
Bortolussi, Bujorianu, Pola (Eds.): HAS 2013
EPTCS 124, 2013, pp. 26–42, doi:10.4204/EPTCS.124.5

c© R. Wisniewski & C. Sloth
This work is licensed under the
Creative Commons Attribution License.

Completeness of Lyapunov Abstraction

Rafael Wisniewski∗

Section of Automation & Control
Aalborg University, Denmark

raf@es.aau.dk

Christoffer Sloth†

Section of Automation & Control
Aalborg University, Denmark

ces@es.aau.dk

In this work, we continue our study on discrete abstractions of dynamical systems. To this end, we
use a family of partitioning functions to generate an abstraction. The intersection of sub-level sets
of the partitioning functions defines cells, which are regarded as discrete objects. The union of cells
makes up the state space of the dynamical systems. Our construction gives rise to a combinatorial
object - a timed automaton. We examine sound and complete abstractions. An abstraction is said
to be sound when the flow of the time automata covers the flow lines of the dynamical systems.
If the dynamics of the dynamical system and the time automaton are equivalent, the abstraction is
complete.

The commonly accepted paradigm for partitioning functions is that they ought to be transversal
to the studied vector field. We show that there is no complete partitioning with transversal functions,
even for particular dynamical systems whose critical sets are isolated critical points. Therefore, we
allow the directional derivative along the vector field to be non-positive in this work. This consider-
ably complicates the abstraction technique. For understanding dynamical systems, it is vital to study
stable and unstable manifolds and their intersections. These objects appear naturally in this work.
Indeed, we show that for an abstraction to be complete, the set of critical points of an abstraction
function shall contain either the stable or unstable manifold of the dynamical system.

1 Introduction

Formal verification is used to thoroughly analyze dynamical systems. To enable formal verification of
a dynamical system, the system can be abstracted by a model of reduced complexity - often a discrete
model. A discrete abstraction of a dynamical system is generated by partitioning its state space into
cells and determining transitions between the cells. The generation of the abstraction is quite difficult if
the behaviors of the discrete and dynamical models should be equivalent (the abstraction is complete).
Therefore, most works make the implicit assumption that the studied dynamical system has only one
equilibrium point, and that the equilibrium point is stable. This assumption simplifies the abstraction
procedure considerably, and allows the identification of partitioning functions that are transversal to
solution trajectories. However, what happens if this assumption is relaxed?

Solution trajectories of a dynamical system from [12] are illustrated in Figure 1. The trajectories
live on the torus (the torus is obtained by identifying opposing facets with each other). The system has
a stable equilibrium point (b), an unstable equilibrium point (a), and two saddle points (α and β). A
complete abstraction cannot be generated for such system without choosing a partitioning function that
has a level set that includes either the stable manifold or the unstable manifold, i.e. the vector field
must be tangential to the partitioning function on this set. Furthermore, it implies that the partitioning
functions must identify the stable and unstable manifolds; however, the identification of the stable and
unstable manifolds is known to be a very hard problem. This implies that we cannot hope to derive

∗R. Wisniewski is supported by the EDGE (Efficient Distribution of Green Energy) project.
†C. Sloth is supported by MT-LAB, a VKR Centre of Excellence.

http://dx.doi.org/10.4204/EPTCS.124.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

R. Wisniewski & C. Sloth 27

a

b

bb

b

q

q

p

p

a

a

b

b

Figure 1: Flow lines of a dynamical system on a torus. The line segments between identical letters are
identified to form the torus.

algorithms for finding complete abstractions of general dynamical systems; hence, we conclude that
only sound abstractions can be generated in general.

Numerous indirect verification methods for dynamical systems have been developed, i.e., verification
methods based on abstracting a considered system by a model of reduced complexity, while preserving
certain properties of the original system. To relate the considered system with an abstraction of it,
the notions of soundness and completeness are used. Roughly speaking, the reachable set of a sound
(complete) abstraction includes (equals) the reachable set of the original system. Remark that the original
system and the abstraction may be of different categories. Therefore, the relation between their reachable
sets should be appropriately defined, as a solution trajectory of a dynamical system cannot be directly
compared to a run of an automaton. This is clarified in Section 3.

Discrete abstractions are generated in [3] for hybrid systems and in [10] for continuous systems. The
method developed in [10], is in the class of sign based abstractions. This method relies on partitioning
the state space using level sets of multiple functions and subsequently generating the transitions in the
abstract model based on the Lie derivative of the partitioning function with respect to the vector field.
None of the above methods generate complete abstractions; hence, the dynamics of the abstractions are
only known to include the dynamics of the original system. This implies that the result of the verification
may be very conservative. Other methods partition the state space by identifying positively invariant
sets. In [1], the generation of box shaped invariant sets is treated and is motivated by examples from
biology. Tools have also been developed for formal verification. An example is SpaceEx [4] that is based
on finding the reachable states using support functions. This tool has good scalability properties, but
does not rely on complete abstractions.

Our previous work [9], considers transversal functions in the partitioning of the state space. This
commonly accepted transversality condition implies that there is no complete partitioning, even for a
dynamical system with critical set being isolated critical points (e.g. a single saddle point). A similar
issue was detected in the abstraction of mechanical systems [8]; however, the issue was resolved by only
requiring the Lie derivative of the partitioning function along the vector field to be non-positive.

In this paper, we present work in progress on generating complete abstractions of more general
dynamical systems. We provide simple illustrative examples that highlight the difficulties faced in the
generation of abstractions. Additionally, we show that the existing conditions for generating transversal
abstractions cannot trivially be extended. Throughout the paper, we consider dynamical systems without

28 Completeness of Lyapunov Abstraction

limit cycles.
The paper is organized as follows. Section 2 contains preliminary definitions, Section 3 explains how

a dynamical system and an abstract model are related, and Section 4 explains how the state space is par-
titioned using level sets of functions. Section 5 describes how a timed automaton can be generated from
the partitioning and shows that the set of critical points of a complete abstraction function contains either
the stable or unstable manifold of the dynamical system, and finally Section 6 comprises conclusions.

1.1 Notation

The set {1, . . . ,k} is denoted by kkk. BA is the set of maps A→ B. The power set of A is denoted by 2A.
The cardinality of the set A is denoted by |A|. We consider the Euclidean space (Rn,〈,〉), where 〈,〉 is
the standard scalar product. N = {1,2, . . .} is the set of natural numbers, and Z = {. . . ,−1,0,1, . . .} is
the set of integers.

2 Preliminaries

The purpose of this section is to provide definitions related to dynamical systems and timed automata.
Further details on timed automata are found in Appendix A.

2.1 Dynamical Systems

A dynamical system Γ = (X , f) has state space X ⊆Rn and dynamics described by a system of ordinary
differential equations f : X →Rn

ẋ = f (x). (1)

We assume that f has only non-degenerate singularities [6] and no limit cycles.
The solution of (1) from an initial state x0 ∈ X0 ⊆ X at time t ≥ 0 is described by the flow function

φΓ : [0,ε]×X → X , ε > 0 satisfying

dφΓ(t,x0)

dt
= f (φΓ(t,x0)) (2)

for all t ∈ [0,ε] and φΓ(0,x0) = x0.
For a map f : A→ B, and a subset C ⊆ A, we define f (C) ≡ { f (x)| x ∈C}. Thus, the reachable set

is defined as follows.

Definition 1 (Reachable Set of Dynamical System). The reachable set of a dynamical system Γ from a
set of initial states X0 ⊆ X on the time interval [t1, t2] is

φΓ([t1, t2],X0). (3)

A positive invariant set is defined in the following.

Definition 2 (Positive Invariant Set). Given a system Γ = (X , f), a set U ⊆ X is said to be positively
invariant if for all t ≥ 0

φΓ(t,U)⊆U. (4)

R. Wisniewski & C. Sloth 29

2.2 Timed Automata

We use the notation of [2] in the definition of a timed automaton. Let Ψ(C) be a set of clock constraints ψ

for a set of clocks C. This set contains all invariants and guards of the timed automaton, and is described
by the following grammar

ψ ::= c./k|ψ1∧∧∧ψ2, (5a)

where

c ∈C, k ∈R≥0, and ./ ∈ {≤≤≤,<<<,===,>>>,≥≥≥}. (5b)

Note that the clock constraint k should be a rational number, but in this paper, no effort is made to convert
the clock constraints into rational numbers. However, any real number can be approximated by a rational
number with an arbitrary small error ε > 0. To make a clear distinction between syntax and semantics,
the elements of ./ are bold to indicate that they are syntactic operations.
Definition 3 (Timed Automaton). A timed automaton A is a tuple (E, E0,C,Σ, I,∆), where
• E is a finite set of locations, and E0 ⊆ E is the set of initial locations.

• C is a finite set of clocks.

• Σ is the alphabet.

• I : E→Ψ(C) assigns invariants to locations.

• ∆ ⊆ E×Ψ(C)×Σ× 2C×E is a finite set of transition relations. A transition relation is a tuple
(e,Ge→e′ ,σ ,Re→e′ ,e′) assigning an edge between two locations, where e is the source location and
e′ is the destination location. Ge→e′ ∈Ψ(C) is the set of guards, σ is a symbol in the alphabet Σ,
and Re→e′ ⊆C is a subset of clocks.

A discrete flow map ΦA :R≥0×E0→ 2E is defined for the timed automata. Details on the flow map
and its semantics are found in Appendix A.

3 Abstractions of Dynamical Systems

To evaluate the generated abstraction, it is necessary to define a relation between solution trajectories of a
dynamical system and a timed automaton. We define an abstraction function, which associates subsets of
the state space to locations of a timed automaton, which makes it possible to define sound and complete
abstractions.

Let Λ ⊆ N be an index set. An abstraction of the dynamical system Γ = (X , f) consists of a finite
number of sets E ≡ {eλ | λ ∈ Λ} called cells. The cells cover the state space X

X =
⋃

λ∈Λ

eλ .

To the partition E, we associate an abstraction function, which to each point in the state space asso-
ciates the cells that this point belongs to.
Definition 4 (Abstraction Function). Let Λ ⊆ N be an index set and let E ≡ {eλ | λ ∈ Λ} be a finite
partition of the state space X ⊆Rn. An abstraction function for E is the multivalued function αE : X→ 2E

defined by

αE(x)≡ {e ∈ E| x ∈ e}. (6)

30 Completeness of Lyapunov Abstraction

For a given dynamical system Γ, our aim is to simultaneously devise a partition E of the state space
X and create a timed automaton A with locations E such that

1. The abstraction is sound on an interval [t1, t2]:

αE ◦φΓ(t,X0)⊆ΦA (t,αE(X0)), for all t ∈ [t1, t2].

2. The abstraction is complete on an interval [t1, t2]:

αE ◦φΓ(t,X0) = ΦA (t,αE(X0)) for all t ∈ [t1, t2].

4 Partitioning the State Space

This section presents the method for partitioning the state space by functions. The partition of the state
space is generated by intersecting sublevel sets of functions, and has two components: slices and cells.
A slice is a sublevel set of one partitioning function, whereas a cell is a connected component of the
intersection of sublevel sets of more functions.

Let A⊆Rn, then cl(A) denotes the closure of A. We define a slice as the set-difference of positively
invariant sets.

Definition 5 (Slice). A nonempty set S is a slice if there exist two open sets A1 and A2 such that

1. A1 is a proper subset of A2,

2. A1 and A2 are positively invariant, and

3. S = cl(A2\A1).

Since A1 and A2 are positively invariant sets, a trajectory initialized in S can propagate to A1, but no
solution initialized in A1 can propagate to S. We adopt the convention that /0 is a positively invariant set
of any dynamical systems.

To devise a partition of a state space, we need to define collections of slices, called slice-families.

Definition 6 (Slice-Family). Let k ∈N and

A0 ⊂ A1 ⊂ ·· · ⊂ Ak

be a collection of positive invariant sets of a dynamical system Γ = (X , f) with X ⊆ Ak and A0 = /0. We
say that the collection

S ≡ {Si = cl(Ai\Ai−1)| i ∈ kkk}

is a slice-family generated by the sets {Ai| i ∈ kkk} or just a slice-family.

We associate a function to each slice-family S to provide a simple way of describing the boundary
of a slice. Such a function is called a partitioning function.

Definition 7 (Partitioning Function). Let Γ = (X , f) be a dynamical system and let S be a slice-family
generated by the sets {Ai| i ∈ kkk}. A continuously differentiable function ϕ : X → R is a partitioning
function for S if there is a sequence

a0 < .. . < ak, ai ∈R∪{−∞,∞}

where

cl(Ai) = ϕ
−1([ai−1,ai]). (7)

R. Wisniewski & C. Sloth 31

Next, a transversal intersection of slices is defined.

Definition 8 (Transversal Intersection of Slices). We say that the slices S1 and S2 intersect each other
transversally and write

S1 t S2 = S1∩S2 (8)

if their boundaries intersect each other transversally.

Cells are generated via intersecting slices.

Definition 9 (Extended Cell). Let S = {S i|i ∈ kkk} be a collection of k slice-families and let

G (S)≡ {1, . . . , |S 1|}× · · ·×{1, . . . , |S k|} ⊂Nk.

Denote the jth slice in S i by Si
j and let g ∈ G (S). Then

eex,g ≡tk
i=1 Si

gi
, (9)

where gi is the ith component of the vector g. Any nonempty set eex,g is called an extended cell of S .

The cells in (9) are called extended cells, since the transversal intersection of slices may form multiple
disjoint sets in the state space; however, it is desired to have cells that are connected.

Definition 10 (Cell). Let S = {S i|i ∈ kkk} be a collection of k slice-families. A cell e(g,h) of S is a
connected component of an extended cell of S⋃

h

e(g,h) = eex,g, where (10a)

e(g,h)∩ e(g,h′) = /0 ∀h 6= h′. (10b)

A finite partition based on the transversal intersection of slices is defined in the following.

Definition 11 (Finite Partition). Let S = {S i|i ∈ kkk} be a collection of slice-families. We define a finite
partition E(S) by

e ∈ E(S) (11)

if and only if e is a cell of S .

We propose to use only functions that are nonincreasing along trajectories of the dynamical system
Γ as partitioning functions.

Definition 12 (Nonincreasing Partitioning Function). Let X be an open connected subset of Rn and
suppose that f : X →Rn is continuous. Then a real non-degenerate differentiable function ϕ : X →R is
said to be a partitioning function for f if

ψ(x)≡
n

∑
j=1

∂ϕ

∂x j
(x) f j(x) (12a)

ψ(x)≤ 0 ∀x ∈ X . (12b)

Figure 2 shows a state space partitioned by two partitioning functions, with level sets illustrated by
red respectively blue lines. The intersection of slices generates an extended cell (gray area), consisting
of four cells (each connected component of the gray area).

In the next section, we show how the partitioning functions should be chosen to generate a complete
abstraction.

32 Completeness of Lyapunov Abstraction

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

x
2

x1

Figure 2: Illustration of a vector field in a state space, partitioned using level sets of two partitioning
functions.

5 Generation of Timed Automaton from Finite Partition

A timed automaton A is generated from a finite partition E(S) as follows.

Definition 13 (Generation of Timed Automaton). Given a finite collection of slice-families S = {S i| i∈
kkk}, and pairs of times T = {(t i

gi
, t i

gi
) ∈ R2

≥0| i ∈ kkk, gi ∈ {1, . . . , |S i|}}. We define the timed automaton
A (S ,T) = (E,E0,C,Σ, I,∆) by

• Locations: The locations of A are given by

E = E(S). (13)

This means that a location e(g,h) is identified with the cell e(g,h) = α
−1
E(S)({e(g,h)}) of the partition

E(S), see Definition 4.

• Clocks: The set of clocks is C = {ci| i ∈ kkk}.
• Alphabet: The alphabet is Σ = {σ i| i ∈ kkk}.
• Invariants: In each location e(g,h), we impose an invariant

I(e(g,h)) =
k∧

i=1

ci ≤≤≤ t i
gi
. (14)

• Transition relations: If a pair of locations e(g,h) and e(g′,h′) satisfy the following two conditions

1. e(g,h) and e(g′,h′) are adjacent; that is e(g,h)∩ e(g′,h′) 6= /0, and
2. g′i ≤ gi for all i ∈ kkk.

Then there is a transition relation

δ(g,h)→(g′,h′) = (e(g,h),G(g,h)→(g′,h′),σ
i,R(g,h)→(g′,h′),e(g′,h′)),

where

G(g,h)→(g′,h′) =
k∧

i=1

{
ci ≥ t i

gi
if gi−g′i = 1

ci ≥ 0 otherwise.
(15a)

R. Wisniewski & C. Sloth 33

Note that gi−g′i = 1 whenever a transition labeled σ i is taken.
Let i ∈ kkk. We define R(g,h)→(g′,h′) by

ci ∈ R(g,h)→(g′,h′) (15b)

iff gi−g′i = 1.

To ensure that the properties of an abstraction is not only valid for a particular choice of level sets,
we impose the derived condition for any choice of level set in the partition.

From Definition 13, it is seen that to generate a timed automaton, it is required to devise a partition
of the state space, and find a set of invariant and guard conditions. Therefore, we provide a condition
under which an abstraction is complete, recall the definition of a complete abstraction in Section 3.

Proposition 1 ([9]). Given a dynamical system Γ = (X , f), a collection of partitioning functions {ϕ i| i∈
kkk}, a collection of values {ai

gi
∈ R| i ∈ kkk, gi ∈ {1, . . . , |S i|}} generating S , and pairs of times T =

{(t i
gi
, t i

gi
)| i ∈ kkk, gi ∈ {1, . . . , |S i|}}. The timed automaton A (S ,T) is a complete abstraction of Γ if

and only if for any i ∈ kkk

1. for any pair of regular values (ai
gi−1,a

i
gi
) with g ∈ G (S) (see the definition of G (S) in Defini-

tion 9) there exists a time t i
gi

such that for all x0 ∈ (ϕ i)−1(ai
gi
)

φΓ(t i
gi
,x0) ∈ (ϕ i)−1(ai

gi−1) (16)

and

2. tSi
gi
= tSi

gi
= t i

gi
.

We say that {ϕ i| i∈ kkk} generates a complete abstraction if there exist times T such that Proposition 1
is satisfied.

In the introduction of the paper, we claim that it is impossible to generate a complete abstraction of a
system with a saddle point using transversal partitioning functions. In the following example a complete
abstraction is given for such a system by nonincreasing partitioning functions.

Example 1. Consider the following two-dimensional linear vector field[
ẋ1
ẋ2

]
=

[
−x1
x2

]
. (17)

The system has a saddle point and its phase plot is shown in Figure 3.
We choose the following partitioning functions

ϕ1(x1,x2) = x2
1, (18a)

ϕ2(x1,x2) =−x2
2, (18b)

Recall from (12a) that we denote Lie derivatives by ψ . The Lie derivatives of the partitioning functions
along the vector field in (17) become

ψ1(x1,x2) =−2x2
1, (19a)

ψ2(x1,x2) =−2x2
2. (19b)

This implies that the abstraction generated by {ϕ1,ϕ2} is complete. Completeness is concluded from
Proposition 1.

34 Completeness of Lyapunov Abstraction

−1 0 1
−1

0

1

x1

x
2

Figure 3: Phase plot of a linear system with a saddle point.

Proposition 1 does not provide a straightforward method for computing a complete abstraction, as
the conditions are not numerically tractable. Therefore, we rephrase (16) as a relation between the level
sets of the partitioning function and its derivative along the vector field. It is difficult to determine if the
partitioning functions in Example 1 generate a complete abstraction from Proposition 1; however, this is
clear from the following proposition, as the level sets of φ and ψ coincide.

Proposition 2. Let Γ be a dynamical system and ϕ be a smooth function, in particular a partitioning
function. Then for any regular value a ∈R, the following statements are equivalent

1. there exists b ∈R such that

{x ∈Rn| ϕ(x)−a = 0} ⊆ {x ∈Rn| ψ(x)−b = 0}, (20)

where

ψ(x)≡ dϕ(f)(x) = ∑
i

∂ϕ

∂xi
(x) fi(x).

2. there exists ε > 0 such that for any t ∈ (−ε,ε)

ϕ(φΓ(t,x1)) = ϕ(φΓ(t,x2)) ∀x1,x2 ∈ ϕ
−1(a). (21)

Proof. We show that 2) implies 1). We differentiate both sides of

ϕ(φΓ(t,x1)) = ϕ(φΓ(t,x2))

with respect to t

∑
i

∂ϕ

∂xi
(φΓ(t,x1)) fi(φΓ(t,x1)) = ∑

i

∂ϕ

∂xi
(φΓ(t,x2)) fi(φΓ(t,x2)), (22a)

ψ(φΓ(t,x1)) = ψ(φΓ(t,x2)). (22b)

At t = 0, ψ(x1) = ψ(x2). Hence, (20) is satisfied.
To show that 1) implies 2), we define a convenient state transformation inspired by [7, p. 13]. In the

new coordinates, the vector field has only one nonzero component.

R. Wisniewski & C. Sloth 35

Let M = ϕ−1(a) be a smooth manifold. By Sard’s Theorem, there exists an open neighborhood U of
a such that any point in U is a regular value of ϕ [6, p. 132]. Define the smooth function η : ϕ−1(U)→R
by

η ≡ 1
||∇ϕ||2

, (23)

where ∇ϕ is the gradient of ϕ (with respect to a Riemannian metrics 〈·, ·〉 on M). The function η is well
defined, since ϕ−1(U)⊂M is an (open) set of regular points of ϕ . Define the vector field ξ on ϕ−1(U)
by

ξ ≡ η∇ϕ. (24)

The derivative of ϕ in the direction of ξ is

dϕ(ξ) = 〈∇ϕ,ξ 〉= η〈∇ϕ,∇ϕ〉= 1, (25)

Choose a′,a′′ ∈ R such that a′ < a < a′′ and [a′,a′′] ⊂ U . We define the map F(·, ·) : M× [a′,a′′]→
ϕ−1([a′,a′′])⊂ X , where F(x0, t) is the solution of ξ from initial state x0. From (25), we have

t 7→ ϕ ◦F(x0, t) = a+ t. (26)

We represent the vector field f and function ϕ in new coordinates q = F(x, t)

f̃ (q) = (DF(q))−1 f ◦F(q) (27a)

ϕ̃(q) = ϕ ◦F(q) (27b)

Notice that the vector fields f and f̃ are F-related. The differential of ϕ̃ is

dϕ̃(q) = dϕ(F(q))DF(q). (28)

Hence, the derivative of ϕ̃ if the direction of f̃ is

dϕ̃(f̃) = dϕ ◦F DF(DF)−1 f ◦F (29)

= dϕ(f)◦F. (30)

Let x1,x2 ∈M, then F(x1, t) and F(x2, t) are regular points for t ∈ (−ε,ε). By (20)

dϕ(f)(F(x1, t)) = dϕ(f)(F(x2, t)). (31)

We define ψ̃ = dϕ̃(f̃), and conclude that

ψ̃(x1, t) = ψ̃(x2, t) (32)

From (26), ϕ̃ only depends on the last coordinate. Therefore, denoting f = (f1, . . . , fn), we have

ψ̃ = dϕ̃ f̃ = f̃n. (33)

Since ψ̃(x1, t) = ψ̃(x2, t) for any pair x1,x2 ∈M and t ∈ [a′,a′′], we have f̃n(x1, t) = f̃n(x2, t). In other
words, the nth component of the vector field f̃ depends only on its last n coordinate t. As a consequence,
denoting the flow map of the vector field f̃ by φ

Γ̃
, we have

φ
Γ̃
((x1,0), t) = φ

Γ̃
((x2,0), t) ∈M× (−ε,ε). (34)

The vector field f and f̃ are F-related, hence also

φΓ(x1, t) = φΓ(x2, t). (35)

Thus, the inclusion (16) holds.

36 Completeness of Lyapunov Abstraction

Unfortunately, we cannot relax proposition to include critical values as well, i.e., it does not hold for
any a ∈R. This is clarified in the following, by presenting a dynamical system with state space X ⊆R2

for which there exists no complete abstraction generated by transversal partitioning functions.
According to Proposition 1, it takes the same time for two trajectories to propagate between level

sets of complete partitioning functions. Consider a dynamical system with flow lines shown in Figure 4.
Level sets of two partitioning functions are illustrated at the saddle point inside the gray circle. From the

Figure 4: Flow lines of a dynamical system, with a saddle point, a stable equilibrium point, and an
unstable equilibrium point.

red level set, one trajectory goes to the saddle point; however, the remaining trajectories diverge from
the saddle point. Therefore, it cannot take the same time to propagate between any two level sets, if the
partitioning function is decreasing along the vector field.

In the following, we denote the stable (unstable) manifold by W s(p) (W u(p)) [5].

Lemma 1. Let ϕ be a partitioning function generating a complete abstraction of Γ = (X , f) and let p
be a singular point of f . Then p is a critical point of ϕ .

Proof. Suppose that p is a regular point of ϕ with regular value c. Then ϕ−1(c) is an n−1 dimensional
manifold. Without loss of generality, we assume that p is not stable. Let x ∈ ϕ−1(c)\W s(p). Then there
exists τ > 0 such that φ(τ,x) /∈ ϕ−1(c), but p = φ(τ, p) ∈ ϕ−1(c), since p is a singular point of f . This
contradicts completeness.

The following theorem is the main contribution of the paper, showing that complete abstractions
identify stable and unstable manifolds.

Theorem 1. Let Reg(ϕ) denote the set of regular values of ϕ , generating a complete abstraction of
Γ = (X , f), let X be a connected compact manifold, and let p be a singular point of f . Suppose that
ϕ−1(Reg(ϕ))∩W s(p) 6= /0. Then

W u(p)⊆ ϕ
−1(ϕ(p)).

Sketch of Proof. Let Z ≡ ϕ−1(Reg(ϕ))∩W s(p) and let R(x) ≡ ϕ−1(ϕ(x)). Suppose that there exists a
point x ∈ Z such that Y (x)≡ R(x)\W s(p) 6= /0.

Per definition of W s(p), limt→∞ φ(x, t) = p. Let y ∈ Y (x) then there exists a singular point p′ 6= p
such that y ∈W s(p′). Note that any solution goes to a singular point, as the state space X is compact.

Since ϕ(x) = ϕ(y), the abstraction is complete, and the flow map φ is continuous, we conclude from
Proposition 2 that ϕ(p) = ϕ(p′). Thus, for any z∈W (p, p′)≡W u(p)∩W s(p′) the value of ϕ is constant,
i.e., ϕ(p) = ϕ(z). Therefore, W (p, p′)⊆ R(p).

R. Wisniewski & C. Sloth 37

W s(p1)

p1

p2

p3

ϕ−1(ϕ(x))

Figure 5: State space of a system with singular points p, q1, and q2. No solution initialized on the red
level set reaches q1, but solutions get arbitrarily close to q1.

To show that W u(p) ⊆ R(p), we exploit that any z ∈ R(x), z ∈W s(p′′) for some singular point p′′.
Therefore, ϕ(p) = ϕ(p′′) for any such singular point. We use notation p� p′ iff there is a flow line from
p to p′. Whenever there is a sequence {p1, . . . , pn} of singular points of the vector field f such that

p = p1 � p2 � ·· · � pn,

then ϕ(pi) = ϕ(p) for all i ∈ {1, . . . ,n}. Such a scenario is illustrated in Figure 5. Thus, we have

W u(p) =
⋃

p�···�p′
W (p, p′)⊆ R(p).

If Y (x) = /0 for all x ∈ Z, then ⋃
x∈Z

R(x)⊆W s(p).

The dimension of R(x) is n− 1. Furthermore, since R(x) is a closed compact manifold and the vector
field is transversal to R(x), there exists τ > 0 such that

φ(R(x),(−τ,τ))

that is an embedded manifold of dimension n. Thereby dim(W s(p)) = n, and W u(p) = {p} ⊆ R(p).

One could think that the inclusion W u(p)⊆ ϕ−1(ϕ(p)) in Theorem 1 could be replaced by an equal-
ity; however, the following counterexample demonstrates that this cannot be done.

Example 2. Consider the following two dimensional linear vector field from Example 1[
ẋ1
ẋ2

]
=

[
−x1
x2

]
. (36)

The system has a saddle point p = (0,0) and its phase plot is shown in Figure 3. We modify the parti-
tioning function ϕ1(x1,x2) = x2

1 from Example 1, to obtain a case where

W u(p)(ϕ̃
−1
1 (ϕ̃1(p)).

38 Completeness of Lyapunov Abstraction

For this purpose, we construct a bump function, according to [11]. Let

f (t) =

{
e−1/t for t > 0
0 for t ≤ 0

g(t) =
f (t)

f (t)+ f (1− t)
.

From f and g, we choose the partitioning function

ϕ̃1(x1,x2) = g
(

x2
1−a2

b2−a2

)
· x2

1, (37)

with a = 0.5 and b = 2. The graphs of g
(

x2
1−a2

b2−a2

)
, ϕ̃1(x1,x2), and ϕ1(x1,x2) are shown in Figure 6.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x1

g
(x

2
−
a
2

b2
−
a
2
)

−4 −2 0 2 4
0

5

10

15

x1

ϕ
1
,
ϕ̃
1

Figure 6: The left subplot shows the graph of g
(

x2
1−a2

b2−a2

)
and the right subplot shows the graphs of

ϕ1(x1,x2) (blue) and ϕ̃1(x1,x2) (dashed red).

The partitioning function shown in (37) generates a complete abstraction and for this particular
function W u(p) is a proper subset of ϕ̃

−1
1 (ϕ̃1(p)).

Theorem 1 is vital in the field of abstracting generic dynamical systems, as it shows that a partitioning
function generating a complete abstraction has to be constant on the unstable manifolds; hence, finding
such a function is as difficult as finding the stable and unstable manifolds. This is practically impossible
for systems of dimension greater than three. As an example, on all black lines in Figure 7 a complete
partitioning function must be constant. In conclusion, research in the field should be focused on method
development for generating sound rather than complete abstractions.

6 Conclusion

This paper highlights some issues with the use of transversal partitions. Complete abstractions of general
dynamical systems cannot be generated using transversal partitioning functions. This issue arises as a
partitioning function generating a complete abstraction has to be constant on the unstable manifolds.

The identification of stable and unstable manifolds is a very difficult problem. Therefore, it will not
be possible to derive algorithms for generating complete abstraction of generic dynamical systems.

We have derived a theorem stating that the set of critical points of partitioning functions generating
a complete abstraction must contain either the stable or unstable manifold of the dynamical system.

R. Wisniewski & C. Sloth 39

Figure 7: Morse complex, where a ”+” indicates a saddle, a ”·” indicates a maximum, and a ”◦” indicates
a minimum. The lines connecting the singular points are stable and unstable manifolds.

This makes algorithmic generation of complete abstractions practically impossible for general dynamical
systems.

References

[1] Alessandro Abate, Ashish Tiwari & Shankar Sastry (2009): Box invariance in biologically-inspired dynami-
cal systems. Automatica 45(7), pp. 1601–1610, doi:10.1016/j.automatica.2009.02.028.

[2] Rajeev Alur & David L. Dill (1994): A theory of timed automata. Theoretical Computer Science 126(2), pp.
183–235, doi:10.1016/0304-3975(94)90010-8.

[3] Mireille Broucke (1998): A Geometric Approach to Bisimulation and Verification of Hybrid Systems. In:
Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 4277–4282,
doi:10.1109/CDC.1998.761977.

[4] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo
Ripado, Antoine Girard, Thao Dang & Oded Maler (2011): SpaceEx: Scalable Verification of Hybrid Sys-
tems. In Ganesh Gopalakrishnan & Shaz Qadeer, editors: Computer Aided Verification, Lecture Notes in
Computer Science 6806, Springer Berlin / Heidelberg, pp. 379–395, doi:10.1007/978-3-642-22110-1 30.

[5] Morris W. Hirsch, Stephen Smale & Robert L. Devaney (2004): Differential Equations, Dynamical Systems
& An Introduction to Chaos, 2. edition. Elsevier.

[6] John M. Lee (2000): Introduction to Smooth Manifolds. Springer.

[7] John W. Milnor (1963): Morse Theory. Annals of Mathematics Studies 51 , Princeton University Press.

[8] Christoffer Sloth & Rafael Wisniewski (2012): Abstractions for Mechanical Systems. In: Proceedings of the
4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Bertinoro, Italy, pp.
96–101, doi:10.3182/20120829-3-IT-4022.00049.

http://dx.doi.org/10.1016/j.automatica.2009.02.028
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1109/CDC.1998.761977
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.3182/20120829-3-IT-4022.00049

40 Completeness of Lyapunov Abstraction

[9] Christoffer Sloth & Rafael Wisniewski (2013): Complete Abstractions of Dynamical Systems by Timed Au-
tomata. Nonlinear Analysis: Hybrid Systems 7(1), pp. 80–100, doi:10.1016/j.nahs.2012.05.003.

[10] Ashish Tiwari (2008): Abstractions for hybrid systems. Formal Methods in System Design 32(1), pp. 57–83,
doi:10.1007/s10703-007-0044-3.

[11] Loring W. Tu (2008): An Introduction to Manifolds. Springer, doi:10.1007/978-1-4419-7400-6.
[12] Rafael Wisniewski & Martin Raussen (2007): Geometric analysis of nondeterminacy in dynamical systems.

Acta Informatica 43(7), pp. 501–519, doi:10.1007/s00236-006-0037-5.

A Timed Automata Details

The semantics of a timed automaton is defined in the following.

Definition 14 (Clock Valuation). A clock valuation on a set of clocks C is a mapping v : C→R≥0. The
initial valuation v0 is given by v0(c) = 0 for all c ∈C. For a valuation v, a scalar d ∈R≥0, and R⊆C,
the valuations v+d and v[R] are defined as

(v+d)(c) = v(c)+d, (38a)

v[R](c) =

{
0 for c ∈ R,
v(c) otherwise.

(38b)

It is seen that (38a) is used to progress time and (38b) is used to reset the clocks in the set R to zero.
We denote the set of maps v : C→R≥0 by RC

≥0.

Remark 1. This notation indicates that we identify a valuation v with C-tuples of nonnegative reals in
R
|C|
≥0, where |C| is the number of elements in C. We impose the Euclidian topology on RC

≥0.

Definition 15 (Semantics of Clock Constraint). A clock constraint in Ψ(C) is a set of clock valuations
{v : C→R≥0} given by

Jc./kK = {v : C→R≥0|v(c) ./ k} (39a)

Jψ1∧∧∧ψ2K = Jψ1K∩ Jψ2K. (39b)

For convenience, we denote v ∈ JψK by v |= ψ and denote the transition (e,v,σ ,e′,v′) by (e,v) σ→
(e′,v′) in the following.

Definition 16 (Semantics of Timed Automaton). The semantics of a timed automaton given by the tuple
A = (E,E0,C,Σ, I,∆) is the transition system JA K= (S,S0,Σ∪R≥0,Ts∪Td), where S is the set of states

S = {(e,v) ∈ E×RC
≥0| v |= I(e)},

S0 ⊆ S is the set of initial states

S0 = {(e,v) ∈ E0×RC
≥0| v = v0}.

Note that E×RC
≥0 induces subspace topology on S.

Ts∪Td is the union of the following sets of transitions

Ts = {(e,v)
σ→ (e′,v′)| ∃(e,Ge→e′ ,σ ,Re→e′ ,e′) ∈ ∆ such that v |= Ge→e′ and v′ = v[Re→e′]},

Td = {(e,v)
d→ (e,v+d)| ∀d′ ∈ [0,d] : v+d′ |= I(e)}.

http://dx.doi.org/10.1016/j.nahs.2012.05.003
http://dx.doi.org/10.1007/s10703-007-0044-3
http://dx.doi.org/10.1007/978-1-4419-7400-6
http://dx.doi.org/10.1007/s00236-006-0037-5

R. Wisniewski & C. Sloth 41

Hence, the semantics of a timed automaton is a transition system that comprises an infinite number
of states: product of E and RC

≥0 and two types of transitions: the transition set Ts between discrete states
with possibly a reset of clocks belonging to a subset Re→e′ , and the transition set Td that corresponds to
time passing within the invariant I(e).

In the following, we define an analog to the solution of a dynamical system for a timed automaton.

Definition 17 (Run of Timed Automaton). A run of a timed automaton A is a possibly infinite sequence
of alternations between time steps and discrete steps of the following form

(e0,v0)
d1−→ (e0,v1)

σ1−→ (e1,v2)
d2−→ . . . , (40)

where di ∈R≥0 and σi ∈ Σ.

By forcing alternation of time and discrete steps in Definition 17, the time step di is the maximal time
step between the discrete steps σi−1 and σi.

A.1 Trajectory of a Timed Automaton

A vital object for studying the behavior of any dynamical system is its trajectory. Therefore, we define a
trajectory of a timed automaton [9]. At the outset, we introduce a concept of a time domain.

In the following, we denote sets of the form {a, . . .} with a ∈ Z≥0 as {a, . . . ,∞}. Let k ∈N∪{∞};
a subset Tk ⊂ Z≥0×R≥0 with disjoint (union) topology will be called a time domain if there exists an
increasing sequence {ti}i∈{0,...,k} in R≥0∪{∞} such that

Tk =
⋃

i∈{1,...,k}
{i}×Ti,

where

Ti =

{
[ti−1, ti] if ti < ∞

[ti−1,∞[if ti = ∞.

Note that Ti = [ti−1, ti] for all i if k = ∞. We say that the time domain is infinite if k = ∞ or tk = ∞.
The sequence {ti}i∈{0,...,k} corresponding to a time domain will be called a switching sequence.

We define two projections π1 : E×RC
≥0→E and π2 : E×RC

≥0→RC
≥0 by π1(e,v)= e and π2(e,v)= v.

Definition 18 (Trajectory). A trajectory of the timed automaton A is a pair (Tk,γ) where k ∈N∪{∞}
is fixed, and

• Tk ⊂Z≥0×R≥0 is a time domain with corresponding switching sequence {ti}i∈{0,...,k},

• γ : Tk→ S and recall that S is the (topological) space of joint continuous and discrete states, see
Definition 16 and Remark 1. The map γ satisfies:

1. For each i ∈ {1, . . . ,k−1}, there exists σ ∈ Σ such that

γ(i, ti)
σ−→ γ(i+1, ti) ∈ Ts.

2. Let 000 be a vector of zeros and 111 be a vector of ones in RC. For each i ∈ {1, . . . ,k}

π2(γ(i, ti−1 +d)) = π2(γ(i, ti−1))+d111 ∀d ∈

{
[0, ti− ti−1] if ti < ∞

[0, ∞[if ti = ∞
,

where π2(γ(i, ti−1 +d)) ∈ JI(π1(γ(i, ti))K and π2(γ(1, t0)) = 000. (Item 2 ensures that the time
derivative of the valuation of each clock is one, between the discrete transitions.)

42 Completeness of Lyapunov Abstraction

Note that γ is continuous by construction. Recall the definition of v0 from Definition 14. A trajectory at
(e,v0) (with v0 |= I(e)) is a trajectory (Tk,γ) with γ(1, t0) = (e,v0).

We define a discrete counterpart of the flow map.

Definition 19 (Flow Map of Timed Automaton). The flow map of a timed automaton A is a multivalued
map

φA :R≥0×S0→ 2S,

defined by (e′,v′)∈ φA (t;e,v0) if and only if there exists a trajectory (Tk,γ) at (e,v0) such that t = tk− t0
and (e′,v′) = γ(k, tk).

It will be instrumental to define a discrete flow map ΦA :R≥0×E0→ 2E , which forgets the valuation
of the clocks

ΦA (t,e) = π1 ◦φA (t;e,v0) (41)

In other words, ΦA is defined by: e′ ∈ΦA (t,e) if and only if there exists a run (40) of JA K initialized
in (e,v0) that reaches the location e′ at time t = ∑i di.

The reachable set of a timed automaton is defined as follows.

Definition 20 (Reachable set of Timed Automaton). The reachable locations of a system A from a set
of initial locations E0 ⊆ E on the time interval [t1, t2] is defined as

ΦA ([t1, t2],E0)≡
⋃

(t,e)∈[t1,t2]×E0

ΦA (t,e). (42)

	1 Introduction
	1.1 Notation

	2 Preliminaries
	2.1 Dynamical Systems
	2.2 Timed Automata

	3 Abstractions of Dynamical Systems
	4 Partitioning the State Space
	5 Generation of Timed Automaton from Finite Partition
	6 Conclusion
	A Timed Automata Details
	A.1 Trajectory of a Timed Automaton

