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Topological fixpoint logics are a family of logics that admits topological models and where the fix-
point operators are defined with respect to the topological interpretations. Here we consider a topo-
logical fixpoint logic for relational structures based on Stone spaces, where the fixpoint operators are
interpreted via clopen sets. We develop a game-theoretic semantics for this logic. First we introduce
games characterising clopen fixpoints of monotone operators on Stone spaces. These fixpoint games
allow us to characterise the semantics for our topological fixpoint logic using a two-player graph
game. Adequacy of this game is the main result of our paper. Finally, we define bisimulations for
the topological structures under consideration and use ourgame semantics to prove that the truth of
a formula of our topological fixpoint logic is bisimulation-invariant.

1 Introduction

By topological fixpoint logicswe mean a family of fixpoint logics that admit topological models and
where the fixpoint operator is defined with respect to topological interpretations. In the standard se-
mantics fixpoint operators are interpreted as the least (or greatest) fixpoint of a monotone map in the
powerset lattice. In our topological setting we interpret fixpoint operators as the least (or greatest) fix-
point of a monotone map on some (topological) sublattice of the powerset lattice (e.g., clopen subsets,
open or closed subsets, regular open or closed subsets etc.). An important motivation for studying such
formalisms is that every axiomatic system of the modalµ-calculus is complete with respect to the topo-
logical semantics via clopen sets [1]. Moreover, the powerful Sahlqvist completeness and correspon-
dence result from modal logic can be extended to the axiomatic systems of modalµ-calculus for this
semantics [6]. We note that completeness results for axiomatic systems of modalµ-calculus with the
standard semantics are very rare, and require highly complex machinery [14], [23], see also [18] and [9].
Note also that axiomatic systems of modal conjugatedµ-calculus axiomatized by Sahlqvist formulas
are closed under Dedekind-MacNeille completions via topological semantics [5]. However, these sys-
tems are not closed under Dedekind-MacNeille completions for the standard semantics [17]. Another
motivation for studying topological semantics of fixpoint logic is that it provides an alternative view on
fixpoints operators with new notions of expressivity and definability. For a comprehensive discussion on
the importance of generalized models in logic, including modal fixpoint logic, we refer to [2]. A rather
different approach to interpret fixpoint formulas over topological spaces is taken in [11] where formulas
are interpreted in the full powerset lattice and where modalities are interpreted via topological operations
such as closure and topological derivative.

We illustrate the difference between standard and topological fixpoint operators with an example.
Consider the frame(N∪{∞},R) drawn in Figure 1. We assume that the topology on the set is such that
clopen sets are finite subsets ofN and cofinite sets containing the point∞. The denotation of the formula
✸

∗p is the set of points that “see points inp wrt the transitive closure of the relationR”. Therefore✸∗p
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Figure 1: Example

is equal to the setN. Indeed,N is the least fixed point of the mapS 7→ {0}∪✸S, where✸S= {s′ | ∃s∈
S.(s′,s) ∈ R}. However, if we are looking for a least clopen fixpoint of thismap then we see that this will
be the setN∪{∞}. Intuitively, the denotation of the formula✸∗p wrt the clopen semantics is the set of
all points that “see points inp wrt thetopological transitive closureof the relationR”. Note that a similar
operation was used in [21] for characterising in dual terms subdirectly irreducible modal algebras.

In this paper, we aim to advance the study of topological fixpoint logics by developing a game
semantics for them. We will concentrate on a variant of topological fixpoint logic based on interpretations
via clopen sets. For clopen sets we consider Stone spaces with a binary relation (descriptiveµ-framesin
the terminology of [1] and [6]). The advantage of clopen setsis that the denotation of modal formulas in
clopen sets is the same as in the standard Kripke semantics ofmodal logic. The negation of a formula
is interpreted as the complement, conjuction and disjunction as the intersection and union, respectively,
and the modal operators are also interpreted in the standardway. However, clopen sets of an arbitrary
Stone space do not form a complete lattice and therefore the fixpoint operators, in general, may not be
interpreted in Stone spaces with the clopen semantics. Therefore, we need to restrict to a class of Stone
spaces where these operators can be interpreted. We will achieve this by looking at relational structures
based onextremally disconnected spaceswhich is a subclass of descriptiveµ-frames.

There are several motivations for developing the game semantics for the topologicalµ-calculus.
Firstly, the semantics of a formula can be usually much better understood when formulated in terms of
games. This is especially true for formulas with some non-trivial interplay of least and greatest fixpoint
operators. Secondly, a game semantics is crucial for the development of automata-theoretic methods of
the topologicalµ-calculus: the game semantics provides an “operational” semantics for the formulas
of the logic and the definition of a run of an automata (or of itsacceptance game) is entirely based on
this operational view on the truth of a formula. Thirdly, thegame semantics is an important tool for
developing the model-theory of the topologicalµ-calculus.

The main contribution of this paper is a game semantics for the topologicalµ-calculus based on
clopen sets. Technically, the main result is the proof of adequacy of our game semantics. Finally we are
demonstrating how the game semantics can be used in order to obtain model-theoretic results: we prove
that the topologicalµ-calculus is invariant under what we call clopen bisimulations.

We view the results in this paper as first steps towards a full theory of topological fixpoint logics. An
ultimate goal is to define game semantics and automata for alldescriptiveµ-frames (not necessarily based
on extremally disconnected spaces). This would enable us toapply the methods of games and automata
for tackling problems such as decidability and the finite model property of axiomatic systems of the
modalµ-calculus. These systems are complete for descriptiveµ-frames, whereas their completeness for
the standard Kripke semantics is quite problematic.

2 Preliminaries

2.1 Two Player graph games

Two-player infinite graph games, orgraph gamesfor short, are defined as follows. For a more compre-
hensive account of these games, the reader is referred to [12].
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A graph game is played on aboard B, that is, a set ofpositions. Each positionb∈ B belongsto one
of the twoplayers, ∃ (Éloise) and∀ (Abélard). Formally we writeB= B∃∪B∀, and for each positionb
we useP(b) to denote the playeri such thatb∈ Bi . Furthermore, the board is endowed with a binary
relationE, so that each positionb ∈ B comes with a setE[b] ⊆ B of successors. Note that we do not
require the games to be strictly alternating, i.e., successors of positions inB∃ or B∀ can lie again inB∃

or B∀, respectively. Formally, we say that thearenaof the game consists of a directed two-sorted graph
B= (B∃,B∀,E).

A matchor play of the game consists of the two players moving a pebble aroundthe board, starting
from someinitial position b0. When the pebble arrives at a positionb∈B, it is playerP(b)’s turn to move;
(s)he can move the pebble to a new position of their liking, but the choice is restricted to a successor of
b. ShouldE[b] be empty then we say that playerP(b) got stuckat the position. Amatchor play of the
game thus constitutes a (finite or infinite) sequence of positionsb0b1b2 . . . such thatbiEbi+1 (for eachi
such thatbi andbi+1 are defined). Afull play is either (i) an infinite play or (ii) a finite play in which the
last player got stuck. A non-full play is called apartial play. Each full play of the game has awinnerand
a loser. A finite full play is lost by the player who got stuck; the winning condition for infinite games
is usually specified using a so-calledparity function. In our paper, however, we specify the winning
conditions on infinite games in more intuitive terms, stating explicitly which infinite plays will be won
by which player. Throughout the paper the reader should takeit for granted that the winning conditions
involved could easily be encoded using suitable parity functions.

A strategyfor playeri tells a player how to play to at a given game position: this canbe represented
as apartial function mapping partial playsβ = b0 · · ·bn with P(bn) = i to legal next positions, that is, to
elements ofE[bn], and that it is undefined ifE[bn] = /0. A strategy ishistory freeif it only depends on the
current position of the match, and not on the history of the match. A strategy iswinning for player ifrom
positionb ∈ B if it guaranteesi to win any match with initial positionb, no matter how the adversary
plays — note that this definition also applies to positionsb for whichP(b) 6= i. A positionb∈ B is called
awinning positionfor playeri, if i has a winning strategy from positionb; the set of winning positions for
i in a gameG is denoted asWini(G ). Parity games enjoyhistory-free determinacy, ie., at each position
of the game board one of the player has a history free winning strategy (cf. [16, 10]).

2.2 Tarski’s fixpoint game

Recall that on any complete lattice the least fixpointµF and the greatest fixpointνF of a monotone
functionF exist and can be obtained as follows: first we define for each ordinal α ∈ ORD two sequences
{F µ

α }α∈ORD and{Fν
α }α∈ORD by putting

Fµ
0 = ⊥, Fµ

α+1 = F(Fµ
α ) and Fµ

α =
∨

β<α F µ
β for α a limit ordinal.

Fν
0 = ⊤, Fν

α+1 = F(Fν
α ) and Fν

α =
∧

β<α Fν
β for α a limit ordinal.

The core of the game-theoretic semantics of the modalµ-calculus is based on Tarski’s game-theoretic
characterisation of fixpoints. Given a monotone functionF : PX →PX, the game board of the standard
fixpoint game is defined as follows:

Position Player Moves

x∈ X ∃ {C ⊆ X | x∈ F(C)}
C⊆ X ∀ C

We will use the above notation in the following to introduce graph games: the table specifies thatB∃ =X,
B∀ = PX and in the third column of the table the successors of each game board position are specified.
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The condition on infinite plays in the standard fixpoint game is that all infinite plays of the game are won
by ∀ in the least fixpoint game and by∃ in the greatest fixpoint game.

It is a standard result in fixpoint theory (cf. e.g. [22]) thatthe above least and greatest fixpoint games
characterise the least and greatest fixpoint ofF, respectively. For example,∃ has a winning strategy at a
positionx∈ X in the least fixpoint game iffx is an element ofµF. If x is an element of the least fixpoint,
we know that there exists an ordinalα such thatx∈ Fµ

α . In case thatα is a limit ordinal this means that
x∈

∨

β<α F µ
β =

⋃

β<α Fµ
β ⊆F(

⋃

β<α Fµ
β ) where the inclusion is easily verifiable. This means∃ can move

from positionx to position
⋃

β<α Fµ
β and∀ is forced to move to somex′ ∈ Fµ

β with β < α . Similary, if

α = β +1, ∃ can ensure that the play reaches a position inFµ
β after one round. In any case, due to the

well-foundedness of the ordinals,∃ can ensure that the play moves fromx ∈ Fµ
α to somex ∈ Fµ

β with
β < α which implies that∃ has a strategy that forces∀ to get stuck after a finite number of moves.

2.3 Topological preliminaries

We will work with Kripke frames that are endowed with a topology. The most important class of such
frames used in the study of modal logic is that ofmodal spaces(akadescriptive frames). This is due
to the Stone representation theorem for Boolean algebras and Jónsson-Tarski representation theorem for
Boolean algebras with operators. Amodal spaceis a triple(X,τ ,R) such thatX= (X,τ) is a Stone space
andR⊆ X×X is a binary relation that ispoint-closedandclopen. The latter mean thatR(x) = {y∈ X :
xRy} is a closed set for eachx∈ X and that✸U ∈ Clp(X) for eachU ∈ Clp(X), where Clp(X) is the set
of all clopen subsets ofX and✸U = {x∈ X | ∃y∈U. xRy}. Every modal algebra can be represented as
the algebra(Clp(X),✸), whereX is the ultrafilter space. As a result every axiomatic system of modal
logic is complete wrt modal spaces. We refer to [8] for more details on completeness of modal logics
wrt modal spaces. We also note that modal spaces can be also represented as Vietoris coalgebras on the
category of Stone spaces [15]. Throughout this paper we willtacitly assume that all topological Kripke
frames are modal spaces.

A Stone spaceX = (X,τ) is calledextremally disconnectedif the closure of any open subset ofX

is open. It is well known (see e.g., [19]) that ifX is an extremally disconnected space, then Clp(X) is a
complete Boolean algebra. Moreover, for a set of clopen sets{Ui : i ∈ I} the infinite meets and joins are
computed as:

∨

{Ui : i ∈ I} = Cl(
⋃

{Ui : i ∈ I}) and
∧

{Ui : i ∈ I} = Int(
⋂

{Ui : i ∈ I}). We call a modal
space(X,τ ,R) anextremally disconnected modal spaceif (X,τ) is extremally disconnected.

2.4 Modal µ-calculus on topological spaces: denotational semantics

The complete lattice structure on Clp(X) of an extremally disconnected spaceX = (X,τ) enables us to
define a topological semantics of the modalµ-calculus that is based on clopen sets.

Definition 2.1. Given a countably infinite setPropof propositional variables (p,q, p0,q1, etc), the lan-
guageLµ of the modalµ-calculus is inductively defined as follows:

Lµ ∋ ϕ ::= p, p∈ Prop| ¬p, p∈ Prop| ϕ ∧ϕ | ϕ ∨ϕ | ⊥ | ⊤ |✸ϕ | ✷ϕ |

µ p.ϕ(p,q1, . . . ,qn) | ν p.ϕ(p,q1, . . . ,qn)

where in formulas of the formµ p.ϕ and ν p.ϕ we require that the variable p does not occur under a
negation1. The sets FVar(ϕ) and BVar(ϕ) of free and bound variables of a given formulaϕ ∈ Lµ are
defined in a standard way.

1Formulas are always in negation normal form, ie., negationsonly occur in front of propositional variables.



50 Games for Topological Fixpoint Logic

Definition 2.2. Given an extremally disconnected modal space(X,R) based on a spaceX= (X,τ) and
a valuation V: Prop→ Clp(X) we define the semantics[[ϕ ]]XV ∈ Clp(X) of a formulaϕ by induction:

[[p]]V := V(p) [[¬p]]V := X \V(p)
[[ψ1∧ψ2]]V := [[ψ1]]V ∩ [[ψ2]]V [[ψ1∨ψ2]]V := [[ψ1]]V ∪ [[ψ2]]V

[[⊥]]V := /0 [[⊤]]V := X
[[✸ψ ]]V := {x∈ X | R(x)∩ [[ψ ]]V 6= /0} [[✷ψ ]]V := {x∈ X | R(x)⊆ [[ψ ]]V}

[[µ p.ψ ]]V := lfp(ψV
p ) [[ν p.ψ ]]V := gfp(ψV

p )

whereψV
p : Clp(X) → Clp(X) is the (monotone) operator defined byψV

p (U) := [[ψ ]]V[p7→U ] for U ∈
Clp(X) and with

V[p 7→U ](q) :=

{

U if q = p
V(q) otherwise.

We call the tripleM = (X,R,V) an extremally disconnected (Kripke) model and writeM[p 7→ U ] to
denote the modelM= (X,R,V[p 7→U ]).

3 Games for monotone operators on topological spaces

In this section we are going to define topological analogues of the fixpoint game from page 48. We start
by looking at fixpoints of a monotone functionF : Clp(X) → Clp(X) on the lattice of clopen subsets
Clp(X) of an extremally disconnected Stone spaceX = (X,τ). This assumption on the topology guar-
antees the existence of a least and greatest fixpoint ofF and these fixpoints can be obtained using the
ordinal approximantsF µ

α andFν
α , respectively. To understand how the fixpoint game has to be defined

we need to inspect how the ordinal approximantsFµ
α andFν

α are computed in caseα is a limit ordinal:

Fµ
α =

∨

β<α
Fµ

β = Cl(
⋃

β<α
Fµ

β )

Fν
α =

∧

β<α
Fν

β = Int(
⋂

β<α
Fν

β )

Therefore, intuitively speaking, in order to maintain the claim that a given pointx is an element of
µF it suffices that∃ provides some open setO⊆ X such thatx∈ F(Cl(O)), so this will become easier
for ∃. Likewise, in order to prove thatx∈ νF, ∃ will now have to provide some closed setC such that
x∈ F(Int(C)) which is potentially more difficult compared to the standardfixpoint game. Note that in
both cases Cl(O) and Int(C) are clopen as the closure of an open set and the interior of a closed set are
clopen sets in an extremally disconnected Stone space. Our observations form the basis for the following
definitions of the fixpoint games:

Definition 3.1. LetX = (X,τ) be an extremally disconnected topological space and let F: Clp(X) →
Clp(X) be a monotone map. We define two graph games. We start with the game board of the least
fixpoint gameG I

µ(F):

Position Player Moves

x∈ X ∃ {C⊆ X | x∈ F(U) for all U ∈ Clp(X) with C⊆U}
C⊆ X ∀ C
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ie, at a position x∈ X, player∃ has to move to some C⊆X such that x∈ F(U) for all clopen supersets of
C and at position C⊆ X player∀ has to move to some x′ ∈C. Infinite plays are won by∀. The resulting
graph game will be called the least clopen fixpoint game and will be denoted byG I

µ(F). The greatest
clopen fixpoint gameG I

ν (F) is defined similarly with the major difference that an infinite play is won by
∃. Also, the game board ofG I

ν (F) reflects the aforementioned way of computing meets inClp(X):

Position Player Moves

x∈ X ∃ {C⊆ X | x∈ F(U) for all U ∈ Clp(X) with Int(C)⊆U}
C⊆ X ∀ C

With these definitions at hand it is not difficult to prove thatG I
µ(F) andG I

ν(F) indeed characterise
the least and greatest clopen fixpoints ofF, respectively. This is the content to the following proposition.

Proposition 3.2. Let X = (X,τ) be an extremally disconnected space, let F: Clp(X) → Clp(X) be a
monotone operator. Then for any x∈ X we have

1. x∈ µF iff x ∈ Win∃(G I
µ(F))

2. x∈ νF iff x ∈ Win∃(G I
ν (F))

Proof. We only provide the proof for the greatest fixpoint gameG I
ν (F) - the one for the least fixpoint

game is very similar. We need to show thatWin∃(G I
ν (F)) = νF. Suppose first thatx ∈ νF ∈ Clp(X).

Then∃ has an obvious winning strategy: she is playing the setνF . All ∀ can do is choosing another
elementx′ ∈ νF after which∃ can move again toνF and so forth. Note that any such play will be infinite
and thus∃ has a strategy to win any play starting atx, ie.,x∈ Win∃(G I

ν (F)).
For the converse we show that for all ordinalsα we haveX \Fν

α ⊆ Win∀(G I
ν (F)) by induction onα .

Caseα = 0. Then the claim is obvious asX \Fν
0 = X \X = /0.

Caseα = β +1. Suppose that in a play starting at positionx 6∈Fν
α =F(Fν

β ) player∃moves to someC⊆X
with x∈ F(U) for all U ∈ Clp(X) with Int(C)⊆U . ClearlyC 6⊆ Fν

β for otherwise Int(C)⊆ Fν
β and thus

x∈ F(Fν
β ) = Fν

α . Hence∀ can pick an elementx′ ∈C\Fν
β . Now by I.H. we have thatx′ ∈ Win∀(G I

ν (F))
and thus∀ has a strategy to win the play from now on. This shows that∀ has a winning strategy at
positionx in Gν(F) as required.
Caseα is a limit ordinal. Consider somex 6∈ Fν

α =
∧

Fν
β and letC⊆ X be chosen by∃ as in the previous

case. By our assumption on the topology we have
∧

Fν
β = Int(

⋂

Fν
β ). It is not difficult to see that

C 6⊆
⋂

Fν
β for suppose otherwise: then Int(C) ⊆ Int(

⋂

Fν
β ) =

∧

Fν
β and thusx∈ F(

∧

Fν
β )⊆

∧

Fν
β which

contradicts our assumption onx. Therefore there exists aβ < α such thatC 6⊆ Fν
β , ie., such that there

existsx′ ∈C with x′ 6∈ Fν
β . By the induction hypothesis we know thatx′ ∈Win∀(G I

ν (F)) and from position
x′ ∀ has a strategy to win the play. Therefore∀ has a winning strategy from positionx as required.

This shows that the gamesG I
µ andG I

ν characterise the least and greatest clopen fixpoint of a monotone
operator. We will use these games to prove adequacy of our game semantics for the topological modal
µ-calculus: If∃ has a winning strategy in the evaluation game for a formula ofthe form µ p.ϕ and
ν p.ϕ then we will construct a winning strategy for her in the corresponding fixpoint games that we just
discussed. Vice versa we would like to transform winning strategies in the fixpoint games into winning
strategies of the evaluation game forµ p.ϕ andν p.ϕ . For this converse direction we will need second -
but equivalent - versions of the fixpoint games.

Definition 3.3. LetX be an extremely disconnected space and let F: Clp(X)→ Clp(X) be a monotone
map. As elements ofClp(X) can occur both as position of∃ and∀, we clearly mark the owner of such a
position using the set of markers M= {∃,∀}. We define the following two-player gameG II

µ (F) by putting
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Position Player Moves

x∈ X ∃ {(∀,U) ∈ M×Clp(X) | x∈ F(U)}
(∀,U) ∈ M×Clp(X) ∀ {(∃,U ′) ∈ M×Clp(X) |U ∩U ′ 6= /0}
(∃,U) ∈ M×Clp(X) ∃ U

ie, at a position x∈ X, player∃ has to move to some clopen set U⊆ X such that x∈ F(U), ∀ challenges
this by playing a element U′ ∈ Clp(X) with U∩U ′ 6= /0 and at position(∃,U ′) ∈ M×Clp(X) player∃
has to move to some x′ ∈U ′. Again∀ wins all infinite plays of the game. Similarly we define the game
G II

ν (F) by defining the following game board and by stipulating that∃ wins all infinite plays:

Position Player Moves

x∈ X ∃ {U ∈ Clp(X) | x∈ F(U)}
U ∈ Clp(X) ∀ U

Remark 3.4. The reader familiar with fixpoint games might be surprised and slightly worried as there is
an unexpected asymmetry between the gamesG II

µ (F) andG II
ν (F). Both games have in fact been derived

from two completely symmetric games with the following gameboards (omitting the markers inM) and
the usual winning conditions for infinite least and greatestfixpoint games:

Gµ Position Pl. Moves

x∈ X ∃ {U ∈ Clp(X) | x∈ F(U)}
U ∈ Clp(X) ∀ U

x′ ∈ X ∀ {U ′ ∈ ClpX | x′ ∈U ′}
U ′ ∈ Clp(X) ∃ U ′

Gν Position Pl. Moves

x∈ X ∃ {U ∈ Clp(X) | x∈ F(U)}
U ∈ Clp(X) ∀ U

x′ ∈ X ∃ {U ′ ∈ ClpX | x′ ∈U ′}
U ′ ∈ Clp(X) ∀ U ′

It is not difficult to see, however, that both games can be simplified to the gamesG II
µ (F) andG II

ν (F).

We will now show that games forµ andν characterise the least and greatest clopen fixpoint.

Proposition 3.5. LetX be an extremally disconnected space, let F: Clp(X) → Clp(X) be a monotone
operator. Then for any x∈ X we have

1. x∈ µF iff x ∈ Win∃(G II
µ (F)).

2. x∈ νF iff x ∈ Win∃(G II
ν (F))

Proof. We first focus on the least fixpoint operator. Suppose thatx ∈ µF for somex ∈ X. Then there
is a least ordinalα such thatx∈ Fµ

α , we call this theµ-depth ofx. We will show that∃ has a winning
strategy inG II

µ (F) at x by describing a strategy for∃ that ensures that either∀ gets stuck within the next
round or that the play reaches a positionx′ ∈ Fµ

α ′ with α ′ < α . Both facts entail that∃ has a strategy such
that all plays compliant with her strategy are finite and that∀ is the player who will eventually get stuck.
Caseα = β +1. Thenx∈ F µ

β+1 = F(Fµ
β ) and∃’s strategy is to move fromx to (∀,Fµ

β ). Player∀ either

gets stuck (ifF µ
β = /0) or responds by moving to some(∃,U ′) with U ′ ∈ Clp(X) such thatU ′∩Fµ

β 6= /0.

Now ∃ picks an arbitraryx′ ∈U ′∩Fµ
β and the round finished on a positionx′ ∈ Fµ

β with strictly smaller
µ-depth as required.
Caseα is a limit ordinal. Then∃’s strategy is to move fromx to (∀,

∨

β<α Fµ
β ) = (∀,Cl(

⋃

β<α F µ
β ))

which is a legal move asx ∈
∨

β<α Fµ
β ⊆ F(

∨

β<α Fµ
β ). Unless∀ gets stuck, he will move to some

position(∃,U ′) whereU ′ ∈ Clp(X) with U ′∩
∨

β<α Fµ
β 6= /0. In other words, the clopen subsetU ′ has a

non empty intersection with the closure of
⋃

β<α Fµ
β which impliesU ′∩

⋃

β<α Fµ
β 6= /0. Therefore∃ can

pick a suitable elementx′ ∈
⋃

β<α Fµ
β such that the round finishes in a positionx′ of smallerµ-depth.

We now show that the gameG ν
II (F) characterises the greatest clopen fixpoint. Suppose thatx∈ νF ∈

Clp(X). Then, as in the proof for the gameG I
ν(F), ∃ has a simple winning strategy by always moving
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to νF ∈ Clp(X). For the converse we show that for all ordinalsα we haveX \Fν
α ⊆ Win∀(G II

ν (F)) by
induction onα . The casesα = 0 andα = β +1 follow easily from the inductive hypothesis. Supposeα is
a limit ordinal and consider somex 6∈ Fν

α =
∧

β<α Fν
β and suppose that∃ moves to someU ∈Clp(X) such

that x ∈ F(U). Then it is easy to see thatU 6⊆
⋂

β<α Fν
β , for otherwiseU ⊆ Int(

⋂

β<α Fν
β ) =

∧

β<α Fν
β

and hence
x∈ F(U)⊆ F(

∧

β<α
Fν

β )⊆
∧

β<α
Fν

β .

Therefore∀ can pick somex′ 6∈
⋂

β<α Fν
β , ie., x′ 6∈ Fν

β for someβ < α . By I.H. we know that∀ has a
winning strategy from positionx′ and hence - as∃’s move toU was arbitrary - we showed that∀ has a
winning strategy from positionx. This finishes the proof ofX \Fν

α ⊆ Win∀(G II
ν (F)) which is equivalent

to Fν
α ⊆X\Win∀(G II

ν (F)) =Win∃(G II
ν (F)) for all α ∈ ORD. The latter impliesWin∃(G II

ν (F))⊆ νF.

We conclude our discussion of fixpoint games on extremally disconnected spaces. The reader might
wonder why we introduced two gamesG I

µ(F), G II
µ (F) for the least fixpoint ofF and two games for

the greatest fixpoint. Do we really need both variants of theµ- andν-games? The reason why both
variants seem necessary for proving our adequacy theorem isbased on the following observation2: The
gamesG I

µ andG II
µ characterise both the same least fixpoints and have therefore the same winning regions

within the set of statesX. It is, however, in general not possible to transform strategies of∃ in the first
variant of theµ-game into corresponding strategies for∃ in the second game. To see this, suppose that
∃ has a strategyf in G I = G I

µ(F) at positionx and supposef (x) =C. We would like to equip∃ with a
corresponding strategyg in G II = G II

µ (F) at positionx such that for the next “round”xUU′y of G II that
is compliant withg, there is a corresponding roundxCy of G I compliant with f (and by re-using that
argument round-by-round, one could ensure thatf is a winning strategy for∃ in G I iff g is a winning
stratgey for∃ in G II ).

To achieve this, we have to define∃’s strategyg such that she moves fromx in G II to some suitable
clopen setU . SupposeU ⊆ Cl(C). Then∀ can respond with someU ′ ∈ Clp(X) such thatU ∩U ′ 6= /0.
This impliesU ′ ∩Cl(C) 6= /0 and thus - asU ′ is clopen - thatU ′ ∩C 6= /0. Hence,∃ can continue the
play by picking an elementy of U ′∩C which overall results in the partialG II -play xUU′y. Clearly, the
sequencexCy is also anf -compliantG I -play and therefore can act as the corresponding play for the
G II -play xUU′y. Similarly one can show that in any play where∃ moves from positionx to someU with
U 6⊆ Cl(C), ∀ can ensure that the next statey that is reached in the play will be an element ofX \C and
therefore that the resultingG II -play is no longer linked to any correspondingf -compliantGI -play.

Therefore we can construct a corresponding strategy for∃ in G II iff there is a legitimate moveU for ∃
atx with U ⊆ Cl(C). In general, however, there is no suitable clopen setU ⊆ Cl(C) with x∈ F(U) - and
this property is required for a legitimate move inG II . This is demonstrated by the following example.

Example 3.6. Consider the Stone-C̆ech compactificationβ (N) of the natural numbers3, let C ⊆ β (N)
be the collection of non-principal ultrafilters overN and consider the (trivially monotone) operator

F = idClp(β(N)) : Clp(β (N))→ Clp(β (N)).

For any clopenU ∈ Clp(β (N)) we haveU = Ŝ= {u∈ β (N) | S∈ u} for some suitable setS⊆ N. With
this in mind, it is easy to see that for all clopensU we haveU ⊆C impliesU = /0.

Consider now an arbitraryx∈C. We have thatx∈ F(U) for all U ∈ Clp(βN) such thatC ⊆U (in
particular,C would be a legitimate move inG I

µ(F) at x). On the other hand, forU ∈ Clp(βN) we have

2We state this observation forµ, but it equally applies toν.
3Which is extremally disconnected, see eg [19].
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that U ⊆ Cl(C) = C implies U = /0 and thusx 6∈ F(U) for all theseU (which shows that there is no
suitable move for∃ in G II

µ (F) atx that correponds to her move fromx to C).

4 Game semantics for theµ-calculus on topological spaces

We are now ready to define the game characterisation of the clopen semantics of the modalµ-calculus.
Our presentation follows the presentation of the standard game semantics of the modalµ-calculus that
can be found e.g. in [22]. In the following we assume that we are dealing with“clean” formulas inLµ :

Definition 4.1. A formulaϕ ∈ Lµ is called clean if no two distinct occurrences of fixpoint operators in
ϕ bind the same propositional variable and if a variable occurs either free or bound inϕ (but not both
bound and free). For any bound variable p∈ Propthat occurs within a clean formulaϕ we denote by
ϕ@p= η p.ψ the unique subformula ofϕ where p is bound by the fixpoint operatorη ∈ {µ ,ν}.

The restriction to clean formulas is standard practice in the modal literature. It will simplify the game
definition. Furthermore it allows us to give a concise definition of when the unfolding of one fixpoint
variable depends on the unfolding of another one.

Definition 4.2. For a clean formulaϕ ∈ Lµ and bound variables x,y ∈ Propoccurring in ϕ we say
x≤ϕ y if ϕ@x is a subformula ofϕ@y.

Definition 4.3. Let ϕ ∈ Lµ be a formula and letM = (X,R,V) be an extremally disconnected Kripke
model together with valuation V: Prop→ Clp(X). The game board of the evaluation gameE (ϕ ,M) is
specified in the table in Figure 2.

As usually a finite full play ofE (ϕ ,M) is lost by the player who got stuck at the end of the play. In
order to specify the winning condition on infinite playsπ we need the following notation:

Inf (π) := {p∈ BVar(ϕ) | p occurs infinitely often inπ}.

A standard argument shows that for any infinite playπ of E (ϕ ,M) the set Inf(π) is nonempty, finite and
upwards directed with respect to the dependency order≤ϕ . Therefore the maximal elementmax(Inf (π))
of Inf(π) wrt ≤ϕ is well-defined and we declare∃ to be the winner of an infinite playπ of E (ϕ ,M) iff
max(Inf (π)) is a ν-variable, ie., a variable bound by a greatest fixpoint operator.

After our discussion of fixpoint games, the reader should have little problems with understanding
the intuition behind the winning condition: an infinite playduring which the highest infinitely often
“unfolded” fixpoint variable is aν-variable corresponds to an infinite play of a greatest fixpoint game.
Therefore∃ wins such a play. Similarly all infinite plays in which the highest infinitely often unfolded
variable is aµ-variable are won by∀. We now turn to the formulation and proof of the main theorem of
this section. First we need to introduce some terminology and an auxiliary lemma.

Definition 4.4. Consider a two-player graph gameG with set of positions B. For a set Y⊆ B we say
a G -play π is Y -full if eitherπ is a full play orπ = b0 . . .bn is a partial play with b0, . . . ,bn−1 6∈Y and
bn ∈Y, i.e., bn is the first position of the play occurring in Y .

Lemma 4.5. LetM= (X,R,V) be an extremally disconnected model, letϕ = η p.δ with η ∈ {µ ,ν} be a
fixpoint formula and consider the gamesGη = E (η p.δ ,M) andGU = E (δ ,M[p 7→U ]) with U ∈Clp(X).
Furthermore we letunfoldp = {(p,x′) | x′ ∈ X}.

(i) Any strategy fη for ∃ in Gη at (δ ,x) corresponds to a strategy fU for ∃ in GU at (δ ,x) such that any
unfoldp-full, fη -compliantGη -play starting at(δ ,x) is an fU -compliant, fullGU -play.
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Position Player Possible Moves

(p,x), p∈ FVar(ϕ) andx 6∈V(p) ∃ /0
(p,x), p∈ FVar(ϕ) andx∈V(p) ∀ /0

(¬p,x), p∈ FVar(ϕ) andx 6∈V(p) ∀ /0
(¬p,x), p∈ FVar(ϕ) andx∈V(p) ∃ /0

(ψ1∧ψ2,x) ∀ {(ψ1,x),(ψ2,x)}
(ψ1∨ψ2,x) ∃ {(ψ1,x),(ψ2,x)}

(✸ψ ,x) ∃ {(ψ ,x′) | Rxx′}
(✷ψ ,x) ∀ {(ψ ,x′) | Rxx′}

(η p.ψ ,x), η ∈ {µ ,ν} ∃/∀ (ψ ,x)
(p,x), p∈ BVar(ϕ), ϕ@p= µ p.ψ ∀ {(p,U) |U ∈ Clp(X), x∈U}
(p,x), p∈ BVar(ϕ), ϕ@p= ν p.ψ ∃ {(p,U) |U ∈ Clp(X), x∈U}
(p,U), p∈ BVar(ϕ), ϕ@p= µ p.ψ ∃ {(ψ ,x′) | x′ ∈U}
(p,U), p∈ BVar(ϕ), ϕ@p= ν p.ψ ∀ {(ψ ,x′) | x′ ∈U}

wherex,x′ denote elements ofX andU denotes a clopen subset ofX= (X,τ).

Figure 2: Game board of the evaluation gameE (ϕ ,M)

(ii) Any strategy fU of ∃ in GU at (δ ,x) corresponds to a strategy fη for ∃ in Gη at (δ ,x) such that for
any full fU -compliantGU -play starting at(δ ,x) is an fη -compliant,unfoldp-full Gη -play.

Proof. The lemma follows from the fact that a sequence of the formπ = (δ ,x)b1 . . .b j . . . is an unfoldp-
full Gη -play iff it is a full GU -play.

Theorem 4.6(Adequacy). LetM = (X,R,V) be an extremally disconnected model with valuation V:
Prop→ Clp(X). For every formulaϕ ∈ Lµ and every x∈ X the following are equivalent:

(i) x ∈ [[ϕ ]]V , and

(ii) ∃ has a winning strategy at position(ϕ ,x) in E (ϕ ,M).

(Sketch).The proof goes by induction onϕ . We only will sketch the induction step for the case that
ϕ = µ p.δ - the full proof of the theorem is quite lengthy and most of thedetails are similar to the
adequacy proof of the standard game semantics for the modalµ-calculus. We putG = E (ϕ ,M) and for
any clopen subsetU ∈ Clp(X) we putGU = E (δ ,M[p 7→U ]).

By the induction hypothesis onδ and because[[δ ]]V [p7→U ] = δV
p (U) we have for allU ∈ Clp(X) that

x∈ δV
p (U) iff (δ ,x) ∈ Win∃(GU ). (1)

In order to prove the theorem forϕ = µ p.δ it suffices to show that the following are equivalent:

x ∈ Win∃
(

G
I
µ(δV

p )
)

(2)

x ∈ Win∃
(

G
II
µ (δV

p )
)

(3)

(ϕ ,x) ∈ Win∃(G ). (4)

We proved the equivalence of (2) and (3) in the previous section. To prove all of the equivalences, we will
now show that (3) implies (4) which in turn implies (2). For the implication from (3) to (4) consider some
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statex∈ Win∃(G II
µ (δV

p )), ie.,∃ has a history-free winning strategy at positionx in G II
µ (δV

p )) represented
by two (possibly partial) functions

U : X → Clp(X) and N : Clp(X)→ X.

W.l.o.g. we can assume that〈U,N〉 is winning for∃ from all positions inWin∃(G II
µ (δV

p )) (in particular,
U andN are defined at those positions). As the strategyU is winning (and thus legitimate) at allx ∈
Win∃(G II

µ (δV
p )) we have that for all suchx thatU(x) is a legitimate move atx. Hencex∈ δV

p (U(x)) and
thus, by (1),(δ ,x) ∈ Win∃(GU(x)). Therefore, for eachx∈ Win∃(G II

µ (δV
p )), we can assume

(a) that there is a winning strategyfU(x) for ∃ in the gameGU(x) at position(δ ,x) and

(b) that(∀,U(x)) ∈ Win∃(G II
µ (δV

p )).

As seen in Lemma 4.5, the winning strategyfU(x) can be (trivially) turned into a valid strategyfµ ,x
for ∃ in G at (δ ,x) that can be followed until another position of the form(p,x′) is reached or until∃
wins the game. This observation is important for defining∃’s strategy inG starting from position(ϕ ,x):

• starting from(ϕ ,x), the play proceeds to(δ ,x) and after that∃ plays strategyfµ ,x.

• if the fµ ,x-compliant play never reaches a position of the form(p,x′) then∃ continues playing
according tofµ ,x and wins: the resultingfµ ,x-compliant, fullG -play contains afU(x)-compliant
full GU -play (by Lemma 4.5) starting at(δ ,x) which is won by∃ as fU(x) is a winning strategy for
∃ in GU(x) at (δ ,x).

• Suppose anfµ ,x-compliant play reaches a position of the form(p,x′). Until now - by Lemma 4.5
- the play corresponds to afU(x)-compliant play ofGU(x). As fU(x) is a winning strategy for∃ in
GU(x) this entails thatx′ ∈U(x). It is now∀’s turn to move inG to a position(p,U ′) with x′ ∈U ′.

As x′ ∈U(x)∩U ′ (by the definition ofG ), we haveU(x)∩U ′ 6= /0, i.e., the move to(∃,U ′) is a
legal move for∀ in G II

µ (δV
p ) at position(∀,U(x)). As the latter is an element ofWin∃(G II

µ (δV
p )), we

also have that(∃,U ′) ∈ Win∃(G II
µ (δV

p )). Hence∃’s winning strategyN in Win∃(G II
µ (δV

p )) specifies
a well-defined, legitimate move atU ′ that follows∃’s winning strategy inWin∃(G II

µ (δV
p )).

Therefore, inG , ∃ answers∀’s move to(p,U ′) by moving to(δ ,y) with y= N(U ′) and continues
from there according to strategyfµ ,y.

It is not difficult to check, that this describes indeed a winning strategy for∃ in G from position(ϕ ,x).
The key observation is that for anyG -play of the form

π = (ϕ ,x) . . . (p,x1)(δ ,U1)(δ ,y1) . . . (p,x2)(δ ,U2)(δ ,y2) . . . (p,xi)(δ ,Ui)(δ ,yi) . . .

there is a corresponding infinite play ofG II
µ (δV

p ) of the form

π ′ = x (∀,U(x)) (∃,U1) y1 (∀,U(y1)) (∃,U2) y2 . . .(∀,U(yi−1)) (∃,Ui) yi . . .

which is compliant with∃’s winning strategy inG II
µ (δV

p ) and where the number of fixpoint unfoldings in
π ′ is equal to the number of occurrences of positions of the form(p,x′) in π. As π ′ is won by∃, the play
π ′ must end after finitely many moves. Hence there are only finitely many occurrences of positions of the
form (p,x′) in π, i.e., from a certain position(δ ,x′) on the play follows∃’s strategyfµ ,x′ in G at (δ ,x′).
In other words, such a play is won by∃ as - modulo a finite prefix - it corresponds by our constructionto
a fU(x′)-compliantGU(x′)-play from position(δ ,x′) and fU(x′) is a winning strategy for∃ at (δ ,x′).

We now turn to the proof of the implication from (4) to (2). Consider a strategyf for ∃ in G such that
f is winning for all positions inWin∃(G ) and let∆ := {x ∈ X | (δ ,x) ∈ Win∃(G )}. To prove our claim
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it suffices to show that∆ ⊆ Win∃(G I
µ(δV

p )) by equipping∃ with a suitable strategy inG I
µ(δV

p ) that is
winning at all positions in∆. As before, we let unfoldp = {(p,x) | x∈ X} and for allx∈ ∆ we put

C(x) := {zy ∈ X | ∃y∈ X.(p,y) is reachable in an unfoldp-full G -play π from (δ ,x) such that

π is compliant with∃’s strategyf ,

∀ can move from(p,y) to position(p,Uy)

to which∃’s reply according to her strategyf is to move to(δ ,zy) with zy ∈Uy}

Let x ∈ ∆ and letU ⊆ X be clopen withC(x) ⊆ U . With our definition ofC(x), it can be easily seen
that ∃ has a winning strategy at(δ ,x) in GU : Firstly, by Lemma 4.5, for eachU ⊆ X we know that∃
has a strategyfU in GU at (δ ,x) such that every unfoldp-full G -play π compliant with f starting at(δ ,x)
corresponds to a full,fU -compliantGU -play.

Suppose now for a contradiction that there is someU ′ ∈ Clp(X) with C(x) ⊆U ′ for which (δ ,x) 6∈
Win∃(GU ′). This implies that the strategyfU ′ cannot be winning for∃ in GU ′ at(δ ,x) and thus there exists
some state(p,y) with y 6∈U ′ and with the property that(p,y) is reachable from(δ ,x) in an full G -play
π compliant∃’s strategy fU ′ . By definition of fU ′ , there exists a unfoldp-full G -play π from (δ ,x) to
(p,y) that is compliant withf . This leads to a contradiction: at position(p,y) in G - asy∈ X \U ′ by
assumption -∀ could move to(p,X \U ′) and∃ could choose an elementzy ∈ X \U ′ and move to(δ ,zy)
according to her strategyf . By definition ofC, we getzy ∈ C(x) ⊆ U ′ and hencezy ∈ U ′ which is a
contradiction.

This finishes the proof of the fact that∃ has a winning strategy at(δ ,x) in GU for any clopen set
U ⊆ X with C(x) ⊆ U . Consequently, by (1), we havex ∈ δV

p (U) for all U ∈ Clp(X) with C(x) ⊆ U .
This means that for eachx∈ ∆, ∃ can move from positionx to positionC(x) in G I

µ(δV
x ), i.e.,C encodes a

legitimate strategy for∃ in all positionsx∈ ∆. We are now going to prove that for any play

x C(x) x1 C(x1) x2 C(x2) . . .xn C(xn)

of G I
µ(δV

p ) starting inx and compliant with∃ strategyC it is possible to construct a “shadow” play ofG

starting at(ϕ ,x) that is compliant with∃’s winning strategy inG and that is of the form

(ϕ ,x) . . . (δ ,x1) . . . (δ ,x2) . . . (δ ,xn).

It suffices to see how a roundxi C(xi) xi+1 in G I
µ(δV

p ) is mirrored inG . To this aim note thatxi+1 ∈C(xi).
Hence there exists someU ∈Clp(X) with xi+1 ∈U such that(p,U) is reachable from(δ ,xi) via aG -play
π compliant with∃’s winning strategy that is continued by∃ by moving to position(δ ,xi+1). Clearly the
play π followed by∃’s move to(δ ,xi+1) constitutes the required shadow play ofG .

Example 4.7. We will give an example of an extremally disconnected modal space(X,R) with X =
(X,τ), a clopen valuationV and a modal formulaϕ(q, p) such that the standard semantics ofµq.ϕ and
the topological semantics ofµq.ϕ differ. Let Z be the set of integers with the discrete topology. Let
X = β (Z) be the Stone–̌Cech compactification ofZ. Thenβ (Z) is extremally disconnected, see eg [19].
We define a relationR on X by zRyiff ( z,y ∈ Z andy= z+1 or y= z−1 or z∈ X andy∈ β (Z) \Z).
Now we define a clopen valuationV(p) = {0}. Consider the formulaϕ(q, p) = p∨✸✸q. The standard
semantics ofµq.ϕ is equal to the set of all even and negative even numbers. The topological semantics,
in contrast, is equal to the whole spaceX.

5 Bisimulations

We are now going to describe bisimulations for our topological setting. The definition is essentially the
standard one with an additional topological condition.
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Definition 5.1. LetM1 = (X1,R1,V) andM2 = (X2,R2,V) be extremally disconnected Kripke models
based on the spacesX1 = (X1,τ1) andX2 = (X2,τ2). A relation Z⊆ X1×X2 is called aclopen bisimu-
lation iff Z ⊆ X1×X2 is a (standard) Kripke bisimulation and for any clopen subsets U1 ∈ Clp(X1) and
U2 ∈ Clp(X2) we have Z[U1] = {x′ ∈ X2 | ∃x∈U1.(x,x′) ∈ Z} ∈ Clp(X2) and Z−1[U2] = {x∈ X1 | ∃x′ ∈
U2.(x,x′) ∈ Z} ∈ Clp(X1).

The justification for the notion of clopen bisimulations is provided by the following proposition.

Proposition 5.2. Let Z be a clopen bisimulation between extremally disconnected Kripke modelsM1 =
(X1,R1,V) andM2 = (X2,R2,V). Then for any formulaϕ ∈ Lµ of the modalµ-calculus and any states
x∈ X1 and x′ ∈ X2 such that(x,x′) ∈ Z, we have x∈ [[ϕ ]] iff x′ ∈ [[ϕ ]].

Proof. Suppose that(x,x′) ∈ Z and thatx ∈ [[ϕ ]] for some formulaϕ . This implies by our adequacy
theorem that(ϕ ,x) ∈ Win∃(E (ϕ ,M1)). We are now going to transform∃’s winning strategy inG1 =
E (ϕ ,M1) at position(ϕ ,x) into a winning strategy for∃ in G2 = E (ϕ ,M2) at position(ϕ ,x′).

As a preparation we need to define when we consider positions of G1 andG2 to be equivalent: we say
(ψ1,x1) ∈ Lµ ×X1 and(ψ2,x2) ∈ Lµ ×X1 areZ-equivalent ifψ1 = ψ2 and(x1,x2) ∈ Z. Furthermore
we write(p,U1)≤Z (q,U2) for (p,U1) ∈ Lµ ×Clp(X1) and(p,U2) ∈ Lµ ×Clp(X2) if p= q and if for
all x∈U1 there existsx′ ∈U2 such that(x,x′) ∈ Z. Similarly we define(p,U1)≥Z (q,U2). Consider two
(possibly partial) playsπ1 = b1 . . .bk andπ2 = b′1 . . .b

′
l of G1 andG2, respectively. We sayπ1 andπ2 are

Z-equivalent iffk= l and for alli = 1, . . . ,k we have

• bi andb′i are of the formbi = (ψ ,x) andb′i = (ψ ,x′) and both positions areZ-equivalent, or

• bi = (p,U1), b′i = (p,U2), p is bound byµ and(p,U1)≤Z (p,U2), or

• bi = (p,U2), b′i = (p,U2), p is bound byν and(p,U1)≥Z (p,U2).

Let π1 be a play ofG1 that starts in∃’s winning position(ϕ ,x) and that is played according to∃’s
winning strategy. We are going to show that ifπ2 is a Z-equivalent play ofG2 that starts at position
(ϕ ,x′), then either

• both playsπ1 andπ2 are full (and thus won by∃) or

• it is ∃’s turn and∃ has a strategy to extendπ2 to a playπ2b′ that isZ-equivalent to an extension
π1b of π1 such thatπ1b is aG1-play compliant with∃’s winning strategy, or

• it is ∀’s turn and for all of∀’s moves that extendπ2 to π2b′ there is a move of∀ in G1 such that the
resulting playπ1b of G1 is Z-equivalent toπ2b′.

Clearly this claim will imply that∃ has a winning strategy inG2 at position(ϕ ,x′) as required. The claim
is proven by a case distinction on the last state ofπ2. Due to space reasons we only discuss the cases of
the modal diamond and the (least) fixpoint cases.
Case: π2 = b′1 . . .b

′
n(✸ψ ,x2). By assumption there exists aZ-equivalent playπ1 = b1 . . .bn(✸ψ ,x1)

which in particular implies that(x1,x2) ∈ Z. Clearly it is∃’s turn and she can prolong theG1-play by
moving according to her strategy to(ψ ,y) for somey∈ X1 with (x1,y) ∈ R1. As Z is a bisimulation we
know that there must bey′ ∈X2 such that(x2,y′)∈R2 and(y.y′)∈ Z. Hence∀ can prolong theπ2-play by
moving to(ψ1,y′) and the resulting playsπ1 = b1 . . .bn(✸ψ ,x2)(ψ ,y) andπ2 = b′1 . . .b

′
n(✸ψ ,x1)(ψ ,y′)

areZ-equivalent.
Case: π2 = b′1 . . .b

′
n(p,x2) for somep ∈ BVar(ϕ) that is bound by aµ-operator. In this caseπ1 =

b1 . . .bn(p,x1) and its∀’s turn to continue both plays. Let∀’s move inG2 be to(p,U2) for some clopen
subsetU ∈ Clp(X2) with x2 ∈U2 . Because(x1,x2) ∈ Z and by the definition of a clopen bisimulation
we have thatU1 := Z−1[U2] is a clopen neighbourhood ofx1. Therefore∀ could extend theG1-play
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by moving to(p,U1). The resulting playsπ1 = b1 . . .bn(p,x1)(p,U1) and π2 = b′1 . . .b
′
n(p,x2)(p,U2)

are clearlyZ-equivalent because all elementsU1 have theirZ-correspondant inU2 and hence we have
(p,U1)≤P (p,U2) as required.

Case:π2 = b′1 . . .b
′
n(p,U2) for somep∈ BVar(ϕ) that is bound by aµ-operator. By assumption we have

aZ-equivalentG1-playπ1 = b1 . . .bn(p,U1) with the property that(p,U1)≤Z (p,U2). By the definition of
the game it is clear that in both plays∃ has to move. She continuesπ1 by moving according to her winning
strategy to some(ψ ,y) with y∈U1. By definition of≤Z there exists ay′ ∈U2 such that(y,y′) ∈ Z and
hence∃ can extend the playπ2 by moving to(ψ ,y′). Again the resulting playsπ1 = b1 . . .bn(p,U1)(ψ ,y)
andπ2 = b1 . . .bn(p,U2)(ψ ,y′) are obviouslyZ-equivalent. The other cases of the induction can be dealt
with in a similar fashion. This shows that fromx∈ [[ϕ ]] and(x,x′) ∈ Z we are able to deducex′ ∈ [[ϕ ]].
The implication in the opposite direction can be proven in a completely symmetrical way. Asϕ was
arbitrary we conclude that clopen bisimilarity implies equivalence with respect to the topological modal
µ-calculus.

Remark 5.3. We leave it open whether the converse of Proposition 5.2 alsoholds, i.e., whether we have
a Hennessy-Milner property wrt our notion of clopen bisimulation. A closely related question is how
our clopen bisimulations compare to the Vietoris bisimulations of [4]. It is obvious that the topological
closure of a clopen bisimulation is a Vietoris bisimulationand hence that clopen bisimilarity implies
Vietoris bisimilarity. Proving the converse would yield the Hennessy-Milner property with regard to
clopen bisimilarity as a corollary of [4, Cor. 3.10].

6 Conclusions and future work

In this paper we developed game semantics for topological fixpoint logic on extremally disconnected
modal spaces. These results can be seen as first steps towardsthe theory of topological fixpoint logic
in general and towards admissible game semantics ofµ-calculus in particular. As next steps we intend
to extend this framework to other classes of descriptiveµ-frames and to devise automata that operate
on Kripke frames over topological spaces. This will providea deeper understanding of these structures
as well as of axiomatic systems of the modalµ-calculus, since axiomatic systems of theµ-calculus
are complete wrt descriptiveµ-frames. Other important questions concern the finite modelproperty,
decidability and computational complexity and other key properties of topological fixpoint logics.

A further interesting research direction is to investigatemodal fixpoint logic of Kripke frames based
on compact Hausdorff spaces and beyond. However, instead ofclopen sets we will have to work with
regular open sets in this setting. This means we will enter the realm of modal compact Hausdorff spaces
introduced in [3]. These are exactly the spaces that correspond to coalgebras for the Vietoris functor on
the category of compact Hausdorff spaces. Sahlqvist fixpoint correspondence for such spaces has been
developed already in [7]. I This approach could pave the way for an expressive and decidable fixpoint
logic for the verification of continuous systems or, more generally, systems that combine discrete and
continuous systems such as hybrid automata [13].

Finally, we want to clarify the connection of our work to topological games à la Banach-Mazur [20].
These games are similar to our fixpoint games as players move by choosing e.g. open subsets - the
fundamental differences are i) they characterise properties of the topology rather than properties of a
relational structure over a topological space and ii) our parity winning condition that ensures determinacy.
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[3] G. Bezhanishvili, N. Bezhanishvili & J. Harding (2015):Modal compact Hausdorff spaces. J. Logic Comput.
25(1), pp. 1–35, doi:10.1093/logcom/exs030.

[4] N. Bezhanishvili, G. Fontaine & Y. Venema (2010):Vietoris Bisimulations. Journal of Logic and Computa-
tion 20(5), pp. 1017–1040, doi:10.1093/logcom/exn091.

[5] N. Bezhanishvili & I. Hodkinson (2012):Preservation of Sahlqvist fixed point equations in completions of
relativized fixed point BAOs. Algebra Universalis68, pp. 43–56, doi:10.1007/s00012-012-0196-x.

[6] N. Bezhanishvili & I. Hodkinson (2012):Sahlqvist theorem for modal fixed point logic. TCS424, pp. 1–19,
doi:10.1016/j.tcs.2011.11.026.

[7] N. Bezhanishvili & S. Sourabh (2015):Sahlqvist preservation for topological fixed-point logic. J. Logic
Comput., doi:10.1093/logcom/exv010.

[8] P. Blackburn, M. de Rijke & Y. Venema (2001):Modal Logic. Cambridge University Press,
doi:10.1017/CBO9781107050884.

[9] B. ten Cate & G. Fontaine (2010):An easy completeness proof for the modalµ-calculus on finite trees. In
L. Ong, editor:FOSSACS 2010, LNCS 6014, Springer, pp. 161–175, doi:10.1007/978-3-642-12032-9 12.

[10] E.A. Emerson & C.S. Jutla (1991):Tree Automata, Mu-calculus and determinacy. In: Proceedings of the
32nd IEEE Symposium on Foundations of Computer Science (FoCS’91), IEEE, pp. 368–377.

[11] R. Goldblatt & I. Hodkinson (2016):Spatial logic of modal mu-calculus and tangled closure operators.
Submitted.
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