with X' € U’
As X € U(x)NU’ (by the definition of¢), we haveU (x) NU’ £ 0, i.e., the move t¢3,U’) is a
legal move foiv in ¢! (&Y ) at position(V,U (x)). As the latter is an element @¥in; (<) (3y )), we
also have that3,U’) € Winy(¢)/ (3 )). HenceZ's winning strategyN in Wins(¢)! (3 )) specifies
a well-defined, legitimate move B’ that follows3's winning strategy inWins(¢)! (3y)).
Therefore, i, 3 answers/’s move to(p,U’) by moving to(d,y) with y = N(U’) and continues
from there according to stratedy, y.

It is not difficult to check, that this describes indeed a vingrstrategy ford in ¢ from position(¢,Xx).
The key observation is that for agg+play of the form

nm= (¢>X) cee (p,Xl)(é,Ul)(é,yl) cee (p7X2)(57U2)(57y2) s (p>xl)(5vul)(57yl) s

there is a corresponding infinite play 6! (35 ) of the form
m=x(¥,U(x) (3,U1) y1 (V,U(y1)) 3,U2) y2...(V,U(¥i-1)) (3,U) Vi ...

which is compliant with's winning strategy iri#)! (83 ) and where the number of fixpoint unfoldings in
' is equal to the number of occurrences of positions of the fgy®') in . As 7' is won by3, the play
™ must end after finitely many moves. Hence there are only §nit@ny occurrences of positions of the
form (p,x) in 1, i.e., from a certain positiofi¥,x’) on the play follows3’s strategyf, x in ¢ at(J,x).
In other words, such a play is won Byas - modulo a finite prefix - it corresponds by our construct@mn
a fy x)-compliant, )-play from position(d,x’) and fy ) is a winning strategy fof at (5,x).

We now turn to the proof of the implication frorhl (4) {d (2). Gader a strategyf for 3 in ¢ such that
f is winning for all positions ifWinz(¢) and letA := {x € X | (8,x) € Win5(¢)}. To prove our claim
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it suffices to show thafs C Wins(¢),(dy )) by equipping3 with a suitable strategy i) (3y ) that is
winning at all positions ii\. As before, we let unfolg= {(p,X) | x € X} and for allx € A we put
C(x) := {z eX|3dyeX.(p,y)isreachable in an unfolgfull ¢-play rrfrom (J,x) such that

1Tis compliant withd’s strategyf,

v can move from(p,y) to position(p,Uy)

to which3's reply according to her stratedyis to move to(d, z,) with z, € Uy}

Let x € A and letU C X be clopen withC(x) C U. With our definition ofC(x), it can be easily seen
that3 has a winning strategy &b,x) in 4,: Firstly, by Lemmd_4.b, for eac C X we know that3
has a strategyy in ¢4 at(d,x) such that every unfolgfull ¢-play T compliant withf starting at(d, x)
corresponds to a fullfy -compliant4, -play.

Suppose now for a contradiction that there is sime Clp(X) with C(x) C U’ for which (8,x) ¢
Winz(4,/). This implies that the stratedfy; cannot be winning fof in ¢, at (,x) and thus there exists
some statép,y) with y ¢ U’ and with the property thatp,y) is reachable fron{d, x) in an full ¢-play
rm compliant3’'s strategyfy,. By definition of fy/, there exists a unfoldfull ¢-play T from (J,X) to
(p,y) that is compliant withf. This leads to a contradiction: at positiop,y) in ¢4 - asy € X \U’ by
assumption ¥ could move tap, X \U’) and3 could choose an elemente X\ U’ and move tq9,z,)
according to her strategf. By definition ofC, we getz, € C(x) C U’ and henceg, € U’ which is a
contradiction.

This finishes the proof of the fact thathas a winning strategy &9,x) in ¢, for any clopen set
U C X with C(x) € U. Consequently, by({1), we havec 3y (U) for all U € Clp(X) with C(x) C U.
This means that for eache A, 3 can move from position to positionC(x) in ¢, (&), i.e.,C encodes a
legitimate strategy fof in all positionsx € A. We are now going to prove that for any play

X C(X) X1 C(X1) X2 C(X2) . .- X C(Xn)

of %(5?{) starting inx and compliant withd strategyC it is possible to construct a “shadow” play ©f
starting at(¢, x) that is compliant withd's winning strategy ir# and that is of the form

(¢,X)...(0,%1)...(0,%2)...(0,%n).
It suffices to see how a rounglC(x;) X1 in ¢ (8 ) is mirrored in%. To this aim note that,,1 € C(x;).
Hence there exists sorbke Clp(X) with X1 € U such thaip,U) is reachable fronid, x;) via a¥-play
rrcompliant with3’s winning strategy that is continued Byby moving to positiond,x;1). Clearly the
play r followed by 3's move to(9d, % 1) constitutes the required shadow play“of O

Example 4.7. We will give an example of an extremally disconnected mogalce (X, R) with X =

(X, 1), a clopen valuatioV and a modal formulg (g, p) such that the standard semanticgof¢ and
the topological semantics qfqg.¢ differ. Let Z be the set of integers with the discrete topology. Let
X =B(Z) be the StoneSech compactification d. ThenB(Z) is extremally disconnected, see eg|[19].
We define a relatiofR on X by zRyiff (zzy € Z andy=z+1ory=z—1orze X andy € 3(Z)\ Z).
Now we define a clopen valuatidfn(p) = {0}. Consider the formulg (g, p) = pVv <¢<q. The standard
semantics ofq.¢ is equal to the set of all even and negative even numbers.opladogical semantics,

in contrast, is equal to the whole spaXe

5 Bisimulations

We are now going to describe bisimulations for our topolabsetting. The definition is essentially the
standard one with an additional topological condition.
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Definition 5.1. LetM; = (X1,R1,V) and M, = (X3, Ry,V) be extremally disconnected Kripke models
based on the spacé§; = (X3, 71) and Xy = (Xp, T2). A relation ZC X; x X3 is called aclopen bisimu-
lationiff Z C X; x Xz is a (standard) Kripke bisimulation and for any clopen subd4 < Clp(X;) and

U, € Clp(Xz) we have 2U;] = {X € Xp | Ix € U1.(x,X) € Z} € Clp(X3) and Z1[U,] = {x € X | I €
UQ.(X,X/) S Z} S CIp(Xl)

The justification for the notion of clopen bisimulations yided by the following proposition.

Proposition 5.2. Let Z be a clopen bisimulation between extremally discamdekripke modeldf; =
(X1,Ry,V) andM = (X,R,V). Then for any formula € £, of the modalu-calculus and any states
x € X3 and X € Xz such that(x,X') € Z, we have x [¢] iff X' € [¢].

Proof. Suppose thatx,x') € Z and thatx € [¢] for some formulag. This implies by our adequacy
theorem that¢,x) € Wing(&'(¢,M;)). We are now going to transform’s winning strategy in¢; =
&(¢,M;) at position(¢,x) into a winning strategy fos in %, = &(¢, M) at position(¢,X).

As a preparation we need to define when we consider positfagfisand¥, to be equivalent: we say
(P1,x1) € Ly x X and (Yr,X2) € £, x Xq areZ-equivalent ifyn = ¢, and (x1,%2) € Z. Furthermore
we write (p,U1) <z (q,U>) for (p,U1) € £, x Clp(X1) and(p,U>) € £, x Clp(X>) if p= qand if for
all x e Uy there exists(’ € U such that(x,x') € Z. Similarly we defingp,U;) >z (q,U,). Consider two
(possibly partial) playsn = by ...bc and s = b ... b of 4 and%, respectively. We sayn and o are
Z-equivalent iffk =1 and for alli = 1,...,k we have

e by andbl are of the formb; = (¢, x) andb! = (,x) and both positions ar2-equivalent, or
e bi = (p,Uy), bj = (p,U2), pis bound byu and(p,U1) <z (p,Uz), or
e bi = (p,Uz), bf = (p,U2), pis bound byv and(p,U1) >z (p,U2).

Let g be a play of¥; that starts ird’s winning position(¢,x) and that is played according s
winning strategy. We are going to show thatrif is a Z-equivalent play of%, that starts at position
(¢,X), then either

e both playsm and s are full (and thus won by) or

e it is J's turn and3 has a strategy to extermg to a play sl that isZ-equivalent to an extension
mmb of iy such thatrmb is a%;-play compliant withd’s winning strategy, or

e itis V's turn and for all ofv’s moves that extends to b’ there is a move of in 4 such that the
resulting playrab of 4 is Z-equivalent torph'.

Clearly this claim will imply thaB has a winning strategy i#, at position(¢,x') as required. The claim
is proven by a case distinction on the last stateeofDue to space reasons we only discuss the cases of
the modal diamond and the (least) fixpoint cases.

Case: o = bj... b (O, X%). By assumption there existsZaequivalent playrg = by...bn (O, xq)
which in particular implies thafx;,x>) € Z. Clearly it is3's turn and she can prolong ti¥-play by
moving according to her strategy tg/,y) for somey € X; with (x,y) € Ri. AsZ is a bisimulation we
know that there must bg € X, such tha(x,,y') € Ry and(y.y') € Z. HenceV can prolong thes-play by
moving to(yx,Y') and the resulting plays = by ... by (O, %) (,y) andme = b ... b, (O, x1) (P, Y)
areZ-equivalent.

Case: & = b ... b (p,x2) for somep € BVar(¢) that is bound by gu-operator. In this casen =
bi...bn(p,x1) and its¥’s turn to continue both plays. L&ts move in%, be to(p,U,) for some clopen
subseU € ClIp(Xj3) with x; € U, . BecauseXxy, xp) € Z and by the definition of a clopen bisimulation
we have thatJ; := Z71[U;] is a clopen neighbourhood of. ThereforeV could extend the4;-play
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by moving to(p,U1). The resulting playss = by...bn(p,x1)(p,U1) and e = b} ... b, (p,%2) (p,U2)
are clearlyZ-equivalent because all elemehis have theirZ-correspondant itJ, and hence we have
(p,U1) <p (p,U>) as required.

Case:p =D ... b (p,Uz) for somep € BVar(¢) that is bound by au-operator. By assumption we have
aZ-equivalent4;-play s = bs ... bn(p,U1) with the property thatp,U;) <z (p,Uz). By the definition of
the game itis clear that in both play$ias to move. She continuas by moving according to her winning
strategy to someéy,y) with y € U;. By definition of <7 there exists § € U, such thatly,y’) € Z and
henced can extend the playe by moving to(y,Y'). Again the resulting plays = b; ... bn(p,U1) (YY)
andm, = by ...by(p,U2)(,Y) are obviouslyZ-equivalent. The other cases of the induction can be dealt
with in a similar fashion. This shows that froxe [[¢] and (x,X') € Z we are able to deducé € [[¢].
The implication in the opposite direction can be proven irompletely symmetrical way. Ag¢ was
arbitrary we conclude that clopen bisimilarity implies eglence with respect to the topological modal
u-calculus. O

Remark 5.3. We leave it open whether the converse of Propositioh 5.2haifts, i.e., whether we have
a Hennessy-Milner property wrt our notion of clopen bisiatidn. A closely related question is how
our clopen bisimulations compare to the Vietoris bisimiola of [4]. It is obvious that the topological
closure of a clopen bisimulation is a Vietoris bisimulatiand hence that clopen bisimilarity implies
Vietoris bisimilarity. Proving the converse would yieldettHennessy-Milner property with regard to
clopen bisimilarity as a corollary of [4, Cor. 3.10].

6 Conclusions and future work

In this paper we developed game semantics for topologicpbiit logic on extremally disconnected
modal spaces. These results can be seen as first steps tohattieory of topological fixpoint logic

in general and towards admissible game semantigs-@diculus in particular. As next steps we intend
to extend this framework to other classes of descriptivieames and to devise automata that operate
on Kripke frames over topological spaces. This will provaddeeper understanding of these structures
as well as of axiomatic systems of the mogatalculus, since axiomatic systems of thecalculus
are complete wrt descriptiva-frames. Other important questions concern the finite mpdgberty,
decidability and computational complexity and other keyparties of topological fixpoint logics.

A further interesting research direction is to investigatedal fixpoint logic of Kripke frames based
on compact Hausdorff spaces and beyond. However, insteddpmdn sets we will have to work with
regular open sets in this setting. This means we will eneeréilalm of modal compact Hausdorff spaces
introduced in[[3]. These are exactly the spaces that carrebo coalgebras for the Vietoris functor on
the category of compact Hausdorff spaces. Sahlqgvist fixmmirrespondence for such spaces has been
developed already in [7]. | This approach could pave the weayah expressive and decidable fixpoint
logic for the verification of continuous systems or, moreagafly, systems that combine discrete and
continuous systems such as hybrid autoniata [13].

Finally, we want to clarify the connection of our work to tdpgical games a la Banach-Mazlr [20].
These games are similar to our fixpoint games as players mpwhdiosing e.g. open subsets - the
fundamental differences are i) they characterise pragzedi the topology rather than properties of a
relational structure over a topological space and ii) ovityp®inning condition that ensures determinacy.
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