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The notion of separating automata was introduced by Bojańczyk and Czerwiński for understanding
the first quasipolynomial time algorithm for parity games. In this paper we show that separating au-
tomata is a powerful tool for constructing algorithms solving games with combinations of objectives.
We construct two new algorithms: the first for disjunctions of parity and mean payoff objectives,
matching the best known complexity, and the second for disjunctions of mean payoff objectives, im-
proving on the state of the art. In both cases the algorithms are obtained through the construction of
small separating automata, using as black boxes the existing constructions for parity objectives and
for mean payoff objectives.

1 Introduction

The notion of separating automata was introduced by Bojańczyk and Czerwiński [1] to give a stream-
lined presentation of the first quasipolynomial time algorithm for parity games due to Calude, Jain,
Khoussainov, Li, and Stephan [2]. The first observation made by Bojańczyk and Czerwiński was that the
statistics used in that algorithm can be computed by a finite deterministic safety automaton reading a path
in the game. They showed that the property making this particular automaton useful for solving parity
games is that, roughly speaking, it separates positional winning paths from losing paths: they called this
property separating. The second observation of Bojańczyk and Czerwiński was that separating automata
yield a natural reduction to safety games, in other words the construction of a separating automaton
induces an algorithm whose complexity depends on the size of the automaton.

The notion of separating automata has been further studied in the context of parity games: Cz-
erwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and Parys [7] showed that two other quasipolynomial
time algorithms can also be presented using the construction of a separating automaton. The main tech-
nical result of [7] is that separating automata are in some sense equivalent to the notion of universal trees
at the heart of the second quasipolynomial time algorithm by Jurdziński and Lazić [12] and formalised
by Fijalkow [9]. The consequence of this equivalence is a quasipolynomial lower bound on the size of
separating automata for parity objectives.

Going beyond parity games, Colcombet and Fijalkow [5, 6] introduced universal graphs and showed
an equivalence result between separating automata and universal graphs for any positionally determined
objective. This paves the way for using separating automata for other classes of objectives. The first
work in that direction is due to Fijalkow, Ohlmann, and Gawrychowski [10], who obtained matching
upper and lower bounds on the size of separating automata for mean payoff objectives, matching the best
known (deterministic) complexity for solving mean payoff games.
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The goal of this paper is to show how to construct separating automata for combinations of objec-
tives, thereby obtaining new algorithms for solving the corresponding games. We will consider two
subclasses combining parity and mean payoff objectives, with the following goal: rather than construct-
ing separating automata from scratch, we want to define constructions using separating automata for the
atomic objectives as black boxes. In other words, we assume the existence of separating automata for
parity objectives (provided in [7], see also [5]) and for mean payoff objectives (provided in [10]), and
construct separating automata for combinations of these classes. An important benefit of this approach
is its simplicity: as we will see, both constructions and their correctness proofs are rather short and focus
on the interactions between the objectives.

Section 2 introduces separating automata and shows how they yield algorithms by reduction to safety
games. The two classes of objectives we consider are disjunctions of parity and mean payoff objectives
in Section 3, and disjunctions of mean payoff objectives in Section 4. We refer to the subsections 3.2
and 4.3 for related work on solving these games.

2 Preliminaries

We write [i, j] for the interval {i, i+1, . . . , j−1, j}, and use parentheses to exclude extremal values, so
for instance [i, j) is {i, i+1, . . . , j−1}. We let C denote a set of colours and write C∗ for finite sequences
of colours (also called finite words), C+ for finite non-empty sequences, and Cω for infinite sequences
(also called infinite words). The empty word is ε .

2.1 Graphs

Graphs We consider edge labelled directed graphs: a graph G is given by a (finite) set V of vertices
and a (finite) set E ⊆ V ×C×V of edges, with C a set of colours, so we write G = (V,E). An edge
(v,c,v′) is from the vertex v to the vertex v′ and is labelled by the colour c. We sometimes refer to V (G)
for V and E(G) for E to avoid any ambiguity. The size of a graph is its number of vertices. A vertex v
for which there exists no outgoing edges (v,c,v′) ∈ E is called a sink.

Paths A path π is a (finite or infinite) sequence

π = v0c0v1c1v2 . . .

where for all i we have (vi,ci,vi+1) ∈ E. If it is finite, that is, π = v0c0 . . .ci−1vi, we call len(π) = i ≥ 0
the length of π , and use last(π) to denote the last vertex vi. The length of an infinite path is len(π) = ∞.
We say that π starts from v0 or is a path from v0, and in the case where π is finite we say that π is a path
ending in last(π) or simply a path to last(π). We say that v′ is reachable from v if there exists a path from
v to v′. We let π≤i denote the prefix of π of length i, meaning π≤i = v0c0v1 . . .ci−1vi. A cycle is a path
from a vertex to itself of length at least one.

We use Pathfin(G),Path∞(G) and Path(G) to denote respectively the sets of finite paths of G, infinite
paths of G, and their union. We sometimes drop G when it is clear from context. For v0 ∈V we also use
Pathfin(G,v0),Path∞(G,v0) and Path(G,v0) to refer to the sets of paths starting from v0. We use col(π)
to denote the (finite or infinite) sequence of colours c0c1 . . . induced by π .
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Objectives An objective is a set Ω ⊆ Cω of infinite sequences of colours. We say that a sequence
of colours belonging to Ω satisfies Ω, and extend this terminology to infinite paths: π satisfies Ω if
col(π) ∈Ω.

Definition 1 (Graphs satisfying an objective). Let Ω be an objective and G a graph. We say that G
satisfies Ω if all infinite paths in G satisfy Ω.

Safety automata A deterministic safety automaton over the alphabet C is given by a finite set of states
Q, an initial state q0 ∈Q, and a transition function δ : Q×C→Q, so we write A = (Q,q0,δ ). Note that
δ is a partial function, meaning that it may be that δ (q,c) is undefined for some q,c ∈ Q×C. Such an
automaton induces a graph whose set of vertices is Q and set of edges is E = {(q,δ (q,c)) : q ∈ Q,c ∈C};
we therefore use the terminology for graphs to speak about automata, and identify an automaton and the
graph it induces. Since we are only considering deterministic safety automata in this paper, we omit
the adjectives deterministic and safety and simply speak of an automaton. We extend δ to sequences
of colours by the formulas δ ∗(q,ε) = q and δ ∗(q,wc) = δ (δ ∗(q,w),c). The language recognised by an
automaton A is L(A ) defined by

L(A ) = {col(π) : π infinite path from q0} .

Note that if w is a finite prefix of a word in L(A ), then δ ∗(q0,w) is well defined.

2.2 Games

Arenas An arena is given by a graph G together with a partition V = VEve]VAdam of its set of vertices
describing which player controls each vertex.

Games A game is given by an arena and an objective Ω. We often let G denote a game, its size is the
size of the underlying graph. It is played as follows. A token is initially placed on some vertex v0, and the
player who controls this vertex pushes the token along an edge, reaching a new vertex; the player who
controls this new vertex takes over and this interaction goes on either forever and describing an infinite
path or until reaching a sink.

We say that a path is winning1 if it is infinite and satisfies Ω, or finite and ends in a sink. The
definition of a winning path includes the following usual convention: if a player cannot move they lose,
in other words sinks controlled by Adam are winning (for Eve) and sinks controlled by Eve are losing.

We extend the notations Pathfin,Path∞ and Path to games by considering the underlying graph.

Strategies A strategy in G is a partial map σ : Pathfin(G )→ E such that σ(π) is an outgoing edge of
last(π) when it is defined. We say that a path π = v0c0v1 . . . is consistent with σ if for all i < len(π), if
vi ∈VEve then σ is defined over π≤i and σ(π≤i) = (vi,ci,vi+1). A consistent path with σ is maximal if it
is not the strict prefix of a consistent path with σ (in particular infinite consistent paths are maximal).

A strategy σ is winning from v0 if all maximal paths consistent with σ are winning. Note that in
particular, if a finite path π is consistent with a winning strategy σ and ends in a vertex which belongs to
Eve, then σ is defined over π . We say that v0 is a winning vertex of G or that Eve wins from v in G if
there exists a winning strategy from v0.

1We always take the point of view of Eve, so winning means winning for Eve, and similarly a strategy is a strategy for Eve.
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Positional strategies Positional strategies make decisions only considering the current vertex. Such
a strategy is given by σ̂ : VEve→ E. A positional strategy induces a strategy σ : Pathfin→ E from any
vertex v0 by setting σ(π) = σ̂(last(π)) when last(π) ∈ VEve.

Definition 2. We say that an objective Ω is positionally determined if for every game with objective Ω

and vertex v0, if Eve wins from v0 then there exists a positional winning strategy from v0.

Given a game G , a vertex v0, and a positional strategy σ we let G [σ ,v0] denote the graph obtained
by restricting G to vertices reachable from v0 by playing σ and to the moves prescribed by σ . Formally,
the set of vertices and edges is

V [σ ,v0] = {v ∈V : there exists a path from v0 to v consistent with σ} ,
E[σ ,v0] = {(v,c,v′) ∈ E : v ∈ VAdam or (v ∈ VEve and σ(v) = (v,c,v′))}

∩ V [σ ,v0]×C×V [σ ,v0].

In this paper we will consider prefix independent objectives for technical convenience.

Definition 3. We say that an objective Ω is prefix independent if for all u ∈ C∗ and v ∈ Cω , we have
uv ∈Ω if and only if v ∈Ω.

Lemma 1. Let Ω be a prefix independent objective, G a game, v0 a vertex, and σ a positional strategy.
Then σ is winning from v0 if and only if the graph G [σ ,v0] satisfies Ω and does not contain any sink
controlled by Eve.

Solving games

Decision problem The decision problem we consider in this paper, called solving a game, is the fol-
lowing: given a game G and an initial vertex v0, does Eve have a winning strategy from v0 in G ? Each
objective yields a class of games, so we speak for instance of “solving mean payoff games”.

Computational model The complexity of solving a game depends on a number of parameters originat-
ing either from the underlying graph or the objective. Some of the objectives involve rational numbers.
The typical parameters from the underlying graph are the number n of vertices and the number m of
edges.

We use the classical Random Access Model (RAM) of computation with fixed word size, which is
the size of a memory cell on which arithmetic operations take constant time. We specify for each class
of objectives the word size.

Reduction to safety games

Safety games The safety objective Safe is defined over the set of colours C = {ε} by Safe = {εω}:
in words, all infinite paths are winning, so losing for Eve can only result from reaching a sink that
she controls. Since there is a unique colour, when manipulating safety games we ignore the colour
component for edges.

Note that in safety games, strategies can equivalently be defined as maps to V (and not E): only the
target of an edge matters when the source is fixed, since there is a unique colour. We use this abuse of
notations for the sake of simplicity and conciseness.

Theorem 1. There exists an algorithm in the RAM model with word size w = log(n) computing the set
of winning vertices of a safety game running in time O(m) and space O(n).
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Reduction using safety automata Let A = (Q,q0,δ ) be an automaton and G a game with objective
Ω. We define the chained game G .A as the safety game with vertices V ′ = V′Eve]V′Adam and edges E ′

given by

V′Eve = (VEve×Q) ∪{⊥} ,
V′Adam = VAdam×Q,
E ′ = {((v,q),ε,(v′,δ (q,c))) : q ∈ Q,(v,c,v′) ∈ E,δ (q,c) is defined}

∪ {((v,q),ε,⊥) : q ∈ Q,(v,c,v′) ∈ E,δ (q,c) is not defined}.

In words, from (v,q) ∈ V ×Q, the player whom v belongs to chooses an edge (v,c,v′) ∈ E, and the
game progresses to (v′,δ (q,c)) if q has an outgoing edge with colour c in A , and to ⊥ otherwise, which
is losing for Eve.

Note that the obtained game G .A is a safety game: Eve wins if she can play forever or end up in a
sink controlled by Adam.

Lemma 2. Let Ω be an objective, G a game with objective Ω, A an automaton, and v0 ∈ V . If A
satisfies Ω and Eve wins from (v0,q0) in G .A , then Eve wins from v0 in G .

Proof. Let σ ′ be a winning strategy from (v0,q0) in G .A . We construct a strategy σ from v0 in G
which simulates σ ′ in the following sense, which we call the simulation property:

for any path π = v0c0 . . .ci−1vi in G consistent with σ ,
there exists a path π ′ = (v0,q0) . . .(vi,qi) in G .A consistent with σ ′.

We define σ over finite paths v0c0 . . .ci−1vi with vi ∈ VEve by induction over i, so that the simulation
property holds. For i = 0, π ′ = (v0,q0) is a path in G .A consistent with σ ′. Let π = v0c0 . . .ci−1vi be
a path in G consistent with σ and vi ∈ VEve, we want to define σ(π). Thanks to the simulation property
there exists a path π ′ = (v0,q0) . . .(vi,qi) in G .A consistent with σ ′. Then (vi,qi) ∈ V′Eve, and since
σ ′ is winning it is defined over π ′, let us write σ ′(π ′) = (vi+1,δ (qi,ci)) with (vi,ci,vi+1) ∈ E. We set
σ(π) = vi+1.

To conclude the definition of σ we need to show that the simulation property extends to paths of
length i + 1. Let πi+1 = π civi+1 = v0c0 . . .vicivi+1 be consistent with σ . We apply the simulation
property to π to construct π ′ = (v0,q0) . . .(vi,qi) a path in G .A consistent with σ ′. Let us consider
π ′+1 = π ′ (vi+1,δ (qi,ci)) with (vi,ci,vi+1) ∈ E, we claim that π ′+1 is consistent with σ ′. Indeed, if
vi ∈ VAdam, there is nothing to prove, and if vi ∈ VEve, this holds by construction: since σ(π) = vi+1 we
have σ ′(π ′) = (vi+1,δ (qi,ci)). This concludes the inductive proof of the simulation property together
with the definition of σ .

We now prove that σ is a winning strategy from v0. Let π = v0c0v1 . . . be a maximal consistent path
with σ , and let π ′ = (v0,q0)(v1,q1) . . . be the corresponding path in G .A consistent with σ ′. Let us
first assume that π is finite, and let vi = last(π). If vi ∈ VEve, then by construction σ is defined over π ,
so the path v0c0 . . .vicivi+1, where σ(π) = vi+1 is consistent with σ , contradicting maximality of π . If
however vi ∈VAdam, then by maximality of σ , vi must be a sink, hence π is winning. Now if π is infinite
then so is π ′, and then q0c0q1c1 . . . is a path in A , so col(π) = c0c1 · · · ∈ L(A )⊆ Ω, and π is winning.
We conclude that σ is a winning strategy from v0 in G .

It is not hard to see that if A is deterministic and recognises exactly Ω, then G and G .A are
equivalent. However, for many objectives Ω (for instance, parity or mean payoff objectives), a simple
topological argument shows that such deterministic automata do not exist. Separating automata are
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defined by introducing n as a parameter, and relaxing the condition L(A ) = Ω to the weaker condition
Ω|n ⊆ L(A )⊆Ω, where Ω|n is the set of infinite sequence of colours that label paths from graphs of size
at most n satisfying Ω. Formally2,

Ω
|n = {col(π) | π ∈ Path∞(G),G has size at most n and satisfies Ω}.

Definition 4. An (n,Ω)-separating automaton A is an automaton such that

Ω
|n ⊆ L(A )⊆Ω.

The definition given here differs from the original one given by Bojańczyk and Czerwiński [1], who
use a different relaxation Ω|n satisfying Ω|n ⊆ Ω|n ⊆ Ω. Therefore a separating automaton in the sense
of [1] is also a separating automaton in our sense (but not conversely).

Theorem 2. Let Ω be a positionally determined objective, A an (n,Ω)-separating automaton, G a game
of size n, and v0 ∈V . Then Eve wins from v0 in G if and only if she wins from (v0,q0) in G .A .

Proof. The “if” directly follows from Lemma 2. Conversely, assume that Eve wins from v0 in G , and
let σ be a strategy from v0 in G , which we choose to be positional. As explained in the definition of
safety games, without loss of generality we can see σ as a function σ : VEve→V . We define a positional
strategy σ ′ : V′Eve→V ′ by

σ
′(v,q) = (σ(v),δ (q,c)) with (v,c,v′) ∈ E.

Let π ′ = (v0,q0) . . .(vi,qi), with for all j ≤ i,e j = (v j,c j,v j+1) ∈ E, be a finite path in G .A consistent
with σ ′, and let π = v0c0 . . .civi+1. Then by definition of σ ′, π is consistent with σ , which rephrases a
being a path in G [σ ,v0]. Now, G [σ ,v0] is a graph satisfying Ω, so col(π) = c0 . . .ci is a prefix of a word
in Ω|n ⊆ L(A ). This implies that δ ∗(q0,c0 . . .ci) is well defined, hence so is δ (qi,ci). In particular, σ ′

induces a strategy in G .A from (v0,q0). We now prove that it is winning.
Let π ′ = (v0,q0) . . . be a maximal path in G consistent with σ ′, which we assume to be finite for

contradiction. Let last(π ′) = (vi,qi) be a sink, and define π = v0c0 . . .ci−1vi. By definition of π ′, it holds
that π is a path in G which is consistent with σ . Since π is finite and σ is winning vi cannot be a sink, it
has an outgoing edge ei = (vi,c,v′) ∈ E. Then ((vi,qi),ε,(vi+1,δ (qi,ci)) ∈ E ′, so (vi,qi) is not a sink: a
contradiction. Hence π ′ is an infinite path in the safety game G .A ; it is winning by definition.

Existing constructions for parity and mean payoff games

Parity games The parity objective is defined over the set of colours [0,d]⊆ N, as follows:

Parityd = {w ∈ [0,d]ω : the largest priority appearing infinitely many times in w is even} .

As mentioned above, the definition of separating automata given in [1] is slightly different, but the
result below indeed holds for both definitions, as explained in [7].

Theorem 3 ([1, 7]). Let n,d ∈ N. There exists an (n,Parityd)-separating automaton of size

O
(

n ·
(
dlog(n)e+d/2−1

dlog(n)e

))
.

2Here we use the fact that Ω is prefix independent to simplify the definition: we are considering infinite paths from any
vertex of the graph. To extend this definition beyond prefix independent objectives we would need to fix an initial vertex.
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Mean payoff games The mean payoff objective is defined over the set of colours [−N,N] ⊆ Z, as
follows:

MeanPayoffN =

{
w ∈ [−N,N]ω : liminf

n

1
n

n

∑
i=1

wi ≥ 0

}
.

Theorem 4 ([10]). Let n,N ∈N. There exists an (n,MeanPayoffN)-separating automaton of size O(nN).

3 Disjunction of parity and mean payoff

We define the objective Parityd ∨MeanPayoffN referred to as ‘disjunction of parity and mean payoff’.
The set of colours is [0,d]× [−N,N]. For w∈ ([0,d]× [−N,N])ω we write wP ∈ [0,d]ω for the projection
on the first component and wMP ∈ [−N,N]ω for the projection on the second component.

Parityd ∨MeanPayoffN = {w ∈ ([0,d]× [−N,N])ω : wP ∈ Parityd ∨wMP ∈ MeanPayoffN} .

We refer to Subsection 3.2 for a discussion on existing results.

Theorem 5 ([3]). Disjunctions of parity and mean payoff objectives are prefix independent and position-
ally determined.

3.1 Separating automata for disjunctions of parity and mean payoff objectives

Theorem 6. Let n,d,N ∈N. Let AP an (n,Parityd)-separating automaton, AMP an (n,MeanPayoffN)-
separating automaton. Then there exists an (n,Parityd ∨MeanPayoffN)-separating automaton of size
O(d · |AP| · |AMP|).

Proof. Let us write AP = (QP,q0,P,δP) and AMP = (QMP,q0,MP,δMP). We define a deterministic au-
tomaton AP∨MP: the set of states is [0,d]×QP×QMP, the initial state is (d,q0,P,q0,MP), and the transition
function is

δ ((p,qP,qMP),(p′,w)) =

{
(max(p, p′),qP,δMP(qMP,w)) if δMP(qMP,w) is defined,
(0,δP(qP,max(p, p′)),q0,MP) if δMP(q,MP ,w) is not defined.

Intuitively: AP∨MP simulates the automaton AMP, storing the maximal priority seen since the last reset
(or from the beginning). If the automaton AMP rejects, the automaton resets, which means two things: it
simulates one transition of the automaton AP using the stored priority, and resets the state of AMP to its
initial state. The automaton AP∨MP rejects only if AP rejects during a reset.

We now prove that AP∨MP is an (n,Parityd ∨MeanPayoffN)-separating automaton.

• L(AP∨MP) ⊆ Parityd ∨MeanPayoffN . Let π be an infinite path accepted by AP∨MP, we distin-
guish two cases by looking at the run of π . We extend the previous notation for projections: for
a path π , we write πP for its projection on the first component and πMP for its projection on the
second component.

– If the run is reset finitely many times, let us write π = π ′π ′′ where π ′ is finite and π ′MP
rejected by AMP, and π ′′ is infinite and π ′′MP is accepted by AMP. Since AMP satisfies
MeanPayoffN , this implies that π ′′MP satisfies MeanPayoffN , so by prefix independence,
πMP satisfies MeanPayoffN hence π satisfies Parityd ∨MeanPayoffN .
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– If the run is reset infinitely many times, we may find an infinite decomposition π = π1π2 . . .
where for each i ∈ N, the path π i

MP is rejected by AMP, and its proper prefixes are not. Let
pi be the maximum priority appearing in π i

P, the run of π over AP∨MP induces a run of
p1 p2 . . . over AP. Since AP satisfies Parityd , this implies that p1 p2 . . . satisfies Parityd .
By definition of the pi’s, this implies that πP satisfies Parityd so a fortiori π satisfies
Parityd ∨MeanPayoffN .

• (Parityd ∨MeanPayoffN)
|n ⊆ L(AP∨MP). Let G be a graph satisfying Parityd ∨MeanPayoffN

of size at most n, we need to show that all infinite paths of G are accepted by AP∨MP.
We construct a graph GMP over the set of colours [−N,N] and a graph GP over the set of colours
[0,d]. Both use the same set of vertices as G. We prove that the graph GMP satisfies MeanPayoffN ,
which is used to prove that GP satisfies Parityd .

– The graph GMP. There is an edge (v,w,v′) ∈ E(GMP) if there exists p ∈ [0,d] such that
e = (v,(p,w),v′) ∈ E(G), and either p is odd or p is even and e is not contained in any
negative cycle with maximum priority p.

We claim that GMP satisfies MeanPayoffN . Assume towards contradiction that GMP contains
a negative cycle CMP. It induces a negative cycle C in G, by definition of GMP necessarily the
maximum priority in C is odd. Hence C is a negative odd cycle in G, a contradiction.

– The graph GP. There is an edge (v, p,v′) ∈ E(GP) if there exists a path in G from v to v′

with maximum priority p and (whose projection on the mean payoff component is) rejected
by AMP.

We claim that GP satisfies Parityd . Assume towards contradiction that GP contains an odd
cycle CP. For each edge in this cycle there is a corresponding path rejected by AMP with
the same maximum priority. Putting these paths together yields an odd cycle C, of maximal
priority p, in G whose projection on the mean payoff component is rejected by AMP. Since
MeanPayoff

|n
N ⊆ L(AMP) and as we have shown, GMP satisfies MeanPayoffN , the projection

of C on the mean payoff component is not in GMP, so there exists an edge (v,(p′,w),v′) in C
such that (v,w,v′) is not in E(GMP). This implies that p′ is even, so in particular p′ < p, and
(v,(p′,w),v′) is contained in a negative cycle C′ in G with maximum priority p′. Combining
the odd cycle C followed by sufficiently many iterations of the negative cycle C′ yields a path
in G, with negative weight, and maximal priority p which is odd, a contradiction.

Let π an infinite path in G, we show that π is accepted by AP∨MP. Let us consider first only the
mean payoff component: we run π repeatedly over AMP, and distinguish two cases.

– If there are finitely many resets, let us write π = π1π2 . . .πkπ ′ where π1, . . . ,πk are paths
rejected by AMP with proper prefixes accepted by AMP and π ′ is accepted by AMP. To
show that π is accepted by AP∨MP we need to show that the automaton AP accepts the word
p1 . . . pk where pi is the maximum priority appearing in πi for i ∈ [1,k]. Indeed, p1 . . . pk is a
path in GP, which is a graph of n satisfying Parityd , so AP accepts p1 . . . pk.

– If there are infinitely many resets, let us write π = π1π2 . . . where for each i ∈ N, the path
πi is rejected by AMP and its proper prefixes are not. To show that π is accepted by AP∨MP

we need to show that the automaton AP accepts the word p1 p2 . . . , which holds for the same
reason as the other case: p1 p2 . . . is a path in GP.
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3.2 The complexity of solving disjunctions of parity and mean payoff games using sepa-
rating automata

The class of games with a disjunction of a parity and a mean payoff objective have been introduced
in [3], with a twist: this paper studies the case of a conjunction instead of a disjunction, which is more
natural in many applications. This is equivalent here since both parity and mean payoff objectives are
dual, in other words if the objective of Eve is a disjunction of a parity and a mean payoff objective, then
the objective of Adam is a conjunction of a parity and a mean payoff objective. Hence all existing results
apply here with suitable changes. The reason why we consider the objective of the opponent is that it is
positionally determined, which is the key assumption for using the separating automaton technology.

The state of the art for solving disjunctions of parity and mean payoff games is due to [8], which
presents a pseudo-quasi-polynomial algorithm. We refer to [8] for references on previous studies for
this class of games. As they explain, these games are logarithmic space equivalent to the same games
replacing mean payoff by energy, and polynomial time equivalent to games with weights [14], extending
games with costs [11].

Combining Theorem 6, Theorem 3, Theorem 4, and Theorem 1 yields the following result.

Theorem 7. Let n,d,N ∈ N. There exists an algorithm in the RAM model with word size w = log(n)+
log(N) for solving disjunctions of parity and mean payoff games with n vertices, m edges, weights in
[−N,N] and priorities in [0,d] of time complexity

O

md ·n ·
(
dlog(n)e+d/2−1

dlog(n)e

)
︸ ︷︷ ︸

Parity

· nN︸︷︷︸
Mean Payoff

 .

and space complexity O(n).

Our algorithm is similar to the one constructed in [8]: they are both value iteration algorithms (called
progress measure lifting algorithm in [8]), combining the two value iteration algorithms for parity and
mean payoff games. However, the set of values are not the same (our algorithm stores an additional
priority) and the proofs are very different. Besides being much shorter, one advantage of our proof is that
it works with abstract separating automata for both parity and mean payoff objectives, and shows how
to combine them, whereas in [8] the proof is done from scratch, extending both proofs for the parity and
mean payoff objectives.

4 Disjunction of mean payoff

We define the objective
∨

i∈[1,d]MeanPayoff
i
N referred to as ‘disjunction of mean payoff’. The set of

colours is [−N,N]d ⊆ Zd . For w ∈ ([−N,N]d)ω and i ∈ [1,d] we write wi ∈ [−N,N]ω for the projection
on the i-th component.∨

i∈[1,d]
MeanPayoffi

N =
{

w ∈ ([−N,N]d)ω : ∃i ∈ [1,d],wi ∈ MeanPayoffN

}
.

We refer to Subsection 4.3 for a discussion on existing results.

Theorem 8 (Follows from [13] as observed in [15]). Disjunctions of mean payoff objectives are prefix
independent and positionally determined.
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4.1 A general reduction of separating automata for strongly connected graphs

The first idea is very general, it roughly says that if we know how to construct separating automata for
strongly connected graphs, then we can use them to construct separating automata for general graphs.

We say that a graph is strongly connected if for every pair of vertices there exists a path from one
vertex to the other. Let us refine the notion of separating automata. We write Ω

|n
sc for the set of infinite

sequences of colours that label paths from strongly connected graphs of size at most n satisfying Ω.
Formally,

Ω
|n
sc = {col(π) | π ∈ Path∞(G),G is strongly connected, has size at most n, and satisfies Ω}.

Definition 5 (Separating automata for strongly connected graphs). An automaton A is (n,Ω)-separating
for strongly connected graphs if Ω

|n
sc ⊆ L(A )⊆Ω.

Let us give a first construction, which we refine later. Let A1 = (Q1,q0,1,δ1) and A2 = (Q2,q0,2,δ2)
two safety automata, we define their sequential product 〈A1,A2〉 as follows: the set of states is Q1∪Q2,
the initial state is q0,1, and the transition function is

δ (s,c) =


δ1(s,c) if s ∈ Q1 and δ1(s,c) is defined,
q0,2 if s ∈ Q1 and δ1(s,c) is not defined,
δ2(s,c) if s ∈ Q2 and δ2(s,c) is defined.

The sequential product is extended inductively: 〈A1, . . . ,Ap〉= 〈〈A1, . . . ,Ap−1〉,Ap〉.

Lemma 3. Let Ω be a prefix independent objective, n ∈ N, and A an (n,Ω)-separating automaton for
strongly connected graphs. Then A n = 〈A , . . . ,A︸ ︷︷ ︸

n times

〉 is an (n,Ω)-separating automaton.

Proof. We first show that L(A n) ⊆ Ω. We note that any infinite run in A n eventually remains in one
copy of A . Since A satisfies Ω and by prefix independence of Ω, this implies that the infinite path
satisfies Ω, thus so does A n.

Let G be a graph satisfying Ω, we show that Path∞(G) ⊆ L(A n). We decompose G into strongly
connected components: let G1, . . . ,Gp be the maximal strongly connected components in G indexed
such that if there exists an edge from Gi to G j then i < j. Then V (G) is the disjoint union of the V (Gi)’s.
Each Gi is a subgraph of G, and since G satisfies Ω then so does Gi. It follows that for each i we have
Path∞(Gi)⊆ L(A ).

Let us consider a path π in G, we show that π is accepted by A n. The proof is by induction on the
number of strongly connected components that π traverses. If it traverses only one such component, say
Gi, since Path∞(Gi)⊆ L(A ) then indeed A accepts π , so a fortiori A n accepts π . Otherwise, let Gi the
first strongly connected component traversed by π . Since Path∞(Gi) ⊆ L(A ), the run on π remains in
the first copy of A at least as long as π remains in Gi. If the run remains in the first copy of A forever,
then π is accepted by A n. If not, the run jumps to the second component to read a suffix of π , which
traverses one less strongly connected component, so by induction hypothesis this suffix is accepted by
A n−1, hence π is accepted by A n.

In the construction above we have used the fact that G decomposes into at most n strongly connected
components of size n. We refine this argument: the total size of the strongly connected components is n.
The issue we are facing in taking advantage of this observation is that the sequence of sizes is not known
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a priori, it depends on the graph. To address this we use a universal sequence. First, here a sequence
means a finite sequence of non-negative integer, for instance (5,2,3,3). The size of a sequence is the total
sum of its elements, so (5,2,3,3) has size 13. We say that v = (v1, . . . ,vk) embeds into u = (u1, . . . ,uk′)
if there exists an increasing function f : [1,k]→ [1,k′] such that for all i ∈ [1,k], we have vi ≤ u f (i). For
example (5,2,3,3) embeds into (4,6,1,2,4,1,3) but not in (3,2,5,3,3). A sequence u is n-universal if
all sequences of size at most n embed into u.

Let us define an n-universal sequence un, inductively on n ∈N. We set u0 = () (the empty sequence),
u1 = (1), and un is the concatenation of ubn/2c with the singleton sequence (n) followed by un−1−bn/2c.
Writing + for concatenation, the definition reads un = ubn/2c+ (n) + un−1−bn/2c Let us write the first
sequences:

u2 = (1,2), u3 = (1,3,1), u4 = (1,2,4,1), u5 = (1,2,5,1,2), u6 = (1,3,1,6,1,2), . . .

Lemma 4. The sequence un is n-universal and has size O(n log(n)).

Proof. We proceed by induction on n. The case n = 0 is clear, let us assume that n > 0. Let v =
(v1, . . . ,vk) be a sequence of size n, we show that v embeds into un. There exists a unique p ∈ [1,k] such
that (v1, . . . ,vp−1) has size smaller than or equal to bn/2c and (v1, . . . ,vp) has size larger than bn/2c.
This implies that (vp+1, . . . ,vk) has size at most n− 1−bn/2c. By induction hypothesis (v1, . . . ,vp−1)
embeds into ubn/2c and (vp+1, . . . ,vk) embeds into un−1−bn/2c, so v embeds into un.

The recurrence on size is |un| = |ubn/2c|+n+ |un−1−bn/2c|. Solving it shows that |un| is bounded by
O(n log(n)).

We now use the universal sequence to improve on Lemma 3.
Lemma 5. Let Ω be a positionally determined prefix independent objective and n∈N. For each k∈ [1,n],
let Ak be a (k,Ω)-separating automaton for strongly connected graphs. Let us write un = (x1, . . . ,xk),
then A (un) = 〈Ax1 , . . . ,Axk〉 is an (n,Ω)-separating automaton.

Proof. We follow the same lines as for Lemma 3, in particular the same argument implies that A (un)
satisfies Ω.

Let G be a graph satisfying Ω, we show that Path∞(G)⊆ L(A (un)). We decompose G into strongly
connected components as before. Let us write v = (|V (G1)|, . . . , |V (Gp)|) the sequence of sizes of the
components. The sequence v has size at most n, implying that v embeds into un: there exists an increasing
function f : [1, p]→ [1, |un|] such that for all i ∈ [1, p] we have |V (Gi)| ≤ u f (i). It follows that for each
i ∈ [1, p], we have Path∞(Gi)⊆ L(A f (i)).

Let us consider a path π in G, we show that π is accepted by A (un). The proof is by induction on
the number of strongly connected components that π traverses.

The base case is if π traverses only one such component, say Gi. This implies that the run of π on
A (un) either remains in the first f (i)−1 copies, or reaches the f (i) copy to read a suffix π ′ of π . In the
latter case, since Path∞(Gi)⊆ L(A f (i)) and π ′ also remains in Gi, then A f (i) accepts π ′. In both cases π

is accepted by A (un).
Otherwise, let Gi the first strongly connected component traversed by π . The run of π on A (un)

either remains in the first f (i)− 1 copies, or reaches the f (i) copy to read a suffix π ′ of π . Since
Path∞(Gi)⊆ L(A f (i)), this run remains in the f (i) copy as long as π ′ remains in Gi. This can either hold
forever, in which case π is accepted by A (un), or eventually the run jumps to the f (i)+1 copy to read a
suffix π ′′ of π ′ (hence of π). In the latter case, since π ′′ traverses one less strongly connected component
by induction hypothesis π ′′ is accepted using the copies from f (i)+1 of A (un). Thus π is accepted by
A (un).
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To appreciate the improvement of Lemma 5 over Lemma 3, let us consider the case where the (k,Ω)-
separating automaton Ak for strongly connected graphs has size αk, where α does not depend on k (see
Theorem 4 for an example of such a case). Then Lemma 3 yields an (n,Ω)-separating automaton of size
αn2 while Lemma 5 brings it down to O(αn log(n)).

4.2 Separating automata for disjunctions of mean payoff objectives

We state in the following theorem an upper bound on the construction of separating automata for dis-
junctions of mean payoff objectives.

Theorem 9. Let n,d,N ∈ N. There exists an (n,
∨

i∈[1,d]MeanPayoff
i
N)-separating automaton of size

O(n log(n) ·dN).

As suggested by the previous subsection, we will start by constructing (n,
∨

i∈[1,d]MeanPayoff
i
N)-

separating automata for strongly connected components. The following result shows a decomposition
property.

Lemma 6. Let G be a strongly connected graph and N ∈ N. If G satisfies
∨

i∈[1,d]MeanPayoff
i
N then

there exists i ∈ [1,d] such that G satisfies MeanPayoffi
N .

Proof. We prove the contrapositive property: assume that for all i ∈ [1,d] the graph does not satisfy
MeanPayoffi

N , implying that for each i ∈ [1,d] there exists a negative cycle Ci around some vertex vi.
By iterating each cycle an increasing number of times, we construct a path in G which does not satisfy∨

iMeanPayoff
i
N .

To make this statement formal, we use the following property: for any i ∈ [1,d], any finite path π

can be extended to a finite path ππ ′ with weight less than −1 on the ith component. This is achieved
simply by first going to vi using strong connectedness, then iterating through cycle Ci a sufficient number
of times.

We then apply this process repeatedly and in a cyclic way over i ∈ [1,d] to construct an infinite path
such that for each i ∈ [1,d], infinitely many times the i-th component is less than −1. This produces a
path which does not satisfy

∨
i∈[1,d]MeanPayoff

i
N , a contradiction.

Corollary 1. Let n,N ∈N and A be an (n,MeanPayoffN)-separating automaton for strongly connected
graphs. We construct d ·A the disjoint union of d copies of A , where the i-th copy reads the i-th
component. Then d ·A is an (n,

∨
i∈[1,d]MeanPayoff

i
N)-separating automaton for strongly connected

graphs.

We can now prove Theorem 9. Thanks to Theorem 4, there exists an (n,MeanPayoffN)-separating
automaton of size nN. Thanks to Corollary 1, this implies an (n,

∨
i∈[1,d]MeanPayoff

i
N)-separating au-

tomaton for strongly connected graphs of size ndN. Now Lemma 5 yields an (n,
∨

iMeanPayoff
i
N)-

separating automaton of size O(n log(n) ·dN).

4.3 The complexity of solving disjunctions of mean payoff games using separating au-
tomata

As in the previous case disjunction of mean payoff games were studied focussing on the objective of
the opponent, who has a conjunction of mean payoff objectives to satisfy [15]. Let us note here that
there are actually two variants of the mean payoff objective: using infimum limit or supremum limit.
In many cases the two variants are equivalent: this is the case when considering mean payoff games
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or disjunctions of parity and mean payoff games. However, this is not true anymore for disjunctions
of mean payoff objectives, as explained in [15]. Our constructions and results apply using the infimum
limit, and do not extend to the supremum limit.

The main result related to disjunction of mean payoff games in [15] (Theorem 6) is that the problem is
in NP∩coNP and can be solved in time O(m ·n2 ·d ·N). (Note that since we consider the dual objectives,
the infimum limit becomes a supremum limit in [15].)

Combining Theorem 9, Theorem 4, and Theorem 1 yields the following result.

Corollary 2. Let n,m,d,N ∈ N. There exists an algorithm in the RAM model with word size w =
log(n)+ log(N)+ log(d) for solving disjunctions of mean payoff games with weights in [−N,N] with
time complexity O(m ·n log(n) ·d ·N) and space complexity O(n).

Note that for the choice of word size, the two tasks for manipulating separating automata, namely
computing δ (q,w) and checking whether q ≤ q′ are indeed unitary operations as they manipulate num-
bers of order nN.

Conclusions

The conceptual contribution of this paper is to show that the notion of separating automata is a powerful
tool for constructing algorithms. We illustrated this point with two applications, constructing algorithms
for two classes of objectives. A key appeal of our approach is that we assumed the existence of separating
automata both for parity and for mean payoff objectives and used them as black boxes to construct
separating automata for objectives combining them.

It is tempting to use our approach for constructing separating automata for disjunctions of parity
objectives. However, solving games with disjunctions of two parity objectives is NP-complete [4], hence
we cannot hope for subexponential separating automata.

In this paper we offered upper bounds on the sizes of separating automata for two classes of objec-
tives. We leave open the questions of proving (matching) lower bounds, which would indicate that this
approach cannot yield better algorithms in these cases.

References
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