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This paper studies the complexity of classical modal logics and of their extension with fixed-point
operators, using translations to transfer results across logics. In particular, we show several complex-
ity results for multi-agent logics via translations to and from the µ-calculus and modal logic, which
allow us to transfer known upper and lower bounds. We also use these translations to introduce a
terminating tableau system for the logics we study, based on Kozen’s tableau for the µ-calculus, and
the one of Fitting and Massacci for modal logic.

1 Introduction

We introduce a family of multi-modal logics with fixed-point operators that are interpreted on restricted
classes of Kripke models. One can consider these logics as extensions of the usual multi-agent logics of
knowledge and belief [14] by adding recursion to their syntax or of the µ-calculus [21] by interpreting
formulas on different classes of frames and thus giving an epistemic interpretation to the modalities. We
define translations between these logics, and we demonstrate how one can rely on these translations to
prove finite-model theorems, complexity bounds, and tableau termination for each logic in the family.

Modal logic comes in several variations [5]. Some of these, such as multi-modal logics of knowledge
and belief [14], are of particular interest to Epistemology and other application areas. Semantically, the
classical modal logics used in epistemic (but also other) contexts result from imposing certain restrictions
on their models. On the other hand, the modal µ-calculus [21] can be seen as an extension of the smallest
normal modal logic K with greatest and least fixed-point operators, νX and µX respectively. We explore
the situation where one allows both recursion (i.e. fixed-point) operators in a multi-modal language and
imposes restrictions on the semantic models.

We are interested in the complexity of satisfiability for the resulting logics. Satisfiability for the µ-
calculus is known to be EXP-complete [21], while for the modal logics between K and S5 the problem
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is PSPACE-complete or NP-complete, depending on whether they have Negative Introspection [18, 22].
In the multi-modal case, satisfiability for those modal logics becomes PSPACE-complete, and is EXP-
complete with the addition of a common knowledge operator [17].

There is plenty of relevant work on the µ-calculus on restricted frames, mainly in its single-agent
form. Alberucci and Facchini examine the alternation hierarchy of the µ-calculus over reflexive, sym-
metric, and transitive frames in [2]. D’Agostino and Lenzi have studied the µ-calculus on different
classes of frames in great detail. In [11], they reduce the µ-calculus over finite transitive frames to first-
order logic. In [9], they prove that S5µ -satisfiability is NP-complete, and that the two-agent version of
S5µ does not have the finite model property. In [12], they consider finite symmetric frames, and they
prove that Bµ -satisfiability is in 2EXP, and EXP-hard. They also examine planar frames in [10], where
they show that the alternation hierarchy of the µ-calculus over planar frames is infinite.

Our primary method of proving complexity results is through translations to and from the multi-
modal µ-calculus. We show that we can use surprisingly simple translations from modal logics without
recursion to the base modal logic Kn, reproving the PSPACE upper bound for these logics (Theorem 8
and Corollary 9). These translations and our constructions to prove their correctness do not generally
transfer to the corresponding logics with recursion. We present translations from specific logics to the
µ-calculus and back, and we discuss the remaining open cases. We discover, through the properties of
our translations, that several behaviors induced on the transitions do not affect the complexity of the
satisfiability problem. As a result, we prove that all logics with axioms among D, T , and 4, and the least-
fixed-point fragments of logics that also have B, have their satisfiability in EXP, and a matching lower
bound for the logics with axioms from D,T,B (Corollaries 15 and 16). Finally, we present tableaux for
the discussed logics, based on the ones by Kozen for the µ-calculus [21], and by Fitting and Massacci for
modal logic [16,24]. We give tableau-termination conditions for every logic with a finite model property
(Theorem 19).

The addition of recursive operators to modal logic increases expressiveness. An important example
is that of common knowledge or common belief, which can be expressed with a greatest fixed-point thus:
νX .(ϕ ∧

∧
α [α]X). But the combination of epistemic logics and fixed-points can potentially express

more interesting epistemic concepts. For instance, the formula µX .
∨

α([α]ϕ ∨ [α]X), in the context of a
belief interpretation, can be thought to claim that there is a rumour of ϕ . It would be interesting to see
what other meaningful sentences of epistemic interest one can express using recursion. Furthermore, the
family of logics we consider allows each agent to behave according to a different logic. This flexibility
allows one to mix different interpretations of modalities, such as a temporal interpretation for one agent
and an epistemic interpretation for another. Such logics can even resemble hyper-logics [8] if a set of
agents represents different streams, and combinations of epistemic and temporal or hyper-logics have
recently been used to express safety and privacy properties of systems [7].

The paper is organized as follows. Section 2 gives the necessary background and an overview of
current results. Section 3 defines a class of translations that provide us with several upper and lower
bounds, and identifies conditions under which they can be composed. In Section 4 we finally give
tableaux for our multi-modal logics with recursion. We conclude in Section 5 with a set of open questions
and directions. Omitted proofs can be found in the full version of the paper [23].

2 Definitions and Background

This section introduces the logics that we study and the necessary background on the complexity of
modal logic and the µ-calculus.
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2.1 The Multi-Modal Logics with Recursion

We start by defining the syntax of the logics.

Definition 1. We consider formulas constructed from the following grammar:

ϕ,ψ ∈ L :: = p | ¬p | tt | ff | X | ϕ ∧ψ | ϕ ∨ψ

| 〈α〉ϕ | [α]ϕ | µX .ϕ | νX .ϕ,

where X comes from a countable set of logical (or fixed-point) variables, LVAR, α from a finite set of
agents, AG, and p from a finite set of propositional variables, PVAR. When AG = {α}, �ϕ stands for
[α]ϕ , and ♦ϕ for 〈α〉ϕ . We also write [A]ϕ to mean

∧
α∈A

[α]ϕ and 〈A〉ϕ for
∨

α∈A

〈α〉ϕ .

A formula is closed when every occurrence of a variable X is in the scope of recursive operator νX
or µX . Henceforth we consider only closed formulas, unless we specify otherwise.

Moreover, for recursion-free closed formulas we associate the notion of modal depth, which is the
nesting depth of the modal operators1. The modal depth of ϕ is defined inductively as:

• md(p) = md(¬p) = md(tt) = md(ff) = 0, where p ∈ PVAR,

• md(ϕ ∨ψ) = md(ϕ ∧ψ) = max(md(ϕ),md(ψ)), and

• md([a]ϕ) = md(〈a〉ϕ) = 1+md(ϕ), where a ∈ AG.

We assume that in formulas, each recursion variable X appears in a unique fixed-point formula fx(X),
which is either of the form µX .ϕ or νX .ϕ . If fx(X) is a least-fixed-point (resp. greatest-fixed-point)
formula, then X is called a least-fixed-point (resp. greatest-fixed-point) variable. We can define a partial
order on fixed-point variables, such that X ≤ Y iff fx(X) is a subformula of fx(Y ), and X < Y when
X ≤ Y and X 6= Y . If X is ≤-minimal among the free variables of ϕ , then we define the closure of ϕ to
be cl(ϕ) = cl(ϕ[fx(X)/X ]), where ϕ[ψ/X ] is the usual substitution operation, and if ϕ is closed, then
cl(ϕ) = ϕ .

We define sub(ϕ) as the set of subformulas of ϕ , and |ϕ| = |sub(ϕ)| is bounded by the length of ϕ

as a string of symbols. Negation, ¬ϕ , and implication, ϕ → ψ , can be defined in the usual way. Then,
we define sub(ϕ) = sub(ϕ)∪{¬ψ ∈ L | ψ ∈ sub(ϕ)}.

Semantics We interpret formulas on the states of a Kripke model. A Kripke model, or simply model, is
a quadruple M = (W,R,V ) where W is a nonempty set of states, R⊆W ×AG×W is a transition relation,
and V : W → 2PVAR determines on which states a propositional variable is true. (W,R) is called a frame.
We usually write (u,v) ∈ Rα or uRαv instead of (u,α,v) ∈ R, or uRv, when AG is a singleton {α}.

Formulas are evaluated in the context of an environment ρ : LVAR → 2W , which gives values to
the logical variables. For an environment ρ , variable X , and set S ⊆W , we write ρ[X 7→ S] for the
environment that maps X to S and all Y 6= X to ρ(Y ). The semantics for our formulas is given through a
function J−KM , defined in Table 1. The semantics of ¬ϕ are constructed as usual, where J¬X ,ρKM =
W\ρ(X).

We sometimes use M ,s |=ρ ϕ for s∈ Jϕ,ρKM , and as the environment has no effect on the semantics
of a closed formula ϕ , we often drop it from the notation and write M ,s |= ϕ or s ∈ JϕKM . If M ,s |= ϕ ,
we say that ϕ is true, or satisfied, in s. When the particular model does not matter, or is clear from the
context, we may omit it.

1The modal depth of recursive formulas can be either zero, or infinite. However, this is not relevant for the spectrum of this
work.
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Jtt,ρK =W, Jff,ρK = /0, Jp,ρK = {s | p ∈V (s)}, J¬p,ρK =W\Jp,ρK,
J[α]ϕ,ρK =

{
s
∣∣ ∀t. sRαt implies t ∈ Jϕ,ρK

}
, Jϕ1∧ϕ2,ρK = Jϕ1,ρK∩ Jϕ2,ρK,

J〈α〉ϕ,ρK =
{

s
∣∣ ∃t. sRαt and t ∈ Jϕ,ρK

}
, Jϕ1∨ϕ2,ρK = Jϕ1,ρK∪ Jϕ2,ρK,

JµX .ϕ,ρK =
⋂{

S
∣∣ S⊇ Jϕ,ρ[X 7→ S]K

}
, JX ,ρK = ρ(X),

JνX .ϕ,ρK =
⋃{

S
∣∣ S⊆ Jϕ,ρ[X 7→ S]K

}
.

Table 1: Semantics of modal formulas on a model M = (W,R,V ). We omit M from the notation.

Depending on how we further restrict our syntax and the model, we can describe several logics.
Without further restrictions, the resulting logic is the µ-calculus [21]. The max-fragment (resp. min-
fragment) of the µ-calculus is the fragment that only allows the νX (resp. the µX) recursive operator. If
|AG|= k and we allow no recursive operators (or recursion variables), then we have the basic modal logic
Kk (or K, if k = 1), and further restrictions on the frames can result in a wide variety of modal logics
(see [6]). We give names to the following frame conditions, or frame constraints, for the case where
AG = {α}. These conditions correspond to the usual axioms for normal modal logics — see [5, 6, 14],
which we will revisit in Section 3.

D: R is serial: ∀s.∃t.sRt;

T : R is reflexive: ∀s.sRs;

B: R is symmetric: ∀s, t.(sRt⇒ tRs);

4: R is transitive: ∀s, t,r.(sRtRr⇒ sRr);

5: R is euclidean: ∀s, t,r. if sRt and sRr,
then tRr.

We consider modal logics that are interpreted over models that satisfy a combination of these con-
straints for each agent. D, which we call Consistency, is a special case of T , called Factivity. Constraint
4 is Positive Introspection and 5 is called Negative Introspection.2 Given a logic L and constraint c, L+c
is the logic that is interpreted over all models with frames that satisfy all the constraints of L and c. The
name of a single-agent logic is a combination of the constraints that apply to its frames, including K, if
the constraints are among 4 and 5. Therefore, logic D is K+D, T is K+T , B is K+B, K4 = K+ 4,
D4 = K+D+ 4 = D+ 4, and so on. We use the special names S4 for T4 and S5 for T45. We define
a (multi-agent) logic L on AG as a map from agents to single-agent logics. L is interpreted on Kripke
models of the form (W,R,V ), where for every α ∈ AG, (W,Rα) is a frame for L(α).

For a logic L, Lµ is the logic that results from L after we allow recursive operators in the syntax —
in case they were not allowed in L. Furthermore, if for every α ∈ AG, L(α) is the same single-agent
logic L, we write L as Lk, where |AG|= k. Therefore, the µ-calculus is Kµ

k .
From now on, unless we explicitly say otherwise, by a logic, we mean one of the logics we have

defined above. We call a formula satisfiable for a logic L, if it is satisfied in some state of a model for L.

Example 1. For a formula ϕ , we define Inv(ϕ) = νX .(ϕ ∧ [AG]X). Inv(ϕ) asserts that ϕ is true in all
reachable states, or, alternatively, it can be read as an assertion that ϕ is common knowledge. We dually
define Eve(ϕ) = µX .(ϕ ∨〈AG〉X), which asserts that ϕ is true in some reachable state.

2These are names for properties or axioms of a logic. When we refer to these conditions as conditions of a frame or model,
we may refer to them with the name of the corresponding relation condition: seriality, reflexivity, symmetry, transitivity, and
euclidicity.
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2.2 Known Results

For logic L, the satisfiability problem for L, or L-satisfiability is the problem that asks, given a formula
ϕ , if ϕ is satisfiable. Similarly, the model checking problem for L asks if ϕ is true at a given state of a
given finite model.

Ladner [22] established the classical result of PSPACE-completeness for the satisfiability of K, T, D,
K4, D4, and S4 and NP-completeness for the satisfiability of S5. Halpern and Rêgo later characterized
the NP–PSPACE gap for one-action logics by the presence or absence of Negative Introspection [18],
resulting in Theorem 1. Later, Rybakov and Shkatov [27] proved the PSPACE-completeness of B and
TB. For formulas with fixed-point operators, D’Agostino and Lenzi in [9] show that satisfiability for
single-agent logics with constraint 5 is also NP-complete.

Theorem 1 ( [18,22,27]). If L∈{K,T,D,B,TB,K4,D4,S4}, then L-satisfiability is PSPACE-complete;
and L+5-satisfiability and (L+5)µ -satisfiability is NP-complete.

Theorem 2 ( [17]). If k > 1 and L has a combination of constraints from D,T,4,5 and no recursive
operators, then Lk-satisfiability is PSPACE-complete.

Remark 1. Note that Halpern and Moses in [17] prove these bounds for the cases of Kk,Tk,S4k,KD45k,
and S5k only. Similarly, D’Agostino and Lenzi in [9] only prove the NP-completeness of satisfiability
for S5µ . However, it is not hard to see that their respective methods also work for the rest of the logics
of Theorems 1 and 2. �

Theorem 3 ( [21]). The satisfiability problem for the µ-calculus is EXP-complete.

Theorem 4 ( [13]). The model checking problem for the µ-calculus is in NP∩ coNP.3

Finally we have the following initial known results about the complexity of satisfiability, when we
have recursive operators. Theorems 5 and 6 have already been observed in [1].

Theorem 5. The satisfiability problem for the min- and max-fragments of the µ-calculus is EXP-complete,
even when |AG|= 1.

Proof sketch. It is known that satisfiability for the min- and max-fragments of the µ-calculus (on one
or more action) is EXP-complete. It is in EXP due to Theorem 3, and these fragments suffice [26] to
describe the PDL formula that is constructed by the reduction used in [15] to prove EXP-hardness for
PDL. Therefore, that reduction can be adjusted to prove that satisfiability for the min- and max-fragments
of the µ-calculus is EXP-complete.

It is not hard to express in logics with both frame constraints and recursion operators that formula
ϕ is common knowledge, with formula νX .ϕ ∧ [AG]X . Since validity for Lk with common knowledge
(and without recursive operators) and k > 1 is EXP-complete [17]4, Lµ

k is EXP-hard.

Proposition 6. Satisfiability for Lµ

k , where k > 1, is EXP-hard.

3 Complexity through Translations

In this section, we examine L-satisfiability. We use formula translations to reduce the satisfiability of
one logic to the satisfiability of another. We investigate the properties of these translations and how they
compose with each other, and we achieve complexity bounds for several logics.

3In fact, the problem is known to be in UP∩ coUP [20].
4Similarly to Remark 1, [17] does not explicitly cover all these cases, but the techniques can be adjusted.
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Figure 1: The frame property hierarchy

In the context of this paper, a formula translation from logic L1 to logic L2 is a mapping f on formulas
such that each formula ϕ is L1 -satisfiable if and only if f (ϕ) is L2 -satisfiable. We only consider
translations that can be computed in polynomial time, and therefore, our translations are polynomial-
time reductions, transfering complexity bounds between logics.

According to Theorem 3, Kµ

k -satisfiability is EXP-complete, and therefore for each logic L, we aim
to connect Kµ

k and L via a sequence of translations in either direction, to prove complexity bounds for
L-satisfiability.

3.1 Translating Towards Kk

We begin by presenting translations from logics with more to logics with fewer frame conditions. To this
end, we study how taking the closure of a frame under one condition affects any other frame conditions.

3.1.1 Composing Frame Conditions

We now discuss how the conditions for frames affect each other. For example, to construct a transitive
frame, one can take the transitive closure of a possibly non-transitive frame. The resulting frame will
satisfy condition 4. As we see, taking the closure of a frame under condition x may affect whether that
frame maintains condition y, depending on x and y. In the following we observe that one can apply the
frame closures in certain orders that preserve the properties one aquires with each application.

Let F = (W,R) be a frame, α ∈ A ⊆ AG, and x a frame restriction among T,B,4,5. Then, Rα

x is
the closure of Rα under x, Rx,A is defined by Rx,A

β
= Rβ

x, if β ∈ A, and Rx,A
β

= Rβ , otherwise. Then,

Fx,A
= (W,Rx,A

). We make the following observation.

Lemma 7. Let x be a frame restriction among D,T,B,4,5, and y a frame restriction among T,B,4,5,
such that (x,y) 6= (4,B),(5,T ),(5,B). Then, for every frame F that satisfies x, Fy also satisfies x.

According to Lemma 7, frame conditions are preserved as seen in Figure 1. In Figure 1, an arrow
from x to y indicates that property x is preserved though the closure of a frame under y. Dotted red arrows
indicate one-way arrows. For convenience, we define FD

= (W,RD
), where RD

= R∪{(a,a) ∈W 2 |6 ∃
(a,b) ∈ R}.
Remark 2. We note that, in general, not all frame conditions are preserved through all closures under
another condition. For example, the accessibility relation {(a,b),(b,b)} is euclidean, but its reflexive
closure {(a,b),(b,b),(a,a)} is not.
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There is at least one linear ordering of the frame conditions D,T,B,4,5, such that all preceding
conditions are preserved by closures under the following conditions. We call such an order a closure-
preserving order. We use the linear order D,T,B,4,5 in the rest of the paper.

3.1.2 Modal Logics

We start with translations that map logics without recursive operators to logics with fewer constraints. As
mentioned in Subsection 2.2, all of the logics L ∈ {K,T,D,K4,D4,S4} and L+5 with one agent have
known completeness results, and the complexity of modal logic is well-studied for multi-agent modal
logics as well. The missing cases are very few and concern the combination of frame conditions (other
than 5) as well as the multi-agent case. However we take this opportunity to present an intuitive introduc-
tion to our general translation method. In fact, the translations that we use for logics without recursion
are surprisingly straightforward. Each frame condition that we introduced in Section 2 is associated with
an axiom for modal logic, such that whenever a model has the condition, every substitution instance of
the axiom is satisfied in all worlds of the model (see [5, 6, 14]). We give for each frame condition x and
agent α , the axiom axx

α :

axD
α : 〈α〉tt

axT
α : [α]p→ p

axB
α : 〈α〉[α]p→ p

ax4
α : [α]p→ [α][α]p

ax5
α : 〈α〉[α]p→ [α]p

For each formula ϕ and d ≥ 0, let Invd(ϕ) =
∧

i≤d [AG]iϕ . Our first translations are straightforwardly
defined from the above axioms.

Translation 1 (One-step Translation). Let A ⊆ AG and let x be one of the frame conditions. For every
formula ϕ , let d = md(ϕ) if x 6= 4, and d = md(ϕ)|ϕ|, if x = 4. We define:

Fx
A(ϕ) = ϕ ∧ Invd

( ∧
ψ∈sub(ϕ)

α∈A

axx
α [ψ/p]

)
.

Theorem 8. Let A ⊆ AG, x be one of the frame conditions, and let L1,L2 be logics without recursion
operators, such that L1(α) = L2(α)+ x when α ∈ A, and L2(α) otherwise, and L2(α) only includes
frame conditions that precede x in the fixed order of frame conditions. Then, ϕ is L1-satisfiable if and
only if Fx

A(ϕ) is L2-satisfiable.

We present here a short proof sketch of this theorem.

Proof sketch. The proof of the “only if” direction is straightforward, as for any agent α with frame
condition x, axx

α is valid in L1. Thus the translation holds on any L1-model that satisfies ϕ .
The other, and more involved direction requires the construction of an L1-model for ϕ from an L2-

model for Fx
A(ϕ). We make use of the observation that no modal logic formula can describe a model

at depth more than the constant d. Therefore, we use the unfolding of the L2-model, to keep track of
the path that one takes to reach a certain state, and that path’s length. We then carefully reapply the
necessary closures on the accessibility relations and we use induction on its subformulas, to prove that
ϕ is true in the constructed model. We do this as a separate case for each axiom. It is worth noting that
we pay special care for the case of x = 4 to account for the fact that the translation does not allow the
modal depth of the relevant subformulas to decrease with each transition during the induction; and that
we needed to include the negations of subformulas of ϕ in the conjunction of Translation 1, only for the
case of x = 5.
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Corollary 9. The satisfiability problem for every logic without fixed-point operators is in PSPACE.

3.1.3 Modal Logics with Recursion

In the remainder of this section we will modify our translations and proof technique, in order to lift our
results to logics with fixed-point operators. It is not clear whether the translations of Subsection 3.1.2
can be extended straightforwardly in the case of logics with recursion, by using unbounded invariance
Inv, instead of the bounded Invd .
Example 2. Let ϕ f = µX .�X , which requires all paths in the model to be finite, and thus it is not
satisfiable in reflexive frames. In Subsection 3.1.2, to translate formulas from reflexive models, we did
not need to add the negations of subformulas as conjuncts. In this case, such a translation would give

ϕt := ϕ f ∧ Inv((�ϕ f → ϕ f )∧ (��ϕ f →�ϕ f )).

Indeed, on reflexive frames, the formulas �ϕ f → ϕ f and ��ϕ f → �ϕ f are valid, and therefore ϕt is
equivalent to ϕ f , which is K-satisfiable. This was not an issue in Subsection 3.1.2, as the finiteness of
the paths in a model cannot be expressed without recursion.

One would then naturally wonder whether conjoining over sub(ϕ f ) in the translation would make a
difference. The answer is affirmative, as the tranlation

ϕ f ∧ Inv

( ∧
ψ∈sub(ϕ f )

�ψ → ψ

)

would then yield a formula that is not satisfiable. However, our constructions would not work to prove
that such a translation preserves satisfiability. For example, consider µX .�(p→ (r∧ (q→ X))), whose
translation is satisfied on a pointed model that satisfies at the same time p and q. We invite the reader to
verify the details.

The only case where the approach that we used for the logics without recursion can be applied is for
the case of seriality (condition D), as Inv(〈α〉tt) directly ensures the seriality of a model.

Translation 2.
FDµ

A (ϕ) = ϕ ∧ Inv
( ∧

α∈A

〈α〉tt
)
.

Theorem 10. Let A ⊆ AG and |AG| = k, and let L be a logic, such that L(α) = D when α ∈ A, and K
otherwise. Then, ϕ is L-satisfiable if and only if FDµ

A (ϕ) is Kµ

k -satisfiable.

For the cases of reflexivity and transitivity, our simple translations substitute the modal subformulas
of a formula to implicitly enforce the corresponding condition.

Translation 3. The operation FT µ

A (−) is defined to be such that

• FT µ

A ([α]ϕ) = [α]FT µ

A (ϕ)∧FT µ

A (ϕ);

• FT µ

A (〈α〉ϕ) = 〈α〉FT µ

A (ϕ)∨FT µ

A (ϕ);

• and it commutes with all other operations.

Theorem 11. Let /0 6= A⊆ AG, and let L1,L2 be logics, such that L1(α) = L2(α)+T when α ∈ A, and
L2(α) otherwise, and L2(α) at most includes frame condition D. Then, ϕ is L1-satisfiable if and only if
FT µ

A (ϕ) is L2-satisfiable.
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Proof sketch. The “only if” direction is proven by taking the appropriate reflexive closure and showing
by induction that the subformulas of ϕ are preserved.

Translation 4. The operation F4µ

A (−) is defined to be such that

• F4µ

A ([α]ψ) = Inv([α](F4µ

A (ψ)),

• F4µ

A (〈α〉ψ) = Eve(〈α〉(F4µ

A (ψ)),

• F4µ

A (−) commutes with all other operations.

Theorem 12. Let /0 6= A⊆ AG, and let L1,L2 be logics, such that L1(α) = L2(α)+4 when α ∈ A, and
L2(α) otherwise, and L2(α) at most includes frame conditions D,T,B. Then, ϕ is L1-satisfiable if and
only if F4µ

A (ϕ) is L2-satisfiable.

Proof. If F4µ

A (ϕ) is satisfied in a model M = (W,R,V ), let M′ = (W,R+,V ), where R+
α is the transitive

closure of Rα , if α ∈ A, and R+
α = Rα , otherwise. It is now not hard to use induction on ψ to show that

for every (possibly open) subformula ψ of ϕ , for every environment ρ ,
q

F4µ

A (ψ),ρ
y

M
= Jψ,ρKM ′ . The

other direction is more straightforward.

In order to produce a similar translation for symmetric frames, we needed to use a more intricate
type of construction. Moreover, we only prove the correctness of the following translation for formulas
without least-fixed-point operators.

Translation 5. The operation FBµ

A (−) is defined as

FBµ

A (ϕ) = ϕ ∧ Inv
(
[α]〈α〉p∧

∧
ψ∈sub(ϕ)

(ψ → [α][α](p→ ψ))
)
,

where p is a new propositional variable, not occurring in ϕ .

Theorem 13. Let /0 6= A⊆ AG, and let L1,L2 be logics, such that L1(α) = L2(α)+B when α ∈ A, and
L2(α) otherwise, and L2(α) at most includes frame conditions D,T . Then, a formula ϕ that has no µX
operators is L1-satisfiable if and only if FBµ

A (ϕ) is L2-satisfiable.

Remark 3. A translation for euclidean frames and for the full syntax on symmetric frames would need
different approaches. D’Agostino and Lenzi show in [9] that S5µ

2 does not have a finite model property,
and their result can be easily extended to any logic L with fixed-point operators, where there are at least
two distinct agents α,β , such that L(α) and L(β ) have constraint B or 5. Therefore, as our constructions
for the translations to Kµ

k guarantee the finite model property to the corresponding logics, they do not
apply to multimodal logics with B or 5.

3.2 Embedding Kµ
n

In this subsection, we present translations from logics with fewer frame conditions to ones with more
conditions. This will allow us to prove EXP-completeness in the following subsection. Let p,q be
distinguished propositional variables that do not appear in our formulas. We let ~p range over p, ¬p,
p∧q, p∧¬q, and ¬p∧q.

Definition 2 (function next). next(p∧ q) = p∧¬q, next(p∧¬q) = ¬p∧ q, and next(¬p∧ q) = p∧ q;
and next(p) = ¬p and next(¬p) = p.

We use a uniform translation from Kµ

k to any logic with a combination of conditions D,T,B.
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Translation 6. The operation FKµ

A (−) on formulas is defined such that:

• FKµ

A (〈α〉ψ) =
∧
~p(~p→ 〈α〉(next(~p)∧FKµ

A (ψ))), if α ∈ A;

• FKµ

A ([α]ψ) =
∧
~p(~p→ [α](next(~p)→ FKµ

A (ψ))), if α ∈ A;

• FKµ

A (−) commutes with all other operations.

We note that there are simpler translations for the cases of logics with only D ot T as a constraint,
but the FKµ

A (−) is uniform for all the logics that we consider in this subsection.

Theorem 14. Let /0 6= A ⊆ AG, |AG| = k, and let L be such that L(α) includes only frame conditions
from D,T,B when α ∈ A, and L(α) = K otherwise. Then, ϕ is Kµ

k -satisfiable if and only if FKµ

A (ϕ) is
L-satisfiable.

The proof of Theorem 14 can be found in [23]. It is worth noting that the “if” direction uses the
symmetric closure to construct a new model, while the “only if” direction requires the introduction of
new states that behave as each original state in the model.

3.3 Complexity results

We observe that our translations all result in formulas of size at most linear with respect to the original.
The exceptions are Translations 1 and 5, which have a quadratic cost.

Corollary 15. If L only has frame conditions D,T , then its satisfiability problem is EXP-complete; if L
only has frame conditions D,T,4, then its satisfiability problem is in EXP.

Proof. Immediately from Theorems 10, 11, 12, and 14.

Corollary 16. If L only has frame conditions D,T,B, then

1. L-satisfiability is EXP-hard; and

2. the restriction of L-satisfiability on formulas without µX operators is EXP-complete.

Proof. Immediately from Theorems 10, 11, 13, and 14.

4 Tableaux for Lµ

k

We give a sound and complete tableau system for logic L. Furthermore, if L has a finite model property,
then we give terminating conditions for its tableau. The system that we give in this section is based on
Kozen’s tableaux for the µ-calculus [21] and the tableaux of Fitting [16] and Massacci [24] for modal
logic. We can use Kozen’s finite model theorem [21] to help us ensure the termination of the tableau for
some of these logics.

Theorem 17 ( [21]). There is a computable κ : N→ N, such that every Kµ

k -satisfiable formula ϕ is
satisfied in a model with at most κ(|ϕ|) states.5

Corollary 18. If L only has frame conditions D,T,4, then there is a computable κ : N→ N, such that
every L-satisfiable formula ϕ is satisfied in a model with at most κ(|ϕ|) states.

5The tableau in [21] yields an upper bound of 22O(n3)
for κ0(n), but that bound is not useful to obtain a “good” decision

procedure. The purpose of this section is not to establish any good upper bound for satisfiability testing, which is done in
Section 3.
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σ πX .ϕ
(fix)

σ ϕ

σ X (X)
σ fx(X)

σ ϕ ∨ψ
(or)

σ ϕ | σ ψ

σ ϕ ∧ψ
(and)

σ ϕ

σ ψ

σ [α]ϕ
(B)

σ .α〈ψ〉 ϕ

σ 〈α〉ϕ
(D)

σ .α〈ϕ〉 ϕ

σ [α]ϕ
(d)

σ .α〈ϕ〉 ϕ

σ [α]ϕ
(4)

σ .α〈ψ〉 [α]ϕ

where, for rules (B) and (4), σ .α〈ψ〉 has already appeared in the branch; and for (D), σ is not α-flat.

σ .α〈ψ〉 [α]ϕ
(B5)

σ [α]ϕ

σ .α〈ψ〉 〈α〉ϕ
(D5)

σ .α〈ψ〉.α〈ϕ〉 ϕ

σ .α〈ψ〉 [α]ϕ
(b)

σ ϕ

σ [α]ϕ
(t)

σ ϕ

σ .α〈ψ〉 [α]ϕ
(B55)

σ .α〈ψ ′〉 [α]ϕ

σ .α〈ψ〉.α〈ψ ′〉 〈α〉ϕ
(D55)

σ .α〈ψ〉.α〈ϕ〉 ϕ

σ .α〈ψ〉 [α]ϕ
(b4)

σ [α]ϕ

where, for rule (B55), σ .α〈ψ ′〉 has already appeared in the branch; for rule (D5), σ is not α-flat, and
σ 〈α〉ϕ does not appear in the branch; for rule (D55), σ 〈α〉ϕ does not appear in the branch.

Table 2: The tableau rules for L = Lµ
n

Proof. Immediately, from Theorems 17, 10, 11, and 12, and Lemma 7.

Remark 4. We note that not all modal logics with recursion have a finite model property – see Remark 3.
Intuitively, a tableau attempts to build a model that satisfies the given formula. When it needs to

consider two possible cases, it branches, and thus it may generate several branches. Each branch that
satisfies certain consistency conditions, which we define below, represents a corresponding model.

Our tableaux use prefixed formulas, that is, formulas of the form σ ϕ , where σ ∈ (AG× L)∗ and
ϕ ∈ L; σ is the prefix of ϕ in that case, and we say that ϕ is prefixed by σ . We note that we separate
the elements of σ with a dot. We say that the prefix σ is α-flat when α has axiom 5 and σ = σ ′.α〈ψ〉
for some ψ . Each prefix possibly represents a state in a corresponding model, and a prefixed formula
σ ϕ declares that ϕ is satisfied in the state represented by σ . As we will see below, the prefixes from
(AG×L)∗ allow us to keep track of the diamond formula that generates a prefix through the tableau rules.
For agents with condition 5, this allows us to restrict the generation of new prefixes and avoid certain
redundancies, due to the similarity of euclidean binary relations to equivalence relations [18, 25].

The tableau rules that we use appear in Table 2. These include fixed-point and propositional rules,
as well as rules that deal with modalities. Depending on the logic that each agent α is based on, a
different set of rules applies for α: for rule (d), L(α) must have condition D; for rule (t), L(α) must
have condition T ; for rule (4), L(α) must have condition 4; for rule (B5), (D5), and (D55), L(α) must
have condition 5; for (b) L(α) must have condition B; and for (b4) L(α) must have both B and 4. Rule
(or) is the only rule that splits the current tableau branch into two. A tableau branch is propositionally
closed when σ ff or both σ p and σ ¬p appear in the branch for some prefix σ . For each prefix σ that
appears in a fixed tableau branch, let Φ(σ) be the set of formulas prefixed by σ in that branch. We use
the notation σ ≺ σ ′ to mean that σ ′ = σ .σ ′′ for some σ ′′, in which case σ is an ancestor of σ ′.

We define the relation X−→ on prefixed formulas in a tableau branch as χ1
X−→ χ2, if χ1

χ2
is a tableau

rule and χ1 is not of the form σ Y , where X < Y ; then, X−→
+

is the transitive closure of X−→ and X−→
∗

is its
reflexive and transitive closure. We can also extend this relation to prefixes, so that σ

X−→ σ ′, if and only
if σ ψ

X−→ σ ′ ψ ′, for some ψ ∈ Φ(σ) and ψ ′ ∈ Φ(σ ′). If in a branch there is a X−→-sequence where X is
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a least fixed-point and appears infinitely often, then the branch is called fixed-point-closed. A branch is
closed when it is either fixed-point-closed or propositionally closed; if it is not closed, then it is called
open.

Now, assume that there is a κ : N→N, such that every L-satisfiable formula ϕ is satisfied in a model
with at most κ(|ϕ|) states. An open tableau branch is called (resp. locally) maximal when all tableau
rules (resp. the tableau rules that do not produce new prefixes) have been applied. A branch is called
sufficient for ϕ when it is locally maximal and for every σ ψ in the branch, for which a rule can be
applied and has not been applied to σ ψ , |σ | > |AG| ·κ(|ϕ|)|ϕ|2 · 22|ϕ|+1. A tableau is called maximal
when all of its open branches are maximal, and closed when all of its branches are closed. It is called
sufficiently closed for ϕ if it is propositionally closed, or for some least fixed-point variable X , it has
a X−→-path, where X appears at least κ(|ϕ|)+ 1 times. A sufficient branch for ϕ that is not sufficiently
closed is called sufficiently open for ϕ .

A tableau for ϕ starts from ε ϕ and is built using the tableau rules of Table 2. A tableau proof for ϕ

is a closed tableau for the negation of ϕ .

Theorem 19 (Soundness, Completeness, and Termination of Lµ

k -Tableaux). From the following, the first
two are equivalent for any formula ϕ ∈ L and any logic L. Furthermore, if there is a κ : N→ N, such
that every L-satisfiable formula ϕ is satisfied in a model with at most κ(|ϕ|) states, then all the following
are equivallent.

1. ϕ has a maximal L-tableau with an open branch;

2. ϕ is L-satisfiable; and

3. ϕ has an L-tableau with a sufficiently open branch for ϕ .

Proof sketch. The direction from 1 to 2 uses the usual model construction, but where one needs to take
into account the fixed-point formulas; the direction from 2 to 3 uses techniques and results from [21,28],
including Corollary 18; and the direction from 3 to 1 shows how to detect appropriate parts of the branch
to repeat until we safely get a maximal branch.

Corollary 20. L-tableaux are sound and complete for L.

Example 3. Let AG = {a,b} and L be a logic, such that L(a) = Kµ and L(b) = K5µ . Let

ϕ1 = (p∧〈a〉p)∧µX .(¬p∨ [a]X) and ϕ2 = 〈b〉p∧µX .([b]¬p∨ [b])X .

As we see in Figure 2, the tableau for ϕ1 produces an open branch, while the one for ϕ2 has all of its
branches closed, the leftmost one due to an infinite X−→-sequence.

5 Conclusions

We studied multi-modal logics with recursion. These logics mix the frame conditions from epistemic
modal logic, and the recursion of the µ-calculus. We gave simple translations among these logics that
connect their satisfiability problems. This allowed us to offer complexity bounds for satisfiability and to
prove certain finite model results. We also presented a sound and complete tableau that has termination
guarantees, conditional on a logic’s finite model property.
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ε (p∧〈a〉p)∧µX .(¬p∨ [a]X)

ε µX .(¬p∨ [a]X)

ε p∧〈a〉p
ε p

ε 〈a〉p
(fix)

ε ¬p∨ [a]X
ε [a]X

(D)
a〈p〉 p

(B)
a〈p〉 X

(X)
a〈p〉 µX .(¬p∨ [a]X)

(fix)
a〈p〉 ¬p∨ [a]X

a〈p〉 [a]X a〈p〉 ¬p
x

ε ¬p
x

ε 〈b〉p∧µX .([b]¬p∨ [b]X)

ε µX .([b]¬p∨ [b]X)

ε 〈b〉p
(D)

b〈p〉 p
(fix)

ε [b]¬p∨ [b]X
ε [b]X

(B)
b〈p〉 X

(X)
b〈p〉 µX .([b]¬p∨ [b]X)

(fix)
b〈p〉 [b]¬p∨ [b]X

b〈p〉 [b]X
(B5)

ε [b]X
(B)

b〈p〉 X
(X)

...

b〈p〉 [b]¬p
(B5)

ε [b]¬p
(B)

b〈p〉 ¬p
x

ε [b]¬p
(B)

b〈p〉 ¬p
x

Figure 2: Tableaux for ϕ1 and ϕ2. The dots represent that the tableau keeps repeating as from the identical
node above. The x mark represents a propositionally closed branch.

Conjectures and Future Work We currently do not posses full translations for the cases of symmetric
and euclidean frames. What is interesting is that we also do not have a counterexample to prove that the
translations that we already have, as well as other attempts, are not correct. In the case of symmetric
frames, we have managed to prove that our construction works for formulas without least-fixed-point
operators. A translation for euclidean frames and for the full syntax on symmetric frames is left as future
work. We know that we cannot use the same model constructions that preserve the finiteness of the
model as in Subection 3.1.3 (see Remark 3).

We do not prove the finite model property on all logics. We note that although it is known that
logics with recursion with at least two agents with either B or 5 do not have this property (see 3, [9]), the
situation is unclear if there is only one such agent.

We further conjecture that it is not possible to prove EXP-completenes for all the single-agent cases.
Specifically, we expect K4µ -satisfiability to be in PSPACE, similarly to how K5µ -satisfiability is in
NP [9]. As such, we do not expect Translation 6 to be correct for these cases.

The model checking problem for the µ-calculus is an important open problem. The problem does
not depend on the frame restrictions of the particular logic, though one may wonder whether additional
frame restrictions would help solve the problem more efficiently. We are not aware of a way to use our
translations to solve model checking more efficiently.

As, to the best of our knowledge, most of the logics described in this paper have not been explicitly
defined before, with notable exceptions such as [3, 9, 11], they also lack any axiomatizations and com-
pleteness theorems. We do expect the classical methods from [17,21,22] and others to work out in these
cases as well. However it would be interesting to see if there are any unexpected situations that arise.

Given the importance of common knowledge for epistemic logic and the fact that it has been known
that common knowledge can be thought of as a (greatest) fixed-point already from [4, 19], we consider
the logics that we presented to be natural extensions of modal logic. Besides the examples given in
Section 2, we are interested in exploring what other natural concepts can be defined with this enlarged
language.
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identifying characteristic formulae. J. Log. Algebraic Methods Program. 112, p. 100529. Available at
https://doi.org/10.1016/j.jlamp.2020.100529.

[2] Luca Alberucci & Alessandro Facchini (2009): The modal µ-calculus hierarchy over restricted classes of
transition systems. The Journal of Symbolic Logic 74(4), p. 1367–1400, doi:10.2178/jsl/1254748696.

[3] Luca Alberucci & Alessandro Facchini (2009): The modal µ-calculus hierarchy over restricted classes of
transition systems. The Journal of Symbolic Logic 74(4), pp. 1367–1400, doi:10.2178/jsl/1254748696.

[4] Jon Barwise (1988): Three views of common knowledge. In: Proceedings of the 2nd Conference on Theoret-
ical Aspects of Reasoning About Knowledge, TARK ’88, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, pp. 365–379. Available at http://dl.acm.org/citation.cfm?id=1029718.1029753.

[5] Patrick Blackburn, Johan van Benthem & Frank Wolter (2006): Handbook of Modal Logic. Studies in Logic
and Practical Reasoning 3, Elsevier Science.

[6] Patrick Blackburn, Maarten de Rijke & Yde Venema (2001): Modal Logic. Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, doi:10.1017/cbo9781107050884.

[7] Laura Bozzelli, Bastien Maubert & Sophie Pinchinat (2014): Unifying Hyper and Epistemic Temporal Logic.
abs/1409.2711, doi:10.1007/978-3-662-46678-0 11. arXiv:1409.2711.

[8] Michael R. Clarkson & Fred B. Schneider (2010): Hyperproperties. Journal of Computer Security 18(6), p.
1157–1210, doi:10.3233/JCS-2009-0393.

[9] Giovanna D’Agostino & Giacomo Lenzi (2013): On modal µ-calculus in S5 and applications. Fundamenta
Informaticae 124(4), pp. 465–482, doi:10.3233/FI-2013-844.

[10] Giovanna D’Agostino & Giacomo Lenzi (2018): The µ-Calculus Alternation Depth Hierarchy is infinite over
finite planar graphs. Theoretical Computer Science 737, pp. 40–61, doi:10.1016/j.tcs.2018.04.009. Available
at https://www.sciencedirect.com/science/article/pii/S0304397518302317.

[11] Giovanna D’Agostino & Giacomo Lenzi (2010): On the µ-calculus over transitive and finite transitive
frames. Theoretical Computer Science 411(50), pp. 4273–4290, doi:10.1016/j.tcs.2010.09.002. Available
at https://www.sciencedirect.com/science/article/pii/S030439751000469X.

[12] Giovanna D’Agostino & Giacomo Lenzi (2015): On the modal µ-Calculus over finite symmetric graphs.
Mathematica Slovaca 65(4), pp. 731–746, doi:10.1515/ms-2015-0052.

[13] E Allen Emerson, Charanjit S Jutla & A Prasad Sistla (2001): On model checking for the µ-calculus and its
fragments. Theoretical Computer Science 258(1-2), pp. 491–522, doi:10.1016/S0304-3975(00)00034-7.

[14] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Y. Vardi (1995): Reasoning About Knowledge.
The MIT Press, doi:10.7551/mitpress/5803.001.0001.

[15] Michael J. Fischer & Richard E. Ladner (1979): Propositional dynamic logic of regular programs. Journal
of computer and system sciences 18(2), pp. 194–211, doi:10.1016/0022-0000(79)90046-1.

[16] Melvin Fitting (1972): Tableau methods of proof for modal logics. Notre Dame Journal of Formal Logic
13(2), pp. 237–247, doi:10.1305/ndjfl/1093894722.

[17] Joseph Y. Halpern & Yoram Moses (1992): A guide to completeness and complexity for modal logics of
knowledge and belief. Artificial Intelligence 54(3), pp. 319–379, doi:10.1016/0004-3702(92)90049-4.
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