
D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 147–161, doi:10.4204/EPTCS.370.10

© Chichester, et al.
This work is licensed under the
Creative Commons Attribution License.

CryptoSolve: Towards a Tool for the Symbolic Analysis of
Cryptographic Algorithms

Dalton Chichester
University of Mary Washington, Fredericksburg, VA, USA

dchiches@mail.umw.edu

Wei Du
University at Albany–SUNY, Albany, NY, USA[0000−0002−9149−6229]

wdu2@albany.edu

Raymond Kauffman
University of Mary Washington, Fredericksburg, VA, USA

rkauffma@mail.umw.edu

Hai Lin
Clarkson University, Potsdam, NY, USA[0000−0001−8658−9634]

hlin@clarkson.edu

Christopher Lynch
Clarkson University, Potsdam, NY, USA[0000−0003−1141−0665]

clynch@clarkson.edu

Andrew M. Marshall
University of Mary Washington, Fredericksburg, VA, USA[0000−0002−0522−8384]

amarsha2@umw.edu

Catherine A. Meadows
Naval Research Laboratory, Washington, DC, USA

catherine.meadows@nrl.navy.mil

Paliath Narendran
University at Albany–SUNY, Albany, NY, USA[0000−0003−4521−5892]

pnarendran@albany.edu

Veena Ravishankar
University of Mary Washington, Fredericksburg, VA, USA[0000−0003−3498−4039]

vravisha@umw.edu

Luis Rovira
University of Mary Washington, Fredericksburg, VA, USA

lrovira@umw.edu

Brandon Rozek
Rensselaer Polytechnic Institute, Troy NY, USA[0000−0002−4537−559X ]

rozekb@rpi.edu

http://dx.doi.org/10.4204/EPTCS.370.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


148 CryptoSolve

Recently, interest has been emerging in the application of symbolic techniques to the specification
and analysis of cryptosystems. These techniques, when accompanied by suitable proofs of sound-
ness/completeness, can be used both to identify insecure cryptosystems and prove sound ones secure.
But although a number of such symbolic algorithms have been developed and implemented, they re-
main scattered throughout the literature. In this paper, we present a tool, CryptoSolve, which provides
a common basis for specification and implementation of these algorithms, CryptoSolve includes li-
braries that provide the term algebras used to express symbolic cryptographic systems, as well as
implementations of useful algorithms, such as unification and variant generation. In its current initial
iteration, it features several algorithms for the generation and analysis of cryptographic modes of
operation, which allow one to use block ciphers to encrypt messages more than one block long. The
goal of our work is to continue expanding the tool in order to consider additional cryptosystems and
security questions, as well as extend the symbolic libraries to increase their applicability.

1 Introduction

Although security properties of cryptographic algorithms are generally proved using a computational
model in which probabilities of events are explicitly quantified, there are often advantages to using a
more easily automated abstract symbolic model. This is particularly the case when one is looking for
cryptosystems that obey some non-cryptographic constraints, e.g. parallelizability, or even non-technical
constraints, such as absence of intellectual property restrictions. One can use automated both methods
to generate a large number of candidate cryptosystems, and to verify the security in the symbolic model.
If the symbolic model is computationally sound (that is if the symbolic analogue of a particular security
property holds) it is possible to use this technique to identify secure cryptosystems. Even the symbolic
model is not computationally sound, but is computationally complete, it is possible to use the technique
to weed out insecure constructions. A growing body of work, e.g. [3, 5, 7, 14]], shows how this can be
applied to the construction of new cryptosystems. Symbolic methods can also be useful by themselves,
even without automatic generation. For example, in [21] Venema and Alpár use symbolic methods to
find security flaws in recently proposed attribute-based encryption schemes, in [8] Hollengberg, Rosulek,
and Roy and in [16] Meadows respectively find different symbolic criteria guaranteeing the security of
blockcipher cryptographic modes of operation under different usage assunmptions, and in [15] McQuoid,
Swope, and Rosulek develop a polynomial-time algorithm for checking security properties of a class of
hash functions.

However, the symbolic problems we encounter often come with constraints tied to the properties
of the cryptosystem, such as, requiring that any substitutions be constructible from terms and function
symbols available to an adversary, or that the adversary may not be able to perform certain operations,
such encryption with a key that is not available to it. Hence specialized algorithms or tools may be
necessary.

In this paper we present an overview of an initial version of such a tool, CryptoSolve,1 that has been
designed to generate and analyze specifications of cryptosystems. This in turn allows for the automatic
generation and symbolic analysis of certain cryptographic algorithms. The goal of this new tool is broad,
to develop not only a usable analysis tool for an extensive family of cryptographic algorithms but to also
develop the underlying libraries which could be used in analysis of additional algorithms, properties, and
within other symbolic analysis tools.

Our initial version of CryptoSolve provides algorithms for reasoning about the security and function-
ality of a class of cryptosystems known as cryptographic modes of operation. These modes use fixed

1The current version of the tool can be found here: https://symcollab.github.io/CryptoSolve/.

https://symcollab.github.io/CryptoSolve/
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Figure 1: Tool modules and dependencies

length block ciphers to encrypt messages more than one block long. The key property of a mode is to
protect the secrecy of the encrypted data, but it may also be used to provide integrity and authentica-
tion. In addition, the mode must be invertible by anyone who possesses the decryption key. CryptoSolve
supports both the automated and manual generation of modes. It also features algorithms for checking
secrecy (in the sense of indistinguishability of ciphertext from random), authenticity, and invertibility.

In the sections that follow we explain each of the above properties and detail how the tool works
for every case. The algorithms implemented in CryptoSolve are supported by a set of base libraries for
critical symbolic capabilities such as term representation, term rewriting, unification, and more. Cur-
rently the modules available in the tool and a simplified representation of their relation to each other is
described in Figure 1.

Outline In the remainder of the paper we cover the current state and capabilities of the tool without
focusing on the theory behind it, which can be found in [10–12, 16]. Where necessary, we provide a
brief theoretical background and indicate aspects on which the tool is based. The rest of the paper is
organized as follows. We provide a discussion of related work in Section 2. A brief review of necessary
background material is covered in Section 3. An overview of the security modules, their use, capabilities,
and pointers to the theory behind these methods are given in sections 4 and 5. The invertibility checking
module is covered in Section 6, the bounded authentication checking module is covered in Section 7.
We provide preliminary experimental results in Section 8. Finally, the conclusions and future work are
discussed in Section 9.

2 Related Work

Publicly available tools for the generation and testing of security property of cryptographic algorithms
(e.g. [3,5,7,14]) are the most closely related work to ours. Perhaps the first of these is the work by Barthe
et al. [3]. This paper describes a tool, ZooCrypt, designed for the analysis of chosen plaintext and chosen
ciphertext security public-key encryption schemes built from trapdoor permutations and hash functions.
A ZooCrypt analysis of a cryptosystem consists of two stages. In the first stage a symbolic analysis tool
is used to search for attacks on the cryptosystem. If none are found, the analysis enters the second stage,
in which an automated theorem prover is used to search for a security proof in the computational model.
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Later work looked at applying symbolic techniques and incorporates computational soundness re-
sults to prove computational security. For example, Malozemoff et al. [14] provide a symbolic algorithm
whose successful termination implies adaptive chosen plaintext security of cryptographic modes of op-
eration using the message-wise schedule. These results are extended by Hoang et al. in [7] to symbolic
techniques for proving adaptive chosen ciphertext security of modes. Both papers also include software
that implements symbolic algorithms for generating cryptosystems and proving their security. Other
work by Carmer et al. [5] gives a symbolic algorithm for deciding security of garbled circuit schemes,
and includes a tool, Linisynth, that generates such schemes and verifies their security using the algorithm.

All these tools have one thing in common: they only implement the algorithms described in the
paper they accompany, and thus are intended mainly as proofs of concept, not as general tools for the
generation and analysis of algorithms. The goal of CryptoSolve, however, is to serve as a tool for
designing and experimenting with multiple types of cryptosystems, security properties, and algorithms.
Thus, for example, it includes libraries for techniques that may prove useful in application to more
than one cryptosystem, such as unification, variant generation, and the automatic generation of recursive
functions. It is also extensible, allowing more libraries and algorithms to be added as necessary, and
it includes an optional graphical user interface to make interactions with it easier. Currently, it can be
applied to three different properties (static equivalence to random, invertibility, and authenticity, using
five different algorithms) of cryptographic modes of operation.

There is also a large amount of related research in formulating and proving indistinguishability prop-
erties for the symbolic analysis of cryptographic protocols. These properties are analogous to the com-
putational indistinguishability properties used in cryptography. The main differences are that symbolic
indistinguishability does not always imply computational security (see, for example Unruh [20]), and 2)
the symbolic algorithms are optimized for protocols, not crypto-algorithms, so applying them directly is
not always advisable. Even so, the approaches used in symbolic protocol analysis can be helpful. For
example an undecidability result in Lin et al. [12] is based on an undecidability result for cryptographic
protocols analysis due to Küsters and Truderung [9]. To facilitate this interaction between symbolic
protocol analysis and symbolic cryptography, we use a formal model and specification language, due to
Baudet et al. [4], that is based on the the concept of frames used by the applied pi calculus [1], one of the
most popular formal languages used by tools for the formal analysis of cryptographic protocols.

3 Preliminaries

We first need to briefly review some background material both on MOOs and symbolic security, and also
on the underlying term rewriting theory used in the tool. We begin with with term rewriting and related
concepts. Please note, additional background material on equational theories, rewriting, and unification
can be found here [2].

3.1 Terms, Substitutions, and Equational Theories

Given a first-order signature Σ, a countable set N of variables bound by the symbol ν , and a countable set
of variables X (s.t. X ∩N = /0), the set of terms constructed from X , N, and Σ, is denoted by T (Σ,N∪X).
Note that since N is a set of bound variables we can often treat these as constants in the first-order
theory and thus won’t apply substitutions to these bound variables. A substitution σ is an endomorphism
of T (Σ,N ∪ X) with only finitely many variables not mapped to themselves, denoted by σ = {x1 7→
t1, . . . ,xm 7→ tm}. Application of a substitution σ to a term t is written tσ .
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Figure 2: An example block cipher to be modeled by a symbolic history

Given a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the equational theory =E is
the congruence closure of E under the law of substitutivity. Since Σ∩N = /0, the Σ-equalities in E do
not contain any bound variables in N. An E-unification problem with bound variables in N is a set of
Σ∪N-equations P = {s1 =? t1, . . . ,sm =? tm}. A solution to P, called an E-unifier, is a substitution σ

such that siσ =E tiσ for all 1≤ i≤ m.
The primary equational theory implemented in the tool is the theory of xor, denoted as Exor. This

theory can be represented as a combination of a rewrite system, R⊕, and an associative and commutative
(AC) equational theory, E⊕. Exor = R⊕∪E⊕: R⊕ = {x⊕ x→ 0, x⊕0→ x}, E⊕ = AC(⊕), over the sig-
nature Σ⊕ = {⊕/2, f/1,0/0}. We will often denote this as the MOO⊕ algebra and modes of operations
defined in this algebra as MOOs⊕.

3.2 Modes of Operation and Symbolic Security

Before detailing the features of the tool we need to consider a few critical background notions such as
Modes of Operation, Symbolic Security, and Authenticity. We do that in this section.

3.2.1 Modes and Their Security

A cryptographic mode of operation can be described at a high level as follows. The plaintext message M
is first broken into fixed sized blocks. Each block mi is processed using the block encryption function Ek
along with some additional operations to produce a ciphertext block Ci. Typically, the previous ciphertext
is used in the computation of the current block, and an initialization vector IV is used to add randomness
to the first block. The final ciphertext is the sequence of ciphertexts thus produced. Figure 2 illustrates
this process for Cipher Block Chaining (CBC) mode.

In order to model these modes so that they can be checked via symbolic methods, we use symbolic
histories (defined in [16]). These describe interactions between the adversary and the oracle, in which
the adversary sends blocks of plaintext to be encrypted, and the oracle sends back blocks of ciphertext
according to some fixed schedule defined by the mode. E.g., in a block-wise schedule a ciphertext block
is sent immediately after it is generated by the mode. In a message-wise schedule, the ciphertext blocks
are not sent until after the entire message is encrypted.

The symbolic definition of security we use is based on the computational security property IND$-
CPA introduced by Rogaway in [18]. This is defined in terms of a game in which a challenger first
chooses one of two oracles with probability 1/2. The first is an encryption oracle that returns ciphertext
when given plaintext, and the second is a random bits oracle that returns a string of random bits that
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is as long as the ciphertext would have been. The adversary interacts with the oracle by sending it
plaintexts and receiving the oracle’s response. At any time it can stop the game and guess which oracle it
is interacting with. Its advantage is defined to be | .5− p |, where p is the probability that the adversary
guesses correctly. A mode is IND$-CPA-secure if its advantage is negligible in some security parameter
η , where a function g is said to be negligible if for every polynomial q there is an integer ηq such that
g(η) < f rac1q(η) for all η > ηq. In the case of modes of operation, the security parameter is the
maximum of the block size and the key size. The motivation for a definition of this sort is that if the
adversary cannot distinguish the output of the cryptosystem from random noise, then it learns nothing
about the plaintext. This form of security, in which the security of a cryptosystem is quantified in terms
of the adversary’s inability to distinguish between the output of an encryption oracle and the output of
an oracle that does not use the content of the plaintext in its calculations, is common in cryptography.

We note that if the adversary can create plaintexts that consistently cause a set of ciphertexts to
exclusive-or to zero, then it can distinguish between the real and random case with overwhelming prob-
ability. If such an equality holds for the case in which the substitution is the identity, we say that the
mode is degenerate. In all other cases it is necessary but not sufficient that the adversary must be able
to consistently cause at least one given pair of f -rooted terms to be equal, known as a collision. We
describe the symbolic model below, and then describe the unification problem that is associated with it.

3.2.2 The Symbolic Model and Symbolic Security

The blocks sent between the adversary and the oracle are modeled by terms in the MOO⊕ algebra.
These MOO⊕-terms consist of free variables representing plaintext blocks, bound variables representing
a bitsting, and terms built up using these variables and the signature Σ = {⊕/2,0/0, f/1}, under the Xor
equational theory, where f is the encryption function for some fixed key K, i.e., enc(K, ) = f ( ). Note
that f is not computable by the adversary.

A symbolic history of the adversary’s interaction with the oracle is modeled by a list of MOO⊕-terms
of the form [t1, t2, . . . , tn]. All MOO⊕-terms are listed in the order that they are sent. For example,
the following symbolic history models the Cipher Block Chaining (CBC) mode of operation with three
ciphertexts using the block-wise schedule: νIV [IV,x1, f (IV ⊕ x1),x2, f (x2⊕ f (IV ⊕ x1))]. Here IV is
a bound variable representing an initialization vector. Each xi models a plaintext block sent by the
adversary and each f -rooted term is a ciphertext returned by the oracle according to the definition of the
mode. For example, in CBC the ith ciphertext Ci is modeled by f (Ci−1⊕ xi), where xi is the ith plaintext.

Each symbolic history models the interleaving of one or more sessions between the adversary and
oracle, where a session is a history that encrypts a single message consisting of a sequence of plaintext
blocks. In this case the initial nonces, the IV s, will be fresh for each session.

The notions of computable substitutions and symbolic security are defined by Lin et al. in [12]. Let
P be a symbolic history. A substitution σ is computable w.r.t. P if σ maps each variable xi to a term built
up using the operators 0 and ⊕ only on terms returned by the oracle prior to receiving xi in P. A mode of
operation M is symbolically secure if there is no symbolic history P of M such that there is a non-empty
set of terms S returned by the encryptor in P where

⊕
t∈S tσ =⊕ 0, and σ is computable substitution w.r.t.

P. It is shown in [12] that a mode of operation M is symbolically secure if and only if M is statically
equivalent to random; static equivalence [1] is a symbolic definition of indistinguishability commonly
used in symbolic protocol analysis.

We note that if a mode satisfies IND$-CPA, then it must be symbolically secure, because if the
adversary could make a substitution to the plaintext such that it always satisfies the same equation by the
ciphertext, then it could easily distinguish the ciphertext from random with overwhelming probability. A
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(a) Image before ECB encryption (b) Image after ECB encryption

Figure 3: ECB encryption with AES 128 ECB

stronger condition has been shown by Meadows in [16] to imply IND$-CPA security. It has two parts.
The first is non-degeneracy, which requires that symbolic security hold for the trivial case in which the
computable substitution σ is the identity. The second is the condition that no two different f -rooted
terms have a computable unifier, whether or not it leads to a violation of symbolic security. This does
not necessarily mean that symbolically secure modes that fail to satisfy the second condition are not
IND$-CPA secure, simply that more work may be required to prove them so.

3.2.3 Checking Symbolic Security: Examples

Let’s consider several examples of symbolic histories and checking for symbolic security. We start with
the classic example of an insecure mode: the Electronic Code Book (ECB) mode. In ECB, each block is
encrypted separately, so plaintext x1, . . . ,xn yields ciphertext f (x1), . . . , f (xn). Notice that after applying
ECB, the image in Figure 3 is still not completely scrambled and some information from the original
picture can still be deduced. This is because whenever two plaintext blocks are identical they produce
the same ciphertext blocks. Thus, any substitution unifying any two free variables is computable and
leads to a violation of symbolic security.

Other MOOs may be symbolically secure or insecure depending on the schedule. For example,
consider a symbolic history of CBC with three ciphertext blocks: P2 = νIV [IV,x1, f (x1⊕ IV ),x2, f (x2⊕
f (x1 ⊕ IV ))]. We consider two schedules: the block-wise schedule, where each ciphertext block is
returned to the adversary as soon as it can be computed, and the message-wise schedule, where they are
returned all together at the end. Note that in the block-wise schedule there is a computable unifier of
f (x1⊕ IV ) and f (x2⊕ f (x1⊕ IV )), namely σ = {x1 7→ IV,x2 7→ f (0)}, but this is not computable in the
message-wise schedule, which can be shown to be symbolically secure and IND$-CPA secure.

Finally, we consider one additional MOO, Output Feedback Mode (OFB). OFB starts with an ini-
tialization vector, IV, each consecutive block, Ci+1, is computed as Ci+1 = Ti+1⊕ xi+1, where xi is the ith

plaintext block, and Ti = f (Ti−1) (T0 being IV). For example, the first block would be C1 = f (IV )⊕ x1,
and the second is C2 = f ( f (IV ))⊕ x2. Consider an OFB history with three ciphertext blocks: P3 =
νIV [IV,x1, f (IV )⊕ x1,x2, f ( f (IV ))⊕ x2]. Note that, in order to unify f (IV )⊕ x1 and f ( f (IV ))⊕ x2, the
adversary would have to set σx2 = x1⊕ f (IV )⊕ f ( f (IV )), which it cannot do no matter what schedule
is used, because it does not learn f ( f (IV )) until after it has computed x2. OFB is also both symbolically
secure and IND$-CPA secure. Notice that when generating the ciphertexts for differing MOOs such
as CBC and OFB, the root symbol of the ciphertexts could differ and this will impact the unification
algorithm required.
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4 MOO Representation

The tool contains a library implementation which allows for the representation and generation of MOO⊕-
Programs. The library currently allows MOO⊕-Programs that are constructed over the signature Σ =
{⊕/2,0/0, f/1} and represented as a simple recursive function. Once a MOO⊕-Program has been de-
fined, the library can then apply a number of operations on that MOO⊕-Program, including: generating
terms in a run of the MOO⊕-Program, checking symbolic security of the program, and checking invert-
ibility.

4.1 Standard and Custom MOO⊕-Programs

Currently there are several well-known cryptosystems implemented to serve as examples for users when
they are initially learning the tool. They also provide syntax examples for those wanting to add custom
MOOs. For example, the ciphertext chaining cryptosystem is defined below:

Code

from symcollab.moe import MOO

@MOO.register(’cipher_block_chaining’)

def cipher_block_chaining(iteration, nonces, P, C):

f = Function("f", 1)

i = iteration - 1

if i == 0:

return f(xor(P[0], nonces[0]))

return f(xor(P[i], C[i-1]))

Notice that this provides a relatively simple example of the type of recursive cryptosystems built
over an xor-theory that are currently supported. Here the base ciphertext is defined as f (P0⊕nonces(0)),
where P0 is the initial plaintext sent by the adversary, and nonces[0] is a bound variable representing the
initialization vector. Then the recursive case is Ci = f (Pi⊕Ci−1). The underlying libraries have been
constructed to allow the encoded version of the system definition to closely match the theoretical one.

Similarly, a user can create their own custom mode of operation by adding the recursive definition to
the MOO library.

4.2 User defined schedule

In addition to the block-wise and message-wise schedules (as described in Section 3.2), the user can
define their own schedules based on the iteration number. For example, this is a custom schedule that
has the oracle only return ciphertexts on even iterations.

Code

from symcollab.moe import MOO_Schedule

@MOO_Schedule.register(’even’)

def even_schedule(iteration: int) -> bool:

return iteration % 2 == 0
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MOOs generated via Automatic Generation
1 C0 = IV,Ci = f ( f (P[i])⊕P[i−1])
2 C0 = IV,Ci = f ( f (P[i]))⊕P[i−1]⊕ r
3 C0 = IV,Ci = f ( f (P[i])⊕C[i−1])⊕C[i−1]
4 C0 = IV,Ci = f ( f (P[i])⊕C[i−1])⊕ f ( f (P[i])⊕ f (C[i−1]))

Table 1: Examples of MOOs generated by the automatic MOO generator

4.3 Automatically Generated Singly Recursive MOO⊕-Definitions

A user can ask the library to generate a recursive definition of a modes of operation. Currently there
is one method in the tool library to automatically generate MOOs. It works by recursively generating
MOOs starting with the base components (IV, variables) and building singly recursive definitions using
the xor and f function, and recursive references to prior ciphertexts. The current method has some
limitations. For example only one nonce is used, the signature is limited to Σ = {⊕/2,0/0, f/1}, only
single recursion is used, and the base case is fixed to the initialization vector. Thus, the current method
won’t generate all possible MOO⊕s. For example, a MOO that uses two nonces in its recursive definition
won’t be generated. We plan to expand this functionality in future versions of the tool allowing a user
to automatically generate more classes of MOOs. Note, this doesn’t limit the possible MOOs that a user
can analyze by using the custom module. The user can also filter the recursive definitions by properties
such as availability of the initialization vector, if it requires chaining, or if the number of calls to the
encryption function f is less than a specified bound. A mode of operation has the chaining property if it
incorporates a previous ciphertext into its recursive definition.

After creating the recursive MOO⊕ definition, we can then pass it to the class CustomMOO. By default,
this creates a MOO⊕ program with the specified recursive definition and a new nonce for each base case.

4.4 Interactions with MOO⊕-Programs

Once a mode of operation and schedule have been defined, the tool can do several things with the def-
inition. The first and simplest is to generate the terms corresponding to the symbolic representation of
the ciphertexts. The user can also ask for the tool to evaluate the symbolic security of the MOO and/or
the invertibility. We consider these options in the following sections. Before we move to security let’s
consider an example.

Examples The example MOOs in Table 1 showcases ones that were generated by the tool using the
automatic generation feature. Note that these are just a few examples. In fact, one could allow the
automatic generation to run as long as one wanted.

From these examples, the first two MOOs are not symbolically secure, they can be discovered and
discarded by the method covered in the next section. The final MOO is symbolically secure, however it
is still useless since it doesn’t have the invertibility property! This can also be checked via the method
detailed below. The third MOO, passes both the security and invertibility check and could be a candidate
MOO for some secure application.
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5 Checking Symbolic Security Properties

This part of the tool is based on the work developed in [12,17]. Those papers define a method for check-
ing symbolic security which in turn can be used to synthesize secure cryptographic modes of operation.
See Section 3.2 for more background details. We give an overview of each of the components developed
for checking symbolic security beginning with the MOO⊕-Programs.

5.1 Checking Symbolic Security

The tool can check for symbolic security in several ways. The first, and most exhaustive, is via the
local unification approach. In this approach ciphertexts of the MOO⊕-program under consideration are
generated and the appropriate local unification algorithm is used to see if any blocks sum to 0, see [16]
for the full details of this approach.

The difficulty with this approach is that it can be time consuming in practice. However, a second
approach has been developed in [12]. The approach doesn’t require the generation of ciphertexts and
works directly with the initial MOO⊕-program definition. This approach is not complete, but it works
for many cases and has the advantage of being much more efficient. Therefore, we have implemented it
as a first pass symbolic security check for the tool. If the first pass cannot decide symbolic security, then,
the full security check requiring block generation will be used.

Examples Continuing With the MOOs from Table 1, let’s consider just the first MOO. We can check
for security using the MOO check method:

Code

moo_check(moo_name = ’table1.1’, schedule_name = ’every’,

unif_algo = p_syntactic, length_bound = 10, knows_iv = True,

invert_check=True)

The tool would return the first collision it finds, which violates the symbolic security property, for
this example:

Output

Here is the problem:

f(xor(f(x1), IV)) = f(xor(f(x2), x2))

6 Invertibility and Recovering the Plaintext

A cryptographic algorithm is invertible if given a ciphertext and a decryption key, the original plaintext
can be retrieved. This is not a given for any MOO⊕-program, even a secure one. Therefore, in the
automatic generated setting we will need methods for checking if the invertibility property holds for any
particular MOO⊕-program. Currently the tool is able to check invertibility for a large class of recursively
defined MOOs. This class includes the well known MOOs, such as CBC, ECB, and CFB. More detailed
information on theory and method for checking invertibility has been presented in [12].

The invertibility checker is built into the MOO security check functionality in the tool and can be
requested simply by setting the “invert check” flag (which is the last flag) in the moo check function.
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(a) An Insecure Scheme (b) A Secure Scheme

Figure 4: Two Authenticated Encryption Schemes

See Example 1.

Example 1

Code

from symcollab.moe.check import moo_check

from symcollab.Unification.p_unif import p_unif

result = moo_check(’cipher_block_chaining’, "every", p_unif, 2, True, True)

print(result.invert_result) # prints True

7 Authentication

An authenticated encryption scheme [6,19] satisfies the authenticity property if an adversary cannot forge
any new valid ciphertext message after observing any number of valid ciphertext messages. In [11], the
authors proposed two algorithms for checking authenticity. The first algorithm works for a simplified
case, where only messages of fixed length can be handled. The second algorithm works for the general
case, where messages of arbitrary length can be handled.

We use M1,M2, . . . . . . to denote plaintext blocks, and use C1,C2, . . . . . . to denote ciphertext blocks.
EK(T, ·) denotes a tweakable block cipher [13], where K is some key and T is some tweak. The idea is
that each key and tweak produce an independent pseudorandom permutation. DK(T, ·) is the inverse of
EK(T, ·). n(T ) produces another tweak, given a tweak T . We use nk(T ) as a shorthand for applying n
to T for k times. The idea is that the same key can be used for multiple blocks, as long as the tweaks
are different for each different block. In order to achieve authenticity, a tag is attached to each ciphertext
message. Each scheme is associated with a verification condition, which refers to the ciphertext blocks
and the tag. A ciphertext message is valid, if the verification condition holds for that ciphertext message.

Figure 4 shows two authenticated encryption schemes, both of which handle messages of two blocks.
The verification condition of the scheme in Figure 4a is EK(n2(T ),C1⊕C2)= Tag. The authenticity prop-
erty is violated. The reason is that if (C1,C2,Tag) is a valid ciphertext message, (C1⊕C2,0,Tag) is also a
valid ciphertext message. The verification condition of the scheme in Figure 4b is EK(n2(T ),DK(T,C1)⊕
DK(n(T ),C2)) = Tag, the authenticity property is satisfied. The intuition is that the adversary does not
know any way of modifying C1 and C2 in such a way that M1⊕M2 remains the same.

Here are some other possible verification conditions for authenticated encryption schemes, which
handle two message blocks. The first three verification conditions satisfy the authenticity property, and
the last two do not.
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Secure MOOs Found via Automatic Generation and Testing
1 C0 = IV,Ci = f ( f ( f (P[i−1])⊕ r)⊕C[i−1])
2 C0 = IV,Ci = f ( f ( f (P[i]))⊕C[i−1]⊕ r)
3 C0 = IV,Ci = f ( f (P[i])⊕C[i−1])⊕C[i−1]
4 C0 = IV,Ci = f ( f ( f (P[i])⊕ r⊕C[i−1]))
5 C0 = IV,Ci = f ( f (P[i])⊕C[i−1])⊕ f (C[i−1])

Table 2: Examples of secure MOOs found using the MOO generator

• EK(n2(T ),DK(n(T ),DK(T,C1)⊕C2)) = Tag

• EK(n2(T ),DK(T,DK(n(T ),C2)⊕C1)) = Tag

• EK(n2(T ),DK(T,C1)⊕DK(n(T ),C2)) = Tag

• EK(n2(T ),DK(T,C1)) = Tag

• EK(n2(T ),DK(n(T ),C2)) = Tag

Given a verification condition of some authenticated encryption scheme, our tool can automatically
check if the authenticity property is satisfied.

Code

from symcollab.Unification.constrained.authenticity import *

t = e(n(n(T)), xor(C1, d(n(T), C2)))

check_security(t)

Output

The authenticity

property is

satisfied.

8 Experiments

A benefit of the tool design is that it is easy to integrate the above described functions into a script which
can then be used to run experiments. For example, we have included a script, located in the experiments
directory of the tool, that allows the user to run longer experiments and can handle restarts. In this
script, we generate new candidate MOOs one at a time and test them for security. The output of moo_-
check is the data structure called MOOCheckResult. This has the following fields: collisions (set
of computable substitutions that cause a collision to occur), invert_result (whether or not the MOO
is invertible), iterations_needed (number of iterations before a collision was found), and whether or
not the MOO satisfies symbolic security up to the bound checked.

Initial Experimental Results A sample of some of the secure MOOs found during early experiments
are listed in Table 2. All of these MOOs were created automatically by the currently implemented
recursive MOOGenerator. As a future work, we plan to create additional generators that the user can
select and allow for user defined generators.

Experiments can also be done without the MOOGenerator, where MOOs are generated via hand or
a custom script and then checked for security. This is an attractive option because it allows the user to
easily customize the type of MOOs they are considering. Table 3 includes some example secure MOOs
that were created by hand and then tested for security using the tool. Note, that although all three MOOs
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Secure MOOs Found via Custom Generation and Testing
1 C0 = IV,Ci = f (P[i]⊕ f (C[i−1]))⊕ f (C[i−1])
2 C0 = IV,Ci = f (P[i]⊕ f (C[i−1])⊕ f (P[i]))
3 C0 = IV,Ci = f ( f (P[i])⊕C[i−1])⊕ f ( f (P[i])⊕ f (C[i−1]))

Table 3: Examples of secure MOOs found using a custom generator

are secure only the first MOO can be shown by the tool to be invertible (via the method developed
in [12])! Thus, secure but useless MOOs can also be discarded.

Based on the initial experimentation with the tool there are some interesting early questions: Can
the set of secure MOOs be closed under some operation such as applying the encryption symbol f on
top? Are there cases where we can place a bound on the number of iterations to check security? We’re
particularly motivated by the second question, due to the complexity of our saturation based decision
procedures. For some of the MOOs we tested, it took in the order of days in order for the algorithm to
find a collision.

9 Conclusion and Future Work

In this paper we presented a new tool for the symbolic analysis of cryptosystems with the ultimate goal
of providing support for multiple types of algorithms and representations. Although at present it only
supports modes of operation, the tool provides a widely applicable symbolic foundation based on that
of Baudet et al. [4]. Not only can this symbolic foundation represent multiple types of cryptosystems,
the symbolic foundation is also amenable to proofs of computational soundness and completeness. The
tool also includes libraries that support useful algorithms for checking symbolic security, including uni-
fication and variant generation. There are limitations to the currently supported modes of operation.
Currently, only modes which can be modeled using the above Xor theory are supported with the needed
specialized unification algorithms. For example, modes requiring primitives such as hash functions, suc-
cessor, or full abelian groups are currently not supported. However, we hope to add, if possible, support
for as many of these structures as possible in future versions of the tool.

One avenue of interest to us is to investigate other work on symbolic cryptography to determine
whether it can be fit into our framework and its algorithms implemented in our tool. We expect previous
work on modes [7,14] to fit in well, since, although their models are not expressed as symbolic algebras,
they are still compatible with the algebra used in CryptoSolve. Other work, such as Linicrypt [5, 15]
and Zoocrypt [3] also follow the paradigm of representing cryptographic primitives as function symbols
obeying equational theories. In the cases in which soundness and completeness results are provided,
we expect them to carry over into the symbolic model. When computational soundness of a symbolic
language is not known (e.g. Zoocrypt), it may be possible to ensure it by limiting its expressiveness.

More generally, our tool is intended to be extensible to cryptosystems that may not yet have been
studied from the symbolic point of view. Although only a few function symbols have been implemented
in CryptoSolve as of now, it is designed to be extensible. The best choice, for this seems to be cryptosys-
tems that can be expressed in terms of combinations of primitives, including randomly chosen bitstrings,
each of which has a clearly defined security property. The combinators should be operations that can
characterized in a symbolic way. These include not only finite field and group operations, which are
commonly used in cryptography, and can be found in all the work cited in this paper, but concatenation,
which is used in [3, 8, 15]. Many cryptosystems are defined using these techniques of building complex
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systems from basic components, so we expect the are of application to be wide.
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