
Nikolaj Bjørner, Fabio Fioravanti, Andrey Rybalchenko,
Valerio Senni (Eds.): First Workshop on
Horn Clauses for Verification and Synthesis (HCVS 2014)
EPTCS 169, 2014, pp. 3–18, doi:10.4204/EPTCS.169.3

c© E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti

Verification of Programs by Combining Iterated
Specialization with Interpolation

Emanuele De Angelis and Fabio Fioravanti
DEC, University G. d’Annunzio, Pescara, Italy

{emanuele.deangelis, fioravanti}@unich.it

Jorge A. Navas
NASA Ames Research Center, Moffett Field, USA

jorge.a.navaslaserna@nasa.gov

Maurizio Proietti
IASI-CNR, Rome, Italy

maurizio.proietti@iasi.cnr.it

We present a verification technique for program safety that combinesIterated Specializationand
Interpolating Horn Clause Solving. Our new method composes together these two techniques in
a modular way by exploiting the common Horn Clause representation of the verification problem.
The Iterated Specialization verifier transforms an initialset of verification conditions by using un-
fold/fold equivalence preserving transformation rules. During transformation, program invariants are
discovered by applying widening operators. Then the outputset of specialized verification conditions
is analyzed by an Interpolating Horn Clause solver, hence adding the effect of interpolation to the
effect of widening. The specialization and interpolation phases can be iterated, and also combined
with other transformations that change the direction of propagation of the constraints (forward from
the program preconditions or backward from the error conditions). We have implemented our ver-
ification technique by integrating the VeriMAP verifier withthe FTCLP Horn Clause solver, based
on Iterated Specialization and Interpolation, respectively. Our experimental results show that the
integrated verifier improves the precision of each of the individual components run separately.

1 Introduction

Constraint Logic Programming1 (CLP) [30] is becoming increasingly popular as a logical basis for
developing methods and tools for software verification (see, for instance, [8, 16, 24, 32, 39, 37]). Indeed,
CLP provides a suitable formalism for expressingverification conditionsthat guarantee the correctness of
imperative, functional, or concurrent programs and, moreover, constraints are very useful for encoding
properties of data domains such as integers, reals, arrays,and heaps [6, 18, 11, 35]. An advantage of
using a CLP representation for verification problems is thatwe can then combine reasoning techniques
and constraint solvers based on the common logical language[22]. In this paper we will show that, by
exploiting the CLP representation, we can combine in a modular way a verification technique based on
CLPspecialization[16] and a verification technique based on interpolation [23].

The use of CLP program specialization, possibly integratedwith abstract interpretation, has been pro-
posed in various verification techniques [5, 16, 37, 38]. In particular,iterated specialization[16] makes
use ofunfold/foldCLP program transformations to specialize a given set of verification conditions with
respect to the constraints representing theinitial anderror configurations. The objective of the special-
ization transformation is to derive an equivalent set of verification conditions represented as a finite set of
constrained facts from which one can immediately infer program correctness or incorrectness. Since the

1In this paper we use interchangeably the terminology “Constraint Logic Program” and “Constrained Horn Clauses” [8].

http://dx.doi.org/10.4204/EPTCS.169.3

4 Verification of Programs by Combining Iterated Specialization with Interpolation

verification problem is undecidable in general, the specialization strategy employs a suitablegeneraliza-
tion strategyto guarantee the termination of the analysis. Generalization consists in replacing a clause
H :- c,B by the new clauseH :- c,G, whereG is defined by the clauseG :- d,B andd is a constraint
entailed byc, and then specializingG, instead ofH. Most generalization strategies are based onwidening
operators like the ones introduced in the field of abstract interpretation [13]. Unfortunately, the use of
generalization can lead to a loss of precision, that is, to a specialized set of verification conditions which
we are neither able to prove satisfiable nor to prove unsatisfiable because of the presence of recursive
clauses. Precision can be improved by iterating the specialization process and alternating the propaga-
tion of the constraints of the initial configuration (forward propagation) and of the error configuration
(backward propagation).

Interpolation[14] is a technique that has been proposed to recover precision losses from abstractions,
including those from widening (see, for instance, [2, 25]).Having found a spurious counterexample (that
is, a false error detection), one can compute an interpolantformula that represents a set of states from
which the spurious counterexample cannot be generated, andby combining widening with interpolation
one can recover precision of the analysis by computing an overapproximation of the reachable states that
rules out the counterexample. Interpolation (without any combination with widening) has also been used
by several CLP verification techniques (see, for instance, [23, 24, 31, 33, 39]). However, to the best of
our knowledge, no CLP-based verifier combines widening and interpolation in a nontrivial way.

Among the various CLP-based techniques,Interpolating Horn Clause(IHC) solvers [23] enhance
the classical top-down (i.e., goal oriented) execution strategy for CLP with the use of interpolation.
During top-down execution suitable interpolants are computed, and when the constraints accumulated
during the execution of a goal imply an interpolant associated with that goal, then it is guaranteed that
the goal will fail and the execution can be stopped. Thus, theuse of interpolants can achieve termination
in the presence of potentially infinite goal executions. Therefore, IHC solvers can be used to verify safety
properties by showing that error conditions cannot be reached, even in the presence of infinite symbolic
program executions.

In this paper we propose a CLP-based verification technique that combines widening and interpola-
tion by composing in a modular way specialization-based verification with an IHC solver. Our technique
first specializes the CLP clauses representing the verification conditions with respect to the constraints
representing the initial configuration, hence deriving an equivalent set of CLP clauses that incorporate
constraints derived by unfolding and generalization (including, in particular, loop invariants computed
by widening). Next, the IHC solver is applied to the specialized CLP clauses, hence adding the effect
of interpolation to the effect of widening. In the case wherethe interpolation-based analysis is not suf-
ficient to check program correctness, the verification process proceeds by specializing the CLP clauses
with respect to the constraints representing the error configuration, and then applying the IHC solver to
the output program. Since program specialization preserves equivalence with respect to the property of
interest, we can iterate the process consisting in alternating specialization (with respect to the initial or
error configuration) and interpolation in the hope of eventually deriving CLP clauses for which we are
able to prove correctness or incorrectness.

We have implemented our verification technique by integrating FTCLP, an IHC solver [23], within
VeriMAP, a verifier based on iterated specialization [17]. The experimental results show that the inte-
grated verifier improves the precision of each of its individual components.

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 5

2 An Introductory Example

Consider the C program in Figure 1(a) where the symbol∗ represents a non-deterministic choice. A
possible inductive invariant that proves the safety of thisprogram isx≥ 1∧y≥ 0∧x≥ y.

Figure 1(b) shows the set of CLP clauses that represent the verification conditions for our verification
problem. We will explain in Section 3 how to generate automatically those conditions, but very roughly
each basic block in the C program is translated to a CLP clauseand each assertion is negated. Note that
the loop is translated into the recursive predicatenew3. The key property of this translation is that the
program in Figure 1(a) is safe iff the CLP predicateunsafe in Figure 1(b) is unsatisfiable, that is, all
derivations ofunsafe lead to failure.

int x = 1;
int y = 0;
while (∗) {

x = x+ y;
y = y+1;

}
assert(x>= y);

unsafe :- new2.
new2 :- X = 1,Y = 0, new3(X,Y,).
new3(X,Y,) :- new4(X,Y,).
new4(X,Y,C) :- X1= X+Y,

Y1=Y+1,C≥ 1, new3(X1,Y1,C).
new4(X,Y,C) :- C≤ 0, new6(X,Y,C).
new6(X,Y,C) :- D = 1, (X−Y)≥ 0 ,

new7(D,X,Y,C).
new6(X,Y,C) :- D = 0, (X−Y)≤−1,

new7(D,X,Y,C).
new7(D, , ,) :- D = 0.

unsafe :- new2.
new2 :- X = 1,Y = 0, new4(X,Y).
new4(X,Y) :- X = 1,Y = 0,

Y1= 1, X1= 1, new5(X1,Y1).
new5(X,Y) :- X = 1,Y ≥ 0, new8(X,Y).
new8(X,Y) :- X = 1, X1=Y+1,

X1≥ 1,Y1= X1, new9(X1,Y1).
new8(X,Y) :- X = 1,Y ≥ 0, new10(X,Y).
new10(X,Y):- X = 1,Y ≥ 2.
new9(X,Y) :- X ≥ 1,Y ≥ 0, new13(X,Y).
new13(X,Y):- X1= X+Y, Y1=Y+1,

new9(X1,Y1).
new13(X,Y):- X ≥ 1,Y ≥ 0, new15(X,Y).
new15(X,Y):- X ≥ 1, (X−Y)≤−1.

(a) (b) (c)

Figure 1: (a) C program, (b) CLP clauses representing the verification conditions, and (c) CLP clauses
after specialization.

Note that neither a top-down nor a bottom-up evaluation of the CLP program in Figure 1(b) will
terminate, essentially due to the existence of the recursive predicatenew3. To avoid this problem, our
method performs a transformation based onprogram specialization[16]. We postpone the details of
this transformation to Section 3, but the key property of this transformation is that it issatisfiability-
preserving. That is,unsafe is satisfiable in the input program iff it is satisfiable in thetransformed one.
The benefits of this transformation come from the addition ofnew constraints (e.g., usingwidening
techniques) that might make a top-down or bottom-up evaluation terminate. We show the result of this
transformation in Figure 1(c). For clarity, we have removedfrom the transformation irrelevant arguments
and performed some constraint simplifications.

The clause of predicatenew2 encodes the initial conditions. The transformation introduces new
definitionsnew4 andnew8 after unrolling twicenew3. The predicatenew9 encodes the loop just after
these two unrolls. Note that our transformation inserts twoadditional constraintsX ≥ 1 andY ≥ 0 that
will play an essential role later. Although this transformed set of clauses might appear simpler to solve
the predicateunsafe, it is still defined by recursive clauses with constrained facts. Even CLP systems
with tabling [10, 12] will not terminate here.

Instead, consider an IHC solver following the approach ofFailure Tabled CLP(FTCLP) [23]. In a
nutshell, FTCLP augments tabled CLP [10, 12] by computinginterpolantswhenever a failed derivation

6 Verification of Programs by Combining Iterated Specialization with Interpolation

CLP constraints for Figure 1(b) CLP constraints for Figure 1(c)
Π1: . . ., X = 1,Y = 0, new3(X,Y,), new4(X,Y,),

X1= X+Y, Y1=Y+1,new3(X1,Y1,)
Π2: . . ., X = 1,Y = 0, new3(X,Y,), new4(X,Y,),

new6(X,Y,), X−Y ≥ 0, D = 1, new7(D,X,Y,), D = 0
Π3: . . ., X = 1,Y = 0, new3(X,Y,), new4(X,Y,),

new6(X,Y,), X−Y ≤−1, D = 0, new7(D,X,Y,), D = 0

Π1′ : X = 2,Y = 2, new9(X,Y), X ≥ 1,Y ≥ 0,
new13(X,Y),X1= X+Y, Y1=Y+1,
new9(X1,Y1)

Π2′ : X = 2,Y = 2, new9(X,Y), X ≥ 1,Y ≥ 0,
new13(X,Y), X ≥ 1,Y ≥ 0, new15(X,Y)
X ≥ 1,X−Y ≤−1

Table 1: Executions of the CLP clauses from Figures 1(b)-(c)

is encountered during the top-down evaluation of the CLP program. If a call of predicatep has been fully
executed and has not produced any solution then its interpolants denote the conditions under which the
execution ofp will always lead to failure. During the execution of a recursive predicatep the top-down
evaluation might produce multiple copies ofp, each one with different constraintsc originated from
the unwinding of the recursive clauses forp. Given two copiesp′ and p′′ with constraintsc′ andc′′,
respectively, and beingp′′ a descendant ofp′, the tabling mechanism will check whetherp′′ is subsumed
by p′ (i.e., c′′ ⊑ c′). If this is the case, the execution can be safely stopped atp′′. In tabling, rather than
usingc′ it is common to use weaker constraints (in the logical sense)in order to increase the likelihood
of subsumption. These weaker constraints are often calledreuse conditions. The major difference with
respect to standard tabled CLP is that FTCLP uses the interpolants as reuse conditions while tabled
CLP usesconstraint projection. A key insight is that when FTCLP is used in the context of verification
its tabling mechanism using interpolants as reuse conditions resembles a verification algorithm using
interpolants to producecandidatesand keeping those which can be proven to be inductive invariants.

Coming back to our CLP program in Figure 1(b). If we run FTCLP on that set of clauses, the top-
down execution ofunsafe will not terminate. To understand why, let us focus on the predicatenew3,
initially with constraintsX = 1,Y = 0. Fromnew3 we reachnew4 which has two clauses. From the
execution of the first clause, we will reach againnew3 (Π1 in Table 1), but this time with constraints
X = 1,Y = 0,X1= X+Y,Y1=Y+1 (we ignore constraints overC since they are irrelevant). To avoid
an infinite loop, the tabling mechanism will freeze here its execution and backtrack to the nearest choice
point which is the second clause fornew4. From here, we will reachnew6 which has also two clauses.
The first clause fornew6, executed byΠ2, has the constraintX −Y ≥ 0,D = 1 which is consistent
with X = 1,Y = 0,X1 = X +Y,Y1 = Y+ 1. The execution followsnew7 which will fail because the
constraintD = 0 cannot be satisfied. The second clause ofnew6 executed inΠ3 has no solution either
becauseD = 0,X−Y ≤−1 is also false. Very importantly, FTCLP will generate interpolants from these
two failed derivations. The key interpolant is generated from the second clause ofnew6 (Π3) which
when propagated backwards tonew3 is X ≥ Y. Note that this is an essential piece of information, but
unfortunately it is not enough for tabling to stop permanently since this constraint alone is not sufficient
to subsume the descendants ofnew3. That is,X ≥Y∧X1= X+Y∧Y1=Y+1 6|= X1≥Y1. Therefore,
FTCLP will unfreeze the execution ofnew3 and repeat the process. Unfortunately, FTCLP will not
terminate.

Let us now consider the set of clauses in Figure 1(c). Let us repeat the same process running FTCLP
on the transformed program. Let us focus onnew9, which encodes the loop after two unrolls. For clarity
of presentation the execution ofnew9, shown inΠ1′ , starts with the constraintsX = 2,Y = 2 which are
produced by projecting the constraints accumulated fromnew2 to new9 onto X andY. Since there is
a cycle whennew9(X1,Y1) is reached the tabling mechanism will freeze its execution. Note that the
transformation inserted the constraintsX ≥ 1 andY ≥ 0. This was achieved by applying generalization

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 7

via widening during the unfolding of the clause. From the second clause ofnew13, shown inΠ2′ ,
the top-down evaluation will eventually fail. Again, it will generate an interpolant that after backwards
propagation tonew9 is X ≥Y. Now, it can be proven that the descendant ofnew9 can be safely subsumed
becauseX ≥Y,X ≥ 1,Y ≥ 0,X1= X+Y,Y1=Y+1 |= X1≥Y1, and therefore, FTCLP will terminate
proving thatunsafe is unsatisfiable. The magic here is originated from the fact that the transformation
produced the invariantsX ≥ 0 andY ≥ 1 (widening) while FTCLP produced the remaining partX ≥Y
(interpolation) which together form the desired safe inductive invariant.

Finally, it is worth mentioning that we do not claim that thisprogram cannot be proven safe by
other methods using more sophisticated interpolation algorithms (e.g. [4]) and/or combining with other
techniques such as predicate abstraction (e.g., [24]). Instead, we would like to stress how we can have the
same effect than a specialized algorithm using widening andinterpolation in a much less intrusive and
completely modular manner by exploiting the fact that both methods share the same CLP representation.

3 Verification based on Iterated Specialization and Interpolation

In order to show how our verification method based on iteratedspecialization and interpolation works,
let us consider again the program shown in Fig. 1 (a). We want to prove safety of programP with
respect to the initial configurations satisfyingϕinit(x,y) =def x=1 ∧ y=0, and the error configurations
satisfyingϕerror(x,y) =def x<y. That is, we want to show that, starting from any values ofx andy that
satisfyϕinit(x,y), after every terminating execution of programP, the new values ofx andy do not satisfy
ϕerror(x,y).

Our verification method consists of the following steps.

(Step 1 - CLP Encoding) First, we encode the safety verification problem using a CLPprogramI , called
the interpreter, which defines a predicateunsafe. We have that programP is safe iffI 6|= unsafe.

(Step 2 - Verification Conditions Generation) Then, by specializingI w.r.t. (a CLP encoding of) program
P, we generate a setVC of CLP clauses representing theverification conditionsfor P. Specialization
preserves safety, i.e.,I |= unsafe iff VC |= unsafe.

(Step 3 - Constraint Propagation) Next, we apply CLP specialization again and we propagate the con-
straints occurring in the initial and error conditions, thereby deriving a new setVC′ of verification con-
ditions. Also this specialization step preserves safety, i.e.,VC |= unsafe iff VC′ |= unsafe. During this
step, in order to guarantee termination, we generate inductive loop invariants by using generalization
operators based on widening and convex hull [21].

(Step 4 - Interpolating Verification) We consider the verification conditions obtained after constraint
propagation. If their satisfiability cannot be decided by simple syntactic checks (e.g., emptiness of the
set of CLP clauses or absence of constrained facts), we applythe interpolating Horn Clause solver.

In the case where the IHC solver is not able to provide a definite answer, wereversethe program
encoding the VC’s by exchanging the direction of the transition relation and the role of the initial and
error conditions, then weiterate the constraint propagation and satisfiability check (go to Step 3).

Of course, due to undecidability of safety, our verificationmethod might not terminate. However,
as experimentally shown in Section 4, the combination of program specialization and interpolating ver-
ification is successful in many examples and it is synergistic, in the sense that it improves over the use
of program specialization and interpolating verification alone. We now describe in more detail the tech-
niques applied in each step listed above.

8 Verification of Programs by Combining Iterated Specialization with Interpolation

3.1 Encoding safety problems of imperative programs using CLP

As already mentioned, the safety verification problem can beencoded as a CLP programI , called the
interpreter. We now show, through an example, how to derive aset of CLP clauses that encode (i) the
semantics of the programming language in which the program under verification is written, (i) the pro-
gram under verification itself, and (iii) the proof rules forthe considered safety property. The extension
to the general case is straightforward.

Encoding the semantics of the programming language.The semantics of the imperative language
can be encoded as a transition relation from any configuration of the imperative program to the next
configuration, by using the predicatetr. Below we list the clauses oftr for (i) assignments (clause 1),
(ii) conditionals (clauses 2 and 3), and (iii) jumps (clause4).

1. tr(cf(cmd(L,asgn(X,expr(E))),Env), cf(cmd(L1,C),Env1)) :-

eval(E,Env,V), update(Env,X,V,Env1), nextlab(L,L1), at(L1,C).

2. tr(cf(cmd(L,ite(E,L1,L2)),Env), cf(cmd(L1,C),Env)) :- beval(E,Env),at(L1,C).

3. tr(cf(cmd(L,ite(E,L1,L2)),Env), cf(cmd(L2,C),Env)) :- beval(not(E),Env),at(L2,C).

4. tr(cf(cmd(L,goto(L)),Env), cf(cmd(L,C),Env)) :- at(L,C).

The termcf(cmd(L,C),Env) encodes the configuration consisting of the commandC with label L
and the environmentEnv. The predicateeval(E,Env,V) computes the valueV of the expressionE
in the environmentEnv. The predicatebeval(E,Env) holds if the Boolean expressionE is true in
the environmentEnv. The predicateat(L,C) binds toC the command with labelL. The predicate
nextlab(L,L1) binds toL1 the label of the command that is written immediately after the command
with labelL. The predicateupdate(Env,X,V,Env1) updates the environmentEnv by binding the vari-
ableX to the valueV, thereby constructing a new environmentEnv1.

Encoding the imperative program. The imperative programP is encoded by a set of constrained facts
for the at predicate, as follows. First, we translate programP to the sequence of labelled commands
ℓ0 . . . ℓh. Then, we introduce the CLP facts{5−9} which encode those commands.

ℓ0: if (∗) ℓ1 else ℓh ; 5. at(0,ite(nondet,1,h)).
ℓ1: x= x+ y ; 6. at(1,asgn(int(x),expr(plus(int(x),int(y))))).
ℓ2: y= y+1 ; 7.at(2,asgn(int(y),expr(plus(int(y),int(1))))).
ℓ3: goto ℓ0 ; 8. at(3,goto(0)).
ℓh: halt ; 9. at(h,halt).

Encoding safety as reachability of configurations. Finally, we write the CLP clauses defining the
predicateunsafe that holds if and only if there exists an execution of the programP that leads from an
initial configuration to an error configuration.

10.unsafe :- initConf(X), reach(X).

11.reach(X) :- tr(X,X1), reach(X1).

12.reach(X) :- errorConf(X).
13.initConf(cf(cmd(0,C), [[int(x),X],[int(y),Y]])) :- X=1, Y=0, at(0,C).
14.errorConf(cf(cmd(h,halt), [[int(x),X],[int(y),Y]])) :- X<Y.

Note that in clauses 13 and 14, the second component of the configuration termcf encodes the environ-
ment as a list[[int(x),X],[int(y),Y]] that provides the bindings for the program variablesx and
y, respectively. The set of CLP clauses{1−14} constitutes the interpreterI . By the correctness of the
CLP Encoding [16] we have that programP is safe if and only ifI 6|= unsafe.

When the CLP programI is run by using the top-down, goal directed strategy usuallyemployed by
CLP systems, an execution of the goalunsafe corresponds to a forward traversal of the transition graph

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 9

(i.e., a traversal starting from the initial configuration). We can also provide an alternative definition of
thereach(X) relation that would generate a backward traversal of the transition graph (i.e., a traversal
starting from the error configuration). However, as shown inSection 3.5, the method alternates between
the forward and backward directions, and the direction usedby the first specialization is not very relevant
in practice.

More in general, the specialization-based approach is to a large extent parametric with respect to the
definition of the semantics of the programming language, as long as this is defined by a CLP program.

3.2 Generation of CLP Verification Conditions

The verification conditions associated with the given safety verification problem, are generated by per-
forming a CLP specialization based on unfold/fold program transformations [19, 20]. During this step,
we specialize the clauses definingunsafe in the interpreterI with respect to: (i) the clauses that define
the predicatetr, and (ii) the clauses that encode the given programP. The output of this program spe-
cialization is the set of verification conditions forP: a set of CLP clauses that encode the unsafety of the
imperative program, is equisatisfiable w.r.t.I , and contains no explicit reference to the predicate symbols
used for encoding the transition relation and the program commands. This first step is performed also in
other specialization-based techniques for program verification (see, for instance, [15, 37].).

In this paper we consider a C-like imperative programming language and proof rules for safety prop-
erties only. However, the specialization-based approach to the generation of verification conditions has
the advantage of being modular w.r.t. (i) the semantics of the programming language in which the pro-
gram under verification is written, and (ii) the logic used for specifying the property to be verified, and
seems to be reasonably efficient in practice.

The verification conditions for the safety problem we are considering are shown in Fig. 1 (b) and
have been briefly described in Section 2.

3.3 Constraint Propagation by CLP Transformation

Constraint propagation is achieved by a CLP specializationalgorithm similar to the one used for the
Verification Conditions Generation (Step 2). The main difference is that for constraint propagation we
use ageneralization operatorbased on widening and convex-hull that in many cases allows the discovery
of useful program invariants [21].

The specialization algorithm starts off from a setVC of clauses that includej ≥1 clauses defining
the predicateunsafe:

unsafe :- c1(X),p1(X), . . . , unsafe :- c j(X), p j(X)

wherec1(X),...,c j(X) are constraints andp1(X),...,p j(X) are atoms.
The specialization algorithm makes use of theunfolding, definition introduction, andfolding trans-

formation rules [19, 20].
The clauses forunsafe are unfolded, that is, they are transformed by applying the following un-

folding rule: Given a clauseC of the formH :- c,A, let {Ki :-ci,Qi | i = 1, . . . ,m} be the set of the
(renamed apart) clauses in programVC such that, fori = 1, . . . ,m, A is unifiable withKi via the most
general unifierϑi and the constraint (c,ci)ϑi is satisfiable. Then from clauseC we derive the clauses:

(H :- c,ci,Qi)ϑi , for i = 1, . . . ,m.

Unfolding propagates the constraints by adding the constraints on atomA to the constraints of the atom
Qi that occurs in the body of a clause unifyingA. By unfolding we may derive a fact forunsafe, and
hence the given program is unsafe. Alternatively, we may derive an empty set of clauses forunsafe,

10 Verification of Programs by Combining Iterated Specialization with Interpolation

and hence we infer safety. However, in most cases we will derive a nonempty set of clauses which are
not constrained facts. In these cases the specialization algorithm introduces a setDefsof new predicate
definitions, one for each clause which is not a constrained fact. More specifically, letE be a clause
derived by unfolding of the formH(X) :- e(X,X1),Q(X1), whereX and X1 are tuples of variables,
e(X,X1) is a constraint, andQ(X1) is an atom. Then, the specialization algorithm introduces anew
definition clauseD: newq(X1):- g(X1), Q(X1), such that: (i)newq is a new predicate symbol, and
(ii) g(X1) is a generalization ofe(X,X1), that is,e(X,X1)⊑ g(X1) (for the first definition introduction
stepg(X1) is theprojection, in the reals, ofe(X,X1) onto the variablesX1). Then clauseE is folded
using D, hence deriving the clauseF: H(X) :- e(X,X1),newq(X1). Note that, even ifg(X1) is a
generalization ofe(X,X1), clauseE is equisatisfiableto the pair of clausesD andF.

The clauses inDefsare then processed similarly to the clauses forunsafe, by applying unfolding,
adding new predicate definitions inDefs, and folding, and this unfolding-definition introduction-folding
cycle is repeated until all clauses derived by unfolding canbe folded using clauses introduced inDefsin
a previous step, so that no new predicate definitions need be introduced.

The termination of the specialization algorithm depends ona strategy that controls the introduction of
new definitions so that all clauses are eventually folded. Toguarantee termination we use a generalization
operatorGenwhich enjoys properties similar to thewidening operatorconsidered in the field of abstract
interpretation [13]. In particular, given a clauseE as above and a setDefs of predicate definitions,
Gen(E,Defs) is a clausenewq(X1):- g(X1),Q(X1), such thate(X,X1)⊑ g(X1) and, moreover, any
sequence of applications ofGen stabilizes, that is, the following property holds. For any infinite sequence
E1,E2, . . . of clauses, letG1,G2, . . . be a sequence of clauses constructed as follows:(1) G1 =Gen(E1, /0),
and (2) for every i > 0, Gi+1 = Gen(Ei+1,{G1, . . . ,Gi}). Then there exists an indexk such that, for
every i > k, Gi is equal, modulo the head predicate name, to a clause in{G1, . . . ,Gk}. Many concrete
generalization operators have been defined in the CLP specialization literature (see, for instance, [21]),
and we will consider two of them in our experiments of Section4.

The correctness of the specialization algorithm directly follows from the fact that the transformation
rules preserve the least model semantics [19]. Thus, given asetVC of CLP clauses (representing verifi-
cation conditions), ifVC′ is the output of the specialization algorithm applied toVC, thenVC |= unsafe

iff VC′ |= unsafe.

3.4 Interpolating solver

We now describe informally how the IHC solver considered in this paper works. For that, the concept of
a derivation plays a key role. Aderivation stepis a transition from state〈G |C〉 to state〈G′ |C′〉, written
〈G |C〉 ⇒ 〈G′ |C′〉, whereG, G′ are goals (sequences of literals that can be either atoms or constraints)
andC, C′ areconstraint stores(the constraints accumulated during the derivation of a goal). A derivation
step consists essentially ofunifying some atom in the current goalG with the head of some clause and
replacingG with the literals in the body of the matched clause producinga new goalG′. Moreover, new
constraints can be added to the constraint storeC producing a new constraint storeC′. At any derivation
step the constraint storeC can be unsatisfiable, hence producing afailed derivation. A derivation tree
for a goalG is a tree with states as nodes where each path corresponds to apossible derivation ofG.

In order to prove that a goal (e.g., the predicateunsafe) is unsatisfiable, the solver tries to produce a
finite derivation tree proving that the goal has no answers (i.e., all the derivations fail). If an answer is
found then it represents a counterexample. To facilitate this process, each node in the tree is annotated
with an interpolant producing at the end atree interpolant. To achieve this, the solver computes a
path interpolantfrom each failed derivation and then combines them. Informally, given a sequence of

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 11

formulasF1, . . . ,Fn (extracted from the constraint store at each state in the failed derivation) the sequence
I0, . . . , In is called a path interpolant if, for alli ∈ [1, . . . ,n], we haveIi−1 ∧Fi |= Ii (with I0 = true and
In = f alse) and the variables ofIi are common to the variables ofFi andFi+1. The interpolant associated
with a node in the tree is theconjunctionof the children’s interpolants.

Even if the derivation tree is finite, its tree interpolant isvery valuable since it can be used for pruning
other redundant failed derivations.

A more interesting fact is how we can use interpolants to prove that the derivation of a goal will fail
infinitely. We rely on the same principle followed by tabled CLP in order to subsume states in presence
of infinite derivations. Whenever a cycle is detected its execution is frozen2 to avoid running infinitely,
and a backtracking to an ancestor choice point occurs. By repeating this, the execution of a goal will
always terminate and a tree interpolant can be computed. After completion of a subtree, the tabling
mechanism will attempt at proving that the state where the execution was frozen can be subsumed by
any of its ancestors using an interpolant as the subsumptioncondition. If it fails then its execution is
re-activated and the process continues. Of course, the execution might run forever. The subsumption
test is described informally as follows. LetGa andGd be two atoms with the same functor and arity,
whereGa is the head andGd is the tail of a cycle. The symbolsa andd refer to ancestor and descendant,
respectively. Let[[p1]], . . . , [[pn]] be all the constraints originated from all pathsp1, . . . , pn betweenGa and
Gd, andIa be the interpolant computed forGa. Then, we do not need to re-activate the execution ofGd

if
∧

1≤i≤n Ia∧ [[pi]] |= I ′a (whereI ′a is the interpolantIa after proper renaming). This process is analogue to
tabled CLP’scompletion check.

Consider again the transformed program in Figure 1(c). Let us focus on the execution ofnew9, which
is a recursive predicate. Recall thatnew9 is reached after unwinding twice the loop. Therefore, before
the execution ofnew9 theconstraint storeis X = 2,Y = 2, after constraint simplification. Its depth-first,
left-to-right derivation tree is shown in Figure 2. Each oval node represents the call to a body atom and
an edge denotes a derivation step. A failed derivation is marked with a (red) “cross” symbol. Note that
there is no successful derivation, otherwise the program would be unsafe.

Interpolant:
X ≥Y

Interpolant:
X ≥Y

Interpolant:
X ≥Y

X = 2,Y = 2

new9(X,Y)

X ≥ 1,Y ≥ 0

new13(X,Y)

X1= X+Y,Y1=Y+1

new9(X1,Y1)

X ≥ 1,Y ≥ 0

new15(X,Y)

X ≥ 1,X−Y ≤−1

✗

Figure 2: The derivation tree for goalX = 2,Y = 2,new9(X,Y) wherenew9 is a predicate defined in the
CLP program of Figure 1(c)

2The freeze of an execution can be done in several ways. The algorithm described in [23] performs a counter instrumentation
similar to [34] in order to make finite the execution and produce interpolants.

12 Verification of Programs by Combining Iterated Specialization with Interpolation

The leftmost derivation is frozen when the atomnew9(X1,Y1) is encountered. Then, the execution
backtracks tonew13(X,Y) and activates the rightmost derivation, which fails. We compute the inter-
polant for this derivation and we annotate the atomnew9(X,Y) with the constraintX ≥Y. At this point,
we visit againnew9(X1,Y1) in order to perform the subsumption test:X ≥Y∧X ≥ 1∧Y ≥ 0∧X1=
X+Y∧Y1=Y+1 |= X1≥Y1. This entailment holds, and therefore the execution can safely stop prov-
ing that the goalnew9(X,Y) is unsatisfiable. Note that if the transformation had not added the constraints
X ≥ 1,Y ≥ 0 the subsumption test would have failed and the execution would have run forever.

Finally, the criteria used for stopping the IHC solver is currently based on a timeout. Of course, due
to undecidability reasons, there is no method that can decide whether the IHC solver will eventually stop
finding a safe inductive invariant. However, there might be cases where by inspecting the interpolants we
could guess that it is not likely for the IHC solver to stop in areasonable amount of time. In these cases,
it is desirable to switch to the next transformation phase instead of waiting until the timeout expires. In
the future, we would like to investigate this problem.

3.5 CLP reversal

In the case where the IHC solver is not able to check (within a given amount of time) whetherunsafe
holds or not, the verification method returns to Step 3 and propagates the constraints by first inverting the
roles of the initial and error configurations. Thus, at each iteration of the method, verification switches
from forward propagation (of the constraints of the initialconfiguration) to backward propagation (of the
constraints of the error configuration), or vice versa, having also strengthened the constraints of the initial
and error configurations due to previous specializations. This switch is achieved by a CLP transformation
calledReversal[16].

CLP Reversal transforms the setVC1= {1,2,3} of CLP clauses into the setVC2= {4,5,6}.

1. unsafe :- a(U), r1(U). 4. unsafe :- b(U), r2(U).
2. r1(U) :- c(U,V), r1(V). 5. r2(V) :- c(U,V), r2(U).
3. r1(U) :- b(U). 6. r2(U) :- a(U).

The Reversal transformation can be generalized to any number of clauses and predicates, and preserves
safety in the sense thatVC1|= unsafe iff VC2|= unsafe.

4 Experimental Evaluation

The verification method presented in Section 3 has been implemented by combining VeriMAP [17] and
FTCLP [23]. The verification process is controlled by VeriMAP, which is responsible for the orchestra-
tion of the following components: (i) atranslator, based on the C Intermediate Language (CIL) [36],
which translates a given verification problem (i.e., the C program together with the initial and error
configurations) into a set of CLP program, (ii) aspecializerfor CLP programs, based on the MAP
transformation system [1], which generates the verification conditions (VCs) and applies the iterated
specialization strategy, and (iii) anIHC solver(IHCS), implemented by the FTCLP tool.

We have performed an experimental evaluation on a set of benchmarks consisting of 216 verification
problems (179 of which are safe, and the remaining 37 are unsafe). Most problems have been taken
from the repositories of other tools such as DAGGER [25] (21 problems), TRACER [32] (66 problems),
InvGen [27] (68 problems), and also from the TACAS 2013 Software Verification Competition [7] (52
problems). The size of the input programs ranges from a dozento about five hundred lines of code. The
source code of all the verification problems is available athttp://map.uniroma2.it/VeriMAP/hcvs/.

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 13

FTCLP VeriMAPM VeriMAPM + FTCLP VeriMAPPH VeriMAPPH + FTCLP
answers 116 128 160 178 182
crashes 5 0 2 0 0
timeouts 95 88 54 38 34
total time 12470.26 11285.77 9714.41 5678.09 6537.17
average time 107.50 88.17 60.72 31.90 35.92

Table 2: Verification results using VeriMAP, FTCLP, and the combination of VeriMAP and FTCLP. The
timeout limit is two minutes. Times are in seconds.

The program verifier has been configured to execute the following process:

SpecializeRemove; SpecializeProp; IHCS;
(

Reverse; SpecializeProp; IHCS
)∗

After having translated the verification problemP into CLP, the verifier: (i) generates the verification
conditions forP by applying theSpecializeRemoveprocedure (Section 3.2), (ii) propagates the constraints
that represent the initial configurations by executing theSpecializeProp procedure (Section 3.3), and (iii)
runs theIHC solver (Section 3.4). If the solvability of the CLP clauses can be decided the verifier
stops. Otherwise, the verifier calls theReverseprocedure that interchanges the roles of the initial and
error configurations (Section 3.5), and callsSpecializeProp again. The

(

Reverse; SpecializeProp; IHCS
)

sequence might repeat forever unless the specializer is able to generate a set of CLP clauses thatIHCS
can either prove to be solvable or prove to be unsolvable.

All experiments have been performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB
of memory under the GNU Linux operating system Ubuntu 12.10 (64 bit, kernel version 3.2.0-57). A
timeout limit of two minutes has been set for each verification problem.

Table 2 summarizes the verification results obtained by the VeriMAP and the FTCLP tools executed
separately (first, second and fourth columns) and the combination of both tools (third and fifth columns).
When VeriMAP is executed without the help of FTCLP, the analysis described in [16] is used in place
of the IHC solver. In the columns labeled by VeriMAPM and VeriMAPPH we have reported the results
obtained by using the VeriMAP system with the generalization operatorGenM (monovariant general-
ization3 using widening only) andGenPH (polyvariant generalization4 using widening and convex hull),
respectively. Row 1 reports the total number of definite answers (correctly asserting either program
safetyor unsafety). Row 2 reports the number of tool crashes. Row 3 reports the number of verification
problems that could not be solved within the timeout limit oftwo minutes. Row 4 reports the total CPU
time, in seconds, taken to run the whole set of verification tasks: it includes the time taken to produce
answers and the time spent on tasks that timed out. Finally, row 5 reports the average time needed to
produce a definite answer, which is obtained by dividing the total time by the number of answers.

The results in Table 2 show that the combination of VeriMAP and FTCLP, by exploiting the synergy
of widening and interpolation, improves the performance ofboth tools whenever executed separately.
In particular, we have that the best performance is achievedby the combination VeriMAPPH + FTCLP
where the process is able to provide an answer for 182 programs out of 216 (84.26%).

Table 3 summarizes the results obtained at the end of each of the first five iterations of the verification
process when VeriMAP is executed alone and combined with FTCLP. We observe that when VeriMAP
is used in combination with FTCLP the number of iterations required to solve the verification problems
is considerably reduced.

3All constrained atoms with the same predicate are generalized to the same new predicate.
4Constrained atoms with the same predicate can be generalized to different new predicates.

14 Verification of Programs by Combining Iterated Specialization with Interpolation

Iteration VeriMAPM VeriMAPM + FTCLP VeriMAPPH VeriMAPPH + FTCLP
1 74 119 104 136
2 45 38 54 34
3 7 2 10 5
4 2 1 8 3
5 0 0 2 4

Table 3: Number of definite answers computed by VeriMAP and bythe combination of VeriMAP and
FTCLP within the first five iterations.

5 Related Work

As Horn logic is becoming more popular for reasoning about properties of programs, the number of ver-
ifiers based on this logic has increased during recent years (e.g, [17, 24, 29, 32, 33, 39, 40]). Although
they can differ significantly from each other, one possible classification is based on their use of interpo-
lation (e.g., [24, 32, 33, 39]), Property Directed Reachability (PDR) [9] (e.g., [29]), or a combination of
both (e.g., [40]). Unlike the above mentioned verifiers, VeriMAP [17] does not use interpolation and,
as explained in previous sections, implements a transformation method based on widening techniques
similar to the ones used in the field of abstract interpretation [13].

It should be noted that, with the exception of VeriMAP, abstract interpretation techniques are surpris-
ingly less common than PDR and interpolation in Horn Clause verifiers. HSF [24] combines predicate
abstraction with interpolation but no other abstract interpretations. TRACER [32] only uses abstract
interpretation as a pre-processing step in order to inject invariants during the execution of the Horn
Clauses. Therefore, to the best of our knowledge there is no Horn Clause verifier that combines abstract
interpretation (apart from predicate abstraction) with interpolation in a nontrivial manner.

Several works (e.g., [2, 25, 26, 41]) have focused on how to refine abstract interpretations different
from predicate abstraction outside the scope of Horn Clauseverifiers. [26, 41] focus on how to recover
from the losses of widening by using specific knowledge of polyhedra. DAGGER [25] tackles in a more
general way the imprecision due to widening by proposing the“interpolated widen” operator which
refines the abstract state after widening using interpolation. [2] proposes another algorithm called VINTA

which can also refine precision losses from widening, but it relies heavily on the use of an abstract
domain that can represent efficiently disjunction of abstract states. However, efficient disjunctive abstract
domains are rare and it is well known that the design of precise widening operators is far from easy.
UFO [3, 4] is a framework for combining CEGAR methods based on over-and-under approximations
which is parameterized by apostoperator. The post operator is used during the unwinding of the control
flow graph. If an error is found then Craig interpolation is used to refine the abstraction. Although
in principle the post operator could perform an arbitrary abstraction the refinement described in [3, 4]
assume heavily that predicate abstraction is used. If otherabstractions were used it is not clear at all how
to refine them. Moreover, unlike DAGGER and VINTA , during the unwinding of the control flow graph
no abstract joins are performed, and thus we may consider UFO as another CEGAR method based on
interpolation.

The approach followed by DAGGER is probably the most closely related to ours. If DAGGER finds
a spurious counterexample due to widening losses, it must bethe case that(A⊔B)⊓E = ⊥ but (A∇
B)⊓E 6= ⊥, whereA is the abstract state before starting the execution of a loop, B is the abstract state
after executing the backedge of the loop, andE is an abstract state that leads to an error. The idea behind
“interpolated widen” is to replace∇ with ∇I , where∇I is an instance of the widening up-to [28]. The key

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 15

property of the∇I operator is that it preserves the desirable properties of widening while excludes from
the abstract stateA∇I B the spurious counterexample (and possibly others) denotedby the interpolant
I (i.e., (A∇I B)⊓E = ⊥). Our transformation phase performs widening during the generalization step,
while the IHC solver generates interpolants in order to discover more program invariants. We believe
this combination can be seen as a version of the∇I operator. The main difference is that our method
can obtain an effect similar to combining widening with interpolation without the enormous effort of
implementing a new verifier from scratch.

6 Conclusions and Future Work

In this paper we have presented some preliminary results obtained by integrating an Interpolating Horn
Clause solver (FTCLP) with an Iterated Specialization tool(VeriMAP). The experimental evaluation
confirms that such an integration is effective in practice, as discussed in Section 4.

The fact that both tools use CLP as a representation formalism for the verification conditions, together
with the modular design of VeriMAP, allowed us a very clean and painless integration with FTCLP. As a
result, we can achieve the effect of combining abstract interpretation with interpolation without having to
design and implement a custom verifier. We believe this modular combination is valuable by itself, since
based on the experience, one could implement a custom verifier or simply apply the method described
here if the performance is adequate.

In this preliminary work, we have used the IHC solver mainly as a black-box and although the gains
are promising they are somewhat limited. As future work, we would like to combine these tools in more
synergisticways. We believe that the integration can be improved in several ways.

First, when FTCLP is not able to produce a solution within theconsidered timeout limit, it would be
useful to leverage the partial information it discovers andintegrate it in the transformed program, with
the aim of improving the subsequent unfold/fold transformation steps. For example, during its execution
FTCLP might discover that some subtrees rooted in some goal cannot lead to an answer. Thus, the
corresponding predicate can be considered useless and its clauses can be removed from the specialized
program before the next iteration starts.

Another observation is that FTCLP generates for each predicate p an interpolant that represents an
over-approximation of the original constraint store that preserves the unsolvability ofp. It would be
interesting to study how these interpolants can be used to refine the generalization step performed during
the unfold/fold transformation, with the objective of preserving the branching structure of the symbolic
evaluation tree, as indicated in [15], and preventing the introduction of spurious paths.

Finally, another possible direction for future work regards the use of interpolationduring the trans-
formation process in order to make more efficient the unfold/fold process. While this appears to be a
very promising direction it raises some issues related to the termination of the transformation process
itself, which deserve further study.

Acknowledgments

We would like to thank the anonymous referees for their helpful and constructive comments. This work
has been partially supported by the Italian National Group of Computing Science (GNCS-INDAM).

16 Verification of Programs by Combining Iterated Specialization with Interpolation

References

[1] The MAP transformation system. Available atwww.iasi.cnr.it/~proietti/system.html.

[2] Aws Albarghouthi, Arie Gurfinkel & Marsha Chechik (2012): Craig Interpretation. In: Proceedings of SAS,
pp. 300–316, doi:10.1007/978-3-642-33125-1_21.

[3] Aws Albarghouthi, Arie Gurfinkel & Marsha Chechik (2012): From Under-Approximations to
Over-Approximations and Back. In: Proceedings of TACAS, pp. 157–172, doi:10.1007/
978-3-642-28756-5_12.

[4] Aws Albarghouthi, Yi Li, Arie Gurfinkel & Marsha Chechik (2012): Ufo: A Framework for Abstraction-
and Interpolation-Based Software Verification. In: Proceedings of CAV, pp. 672–678, doi:10.1007/
978-3-642-31424-7_48.

[5] Elvira Albert, Miguel Gómez-Zamalloa, Laurent Hubert& Germán Puebla (2007):Verification of Java Byte-
code Using Analysis and Transformation of Logic Programs. In: Proceedings of PADL, pp. 124–139, doi:10.
1007/978-3-540-69611-7_8.

[6] Roberto Bagnara, Patricia M. Hill & E.nea Zaffanella (2008): The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis andverification of hardware and software systems.
Science of Computer Programming72(1-2), pp. 3–21, doi:10.1016/j.scico.2007.08.001.

[7] Dirk Beyer (2013):Competition on Software Verification - (SV-COMP). In: Proceedings of TACAS, pp.
594–609, doi:10.1007/978-3-642-36742-7_43.

[8] Nikolaj Bjørner, Kenneth McMillan & Andrey Rybalchenko(2012): Program Verification as Satisfiability
Modulo Theories. In: Proceedings of SMT, pp. 3–11.

[9] Aaron R. Bradley (2011):SAT-Based Model Checking without Unrolling. In: Proceedings of VMCAI, LNCS
6538, Springer, pp. 70–87, doi:10.1007/978-3-642-18275-4_7.

[10] P. Chico de Guzmán, M. Carro, M. V. Hermenegildo & P. J. Stuckey (2012): A General Imple-
mentation Framework for Tabled CLP. In: Proceedings of FLOPS, pp. 104–119, doi:10.1007/
978-3-642-29822-6_11.

[11] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma & Roberto Sebastiani (2013):The MathSAT5 SMT
Solver. In Nir Piterman & Scott Smolka, editors:Proceedings of TACAS, LNCS 7795, Springer, doi:10.
1007/978-3-642-36742-7_7.

[12] Philippe Codognet (1995):A Tabulation Method for Constraint Logic Programming. In: Symposium and
Exhibition on Industrial Applications of Prolog.

[13] Patrick Cousot & Radhia Cousot (1977):Abstract Interpretation: A Unified Lattice Model for StaticAnalysis
of Programs by Construction or Approximation of Fixpoints. In: Proceedings of POPL, ACM, pp. 238–252,
doi:10.1145/512950.512973.

[14] W. Craig (1957):Linear Reasoning: A New Form of the Herbrand-Gentzen Theorem. Journal of Symbolic
Logic 22(3), pp. 250–268, doi:10.2307/2963593.

[15] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2013):Specialization with
Constrained Generalization for Software Model Checking. In: Proceedings of LOPSTR, LNCS 7844,
Springer, pp. 51–70, doi:10.1007/978-3-642-38197-3_5.

[16] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2014):Program Verification
via Iterated Specialization. Science of Computer Programming (Special Issue on PEPM 2013), doi:10.
1016/j.scico.2014.05.017.

[17] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2014):VeriMAP: A Tool
for Verifying Programs through Transformations. In: Proceedings of TACAS, pp. 568–574, doi:10.1007/
978-3-642-54862-8_47.

http://dx.doi.org/10.1007/978-3-642-33125-1_21
http://dx.doi.org/10.1007/978-3-642-28756-5_12
http://dx.doi.org/10.1007/978-3-642-28756-5_12
http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/978-3-540-69611-7_8
http://dx.doi.org/10.1007/978-3-540-69611-7_8
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/978-3-642-29822-6_11
http://dx.doi.org/10.1007/978-3-642-29822-6_11
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.2307/2963593
http://dx.doi.org/10.1007/978-3-642-38197-3_5
http://dx.doi.org/10.1016/j.scico.2014.05.017
http://dx.doi.org/10.1016/j.scico.2014.05.017
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1007/978-3-642-54862-8_47

E. De Angelis, F. Fioravanti, J. A. Navas & M. Proietti 17

[18] Gregory J. Duck, Joxan Jaffar & Nicolas C. H. Koh (2013):Constraint-Based Program Reasoning with
Heaps and Separation. In: Proceedings of CP, LNCS 8124, Springer, pp. 282–298, doi:10.1007/

978-3-642-40627-0_24.

[19] Sandro Etalle & Maurizio Gabbrielli (1996):Transformations of CLP Modules. Theoretical Computer Sci-
ence166(1&2), pp. 101–146, doi:10.1016/0304-3975(95)00148-4.

[20] Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2000): Automated strategies for specializing con-
straint logic programs. In: Proceedings of LOPSTR, doi:10.1007/3-540-45142-0_8.

[21] Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti & Valerio Senni (2013):Generalization Strategies for
the Verification of Infinite State Systems. Theory and Practice of Logic Programming13(2), pp. 175–199,
doi:10.1017/S1471068411000627.

[22] John P. Gallagher & Bishoksan Kafle (2014):Analysis and Transformation Tools for Constrained Horn
Clause Verification. In: Proceedings of ICLP (to appear).

[23] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard & Peter J. Stuckey (2013):Failure
tabled constraint logic programming by interpolation. Theory and Practice of Logic Programming13(4-5),
pp. 593–607, doi:10.1017/S1471068413000379.

[24] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea& Andrey Rybalchenko (2012):Synthesizing Soft-
ware Verifiers from Proof Rules. In: Proceedings of PLDI, pp. 405–416, doi:10.1145/2254064.2254112.

[25] Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori & Sriram K. Rajamani (2008): Auto-
matically Refining Abstract Interpretations. In: Proceedings of TACAS, pp. 443–458, doi:10.1007/
978-3-540-78800-3_33.

[26] Bhargav S. Gulavani & Sriram K. Rajamani (2006):Counterexample Driven Refinement for Abstract Inter-
pretation. In: Proceedings of TACAS, pp. 474–488, doi:10.1007/11691372_34.

[27] Ashutosh Gupta & Andrey Rybalchenko (2009):InvGen: An Efficient Invariant Generator. In: Proceedings
of CAV, pp. 634–640, doi:10.1007/978-3-642-02658-4_48.

[28] Nicolas Halbwachs, Yann-Erick Proy & Patrick Roumanoff (1997): Verification of Real-Time Systems us-
ing Linear Relation Analysis. Formal Methods in System Design11(2), pp. 157–185, doi:10.1023/A:
1008678014487.

[29] Krystof Hoder, Nikolaj Bjørner & Leonardo Mendonça deMoura (2011):µZ - An Efficient Engine for Fixed
Points with Constraints. In: Proceedings of CAV, pp. 457–462, doi:10.1007/978-3-642-22110-1_36.

[30] J. Jaffar & J. Lassez (1987):Constraint Logic Programming. In: Proceedings of POPL, pp. 111–119, doi:10.
1145/41625.41635.

[31] J. Jaffar, A. E. Santosa & R. Voicu (2009):An Interpolation Method for CLP Traversal. In: Proceedings of
CP, pp. 454–469, doi:10.1007/978-3-642-04244-7_37.

[32] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas & Andrew E. Santosa (2012):TRACER: A
Symbolic Execution Tool for Verification. In: Proceedings of CAV, pp. 758–766, doi:10.1007/
978-3-642-31424-7_61.

[33] Kenneth McMillan & Andrey Rybalchenko (2013):Computing Relational Fixed Points using Interpolation.
Technical Report, MSR-TR-2013-6.

[34] Kenneth L. McMillan (2010):Lazy Annotation for Program Testing and Verification. In: Proceedings of
CAV, pp. 104–118, doi:10.1007/978-3-642-14295-6_10.

[35] Leonardo Mendonça de Moura & Nikolaj Bjørner (2008):Z3: An Efficient SMT Solver. In: Proceedings of
TACAS, pp. 337–340, doi:10.1007/978-3-540-78800-3_24.

[36] George C. Necula, Scott McPeak, Shree Prakash Rahul & Westley Weimer (2002):CIL: Intermediate Lan-
guage and Tools for Analysis and Transformation of C Programs. In: Proceedings of CC, pp. 213–228,
doi:10.1007/3-540-45937-5_16.

http://dx.doi.org/10.1007/978-3-642-40627-0_24
http://dx.doi.org/10.1007/978-3-642-40627-0_24
http://dx.doi.org/10.1016/0304-3975(95)00148-4
http://dx.doi.org/10.1007/3-540-45142-0_8
http://dx.doi.org/10.1017/S1471068411000627
http://dx.doi.org/10.1017/S1471068413000379
http://dx.doi.org/10.1145/2254064.2254112
http://dx.doi.org/10.1007/978-3-540-78800-3_33
http://dx.doi.org/10.1007/978-3-540-78800-3_33
http://dx.doi.org/10.1007/11691372_34
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1023/A:1008678014487
http://dx.doi.org/10.1023/A:1008678014487
http://dx.doi.org/10.1007/978-3-642-22110-1_36
http://dx.doi.org/10.1145/41625.41635
http://dx.doi.org/10.1145/41625.41635
http://dx.doi.org/10.1007/978-3-642-04244-7_37
http://dx.doi.org/10.1007/978-3-642-31424-7_61
http://dx.doi.org/10.1007/978-3-642-31424-7_61
http://dx.doi.org/10.1007/978-3-642-14295-6_10
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-45937-5_16

18 Verification of Programs by Combining Iterated Specialization with Interpolation

[37] J. C. Peralta, J. P. Gallagher & H. Saglam (1998):Analysis of Imperative Programs through Analysis of
Constraint Logic Programs. In: Proceedings of the 5th International Symposium on Static Analysis, SAS ’98,
Lecture Notes in Computer Science 1503, Springer, pp. 246–261, doi:10.1007/3-540-49727-7_15.

[38] Germán Puebla, Elvira Albert & Manuel V. Hermenegildo(2006):Abstract Interpretation with Specialized
Definitions. In: Proceedings of SAS, pp. 107–126, doi:10.1007/11823230_8.

[39] Philipp Rümmer, Hossein Hojjat & Viktor Kuncak (2013): Disjunctive Interpolants for Horn-Clause Verifi-
cation. In: Proceedings of CAV, pp. 347–363, doi:10.1007/978-3-642-39799-8_24.

[40] Yakir Vizel & Arie Gurfinkel (2014):Interpolating Property Directed Reachability. In: Proceedings of CAV,
doi:10.1007/978-3-319-08867-9_17.

[41] Chao Wang, Zijiang Yang, Aarti Gupta & Franjo Ivancic (2007): Using Counterexamples for Improving the
Precision of Reachability Computation with Polyhedra. In: Proceedings of CAV, pp. 352–365, doi:10.1007/
978-3-540-73368-3_40.

http://dx.doi.org/10.1007/3-540-49727-7_15
http://dx.doi.org/10.1007/11823230_8
http://dx.doi.org/10.1007/978-3-642-39799-8_24
http://dx.doi.org/10.1007/978-3-319-08867-9_17
http://dx.doi.org/10.1007/978-3-540-73368-3_40
http://dx.doi.org/10.1007/978-3-540-73368-3_40

	1 Introduction
	2 An Introductory Example
	3 Verification based on Iterated Specialization and Interpolation
	3.1 Encoding safety problems of imperative programs using CLP
	3.2 Generation of CLP Verification Conditions
	3.3 Constraint Propagation by CLP Transformation
	3.4 Interpolating solver
	3.5 CLP reversal

	4 Experimental Evaluation
	5 Related Work
	6 Conclusions and Future Work

