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Otto’s Theorem characterises the bisimulation-invariant PTIME queries over graphs as exactly those
that can be formulated in the polyadic µ-calculus, hinging on the Immerman-Vardi Theorem which
characterises PTIME (over ordered structures) by First-Order Logic with least fixpoints. This con-
nection has been extended to characterise bisimulation-invariant EXPTIME by an extension of the
polyadic µ-calculus with functions on predicates, making use of Immerman’s characterisation of
EXPTIME by Second-Order Logic with least fixpoints.

In this paper we show that the bisimulation-invariant versions of all classes in the exponential
time hierarchy have logical counterparts which arise as extensions of the polyadic µ-calculus by
higher-order functions. This makes use of the characterisation of k-EXPTIME by Higher-Order
Logic (of order k+1) with least fixpoints, due to Freire and Martins.

1 Introduction

Descriptive complexity theory aims at characterising complexity classes – usually defined via compu-
tational resources like time or space consumption – by means of logical resources. Its central notion is
that of a complexity class C being captured by a logic L in the sense that the properties which can be
checked in complexity C are exactly those that can be defined in L . This provides a characterisation
of computational complexity that is independent of a machine model. Instead, computational difficulty
is characterised by the need for particular logical resources like k-order quantifiers or fixpoints of a par-
ticular type. It is widely believed that this provides a more promising line of attack for notoriously
difficult problems of separating complexity classes; at least it makes machinery that is traditionally used
for measuring the expressive power of logics available for such tasks.

Here we adopt terminology from database theory as this is traditionally close to descriptive complex-
ity, and speak of queries being answered instead of problems being solved or languages being decided,
different names for the same thing.

Ever since Fagin’s seminal work showing that the complexity class NP is captured by Existential
Second-Order Logic [5], descriptive complexity has provided logical characterisations of many standard
complexity classes. The Abiteboul-Vianu Theorem for instance states that PSPACE is captured by First-
Order Logic with Partial Fixpoint Operators [1]. The proofs of these results rely on the existence of a
total order on the structure at hand. This is not a restriction for characterisations of complexity classes
including and above NP as the resources available there are sufficient to construct such an order.

There is no known way to define or construct such a total order in deterministic polynomial time
which is a major obstacle for capturing the complexity class P. There is some belief that such a logic
should exist, possibly in the form of first-order logic with additional operators like fixpoints, counting
and others, cf. [7]. This is grounded in the characterisation of the complexity class of Ordered Polynomial
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Time – i.e. those queries that can be answered in polynomial time on structures that are equipped with a
total order – by First-Order Logic with Least Fixpoints [20, 8].

An interesting result was then found by Otto who considered another restriction of the class P, namely
that of bisimulation-invariant queries (on graphs, naturally). He showed that this class, denoted P/∼ is
captured by the polyadic µ-calculus L ω

µ [17], a generalisation of the well-known modal µ-calculus to
interpretations of formulas not in states but in tuples of states of fixed arity [2]. This is particularly
interesting as it shifts the borderline at which the availability of an order becomes critical, from between
P and NP to between P/∼ and NLOGSPACE/∼.

This opens up the question of further capturing results of bisimulation-invariant complexity classes
by (modal) logics. Indeed, characterisations have been found for EXPTIME/∼ and PSPACE/∼ in terms
an extension of L ω

µ by first-order functions from predicates to predicates [15]. The logic capturing
EXPTIME/∼ is coined PHFL1 – Polyadic Higher-Order Fixpoint Logic of order 1. The higher-order
extension is borrowed from HFL which extends the modal µ-calculus with a simply typed λ -calculus
[21]. A syntactical restriction called tail-recursiveness [4] has been identified that captures PSPACE/∼
[15], and when applying this restriction to L ω

µ or, likewise, PHFL0, one captures NLOGSPACE/∼ (with
the help of a particular partial order only, though) [15].

Considering bisimulation-invariant complexity classes above NP/∼ does not serve the same purpose
as it does for smaller ones as one of the key motivations for moving to the bisimulation-invariant world is
to avoid the need for a total order. On the other hand, for two complexity classes C ,C ′ that have complete
and bisimulation-invariant problems we have C 6= C ′ iff C/∼ 6= C ′/∼. Most of the standard complexity
classes posses such problems, for example (1-letter) NFA universality for NP, resp. PSPACE, unbounded
tree automaton intersection for EXPTIME, etc. Moreover, separating bisimulation-invariant classes may
be easier due to their close connection to modal logics where separating their expressiveness is routinely
done (not for the relatively complex higher-order modal fixpoint logics mentioned here, though).

In this paper we extend the characterisation of bisimulation-invariant time complexity classes to all
the levels of the exponential time hierarchy. We show that k-EXPTIME/∼ is captured by PHFLk, the
polyadic version of the higher-order extension of the modal µ-calculus with functions up to type order k.
We remark that a similar characterisation of the space complexity classes k-EXPSPACE is also possible
[13] but needs to be omitted for lack of space and is therefore left for a future publication.

The paper is organised as follows. In Sect. 2 we recall the necessary preliminaries, mainly about the
logics studied here. In Sect. 3 we provide the easy half of the capturing result by putting together known
results and constructions which witness that any PHFLk query can be answered in k-fold exponential
time. In Sect. 4 we prepare for the more difficult and other half of the capturing result. We rely on
a logical characterisation of k-EXPTIME in terms of Higher-Order Predicate Logic with Fixpoints [6],
and a key step in expressing such (bisimulation-invariant) queries in Higher-Order Modal Fixpoint is the
modelling of higher-order quantification using an enumeration technique. In Sect. 5 we put this to use
for showing that any k-EXPTIME/∼-query is definable in PHFLk. In Sect. 6 we conclude with remarks
on further work etc.

2 Preliminaries

Let P and A be finite sets of propositions, resp. actions. A labelled transition system (LTS) is a tuple
T = (S,{ a−→}a∈A, `) where S is a nonempty set of states, a−→ ⊆ S× S is a transition relation for each
action a ∈ A, and ` : S→ 2P labels the states with those propositions that are true in them. We write
s a−→ t instead of (s, t) ∈ a−→.
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For d ≥ 1, a d-pointed LTS is a pair T,(s1, . . . ,sd) of an LTS and a d-tuple of states in it. It is also
simply called pointed when d is clear from the context. Note that in the case of d = 1, this coincides with
the usual notion of a pointed LTS. Given some tuple s = (s1, . . . ,sd) and i≤ d, we write s[t/i] to denote
the tuple (s1, . . . ,si−1, t,si+1, . . . ,sd).

2.1 Polyadic Higher-Order Fixpoint Logic

We assume familiarity with the modal µ-calculus Lµ [12]. Polyadic Higher-Order Fixpoint Logic PHFL
[15] extends Lµ in several ways: (I) HFL [21] adds to it a simply typed λ -calculus; (II) the polyadic
Lµ , L ω

µ [2, 17] is obtained by lifting the interpretation of formulas in states to tuples of states of fixed
arity. Now PHFL merges both extensions. Its introduction requires a few technicalities.

Types. Types are used to govern the syntax of PHFL, especially those parts that denote functions. They
are derived from the grammar

τ ::= • | τv→ τ

where • is a ground type for propositions, v ∈ {+,−,0} are variances denoting whether a function is
monotonically increasing, monotonically decreasing, or constant in its argument. Variances are only
needed to check well-typedness; we often do not display them for the sake of readability.

The order ord of a type is defined via ord(•) = 0 and ord(τ1 → τ2) = max(ord(τ1)+ 1,ord(τ2)).
Types associate to the right whence every type is of the form τ1→ ·· · → τn→•.

Given some LTS T = (S,{ a−→}a∈A, `) and some 0 < d ∈ N, the semantics JτKT of a type τ is a
complete lattice, defined inductively as follows:

J•KT = (2Sd
,⊆) Jτ

v
2 → τ1KT = (Jτ2KT → Jτ1KT ,vτv

2→τ1)

where we tacitly identify a lattice with its domain and where the order vτv
2→τ1 is given by

f vτv
2→τ1 g ⇔ for all x ∈ Jτ2KT we have


f (x)vτ1 g(x), if v =+

g(x)vτ1 f (x), if v =−
f (x) = g(x), if v = 0.

Hence, the semantics of • is the powerset lattice over Sd and τv
2 → τ1 is the lattice of all monotonically

increasing, monotonically decreasing or constant functions from Jτ2KT to Jτ1KT , depending on v. Such a
set together with the above point-wise order forms a complete lattice if Jτ1KT is one. Hence, monotone
functions in such a lattice always have a least and greatest fixpoint due to the Knaster-Tarski-Theorem.
We write

⊔
τv

2→τ1
to denote the join operator in this lattice.

Note that, technically, Jτ1KT is also parameterised in d. However, since d is usually clear from
context, we do not display it to avoid clutter.

Syntax. Let P and A be as above and let F and L be finite sets of fixpoint variables, resp. lambda
variables. We use upper case letters X ,Y, . . . for the former and lower case letters x,y, f ,g for the latter.

Let d ≥ 1. By [d] we denote the set 1, . . . ,d. The set of – potentially non-well-formed – formulas of
the d-adic fragment of PHFL, called PHFLd , is derived via

ϕ ::= pi | ϕ ∨ϕ | ¬ϕ | 〈ai〉ϕ | {σ}ϕ | λ (x : τ). ϕ | x | (ϕ ϕ) | µ(X : τ).ϕ | X
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Γ ` pi : •
Γ ` ϕ1 : • Γ ` ϕ2 : •

Γ ` ϕ1∨ϕ2 : •
Γ ` ϕ : •

Γ ` ¬ϕ : : •
Γ ` ϕ : •

Γ ` 〈ai〉ϕ : •
Γ ` ϕ : •

Γ ` {σ}ϕ : •

Γ,xv : τ1 ` ϕ : τ2

Γ ` λ (xv : τ1). ϕ : τ
v
1 → τ2

v ∈ {+,0}
Γ , xv : τ ` x : τ

Γ,X+ : τ ` ϕ : τ

Γ ` µ(X : τ). ϕ : τ Γ , X+ : τ ` X : τ

Γ ` ϕ1 : τ
+
2 → τ1 Γ ` ϕ2 : τ2

Γ ` (ϕ1 ϕ2) : τ1

Γ ` ϕ1 : τ
−
2 → τ1 Γ ` ϕ2 : τ2

Γ ` (ϕ1 ϕ2) : τ1

Γ ` ϕ1 : τ
0
2 → τ1 Γ ` ϕ2 : τ2 Γ ` ϕ2 : τ2

Γ ` ϕ1 ϕ2 : τ1

Figure 1: The PHFL typing system.

where x ∈ L, X ∈ F, p ∈ P, a ∈ A, 1 ≤ i ≤ d and σ : [d]→ [d] is a mapping on so-called indices.
We assume that standard connectives such as ff, ∧, [a] and ν(X : τ) are available via the obvious du-
alities if needed. We will also allow ourselves to use more convenient notation for the definition of
(more complex) functions and their applications. For instance, (. . .((ϕ ψ1)ψ2) . . .)ψn is simply written
as ϕ(ψ1, . . . ,ψn), and λ (x1 : τ1).λ (x2 : τ2). . . .λ (xn : τn).ψ is written as λ (x1 : τ1, . . . ,xn : τn).ψ , or even
λ (x1, . . . ,xn : τ).ψ if τ = τi for all 1≤ i≤ n.

The notions of free and bound variables in a formula are as usual, with λ (x : τ).ϕ binding x and with
µ(X : τ). ϕ binding X .

Over an LTS T , a PHFLd formula intuitively defines a set of d-tuples in T , or a function that trans-
forms such a set into such a set, or into a function etc., depending on the formula’s type which will be
explained shortly. Before that we briefly introduce the intuitive meaning of the operators in the syntax.
The first five listed in the grammar above all define a subset of Sd . For example, pi denotes all tuples such
that p holds at their ith state. The operator {σ}ϕ rearranges the positions in tuples in such a subset. The
modality 〈ai〉ϕ expresses that ϕ holds on a tuple after replacing the ith state in it by some a-successor. A
formula of the form λ (x : τv).ϕ defines a function that consumes an argument of type τ and is monoton-
ically increasing, monotonically decreasing, or constant in this argument, depending on v. A formula of
the form (ϕ ψ) denotes the application of the semantics of ϕ to the object defined by ψ . Finally, fixpoints
can now also define higher-order functions.

Obviously, not all formulas that can be derived from the above grammar can be given a semantics in
a meaningful way; consider e.g. (p1 p2), Moreover, as is typical in a situation involving least and greatest
fixpoints, the use of negation has to be restricted, cf. the example µ(X : •). ¬X . Hence, PHFL has a type
system to filter out formulas that cannot be endowed with a proper semantics.

A finite sequence Γ of hypotheses of the form Xv : τ or xv : τ in which each variable occurs at most
once is called a context. The dual context Γ is obtained from Γ by replacing all the hypotheses of the
form X+ : τ by X− : τ and vice versa, and doing the same for lambda variables. We say that ϕ has type
τ in the context Γ if the statement Γ ` ϕ : τ can be derived from the rules in Fig. 1. A formula without
free variables is well-typed if the statement /0 ` ϕ : • can be derived from these rules. We tacitly assume
that each fixpoint variable and each lambda variable is bound at most once in a well-typed formula, and
that no variable occurs both freely and bound in a formula. Hence, each variable has a unique type in the
context of a given, well-formed formula. If the type information is clear from context or not important,
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we drop it from binders, simply writing λx.ϕ and µX .ϕ for better readability.
A formula is said to be of order k if the maximal order of the type of any subformula in ϕ is k. By

PHFLk
d we denote the set of well-typed formulas in PHFLd that are of order k. Note that PHFL does

indeed constitute an extension of other known formalisms, namely

• PHFLk
1 is the same as HFLk for any k ≥ 0 and, thus PHFL1 = HFL, and in particular

• PHFL0
1 is just the modal µ-calculus Lµ while

• PHFL0
d is the d-dimensional polyadic µ-calculus.

Semantics. Let T = (S,{ a−→}a∈A, `) be an LTS and let ϕ be a well-typed formula. An environment is a
function η that assigns to each fixpoint variable and each lambda variable of type τ an element of JτKT .

Let d ≥ 1. The semantics Jϕ : τKT
η of a PHFLd formula ϕ of type τ , relative to an LTS T and an

environment η , is an object of JτKT , defined recursively as follows.

JΓ ` pi : •KT
η = {(s1, . . . ,sd ∈ Sd | p ∈ `(si)}

JΓ ` ϕ1∨ϕ2 : •KT
η = JΓ ` ϕ1 : •KT

η ∪ JΓ ` ϕ2 : •KT
η

JΓ ` ¬ϕ : •KT
η = Sd \ JΓ ` ϕ : •KT

η

JΓ ` 〈ai〉ϕ : •KT
η = {(s1, . . . ,sd) ∈ Sd | ex. t s.t.

(s1, . . . ,si1 , t,si+1, . . . ,sd) ∈ JΓ ` ϕ : •KT
η and si

a−→ t}
JΓ ` {σ}ϕ : •KT

η = {(s1, . . . ,sd) ∈ Sd | (sσ(1), . . . ,sσ(d)) ∈ JΓ ` ϕ : •KT
η}

JΓ ` λ (xv : τ2). ϕ : τ
v
2 → τ1KT

η = f ∈ Jτ
v
2 → τ1KT s.t. f.a. y ∈ Jτ2KT . f (y) = JΓ,xv : τ2 ` ϕ : τ1KT

η [x 7→y]

JΓ ` x : τKT
η = η(x)

JΓ ` (ϕ1 ϕ2) : τ1KT
η = JΓ ` ϕ1 : τ

v
2 → τ1KT

η (JΓ ` ϕ2 : τ2KT
η)

JΓ ` µ(X : τ).ϕ : τKT
η =

l

τ→τ

{d ∈ JτKT
η | JΓ,X : τ

+ ` ϕ : τKT
η [X 7→d] vτ d}

JΓ ` X : τKT
η = η(X)

If the type is clear from context, or not important, we simply write JϕKT
η . We write T,(s1, . . . ,sd) |=η ϕ

if ϕ : • and (s1, . . . ,sd) ∈ JϕKT
η . We say that two formulas ϕ and ψ are equivalent, written ϕ ≡ ψ , if for

all T and all η we have JϕKT
η = JψKT

η .
It is well-known that the semantics of HFL and, hence, PHFL is invariant under β -reduction and

admits the fixpoint unfolding principle, i.e. µX .ϕ ≡ ϕ[µX .ϕ/X ] where substitution is defined as usual.

Bisimilarity. A bisimulation R on an LTS T = (S,{ a−→}a∈A, `) is a symmetric relation R⊆ S×S satis-
fying the following for all (s, t) ∈ R.

• `(s) = `(t),

• if there is a ∈ A and s′ ∈ S s.t. s a−→s′ then there is t ′ ∈ S with t a−→ t ′ and (s′, t ′) ∈ R,

• if there is a ∈ A and t ′ ∈ S s.t. t a−→ t ′ then there is s′ ∈ S with s a−→s′ and (s′, t ′) ∈ R.

Two states s, t are bisimilar, written s∼ t, if there is a bisimulation R with (s, t) ∈ R.
Let d ≥ 1. A set T ⊆ S is called bisimulation-invariant if for all s̄ = (s1, . . . ,sd), t̄ = (t1, . . . , td) ∈ Sd

such that si ∼ ti for all i ∈ [d], we have s̄ ∈ T iff t̄ ∈ T . The notion of bisimulation-invariance can
straight-forwardly be lifted to objects of type JτKT for types τ 6= •, cf. [21].
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It is well-known that modal logics cannot distinguish bisimilar models, and it is not surprising that
the extensions beyond pure modal logic that are available in PHFL do not break this property.
Proposition 1 ([21, 15]). Let d ≥ 1, T be an LTS with state set S and ϕ be a closed PHFLd formula of
type •. Then JϕKT ⊆ Sd is bisimulation-invariant.
Example 2 ([17]). A standard example shows that bisimilarity itself is definable in PHFL0

2, provided
that P and A are finite. The PHFL0

2 formula

ϕ∼ := ν(X : •).(
∧
p∈P

p1↔ p2)∧ (
∧

a∈A
[a1]〈a2〉X)∧{1 7→ 2,2 7→ 1}X

is satisfied by a pair (s, t) of some T iff s∼ t. The formula essentially states that (s, t) needs to belong to
the largest set X of states (s′, t ′) that agree on all propositions (first conjunct) and for which t ′ can match
any a-transition out of s′, for any a ∈ A, to a pair (s′′, t ′′) ∈ X (second conjunct). Moreover, X needs to
be a symmetric relation (third conjunct).

To exemplify the use of higher-orderness (here: first-order functions) we can use the definability of
finite-trace equivalence in PHFL1

2.
Example 3. Two states s, t are finite-trace equivalent if whenever there is a sequence s a1−−→s1

a2−−→s2
a3−−→

. . .
an−−→sn then there are t1, . . . , tn s.t. t a1−−→ t1

a2−−→ t2
a3−−→ . . .

an−−→ tn and vice-versa.

ϕfte :=
(
νF(x,y).(x↔ y)∧

∧
a∈A

F(〈a1〉x,〈a2〉y))(tt,tt)

is then satisfied by a pair (s, t) iff s and t are finite-trace equivalent in the sense above. The greatest
fixpoint in the formula expresses an infinite conjunction over all finite paths, these can be thought of
to be built step-wise via fixpoint unfolding; the nth unfolding expresses that all finite traces of length n
are available in the first component of the tuple (and built via 〈a1〉) iff they are available in the second
component (built via 〈a2〉. For better readability we have omitted the types in the formula. The types of
x,y are • and that of F is, consequently, •0→•0→•.

We remark that it is easily possible to extend the formula to also check for matching atomic proposi-
tions along the traces emerging from s and t. Cf. [16] for further examples of how various other process
equivalences and preorders can be expressed in PHFL1.

2.2 Higher-Order Logic with Least Fixpoints

We introduce Higher-Order Logic with Least Fixpoints (HO(LFP)) to make use of the characterisation
of k-EXPTIME over the class of ordered structures as the queries definable in order-(k+ 1) HO(LFP),
due to Immerman and Vardi [8, 20, 9], resp. Freire and Martins [6].

Types. Types for Higher-Order Logic with Least Fixpoints are constructed, similar to those for PHFL,
from a single base type and one constructor: τ ′ ::=� | (τ ′, . . . ,τ ′). Here, however, � is the type of indi-
viduals (like states rather than sets of states), and the tuple type is used to denote (higher-order) relations.
We define the order1 of a type via ord(�) = 1 and ord(τ ′1, . . . ,τ

′
n) = 1+max{ord(τ ′1), . . . ,ord(τ ′n)}.

Let T = (S,{ a−→}a∈A, `) be an LTS. This induces a set-theoretic interpretation of types via J�KT = S
and J(τ ′1, . . . ,τ

′
n)KT = 2Jτ ′1K

T×···×Jτ ′nKT
.

1Note the discrepancy in the traditional ways to assign numerals to orders in the two logics considered here: order 1 in
HO(LFP) refers to, like in “First-Order Logic”, individual elements and order 2 is for relations like sets thereof. In PHFL,
order 1 refers to the order of a function, i.e. one that takes sets of arguments. This explains why PHFLk corresponds to the
fragment of HO(LFP) of order k+1, see also the right column in Fig. 2.
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Syntax. Let V = {X , . . .} be a countable set of higher-order variables, each implicitly equipped with
a type. Let P,A be sets of propositions, resp. actions. The syntax of HO(LFP) formulas is derived from
the following grammar:

ϕ ::= p(X) | a(X ,Y ) | X(Y1, . . . ,YN) | ¬ϕ | ϕ ∨ϕ | ∃(X : τ
′). ϕ |

(
lfp(X ,Y1, . . . ,YN). ϕ

)
(Z1, . . . ,Zn)

where p ∈ P, a ∈ A and X ,Y1, . . . ,Yn,Z1, . . . ,Zn ∈ V. Again, dual operators such as ∧ and gfp (for
greatest fixpoints) are available via the obvious dualities. The variable X is bound in ∃(X : τ ′). ϕ and
X ,Y1, . . . ,YN are bound in

(
lfp(X ,Y1, . . . ,YN). ϕ

)
(Z1, . . . ,Zn). A formula is well-formed if each variable is

bound at most once, and, moreover, variables occur only in a way that matches their type. For example,
only a variable of type � can occur in a subformula of the form p(X), and if a subformula of the form
X(Y1, . . . ,Yn) occurs, then X has type (τ ′1, . . . ,τ

′
n) for some τ ′1, . . . ,τ

′
n and Yi has type τ ′i for all 1 ≤ i≤ n.

Moreover, in a subformula of the form
(
lfp(X ,Y1, . . . ,YN). ϕ

)
(Z1, . . . ,Zn), the variable X occurs only

under an even number of negations in ϕ . For a more detailed introduction into Higher-Order Logic
including formal ways to define well-formedness of formulas, cf. [19]. In a well-formed formula each
variable has a unique type. An HO(LFP) formula ϕ has order k if the order of the highest type of a
variable in ϕ is at most k. We write HOk(LFP) for the set of HO(LFP) formulas of order at most k.

Semantics. Let T = (S,{ a−→}a∈A, `) be an LTS. A variable assignment α is a function that maps each
variable in V of type τ ′ into Jτ ′KT .

Let ϕ be an HO(LFP) formula with free variables in X ,Y1, . . . ,Yn such that X occurs only under an
even number of negations in ϕ and let τ ′ = (τ ′1, . . . ,τ

′
n) be the type of X in ϕ while τ ′i is the type of Yi in

ϕ for 1 ≤ i ≤ n. Then, given some variable assignment α , the formula ϕ defines a monotone function
f : Jτ ′KT → Jτ ′KT via

f (M) 7→ {(m1, . . . ,mn) ∈ JϕKT
α[Y1 7→m′1,...,Yn 7→m′n]

| (m′1, . . . ,m′n) ∈M}.

By the Knaster-Tarski-Theorem [11, 18] this function has a least fixpoint denoted by LFP(X ,Y1, . . . ,Yn)ϕ .
Note that we suppress T and α here since they will always be clear from context.

The satisfaction relation between an LTS T , a variable assignment α and an HO(LFP) formula ϕ is
defined inductively as follows.

T,α |= p(X) iff p ∈ `(α(X))

T,α |= a(X ,Y ) iff α(X) a−→α(Y )

T,α |= X(Y1, . . . ,Yn) iff (α(Y1), . . . ,α(Yn)) ∈ α(X)

T,α |= ¬ϕ iff T,α 6|= ϕ

T,α |= ϕ1∨ϕ2 iff T,α |= ϕ1 or T,α |= ϕ2

T,α |= ∃(X : τ
′) iff ex. d ∈ Jτ

′KT s.t. T,α[X 7→ d] |= ϕ

T,α |=
(
lfp(X ,Y1, . . . ,YN). ϕ

)
(Z1, . . . ,Zn) iff (α(Z1), . . . ,α(Zn)) ∈ LFP(X ,Y1, . . . ,Yn)ϕ.

2.3 Descriptive Complexity

A query (of dimension d) is a set Q of pairs (T,(s1, . . . ,sd)) s.t. each T is finite. It is expressed by
the HO(LFP) formula ϕ with free variables X1, . . . ,Xd , if Q = {(T,(s1, . . . ,sd)) | T, [X1 7→ s1, . . . ,Xd 7→
sd ] |= ϕ}. Let k ≥ 0. The complexity class k-EXPTIME is defined as DTIME(2nO(1)

k ) where 2m
0 := m and

2m
k+1 := 22m

k . Note that 0-EXPTIME equals P.
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For a complexity class C , a C -query is one that can be decided within the resource bounds given by
C . We write C/∼ for the complexity class of C -queries that are bisimulation-invariant.

We say that a logic L captures a complexity class C if the model checking problem for L is in C
and each C -query can be expressed in L .

The Immerman-Vardi Theorem characterises the P-queries over ordered structures as those express-
ible in HO1(LFP), resp. first-order logic with least fixpoints. It’s generalisation is the following:

Proposition 4 ([8, 20, 9, 6]). For each k ≥ 0, HOk+1(LFP) captures k-EXPTIME over the class of
ordered structures.

The ordering is only important for the case of k = 0 as such an ordering can be defined in second-
order logic, i.e. as soon as k ≥ 1. It is an open problem whether a logic exists that captures P over the
class of all structures (cf. e.g. [7]).

The first capturing result for a bisimulation-invariant class is given by Otto’s Theorem.

Proposition 5 ([17]). The polyadic modal µ-calculus L ω
µ , or, equivalently PHFL0, captures P/∼, or

equivalently, 0−EXPTIME/∼.

We give a quick sketch of its proof in order to prepare for the technical developments in Sects. 4 and
5. The model checking problem for PHFL0 is readily seen to be in P (see also [14]). The interesting part
is to show that every bisimulation-invarariant P query can be expressed in PHFL0. In principle, this could
be done by encoding runs of polynomially time-bounded Turing machines, but it is not immediately clear
how bisimulation-invariance of the query in question can be used. Instead, the proof for this rests on a
key observation: non-bisimilarity of two states can be expressed in PHFL0

2 by a least-fixpoint formula,
since bisimilarity can be defined via the greatest fixpoint formula in Ex. 2. Hence, non-bisimilarity of two
states, as a least fixpoint, has a well-founded reason, i.e. one that can be found in finitely many fixpoint
unfoldings. Ordering the atomic types in an arbitrary way entails a total order on the bisimulation-
equivalence classes, and this order can be defined in PHFL0

2. Hence, the LTS in question is ordered,
and the Immerman-Vardi Theorem is available, whence the problem reduces to showing that every query
defined by a bisimulation-invariant HO1(LFP)-query can be expressed equivalently in PHFL0.

This latter reduction now follows from a rather straightforward translation from HO1(LFP) formu-
las to PHFL0 formulas. Variables of type � are emulated through polyadicity and variables of type
(�, . . . ,�) are represented as order-0 PHFL0-variables. Since, in the bisimulation-invariant setting, one
can always assume that the LTS in question already is its own bisimulation quotient, bisimilarity and
equality coincide. Hence, a subformula of the form a(Xi,X j) can be replaced by the statement that the
ith component of the relation defined has an a-successor that is bisimilar and, hence equal to the jth
component. Moreover, since all states in such a bisimulation quotient of a pointed LTS are reachable
from a distinguished state, existential quantification can be replaced by reachability of a suitable state. It
remains to translate least fixpoints in HO1(LFP) into order-0 fixpoints of PHFL0.

Using reasoning along similar lines, Otto’s Theorem has also been generalised by one order.

Proposition 6 ([15]). PHFL1 captures EXPTIME/∼.

3 Upper Bounds

Capturing a complexity class C , defined by some restricted resource consumption, by a logic L contains
two parts: what is commonly seen as the lower bound consists of showing that every query which can
be evaluated in complexity C can also be defined in the logic L . The upper bound is established by



F. Bruse, D. Kronenberger & M. Lange 25

showing the contrary. This is relatively easy as it suffices to show that queries definable in L can be
evaluated in complexity C , in other words that the model checking problem for L belongs to class C .

Here we do this for the fragments of PHFL of arbitrary but fixed arity d and arbitrary order k, w.r.t.
the classes k-EXPTIME of the exponential time hierarchy. We do so by extending the reduction of the
model checking problem for a polyadic logic to that of its monadic fragment [14]. Note that PHFLk

1
equals HFLk – the fragment of (non-polyadic) Higher-Order Fixpoint Logic of formulas of type order at
most k. The complexity of model checking such fragments is known:

Proposition 7 ([3]). Let k ≥ 1. The model checking problem for HFLk is k-EXPTIME-complete.

The corresponding result for PHFLk
d , first stated without proof in [15], follows via a reduction:

Theorem 8. Let k,d ≥ 1. The model checking problem for PHFLk
d is in k-EXPTIME.

Proof. By a polynomial reduction to the model checking problem for HFL. Let k,d ≥ 1 and an LTS
T = (S,{ a−→}a∈A, `) over A and P be given. We construct its d-product T d over the action set Ad := {ai |
a∈A, i∈ [d]}∪{σ |σ : [d]→ [d]} and atomic propositions Pd := {qi | q∈P, i∈ [d]} as (Sd ,{ x−→}x∈A′d , `

′)
where, for all q ∈ P, i ∈ [d], a ∈ A, s1, . . . ,sd , t1, . . . , td ∈ S we have

• qi ∈ `′(s1, . . . ,sd) iff q ∈ `(si),

• (s1, . . . ,sd)
ai−−→(t1, . . . , td) iff si

a−→ ti and t j = s j for all j 6= i,

• (s1, . . . ,sd)
σ−→(t1, . . . , td) iff t j = σ(s j) for all j ∈ [d].

Next, we translate a PHFLk
d formula ϕ inductively into a PHFL1 formula ϕ̂ as follows. The operation ·̂

acts homomorphically on all operators apart from the following three cases.

{̂σ}ψ := 〈σ〉ψ̂ , 〈̂ai〉ψ := 〈ai〉ψ̂ , p̂i := pi .

The latter two cases may be confusing as ·̂ seems to not change those operators either. However, in e.g.
the second case, 〈ai〉 on the left side is a polyadic modality combining the action a ∈ A with the index
i ∈ [d]. On the right side, 〈ai〉 is a monadic modality over the action ai ∈ Ad . Likewise in the third case.

This equality in syntax for two technically different modal operators, resp. atomic formulas is in-
tended because of the following connection: the d-tuple (s1, . . . ,sd) of states in T satisfies the PHFLd
formula 〈ai〉ψ iff the state (s1, . . . ,sd) of T d satisfies the PHFL1 formula 〈ai〉ψ̂ . A similar statement
can be made for atomic propositions and these can easily be generalised to show by induction on the
syntax of PHFL that for all PHFLd formulas ϕ , all s1, . . . ,sd ∈ S and all environments η we have:
(s1, . . . ,sd) ∈ JϕKT

η iff (s1, . . . ,sd) ∈ Jϕ̂KT d

η .
This establishes correctness of the reduction. Note that ϕ̂ is a PHFLk

1-, i.e. HFLk formula whenever
ϕ ∈ PHFLk

d . Moreover, both T d and ϕ̂ are easily seen to be constructible in polynomial time (for fixed
d). Thus, by Prop. 7 model checking PHFLk

d is also in k-EXPTIME.

4 Higher-Order Quantification

To show that every bisimulation-invariant k-EXPTIME query can be expressed in PHFLk it suffices, due
to Prop. 4, to show that every HOk+1(LFP)-query can be translated into a PHFLk formula. The main
challenge here is to deal with existential quantification, which has no obvious equivalent in PHFL. In
[17], first-order existential quantification is replaced by reachability of a suitable state, which is suffi-
cient in the bisimulation-invariant setting. Higher-order quantification does not have such an obvious
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correspondent - there is no notion of a set, or a set of sets, etc. being reachable. Moreover, PHFL does
only have a type for sets of tuples of states, not for sets of sets etc. We solve this problem by replacing
higher-order types by a variant of their characteristic function, something that fits quite naturally into the
PHFL world. We then lift the order on the states inherited from [17] to sets of tuples of states and then to
said characteristic functions by ordering them lexicographically. We can enumerate sets, functions and
so on alongside this order, and hence, we can mimic existential quantification over some HO(LFP) type
by an enumeration of corresponding characteristic functions.

The increased complexity of this approach compared to simple reachability requires two adaptations:
first, since we use the order of sets, functions etc. present in the bisimulation-invariant setting, we often
have to compare two such objects w.r.t. this order. Comparing e.g. two sets of d-ary tuples, however,
requires a formula containing types of width 2d. Also, HO(LFP)-formulas can define a query of some
width, yet contain types, resp. quantification over objects of much higher width. Hence, in order to keep
the presentation simple, the formulas we develop subsequently will be of some unspecified, yet generally
quite high arity, i.e. they will be in PHFLk

d for some d that is large compared with the width of the original
query. The exact value of d will be given towards the end of the translation.

Since we have already agreed to blow up the width used in our translated formulas, we can also make
things easier by reserving certain positions in the tuples we work with for special tasks. We generally
use the last two positions in our tuples (those with indices d and d− 1) to compare individual states
w.r.t. the order from [17], and we will use the next r positions from the right, i.e. those with indices
d− r−1, . . . ,d−2 for some r, to keep copies of states such that the whole LTS is reachable from at least
one of these states, in order to keep the pattern for first-order quantification valid. This will be made
formal after we revisit the pattern for existential quantification just below. We then subsequently expand
quantification towards sets and characteristic functions. The final translation is then given in Sec. 5.

Reachable States. In [17], existential quantification of first-order logic was replaced by reachability
of a suitable state in the LTS in question, using the pattern given subsequently. First, we recall the
role of the substitution operator: Let σ i← j be defined by σ i← j(i) = j and σ i← j(i′) = i′ if i′ 6= i. Then
(s ∈ J{σ i← j}ϕKT

η iff s[s j/i] = (s1, . . . ,si−1,s j,si+1, . . . ,sd) ∈ JϕKT
η for all T and η .

Now let A be a set of actions, let d > 2, r ≤ d−2 and i≤ d− r−2. Recall that, for the time being,
we assume that every tuple we work with is such that all states in an LTS are reachable from one of the
states at indices d−r−1, . . . ,d−2 of the tuple and that we reserve the last two positions for comparisons
(see below). Consider the formula

∃iϕ :=
d−2∨

j=d−r−1

{σ i← j}
(
µ(X : •). ϕ ∨

∨
a∈A
〈ai〉X

)
.

for some ϕ ∈ PHFLd . We have the following:

Observation 9. Let T be an LTS over A and let s = (s1, . . . ,sd) such that all states in T are reachable from
at least one state in sd−r−1, . . . ,sd−2. Then T,s |= ∃iϕ iff there is a state t in T such that T,s[t/i] |= ϕ .

As said before, quantification over higher-order types is more complicated, but we can replace reach-
ability by enumeration in lexicographical order for higher-order types. Towards this, note that for all
d ≥ 2 there is some PHFL0

2-formula ϕ< defining a transitive and irreflexive relation < such that, for all
LTS T and d-tuples s = (s1, . . . ,sd) we have that T,s |= ϕ< iff sd−1 < sd . This formula is defined in [17]
using a variant of the negation of the formula from Ex. 2. The actual position of the tuple elements that
are compared is not important, we choose to fix it here for consistency.
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A crucial ingredient for the correctness of the quantification pattern above is that every state in
the LTS is reachable from the states in positions d− r− 1, . . . ,d− 2. For the first-order case, this can
be guaranteed by never manipulating the components with the respective indices. In the higher-order
setting, this does not suffice as one deals with arbitrary sets, functions, etc. Hence, for the remainder of
the section all formulas are assumed to have a free lambda variable e of type • that is as follows:
Definition 10. Let T be an LTS and let r be fixed. Then an interpretation η is good if η(e) is a set of the
form M×{sd−r−1}× ·· ·×{sd−2}×S2 such that /0 6= M ⊆ Sd−2−r and each state of T is reachable from
one of the sd−r−1, . . . ,sd−2.

We do not make this free variable explicit, since it is always assumed to be there. We will see in
Sect. 5 how this intended interpretation can be enforced. This stipulation formalises the informal idea
given above. Note that in [17], it was assumed that all states of the LTS in question are reachable from a
singular state, but this is not a necessary requirement for the argument to work.

Finally, let w and d be such that 2w+ r+2≤ d. The intuition here is that, in order to translate from
HO(LFP), we will have to deal with sets and higher-order sets of arity at most w.

Quantification for Sets. We now define a similar pattern to that for the first-order case which allows
us to iterate over all sets of w-tuples in an LTS. This is not the same as enumerating J•KT since w < d.

Let σi be defined via σi(d−1) = i, σi(d) = i+w and σi( j) = j if j < d−1. Then s ∈ J{σi}ϕKT
η iff

s[si/d− 1,si+w/d] ∈ JϕKT
η . The intended use for this substitution is to compare the elements at indices

i and i+w w.r.t. to the order induced by ϕ<. Remember that this formula always compares the last two
elements of the tuple. Moreover, let σ→w be defined by σ→w(i) = w+ i for i ≤ w and σ→w( j) = j for
j > w. Then (s1, . . . ,sd) ∈ J{σ→w}ϕKT

η iff (s1, . . . ,sw,s1, . . . ,sw,s2w+1, . . . ,sd) ∈ JϕKT
η . The intended use

here is to shift the first w elements of a formula to the right to make room for another tuple at the first w
positions such that the two tuples can be compared lexicographically.

Consider the formula ∃(w)x.ϕ :=
(
µ(F : •→ •).λ (x : •).ϕ ∨F(next(w)(x))

)
ff where

ϕ
w
< :=

w∨
i=1

{σi}ϕ<∧
i−1∧
j=1

{σ j}¬ϕ<

ϕ
(w)
< (x,y) := ∃1 . . .∃w. y∧¬x∧{σ→w}

(
∀1 . . .∀w.ϕ

w
<→ x→ y

)
.

next(w)(x) := λ (x : •). e∧¬x∧{σ→w}
(
∀1 . . .∀w. ϕ

w
<→ x

)
∨ e∧ x∧{σ→w}

(
∃1 . . .∃w. ϕ

w
<∧¬x

)
The first formula ϕw

< implements lexicographical comparison of the first w elements in a tuple to the
second w elements. The second formula ϕ

(w)
< lifts the order from tuples to sets of tuples via the lexico-

graphical order induced by the order on the tuples. Finally, the formula next(w) is a predicate transformer
that consumes a set of tuples. It returns a set of tuples that is the lexicographical successor of the input
in the order induced by the order on the first w elements of the individual tuples: the output contains a
tuple iff either the input does contain it, but not all lexicographically smaller tuples, or if the input does
not contain it, but all lexicographically smaller tuples. Also note the role of e that filters out all tuples
that do not adhere to our stipulation that the whole LTS be reachable from one of the states at indices
d− r−1, . . . ,d−2.
Lemma 11. Let T be an LTS with state set S and let η be good. Then T,s |=η ∃(w)x.ϕ iff there is M ⊆ Sw

such that T,s |=η [x 7→M×Sd−w∩η(e)] ϕ .
The proof consists of verifying the informal intuition above. We write ∀(w)x. ϕ to denote ¬∃(w)x. ¬ϕ .

We write ∃(w)x1, . . . ,xn. ϕ for ∃(w)x1 · · ·∃(w)xn. ϕ , and similarly for ∀(w)x. ϕ .
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Generalised Higher-Order Quantification. We have just seen how existential quantification can be
emulated for individual states in an LTS and, with some restrictions, for sets of w-tuples of an LTS.
For other types that commonly appear in HO(LFP), i.e. relations of higher order, there is no immediate
PHFL equivalent, since all types beyond • are function types. However, we can use these function types
to emulate the HO(LFP) types to a sufficient degree. For the sake of simplicity, we only consider types
of a special form; we argue in Sect. 5 why this is not a restriction.

Let τw,k be inductively defined via τw,0 = • and τw,i+1 = τw,i→ ·· · → τw,i→ • where τw,i is repeated
w many times. Given T , let Jτ◦w,iK

T = Jτw,iKT for i≤ 1 and let

Jτ
◦
w,kK

T = { f ∈ Jτw,kKT | f ( f1, . . . , fw) = S or f ( f1, . . . , fw) = /0 f.a. f1, . . . , fw ∈ Jτ
◦
w,k−1K

T}

for k ≥ 2. The important distinction here is that Jτ◦w,kK
T is the restriction of Jτw,kKT to those functions

that always return either the full set of states or the empty set, at least on inputs from Jτ◦w,k−1K
T . This is

desirable since we want to use functions in Jτ◦w,kK
T to emulate higher-order variables of a special form.

Given x,x1, . . . ,xw of the appropriate type, the question whether s ∈ Jx(x1, . . . ,xw)KT
η does not depend on

s (as in modal logics), but is uniform over the while LTS. However, since Jτw,kKT also contains functions
that are not uniform starting from PHFL-order 2, we restrict ourselves to functions that are uniform on
the necessary inputs (i.e. those that are themselves sufficiently uniform).

Consider the following formulas for k ≥ 1, where x = x1, . . . ,xw and y = y1, . . . ,yw:

ϕ
w,k−1
< (x1, . . . ,xw,y1, . . . ,yw) :=

w∨
i=1

ϕ
(w),k−1
< (xi,yi)∧

i−1∧
j=1

¬ϕ
(w),k−1
< (x j,y j)

ϕ
(w),k
< (x,y) := ∃w,k−1x. y(x)∧¬x(x)

∧∀w,k−1y. ϕ
w,l
< (y,x)→ x(y)→ y(y)

ff(w),k := λ (x : τw,k−1).ff

nextw,k(x) := λ (x : τw,k). λ (x : τw,k−1).(
¬x(x)∧∀w,ky. ϕ

w,k
< (y,x)→ x(y)

)
∨
(
x(x)∧∃w,ky. ϕ

w,k
< (y,x)∧¬x(y)

)
∃w,k(x). ϕ :=

(
µ(F : τw,k→ τw,k). λ (x : τw,k).ϕ ∨F(nextw,kx)

)
ff(w),k

where ϕ
(w),k−1
< = ϕ

(w)
< in case k = 1 and ∃w,k−1x.ϕ = ∃(w)x.ϕ if k = 1.

Similarly as in the definitions given before Lemma 11, these formulas lift quantification up by one
level on the type hierarchy. The formula ϕ

w,k−1
< compares width-w-tuples of functions of type τ◦w,k−1

lexicographically using the previously defined formula ϕ
(w),k−1
< that compares individual such functions.

The formula ϕ
(w),k
< then lifts this to individual functions of the next type, using existential and universal

quantification. The formula nextw,k again consumes a function of type τ◦w,k and returns the lexicographi-
cally next one using the standard definition of binary incrementation, while ∃w,k implements existential
quantification for τ◦w,k by iterating through all possible candidates using nextw,k.

Lemma 12. Let T be an LTS and let η be good. Then T,s |=η ∃w,kx.ϕ iff there is f ∈ Jτ◦w,kK
T such that

T,s |=η [x 7→ f ] ϕ .

The proof follows the same pattern as that of Lemma 11 by verifying that the individual formulas do
what is claimed above.
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Lemmas 11 and 12 justify the use of HO(LFP)-style quantification symbols for individual states,
sets of type M×Sd−w∩η(e) for M ⊆ Ss and for τ◦w,k for all k≥ 2. Note that the latter do neither coincide
with HO(LFP) types nor with the respective τw,k.

5 Lower Bounds

Homogeneous Types. In order to simplify the translation from HO(LFP) to PHFL, we restrict the set
of types that can be used in HO(LFP) formulas. Let w≥ 2 be fixed but arbitrary. Define τ ′w,k as τ ′w,1 =�,
τ ′w,i+1 = (τ ′w,i, . . . ,τ

′
w,i) with w many repetitions of τ ′w,i.

Lemma 13. If ϕ ∈ HOk(LFP) defines a query Q, then there is ϕ ′ ∈ HOk(LFP) that defines the same
query, but the only types used in ϕ ′ are τ ′w,0, . . . ,τ

′
w,k for some w.

Proof. There are two principles that are used here: If ϕ contains a type of the form τ ′′ = (τ ′, . . . ,τ ′) with
w′ ≤ w many repetitions of w, we can replace τ ′′ by (τ ′, . . . ,τ ′) with exactly w many repetitions of τ ′

by changing the respective type everywhere in the formula and requiring at quantifiers that, e.g., the last
w−w′ components are equal to the w−w′−1st in every tuple contained in a set. Hence, every type can
be assumed to have width exactly w.

It remains to deal with inhomogeneous types, e.g. those of the form (τ ′,τ ′′, . . .) such that ord(τ ′) 6=
ord(τ ′′). This can be remedied by increasing the type of the lower order by one order, and requiring at
quantification steps that the only tuple in the set be a singleton of the form (M, . . . ,M) of width w. This
procedure needs to be chained if the orders of constituent types diverge by more than one.

Type Correspondence. Now that we can assume w.l.o.g. that all HOk(LFP)-definable queries are de-
fined by an HOk(LFP) formula which uses only the types τ ′w,i for i ≤ k we can observe that these types
are quite similar to the types τw,k defined in the previous section. In fact, we want to emulate the type
τ ′w,k with k > 1 by τ◦w,k−2. The type τ ′s,1 will be handled by polyadicity as in [17].2

Let T be an LTS with state set S and let d ≥ w ≥ 2. For each k ≥ 2, we define a translation
tptrT

k : Jτ ′w,kK
T → Jτ◦w,k−2K

T via tptrT
2 (M) = M×Sd−w and tptrT

i+1(M) = f ∈ Jτw,k−2KT s.t.

f ( f1, . . . , fn) =

{
S, if f j = tptrT

i (xi) f.a. 0≤ j ≤ w and (x1, . . . ,xw) ∈M

/0, otherwise.

Hence, a variable assignment α such that all variables are of types τ ′w,2, . . . ,τ
′
w,k induces an environment

ηα with definitions for all those variables of order ≥ 2 via ηα(X) = tptrT
i (X) where i is the order of X .

The Translation. We are now ready to extend the translation given in [17] to HOk(LFP) with k ≥ 2.
Towards this, we present a syntactical translation trans from HOk(LFP) with k ≥ 2 into PHFLd

k−1 for
some d ≥ 2.
Lemma 14. Let ϕ ∈ HOk(LFP) be bisimulation invariant and have free first-order variables X1, . . . ,Xr

and, hence define a query of width r. Moreover, let τ ′w,0, . . . ,τ
′
w,k be the only types in ϕ . W.l.o.g. let 2w≥ r.

Let d = 2w+r+2. Then there is ϕ ′ ∈ PHFLd
k−1 such that, for all LTS T that are a bisimulation quotient,

we have T,α |= ϕ iff T,(α(X1), . . . ,α(Xr)) |=ηα [e7→M] ϕ ′ where /0 6= M′ ⊆ Sr and M = M′× Sd−2r−2×
{α(X1)}× ·· ·×{α(Xr)}×S2.

2It would also be possible to completely eliminate this type from HOk(LFP) for k ≥ 2; cf. similar constructions in the
context of MSO and automata theory.
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Proof. Let trans be given via

trans(p(Xi)) := pi

trans(a(Xi,X j)) := 〈ai〉{σi, j}ϕ∼
trans(ϕ1∨ϕ2) := trans(ϕ1)∨ trans(ϕ2)

trans(¬ϕ) := ¬trans(ϕ)

trans(∃(Xi : �). ϕ) := ∃i. trans(ϕ)

trans(∃(X : τ
′
w,1).ϕ) := ∃(w)(x). trans(ϕ)

trans(∃(X : τ
′
w,k). ϕ) := ∃w,k(x). trans(ϕ) if k ≥ 2

trans(X(Xi1 , . . . ,Xiw)) := {σ}x if (X : τ
′
w,1)

trans(X(X1, . . . ,Xw)) := x(x1, . . . ,xw) if (X : τ
′
w,k) and k ≥ 2

trans(
(
lfp(X ,Y1, . . . ,Yw). ϕ

)
(Zi1 , . . . ,Ziw)) := {σ}µ(F : •→ •). trans(ϕ) if (X : τw,2)

trans(
(
lfp(X ,Y1, . . . ,Yw). ϕ

)
(Z1, . . . ,Zw)) :=

(
µ(F : τw,k−2→ τw,k−2). λ (y1, . . . ,yw : τw,k−3).

trans(ϕ)
)
(Z1, . . . ,Zw) if (X : τw,k) and k ≥ 3

where σi, j is defined via σi, j(d−1) = i,σi, j(d) = j and σi, j(k) = k for k < d−1, and ϕ∼ is the formula
from Ex. 2, resp. [17] that holds iff the states in positions d− 1 and d are bisimilar, and, finally σ is
defined via σ( j) = i j for 0≤ j ≤ w and σ(k) = k for k ≥ w. The substitions σi, j, resp. σ serve to swap
the elements i and j to positions d− 1 and d, resp. to reorder the elemtents according to the variable
order used on the left side of the translation.̧

The claim now follows by induction over the syntax tree of ϕ . The first five cases are as in [17].
The next four cases are by Lemmas 11 and 12, resp. the definition of ηα . The fixpoint cases are by an
induction over the individual stages of the fixpoint iteration; note that the Knaster-Tarski-based semantics
of the fixpoints in HO(LFP) and PHFL can be equivalently replaced by semantics based on the Kleene
Fixpoint Theorem [10]. This mirrors the proof of the fixpoint case in [17].

Theorem 15. PHFLk captures k-EXPTIME/∼ for all k ≥ 0.

Proof. The cases of k = 0 and k = 1 are of course already known [17, 15]. For k ≥ 2, the upper bound
is shown in Thm. 8. For the lower bound, it suffices, due to Prop. 4, to show that for any bisimulation-
invariant query defined by an HOk+1(LFP) formula there is an equivalent formula in PHFLk. Let ϕ be a
formula defining such a query Q of width r ≥ 1, and w.l.o.g. ϕ contains only the types τw,0, . . . ,τw,k.

Let ϕ ′ be the formula obtained from the translation in Lemma 14 and let σ be defined via σ(d−
r− 2+ i) = i for 1 ≤ i ≤ r, and σ( j) = j for j ≤ d− r− 2 or j ≥ d− 1. Note that σ simply copies
the first r many states in a tuple to the positions d− r−1, . . . ,d−2 where they serve to retain goodness
(cf. Def. 10). Then ψ = (λ (e : •)ϕ){σ}tt defines the query {(T,(s1, . . . ,sd)) | (T,(s1, . . . ,sr)) ∈ Q}.
Towards this, note that J{σ}ttKT = {(s1, . . . ,sd) | si = sd−r−2+i for 1≤ i≤ r}=M. Hence, JψKT = Jϕ ′KT

η

where η = /0[e 7→M]. Since η is good, Lemma 14 is applicable.
What remains is to argue that a query that, on each LTS T , returns all tuples in M× Sd−r where

M ⊆ Sr, is in fact a query that defines tuples of width r. This can either be done formally by expanding
the semantics of the substitution operator {σ} to return tuples in the width of its co-domain, or by simply
considering queries of the above form to be of width r, cf. [17].
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Figure 2: Capturing results for time complexity classes - an overview.

6 Conclusion

We have extended the descriptive complexity of bisimulation-invariant queries, as started by Otto [17]
with the capturing of the class P/∼ with the logic L ω

µ , to further time complexity classes, namely the
classes k-EXPTIME/∼ of bisimulation-invariant queries that can be answered in k-fold exponential time.
These turn out to be exactly those that can be defined in PHFL, the polyadic extension of the higher-order
modal fixpoint logic HFL. This is genuinely an extension as L ω

µ coincides with PHFL0, the fragment
with no higher-order constructs. Moreover, the level in the exponential-time hierarchy corresponds to
the type order used in formulas: k-EXPTIME/∼ = PHFLk.

The resulting picture of descriptive time complexity is shown in Fig. 2. A natural way to extend this
is of course to integrate results about the space complexity classes k-EXPSPACE/∼ sitting in between
k-EXPTIME/∼ and (k + 1)-EXPTIME/∼. Here we can only state that it is possible to capture these
in terms of natural fragments of PHFL as well but the proof requires a few more ingredients than the
time-complexity case. Here we could use the already known characterisation of k-EXPTIME by Higher-
Order Predicate Logics with Least Fixpoints [6]. For the space complexity classes, we need to first
develop such characterisations that extend the Abiteboul-Vianu Theorem. This can be done [13], but due
to space restrictions here its detailed presentation is left for a future publication.

A noteworthy observation for the capturing of k-EXPTIME/∼ with k≥ 1 is that, unlike in the case of
k = 0, the requirement of structures being ordered is not necessary for the invocation of the (generalised)
Immerman-Vardi Theorem. However, starting from k ≥ 1 the order being provided in the bisimulation-
invariant setting plays a crucial role to emulate existential quantification from the HO(LFP) side: the
LTS in question coming with a PHFL0

2-definable order allows us to enumerate sufficiently many sets,
functions, etc. to emulate existential quantification. It remains to see in further detail whether this is an
artifact of the proof strategy or a genuine and inherent part of the correspondence between complexity
classes and logics in the bisimulation-invariant framework.
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