Verification of Programs by Combining Iterated
Specialization with Interpolation

Emanuele De Angelis and Fabio Fioravanti Jorge A. Navas
DEC, University G. d’Annunzio, Pescara, Italy NASA Ames Research Center, Moffett Field, USA
{emanuele.deangelis, fioravanti}@unich.it jorge.a.navaslaserna@nasa.gov

Maurizio Proietti
IASI-CNR, Rome, Italy

maurizio.proietti@iasi.cnr.it

We present a verification technique for program safety tbathineslterated Specializatiorand
Interpolating Horn Clause SolvingOur new method composes together these two techniques in
a modular way by exploiting the common Horn Clause represiemt of the verification problem.
The lterated Specialization verifier transforms an inisiet of verification conditions by using un-
fold/fold equivalence preserving transformation rulesrifg transformation, program invariants are
discovered by applying widening operators. Then the owgpubf specialized verification conditions
is analyzed by an Interpolating Horn Clause solver, hencéngdhe effect of interpolation to the
effect of widening. The specialization and interpolatidrapes can be iterated, and also combined
with other transformations that change the direction oppgation of the constraints (forward from
the program preconditions or backward from the error céonk). We have implemented our ver-
ification technique by integrating the VeriMAP verifier withe FTCLP Horn Clause solver, based
on lterated Specialization and Interpolation, respebtiv®ur experimental results show that the
integrated verifier improves the precision of each of théiddal components run separately.

1 Introduction

Constraint Logic Programmilﬁb(CLP) [30] is becoming increasingly popular as a logicalidder
developing methods and tools for software verification ,(fanstance,[[8, 16, 24, 32, 39,137]). Indeed,
CLP provides a suitable formalism for expressiuggification conditionshat guarantee the correctness of
imperative, functional, or concurrent programs and, meggocconstraints are very useful for encoding
properties of data domains such as integers, reals, aaaygsheaps |6, 18, 11, 85]. An advantage of
using a CLP representation for verification problems is #iatcan then combine reasoning techniques
and constraint solvers based on the common logical langi22je In this paper we will show that, by
exploiting the CLP representation, we can combine in a narduby a verification technique based on
CLP specialization[16] and a verification technique based on interpolatior].[23

The use of CLP program specialization, possibly integratiéa abstract interpretation, has been pro-
posed in various verification techniqués([5| [16,/37, 38]. drtipular,iterated specializatiofil6] makes
use ofunfold/fold CLP program transformations to specialize a given set dfigation conditions with
respect to the constraints representingittial anderror configurations. The objective of the special-
ization transformation is to derive an equivalent set offigation conditions represented as a finite set of
constrained facts from which one can immediately infer pgogcorrectness or incorrectness. Since the

1in this paper we use interchangeably the terminology “GairstLogic Program” and “Constrained Horn Clausés” [8].

Nikolaj Bjgrner, Fabio Fioravanti, Andrey Rybalchenko,
Valerio Senni (Eds.): First Workshop on

Horn Clauses for Verification and Synthesis (HCVS 2014)
EPTCS 169, 2014, pp. BE18, d0i:10.4204/EPTCS.169.3

© E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti

http://dx.doi.org/10.4204/EPTCS.169.3

4 Verification of Programs by Combining Iterated Speciaitatvith Interpolation

verification problem is undecidable in general, the spieitbn strategy employs a suitalgeneraliza-
tion strategyto guarantee the termination of the analysis. Generadizatonsists in replacing a clause
H :- c,Bbythe newclausg :- c,G, wheregG is defined by the clausg :- d,B andd is a constraint
entailed byc, and then specializing, instead oH. Most generalization strategies are basedvatening
operators like the ones introduced in the field of abstraetrmetation([13]. Unfortunately, the use of
generalization can lead to a loss of precision, that is, fmegialized set of verification conditions which
we are neither able to prove satisfiable nor to prove unsaiisfibecause of the presence of recursive
clauses. Precision can be improved by iterating the speai@in process and alternating the propaga-
tion of the constraints of the initial configuration (forwapropagation) and of the error configuration
(backward propagation).

Interpolation[14] is a technique that has been proposed to recover pradasses from abstractions,
including those from widening (see, for instance/ [2, 2bfdwving found a spurious counterexample (that
is, a false error detection), one can compute an interpddantula that represents a set of states from
which the spurious counterexample cannot be generatedyyacoimbining widening with interpolation
one can recover precision of the analysis by computing arappeoximation of the reachable states that
rules out the counterexample. Interpolation (without amybination with widening) has also been used
by several CLP verification techniques (see, for instarz®,[24/ 31| 33, 39]). However, to the best of
our knowledge, no CLP-based verifier combines widening atatpolation in a nontrivial way.

Among the various CLP-based techniquigerpolating Horn Claus€IHC) solvers [23] enhance
the classical top-down (i.e., goal oriented) executioatsgy for CLP with the use of interpolation.
During top-down execution suitable interpolants are camghuand when the constraints accumulated
during the execution of a goal imply an interpolant assedatith that goal, then it is guaranteed that
the goal will fail and the execution can be stopped. Thusu#igeof interpolants can achieve termination
in the presence of potentially infinite goal executions. réfere, IHC solvers can be used to verify safety
properties by showing that error conditions cannot be redceven in the presence of infinite symbolic
program executions.

In this paper we propose a CLP-based verification technigaiecombines widening and interpola-
tion by composing in a modular way specialization-basedigation with an IHC solver. Our technique
first specializes the CLP clauses representing the veiditabnditions with respect to the constraints
representing the initial configuration, hence deriving guoiwalent set of CLP clauses that incorporate
constraints derived by unfolding and generalization (idalg, in particular, loop invariants computed
by widening). Next, the IHC solver is applied to the spegrdi CLP clauses, hence adding the effect
of interpolation to the effect of widening. In the case whigre interpolation-based analysis is not suf-
ficient to check program correctness, the verification gegroceeds by specializing the CLP clauses
with respect to the constraints representing the error gordtion, and then applying the IHC solver to
the output program. Since program specialization presezgeivalence with respect to the property of
interest, we can iterate the process consisting in ali@ghapecialization (with respect to the initial or
error configuration) and interpolation in the hope of evaltyuderiving CLP clauses for which we are
able to prove correctness or incorrectness.

We have implemented our verification technique by integga TCLP, an IHC solvel [23], within
VeriMAP, a verifier based on iterated specializatibnl [17heTexperimental results show that the inte-
grated verifier improves the precision of each of its indibdcomponents.

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 5

2 An Introductory Example

Consider the C program in Figuré 1(a) where the symbmpresents a non-deterministic choice. A
possible inductive invariant that proves the safety of phigram isx > 1Ay > 0AX>y.

Figure1(b) shows the set of CLP clauses that represent thigaton conditions for our verification
problem. We will explain in Sectidn 3 how to generate autacadly those conditions, but very roughly
each basic block in the C program is translated to a CLP clandesach assertion is negated. Note that
the loop is translated into the recursive predicat®3. The key property of this translation is that the
program in Figuré]l(a) is safe iff the CLP predicatesafe in Figure[1(b) is unsatisfiable, that is, all
derivations ofunsafe lead to failure.

unsafe :- new2.
new2 :- X =1,Y =0, new4(X,Y).
unsafe :- new?2. new4(X,Y):-X=1,Y =0,
new2 ;- X =1,Y =0, new3(X,Y,). Y1=1,X1=1,new5(X1,Y1).
int x=1, new3(X,Y,.) - new4(X,Y,.). new5(X,Y) :- X =1,Y >0, new8(X,Y).
inty=0; new4(X,Y,C) - X1=X+Y, new8(X,Y):-X=1,X1=Y +1,
while () { Y1=Y+1,C>1,new3(X1Y1C). X1>1,Y1=X1,new9(X1,Y1).
X=X+YVY, new4(X,Y,C) :- C <0, new6(X,Y,C). new8(X,Y) :- X =1,Y >0, newl0(X,Y).
y=y+1; new6(X,Y,C):-D=1,(X-Y) >0, newl0(X,Y):-X =1,Y > 2.
} new7(D, X,Y,C). new9(X,Y) :- X > 1Y > 0, newl3(X,Y).
asser(x>=y); new6(X,Y,C):-D=0,(X-Y) < -1, newl3(X,Y):-X1=X+Y,Y1l=Y +1,
new7(D, X,Y,C). new9(X1,Y1).
new7(D,_,_,_):-D=0. newl3(X,Y):- X > 1Y > 0, newl5(X,Y).
newl5(X,Y):-X>1,(X-Y) < -—1.
(a) (b) (©)

Figure 1: (a) C program, (b) CLP clauses representing théioation conditions, and (c) CLP clauses
after specialization.

Note that neither a top-down nor a bottom-up evaluation ef@.P program in Figurel 1(b) will
terminate, essentially due to the existence of the recisiedicatenew3. To avoid this problem, our
method performs a transformation basedpoogram specializatiorf16]. We postpone the details of
this transformation to Sectidd 3, but the key property o tinansformation is that it isatisfiability-
preserving That is,unsafe is satisfiable in the input program iff it is satisfiable in th@ensformed one.
The benefits of this transformation come from the additiomefv constraints (e.g., usingidening
techniques) that might make a top-down or bottom-up evialmaerminate. We show the result of this
transformation in Figurel 1(c). For clarity, we have remofredh the transformation irrelevant arguments
and performed some constraint simplifications.

The clause of predicateew2 encodes the initial conditions. The transformation intiwes new
definitionsnew4 andnew8 after unrolling twicenew3. The predicateew9 encodes the loop just after
these two unrolls. Note that our transformation inserts additional constraintX > 1 andY > 0 that
will play an essential role later. Although this transfodreet of clauses might appear simpler to solve
the predicataunsafe, it is still defined by recursive clauses with constrainectda Even CLP systems
with tabling [10/12] will not terminate here.

Instead, consider an IHC solver following the approachraifure Tabled CLR(FTCLP) [23]. In a
nutshell, FTCLP augments tabled CLLP][L0} 12] by compuliitigrpolantswhenever a failed derivation

6 Verification of Programs by Combining Iterated Speciaitatvith Interpolation

CLP constraints for Figure [b) CLP constraints for Figure [Ic)
My ..., X=1Y=0,new3(X,Y,.), newd(X,Y,.), My: X=2Y=2,new9(X,Y),X>1Y >0,
X1=X+Y,Y1=Y+1,new3(X1,Y1,) newl3(X,Y),X1=X+Y,Y1=Y +1,
Mo: ..., X=1Y =0, new3(X,Y,.), new4(X,Y,.), new9(X1,Y1)
new6(X,Y,), X—=Y >0,D=1,new7(D,X,Y,),D=0 | My: X=2Y =2,new9(X,Y), X > 1Y >0,
M3 ..., X=1Y =0, new3(X,Y,.), new4(X,Y,.), newl3(X,Y), X > 1,Y > 0, newl5(X,Y)
new6(X,Y,), X =Y < —-1,D =0, new7(D,X,Y,),D=0 X>1,X-Y<-1

Table 1: Executions of the CLP clauses from Figlides 1(b)-(c)

is encountered during the top-down evaluation of the CLBianm. If a call of predicat@ has been fully
executed and has not produced any solution then its ineemfgbenote the conditions under which the
execution ofp will always lead to failure. During the execution of a reéuespredicatep the top-down
evaluation might produce multiple copies pf each one with different constraintsoriginated from
the unwinding of the recursive clauses far Given two copiesp’ and p” with constraintsc’ andc”,
respectively, and being’ a descendant gf, the tabling mechanism will check whethgt is subsumed
by p' (i.e.,c” C). If this is the case, the execution can be safely stopped.ain tabling, rather than
usingc’ it is common to use weaker constraints (in the logical seimsejder to increase the likelihood
of subsumption. These weaker constraints are often cadlegsk conditionsThe major difference with
respect to standard tabled CLP is that FTCLP uses the iritengoas reuse conditions while tabled
CLP use<onstraint projection A key insight is that when FTCLP is used in the context of figation

its tabling mechanism using interpolants as reuse comditresembles a verification algorithm using
interpolants to produceandidatesand keeping those which can be proven to be inductive inviaia

Coming back to our CLP program in Figure 1(b). If we run FTCLPtlat set of clauses, the top-
down execution ofinsafe will not terminate. To understand why, let us focus on thedjmage news3,
initially with constraintsX = 1Y = 0. Fromnew3 we reachnew4 which has two clauses. From the
execution of the first clause, we will reach agai#w3 (M in Table[1), but this time with constraints
X=1Y=0,X1=X+Y,Y1=Y +1 (we ignore constraints ovérsince they are irrelevant). To avoid
an infinite loop, the tabling mechanism will freeze here isaution and backtrack to the nearest choice
point which is the second clause foew4. From here, we will reachew6 which has also two clauses.
The first clause fomew6, executed byll,, has the constraink —Y > 0,D = 1 which is consistent
with X =1Y =0,X1=X+Y,Y1=Y + 1. The execution followsew?7 which will fail because the
constraintD = 0 cannot be satisfied. The second clauseeaf6 executed il13 has no solution either
becaus® =0,X —Y < —1is also false. Very importantly, FTCLP will generate imtglants from these
two failed derivations. The key interpolant is generatemhrfrthe second clause ekw6 (IM3) which
when propagated backwardsrtew3 is X > Y. Note that this is an essential piece of information, but
unfortunately it is not enough for tabling to stop permahesince this constraint alone is not sufficient
to subsume the descendantsief3. Thatis,X >YAX1=X+YAY1l=Y +1} X1>Y1. Therefore,
FTCLP will unfreeze the execution efew3 and repeat the process. Unfortunately, FTCLP will not
terminate.

Let us now consider the set of clauses in Figure 1(c). Letpsakthe same process running FTCLP
on the transformed program. Let us focusnen9, which encodes the loop after two unrolls. For clarity
of presentation the execution w9, shown inly, starts with the constraints = 2)Y = 2 which are
produced by projecting the constraints accumulated frem2 to new9 onto X andY. Since there is
a cycle whemew9(X1,Y1) is reached the tabling mechanism will freeze its exeautiNote that the
transformation inserted the constraidds> 1 andY > 0. This was achieved by applying generalization

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 7

via widening during the unfolding of the clause. From theosetclause ofhewl3, shown inlly,
the top-down evaluation will eventually fail. Again, it Wenerate an interpolant that after backwards
propagation tmew9 is X >Y. Now, it can be proven that the descendanie¥9 can be safely subsumed
becauseX > Y, X > 1Y > 0,X1=X+Y,Y1=Y +1 X1>Y1, and therefore, FTCLP will terminate
proving thatunsafe is unsatisfiable. The magic here is originated from the faat the transformation
produced the invariant® > 0 andY > 1 (widening while FTCLP produced the remaining patt>Y
(interpolation) which together form the desired safe inductive invariant.

Finally, it is worth mentioning that we do not claim that thigogram cannot be proven safe by
other methods using more sophisticated interpolationragos (e.g.[[4]) and/or combining with other
techniques such as predicate abstraction (€.d., [24Feddswe would like to stress how we can have the
same effect than a specialized algorithm using wideningiatedpolation in a much less intrusive and
completely modular manner by exploiting the fact that bottthods share the same CLP representation.

3 \Verification based on Iterated Specialization and Interpdation

In order to show how our verification method based on iterafmtialization and interpolation works,
let us consider again the program shown in Eig. 1 (a). We wamrove safety of prograr® with
respect to the initial configurations satisfyifgi: (X,y) =def X=1 A y=0, and the error configurations
satisfyingderor (X,Y) =def X<Y. That is, we want to show that, starting from any valueg ahdy that
satisfy ginit (X, y), after every terminating execution of progréithe new values of andy do not satisfy

Perror (X,).
Our verification method consists of the following steps.

(Step 1 - CLP Encodind-irst, we encode the safety verification problem using a @idgraml, called
theinterpreter, which defines a predicatemsafe. We have that program is safe iffl = unsafe.

(Step 2 - Verification Conditions Generatjobhen, by specializing w.r.t. (a CLP encoding of) program
P, we generate a s&C of CLP clauses representing therification conditiondor P. Specialization
preserves safety, i.d.}= unsafe iff VC|= unsafe.

(Step 3 - Constraint PropagatipriNext, we apply CLP specialization again and we propagatectim-
straints occurring in the initial and error conditions, réfey deriving a new sefC of verification con-
ditions. Also this specialization step preserves safety,\'C = unsafe iff VC |=unsafe. During this
step, in order to guarantee termination, we generate indultop invariants by using generalization
operators based on widening and convex hull [21].

(Step 4 - Interpolating VerificatignWe consider the verification conditions obtained aftersti@int
propagation. If their satisfiability cannot be decided by@e syntactic checks (e.g., emptiness of the
set of CLP clauses or absence of constrained facts), we #ppinterpolating Horn Clause solver.

In the case where the IHC solver is not able to provide a defemitswer, weeversethe program
encoding the VC's by exchanging the direction of the tramsitelation and the role of the initial and
error conditions, then wikerate the constraint propagation and satisfiability check (gotepS3).

Of course, due to undecidability of safety, our verificatmethod might not terminate. However,
as experimentally shown in Sectibh 4, the combination ofm specialization and interpolating ver-
ification is successful in many examples and it is syneristi the sense that it improves over the use
of program specialization and interpolating verificatidong. We now describe in more detail the tech-
niques applied in each step listed above.

8 Verification of Programs by Combining Iterated Speciaitatvith Interpolation

3.1 Encoding safety problems of imperative programs using CP

As already mentioned, the safety verification problem caermoded as a CLP programcalled the
interpreter. We now show, through an example, how to derigetaf CLP clauses that encode (i) the
semantics of the programming language in which the prognageiuverification is written, (i) the pro-
gram under verification itself, and (iii) the proof rules the considered safety property. The extension
to the general case is straightforward.

Encoding the semantics of the programming language.The semantics of the imperative language
can be encoded as a transition relation from any configuraifahe imperative program to the next
configuration, by using the predicate. Below we list the clauses afr for (i) assignments (clause 1),
(ii) conditionals (clauses 2 and 3), and (iii) jumps (clad3e
1.tr(cf(cmd(L,asgn(X,expr(E))) ,Env), cf(cmd(L1,C),Envl)) :-

eval (E,Env,V), update(Env,X,V,Envl), nextlab(L,L1), at(L1,C).
2.tr(cf(cmd(L,ite(E,L1,L2)) ,Env), cf(cmd(L1,C),Env)) :- beval(E,Env),at(L1,C).
3.tr(cf(cmd(L,ite(E,L1,L2)) ,Env), cf(cmd(L2,C),Env)) :- beval(not(E),Env),at(L2,C).
4.tr(cf(cmd(L,goto(L)) ,Env), cf(cmd(L,C),Env)) :-at(L,C).

The termcf (cmd(L,C) ,Env) encodes the configuration consisting of the commanalith label L

and the environmernv. The predicateeval (E,Env,V) computes the valug of the expressiorE

in the environmenEnv. The predicatéeval (E,Env) holds if the Boolean expressidnis true in

the environmenEnv. The predicateat (L,C) binds toC the command with label. The predicate
nextlab(L,L1) binds toL1 the label of the command that is written immediately after tommand
with labelL. The predicatepdate (Env,X,V,Env1) updates the environmeBhv by binding the vari-
ableX to the valuev, thereby constructing a new environments 1.

Encoding the imperative program. The imperative prograrR is encoded by a set of constrained facts
for the at predicate, as follows. First, we translate progrBrto the sequence of labelled commands
o...¢h. Then, we introduce the CLP fact5 — 9} which encode those commands.

lo: if (%) 1 else fy; 5.at(0,ite(nondet,1,h)).

1l X=X+4Y; 6.at(1,asgn(int(x),expr(plus(int(x),int(y))))).
l:y=y+1; 7.at(2,asgn(int (y) ,expr(plus(int(y),int(1))))).
¢3: goto {y; 8.at(3,goto(0)).

lh: halt; 9.at(h,halt).

Encoding safety as reachability of configurations. Finally, we write the CLP clauses defining the
predicateunsafe that holds if and only if there exists an execution of the paogP that leads from an
initial configuration to an error configuration.
10.unsafe :- initConf (X), reach(X).
11l.reach(X) :- tr(X,X1), reach(X1).
12.reach(X) :- errorConf (X).
13.initConf (cf (cmd (0,C), [[int (x),X], [int(y),Y¥]1])) : - X=1, Y=0, at (0,C).
14.errorConf (cf (cmd (h,halt), [[int(x),X], [int(y),Y]])) :- X<Y.
Note that in clauses 13 and 14, the second component of tligaation termcf encodes the environ-
ment as a lisf [int (x) ,X1, [int (y), Y]] that provides the bindings for the program variabtesnd
y, respectively. The set of CLP clausgs— 14} constitutes the interpretér By the correctness of the
CLP Encoding[[15] we have that progrépris safe if and only ifl [~ unsafe.

When the CLP prograrhis run by using the top-down, goal directed strategy usuaityployed by
CLP systems, an execution of the gaakafe corresponds to a forward traversal of the transition graph

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 9

(i.e., a traversal starting from the initial configuratioh)}e can also provide an alternative definition of
thereach(X) relation that would generate a backward traversal of thesitian graph (i.e., a traversal
starting from the error configuration). However, as show8eaatior 3.5, the method alternates between
the forward and backward directions, and the direction bydtie first specialization is not very relevant
in practice.

More in general, the specialization-based approach isdoa lextent parametric with respect to the
definition of the semantics of the programming languageoiag &s this is defined by a CLP program.

3.2 Generation of CLP Verification Conditions

The verification conditions associated with the given gadetification problem, are generated by per-
forming a CLP specialization based on unfold/fold prograamsformations/[19, 20]. During this step,
we specialize the clauses definiagsafe in the interpretet with respect to: (i) the clauses that define
the predicatecr, and (ii) the clauses that encode the given progRarithe output of this program spe-
cialization is the set of verification conditions fer a set of CLP clauses that encode the unsafety of the
imperative program, is equisatisfiable w.r,tand contains no explicit reference to the predicate sysmbol
used for encoding the transition relation and the programngands. This first step is performed also in
other specialization-based techniques for program vatifio (see, for instance, [15,[37].).

In this paper we consider a C-like imperative programmimgieage and proof rules for safety prop-
erties only. However, the specialization-based approat¢he generation of verification conditions has
the advantage of being modular w.r.t. (i) the semantics ®@fpifogramming language in which the pro-
gram under verification is written, and (ii) the logic used $pecifying the property to be verified, and
seems to be reasonably efficient in practice.

The verification conditions for the safety problem we arestdering are shown in Fifll 1 (b) and
have been briefly described in Sectidn 2.

3.3 Constraint Propagation by CLP Transformation

Constraint propagation is achieved by a CLP specializagigorithm similar to the one used for the
Verification Conditions Generation (Step 2). The main ddfece is that for constraint propagation we
use ggeneralization operatopased on widening and convex-hull that in many cases allogvdiscovery
of useful program invariants [21].

The specialization algorithm starts off from a S of clauses that includ¢ > 1 clauses defining
the predicateinsafe:

unsafe :- c1(X), pi(X), ..., unsafe :- ¢;(X), p;(X)

wherec1(X), . .. ,cj(X) are constraints angh(X) , . .. ,pj(X) are atoms.

The specialization algorithm makes use of thdolding definition introduction andfolding trans-
formation rules[[19, 20].

The clauses fonnsafe are unfolded, that is, they are transformed by applying dtieviiing un-
folding rule: Given a claus€ of the formH :-c,A, let {X; :-¢;,Q; | i = 1,...,m} be the set of the
(renamed apaytclauses in prograr’ C such that, fori = 1,...,m, A is unifiable withk; via the most
general unifiedd; and the constraintc(, c;) J; is satisfiable. Then from clausewe derive the clauses:

(H:-c,c,Q)d, fori=1,....m
Unfolding propagates the constraints by adding the canstran atomA to the constraints of the atom

Qi that occurs in the body of a clause unifyidg By unfolding we may derive a fact famsafe, and
hence the given program is unsafe. Alternatively, we maweetn empty set of clauses fansafe,

10 Verification of Programs by Combining Iterated Speciaitatvith Interpolation

and hence we infer safety. However, in most cases we willdexinonempty set of clauses which are
not constrained facts. In these cases the specializatymmitdm introduces a s@&efsof new predicate
definitions, one for each clause which is not a constrainetl féore specifically, leE be a clause
derived by unfolding of the formii(X) :-e(X,X1), Q(X1), whereX and X1 are tuples of variables,
e(X,X1) is a constraint, an@(X1) is an atom. Then, the specialization algorithm introduces\a
definition clauseD: newq(X1) :-g(X1), Q(X1), such that: (i)newq is a new predicate symbol, and
(i) g(X1) is a generalization of (X,X1), thatis,e (X,X1) C g(X1) (for the first definition introduction
stepg(X1) is theprojection in the reals, ok (X,X1) onto the variableX1). Then clauséE is folded
using D, hence deriving the claude: H(X) :-e(X,X1), newq(X1). Note that, even ig(X1) is a
generalization o& (X, X1), clauseE is equisatisfiabldo the pair of clauseP andF.

The clauses iDefsare then processed similarly to the clausesuitgafe, by applying unfolding,
adding new predicate definitions efs and folding, and this unfolding-definition introductidolding
cycle is repeated until all clauses derived by unfolding lvarfolded using clauses introducedDefsin
a previous step, so that no new predicate definitions needtfoeluced.

The termination of the specialization algorithm dependa strategy that controls the introduction of
new definitions so that all clauses are eventually foldedyuarantee termination we use a generalization
operatorGenwhich enjoys properties similar to thrgdening operatorconsidered in the field of abstract
interpretation [[18]. In particular, given a clauEeas above and a s@efs of predicate definitions,
Gen(E,Defs) is a clausenewq (X1) : - g(X1), Q(X1), such thak (X,X1) C g(X1) and, moreover, any
sequence of applications Gfen stabilizesthat is, the following property holds. For any infinite seqoe
Ei1,Ep, ... of clauses, le6;, Gy, ... be a sequence of clauses constructed as foll(ly$5; = GenE;, 0),
and (2) for everyi >0, Gj;1 = GenEi;1,{G1,...,Gi}). Then there exists an indéxsuch that, for
everyi >k, G; is equal, modulo the head predicate name, to a clau$&in...,Gx}. Many concrete
generalization operators have been defined in the CLP djpatian literature (see, for instancé, [21]),
and we will consider two of them in our experiments of Seddon

The correctness of the specialization algorithm direailiofvs from the fact that the transformation
rules preserve the least model semantics [19]. Thus, gisat\&C of CLP clauses (representing verifi-
cation conditions), i/ C' is the output of the specialization algorithm applie¥/, thenVC |= unsafe
iff VC' = unsafe.

3.4 Interpolating solver

We now describe informally how the IHC solver considerechis paper works. For that, the concept of
a derivation plays a key role. derivation steps a transition from statéG | C) to state(G' | C'), written
(G|C) = (G'|C'), whereG, G’ are goals (sequences of literals that can be either atonmmnetraints)
andC, C’ areconstraint storegthe constraints accumulated during the derivation of & géaderivation
step consists essentially ohifying some atom in the current go@l with the head of some clause and
replacingG with the literals in the body of the matched clause produeimgw goalG’. Moreover, new
constraints can be added to the constraint stgpeoducing a new constraint sta@é. At any derivation
step the constraint stofé can be unsatisfiable, hence producinfaided derivation A derivation tree
for a goalG is a tree with states as nodes where each path correspongessible derivation of.

In order to prove that a goal (e.g., the predicateafe) is unsatisfiable, the solver tries to produce a
finite derivation tree proving that the goal has no answees, @Il the derivations fail). If an answer is
found then it represents a counterexample. To facilitagegiocess, each node in the tree is annotated
with an interpolant producing at the endtrae interpolant To achieve this, the solver computes a
path interpolantfrom each failed derivation and then combines them. Infdlgmngiven a sequence of

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 11

formulasFy, ..., F, (extracted from the constraint store at each state in thedifdierivation) the sequence
lo,...,In is called a path interpolant if, for alle [1,...,n], we haveli_1 AF [I; (with o = true and
I, = falsg and the variables df are common to the variables BfandF, 1. The interpolant associated
with a node in the tree is th@onjunctionof the children’s interpolants.

Even if the derivation tree is finite, its tree interpolantésy valuable since it can be used for pruning
other redundant failed derivations.

A more interesting fact is how we can use interpolants to @that the derivation of a goal will fail
infinitely. We rely on the same principle followed by tabletdF’Zin order to subsume states in presence
of infinite derivations. Whenever a cycle is detected itscaken is frozef to avoid running infinitely,
and a backtracking to an ancestor choice point occurs. Bsatem this, the execution of a goal will
always terminate and a tree interpolant can be computeder Atimpletion of a subtree, the tabling
mechanism will attempt at proving that the state where tlee@tion was frozen can be subsumed by
any of its ancestors using an interpolant as the subsumptaodition. If it fails then its execution is
re-activated and the process continues. Of course, theiixeanight run forever. The subsumption
test is described informally as follows. L&, and Gy be two atoms with the same functor and arity,
whereG; is the head any is the tail of a cycle. The symboésandd refer to ancestor and descendant,
respectively. Lefp:],...,[pn] be all the constraints originated from all paghs. . ., p, betweerG, and
G4, andly be the interpolant computed f@,. Then, we do not need to re-activate the executio®pf
if A1i<i<nla/A[[pi] = 15 (Wherel] is the interpolant, after proper renaming). This process is analogue to
tabled CLP'scompletion check

Consider again the transformed program in Figuire 1(c). Eébcus on the execution aéw9, which
is a recursive predicate. Recall thein9 is reached after unwinding twice the loop. Therefore, kefor
the execution ofiew9 the constraint storas X = 2, Y = 2, after constraint simplification. Its depth-first,
left-to-right derivation tree is shown in Figuré 2. Eachlavade represents the call to a body atom and
an edge denotes a derivation step. A failed derivation iketawith a (red) “cross” symbol. Note that
there is no successful derivation, otherwise the programdvoe unsafe.

X= 2Y 2
Interpolant
-
X>1Y>0
Interpolant
X1l= X+YY1 Y+1 X>1Y 0

Interpolant

Figure 2: The derivation tree for go&l=2,Y = 2, new9(X,Y) wherenew?9 is a predicate defined in the
CLP program of Figurgl1(c)

2The freeze of an execution can be done in several ways. Thataly described il [23] performs a counter instrumentatio
similar to [34] in order to make finite the execution and proglinterpolants.

12 Verification of Programs by Combining Iterated Speciaitatvith Interpolation

The leftmost derivation is frozen when the atasw9(X1,Y1) is encountered. Then, the execution
backtracks tmew13(X,Y) and activates the rightmost derivation, which fails. We pate the inter-
polant for this derivation and we annotate the at@w9(X,Y) with the constrainX > Y. At this point,
we visit againnew9(X1,Y1) in order to perform the subsumption tedt:> Y AX > 1AY > 0AX1=
X+YAY1=Y+1E X1>Y1. This entailment holds, and therefore the execution catysstop prov-
ing that the goahew9(X,Y) is unsatisfiable. Note that if the transformation had noeadtie constraints
X >1,Y > 0 the subsumption test would have failed and the executiaridizave run forever.

Finally, the criteria used for stopping the IHC solver isremtly based on a timeout. Of course, due
to undecidability reasons, there is no method that can desfkther the IHC solver will eventually stop
finding a safe inductive invariant. However, there might &ges where by inspecting the interpolants we
could guess that it is not likely for the IHC solver to stop ireasonable amount of time. In these cases,
it is desirable to switch to the next transformation phasgéemd of waiting until the timeout expires. In
the future, we would like to investigate this problem.

3.5 CLP reversal

In the case where the IHC solver is not able to check (withiivargamount of time) whethamsafe
holds or not, the verification method returns to Step 3 angauyates the constraints by first inverting the
roles of the initial and error configurations. Thus, at edetation of the method, verification switches
from forward propagation (of the constraints of the initiahfiguration) to backward propagation (of the
constraints of the error configuration), or vice versa, h@wlso strengthened the constraints of the initial
and error configurations due to previous specializatiomés Jwitch is achieved by a CLP transformation
calledReversall6].

CLP Reversal transforms the 86€1= {1,2,3} of CLP clauses into the sstC2= {4,5,6}.

1. unsafe :- a(U), r1(U). 4. unsafe :- b(U), r2(U).
2. r1(U) : - c(U,V), r1(V). 5. r2(V) : - c(U,V), r2(U).
3. r1(U) :- b(V). 6. r2(U) : - a(v).

The Reversal transformation can be generalized to any nuailsdauses and predicates, and preserves
safety in the sense th#C1 = unsafe iff VC2|= unsafe.

4 Experimental Evaluation

The verification method presented in Secfibn 3 has been mmgsieed by combining VeriMAR [17] and
FTCLP [23]. The verification process is controlled by VerilAvhich is responsible for the orchestra-
tion of the following components: (i) ranslator, based on the C Intermediate Language (CIL) [36],
which translates a given verification problem (i.e., the Ggpam together with the initial and error
configurations) into a set of CLP program, (ii)specializerfor CLP programs, based on the MAP
transformation system [1], which generates the verificationditions (VCs) and applies the iterated
specialization strategy, and (iii) dHC solver(IHCS), implemented by the FTCLP tool.

We have performed an experimental evaluation on a set ohineguks consisting of 216 verification
problems (179 of which are safe, and the remaining 37 arefeins®ost problems have been taken
from the repositories of other tools such as DAGGER [25] (&ibfems), TRACER[32] (66 problems),
InvGen [27] (68 problems), and also from the TACAS 2013 SaftwVerification Competitiori [7] (52
problems). The size of the input programs ranges from a diazahout five hundred lines of code. The
source code of all the verification problems is availabletat : //map .uniroma2.it/VeriMAP/hcvs/.

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 13
FTCLP| VeriMAPy | VeriMAPy + FTCLP | VeriMAPpy | VeriMAPpy + FTCLP
answers 116 128 160 178 182
crashes 5 0 2 0 0
timeouts 95 88 54 38 34
total time 12470.2§ 11285.77 9714.41 5678.09 6537.17|
averagetimeg 107.50 88.17 60.72 31.90 35.92

Table 2: Verification results using VeriMAP, FTCLP, and tlwenbination of VeriMAP and FTCLP. The
timeout limit is two minutes. Times are in seconds.

The program verifier has been configured to execute the foltpywrocess:
Specializ@emove Specialize,,,; IHCS (Reverse Specializg,,; IHCS)*

After having translated the verification probldminto CLP, the verifier: (i) generates the verification
conditions forP by applying theSpecializg, o Procedure (Sectidn 3.2), (ii) propagates the constraints
that represent the initial configurations by executingSpecializg,,, procedure (Sectidn 3.3), and (iii)
runs thelHC solver (Sectiori_3]4). If the solvability of the CLP clauses de decided the verifier
stops. Otherwise, the verifier calls tReverseprocedure that interchanges the roles of the initial and
error configurations (Sectidn 3.5), and céigecializg,,, again. The(Reversg Specializ@,q; IHCS)
sequence might repeat forever unless the specializeréstalgjenerate a set of CLP clauses th#fS
can either prove to be solvable or prove to be unsolvable.

All experiments have been performed on an Intel Core Duo B73686Ghz processor with 4GB
of memory under the GNU Linux operating system Ubuntu 126Dkit, kernel version 3.2.0-57). A
timeout limit of two minutes has been set for each verificapooblem.

Table[2 summarizes the verification results obtained by #réMAP and the FTCLP tools executed
separately (first, second and fourth columns) and the caatibmof both tools (third and fifth columns).
When VeriMAP is executed without the help of FTCLP, the asslyescribed in [16] is used in place
of the IHC solver. In the columns labeled by VeriMgRnd VeriMAR-{ we have reported the results
obtained by using the VeriMAP system with the generalizatbperatorGen, (monovariant general-
izatiord using widening only) an@erpy (polyvariant generalizatic@using widening and convex hull),
respectively. Row 1 reports the total number of definite arswcorrectly asserting either program
safetyor unsafety. Row 2 reports the number of tool crashes. Row 3 reports tihgber of verification
problems that could not be solved within the timeout limitwb minutes. Row 4 reports the total CPU
time, in seconds, taken to run the whole set of verificatighdait includes the time taken to produce
answers and the time spent on tasks that timed out. Finally,5rreports the average time needed to
produce a definite answer, which is obtained by dividing thal time by the number of answers.

The results in Tablel2 show that the combination of VeriMARB &TCLP, by exploiting the synergy
of widening and interpolation, improves the performancéath tools whenever executed separately.
In particular, we have that the best performance is achibyethe combination VeriMARy + FTCLP
where the process is able to provide an answer for 182 pragoatof 216 (8426%).

Table[3 summarizes the results obtained at the end of eahhb 6ift five iterations of the verification
process when VeriMAP is executed alone and combined withLFPT®@/e observe that when VeriMAP
is used in combination with FTCLP the number of iteratiorguieed to solve the verification problems
is considerably reduced.

3All constrained atoms with the same predicate are generhtizthe same new predicate.
4Constrained atoms with the same predicate can be gener#dizifferent new predicates.

14

Verification of Programs by Combining Iterated Speciaitatvith Interpolation

Iteration || VeriMAPy, | VeriMAPy + FTCLP | VeriMAPpy | VeriMAPpy + FTCLP
1 74 119 104 136
2 45 38 54 34
3 7 2 10 5
4 2 1 8 3
5 0 0 2 4

Table 3: Number of definite answers computed by VeriMAP andhieycombination of VeriMAP and
FTCLP within the first five iterations.

5 Related Work

As Horn logic is becoming more popular for reasoning aboaperties of programs, the number of ver-
ifiers based on this logic has increased during recent yeags[(L7) 24| 29, 32, 38, 89, 40]). Although
they can differ significantly from each other, one possilidessification is based on their use of interpo-
lation (e.g.,[24, 32, 33, 39]), Property Directed ReaclitshiPDR) [9] (e.g., [29]), or a combination of
both (e.g.,[[40]). Unlike the above mentioned verifiers,iM&P [17] does not use interpolation and,
as explained in previous sections, implements a transfismanethod based on widening techniques
similar to the ones used in the field of abstract interpretai3].

It should be noted that, with the exception of VeriMAP, alstiinterpretation techniques are surpris-
ingly less common than PDR and interpolation in Horn Clausgfiers. HSF[[24] combines predicate
abstraction with interpolation but no other abstract imtetations. TRACER [32] only uses abstract
interpretation as a pre-processing step in order to injaa@riants during the execution of the Horn
Clauses. Therefore, to the best of our knowledge there isara Blause verifier that combines abstract
interpretation (apart from predicate abstraction) witkeipolation in a nontrivial manner.

Several works (e.g., [2, 25, 26,141]) have focused on howftog@bstract interpretations different
from predicate abstraction outside the scope of Horn Claaséers. [26] 41] focus on how to recover
from the losses of widening by using specific knowledge oflpetira. AGGER [25] tackles in a more
general way the imprecision due to widening by proposing“thierpolated widen” operator which
refines the abstract state after widening using interoia{l] proposes another algorithm calletNwa
which can also refine precision losses from widening, buelies heavily on the use of an abstract
domain that can represent efficiently disjunction of aleststates. However, efficient disjunctive abstract
domains are rare and it is well known that the design of peegiglening operators is far from easy.
UFo [3, 4] is a framework for combining CEGAR methods based orr-avel-under approximations
which is parameterized bypostoperator. The post operator is used during the unwindingetontrol
flow graph. If an error is found then Craig interpolation i®ddgo refine the abstraction. Although
in principle the post operator could perform an arbitrargtedrtion the refinement described [in([3, 4]
assume heavily that predicate abstraction is used. If atb&ractions were used it is not clear at all how
to refine them. Moreover, unlike AZBGER and VINTA, during the unwinding of the control flow graph
no abstract joins are performed, and thus we may consiger d$ another CEGAR method based on
interpolation.

The approach followed by BEGER is probably the most closely related to ours. K&GER finds
a spurious counterexample due to widening losses, it mugtédease thatALIB) TE = L but (AT
B)ME # L, whereA is the abstract state before starting the execution of a Bap the abstract state
after executing the backedge of the loop, &id an abstract state that leads to an error. The idea behind
“interpolated widen” is to replace with ;, wherel]; is an instance of the widening up-i0 [28]. The key

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 15

property of the[l, operator is that it preserves the desirable properties déming while excludes from
the abstract stat& [, B the spurious counterexample (and possibly others) deriptetie interpolant

| (i.e., (A0, B)ME = 1). Our transformation phase performs widening during theegaization step,
while the IHC solver generates interpolants in order toaiec more program invariants. We believe
this combination can be seen as a version oflfh@perator. The main difference is that our method
can obtain an effect similar to combining widening with iplation without the enormous effort of
implementing a new verifier from scratch.

6 Conclusions and Future Work

In this paper we have presented some preliminary resultsraat by integrating an Interpolating Horn
Clause solver (FTCLP) with an Iterated Specialization ta@riMAP). The experimental evaluation
confirms that such an integration is effective in practisediacussed in Sectibn 4.

The fact that both tools use CLP as a representation formé#disthe verification conditions, together
with the modular design of VeriMAP, allowed us a very clead painless integration with FTCLP. As a
result, we can achieve the effect of combining abstractpnétation with interpolation without having to
design and implement a custom verifier. We believe this mevdrdmbination is valuable by itself, since
based on the experience, one could implement a custom vexif@mply apply the method described
here if the performance is adequate.

In this preliminary work, we have used the IHC solver mairdyaeblack-box and although the gains
are promising they are somewhat limited. As future work, veeilt like to combine these tools in more
synergisticways. We believe that the integration can be improved inrs¢veays.

First, when FTCLP is not able to produce a solution withindbasidered timeout limit, it would be
useful to leverage the partial information it discovers amdgrate it in the transformed program, with
the aim of improving the subsequent unfold/fold transfdiorasteps. For example, during its execution
FTCLP might discover that some subtrees rooted in some goaiat lead to an answer. Thus, the
corresponding predicate can be considered useless anduges can be removed from the specialized
program before the next iteration starts.

Another observation is that FTCLP generates for each pmlcan interpolant that represents an
over-approximation of the original constraint store thegsgrves the unsolvability gf. It would be
interesting to study how these interpolants can be usediteréhe generalization step performed during
the unfold/fold transformation, with the objective of peegdng the branching structure of the symbolic
evaluation tree, as indicated [n [15], and preventing th®duction of spurious paths.

Finally, another possible direction for future work regattle use of interpolatioduring the trans-
formation process in order to make more efficient the unfold/process. While this appears to be a
very promising direction it raises some issues related éatélhmination of the transformation process
itself, which deserve further study.

Acknowledgments

We would like to thank the anonymous referees for their hitlahd constructive comments. This work
has been partially supported by the Italian National Gradupamputing Science (GNCS-INDAM).

16

Verification of Programs by Combining Iterated Speciaitatvith Interpolation

References

[1]
(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

The MAP transformation systerAvailable atwww.iasi.cnr.it/"proietti/system.html.

Aws Albarghouthi, Arie Gurfinkel & Marsha Chechik (20t ZJraig Interpretation In: Proceedings of SAS
pp. 300-316, doi:0.1007/978-3-642-33125-1_21.

Aws Albarghouthi, Arie Gurfinkel & Marsha Chechik (2012) From Under-Approximations to
Over-Approximations and Back In: Proceedings of TACAS pp. 157-172, doi0.1007/
978-3-642-28756-5_12.

Aws Albarghouthi, Yi Li, Arie Gurfinkel & Marsha Chechik2012): Ufo: A Framework for Abstraction-
and Interpolation-Based Software Verificationln: Proceedings of CAVpp. 672—678, doi0.1007/
978-3-642-31424-7_48.

Elvira Albert, Miguel Gbmez-Zamalloa, Laurent Hub&tGerman Puebla (2007)erification of Java Byte-
code Using Analysis and Transformation of Logic ProgramsProceedings of PADlpp. 124—139, doio0.
1007/978-3-540-69611-7_8.

Roberto Bagnara, Patricia M. Hill & E.nea Zaffanella (®): The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis erification of hardware and software systems
Science of Computer Programming(1-2), pp. 3-21, doin.1016/j.scico.2007.08.001,

Dirk Beyer (2013): Competition on Software Verification - (SV-COMRh: Proceedings of TACASOp.
594-609, doit0.1007/978-3-642-36742-7_43.

Nikolaj Bjgrner, Kenneth McMillan & Andrey Rybalchenk@012): Program Verification as Satisfiability
Modulo TheoriesIn: Proceedings of SMTpp. 3-11.

Aaron R. Bradley (2011)SAT-Based Model Checking without Unrolling: Proceedings of VMCAILNCS
6538, Springer, pp. 70-87, do@.1007/978-3-642-18275-4_7.

P. Chico de Guzman, M. Carro, M. V. Hermenegildo & P. ducRey (2012): A General Imple-
mentation Framework for Tabled CLP In: Proceedings of FLORSpp. 104-119, doi0.1007/
978-3-642-29822-6_11.

Alessandro Cimatti, Alberto Griggio, Bastiaan Sclsmaf & Roberto Sebastiani (2013he MathSAT5 SMT
Solver In Nir Piterman & Scott Smolka, editor®?roceedings of TACASLNCS 7795, Springer, doio.
1007/978-3-642-36742-7_T.

Philippe Codognet (19954 Tabulation Method for Constraint Logic Programmintn: Symposium and
Exhibition on Industrial Applications of Prolog

Patrick Cousot & Radhia Cousot (197 Abstract Interpretation: A Unified Lattice Model for Stafioalysis
of Programs by Construction or Approximation of Fixpoinltis: Proceedings of PORIACM, pp. 238-252,
doi:10.1145/512950.512973

W. Craig (1957).Linear Reasoning: A New Form of the Herbrand-Gentzen Theotwournal of Symbolic
Logic22(3), pp- 250-268, dai0 .2307/2963593.

Emanuele De Angelis, Fabio Fioravanti, Alberto Peit®i & Maurizio Proietti (2013)Specialization with
Constrained Generalization for Software Model Checkinp: Proceedings of LOPSTR.INCS 7844,
Springer, pp. 51-70, ddi0.1007/978-3-642-38197-3_5.

Emanuele De Angelis, Fabio Fioravanti, Alberto Peittsi & Maurizio Proietti (2014)Program Verification
via lterated Specializatian Science of Computer Programming (Special Issue on PEPM)260810.
1016/j.scico0.2014.05.017.

Emanuele De Angelis, Fabio Fioravanti, Alberto Peaigsi & Maurizio Proietti (2014)VeriMAP: A Tool
for Verifying Programs through Transformatiani: Proceedings of TACASop. 568-574, doi:0.1007/
978-3-642-54862-8_47.

http://dx.doi.org/10.1007/978-3-642-33125-1_21
http://dx.doi.org/10.1007/978-3-642-28756-5_12
http://dx.doi.org/10.1007/978-3-642-28756-5_12
http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/978-3-540-69611-7_8
http://dx.doi.org/10.1007/978-3-540-69611-7_8
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/978-3-642-29822-6_11
http://dx.doi.org/10.1007/978-3-642-29822-6_11
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.2307/2963593
http://dx.doi.org/10.1007/978-3-642-38197-3_5
http://dx.doi.org/10.1016/j.scico.2014.05.017
http://dx.doi.org/10.1016/j.scico.2014.05.017
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1007/978-3-642-54862-8_47

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 17

[18] Gregory J. Duck, Joxan Jaffar & Nicolas C. H. Koh (2018ponstraint-Based Program Reasoning with
Heaps and Separation In: Proceedings of GPLNCS 8124, Springer, pp. 282-298, dai: 1007/
978-3-642-40627-0_24.

[19] Sandro Etalle & Maurizio Gabbrielli (1996)Yransformations of CLP Modules heoretical Computer Sci-
encel66(1&2), pp. 101-146, ddi0 . 1016/0304-3975(95)00148-4.

[20] Fabio Fioravanti, Alberto Pettorossi & Maurizio Prti€2000): Automated strategies for specializing con-
straint logic programs In: Proceedings of LOPSTRI0i:10.1007/3-540-45142-0_8.

[21] Fabio Fioravanti, Alberto Pettorossi, Maurizio Pritii& Valerio Senni (2013)Generalization Strategies for
the Verification of Infinite State SystemBheory and Practice of Logic Programmihg(2), pp. 175-199,
doi;10.1017/81471068411000627.

[22] John P. Gallagher & Bishoksan Kafle (2014 nalysis and Transformation Tools for Constrained Horn
Clause VerificationIn: Proceedings of ICLP (to appear)

[23] Graeme Gange, Jorge A. Navas, Peter Schachte, Haralde8mard & Peter J. Stuckey (2013ailure
tabled constraint logic programming by interpolatioifheory and Practice of Logic Programmibg(4-5),
pp. 593—-607, d0i:0.1017/S1471068413000379.

[24] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Pofesadrey Rybalchenko (2012)5ynthesizing Soft-
ware Verifiers from Proof Ruledn: Proceedings of PLDbpp. 405-416, doi:0.1145/2254064.2254112,

[25] Bhargav S. Gulavani, Supratik Chakraborty, Aditya VorN& Sriram K. Rajamani (2008): Auto-
matically Refining Abstract InterpretationsIn: Proceedings of TACASpp. 443-458, doi0.1007/
978-3-540-78800-3_33.

[26] Bhargav S. Gulavani & Sriram K. Rajamani (200€ounterexample Driven Refinement for Abstract Inter-
pretation In: Proceedings of TACASp. 474—-488, doi:0.1007/11691372_34.

[27] Ashutosh Gupta & Andrey Rybalchenko (2008)vGen: An Efficient Invariant Generaton: Proceedings
of CAV, pp. 634—640, doi:0.1007/978-3-642-02658-4_48.

[28] Nicolas Halbwachs, Yann-Erick Proy & Patrick Roumand®97): Verification of Real-Time Systems us-
ing Linear Relation Analysis Formal Methods in System Desidri (2), pp. 157-185, dai0.1023/A:
1008678014487.

[29] Krystof Hoder, Nikolaj Bjgrner & Leonardo Mendonga M®ura (2011):uZ - An Efficient Engine for Fixed
Points with Constraintsin: Proceedings of CApp. 457-462, doi0.1007/978-3-642-22110-1_36.

[30] J.Jaffar & J. Lassez (1987 onstraint Logic Programmingn: Proceedings of PORpp. 111-119, doio.
1145/41625.41635

[31] J. Jaffar, A. E. Santosa & R. Voicu (2009n Interpolation Method for CLP Traversaln: Proceedings of
CP, pp. 454-469, doi:0.1007/978-3-642-04244-7_37.

[32] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas &dfew E. Santosa (2012)TRACER: A
Symbolic Execution Tool for Verification In: Proceedings of CAY pp. 758-766, doi0.1007/
978-3-642-31424-7_61.

[33] Kenneth McMillan & Andrey Rybalchenko (2013fomputing Relational Fixed Points using Interpolation
Technical Report, MSR-TR-2013-6.

[34] Kenneth L. McMillan (2010):Lazy Annotation for Program Testing and Verificatiom: Proceedings of
CAV, pp. 104-118, d0i:0.1007/978-3-642-14295-6_10.

[35] Leonardo Mendonga de Moura & Nikolaj Bjgrner (20088: An Efficient SMT Solvein: Proceedings of
TACAS, pp. 337-340, doi:0.1007/978-3-540-78800-3_24.

[36] George C. Necula, Scott McPeak, Shree Prakash Rahul gtl&yaWeimer (2002)CIL: Intermediate Lan-
guage and Tools for Analysis and Transformation of C Progranm: Proceedings of CGop. 213-228,
doi;10.1007/3-540-45937-5_16.

http://dx.doi.org/10.1007/978-3-642-40627-0_24
http://dx.doi.org/10.1007/978-3-642-40627-0_24
http://dx.doi.org/10.1016/0304-3975(95)00148-4
http://dx.doi.org/10.1007/3-540-45142-0_8
http://dx.doi.org/10.1017/S1471068411000627
http://dx.doi.org/10.1017/S1471068413000379
http://dx.doi.org/10.1145/2254064.2254112
http://dx.doi.org/10.1007/978-3-540-78800-3_33
http://dx.doi.org/10.1007/978-3-540-78800-3_33
http://dx.doi.org/10.1007/11691372_34
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1023/A:1008678014487
http://dx.doi.org/10.1023/A:1008678014487
http://dx.doi.org/10.1007/978-3-642-22110-1_36
http://dx.doi.org/10.1145/41625.41635
http://dx.doi.org/10.1145/41625.41635
http://dx.doi.org/10.1007/978-3-642-04244-7_37
http://dx.doi.org/10.1007/978-3-642-31424-7_61
http://dx.doi.org/10.1007/978-3-642-31424-7_61
http://dx.doi.org/10.1007/978-3-642-14295-6_10
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-45937-5_16

18 Verification of Programs by Combining Iterated Speciaitatvith Interpolation

[37] J. C. Peralta, J. P. Gallagher & H. Saglam (1998iralysis of Imperative Programs through Analysis of
Constraint Logic Programdn: Proceedings of the 5th International Symposium on Statalysis, SAS '98
Lecture Notes in Computer Science 1503, Springer, pp. 28B-dbi10.1007/3-540-49727-7_15.

[38] German Puebla, Elvira Albert & Manuel V. Hermenegil@®06): Abstract Interpretation with Specialized
Definitions In: Proceedings of SA®p. 107-126, doi:0.1007/11823230_8.

[39] Philipp Rummer, Hossein Hojjat & Viktor Kuncak (2013)isjunctive Interpolants for Horn-Clause Verifi-
cation In: Proceedings of CAVpp. 347-363, doi:0.1007/978-3-642-39799-8_24.

[40] Yakir Vizel & Arie Gurfinkel (2014):Interpolating Property Directed Reachabilitin: Proceedings of CAV
doi:10.1007/978-3-319-08867-9_17.

[41] Chao Wang, Zijiang Yang, Aarti Gupta & Franjo lvanci®(@7): Using Counterexamples for Improving the
Precision of Reachability Computation with Polyhedira Proceedings of CA\pp. 352—365, doi:0.1007/
978-3-540-73368-3_40.

http://dx.doi.org/10.1007/3-540-49727-7_15
http://dx.doi.org/10.1007/11823230_8
http://dx.doi.org/10.1007/978-3-642-39799-8_24
http://dx.doi.org/10.1007/978-3-319-08867-9_17
http://dx.doi.org/10.1007/978-3-540-73368-3_40
http://dx.doi.org/10.1007/978-3-540-73368-3_40

	1 Introduction
	2 An Introductory Example
	3 Verification based on Iterated Specialization and Interpolation
	3.1 Encoding safety problems of imperative programs using CLP
	3.2 Generation of CLP Verification Conditions
	3.3 Constraint Propagation by CLP Transformation
	3.4 Interpolating solver
	3.5 CLP reversal

	4 Experimental Evaluation
	5 Related Work
	6 Conclusions and Future Work

