
D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. 1–16, doi:10.4204/EPTCS.370.1

© B. Bollig, A. Sangnier & O. Stietel

This work is licensed under the

Creative Commons Attribution License.

On the Existential Fragments of Local First-Order Logics

with Data

Benedikt Bollig

CNRS, LMF, ENS Paris-Saclay
Université Paris-Saclay, France

Arnaud Sangnier

IRIF, Université Paris Cité
CNRS,France

Olivier Stietel

CNRS, LMF, ENS Paris-Saclay
Université Paris-Saclay, France

IRIF, Université Paris Cité
CNRS,France

We study first-order logic over unordered structures whose elements carry a finite number of data

values from an infinite domain which can be compared wrt. equality. As the satisfiability problem

for this logic is undecidable in general, in a previous work, we have introduced a family of local

fragments that restrict quantification to neighbourhoods of a given reference point. We provide here

the precise complexity characterisation of the satisfiability problem for the existential fragments of

this local logic depending on the number of data values carried by each element and the radius of the

considered neighbourhoods.

1 Introduction

First-order data logic has emerged to specify properties involving infinite data domains. Potential appli-

cations include XML reasoning and the specification of concurrent systems and distributed algorithms.

The idea is to extend classic mathematical structures by a mapping that associates with every element of

the universe a value from an infinite domain. When comparing data values only for equality, this view

is equivalent to extending the underlying signature by a binary relation symbol whose interpretation is

restricted to an equivalence relation.

Data logics over word and tree structures were studied in [1, 2]. In particular, the authors showed

that two-variable first-order logic on words has a decidable satisfiability problem. Other types of data

logics allow two data values to be associated with an element [12, 13], though they do not assume a

linearly ordered or tree-like universe. Again, satisfiability turned out to be decidable for the two-variable

fragment of first-order logic. Other notable extensions, either to multiple data values or to totally ordered

data domains, include [5, 11, 15, 17].

When considering an arbitrary number of first-order variables, which we do in this paper, the decid-

ability frontier is quickly crossed without further constraints as soon as the number of allowed data in

gretar then two [10]. One of the restrictions we consider here is locality, an essential concept in first-

order logic. It is well known that first-order logic is only able to express local properties: a first-order

formula can always be written as a combination of properties of elements that have limited, i.e., bounded

by a given radius, distance from some reference points [8, 9]. In the presence of (several) data values,

imposing a corresponding locality restriction on a logic can help ensuring decidability of its satisfiability

problem.

In previous work, we considered a local fragment of first-order data logic over structures whose

elements (i) are unordered (as opposed to, e.g., words or trees), and (ii) each carries two data values.

We showed that the fragment has a decidable satisfiability problem when restricting local properties to

radius 1, while it is undecidable for any radius greater than 1.

http://dx.doi.org/10.4204/EPTCS.370.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 On the Existential Fragments of Local First-Order Logics with Data

In the present paper, we study orthogonal local fragments where global quantification is restricted to

being existential (while quantification inside a local property is still unrestricted). We obtain decidability

for (i) radius 1 and an arbitrary number of data values, and for (ii) radius 2 and two data values. In

all cases, we provide tight complexity upper and lower bounds. Moreover, these results mark the exact

decidability frontier: satisfiability is undecidable as soon as we consider radius 3 in presence of two data

values, or radius 2 together with three data values.

To give a possible application domain of our logic, consider distributed algorithms running on a

cloud of processes. Those algorithms are usually designed to be correct independently of the number

of processes executing them. Every process gets some inputs and produces some outputs, usually from

an infinite domain. These may include process identifiers, nonces, etc. Inputs and outputs together

determine the behavior of a distributed algorithm. A simple example is leader election, where every

process gets a unique id, whereas the output should be the id of the elected leader and so be the same for

all processes. To formalize correctness properties and to define the intended input-output relation, it is

hence essential to have suitable data logics at hand.

Outline. The paper is structured as follows. In Section 2, we recall important notions such as structures

and first-order logic, and we introduce the local fragments considered in this paper. Section 3 presents

the decidable cases, whereas, in Section 4, we show that all remaining cases lead to undecidability.

This work was partly supported by the project ANR FREDDA (ANR-17-CE40-0013).

2 Structures and first-order logic

2.1 Data Structures

We define here the class of models we are interested in. It consists of sets of nodes containing data

values with the assumption that each node is labeled by a set of predicates and carries the same number

of values. We consider hence Σ a finite set of unary relation symbols (sometimes called unary predicates)

and an integer D ≥ 0. A D-data structure over Σ is a tuple A= (A,(Pσ)σ∈Σ, f1, . . . , fD) (in the following,

we simply write (A,(Pσ), f1, . . . , fD)) where A is a nonempty finite set, Pσ ⊆ A for all σ ∈ Σ, and fis are

mappings A → N. Intuitively A represents the set of nodes and fi(a) is the i-th data value carried by a

for each node a ∈ A. For X ⊆ A, we let ValA(X) = { fi(a) | a ∈ X , i ∈ {1, . . . ,D}}. The set of all D-data

structures over Σ is denoted by Data[Σ,D].

While this representation is often very convenient to represent data values, a more standard way

of representing mathematical structures is in terms of binary relations. For every (i, j) ∈ {1, . . . ,D}×
{1, . . . ,D}, the mappings f1, . . . , fD determine a binary relation i∼

A
j ⊆ A ×A as follows: a i∼

A
j b iff

fi(a) = f j(b). We may omit the superscript A if it is clear from the context and if D = 1, as there will be

only one relation, we way may write ∼ for 1∼1.

2.2 First-Order Logic

Let V = {x,y, . . .} be a countably infinite set of variables. The set dFO[Σ,D] of first-order formulas

interpreted over D-data structures over Σ is inductively given by the grammar ϕ ::= σ(x) | x i∼ j y | x =
y | ϕ ∨ϕ | ¬ϕ | ∃x.ϕ , where x and y range over V , σ ranges over Σ, and i, j ∈ {1, . . . ,D}. We use standard

abbreviations such as ∧ for conjunction and ⇒ for implication. We write ϕ(x1, . . . ,xk) to indicate that

the free variables of ϕ are among x1, . . . ,xk. We call ϕ a sentence if it does not contain free variables.

B. Bollig, A. Sangnier & O. Stietel 3

For A = (A,(Pσ), f1, . . . , fD) ∈ Data[Σ,D] and a formula ϕ ∈ dFO[Σ,D], the satisfaction relation

A |=I ϕ is defined wrt. an interpretation function I : V →A. The purpose of I is to assign an interpretation

to every (free) variable of ϕ so that ϕ can be assigned a truth value. For x∈V and a∈A, the interpretation

function I[x/a] maps x to a and coincides with I on all other variables. We then define:

A |=I σ(x) if I(x) ∈ Pσ A |=I ϕ1 ∨ϕ2 if A |=I ϕ1 or A |=I ϕ2

A |=I x i∼ j y if I(x) i∼
A
j I(y) A |=I ¬ϕ if A 6|=I ϕ

A |=I x = y if I(x) = I(y) A |=I ∃x.ϕ if there is a ∈ A s.t. A |=I[x/a] ϕ

Finally, for a data structure A = (A,(Pσ), f1, . . . , fD), a formula ϕ(x1, . . . ,xk) and a1, . . . ,ak ∈ A,

we write A |= ϕ(a1, . . .ak) if there exists an interpretation function I such that A |=I[x1/a1]...[xk/ak] ϕ . In

particular, for a sentence ϕ , we write A |= ϕ if there exists an interpretation function I such that A |=I ϕ .

Example 1 Assume a unary predicate leader ∈ Σ. The following formula from dFO[Σ,2] expresses cor-

rectness of a leader-election algorithm: (i) there is a unique process that has been elected leader, and

(ii) all processes agree, in terms of their output values (their second data), on the identity (the first data)

of the leader: ∃x.(leader(x)∧∀y.
(

leader(y)⇒ y = x)
)

∧∀y.∃x.(leader(x)∧x 1∼2 y).

We are interested here in the satisfiability problem for these logics. Let F denote a generic class of

first-order formulas, parameterized by Σ and D. In particular, for F = dFO, we have that F [Σ,D] is the

class dFO[Σ,D]. The satisfiability problem for F wrt. D-data structures is defined as follows:

DATASAT(F ,D)

Input: A finite set Σ and a sentence ϕ ∈ F [Σ,D].

Question: Is there A ∈ Data[Σ,D] such that A |= ϕ ?

The following negative result (see [10, Theorem 1]) calls for restrictions of the general logic.

Theorem 1 [10] The problem DATASAT(dFO,2) is undecidable, even when we require that Σ = /0 and

we do not use 1∼2 and 2∼1 in the considered formulas.

2.3 Local First-Order Logic and its existential fragment

We are interested in logics combining the advantages of dFO[Σ,D], while preserving decidability. With

this in mind, we have introduced in [3], for the case of two data values, a local restriction, where the

scope of quantification in the presence of free variables is restricted to the view of a given element. We

present now the defintion of such restrictions adapted to the case of many data values.

First, the view of a node a includes all elements whose distance to a is bounded by a given radius. It is

formalized using the notion of a Gaifman graph (for an introduction, see [14]). We use here a variant that

is suitable for our setting and that we call data graph. Given a data structure A= (A,(Pσ), f1, . . . , fD) ∈
Data[Σ,D], we define its data graph G (A) = (VG (A),EG (A)) with set of vertices VG (A) = A×{1, . . . ,D}
and set of edges EG (A) = {((a, i),(b, j)) ∈ VG (A) ×VG (A) | a = b or a i∼ j b}. Figure 1a provides an

example of the graph G (A) for a data structure with 2 data values.

We then define the distance dA((a, i),(b, j)) ∈ N∪{∞} between two elements (a, i) and (b, j) from

A×{1, . . . ,D} as the length of the shortest path from (a, i) to (b, j) in G (A). For a ∈ A and r ∈ N, the

radius-r-ball around a is the set BA
r (a) = {(b, j) ∈ VG (A) | dA((a, i),(b, j)) ≤ r for some i ∈ {1, . . . ,D}}.

This ball contains the elements of VG (A) that can be reached from (a,1), . . . ,(a,D) through a path of

length at most r. On Figure 1a the blue nodes represent BA
2 (a).

4 On the Existential Fragments of Local First-Order Logics with Data

1

2a

1

3

b

3

2 c

5

6

d

4

3

e

2

7

f

(a) A data structure A and G (A).

1

2a

1

3

b

3

2 c

10

11

d

8

9

e

2

7

f

(b) A|2a: the 2 view of a

Figure 1

We now define the r-view of an element a in the D-data structure A. Intuitively it is a D-data structure

with the same elements as A but where the data values which are not in the radius-r-ball around a are

changed with new values all different one from each other. Let fnew : A×{1, . . . ,D} → N\ValA(A) be

an injective mapping. The r-view of a in A is the structure A|ra = (A,(Pσ), f ′1, . . . , f ′n) ∈ Data[Σ,D] where

its universe is the same as the one of A and the unary predicates stay the same and f ′i (b) = fi(b) if

(b, i) ∈ BA
r (a), and f ′i (b) = fnew((b, i)) otherwise. On Figure 1b, the structure A|2a is depicted where the

values of the red nodes, not belonging to BA
2 (a) have been replaced by fresh values not in {1, . . . ,7}.

We are now ready to present the logic r-Loc-dFO[Σ,D], where r ∈N, interpreted over structures from

Data[Σ,D]. It is given by the grammar

ϕ ::= 〈〈ψ〉〉r
x | x = y | ∃x.ϕ | ϕ ∨ϕ | ¬ϕ

where ψ is a formula from dFO[Σ,D] with (at most) one free variable x. This logic uses the local modality

〈〈ψ〉〉r
x to specify that the formula ψ should be interpreted over the r-view of the element associated to

the variable x. For A ∈ Data[Σ,D] and an interpretation function I, we have indeed A |=I 〈〈ψ〉〉r
x iff

A|r
I(x) |=I ψ .

Example 2 We now illustrate what can be specified by formulas in the logic 1-Loc-dFO[Σ,2]. We can

rewrite the formula from Example 1 so that it falls into our fragment as follows: ∃x.(〈〈leader(x)〉〉1
x ∧∀y.

(〈〈leader(y)〉〉1
y ⇒ x = y))∧∀y.〈〈∃x.leader(x)∧y 2∼1 x〉〉1

y . The next formula specifies an algorithm in

which all processes suggest a value and then choose a new value among those that have been suggested

at least twice: ∀x.〈〈∃y.∃z.y 6= z∧x 2∼1 y∧x 2∼1 z〉〉1
x . We can also specify partial renaming, i.e., two

output values agree only if their input values are the same: ∀x.〈〈∀y.(x 2∼2 y ⇒ x 1∼1 y〉〉1
x . Conversely,

the formula ∀x.〈〈∀y.(x 1∼1 y ⇒ x 2∼2 y〉〉1
x specifies partial fusion of equivalences classes.

In [3], we have studied the decidability status of the satisfiability problem for r-Loc-dFO[Σ,2] with

r ≥ 1 and we have shown that DATASAT(2-Loc-dFO,2) is undecidable and that DATASAT(1-Loc-dFO,2)
is decidable when restricting the formulas (and the view of elements) to binary relations belonging to the

set {1∼1,2∼2,1∼2}. Whether DATASAT(1-Loc-dFO,2) in its full generality is decidable or not remains

an open problem.

B. Bollig, A. Sangnier & O. Stietel 5

We wish to study here the existential fragment of r-Loc-dFO[Σ,D] (with r ≥ 1 and D ≥ 1) and

establish when its satisfiability problem is decidable. This fragment, denoted by ∃-r-Loc-dFO[Σ,D], is

given by the grammar

ϕ ::= 〈〈ψ〉〉r
x | x = y | ¬(x = y) | ∃x.ϕ | ϕ ∨ϕ | ϕ ∧ϕ

where ψ is a formula from dFO[Σ,D] with (at most) one free variable x. The quantifier free fragment

qf-r-Loc-dFO[Σ,D] is defined by the grammar ϕ ::= 〈〈ψ〉〉r
x | x = y | ¬(x = y) | ϕ ∨ϕ | ϕ ∧ϕ .

Remark 1 Note that for both these fragments, we do not impose any restrictions on the use of quantifiers

in the formula ψ located under the local modality 〈〈ψ〉〉r
x.

3 Decidability results

We show here decidability of DATASAT(∃-2-Loc-dFO,2) and, for all D≥ 0, DATASAT(∃-1-Loc-dFO,D).

3.1 Preliminary results: 0 and 1 data values

We introduce two preliminary results we shall use in this section to obtain new decidability results. First,

note that formulas in dFO[Σ,0] (i.e. where no data is considered) correspond to first order logic formulas

with a set of predicates and equality test as a unique relation. As mentioned in Chapter 6.2.1 of [4], these

formulas belong to the Löwenheim class with equality also called as the relational monadic formulas,

and their satisfiability problem is in NEXP. Furthermore, thanks to [6] (Theorem 11), we know that this

latter problem is NEXP-hard even if one considers formulas which use only two variables.

Theorem 2 DATASAT(dFO,0) is NEXP-complete.

In [16], the authors study the satisfiability problem for Hybrid logic over Kripke structures where

the transition relation is an equivalence relation, and they show that it is N2EXP-complete. Furthermore

in [7], it is shown that Hybrid logic can be translated to first-order logic in polynomial time and this

holds as well for the converse translation. Since 1-data structures can be interpreted as Kripke structures

with one equivalence relation, altogether this allows us to obtain the following preliminary result about

the satisfiability problem of dFO[Σ,1].

Theorem 3 DATASAT(dFO,1) is N2EXP-complete.

3.2 Two data values and balls of radius 2

In this section, we prove that the satisfiability problem for the existential fragment of local first-order

logic with two data values and balls of radius two is decidable. To obtain this result we provide a re-

duction to the satisfiability problem for first-order logic over 1-data structures. Our reduction is based

on the following intuition. Consider a 2-data structure A= (A,(Pσ), f1, f2) ∈ Data[Σ,2] and an element

a ∈ A. If we take an element b in BA
2 (a), the radius-2-ball around a, we know that either f1(b) or f2(b)

is a common value with a. In fact, if b is at distance 1 of a, this holds by definition and if b is at distance

2 then b shares an element with c at distance 1 of a and this element has to be shared with a as well so

b ends to be at distance 1 of a. The trick consists then in using extra-labels for elements sharing a value

with a that can be forgotten and to keep only the value of b not present in a, this construction leading

to a 1-data structure. It remains to show that we can ensure that a 1-data structure is the fruit of this

6 On the Existential Fragments of Local First-Order Logics with Data

construction in a formula of dFO[Σ′,1] (where Σ′ is obtained from Σ by adding extra predicates).

The first step for our reduction consists in providing a characterisation for the elements located in the

radius-1-ball and the radius-2-ball around another element.

Lemma 1 Let A= (A,(Pσ), f1, f2) ∈ Data[Σ,2] and a,b ∈ A and j ∈ {1,2}. We have:

1. (b, j) ∈ BA
1 (a) iff there is i ∈ {1,2} such that a i∼

A
j b.

2. (b, j) ∈ BA
2 (a) iff there exists i,k ∈ {1,2} such that a i∼

A
k b.

Proof: We show both statements:

1. Since (b, j) ∈ BA
1 (a), by definition we have either b = a and in that case a j∼

A
j b holds, or b 6= a

and necessarily there exists i ∈ {1,2} such that a i∼
A
j b.

2. First, if there exists i,k ∈ {1,2} such that a i∼
A

k b, then (b,k) ∈ BA
1 (a) and (b, j) ∈ BA

2 (a) by defini-

tion. Assume now that (b, j) ∈ BA
2 (a). Hence there exists i ∈ {1,2} such that dA((a, i),(b, j)) ≤ 2.

We perform a case analysis on the value of dA((a, i),(b, j)).

• Case dA((a, i),(b, j)) = 0. In that case a = b and i = j and we have a i∼
A
i b.

• Case dA((a, i),(b, j)) = 1. In that case, ((a, i),(b, j)) is an edge in the data graph G (A) of A

which means that a i∼
A
j b holds.

• Case dA((a, i),(b, j)) = 2. Note that we have by definition a 6= b. Furthermore, in that case,

there is (c,k) ∈ A×{1,2} such that ((a, i),(c,k)) and ((c,k),(b, j)) are edges in G (A). If

c 6= a and c 6= b, this implies that a i∼
A

k c and c k∼
A
j b, so a i∼

A
j b and dA((a, i),(b, j)) = 1

which is a contradiction. If c = a and c 6= b, this implies that a k∼
A
j b. If c 6= a and c = b,

this implies that a i∼
A
k b.

�

We consider a formula ϕ = ∃x1 . . .∃xn.ϕq f (x1, . . . ,xn) of ∃-2-Loc-dFO[Σ,2] in prenex normal form,

i.e., such that ϕq f (x1, . . . ,xn) ∈ qf-2-Loc-dFO[Σ,2]. We know that there is a structure A = (A,(Pσ)σ∈Σ,
f1, f2) in Data[Σ,2] such that A |= ϕ if and only if there are a1, . . . ,an ∈ A such that A |= ϕq f (a1, . . . ,an).

Let A= (A,(Pσ)σ∈Σ, f1, f2) be a structure in Data[Σ,2] and a tuple~a = (a1, . . . ,an) of elements in An.

We shall present the construction of a 1-data structure [[A]]~a in Data[Σ′,1] (with Σ ⊆ Σ′) with the same

set of nodes as A, but where each node carries a single data value. In order to retrieve the data relations

that hold in A while reasoning over [[A]]~a, we introduce extra-predicates in Σ′ to establish whether a node

shares a common value with one of the nodes among a1, . . . ,an in A.

We now explain formally how we build [[A]]~a. Let Γn = {ap[i, j] | p ∈ {1, . . . ,n}, i, j ∈ {1,2}} be a

set of new unary predicates and Σ′ = Σ∪Γn. For every element b ∈ A, the predicates in Γn are used to

keep track of the relation between the data values of b and the one of a1, . . . ,an in A. Formally, we define

Pap[i, j] = {b ∈ A | A |= ap i∼ j b}. We now define a data function f : A →N. We recall for this matter that

ValA(~a) = { f1(a1), f2(a1), . . . , f1(an), f2(an)} and let fnew : A → N\ValA(A) be an injection. For every

b ∈ A, we set:

f (b) =











f2(b) if f1(b) ∈ ValA(~a) and f2(b) /∈ ValA(~a)

f1(b) if f1(b) /∈ ValA(~a) and f2(b) ∈ ValA(~a)

fnew(b) otherwise

Hence depending if f1(b) or f2(b) is in ValA(~a), it splits the elements of A in four categories. If f1(b) and

f2(b) are in ValA(~a), the predicates in Γn allow us to retrieve all the data values of b. Given j ∈ {1,2},

B. Bollig, A. Sangnier & O. Stietel 7

1

2a

1

3

b

3

2 c

5

6

d

4

3

e

2

7

f

(a) A data structure A and G (A).

8
a

3

b

3

c

9

d

10

e

7

f

Pa[1,1] = {a,b}

Pa[2,2] = {a,c}

Pa[1,2] = /0

Pa[2,1] = { f}

(b) [[A]](a).

Figure 2

if f j(b) is in ValA(~a) but f3− j(b) is not, the new predicates will give us the j-th data value of b and we

have to keep track of the (3− j)-th one, so we save it in f (b). Lastly, if neither f1(b) nor f2(b) is in

ValA(~a), we will never be able to see the data values of b in ϕq f
(thanks to Lemma 1), so they do not

matter to us. Finally, we have [[A]]~a = (A,(Pσ)σ∈Σ′ , f). Figure 2b provides an example of ValA(~a) for the

data structures depicted on Figure 2a and~a = (a).
The next lemma formalizes the connection existing between A and [[A]]~a with~a = (a1, . . . ,an).

Lemma 2 Let b,c ∈ A and j,k ∈ {1,2} and p ∈ {1, . . . ,n}. The following statements then hold.

1. If (b, j) ∈ BA
1 (ap) and (c,k) ∈ BA

1 (ap) then A|2ap
|= b j∼k c iff there is i ∈ {1,2} s.t. b ∈ Pap[i, j] and

c ∈ Pap[i,k].

2. If (b, j) ∈ BA
2 (ap)\BA

1 (ap) and (c,k) ∈ BA
1 (ap) then A|2ap

2 b j∼k c

3. If (b, j),(c,k) ∈ BA
2 (ap) \BA

1 (ap) then A|2ap
|= b j∼k c iff either b 1∼

[[A]]~a
1 c or there exists p′ ∈

{1, . . . ,n} and ℓ ∈ {1,2} such that b ∈ Pap′ [ℓ, j]
and c ∈ Pap′ [ℓ,k]

.

4. If (b, j) /∈ BA
2 (ap) and (c,k) ∈ BA

2 (ap) then A|2ap
2 b j∼k c

5. If (b, j) /∈ BA
2 (ap) and (c,k) /∈ BA

2 (ap) then A|2ap
|= b j∼k c iff b = c and j = k.

Proof: We suppose that A|2ap
= (A,(Pσ)σ , f

p
1 , f

p
2).

1. Assume that (b, j) ∈ BA
1 (ap) and (c,k) ∈ BA

1 (ap). It implies that f
p
j (b) = f j(b) and f

p
k (c) = fk(c).

Then assume that A|2ap
|= b j∼k c. As (b, j) ∈ BA

1 (ap), thanks to Lemma 1.1 it means that there is a

i ∈ {1,2} such that ap i∼
A
j b. So we have fk(c) = f

p
k (c) = f

p
j (b) = f j(b) = fi(ap), that is ap i∼

A
k c.

Hence by definition, b ∈ Pap[i, j] and c ∈ Pap[i,k]. Conversely, let i ∈ {1,2} such that b ∈ Pap[i, j] and

c ∈ Pap[i,k]. This means that ap i∼
A
j b and ap i∼

A
k c. So f

p
j (b) = f j(b) = fi(ap) = fk(c) = f

p
k (c),

that is A|2ap
|= b j∼k c.

2. Assume that (b, j) ∈ BA
2 (ap) \ BA

1 (ap) and (c,k) ∈ BA
1 (ap). It implies that f

p
j (b) = f j(b) and

f
p
k (c) = fk(c). Thanks to Lemma 1.1, (c,k) ∈ BA

1 (ap) implies that fk(c) ∈ { f1(ap), f2(ap)} and

(b, j) /∈ BA
1 (ap) implies that f j(b) /∈ { f1(ap), f2(ap)}. So A|2ap

6|= b j∼k c.

8 On the Existential Fragments of Local First-Order Logics with Data

3. Assume that (b, j),(c,k) ∈ BA
2 (ap)\BA

1 (ap). As previously, we have that f j(b) /∈ { f1(ap), f2(ap)}
and fk(c) /∈ { f1(ap), f2(ap)}, and thanks to Lemma 1.2, we have f3− j(b) ∈ { f1(ap), f2(ap)} and

f3−k(b) ∈ { f1(ap), f2(ap)}. There is then two cases:

• Suppose there does not exists p′ ∈ {1, . . . ,n} such that f j(b) ∈ { f1(ap′), f2(ap′)} .This allows

us to deduce that f
p
j (b) = f j(b) = f (b) and f

p
k (c) = fk(c). If A|2ap

|= b j∼k c, then necessarily

there does not exists p′ ∈ {1, . . . ,n} such that fk(c) ∈ { f1(ap′), f2(ap′)} so we have f
p
k (c) =

fk(c) = f (c) and f (b) = f (c), consequently b 1∼
[[A]]~a
1 c. Similarly assume that b 1∼

[[A]]~a
1 c,

this means that f (b) = f (c) and either b = c and k = j or b 6= c and by injectivity of f ,we

have f j(b) = f (b) = fk(c). This allows us to deduce that A|2ap
|= b j∼k c.

• If there exists p′ ∈ {1, . . . ,n} such that f j(b) = fℓ(ap′) for some ℓ ∈ {1,2}. Then we have

b ∈ Pap′ [ℓ, j]
. Consequently, we have A|2ap

|= b j∼k c iff c ∈ Pap′ [ℓ,k]
.

4. We prove the case 4 and 5 at the same time. Assume that (b, j) /∈ BA
2 (ap). It means that in

order to have f
p
j (b) = f

p
k (c), we must have (b, j) = (c,k). So if (c,k) ∈ BA

2 (ap), we can not have

A|2ap
|= b j∼k c which ends case 4. And if (c,k) /∈ BA

2 (ap), we have that A|2ap
|= b j∼k c iff b = c

and j = k.

�

We shall now see how we translate the formula ϕq f (x1, . . . ,xn) into a formula [[ϕq f]](x1, . . . ,xn) in

dFO[Σ′,1] such that A satisfies ϕq f (a1, . . . ,an) if, and only if, [[A]]~a satisfies [[ϕq f]](a1, . . . ,an). Thanks

to the previous lemma we know that if A|2ap
|= b j∼k c then (b, j) and (c,k) must belong to the same set

among BA
1 (ap), BA

2 (ap) \BA
1 (ap) and A\BA

2 (ap) and we can test in [[A]]~a whether (b, j) is a member of

BA
1 (ap) or BA

2 (ap). Indeed, thanks to Lemmas 1.1 and 1.2, we have (b, j) ∈ BA
1 (ap) iff b ∈

⋃

i=1,2 Pap[i, j]

and (b, j) ∈ BA
2 (ap) iff b ∈

⋃ j′=1,2
i=1,2 Pap[i, j′]. This reasoning leads to the following formulas in dFO[Σ′,1]

with p ∈ {1, . . . ,n} and j ∈ {1,2}:

• ϕ
j,B1(ap)

(y) := ap[1, j](y)∨ap[2, j](y) to test if the j-th field of an element belongs to BA
1 (ap)

• ϕ
B2(ap)

(y) := ϕ
1,B1(ap)

(y)∨ϕ
2,B1(ap)

(y) to test if a field of an element belongs to BA
2 (ap)

• ϕ
j,B2(ap)\B1(ap)

(y) := ϕ
B2(ap)

(y)∧¬ϕ
j,B1(ap)

(y) to test that the j-th field of an element belongs to

BA
2 (ap)\BA

1 (ap)

We shall now present how we use these formulas to translate atomic formulas of the form y j∼k z

under some 〈〈−〉〉2
xp

. For this matter, we rely on the three following formulas of dFO[Σ′,1]:

• The first formula asks for (y, j) and (z,k) to be in B1
1(ap) (where here we abuse notations, using

variables for the elements they represent) and for these two data values to coincide with one data

value of ap, it corresponds to Lemma 2.1:

ϕ r=1
j,k,ap

(y,z) := ϕ j,B1(ap)
(y)∧ϕk,B1(ap)

(z)∧
∨

i=1,2
ap[i, j](y)∧ap[i,k](z)

• The second formula asks for (y, j) and (z,k) to be in BA
2 (ap) \BA

1 (ap) and checks either whether

the data values of y and z in [[A]]~a are equal or whether there exist p′ and ℓ such that y belongs to

ap′ [ℓ, j](y) and z belongs to ap′ [ℓ,k](z), it corresponds to Lemma 2.3:

ϕ r=2
j,k,ap

(y,z) :=ϕ j,B2(ap)\B1(ap)
(y)∧ϕk,B2(ap)\B1(ap)

(z)∧
(

y∼ z∨
(
∨n

p′=1

∨2

ℓ=1
ap′ [ℓ, j](y)∧ap′ [ℓ,k](z)

))

B. Bollig, A. Sangnier & O. Stietel 9

• The third formula asks for (y, j) and (z,k) to not belong to BA
2 (ap) and for y = z, it corresponds to

Lemma 2.5:

ϕ r>2
j,k,ap

(y,z) :=

{

¬ϕ
B2(ap)

(y)∧¬ϕ
B2(ap)

(z)∧y = z if j = k

⊥ otherwise

Finally, here is the inductive definition of the translation [[−]] which uses sub transformations [[−]]xp

in order to remember the centre of the ball and leads to the construction of [[ϕq f]](x1, . . . ,xn):

[[ϕ ∨ϕ ′]] = [[ϕ]]∨[[ϕ ′]]
[[xp = x′p]] = xp = x′p

[[¬ϕ]] = ¬[[ϕ]]

[[〈〈ψ〉〉2
xp
]] = [[ψ]]xp

[[y j∼k z]]xp
= ϕ r=1

j,k,ap
(y,z)∨ϕ r=2

j,k,ap
(y,z)∨ϕ r>2

j,k,ap
(y,z)

[[σ(x)]]xp
= σ(x)

[[x = y]]xp
= x = y

[[ϕ ∨ϕ ′]]xp
= [[ϕ]]xp

∨[[ϕ ′]]xp

[[¬ϕ]]xp
= ¬[[ϕ]]xp

[[∃x.ϕ]]xp
= ∃x.[[ϕ]]xp

Lemma 3 We have A |= ϕq f (~a) iff [[A]]~a |= [[ϕq f]](~a).

Proof: Because of the inductive definition of [[ϕ]] and that only the atomic formulas y j∼k z change, we

only have to prove that given b,c ∈ A, we have A|2ap
|= b j∼k c iff [[A]]~a |= [[y j∼k z]]xp

(b,c).

We first suppose that A|2ap
|= b j∼k c. Using Lemma 2, it implies that (b, j) and (c,k) belong to same

set between BA
1 (ap), BA

2 (ap)\BA
1 (ap) and A\BA

2 (ap). We proceed by a case analysis.

• If (b, j),(c,k) ∈ BA
1 (ap) then by lemma 2.1 we have that [[A]]~a |= ϕ r=1

j,k,ap
(b,c) and thus [[A]]~a |=

[[y j∼k z]]xp
(b,c).

• If (b, j),(c,k) ∈ BA
2 (ap) \BA

1 (ap) then by lemma 2.3 we have that [[A]]~a |= ϕ r=2
j,k,ap

(b,c) and thus

[[A]]~a |= [[y j∼k z]]xp
(b,c).

• If (b, j),(c,k) ∈ A\BA
2 (ap) then by lemma 2.5 we have that [[A]]~a |= ϕ r>2

j,k,ap
(b,c) and thus [[A]]~a |=

[[y j∼k z]]xp
(b,c).

We now suppose that [[A]]~a |= [[y j∼k z]]xp
(b,c). It means that [[A]]~a satisfies at least ϕ r=1

j,k,ap
(b,c),

ϕ r=2
j,k,ap

(b,c) or ϕ r>2
j,k,ap

(b,c). If [[A]]~a |= ϕ r=1
j,k,ap

(b,c), it implies that (b, j) and (c,k) are in BA
1 (ap), and we

can then apply lemma 2.1 to deduce that A|2ap
|= b j∼k c. If [[A]]~a |= ϕ r=2

j,k,ap
(b,c), it implies that (b, j)

and (c,k) are in BA
2 (ap) \BA

1 (ap), and we can then apply lemma 2.3 to deduce that A|2ap
|= b j∼k c. If

[[A]]~a |= ϕ r>2
j,k,ap

(b,c), it implies that (b, j) and (c,k) are in A\BA
2 (ap), and we can then apply lemma 2.5

to deduce that A|2ap
|= b j∼k c. �

To provide a reduction from DATASAT(∃-2-Loc-dFO,2) to DATASAT(dFO,1), having the formula

[[ϕq f]](x1, . . . ,xn) is not enough because to use the result of the previous Lemma, we need to ensure that

there exists a model B and a tuple of elements (a1, . . . ,an) such that B |= [[ϕq f]](a1, . . . ,an) and as well

that there exists A ∈ Data[Σ,2] such that B= [[A]]~a. We explain now how we can ensure this last point.

Now, we want to characterize the structures of the form [[A]]~a. Given B=(A,(Pσ)σ∈Σ′ , f)∈Data[Σ′,1]
and ~a ∈ A, we say that (B,~a) is well formed iff there exists a structure A ∈ Data[Σ,2] such that B =

10 On the Existential Fragments of Local First-Order Logics with Data

[[A]]~a. Hence (B,~a) is well formed iff there exist two functions f1, f2 : A → N such that [[A]]~a =
[[(A,(Pσ)σ∈Σ, f1, f2)]]~a. We state three properties on (B,~a), and we will show that they characterize

being well formed.

1. (Transitivity) For all b,c ∈ A, p,q ∈ {1, . . . ,n}, i, j,k, ℓ ∈ {1,2} if b ∈ Pap[i, j], c ∈ Pap[i,ℓ] and b ∈
Paq[k, j] then c ∈ Paq[k,ℓ].

2. (Reflexivity) For all p and i, we have ap ∈ Pap[i,i]

3. (Uniqueness) For all b ∈ A, if b ∈
⋂

j=1,2

⋃i=1,2
p=1,...,n Pap[i, j] or b /∈

⋃

j=1,2

⋃i=1,2
p=1,...,n Pap[i, j] then for any

c ∈ B such that f (c) = f (b) we have c = b.

Each property can be expressed by a first order logic formula, which we respectively name ϕtran, ϕrefl

and ϕuniq and we denote by ϕwf their conjunction:

ϕtran = ∀y∀z.
∧n

p,q=1

∧2
i, j,k,ℓ=1

(

ap[i, j](y)∧ap[i, ℓ](z)∧aq[k, j](y) ⇒ aq[k, ℓ](z)
)

ϕrefl(x1, . . . ,xn) =
∧n

p=1

∧2
i=1 ap[i, i](xp)

ϕuniq = ∀y.
(

∧2
j=1

∨n
p=1

∨2
i=1 ap[i, j](y)∨

∧2
j=1

∧n
p=1

∧2
i=1¬ap[i, j](y)

)

⇒ (∀z.y ∼ z ⇒ y = z)

ϕwf (x1, . . . ,xn) = ϕtran∧ϕrefl(x1, . . . ,xn)∧ϕuniq

The next lemma expresses that the formula ϕwf allows to characterise precisely the 1-data structures

in Data[Σ′,1] which are well-formed.

Lemma 4 Let B ∈ Data[Σ′,1] and a1, . . . ,an elements of B, then (B,~a) is well formed iff B |= ϕwf (~a).

Proof: First, if (B,~a) is well formed, then there there exists A ∈ Data[Σ,2] such that B= [[A]]~a and by

construction we have [[A]]~a |= ϕwf (~a). We now suppose that B = (A,(Pσ)σ∈Σ′ , f) and B |= ϕwf (~a). In

order to define the functions f1, f2 : A → N, we need to introduce some objects.

We first define a function g : {1, . . . ,n}×{1,2} → N\Im(f) (where Im(f) is the image of f in B)

which verifies the following properties:

• for all p ∈ {1, . . . ,n} and i ∈ {1,2}, we have ap ∈ Pap[i,3−i] iff g(p,1) = g(p,2);

• for all p,q ∈ {1, . . . ,n} and i, j ∈ {1,2}, we have aq ∈ Pap[i, j] iff g(p, i) = g(q, j).

We use this function to fix the two data values carried by the elements in {a1, . . . ,am}. We now explain

why this function is well founded, it is due to the fact that B |= ϕtran∧ϕrefl(a1, . . . ,an). In fact, since

B |= ϕrefl(a1, . . . ,an), we have for all p∈ {1, . . . ,n} and i∈ {1,2}, ap ∈Pap[i,i]. Furthermore if ap ∈Pap[i, j]

then ap ∈ Pap[j,i] thanks to the formula ϕtran; indeed since we have ap ∈ Pap[i, j] and ap ∈ Pap[i,i] and

ap ∈ Pap[j, j], we obtain ap ∈ Pap[j,i]. Next, we also have that if aq ∈ Pap[i, j] then ap ∈ Paq[j,i] again thanks

to ϕtran; indeed since we have aq ∈ Pap[i, j] and ap ∈ Pap[i,i] and aq ∈ Paq[j, j], we obtain ap ∈ Paq[j,i].

We also need a natural dout belonging to N\(Im(g)∪ Im(f)). For j ∈ {1,2}, we define f j as follows

for all b ∈ A:

f j(b) =







g(p, i) if for some p, i we have b ∈ Pap[i, j]

f (b) if for all p, i we have b /∈ Pap[i, j] and for some p, i we have b ∈ Pap[i,3− j]

dout if for all p, i, j′, we have b /∈ Pap[i, j′]

Here again, we can show that since B |= ϕtran∧ϕrefl(a1, . . . ,an), the functions f1 and f2 are well

founded. Indeed, assume that b ∈ Pap[i, j]∩Paq[k, j], then we have necessarily that g(p, i) = g(q,k). For this

we need to show that ap ∈ aq[k, i] and we use again the formula ϕtran. This can be obtained because we

have b ∈ Pap[i, j] and ap ∈ Pap[i,i] and b ∈ Paq[k, j].

B. Bollig, A. Sangnier & O. Stietel 11

We then define A as the 2-data-structures (A,(Pσ)σ∈Σ, f1, f2). It remains to prove that B= [[A]]~a.

First, note that for all b ∈ A, p ∈ {1, . . . ,n} and i, j ∈ {1,2}, we have b ∈ Pap[i, j] iff ap i∼
A
j b. Indeed,

we have b∈Pap[i, j], we have that f j(b)= g(p, i) and since ap ∈Pap[i, j] we have as well that fi(ap)= g(p, i),

as a consequence ap i∼
A
j b. In the other direction, if ap i∼

A
j b, it means that f j(b) = fi(ap) = g(p, i) and

thus b ∈ Pap[i, j]. Now to have B= [[A]]~a, one has only to be careful in the choice of function fnew while

building [[A]]~a. We recall that this function is injective and is used to give a value to the elements b ∈ A

such that neither f1(b) ∈ ValA(~a) and f2(b) /∈ ValA(~a) nor f1(b) /∈ ValA(~a) and f2(b) ∈ ValA(~a). For

these elements, we make fnew matches with the function f and the fact that we define an injection is

guaranteed by the formula ϕuniq. �

Using the results of Lemma 3 and 4, we deduce that the formula ϕ = ∃x1 . . .∃xn.ϕq f (x1, . . . ,xn)
of ∃-2-Loc-dFO[Σ,2] is satisfiable iff the formula ψ = ∃x1 . . .∃xn.[[ϕq f]](x1, . . . ,xn)∧ϕwf (x1, . . . ,xn) is

satisfiable. Note that ψ can be built in polynomial time from ϕ and that it belongs to dFO[Σ′,1]. Hence,

thanks to Theorem 3, we obtain that DATASAT(∃-2-Loc-dFO,2) is in N2EXP.

We can as well obtain a matching lower bound thanks to a reduction from DATASAT(dFO,1). For this

matter we rely on two crucial points. First in the formulas of ∃-2-Loc-dFO[Σ,2], there is no restriction on

the use of quantifiers for the formulas located under the scope of the 〈〈·〉〉2
x modality and consequently we

can write inside this modality a formula of dFO[Σ,1] without any modification. Second we can extend

a model dFO[Σ,1] into a 2-data structure such that all elements and their values are located in the same

radius-2-ball by adding everywhere a second data value equal to 0. More formally, let ϕ be a formula in

dFO[Σ,1] and consider the formula ∃x.〈〈ϕ〉〉2
x where we interpret ϕ over 2-data structures (this formula

simply never mentions the values located in the second fields). We have then the following lemma.

Lemma 5 There exists A ∈ Data[Σ,1] such that A |= ϕ if and only if there exists B ∈ Data[Σ,2] such

that B |= ∃x.〈〈ϕ〉〉2
x .

Proof: Assume that there exists A= (A,(Pσ)σ∈Σ, f1) in Data[Σ,1] such that A |= ϕ . Consider the 2-data

structure B = (A,(Pσ)σ∈Σ, f1, f2) such that f2(a) = 0 for all a ∈ A. Let a ∈ A. It is clear that we have

B|2a = B and that B|2a |= ϕ (because A |= ϕ and ϕ never mentions the second values of the elements

since it is a formula in dFO[Σ,1]). Consequently B |= ∃x.〈〈ϕ〉〉2
x .

Assume now that there exists B = (A,(Pσ)σ∈Σ, f1, f2) in Data[Σ,2] such that B |= ∃x.〈〈ϕ〉〉2
x . Hence

there exists a ∈ A such that B|2a |= ϕ , but then by forgetting the second value in B|2a we obtain a model

in Data[Σ,1] which satisfies ϕ . �

Since DATASAT(dFO,1) is N2EXP-hard (see Theorem 3), we obtain the desired lower bound.

Theorem 4 The problem DATASAT(∃-2-Loc-dFO,2) is N2EXP-complete.

3.3 Balls of radius 1 and any number of data values

Let D ≥ 1. We first show that DATASAT(∃-1-Loc-dFO,D) is in NEXP by providing a reduction towards

DATASAT(dFO,0). This reduction uses the characterisation of the radius-1-ball provided by Lemma 1

and is very similar to the reduction provided in the previous section. In fact, for an element b located in

the radius-1-ball of another element a, we use extra unary predicates to explicit which are the values of

b that are common with the values of a. We provide here the main step of this reduction whose proof

follows the same line as the one of Theorem 4.

We consider a formula ϕ = ∃x1 . . .∃xn.ϕq f (x1, . . . ,xn) of ∃-1-Loc-dFO[Σ,D] in prenex normal form,

i.e., such that ϕq f (x1, . . . ,xn) ∈ qf-1-Loc-dFO[Σ,D]. We know that there is a structure A = (A,(Pσ)σ∈Σ,

12 On the Existential Fragments of Local First-Order Logics with Data

f1, f2, . . . , fD) in Data[Σ,D] such that A |= ϕ if and only if there are a1, . . . ,an ∈ A such that A |=
ϕq f (a1, . . . ,an). Let then A = (A,(Pσ)σ∈Σ, f1, f2, . . . , fD) in Data[Σ,D] and a tuple ~a = (a1, . . . ,an) of

elements in An. Let Ωn = {ap[i, j] | p ∈ {1, . . . ,n}, i, j ∈ {1, . . . ,D}} be a set of new unary predicates and

Σ′ = Σ∪Ωn. For every element b ∈ A, the predicates in Ωn are used to keep track of the relation between

the data values of b and the one of a1, . . . ,an in A. Formally, we have Pap[i, j] = {b ∈A |A |= ap i∼ j b}. Fi-

nally, we build the 0-data-structure [[A]]′~a = (A,(Pσ)σ∈Σ′). Similarly to Lemma 2, we have the following

connection between A and [[A]]′~a.

Lemma 6 Let b,c ∈ A and j,k ∈ {1, . . . ,D} and p ∈ {1, . . . ,n}. The following statements hold:

1. If (b, j) ∈ BA
1 (ap) and (c,k) ∈ BA

1 (ap) then A|1ap
|= b j∼k c iff there is i ∈ {1,2} s.t. b ∈ Pap[i, j] and

c ∈ Pap[i,k].

2. If (b, j) /∈ BA
1 (ap) and (c,k) ∈ BA

1 (ap) then A|1ap
2 b j∼k c

3. If (b, j) /∈ BA
1 (ap) and (c,k) /∈ BA

1 (ap) then A|1ap
|= b j∼k c iff b = c and j = k.

We shall now see how we translate the formula ϕq f (x1, . . . ,xn) into a formula [[ϕq f]]
′(x1, . . . ,xn) in

dFO[Σ′,0] such that A satisfies ϕq f (a1, . . . ,an) if, and only if, [[A]]′~a satisfies [[ϕq f]](a1, . . . ,an). As in the

previous section, we introduce the following formula in dFO[Σ′,0] with p∈ {1, . . . ,n} and j ∈ {1, . . . ,D}
to test if the j-th field of an element belongs to BA

1 (ap):

ϕ j,B1(ap)
(y) :=

∨

i∈{1,...,D}

ap[i, j](y)

We now present how we translate atomic formulas of the form y j∼k z under some 〈〈−〉〉1
xp

. For this

matter, we rely on two formulas of dFO[Σ′,0] which can be described as follows:

• The first formula asks for (y, j) and (z,k) to be in B1
1(ap) (here we abuse notations, using variables

for the elements they represent) and for these two data values to coincide with one data value of

ap, it corresponds to Lemma 6.1:

ψr=1
j,k,ap

(y,z) := ϕ j,B1(ap)
(y)∧ϕk,B1(ap)

(z)∧
∨D

i=1
ap[i, j](y)∧ap[i,k](z)

• The second formula asks for (y, j) and (z,k) to not belong to BA
1 (ap) and for y = z, it corresponds

to Lemma 6.3:

ψr>1
j,k,ap

(y,z) :=

{

∧D
i=1(¬ϕ

i,B1(ap)
(y)∧¬ϕ

i,B1(ap)
(z))∧y = z if j = k

⊥ otherwise

Finally, as before we provide an inductive definition of the translation [[−]]′ which uses subtransfor-

mations [[−]]′xp
in order to remember the centre of the ball and leads to the construction of [[ϕq f]]

′(x1, . . . ,xn).
We only detail the case

[[y j∼k z]]′xp
= ψr=1

j,k,ap
(y,z)∨ψr>1

j,k,ap
(y,z)

as the other cases are identical as for the translation [[−]] shown in the previous section. This leads to the

following lemma (which is the pendant of Lemma 3).

Lemma 7 We have A |= ϕq f (~a) iff [[A]]′~a |= [[ϕq f]]
′(~a).

B. Bollig, A. Sangnier & O. Stietel 13

As we had to characterise the well-formed 1-data structure, a similar trick is necessary here. For this

matter, we use the following formulas:

ψtran = ∀y∀z.
∧n

p,q=1

∧D
i, j,k,ℓ=1

(

ap[i, j](y)∧ap[i, ℓ](z)∧aq[k, j](y) ⇒ aq[k, ℓ](z)
)

ψrefl(x1, . . . ,xn) =
∧n

p=1

∧D
i=1 ap[i, i](xp)

ψwf (x1, . . . ,xn) = ψtran ∧ψrefl(x1, . . . ,xn)

Finally with the same reasoning as the one given in the previous section, we can show that the

formula ϕ = ∃x1 . . .∃xn.ϕq f (x1, . . . ,xn) of ∃-1-Loc-dFO[Σ,D] is satisfiable iff the formula ∃x1 . . .∃xn.
[[ϕq f]]

′(x1, . . . ,xn)∧ ψwf (x1, . . . ,xn) is satisfiable. Note that this latter formula can be built in poly-

nomial time from ϕ and that it belongs to dFO[Σ′,0]. Hence, thanks to Theorem 2, we obtain that

DATASAT(∃-1-Loc-dFO,D) is in NEXP. The matching lower bound is as well obtained the same way

by reducing DATASAT(dFO,0) to DATASAT(∃-1-Loc-dFO,D) showing that a formula ϕ in dFO[Σ,0] is

satisfiable iff the formula ∃x.〈〈ϕ〉〉1
x in ∃-D-Loc-dFO[Σ,1] is satisfiable.

Theorem 5 For all D ≥ 1, the problem DATASAT(∃-1-Loc-dFO,D) is NEXP-complete.

4 Undecidability results

We show here DATASAT(∃-3-Loc-dFO,2) and DATASAT(∃-2-Loc-dFO,3) are undecidable. To obtain

this we provide reductions from DATASAT(dFO,2) and we use the fact that any 2-data structure can be

interpreted as a radius-3-ball of a 2-data structure or respectively as a radius-2-ball of a 3-data structure.

4.1 Radius 3 and two data values

In order to reduce DATASAT(dFO,2) to DATASAT(∃-3-Loc-dFO,2), we show that we can transform

slightly any 2-data structure A into an other 2-data structure Age such that Age corresponds to the radius-

3-ball of any element of Age and this transformation has some kind of inverse. Furthermore, given a

formula ϕ ∈ dFO[Σ,2], we transform it into a formula T (ϕ) in ∃-3-Loc-dFO[Σ′,2] such that A satisfies

ϕ iff Age satisfies T (ϕ) . What follows is the formalisation of this reasoning.

Let A = (A,(Pσ)σ , f1, f2) be a 2-data structure in Data[Σ,2] and ge be a fresh unary predicate not in

Σ. From A we build the following 2-data structure Age = (A′,(P′
σ)σ , f ′1, f ′2)∈ Data[Σ∪{ge},2] such that:

• A′ = A⊎ValA(A)×ValA(A),

• for i ∈ {1,2} and a ∈ A, f ′i (a) = fi(a) and for (d1,d2) ∈ ValA(A)×ValA(A), fi((d1,d2)) = di,

• for σ ∈ Σ, P′
σ = Pσ ,

• Pge = ValA(A)×ValA(A).

Hence to build Age from A we have added to the elements of A all pairs of data presented in A and

in order to recognise these new elements in the structure we use the new unary predicate ge. We add

these extra elements to ensure that all the elements of the structure are located in the radius-3-ball of any

element of Age. We have then the following property.

Lemma 8 Age|
3
a =Age for all a ∈ A′.

14 On the Existential Fragments of Local First-Order Logics with Data

Proof: Let b ∈ A′ and i, j ∈ {1,2}. We show that dAge((a, i),(b, j)) ≤ 3. i.e. that there is a path of length

at most 3 from (a, i) to (b, j) in the data graph G (Age). By construction of Age, there is an element c ∈ A′

such that f1(c) = fi(a) and f2(c) = f j(b). So we have the path (a, i),(c,1),(c,2),(b, j) of length at most

3 from (a, i) to (b, j) in G (Age). �

Conversely, to A = (A,(Pσ)σ , f1, f2) ∈ Data[Σ∪{ge},2], we associate A\ge = (A′,(P′
σ)σ , f ′1, f ′2) ∈

Data[Σ,2] where:

• A′ = A\Pge,

• for i ∈ {1,2} and a ∈ A′, f ′i (a) = fi(a),

• for σ ∈ Σ, P′
σ = P′

σ \Pge.

Finally we inductively translate any formula ϕ ∈ dFO[Σ,2] into T (ϕ) ∈ dFO[Σ∪{ge},2] by making

it quantify over elements not labeled with ge: T (σ(x)) = σ(x), T (x i∼ j y) = x i∼ j y, T (x = y) = (x = y),
T (∃x.ϕ) = ∃x.¬ge(x)∧T (ϕ), T (ϕ ∨ϕ ′) = T (ϕ)∨T(ϕ ′) and T (¬ϕ) = ¬T(ϕ).

Lemma 9 Let ϕ be a sentence in dFO[Σ,2], A∈Data[Σ,2] and B∈Data[Σ∪{ge},2]. The two following

properties hold:

• A |= ϕ iff Age |= T (ϕ)

• B\ge |= ϕ iff B |= T (ϕ).

Proof: As for any A∈ Data[Σ,2] we have (Age)\ge =A, it is sufficient to prove the second point. We rea-

son by induction on ϕ . Let A= (A,(Pσ)σ , f1, f2) ∈ Data[Σ∪{ge},2] and let A\ge = (A′,(P′
σ)σ , f ′1, f ′2) ∈

Data[Σ,2]. The inductive hypothesis is that for any formula ϕ ∈ dFO[Σ,2] (closed or not) and any context

interpretation function I : V → A′ we have A\ge |=I ϕ iff A |=I T (ϕ). Note that the inductive hypothesis

is well founded in the sense that the interpretation I always maps variables to elements of the structures.

We prove two cases: when ϕ is a unary predicate and when ϕ starts by an existential quantification,

the other cases being similar. First, assume that ϕ = σ(x) where σ ∈ Σ. A\ge |=I σ(x) holds iff I(x) ∈P′
σ .

As I(x) ∈ A \ Pge, we have I(x) ∈ P′
σ iff I(x) ∈ Pσ , which is equivalent to A |=I T (σ(x)) . Second

assume ϕ = ∃x.ϕ ′. Suppose that A\ge |=I ∃x.ϕ ′. Thus, there is a a ∈ A′ such that A\ge |=I[x/a] ϕ ′.

By inductive hypothesis, we have A |=I[x/a] T (ϕ ′). As a ∈ A′ = A \Pge, we have A |=I[x/a] ¬ge(x), so

A |=I ∃x.¬ge(x)∧T (ϕ ′) as desired. Conversely, suppose that A |=I T (∃x.ϕ ′). It means that there is a

a ∈ A such that A |=I[x/a] ¬ge(x)∧T (ϕ ′). So we have that a ∈ A′ = A \Pge, which means that I[x/a]
takes values in A and we can apply the inductive hypothesis to get that A\ge |=I[x/a] ϕ ′. So we have

A\ge |=I ∃x.ϕ ′. �

From Theorem 1, we know that DATASAT(dFO,2) is undecidable. From a closed formula ϕ ∈
dFO[Σ,2], we build the formula ∃x.〈〈T (ϕ)〉〉3

x ∈ ∃-3-Loc-dFO[Σ∪{ge},2]. Now if ϕ is satisfiable, it

means that there exists A ∈ Data[Σ,2] such that A |= ϕ . By Lemma 9, Age |= T (ϕ). Let a be an

element of A, then thanks to Lemma 8, we have Age|
3
a |= T (ϕ). Finally by definition of our logic,

Age |= ∃x.〈〈T (ϕ)〉〉3
x . So ∃x.〈〈T (ϕ〉〉3

x is satisfiable. Now assume that ∃x.〈〈T (ϕ)〉〉3
x is satisfiable. So

there exist A ∈ Data[Σ∪{ge},2] and an element a of A such that A|3a |= T (ϕ). Using Lemma 9, we

obtain (A|3a)\ge |= ϕ . Hence ϕ is satisfiable. This shows that we can reduce DATASAT(dFO,2) to

DATASAT(∃-3-Loc-dFO,2) .

Theorem 6 The problem DATASAT(∃-3-Loc-dFO,2) is undecidable.

B. Bollig, A. Sangnier & O. Stietel 15

4.2 Radius 2 and three data values

We provide here a reduction from DATASAT(dFO,2) to DATASAT(∃-2-Loc-dFO,3). The idea is similar

to the one used in the proof of Lemma 5 to show that DATASAT(∃-2-Loc-dFO,2) is N2EXP-hard by

reducing DATASAT(dFO,1). Indeed we have the following Lemma.

Lemma 10 Let ϕ be a formula in dFO[Σ,2]. There exists A ∈ Data[Σ,2] such that A |= ϕ if and only if

there exists B ∈ Data[Σ,3] such that B |= ∃x.〈〈ϕ〉〉2
x .

Proof: Assume that there exists A = (A,(Pσ)σ∈Σ, f1, f2) in Data[Σ,2] such that A |= ϕ .Consider the 3-

data structure B= (A,(Pσ)σ∈Σ, f1, f2, f3) such that f3(a) = 0 for all a ∈ A. Let a ∈ A. It is clear that we

have B|2a =B and that B|2a |= ϕ (because A |= ϕ and ϕ never mentions the third values of the elements

since it is a formula in dFO[Σ,1]). Consequently B |= ∃x.〈〈ϕ〉〉2
x .

Assume now that there exists B = (A,(Pσ)σ∈Σ, f1, f2, f3) in Data[Σ,3] such that B |= ∃x.〈〈ϕ〉〉2
x .

Hence there exists a ∈ A such that B|2a |= ϕ , but then by forgetting the third value in B|2a we obtain

a model in Data[Σ,3] which satisfies ϕ . �

Using Theorem 1, we obtain the following result.

Theorem 7 The problem DATASAT(∃-2-Loc-dFO,3) is undecidable.

References

[1] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick & L. Segoufin (2011): Two-variable logic on data

words. ACM Trans. Comput. Log. 12(4), pp. 27:1–27:26, doi:10.1145/1970398.1970403.

[2] M. Bojanczyk, A. Muscholl, T. Schwentick & L. Segoufin (2009): Two-variable logic on data trees and XML

reasoning. J. ACM 56(3), doi:10.1145/1516512.1516515.

[3] Benedikt Bollig, Arnaud Sangnier & Olivier Stietel (2021): Local First-Order Logic with Two Data Values.

In: FSTTCS’21, LIPIcs 213, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 39:1–39:15, doi:10.

4230/LIPIcs.FSTTCS.2021.39.

[4] Egon Börger, Erich Grädel & Yuri Gurevich (1997): The Classical Decision Problem. Perspectives in Math-

ematical Logic, Springer, doi:10.1023/A:1008334715902.

[5] N. Decker, P. Habermehl, M. Leucker & D. Thoma (2014): Ordered Navigation on Multi-attributed Data

Words. In Paolo Baldan & Daniele Gorla, editors: CONCUR’14, Lecture Notes in Computer Science 8704,

Springer, pp. 497–511, doi:10.1007/978-3-662-44584-6_34.

[6] Kousha Etessami, Moshe Y. Vardi & Thomas Wilke (2002): First-Order Logic with Two Variables and Unary

Temporal Logic. Inf. Comput. 179(2), pp. 279–295, doi:10.1006/inco.2001.2953.

[7] Melvin Fitting (2012): Torben Braüner, Hybrid Logic and its Proof-Theory, Applied Logic Series Volume

37, Springer, 2011, pp. XIII+231. ISBN: 978-94-007-0001-7. Stud Logica 100(5), pp. 1051–1053, doi:10.

1007/s11225-012-9439-2.

[8] H. Gaifman (1982): On local and nonlocal properties. In J. Stern, editor: Logic Colloquium ’81, North-

Holland, pp. 105–135, doi:10.1016/S0049-237X(08)71879-2.

[9] W. Hanf (1965): Model-theoretic methods in the study of elementary logic. In J.W. Addison, L. Henkin &

A. Tarski, editors: The Theory of Models, North Holland, pp. 132–145, doi:10.2307/2271017.

[10] A. Janiczak (1953): Undecidability of some simple formalized theories. Fundamenta Mathematicae 40, pp.

131–139, doi:10.2307/2964197.

[11] A. Kara, T. Schwentick & T. Zeume (2010): Temporal Logics on Words with Multiple Data Values. In

Kamal Lodaya & Meena Mahajan, editors: FSTTCS’10, LIPIcs 8, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, pp. 481–492, doi:10.4230/LIPIcs.FSTTCS.2010.481.

https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.39
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.39
https://doi.org/10.1023/A:1008334715902
https://doi.org/10.1007/978-3-662-44584-6_34
https://doi.org/10.1006/inco.2001.2953
https://doi.org/10.1007/s11225-012-9439-2
https://doi.org/10.1007/s11225-012-9439-2
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.2307/2271017
https://doi.org/10.2307/2964197
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.481

16 On the Existential Fragments of Local First-Order Logics with Data

[12] E. Kieronski (2005): Results on the Guarded Fragment with Equivalence or Transitive Relations. In C.-

H. Luke Ong, editor: CSL’05, Lecture Notes in Computer Science 3634, Springer, pp. 309–324, doi:10.

1007/11538363_22.

[13] E. Kieronski & L. Tendera (2009): On Finite Satisfiability of Two-Variable First-Order Logic with Equiva-

lence Relations. In: LICS’09, IEEE, pp. 123–132, doi:10.1109/LICS.2009.39.

[14] L. Libkin (2004): Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS

Series, Springer, doi:10.1007/978-3-662-07003-1.

[15] A. Manuel & T. Zeume (2013): Two-Variable Logic on 2-Dimensional Structures. In Simona Ronchi Della

Rocca, editor: CSL’13, LIPIcs 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 484–499, doi:10.

4230/LIPIcs.CSL.2013.484.

[16] Martin Mundhenk & Thomas Schneider (2009): The Complexity of Hybrid Logics over Equivalence Rela-

tions. J. Log. Lang. Inf. 18(4), pp. 493–514, doi:10.1007/s10849-009-9089-6.

[17] T. Tan (2014): Extending two-variable logic on data trees with order on data values and its automata. ACM

Trans. Comput. Log. 15(1), pp. 8:1–8:39, doi:10.1145/2559945.

https://doi.org/10.1007/11538363_22
https://doi.org/10.1007/11538363_22
https://doi.org/10.1109/LICS.2009.39
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.4230/LIPIcs.CSL.2013.484
https://doi.org/10.4230/LIPIcs.CSL.2013.484
https://doi.org/10.1007/s10849-009-9089-6
https://doi.org/10.1145/2559945

	1 Introduction
	2 Structures and first-order logic
	2.1 Data Structures
	2.2 First-Order Logic
	2.3 Local First-Order Logic and its existential fragment

	3 Decidability results
	3.1 Preliminary results: 0 and 1 data values
	3.2 Two data values and balls of radius 2
	3.3 Balls of radius 1 and any number of data values

	4 Undecidability results
	4.1 Radius 3 and two data values
	4.2 Radius 2 and three data values

