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Tumors constitute a wide family of diseases kineticallyrelaterized by the co-presence of multiple
spatio-temporal scales. So, tumor cells ecologicallyrpiésy with other kind of cells, e.g. en-
dothelial cells or immune system effectors, producing arahanging various chemical signals. As
such, tumor growth is an ideal object of hybrid modeling vehaiscrete stochastic processes model
agents at low concentrations, and mean-field equations Insbdeical signals. In previous works
we proposed a hybrid version of the well-known Panettadfinrer mean-field model of tumor cells,
effector cells and Interleukin-2. Our hybrid model suggdstat variance of the inferences from
its original formulation- that immune surveillance, i.aintor elimination by the immune system,
may occur through a sort of side-effect of large stochagtuillations. However, that model did
not account that, due to both chemical transportation athda@edifferentiation/division, the tumor-
induced recruitment of immune effectors is not instantaisdaut, instead, it exhibits a lag period.
To capture this, we here integrate a mean-field equatiomferleukins-2 with a bi-dimensional de-
layed stochastic process describing such delayed intergla algorithm to realize trajectories of
the underlying stochastic process is obtained by coupliegPiecewise Deterministic Markov pro-
cess (for the hybrid part) with a Generalized Semi-Markowlack structure (to account for delays).
We (i) relate tumor mass growth with delays via simulations andhai@metric sensitivity analysis
techniques(ii) we quantitatively determine probabilistic eradicationds, andiii) we prove, in the
oscillatory regime, the existence of a heuristic stockdsturcation resulting in delay-induced tumor
eradication, which is neither predicted by the mean-fieldayathe hybrid non-delayed models.

1 Introduction

Tumor—immune system interaction is triggered by the amyemr of specific antigens — called neo-
antigens — eventually formed by the vast number of geneticepigenetic events characterizing tumors
[48]. So, the immune system may control and, in some caséntinate, tumors[[29]. This observation,
fundamental to the so-calléchmune surveillance hypothesis, recently accumulated evidences [28].
The competitive interaction between tumor cells and the imensystem is extremely complex and,
as such, it has multiple outcomes. So, for instance, a newptaay very often escape from immune

*G.C., A.G., G.M. and M.A. wish to acknowledge NEDD and the iReg Lombardia for financial support of this work,
under the research project RetroNet, grant 12-4-514800Q4A 053.

Ezio Bartocci and Luca Bortolussi (Eds.): HSB 2012 © Caravagna, Graudenzi, d'Onofrio, Antoniotti & Mauri

- This work is licensed under the
EPTCS 92, 2012, pp. 106=121, doi:10.4204/EPTCS.92.8 Creative Commoris Attribution License.


http://dx.doi.org/10.4204/EPTCS.92.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

G.Caravagna, A.Graudenzi, A.d’Onofrio, M.Antoniotti & I@auri 107

control, may be constrained in a oscillatory regime or,edéhtly, a dynamic equilibrium with the tu-
mor in a microscopic undetectable “dormant” steady-sta@ fnay also be established. In the oscil-
latory regime both 'short term-small amplitude’ osciltats [39) 53| 32, 46] and patterns of remission-
recurrencel[50,/5] have been observed, i.e. the alternafitong dormancy phases where the immune
surveillance is not definitive with tumor escape phases.|dtter case has important and negative impli-
cations since, on the one hand, a dormant tumor may evenindiice metastases through blood vessels
formation and, on the other hand, the neoplasm may develaiggtes to circumvent the immune system
action, thus restarting to grow [54,148,128] 51]. This eviolhéry adaptation, termed “immunoediting”,
typically happens over a significant fraction of the averhgst life span[[28] and, among its many ef-
fects, it negatively impacts on the effectiveness of imnthammpies([22]. These therapies, consisting in
stimulating the immune system to better fight, and hopetergdicate, a cancer, are a simple and promis-
ing approach to the treatment of cancerl [27], even thoughga inter-subjects variability is observed,
which makes the results of immunotherapy clinical trialgeypuzzling [1/ 4, 38].

As far as the modeling of tumor—immune system interplay isceoned, many mean-field models
have appeared [41, 43,142,126, 20] 22], some of them includalgys [10/ 52, 23]. However, since
tumor cells exchange a number of chemical signals with ofived of cells, e.g endothelial cells or
immune system effectors, they are an ideal object of hybddeting where some agents are represented
by discrete stochastic processes, especially those indombars([[34], and chemicals are represented by
mean-field equations [12, 21]. This allows to consideritiiensic noise of the model and, when the
mean-field approach would be an over-approximation, thig pnavide more informative forecasts [12].

In [12,121] we proposed a hybrid version of the well-known &taxKirschner[411] mean-field model
of tumor cells, effector cells and Interleukins-2. The ora model forecasts various kinds of experimen-
tally observed tumor size oscillations [39, 53| 32,46, B8]well as microscopic/macroscopic constant
equilibria. However, its hybrid analogous suggests — ini@ioh to replicating original deterministic
forecasts — that immune surveillance, i.e. tumor elimaratly the immune system, may occur through
a sort of side-effect of large stochastic oscillations. Bscrktizing both tumor and effector cellular
populations, and by approximating the interleukins witheamfield equation, probabilistic tumor erad-
ication times s have been quantitatively determined foiouarmodel configurations. Also, ih [21] the
model was extended to account for both interleukin-baserhfhies and Adoptive Cellular Immunother-
apies, i.e. the transfusion of autologous or allogeneicllb g&o tumor-bearing hosts [37], and model
outcomes have been investigated under various therajzsiticgs .

However, that hybrid model did not take into account thag ttuboth chemical transportation and
cellular differentiation/division, the influence of tumam immune system effectors recruitment and pro-
liferation is not instantaneous but, instead, it exhibitagaperiod. Thus, to represent this phenomenon,
we here couple the mean-field equation for Interleukinsh &ibi-dimensional delayed stochastic pro-
cess describing such a delayed interplay. This delay seéovapproximate missing dynamical com-
ponents, e.g. exchanged chemical signals, maturation ethétsgon of T-lymphocytes mediated by
B-lymphocytes([30] or, more in general, the fact that the i system needs time to identify a tumor
and react properly [49]. Of course, a full phenomenologatel of these processes would be desirable.
However, attempting to model each relevant stage of thisga®is currently impossible also because of
the lack of systematic data [10]. Thus, despite this abstrabeing a highly macroscopical and simplis-
tic representation of tumor—immune system interplay, fitst#l provide useful insights in understanding
this very fundamental and complex interaction.

This new hybrid system with delay is a stochastic processbauny the Piecewise Deterministic
Markov process.[24] underlying the delay-free modeél g, [iwRBh a superimposed clock structure of
a Generalized Semi-Markov process|[35], as one of thoserlynte chemically reacting systems with
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delays [11/ 13]. As a consequence, numerical realizatibitbeomodel are obtained by combining a
Gillespie-like Stochastic Simulation Algorithm with dg&a|2] with the algorithm to simulate the delay-
free hybrid systeni [12]. Via numerical analygéswe study the effect of various delays on tumor mass
growth, (ii) we quantitatively determine eradication times as prolighdistributions, (iii) we define a
time-dependent sensitivity coefficient relating tumor snassd delay amplitude ar{dv) we prove, in the
oscillatory regime, the existence of a heuristic stochasifurcation resulting in delay-induced tumor
eradication, which is neither predicted by the mean-fieldlehaor by the hybrid non-delayed model.

The paper is structured as follows. In Sectidn 2 we presentthdel with delay, discuss its for-
mulation in terms of hybrid automata and the underlying lshstic processes. In Sectign 3 we discuss
algorithms for the realization of such processes and, ini@€d, we present the results of our simula-
tions. Finally, in Sectiof]5 we draw some conclusions andudis future works.

2 Model definition

We start by extending the model given(in [12] 21] with the di&rfprm of constant delay in the immune-
response. We consider two cell populations, i.e. tumosdeland immune system effectoEs, and

the molecular population of Interleukins-2 (IL-R)A Delay Differential Equation (DDE) model can be
stated by considering two equations for cells

T =T <1—\E/T>—9TE)/TITE E’:gslilE—llEE—i-CT(t—B) 1)

and one equation for ILs-2, that is

I’:ﬂ TE
VagV+T

wl. (2)

These equations are obtained, as in [21], by convertingt@téd number of cells the densitids andE,
of the mean-field model in_[41] (not shown here), i®.=T/V andE, = E/V whereV is the blood
and bone marrow volumes for leukemia. Inl[12] an hybrid maddbuilt by switching to a discrete
representation of the populations ruled by equatidn (1) an#eeping continuous IL-2, as we shall
discuss in the following. An immediate consequence of thishat equation(1) is interpreted as a
set of stochastic events, whereas equafidon (2) is left umygth In this model the tumor induces the
recruitment of the effectors at a linear rafg(t — 8) with delay 6 > 0. With respect to[[21], where
instead the recruitment is instantaneous, 8.e: 0, the delay effect is to approximate missing dynamical
components [30, 49]. As in the original model formulatiois a measure of the immunogenicity of the
tumor, i.e.cis “a measure of how different the tumor is from self” [41].oRigically, c corresponds to the
average number of antigens, i.e. secreted antibodiesrasutface receptors on immune system T-cells,
expressed by each tumor cell. Interleukins stimulate &ffegoroliferation, whose average lifespan is
ugl, and the average degradation time for IL—ZJ,Tsl. The source of interleukin is modeled as depending
on both the effectors and the tumor burden. Michaelis-Mekiretics rule IL-2 production by the tumor
immune-system interplay, effectors recruitment by thaieiiplay with IL-2 and effectors-induced tumour
death. Finally, tumor growth is logistic with plateayhlL

In [12] it is shown that, wher® = 0, the hybrid model predicts a desirédmor eradication via
immune surveillance, whereas the mean-field analogous does[nat [41]. SubséyuariR1] Adoptive
Cellular Immunotherapies and Interleukin-based thesgie added to the model. By focusing on real-
istic therapeutic settings, i.e. impulsive and piece-veisestant infusion delivery schedule, it is shown
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that the delivery schedule deeply impacts on the theragiyeied tumor eradication time. The advantage
of resetting the mean-field version model to the hybrid isgtallows to quantitatively determine the
probability of eradication, i.eZ[T (t) = 0] for somet, given various model configurations.

In hybrid systems terminology, wheth= 0 this model is é&ochastic Hybrid Automaton (SHA, [6,
7)) with modes inN x N, i.e. the “control” part of the automaton, recording thdudat concentrations.
The SHA consists of a mode for each possible valug ahdT, i.e. a mode = (ge,gr) to countge and
gr effector and tumor cells, with inside the vector field of eipra(2), i.e. such a mode contains

1(t) = Bg+ (Ig— Bg) exp(—Hi (t — tg)) )

with initial condition| (tq) = Iq whenty is the mode entrance time aBg = [piarde /(9V2+arV)]/ .
An automata execution switches probabilistically betweedes, while continuous paths bft) are
determined; so, when jumping from modgat timetg, to modeq/, at timety, the initial condition of
I(t), i.e.1(ty), is set equal to the last evaluationlgf), i.e. I (t5). Jumps between modes are determined
by the time-inhomogenous stochastic events, i.e. the jatgs triggering changes BandT depend
onl(t)[12]. The exit times for modeg are given by the time-dependent cumulative distributiorcfion

Pylt] = exp<z/o‘ra.q(tq+t)dt> (@)

and the probability of jumping to mod#, given the exit timer, is

Yiadig(tg+71)
0 otherwise

YicdjqlgtT) o o
r@q[q/.l.]{ IfQ_{J|q+Vl_q} (5)

Notice that two stochastic events, ia®.q andag 4, trigger jumps to the same new mode, i.e. jumps from
g= (ge,qr) to (ge — 1,qr), so their probabilities sum up iQ. Here the Gillespie-like [33] notation is
used swvj is the j-th column of the systerstoichiometry matrix

,_(1-1-10 00
“\o 0o 0 1-11

and the jump rates in mode= (gr,qe) are the time-dependetopensity functions [34]

aiq(t) =ra0r aq(t) = r2bV tor (or — 1)
aggq(t) = (prarde)/(grV +ar) agq(t) = [pecel (t)]/[ge +1(1)]
asq(t) = HeCE aq(t) = car.

Notice that all buias 4 are time-homogenous jump rates, i.e. do not depend oh(thaside the mode,
but, because a4 the underlying stochastic process is not homogenous.

Executions of this SHA are trajectories of the underlyRigcewise Deterministic Markov Process
(PDMP, [24]), a jump process over vector fields which behalegerministically and whose jumps are
triggered by(i) hitting user-defined boundaries of the state space(andime-inhoumogenous jump
distributions. Actually, for this case, the underlying PBPMas no hitting boundaries but only time-
dependent jump rates linked to the vector fig{t). The state space for the PDMP&x N x R*,
as shown in Figuréll. In there, once the process enters(sfatg:=,q;) the only movement gradient
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Figure 1:State space for the hybrid model.The state spacll x N x R for the PDMP [24] underlying
the hybrid model wher® = 0. Once the process enters stéde,ge,q;) the only movement gradient
is on thez-axis, i.e. the horizontal componeftr,qg) is fixed and the process moves according to the
vertical vector field represented by the empty arrows. Thegss persists moving according to equation
(4)), and then moves on theé x N sub-space, i.e. the horizontal discrete grid denoted bfutharrows,
according to equation]5). Wheh> 0 the process is enriched with a clock structure as for GSI@¥)s [
thus inducing further jumps on the horizontal discrete gpidccount for delayed reactions.

is on thez-axis, i.e. the horizontal componeftr,qg) is fixed and the process moves according to the
vertical vector field. The process persists moving accgrtbrequation[(4), and then moves on e N
sub-space, i.e. the horizontal discrete grid, accordiregtation[(5).

When 8 > 0 the SHA jumps are no more given by a continuous time Markoegss but, instead,
by aGeneralized Semi-Markov Process (GSMP, [35]), a kind of process characterizing a large otdss
discrete-event simulations [117, 16,@] It is shown in [13/ 11] that these process underly Gillespie
like[34]] chemically reacting systems with deterministelal/s, those indeed used here. In these discrete
processesi) the embedded state process is a Markov chain(ahthe time between jumps is an arbi-
trarily distributed random variable which may depend ondfzeting and the ending modes. Whe a
single jump event is present in each state then the procasSesi-Markov Process, whéh) multiple
are currently running then the process is a GSMP and, firvalign(c) the jump times are exponentially
distributed, i.e. memoryless, then the GSMP becomes ai@mis-Time Markov Chain (CTMC).

We recall the definition of finite-state GSMPs asl(in|[17]; tiverall process will have the structure
of the PDMP with the GSMP clock structure superimposed. Wear& that, even if the state-space of
our process is not finite, i.e. bolhandE can theoretically grow unbounded, we could arbitrarily rkefi
two thresholds to limit the cells growth to account for bmikally realistic configurations. Regions of
the parameters in which unbounded growth of the cellulaufadipns are determined in [41,112], and
could be used to define such thresholds. Here, since we orityresimulation-based analysis of these
processes we can avoid restricting the GSMP to a finite gpaises LeE = {ey, ..., ey} be afinite set of
events and, for any statee€ S lets+— E(s) be a mapping fronsto a non-empty subset & denoting the
active eventsin states. In this GSMP one exponential event is always the one retattte jump process,

1 Theoretically, this process might be equally reframed asra PDMP with unbounded number of clocks and infinite
dimensional state space. Even though proving existenceaiggieness of the solutions of the ODE would be feasible, we
think that the combined process allows for the definitionroéfficient simulation algorithm (see Sect[dn 3).
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Algorithm 1 Input: (To, Eg, lo), start timetp, Stop timetgop
1: set initial modeq < (qr,,0g,) and set (tg) = lo;
: while t < tgop do
letry ~U[0,1] determine the mode exit timeas #4[1] = 1/r; thus solving equatior [4);
determine the jump rates 4(t + 1), setl (t + 1);
jump to modeq’ with probability Z4[d | 1];
end while

2 R

and there is one event for each delayed transition pendingext section an algorithm to simulate this
joint process is given. When in stadghe occurrence of one or more events triggers a state fi@nsit
the next state’ is chosen according to a probability distributipts’;s,E*) whereE* C E(s) is the set

of active events which are triggering the state transitidlocks are associated with events and, in state
s, the clock associated with evemtiecays at rate(s,e) = 1 since, in this case, time flows uniformly for
the involved components. When, in a stat¢here are no outgoing transitions, iE&s) = 0, the state
sis said to beabsorbing and it models a terminating process. The set of possibik-reading vectors
when the state isis

C(s)={c=(c1,...,om) | G €[0,@)AC >0< g € E(S)}

wherec; is the value of the clock associated wih ¢; € 47 where%, is the set of clock evalutions. In
states with clock-reading vectoc = (c,...,cv), the time to the next transition is

t*(sc)= min c¢/r(s = min ¢
(89 {ilaE(s)} /r(se) {ilacE(9)}

wherec; /r(s,e) = +o whenr (s, g) = 0. The set of events triggering the state transition is then
E*(s,c)={g € E(s)| ¢ —t*(s,c)r(s,g) =0} .

Actually, as is shown in[[13], by probabilistic argumentssitpossible to show that, for chemically
reacting systems with delays, there is a unique possiblat®wgggering at once, i.eE*(s,c) is a
singleton. When a state transition fra@to s is triggered the evens* expire, leavinge'(s) = E(s) \ E*.
Moreover some new events are created; this seewfeventsis E(s') \ E’(s). For these even® a clock
valuex is generated by distribution-assignment functionF (x;s,€,s,E*) such thaf (0;s,€/,s,E*) =0
and lim,. F(x;s,€,s E*) = 1. For theold events in E(s') NE’(s) the clock value in stateat the time
when the transition was triggered is maintained'inin s’ events inE’(s) \ E(s) are cancelled and the
corresponding clock value is discarded. The GSMP is a cootis-time stochastic procef&(t) |t > 0}
recording the state of the system as it evolves and its s&rsasigiven in terms of a general state space
Markov chain storing both the state of the process and thekakading vectors [35].

3 Simulating the model

We present here an algorithm to realize trajectories oftibauhderlying PDMP with the superimposed
GSMP clock structure and provide model parameters.
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Algorithm 2 Input: (To, Eg, lo), start timetp, Stop timetgqp
1: set initial modeg < (qr,,0g, ), Setl (to) = lo and empty scheduling lii;
2: while t < tgop do

3: letry ~U[0,1] determine the mode exit timeas #4[1] = 1/r;
4: if T <head(M) then
5: determine the rate triggering the jump accordingtg(t + 1), setl (t + 1);
6: if the jump is triggered bgg o then
7: stay in modey, sett «t + 1 and schedule, i.eenqueue(t + 1+ 6,Pi);
8: else
o: jump to modey with probability Z4(d | 1];
10: end if
11: else
12: let T = head(I), jump to mode(ge + 1,q7), setl (t+ 1’), dequeue(MN) andt <t + 1’;
13:  endif
14: end while

Model simulation. When6 = 0 the SHA trajectories are generated by Algorithm 1, an exoenof
the GillespieStochastic Smulation Algorithm (SSA) [33/34] accounting for time-dependent jump rates
and specifically tailored for this hybrid system [21]. Jurimpes are given by solving equatidd (4).

When 6 > 0 a combination of such an algorithm with tI88A with Delays (DSSA, [3,[11]) is
required. The DSSA generates a statistically correctdrajg of the GSMP underlying chemically-
reacting systems with delays [11,113]. Practically, suchakgorithm is the SSA wrapped within an
acceptance/rejection scheme to schedule/handle resatiith delays. Thus, the DSSA provides an
algorithmic approach to the solution of tieelay Chemical Master Equation (DCME, [11]), the non-
Markovian master equation ruling chemically reacting eyst with delays. In this hybrid case, the
system master equation is defined over the hybrid stateedBdq 14] and extended to account for the
delays, i.e. it is d@ifferential Chapman Kolmogorov equation with delays.

We present here Algorithid 2 which, at the best of our knowdgdsg the first attempt to combine an
algorithm for hybrid systems with delays, in the context ioldigical Gillepie-like systems. This should,
in turn, suggest further extensions towards the formal dieimof SHA with delays. The algorithm uses
a acceptance/rejection scheme and a schedulinflJias other DSSAs do. In this case, since a unigue
reaction with constant delay is presefit,is a standardjueue data structure offering head, dequeue
andenqueue operations. The algorithm works by determining, at eadiatigen, both the exit time from
the current mode and the next mode, if any, or the schedukstioe to handle. So, when at tintg
the automaton enters a modethe exit timet (step 3) is determined by the parallel solutionl ¢if),

t > tq, and Zy[1] as triggered by the jump ratesq(t). As in [12], samples fron®?q[1] are obtained by
a unit-rate Poisson transformation (step 3), i.e.

IZ/Ora;,q(tq +t)dt =1In <%>

with ry uniformly distributed. Notice that in this equation, whaaaalytical solution is unknown, the
computation is speeded up by using the analytical definibh(t), i.e. equation[(3). If no reactions
with delays are scheduled to completgtijity + 7], i.e. T < peek(I), the new mode is chosen as in the
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SHA for 8 = 0 by a weighted probabilistic choice dependingagg(t + 1), i.e. thej satisfying

j—-1 6 j
qt+1)<ry aqt+1)<y aqt+1)
2, 2, 2,

with r uniformly distributed. However, if the jump is induced byethate with delay, i.e.asq, the
automata stays in modeand the effectors recruitment is scheduled at ti;ye 7 + 6 by means of the
enqueue operation. This corresponds to assuming pbeely delayed interpretation of delays [11) 2],
being a reaction with no reactants. Finally, if a reactiothvdelay is scheduled ifty, tq + 7], then the
jump time is rejected, the system moves to the time at whielmahction is scheduled, a new effector cell
is recruited, i.e. the system jumps from mdde, qr) to mode(qge + 1,q7) and the scheduled reaction
is dequeued froml.

Model parameters. We use parameter values taken froml/[12]. The baseline grat¢hof the tumor
isr = 0.18days™! and the organism carrying capacitybis= 1/10°ml =1, The baseline strength of the
killing rate of tumor cells byE, of thel L — 2-stimulated growth rate d& and of the production rate for
| are, respectivelypr = 1ml /days, pe = 0.1245days™* and p, = 5pg/days. The corresponding 50%
reduction factors argr = 1°ml—1, g = 210" pg/l andg, = 103 ml %, respectively. The degrada-
tion rates argue = 0.03days ! for the inverse of the average lifespan®fnd ; = 10days™?! for the
loss/degradation rate oE,. Finally, the reference volume 6= 3.2ml.

These values pertain to mice [41,140] and are taken fiom[[3h, where accurate fitting of real
data concerning laboratory animals were performed. VolMmiastead, has been estimated[in![12] by
considering the body weight and blood volume of a chimeriuseo The value 0 andc are varied in
each configuration and given in the captions of figures.

4 Results

With the purpose of investigating the effect of differentags on the tumor eradication time, if any,
and on the tumor growth size, we performed extensive simounlatof various model configurations.
All the simulations have been performed bysaal implementation of the model running on the cluster
scilx.disco.unimib.it,i.e. 15 dual-core nodes,®5hz processors and@B of memory. Simulation
times increase af andE increase in size, spanning from few minutes to some houws, ribquiring a
cluster capabilities to perform thousands of simulationseasonable time.

We always used the initial conditiofTy, Eq,lg) = (1,0,0), one of those used in [12] where also
the effect of an initial bigger tumor or effectors mass isestgated. However, we here use this initial
condition since it allows to observe various qualitativédgors [12]. Forc = 0.02, a value used in
Figure 2 of [12], we used € {0,0.5,1,1.5,2,2.5,3} since, for6 > 3, it is shown in[[23] that the tumor
mass grows up to the carrying capacity of the organism, i/b. We remark tha® units aredays, and
8 > 3'is a biologically unrealistic value as shown[in][23]. Wefpemed 1§ simulations for each delay
configuration, and we plot in Figufé 2 the averages tumor &edters growth, i.e(T(t)) and(E(t)).

Notice that, even though in each configuration the modélms#ldicts tumor eradication, the tumor
mass grows significantly more for higher delay values, beff= 0 it reaches around £@ells whereas
for 8 = 3 it is 5 times bigger. This, in turn, stimulates the immuasponse as shown by the plots of
the empirical probability density of the eradication time, [T (t) = 0] with t € N. Notice that, even
though the state witfi = 0 is not absorbing in the GSMP, i.e. further reactions woeddllto the natural
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Figure 2: Tumor and Effectors growth and eradication times. In left we plot the average growth
(T(t)) and (E(t)) as of 1§ simulations withc = 0.02, 8 € {0,0.5,1,1.5,2,2.5,3} as reported in the
legend and Ty, Eg, lp) = (1,0,0). On thex-axis days are represented, on thaxis number of cells. In
right we plot the empirical probability density of the ereation time, i.e.Z[T(t) = 0] with t € N, for

6 € {0,1,2,3}. On they-axis probability density are represented.

death of effector cells ending to the absorbiiig0) state, this corresponds to estimating the expected
time for a quasi-absorbing state. These plots suggestttimatgh the tumor mass grows more and more
rapidly for higherf — as one might expect — the effect of the consequent immupemss is also larger,
inducing a quicker eradication of the tumor, given that theampeak for@ = 0 is around day 125,
whereas fo € {1,2,3} is around day 120, 118 and 115, respectively. This is a rathenterintuitive
result, which hints at a functional role of delay in contiral the expansion of the tumor mass.

In order to quantitatively determine the sensitivity of tnmgrowth with respect t@, we perform
parametric sensitivity analysis (PSA) by using the technique defined in[18], which we now fiyrie
recall. This is a numerical procedure specifically defineddfecrete stochastic models; it is numerical
since models are only rarely analytically solvable. As niadgput variable we use the whol&[T (t)]
rather than, for instance, its overall mean or mode, to cagttamatic variations i?[T ()], potentially
induced by small perturbations éh Besides, we scan a wide range of valueXogiven that the overall
dynamics can be differently sensitive in various regionthefparameters space. For this reason, in [18]
the model sensitivity to a given parameter is defined as aifunof the parameter itself. Differently
from the mean-field case, where jugt) could be used, the stochastic sensitivity is computed &k5h [

0Z7[T(t)]
(t)= 60 (6)
where [T (t)] is the probability of the tumor mass, given a valuefof The sensitivity analysis is
then based on a measure for discrete stochastic systemsa@wgausly, for the discrete part of hybrid
systems, obeying a generic chemical master equation [86], i

) =X

s1(1.6) = Ellsa(0)] = | 2Z2EH =2 porr () = xe. @

The dependency o [T (t)] with respect td is then represented by a curve, which should be obtained
as a function of a possibly large range of valuesfofinstead of punctual perturbations. Here it is
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Figure 3: Sensitivity analysis. In left we plot a 3-D representation of the sensitivity cue& (t, ),
plotted in correspondence of each delay value of the férm 0.1k with 0 < k < 30 andk € N, for
eacht € [0,200, i.e. equation[{7), as obtained by3L0° independent simulations. In right we plot the
sensitivity curveSr (t) of equation|((8).

obtained by interpolating the points with a polynome of ofde- 1, whereD is the number of different
values of delay. The model overall sensitivity coefficiamjch does not depend dh is then

Srt)= [ Sr(t.0)de ©)

where the finite domai26 for 6 is used. Notice that, since densities integrate to 1, theitsaty
coefficients do not require to be normalized as is the caseméan-field models. Also, the integral Bh
is discrete, and can be therefore represented as a summation

To apply this technique we performed3€imulations for each delay value @8 = {0.1k |0 < k <
30,k € N}, thus we use & 10° independent simulationf = 30 and every density function is computed
on the rangg0; maxr], wheremaxy is the maximum observed value offor all the values 0, in all
the simulations. The sensitivity functi@ ¢(6,t) is then derived by integrating, for afy the absolute
value of the derivatived 7 [T (t)] /90 is evaluated irx € N and weighted byZ[T (t) = x| according
to equation[{I7). Notice that this method does not discriteiriae sign of the observed variattoriThe
sensitivity curves, i.e. equation] (7) amnd (8) are shown guFe[3.

One important general result is that the model sensitiatthe variation off is not time-invariant,
as shown in Figur]3. Itis indeed possible to detect twowaterin which the influence is maximum, i.e.
the intervalg[10,25] and[115 160, while in the other regions the sensitivity is essentialy relevant.
In particular, the overall sensitivity magnitude is muctgkr in [115 160, almost doubling the overall
maximum of the first interval (right figure). This result segts that a variation in the response time of
the immune system can indeed influences the developmene @fithor mass, but only in two specific
conditions:(i) before that the tumor begins its expansion (i.e. first iretreither preventing or favoring
it; (ii) after that the tumor has reached its maximum size, indudthgrean enlargement or a reduction
of the final eradication time. By looking & ¢(8,t) (left figure) it is then possible to notice théti)
in regard to the first interval, the overall sensitivity isasely correlated to the speciféy while (iv)
the sensitivity curves corresponding [idl5 160 usually present a bell-shape, often characterized by a

2To perform PSA we only adopted Lagrange polynomial inteapioh, even though multiple interpolation methods could
be used and compared, e.g. spline or other non-linear witdipn techniques.
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Figure 4: Stable oscillatory equilibria. In left we plotT(t) andE(t) for a single run withc = 0.035
and 0 € {0,1.5} as reported in the legend. The initial configuration(Ts, Eo,lg) = (1,0,0). On the
x-axis days are represented, on yhaxis number of cells. In right we plot the phase space of ystem
restricted tol' andE, and we show a stochastic switch to the null attractofer 1.5.
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Figure 5: Heuristic stochastic bifurcation for 8 = 1.5. We plot the empirical probability density of
the eradication time, i.eZ?[T (t) = 0] with t € N, for c = 0.035, 6 = 1.5 and (T, Eg,lo) = (1,0,0) as
evaluated by the 196 cases, out of 1000, in which the systempguo the null attractor foF.

unigue maximum value of sensitivity, with respect to a sfieé. This suggests that a variationéncan
provoke different repercussions on the overall dynamiafistinct regions of the parameter’s space.

In order to investigate the role of delays for the system éndhcillatory regime, we performed sim-
ulations with 003 < ¢ < 0.035, a region for which both the deterministic system (iiguFe 2D of [41])
and the therapy-free hybrid model (i.e. Figure 7.of [12])dacetumor sustained/dumped oscillations. In
Figurel4 (left) we plot the effect of delays in the oscillatoegime forc = 0.035, 8 € {0,1.5} and initial
configuration(To, Ep, lo) = (1,0,0). Here we simulate the model for around 10000 days, i.e. 2ikyea
a value far beyond the life expectancy of a mouse — on whichrpaters are fitted — but which serves
mainly to prove the stability of the equilibrium, if any.

It is immediate to notice that, fd@ = 1.5 the tumor mass does not seem to reach a small equilibrium,
as instead it happens for the delay-free case. Indeed, ifotheer case the tumor mass spans between
very low values and 2 10°, in the latter the oscillations are dumped up to arourtdcklls. Furthermore,
the first oscillation peak is around4x 10 for 8 = 1.5 which is a considerably bigger values than that
one reached fof = 0. These amplified oscillations often arise when models anered with delays
[47,45]44] and reach very small values as shown in Figurgdtjrwhere the phase space of the system
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Figure 6: Mean-field model. We plot deterministic simulations of modéll[(1-2) for= 0.035, 6 €
{0,0.5,1,1.5,2,2.5,3} (higher peaks for higher values 6 and (Tp,Eo,lo) = (1,0,0), T(t) = O for

t < 0. Notice the tumor resting period tne [120, 160 (right zoom for@ € {1,1.5,2}), the length of
which depends 08, is the one in witch the hybrid system probabilistically ®hies to the null attractor
for T. On thex-axis days are represented, on ykhaxis number of cells.

restricted toT andE is represented and a stochastic switch to the null attrdotof = 1.5 is shown.
Surprisingly, this result in some simulations showing @aiibn for 8 = 1.5, an unexpected outcome
for the oscillatory regime since fd& = 0 none of 1000 simulations have shown eradication (not shown
here). Instead, 196 out of 1000 simulations, i.e. almost 20 %e cases, fo# = 1.5 show eradication
reached immediately after the first spike of the oscillaioMhis clearly suggests the existence of a
heuristic stochastic bifurcation close flo= 1.5 with a switch to the null attractor fdf, i.e. T — 0, so
that, for some cases, the tumor gets eradicated. In Figure ot the empirical probability density of
the eradication time, i.eZ?[T (t) = 0] with t € N, as evaluated by these 196 cases. This conclusion is
strengthened by observing that, e {2, 3}, the tumor is always eradicated (in 1000 cases, not shown).
Moreover, this is an interesting outcome as compared aghmgredictions of the mean-field model.
In fact, in Figure 6 we show deterministic simulations of rab@{2) for 6 € {0,0.5,1,1.5,2,2.5,3},
restricted ta € [0,400 and with extended analogous initial condition

0 t<O
Tt) = , Eo=lo=0.
®) {1 t=0 0—70

In there it is possible to observe a tumor resting period {120,160, the length of which depends
on 6. Small values in such period are predicted, i.e. for 2 we observeT (t) < 1 and forf = 1.5
we observeT (t) ~ 10 in accordance with the simulations we performed. In thises period, instead,
the hybrid system probabilistically switches to the nuitattor forT, thus suggesting the importance of
resetting the model in the hybrid setting which, as in [12pdain proved to be more informative.

5 Conclusions

In this paper we study the effect of a constant time delay fiac&drs recruitment in a tumor—immune
system interplay hybrid model. The model, analogous of d-krelwn mean-field model [41], was

proved to be more informative to forecast onco-suppredsyae immune system [12] as a conjunction
of the intrinsic tendency of the immune system to oscillatgnificantly evidenced by the deterministic
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model, with the intrinsic noise. This phenomen, which igddred by the appearance of specific neo-
antigens resulting from genetic and epigenetic eventsackenizing tumor cells [48], is fundamental to
the immune surveillance hypothesis, a promising approadhet treatment of cancer [28].

Modeling such an interplay requires considering biololggcdities at multiple scales. As such, tumor
growth is an ideal object of hybrid modeling [12]. Extenditmp model in[[12] with delays allows to
account that, due to both chemical transportation andlaeltlifferentiation/division, the influence of
tumor on effectors recruitment and proliferation exhikitiag period. Of course, an explicit model of
the missing dynamical components, e.g. chemical signasynaition and activation of T-lymphocytes,
would be desirable but is currently unfeasible, also bexzafithe lack of systematic data [10].

In this paper we contextualized this model within Stocltaklybrid Automata, when the delay is
0, so to give it a semantics in terms of Piecewise Deterniénidarkov Processes [24]. When delays
are present we combine the underlying process with a clooktste for a Generalized Semi-Markov
process|[35], as for chemically reacting systems with deldd]. We present a novel algorithm to
simulate this extended hybrid model and, via numericalyaeal, we quantitatively determined the effects
of various delays on tumor mass growth and determine thecattaah times as probability distributions,
under various configurations. Under these configurationgdepted a parametric sensitivity analysis
technique to relate the tumor growth to the delay amplitulliso, we have shown that the stochastic
effects driving the system to the eradication can unexpctppear even in the oscillatory regime. In
fact, in there we proved the existence of a heuristic stachagurcation, which is neither predicted
by the mean-field model nor by the hybrid non-delayed modkusT despite our model being a highly
macroscopical and simplistic representation of the tuinmomune system interplay, we have shown that
it can provide useful insights on the multitude of possihiecomes of this very fundamental and complex
interaction, e.g. neoplasm evasion from immune contraljime surveillance and (dumped) oscillations.

As far as future works are concerned, a further combinatfahi® model with the immunotherapies
studied in[[21] would be interesting. Also, the model itsalfild be extended so, for instance, the linear
antigenic effectcT (t — 8) due to the tumor size could be corrected by assuming a dekstedating
stimulation. Similarly, the assumption th&t linearly depends ot could be corrected, as there are
cases where this dependence might be non-linear, as @uthnd9]. Moreover, more complex form
of delays could be considered, along the line of those usetkin-field models [23], e.g. weak/strong
kernels. Finally, the mathematical formalization of hybautomata with delays seems missing, thus
suggesting possible extensions to the hybrid automataythelong with their analysis techniques.
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